1 /* Subroutines used for code generation on IBM RS/6000.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-attr.h"
43 #include "basic-block.h"
44 #include "integrate.h"
50 #include "target-def.h"
51 #include "langhooks.h"
53 #include "cfglayout.h"
54 #include "sched-int.h"
56 #include "tree-flow.h"
59 #include "tm-constrs.h"
61 #include "xcoffout.h" /* get declarations of xcoff_*_section_name */
64 #include "gstab.h" /* for N_SLINE */
67 #ifndef TARGET_NO_PROTOTYPE
68 #define TARGET_NO_PROTOTYPE 0
71 #define min(A,B) ((A) < (B) ? (A) : (B))
72 #define max(A,B) ((A) > (B) ? (A) : (B))
74 /* Structure used to define the rs6000 stack */
75 typedef struct rs6000_stack
{
76 int first_gp_reg_save
; /* first callee saved GP register used */
77 int first_fp_reg_save
; /* first callee saved FP register used */
78 int first_altivec_reg_save
; /* first callee saved AltiVec register used */
79 int lr_save_p
; /* true if the link reg needs to be saved */
80 int cr_save_p
; /* true if the CR reg needs to be saved */
81 unsigned int vrsave_mask
; /* mask of vec registers to save */
82 int push_p
; /* true if we need to allocate stack space */
83 int calls_p
; /* true if the function makes any calls */
84 int world_save_p
; /* true if we're saving *everything*:
85 r13-r31, cr, f14-f31, vrsave, v20-v31 */
86 enum rs6000_abi abi
; /* which ABI to use */
87 int gp_save_offset
; /* offset to save GP regs from initial SP */
88 int fp_save_offset
; /* offset to save FP regs from initial SP */
89 int altivec_save_offset
; /* offset to save AltiVec regs from initial SP */
90 int lr_save_offset
; /* offset to save LR from initial SP */
91 int cr_save_offset
; /* offset to save CR from initial SP */
92 int vrsave_save_offset
; /* offset to save VRSAVE from initial SP */
93 int spe_gp_save_offset
; /* offset to save spe 64-bit gprs */
94 int varargs_save_offset
; /* offset to save the varargs registers */
95 int ehrd_offset
; /* offset to EH return data */
96 int reg_size
; /* register size (4 or 8) */
97 HOST_WIDE_INT vars_size
; /* variable save area size */
98 int parm_size
; /* outgoing parameter size */
99 int save_size
; /* save area size */
100 int fixed_size
; /* fixed size of stack frame */
101 int gp_size
; /* size of saved GP registers */
102 int fp_size
; /* size of saved FP registers */
103 int altivec_size
; /* size of saved AltiVec registers */
104 int cr_size
; /* size to hold CR if not in save_size */
105 int vrsave_size
; /* size to hold VRSAVE if not in save_size */
106 int altivec_padding_size
; /* size of altivec alignment padding if
108 int spe_gp_size
; /* size of 64-bit GPR save size for SPE */
109 int spe_padding_size
;
110 HOST_WIDE_INT total_size
; /* total bytes allocated for stack */
111 int spe_64bit_regs_used
;
114 /* A C structure for machine-specific, per-function data.
115 This is added to the cfun structure. */
116 typedef struct machine_function
GTY(())
118 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
119 int ra_needs_full_frame
;
120 /* Some local-dynamic symbol. */
121 const char *some_ld_name
;
122 /* Whether the instruction chain has been scanned already. */
123 int insn_chain_scanned_p
;
124 /* Flags if __builtin_return_address (0) was used. */
126 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
127 varargs save area. */
128 HOST_WIDE_INT varargs_save_offset
;
129 /* Temporary stack slot to use for SDmode copies. This slot is
130 64-bits wide and is allocated early enough so that the offset
131 does not overflow the 16-bit load/store offset field. */
132 rtx sdmode_stack_slot
;
135 /* Target cpu type */
137 enum processor_type rs6000_cpu
;
138 struct rs6000_cpu_select rs6000_select
[3] =
140 /* switch name, tune arch */
141 { (const char *)0, "--with-cpu=", 1, 1 },
142 { (const char *)0, "-mcpu=", 1, 1 },
143 { (const char *)0, "-mtune=", 1, 0 },
146 /* Always emit branch hint bits. */
147 static GTY(()) bool rs6000_always_hint
;
149 /* Schedule instructions for group formation. */
150 static GTY(()) bool rs6000_sched_groups
;
152 /* Align branch targets. */
153 static GTY(()) bool rs6000_align_branch_targets
;
155 /* Support for -msched-costly-dep option. */
156 const char *rs6000_sched_costly_dep_str
;
157 enum rs6000_dependence_cost rs6000_sched_costly_dep
;
159 /* Support for -minsert-sched-nops option. */
160 const char *rs6000_sched_insert_nops_str
;
161 enum rs6000_nop_insertion rs6000_sched_insert_nops
;
163 /* Support targetm.vectorize.builtin_mask_for_load. */
164 static GTY(()) tree altivec_builtin_mask_for_load
;
166 /* Size of long double. */
167 int rs6000_long_double_type_size
;
169 /* IEEE quad extended precision long double. */
172 /* Nonzero to use AltiVec ABI. */
173 int rs6000_altivec_abi
;
175 /* Nonzero if we want SPE SIMD instructions. */
178 /* Nonzero if we want SPE ABI extensions. */
181 /* Nonzero to use isel instructions. */
184 /* Nonzero if floating point operations are done in the GPRs. */
185 int rs6000_float_gprs
= 0;
187 /* Nonzero if we want Darwin's struct-by-value-in-regs ABI. */
188 int rs6000_darwin64_abi
;
190 /* Set to nonzero once AIX common-mode calls have been defined. */
191 static GTY(()) int common_mode_defined
;
193 /* Save information from a "cmpxx" operation until the branch or scc is
195 rtx rs6000_compare_op0
, rs6000_compare_op1
;
196 int rs6000_compare_fp_p
;
198 /* Label number of label created for -mrelocatable, to call to so we can
199 get the address of the GOT section */
200 int rs6000_pic_labelno
;
203 /* Which abi to adhere to */
204 const char *rs6000_abi_name
;
206 /* Semantics of the small data area */
207 enum rs6000_sdata_type rs6000_sdata
= SDATA_DATA
;
209 /* Which small data model to use */
210 const char *rs6000_sdata_name
= (char *)0;
212 /* Counter for labels which are to be placed in .fixup. */
213 int fixuplabelno
= 0;
216 /* Bit size of immediate TLS offsets and string from which it is decoded. */
217 int rs6000_tls_size
= 32;
218 const char *rs6000_tls_size_string
;
220 /* ABI enumeration available for subtarget to use. */
221 enum rs6000_abi rs6000_current_abi
;
223 /* Whether to use variant of AIX ABI for PowerPC64 Linux. */
227 const char *rs6000_debug_name
;
228 int rs6000_debug_stack
; /* debug stack applications */
229 int rs6000_debug_arg
; /* debug argument handling */
231 /* Value is TRUE if register/mode pair is acceptable. */
232 bool rs6000_hard_regno_mode_ok_p
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
234 /* Built in types. */
236 tree rs6000_builtin_types
[RS6000_BTI_MAX
];
237 tree rs6000_builtin_decls
[RS6000_BUILTIN_COUNT
];
239 const char *rs6000_traceback_name
;
241 traceback_default
= 0,
247 /* Flag to say the TOC is initialized */
249 char toc_label_name
[10];
251 /* Cached value of rs6000_variable_issue. This is cached in
252 rs6000_variable_issue hook and returned from rs6000_sched_reorder2. */
253 static short cached_can_issue_more
;
255 static GTY(()) section
*read_only_data_section
;
256 static GTY(()) section
*private_data_section
;
257 static GTY(()) section
*read_only_private_data_section
;
258 static GTY(()) section
*sdata2_section
;
259 static GTY(()) section
*toc_section
;
261 /* Control alignment for fields within structures. */
262 /* String from -malign-XXXXX. */
263 int rs6000_alignment_flags
;
265 /* True for any options that were explicitly set. */
267 bool aix_struct_ret
; /* True if -maix-struct-ret was used. */
268 bool alignment
; /* True if -malign- was used. */
269 bool spe_abi
; /* True if -mabi=spe/no-spe was used. */
270 bool altivec_abi
; /* True if -mabi=altivec/no-altivec used. */
271 bool spe
; /* True if -mspe= was used. */
272 bool float_gprs
; /* True if -mfloat-gprs= was used. */
273 bool isel
; /* True if -misel was used. */
274 bool long_double
; /* True if -mlong-double- was used. */
275 bool ieee
; /* True if -mabi=ieee/ibmlongdouble used. */
276 bool vrsave
; /* True if -mvrsave was used. */
277 } rs6000_explicit_options
;
279 struct builtin_description
281 /* mask is not const because we're going to alter it below. This
282 nonsense will go away when we rewrite the -march infrastructure
283 to give us more target flag bits. */
285 const enum insn_code icode
;
286 const char *const name
;
287 const enum rs6000_builtins code
;
290 /* Target cpu costs. */
292 struct processor_costs
{
293 const int mulsi
; /* cost of SImode multiplication. */
294 const int mulsi_const
; /* cost of SImode multiplication by constant. */
295 const int mulsi_const9
; /* cost of SImode mult by short constant. */
296 const int muldi
; /* cost of DImode multiplication. */
297 const int divsi
; /* cost of SImode division. */
298 const int divdi
; /* cost of DImode division. */
299 const int fp
; /* cost of simple SFmode and DFmode insns. */
300 const int dmul
; /* cost of DFmode multiplication (and fmadd). */
301 const int sdiv
; /* cost of SFmode division (fdivs). */
302 const int ddiv
; /* cost of DFmode division (fdiv). */
303 const int cache_line_size
; /* cache line size in bytes. */
304 const int l1_cache_size
; /* size of l1 cache, in kilobytes. */
305 const int l2_cache_size
; /* size of l2 cache, in kilobytes. */
306 const int simultaneous_prefetches
; /* number of parallel prefetch
310 const struct processor_costs
*rs6000_cost
;
312 /* Processor costs (relative to an add) */
314 /* Instruction size costs on 32bit processors. */
316 struct processor_costs size32_cost
= {
317 COSTS_N_INSNS (1), /* mulsi */
318 COSTS_N_INSNS (1), /* mulsi_const */
319 COSTS_N_INSNS (1), /* mulsi_const9 */
320 COSTS_N_INSNS (1), /* muldi */
321 COSTS_N_INSNS (1), /* divsi */
322 COSTS_N_INSNS (1), /* divdi */
323 COSTS_N_INSNS (1), /* fp */
324 COSTS_N_INSNS (1), /* dmul */
325 COSTS_N_INSNS (1), /* sdiv */
326 COSTS_N_INSNS (1), /* ddiv */
333 /* Instruction size costs on 64bit processors. */
335 struct processor_costs size64_cost
= {
336 COSTS_N_INSNS (1), /* mulsi */
337 COSTS_N_INSNS (1), /* mulsi_const */
338 COSTS_N_INSNS (1), /* mulsi_const9 */
339 COSTS_N_INSNS (1), /* muldi */
340 COSTS_N_INSNS (1), /* divsi */
341 COSTS_N_INSNS (1), /* divdi */
342 COSTS_N_INSNS (1), /* fp */
343 COSTS_N_INSNS (1), /* dmul */
344 COSTS_N_INSNS (1), /* sdiv */
345 COSTS_N_INSNS (1), /* ddiv */
352 /* Instruction costs on RIOS1 processors. */
354 struct processor_costs rios1_cost
= {
355 COSTS_N_INSNS (5), /* mulsi */
356 COSTS_N_INSNS (4), /* mulsi_const */
357 COSTS_N_INSNS (3), /* mulsi_const9 */
358 COSTS_N_INSNS (5), /* muldi */
359 COSTS_N_INSNS (19), /* divsi */
360 COSTS_N_INSNS (19), /* divdi */
361 COSTS_N_INSNS (2), /* fp */
362 COSTS_N_INSNS (2), /* dmul */
363 COSTS_N_INSNS (19), /* sdiv */
364 COSTS_N_INSNS (19), /* ddiv */
365 128, /* cache line size */
371 /* Instruction costs on RIOS2 processors. */
373 struct processor_costs rios2_cost
= {
374 COSTS_N_INSNS (2), /* mulsi */
375 COSTS_N_INSNS (2), /* mulsi_const */
376 COSTS_N_INSNS (2), /* mulsi_const9 */
377 COSTS_N_INSNS (2), /* muldi */
378 COSTS_N_INSNS (13), /* divsi */
379 COSTS_N_INSNS (13), /* divdi */
380 COSTS_N_INSNS (2), /* fp */
381 COSTS_N_INSNS (2), /* dmul */
382 COSTS_N_INSNS (17), /* sdiv */
383 COSTS_N_INSNS (17), /* ddiv */
384 256, /* cache line size */
390 /* Instruction costs on RS64A processors. */
392 struct processor_costs rs64a_cost
= {
393 COSTS_N_INSNS (20), /* mulsi */
394 COSTS_N_INSNS (12), /* mulsi_const */
395 COSTS_N_INSNS (8), /* mulsi_const9 */
396 COSTS_N_INSNS (34), /* muldi */
397 COSTS_N_INSNS (65), /* divsi */
398 COSTS_N_INSNS (67), /* divdi */
399 COSTS_N_INSNS (4), /* fp */
400 COSTS_N_INSNS (4), /* dmul */
401 COSTS_N_INSNS (31), /* sdiv */
402 COSTS_N_INSNS (31), /* ddiv */
403 128, /* cache line size */
409 /* Instruction costs on MPCCORE processors. */
411 struct processor_costs mpccore_cost
= {
412 COSTS_N_INSNS (2), /* mulsi */
413 COSTS_N_INSNS (2), /* mulsi_const */
414 COSTS_N_INSNS (2), /* mulsi_const9 */
415 COSTS_N_INSNS (2), /* muldi */
416 COSTS_N_INSNS (6), /* divsi */
417 COSTS_N_INSNS (6), /* divdi */
418 COSTS_N_INSNS (4), /* fp */
419 COSTS_N_INSNS (5), /* dmul */
420 COSTS_N_INSNS (10), /* sdiv */
421 COSTS_N_INSNS (17), /* ddiv */
422 32, /* cache line size */
428 /* Instruction costs on PPC403 processors. */
430 struct processor_costs ppc403_cost
= {
431 COSTS_N_INSNS (4), /* mulsi */
432 COSTS_N_INSNS (4), /* mulsi_const */
433 COSTS_N_INSNS (4), /* mulsi_const9 */
434 COSTS_N_INSNS (4), /* muldi */
435 COSTS_N_INSNS (33), /* divsi */
436 COSTS_N_INSNS (33), /* divdi */
437 COSTS_N_INSNS (11), /* fp */
438 COSTS_N_INSNS (11), /* dmul */
439 COSTS_N_INSNS (11), /* sdiv */
440 COSTS_N_INSNS (11), /* ddiv */
441 32, /* cache line size */
447 /* Instruction costs on PPC405 processors. */
449 struct processor_costs ppc405_cost
= {
450 COSTS_N_INSNS (5), /* mulsi */
451 COSTS_N_INSNS (4), /* mulsi_const */
452 COSTS_N_INSNS (3), /* mulsi_const9 */
453 COSTS_N_INSNS (5), /* muldi */
454 COSTS_N_INSNS (35), /* divsi */
455 COSTS_N_INSNS (35), /* divdi */
456 COSTS_N_INSNS (11), /* fp */
457 COSTS_N_INSNS (11), /* dmul */
458 COSTS_N_INSNS (11), /* sdiv */
459 COSTS_N_INSNS (11), /* ddiv */
460 32, /* cache line size */
466 /* Instruction costs on PPC440 processors. */
468 struct processor_costs ppc440_cost
= {
469 COSTS_N_INSNS (3), /* mulsi */
470 COSTS_N_INSNS (2), /* mulsi_const */
471 COSTS_N_INSNS (2), /* mulsi_const9 */
472 COSTS_N_INSNS (3), /* muldi */
473 COSTS_N_INSNS (34), /* divsi */
474 COSTS_N_INSNS (34), /* divdi */
475 COSTS_N_INSNS (5), /* fp */
476 COSTS_N_INSNS (5), /* dmul */
477 COSTS_N_INSNS (19), /* sdiv */
478 COSTS_N_INSNS (33), /* ddiv */
479 32, /* cache line size */
485 /* Instruction costs on PPC601 processors. */
487 struct processor_costs ppc601_cost
= {
488 COSTS_N_INSNS (5), /* mulsi */
489 COSTS_N_INSNS (5), /* mulsi_const */
490 COSTS_N_INSNS (5), /* mulsi_const9 */
491 COSTS_N_INSNS (5), /* muldi */
492 COSTS_N_INSNS (36), /* divsi */
493 COSTS_N_INSNS (36), /* divdi */
494 COSTS_N_INSNS (4), /* fp */
495 COSTS_N_INSNS (5), /* dmul */
496 COSTS_N_INSNS (17), /* sdiv */
497 COSTS_N_INSNS (31), /* ddiv */
498 32, /* cache line size */
504 /* Instruction costs on PPC603 processors. */
506 struct processor_costs ppc603_cost
= {
507 COSTS_N_INSNS (5), /* mulsi */
508 COSTS_N_INSNS (3), /* mulsi_const */
509 COSTS_N_INSNS (2), /* mulsi_const9 */
510 COSTS_N_INSNS (5), /* muldi */
511 COSTS_N_INSNS (37), /* divsi */
512 COSTS_N_INSNS (37), /* divdi */
513 COSTS_N_INSNS (3), /* fp */
514 COSTS_N_INSNS (4), /* dmul */
515 COSTS_N_INSNS (18), /* sdiv */
516 COSTS_N_INSNS (33), /* ddiv */
517 32, /* cache line size */
523 /* Instruction costs on PPC604 processors. */
525 struct processor_costs ppc604_cost
= {
526 COSTS_N_INSNS (4), /* mulsi */
527 COSTS_N_INSNS (4), /* mulsi_const */
528 COSTS_N_INSNS (4), /* mulsi_const9 */
529 COSTS_N_INSNS (4), /* muldi */
530 COSTS_N_INSNS (20), /* divsi */
531 COSTS_N_INSNS (20), /* divdi */
532 COSTS_N_INSNS (3), /* fp */
533 COSTS_N_INSNS (3), /* dmul */
534 COSTS_N_INSNS (18), /* sdiv */
535 COSTS_N_INSNS (32), /* ddiv */
536 32, /* cache line size */
542 /* Instruction costs on PPC604e processors. */
544 struct processor_costs ppc604e_cost
= {
545 COSTS_N_INSNS (2), /* mulsi */
546 COSTS_N_INSNS (2), /* mulsi_const */
547 COSTS_N_INSNS (2), /* mulsi_const9 */
548 COSTS_N_INSNS (2), /* muldi */
549 COSTS_N_INSNS (20), /* divsi */
550 COSTS_N_INSNS (20), /* divdi */
551 COSTS_N_INSNS (3), /* fp */
552 COSTS_N_INSNS (3), /* dmul */
553 COSTS_N_INSNS (18), /* sdiv */
554 COSTS_N_INSNS (32), /* ddiv */
555 32, /* cache line size */
561 /* Instruction costs on PPC620 processors. */
563 struct processor_costs ppc620_cost
= {
564 COSTS_N_INSNS (5), /* mulsi */
565 COSTS_N_INSNS (4), /* mulsi_const */
566 COSTS_N_INSNS (3), /* mulsi_const9 */
567 COSTS_N_INSNS (7), /* muldi */
568 COSTS_N_INSNS (21), /* divsi */
569 COSTS_N_INSNS (37), /* divdi */
570 COSTS_N_INSNS (3), /* fp */
571 COSTS_N_INSNS (3), /* dmul */
572 COSTS_N_INSNS (18), /* sdiv */
573 COSTS_N_INSNS (32), /* ddiv */
574 128, /* cache line size */
580 /* Instruction costs on PPC630 processors. */
582 struct processor_costs ppc630_cost
= {
583 COSTS_N_INSNS (5), /* mulsi */
584 COSTS_N_INSNS (4), /* mulsi_const */
585 COSTS_N_INSNS (3), /* mulsi_const9 */
586 COSTS_N_INSNS (7), /* muldi */
587 COSTS_N_INSNS (21), /* divsi */
588 COSTS_N_INSNS (37), /* divdi */
589 COSTS_N_INSNS (3), /* fp */
590 COSTS_N_INSNS (3), /* dmul */
591 COSTS_N_INSNS (17), /* sdiv */
592 COSTS_N_INSNS (21), /* ddiv */
593 128, /* cache line size */
599 /* Instruction costs on Cell processor. */
600 /* COSTS_N_INSNS (1) ~ one add. */
602 struct processor_costs ppccell_cost
= {
603 COSTS_N_INSNS (9/2)+2, /* mulsi */
604 COSTS_N_INSNS (6/2), /* mulsi_const */
605 COSTS_N_INSNS (6/2), /* mulsi_const9 */
606 COSTS_N_INSNS (15/2)+2, /* muldi */
607 COSTS_N_INSNS (38/2), /* divsi */
608 COSTS_N_INSNS (70/2), /* divdi */
609 COSTS_N_INSNS (10/2), /* fp */
610 COSTS_N_INSNS (10/2), /* dmul */
611 COSTS_N_INSNS (74/2), /* sdiv */
612 COSTS_N_INSNS (74/2), /* ddiv */
613 128, /* cache line size */
619 /* Instruction costs on PPC750 and PPC7400 processors. */
621 struct processor_costs ppc750_cost
= {
622 COSTS_N_INSNS (5), /* mulsi */
623 COSTS_N_INSNS (3), /* mulsi_const */
624 COSTS_N_INSNS (2), /* mulsi_const9 */
625 COSTS_N_INSNS (5), /* muldi */
626 COSTS_N_INSNS (17), /* divsi */
627 COSTS_N_INSNS (17), /* divdi */
628 COSTS_N_INSNS (3), /* fp */
629 COSTS_N_INSNS (3), /* dmul */
630 COSTS_N_INSNS (17), /* sdiv */
631 COSTS_N_INSNS (31), /* ddiv */
632 32, /* cache line size */
638 /* Instruction costs on PPC7450 processors. */
640 struct processor_costs ppc7450_cost
= {
641 COSTS_N_INSNS (4), /* mulsi */
642 COSTS_N_INSNS (3), /* mulsi_const */
643 COSTS_N_INSNS (3), /* mulsi_const9 */
644 COSTS_N_INSNS (4), /* muldi */
645 COSTS_N_INSNS (23), /* divsi */
646 COSTS_N_INSNS (23), /* divdi */
647 COSTS_N_INSNS (5), /* fp */
648 COSTS_N_INSNS (5), /* dmul */
649 COSTS_N_INSNS (21), /* sdiv */
650 COSTS_N_INSNS (35), /* ddiv */
651 32, /* cache line size */
657 /* Instruction costs on PPC8540 processors. */
659 struct processor_costs ppc8540_cost
= {
660 COSTS_N_INSNS (4), /* mulsi */
661 COSTS_N_INSNS (4), /* mulsi_const */
662 COSTS_N_INSNS (4), /* mulsi_const9 */
663 COSTS_N_INSNS (4), /* muldi */
664 COSTS_N_INSNS (19), /* divsi */
665 COSTS_N_INSNS (19), /* divdi */
666 COSTS_N_INSNS (4), /* fp */
667 COSTS_N_INSNS (4), /* dmul */
668 COSTS_N_INSNS (29), /* sdiv */
669 COSTS_N_INSNS (29), /* ddiv */
670 32, /* cache line size */
673 1, /* prefetch streams /*/
676 /* Instruction costs on E300C2 and E300C3 cores. */
678 struct processor_costs ppce300c2c3_cost
= {
679 COSTS_N_INSNS (4), /* mulsi */
680 COSTS_N_INSNS (4), /* mulsi_const */
681 COSTS_N_INSNS (4), /* mulsi_const9 */
682 COSTS_N_INSNS (4), /* muldi */
683 COSTS_N_INSNS (19), /* divsi */
684 COSTS_N_INSNS (19), /* divdi */
685 COSTS_N_INSNS (3), /* fp */
686 COSTS_N_INSNS (4), /* dmul */
687 COSTS_N_INSNS (18), /* sdiv */
688 COSTS_N_INSNS (33), /* ddiv */
692 1, /* prefetch streams /*/
695 /* Instruction costs on PPCE500MC processors. */
697 struct processor_costs ppce500mc_cost
= {
698 COSTS_N_INSNS (4), /* mulsi */
699 COSTS_N_INSNS (4), /* mulsi_const */
700 COSTS_N_INSNS (4), /* mulsi_const9 */
701 COSTS_N_INSNS (4), /* muldi */
702 COSTS_N_INSNS (14), /* divsi */
703 COSTS_N_INSNS (14), /* divdi */
704 COSTS_N_INSNS (8), /* fp */
705 COSTS_N_INSNS (10), /* dmul */
706 COSTS_N_INSNS (36), /* sdiv */
707 COSTS_N_INSNS (66), /* ddiv */
708 64, /* cache line size */
711 1, /* prefetch streams /*/
714 /* Instruction costs on POWER4 and POWER5 processors. */
716 struct processor_costs power4_cost
= {
717 COSTS_N_INSNS (3), /* mulsi */
718 COSTS_N_INSNS (2), /* mulsi_const */
719 COSTS_N_INSNS (2), /* mulsi_const9 */
720 COSTS_N_INSNS (4), /* muldi */
721 COSTS_N_INSNS (18), /* divsi */
722 COSTS_N_INSNS (34), /* divdi */
723 COSTS_N_INSNS (3), /* fp */
724 COSTS_N_INSNS (3), /* dmul */
725 COSTS_N_INSNS (17), /* sdiv */
726 COSTS_N_INSNS (17), /* ddiv */
727 128, /* cache line size */
730 8, /* prefetch streams /*/
733 /* Instruction costs on POWER6 processors. */
735 struct processor_costs power6_cost
= {
736 COSTS_N_INSNS (8), /* mulsi */
737 COSTS_N_INSNS (8), /* mulsi_const */
738 COSTS_N_INSNS (8), /* mulsi_const9 */
739 COSTS_N_INSNS (8), /* muldi */
740 COSTS_N_INSNS (22), /* divsi */
741 COSTS_N_INSNS (28), /* divdi */
742 COSTS_N_INSNS (3), /* fp */
743 COSTS_N_INSNS (3), /* dmul */
744 COSTS_N_INSNS (13), /* sdiv */
745 COSTS_N_INSNS (16), /* ddiv */
746 128, /* cache line size */
749 16, /* prefetch streams */
753 static bool rs6000_function_ok_for_sibcall (tree
, tree
);
754 static const char *rs6000_invalid_within_doloop (const_rtx
);
755 static rtx
rs6000_generate_compare (enum rtx_code
);
756 static void rs6000_emit_stack_tie (void);
757 static void rs6000_frame_related (rtx
, rtx
, HOST_WIDE_INT
, rtx
, rtx
);
758 static bool spe_func_has_64bit_regs_p (void);
759 static void emit_frame_save (rtx
, rtx
, enum machine_mode
, unsigned int,
761 static rtx
gen_frame_mem_offset (enum machine_mode
, rtx
, int);
762 static void rs6000_emit_allocate_stack (HOST_WIDE_INT
, int, int);
763 static unsigned rs6000_hash_constant (rtx
);
764 static unsigned toc_hash_function (const void *);
765 static int toc_hash_eq (const void *, const void *);
766 static bool constant_pool_expr_p (rtx
);
767 static bool legitimate_small_data_p (enum machine_mode
, rtx
);
768 static bool legitimate_lo_sum_address_p (enum machine_mode
, rtx
, int);
769 static struct machine_function
* rs6000_init_machine_status (void);
770 static bool rs6000_assemble_integer (rtx
, unsigned int, int);
771 static bool no_global_regs_above (int, bool);
772 #ifdef HAVE_GAS_HIDDEN
773 static void rs6000_assemble_visibility (tree
, int);
775 static int rs6000_ra_ever_killed (void);
776 static tree
rs6000_handle_longcall_attribute (tree
*, tree
, tree
, int, bool *);
777 static tree
rs6000_handle_altivec_attribute (tree
*, tree
, tree
, int, bool *);
778 static bool rs6000_ms_bitfield_layout_p (const_tree
);
779 static tree
rs6000_handle_struct_attribute (tree
*, tree
, tree
, int, bool *);
780 static void rs6000_eliminate_indexed_memrefs (rtx operands
[2]);
781 static const char *rs6000_mangle_type (const_tree
);
782 extern const struct attribute_spec rs6000_attribute_table
[];
783 static void rs6000_set_default_type_attributes (tree
);
784 static rtx
rs6000_savres_routine_sym (rs6000_stack_t
*, bool, bool, bool);
785 static void rs6000_emit_stack_reset (rs6000_stack_t
*, rtx
, rtx
, int, bool);
786 static rtx
rs6000_make_savres_rtx (rs6000_stack_t
*, rtx
, int,
787 enum machine_mode
, bool, bool, bool);
788 static bool rs6000_reg_live_or_pic_offset_p (int);
789 static int rs6000_savres_strategy (rs6000_stack_t
*, bool, int, int);
790 static void rs6000_restore_saved_cr (rtx
, int);
791 static void rs6000_output_function_prologue (FILE *, HOST_WIDE_INT
);
792 static void rs6000_output_function_epilogue (FILE *, HOST_WIDE_INT
);
793 static void rs6000_output_mi_thunk (FILE *, tree
, HOST_WIDE_INT
, HOST_WIDE_INT
,
795 static rtx
rs6000_emit_set_long_const (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
);
796 static bool rs6000_return_in_memory (const_tree
, const_tree
);
797 static void rs6000_file_start (void);
799 static int rs6000_elf_reloc_rw_mask (void);
800 static void rs6000_elf_asm_out_constructor (rtx
, int);
801 static void rs6000_elf_asm_out_destructor (rtx
, int);
802 static void rs6000_elf_end_indicate_exec_stack (void) ATTRIBUTE_UNUSED
;
803 static void rs6000_elf_asm_init_sections (void);
804 static section
*rs6000_elf_select_rtx_section (enum machine_mode
, rtx
,
805 unsigned HOST_WIDE_INT
);
806 static void rs6000_elf_encode_section_info (tree
, rtx
, int)
809 static bool rs6000_use_blocks_for_constant_p (enum machine_mode
, const_rtx
);
810 static void rs6000_alloc_sdmode_stack_slot (void);
811 static void rs6000_instantiate_decls (void);
813 static void rs6000_xcoff_asm_output_anchor (rtx
);
814 static void rs6000_xcoff_asm_globalize_label (FILE *, const char *);
815 static void rs6000_xcoff_asm_init_sections (void);
816 static int rs6000_xcoff_reloc_rw_mask (void);
817 static void rs6000_xcoff_asm_named_section (const char *, unsigned int, tree
);
818 static section
*rs6000_xcoff_select_section (tree
, int,
819 unsigned HOST_WIDE_INT
);
820 static void rs6000_xcoff_unique_section (tree
, int);
821 static section
*rs6000_xcoff_select_rtx_section
822 (enum machine_mode
, rtx
, unsigned HOST_WIDE_INT
);
823 static const char * rs6000_xcoff_strip_name_encoding (const char *);
824 static unsigned int rs6000_xcoff_section_type_flags (tree
, const char *, int);
825 static void rs6000_xcoff_file_start (void);
826 static void rs6000_xcoff_file_end (void);
828 static int rs6000_variable_issue (FILE *, int, rtx
, int);
829 static bool rs6000_rtx_costs (rtx
, int, int, int *, bool);
830 static int rs6000_adjust_cost (rtx
, rtx
, rtx
, int);
831 static void rs6000_sched_init (FILE *, int, int);
832 static bool is_microcoded_insn (rtx
);
833 static bool is_nonpipeline_insn (rtx
);
834 static bool is_cracked_insn (rtx
);
835 static bool is_branch_slot_insn (rtx
);
836 static bool is_load_insn (rtx
);
837 static rtx
get_store_dest (rtx pat
);
838 static bool is_store_insn (rtx
);
839 static bool set_to_load_agen (rtx
,rtx
);
840 static bool adjacent_mem_locations (rtx
,rtx
);
841 static int rs6000_adjust_priority (rtx
, int);
842 static int rs6000_issue_rate (void);
843 static bool rs6000_is_costly_dependence (dep_t
, int, int);
844 static rtx
get_next_active_insn (rtx
, rtx
);
845 static bool insn_terminates_group_p (rtx
, enum group_termination
);
846 static bool insn_must_be_first_in_group (rtx
);
847 static bool insn_must_be_last_in_group (rtx
);
848 static bool is_costly_group (rtx
*, rtx
);
849 static int force_new_group (int, FILE *, rtx
*, rtx
, bool *, int, int *);
850 static int redefine_groups (FILE *, int, rtx
, rtx
);
851 static int pad_groups (FILE *, int, rtx
, rtx
);
852 static void rs6000_sched_finish (FILE *, int);
853 static int rs6000_sched_reorder (FILE *, int, rtx
*, int *, int);
854 static int rs6000_sched_reorder2 (FILE *, int, rtx
*, int *, int);
855 static int rs6000_use_sched_lookahead (void);
856 static int rs6000_use_sched_lookahead_guard (rtx
);
857 static void * rs6000_alloc_sched_context (void);
858 static void rs6000_init_sched_context (void *, bool);
859 static void rs6000_set_sched_context (void *);
860 static void rs6000_free_sched_context (void *);
861 static tree
rs6000_builtin_reciprocal (unsigned int, bool, bool);
862 static tree
rs6000_builtin_mask_for_load (void);
863 static tree
rs6000_builtin_mul_widen_even (tree
);
864 static tree
rs6000_builtin_mul_widen_odd (tree
);
865 static tree
rs6000_builtin_conversion (enum tree_code
, tree
);
866 static tree
rs6000_builtin_vec_perm (tree
, tree
*);
868 static void def_builtin (int, const char *, tree
, int);
869 static bool rs6000_vector_alignment_reachable (const_tree
, bool);
870 static void rs6000_init_builtins (void);
871 static rtx
rs6000_expand_unop_builtin (enum insn_code
, tree
, rtx
);
872 static rtx
rs6000_expand_binop_builtin (enum insn_code
, tree
, rtx
);
873 static rtx
rs6000_expand_ternop_builtin (enum insn_code
, tree
, rtx
);
874 static rtx
rs6000_expand_builtin (tree
, rtx
, rtx
, enum machine_mode
, int);
875 static void altivec_init_builtins (void);
876 static void rs6000_common_init_builtins (void);
877 static void rs6000_init_libfuncs (void);
879 static void paired_init_builtins (void);
880 static rtx
paired_expand_builtin (tree
, rtx
, bool *);
881 static rtx
paired_expand_lv_builtin (enum insn_code
, tree
, rtx
);
882 static rtx
paired_expand_stv_builtin (enum insn_code
, tree
);
883 static rtx
paired_expand_predicate_builtin (enum insn_code
, tree
, rtx
);
885 static void enable_mask_for_builtins (struct builtin_description
*, int,
886 enum rs6000_builtins
,
887 enum rs6000_builtins
);
888 static void spe_init_builtins (void);
889 static rtx
spe_expand_builtin (tree
, rtx
, bool *);
890 static rtx
spe_expand_stv_builtin (enum insn_code
, tree
);
891 static rtx
spe_expand_predicate_builtin (enum insn_code
, tree
, rtx
);
892 static rtx
spe_expand_evsel_builtin (enum insn_code
, tree
, rtx
);
893 static int rs6000_emit_int_cmove (rtx
, rtx
, rtx
, rtx
);
894 static rs6000_stack_t
*rs6000_stack_info (void);
895 static void debug_stack_info (rs6000_stack_t
*);
897 static rtx
altivec_expand_builtin (tree
, rtx
, bool *);
898 static rtx
altivec_expand_ld_builtin (tree
, rtx
, bool *);
899 static rtx
altivec_expand_st_builtin (tree
, rtx
, bool *);
900 static rtx
altivec_expand_dst_builtin (tree
, rtx
, bool *);
901 static rtx
altivec_expand_abs_builtin (enum insn_code
, tree
, rtx
);
902 static rtx
altivec_expand_predicate_builtin (enum insn_code
,
903 const char *, tree
, rtx
);
904 static rtx
altivec_expand_stv_builtin (enum insn_code
, tree
);
905 static rtx
altivec_expand_vec_init_builtin (tree
, tree
, rtx
);
906 static rtx
altivec_expand_vec_set_builtin (tree
);
907 static rtx
altivec_expand_vec_ext_builtin (tree
, rtx
);
908 static int get_element_number (tree
, tree
);
909 static bool rs6000_handle_option (size_t, const char *, int);
910 static void rs6000_parse_tls_size_option (void);
911 static void rs6000_parse_yes_no_option (const char *, const char *, int *);
912 static int first_altivec_reg_to_save (void);
913 static unsigned int compute_vrsave_mask (void);
914 static void compute_save_world_info (rs6000_stack_t
*info_ptr
);
915 static void is_altivec_return_reg (rtx
, void *);
916 static rtx
generate_set_vrsave (rtx
, rs6000_stack_t
*, int);
917 int easy_vector_constant (rtx
, enum machine_mode
);
918 static rtx
rs6000_dwarf_register_span (rtx
);
919 static void rs6000_init_dwarf_reg_sizes_extra (tree
);
920 static rtx
rs6000_legitimize_tls_address (rtx
, enum tls_model
);
921 static void rs6000_output_dwarf_dtprel (FILE *, int, rtx
) ATTRIBUTE_UNUSED
;
922 static rtx
rs6000_tls_get_addr (void);
923 static rtx
rs6000_got_sym (void);
924 static int rs6000_tls_symbol_ref_1 (rtx
*, void *);
925 static const char *rs6000_get_some_local_dynamic_name (void);
926 static int rs6000_get_some_local_dynamic_name_1 (rtx
*, void *);
927 static rtx
rs6000_complex_function_value (enum machine_mode
);
928 static rtx
rs6000_spe_function_arg (CUMULATIVE_ARGS
*,
929 enum machine_mode
, tree
);
930 static void rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS
*,
932 static void rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS
*,
933 tree
, HOST_WIDE_INT
);
934 static void rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS
*,
937 static void rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS
*,
938 const_tree
, HOST_WIDE_INT
,
940 static rtx
rs6000_darwin64_record_arg (CUMULATIVE_ARGS
*, const_tree
, int, bool);
941 static rtx
rs6000_mixed_function_arg (enum machine_mode
, tree
, int);
942 static void rs6000_move_block_from_reg (int regno
, rtx x
, int nregs
);
943 static void setup_incoming_varargs (CUMULATIVE_ARGS
*,
944 enum machine_mode
, tree
,
946 static bool rs6000_pass_by_reference (CUMULATIVE_ARGS
*, enum machine_mode
,
948 static int rs6000_arg_partial_bytes (CUMULATIVE_ARGS
*, enum machine_mode
,
950 static const char *invalid_arg_for_unprototyped_fn (const_tree
, const_tree
, const_tree
);
952 static void macho_branch_islands (void);
953 static int no_previous_def (tree function_name
);
954 static tree
get_prev_label (tree function_name
);
955 static void rs6000_darwin_file_start (void);
958 static tree
rs6000_build_builtin_va_list (void);
959 static void rs6000_va_start (tree
, rtx
);
960 static tree
rs6000_gimplify_va_arg (tree
, tree
, gimple_seq
*, gimple_seq
*);
961 static bool rs6000_must_pass_in_stack (enum machine_mode
, const_tree
);
962 static bool rs6000_scalar_mode_supported_p (enum machine_mode
);
963 static bool rs6000_vector_mode_supported_p (enum machine_mode
);
964 static int get_vec_cmp_insn (enum rtx_code
, enum machine_mode
,
966 static rtx
rs6000_emit_vector_compare (enum rtx_code
, rtx
, rtx
,
968 static int get_vsel_insn (enum machine_mode
);
969 static void rs6000_emit_vector_select (rtx
, rtx
, rtx
, rtx
);
970 static tree
rs6000_stack_protect_fail (void);
972 const int INSN_NOT_AVAILABLE
= -1;
973 static enum machine_mode
rs6000_eh_return_filter_mode (void);
975 /* Hash table stuff for keeping track of TOC entries. */
977 struct toc_hash_struct
GTY(())
979 /* `key' will satisfy CONSTANT_P; in fact, it will satisfy
980 ASM_OUTPUT_SPECIAL_POOL_ENTRY_P. */
982 enum machine_mode key_mode
;
986 static GTY ((param_is (struct toc_hash_struct
))) htab_t toc_hash_table
;
988 /* Default register names. */
989 char rs6000_reg_names
[][8] =
991 "0", "1", "2", "3", "4", "5", "6", "7",
992 "8", "9", "10", "11", "12", "13", "14", "15",
993 "16", "17", "18", "19", "20", "21", "22", "23",
994 "24", "25", "26", "27", "28", "29", "30", "31",
995 "0", "1", "2", "3", "4", "5", "6", "7",
996 "8", "9", "10", "11", "12", "13", "14", "15",
997 "16", "17", "18", "19", "20", "21", "22", "23",
998 "24", "25", "26", "27", "28", "29", "30", "31",
999 "mq", "lr", "ctr","ap",
1000 "0", "1", "2", "3", "4", "5", "6", "7",
1002 /* AltiVec registers. */
1003 "0", "1", "2", "3", "4", "5", "6", "7",
1004 "8", "9", "10", "11", "12", "13", "14", "15",
1005 "16", "17", "18", "19", "20", "21", "22", "23",
1006 "24", "25", "26", "27", "28", "29", "30", "31",
1008 /* SPE registers. */
1009 "spe_acc", "spefscr",
1010 /* Soft frame pointer. */
1014 #ifdef TARGET_REGNAMES
1015 static const char alt_reg_names
[][8] =
1017 "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
1018 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
1019 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
1020 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
1021 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
1022 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
1023 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
1024 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
1025 "mq", "lr", "ctr", "ap",
1026 "%cr0", "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
1028 /* AltiVec registers. */
1029 "%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7",
1030 "%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
1031 "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
1032 "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
1034 /* SPE registers. */
1035 "spe_acc", "spefscr",
1036 /* Soft frame pointer. */
1041 #ifndef MASK_STRICT_ALIGN
1042 #define MASK_STRICT_ALIGN 0
1044 #ifndef TARGET_PROFILE_KERNEL
1045 #define TARGET_PROFILE_KERNEL 0
1048 /* The VRSAVE bitmask puts bit %v0 as the most significant bit. */
1049 #define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO))
1051 /* Initialize the GCC target structure. */
1052 #undef TARGET_ATTRIBUTE_TABLE
1053 #define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table
1054 #undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
1055 #define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes
1057 #undef TARGET_ASM_ALIGNED_DI_OP
1058 #define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP
1060 /* Default unaligned ops are only provided for ELF. Find the ops needed
1061 for non-ELF systems. */
1062 #ifndef OBJECT_FORMAT_ELF
1064 /* For XCOFF. rs6000_assemble_integer will handle unaligned DIs on
1066 #undef TARGET_ASM_UNALIGNED_HI_OP
1067 #define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2,"
1068 #undef TARGET_ASM_UNALIGNED_SI_OP
1069 #define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4,"
1070 #undef TARGET_ASM_UNALIGNED_DI_OP
1071 #define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8,"
1074 #undef TARGET_ASM_UNALIGNED_HI_OP
1075 #define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
1076 #undef TARGET_ASM_UNALIGNED_SI_OP
1077 #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
1078 #undef TARGET_ASM_UNALIGNED_DI_OP
1079 #define TARGET_ASM_UNALIGNED_DI_OP "\t.quad\t"
1080 #undef TARGET_ASM_ALIGNED_DI_OP
1081 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
1085 /* This hook deals with fixups for relocatable code and DI-mode objects
1087 #undef TARGET_ASM_INTEGER
1088 #define TARGET_ASM_INTEGER rs6000_assemble_integer
1090 #ifdef HAVE_GAS_HIDDEN
1091 #undef TARGET_ASM_ASSEMBLE_VISIBILITY
1092 #define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility
1095 #undef TARGET_HAVE_TLS
1096 #define TARGET_HAVE_TLS HAVE_AS_TLS
1098 #undef TARGET_CANNOT_FORCE_CONST_MEM
1099 #define TARGET_CANNOT_FORCE_CONST_MEM rs6000_tls_referenced_p
1101 #undef TARGET_ASM_FUNCTION_PROLOGUE
1102 #define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue
1103 #undef TARGET_ASM_FUNCTION_EPILOGUE
1104 #define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue
1106 #undef TARGET_SCHED_VARIABLE_ISSUE
1107 #define TARGET_SCHED_VARIABLE_ISSUE rs6000_variable_issue
1109 #undef TARGET_SCHED_ISSUE_RATE
1110 #define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate
1111 #undef TARGET_SCHED_ADJUST_COST
1112 #define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost
1113 #undef TARGET_SCHED_ADJUST_PRIORITY
1114 #define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority
1115 #undef TARGET_SCHED_IS_COSTLY_DEPENDENCE
1116 #define TARGET_SCHED_IS_COSTLY_DEPENDENCE rs6000_is_costly_dependence
1117 #undef TARGET_SCHED_INIT
1118 #define TARGET_SCHED_INIT rs6000_sched_init
1119 #undef TARGET_SCHED_FINISH
1120 #define TARGET_SCHED_FINISH rs6000_sched_finish
1121 #undef TARGET_SCHED_REORDER
1122 #define TARGET_SCHED_REORDER rs6000_sched_reorder
1123 #undef TARGET_SCHED_REORDER2
1124 #define TARGET_SCHED_REORDER2 rs6000_sched_reorder2
1126 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
1127 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD rs6000_use_sched_lookahead
1129 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
1130 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD rs6000_use_sched_lookahead_guard
1132 #undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
1133 #define TARGET_SCHED_ALLOC_SCHED_CONTEXT rs6000_alloc_sched_context
1134 #undef TARGET_SCHED_INIT_SCHED_CONTEXT
1135 #define TARGET_SCHED_INIT_SCHED_CONTEXT rs6000_init_sched_context
1136 #undef TARGET_SCHED_SET_SCHED_CONTEXT
1137 #define TARGET_SCHED_SET_SCHED_CONTEXT rs6000_set_sched_context
1138 #undef TARGET_SCHED_FREE_SCHED_CONTEXT
1139 #define TARGET_SCHED_FREE_SCHED_CONTEXT rs6000_free_sched_context
1141 #undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
1142 #define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD rs6000_builtin_mask_for_load
1143 #undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN
1144 #define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN rs6000_builtin_mul_widen_even
1145 #undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD
1146 #define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD rs6000_builtin_mul_widen_odd
1147 #undef TARGET_VECTORIZE_BUILTIN_CONVERSION
1148 #define TARGET_VECTORIZE_BUILTIN_CONVERSION rs6000_builtin_conversion
1149 #undef TARGET_VECTORIZE_BUILTIN_VEC_PERM
1150 #define TARGET_VECTORIZE_BUILTIN_VEC_PERM rs6000_builtin_vec_perm
1152 #undef TARGET_VECTOR_ALIGNMENT_REACHABLE
1153 #define TARGET_VECTOR_ALIGNMENT_REACHABLE rs6000_vector_alignment_reachable
1155 #undef TARGET_INIT_BUILTINS
1156 #define TARGET_INIT_BUILTINS rs6000_init_builtins
1158 #undef TARGET_EXPAND_BUILTIN
1159 #define TARGET_EXPAND_BUILTIN rs6000_expand_builtin
1161 #undef TARGET_MANGLE_TYPE
1162 #define TARGET_MANGLE_TYPE rs6000_mangle_type
1164 #undef TARGET_INIT_LIBFUNCS
1165 #define TARGET_INIT_LIBFUNCS rs6000_init_libfuncs
1168 #undef TARGET_BINDS_LOCAL_P
1169 #define TARGET_BINDS_LOCAL_P darwin_binds_local_p
1172 #undef TARGET_MS_BITFIELD_LAYOUT_P
1173 #define TARGET_MS_BITFIELD_LAYOUT_P rs6000_ms_bitfield_layout_p
1175 #undef TARGET_ASM_OUTPUT_MI_THUNK
1176 #define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk
1178 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
1179 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
1181 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
1182 #define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall
1184 #undef TARGET_INVALID_WITHIN_DOLOOP
1185 #define TARGET_INVALID_WITHIN_DOLOOP rs6000_invalid_within_doloop
1187 #undef TARGET_RTX_COSTS
1188 #define TARGET_RTX_COSTS rs6000_rtx_costs
1189 #undef TARGET_ADDRESS_COST
1190 #define TARGET_ADDRESS_COST hook_int_rtx_bool_0
1192 #undef TARGET_DWARF_REGISTER_SPAN
1193 #define TARGET_DWARF_REGISTER_SPAN rs6000_dwarf_register_span
1195 #undef TARGET_INIT_DWARF_REG_SIZES_EXTRA
1196 #define TARGET_INIT_DWARF_REG_SIZES_EXTRA rs6000_init_dwarf_reg_sizes_extra
1198 /* On rs6000, function arguments are promoted, as are function return
1200 #undef TARGET_PROMOTE_FUNCTION_ARGS
1201 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
1202 #undef TARGET_PROMOTE_FUNCTION_RETURN
1203 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
1205 #undef TARGET_RETURN_IN_MEMORY
1206 #define TARGET_RETURN_IN_MEMORY rs6000_return_in_memory
1208 #undef TARGET_SETUP_INCOMING_VARARGS
1209 #define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs
1211 /* Always strict argument naming on rs6000. */
1212 #undef TARGET_STRICT_ARGUMENT_NAMING
1213 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
1214 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
1215 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
1216 #undef TARGET_SPLIT_COMPLEX_ARG
1217 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
1218 #undef TARGET_MUST_PASS_IN_STACK
1219 #define TARGET_MUST_PASS_IN_STACK rs6000_must_pass_in_stack
1220 #undef TARGET_PASS_BY_REFERENCE
1221 #define TARGET_PASS_BY_REFERENCE rs6000_pass_by_reference
1222 #undef TARGET_ARG_PARTIAL_BYTES
1223 #define TARGET_ARG_PARTIAL_BYTES rs6000_arg_partial_bytes
1225 #undef TARGET_BUILD_BUILTIN_VA_LIST
1226 #define TARGET_BUILD_BUILTIN_VA_LIST rs6000_build_builtin_va_list
1228 #undef TARGET_EXPAND_BUILTIN_VA_START
1229 #define TARGET_EXPAND_BUILTIN_VA_START rs6000_va_start
1231 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
1232 #define TARGET_GIMPLIFY_VA_ARG_EXPR rs6000_gimplify_va_arg
1234 #undef TARGET_EH_RETURN_FILTER_MODE
1235 #define TARGET_EH_RETURN_FILTER_MODE rs6000_eh_return_filter_mode
1237 #undef TARGET_SCALAR_MODE_SUPPORTED_P
1238 #define TARGET_SCALAR_MODE_SUPPORTED_P rs6000_scalar_mode_supported_p
1240 #undef TARGET_VECTOR_MODE_SUPPORTED_P
1241 #define TARGET_VECTOR_MODE_SUPPORTED_P rs6000_vector_mode_supported_p
1243 #undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
1244 #define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN invalid_arg_for_unprototyped_fn
1246 #undef TARGET_HANDLE_OPTION
1247 #define TARGET_HANDLE_OPTION rs6000_handle_option
1249 #undef TARGET_DEFAULT_TARGET_FLAGS
1250 #define TARGET_DEFAULT_TARGET_FLAGS \
1253 #undef TARGET_STACK_PROTECT_FAIL
1254 #define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail
1256 /* MPC604EUM 3.5.2 Weak Consistency between Multiple Processors
1257 The PowerPC architecture requires only weak consistency among
1258 processors--that is, memory accesses between processors need not be
1259 sequentially consistent and memory accesses among processors can occur
1260 in any order. The ability to order memory accesses weakly provides
1261 opportunities for more efficient use of the system bus. Unless a
1262 dependency exists, the 604e allows read operations to precede store
1264 #undef TARGET_RELAXED_ORDERING
1265 #define TARGET_RELAXED_ORDERING true
1268 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
1269 #define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
1272 /* Use a 32-bit anchor range. This leads to sequences like:
1274 addis tmp,anchor,high
1277 where tmp itself acts as an anchor, and can be shared between
1278 accesses to the same 64k page. */
1279 #undef TARGET_MIN_ANCHOR_OFFSET
1280 #define TARGET_MIN_ANCHOR_OFFSET -0x7fffffff - 1
1281 #undef TARGET_MAX_ANCHOR_OFFSET
1282 #define TARGET_MAX_ANCHOR_OFFSET 0x7fffffff
1283 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
1284 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P rs6000_use_blocks_for_constant_p
1286 #undef TARGET_BUILTIN_RECIPROCAL
1287 #define TARGET_BUILTIN_RECIPROCAL rs6000_builtin_reciprocal
1289 #undef TARGET_EXPAND_TO_RTL_HOOK
1290 #define TARGET_EXPAND_TO_RTL_HOOK rs6000_alloc_sdmode_stack_slot
1292 #undef TARGET_INSTANTIATE_DECLS
1293 #define TARGET_INSTANTIATE_DECLS rs6000_instantiate_decls
1295 struct gcc_target targetm
= TARGET_INITIALIZER
;
1298 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1301 rs6000_hard_regno_mode_ok (int regno
, enum machine_mode mode
)
1303 /* The GPRs can hold any mode, but values bigger than one register
1304 cannot go past R31. */
1305 if (INT_REGNO_P (regno
))
1306 return INT_REGNO_P (regno
+ HARD_REGNO_NREGS (regno
, mode
) - 1);
1308 /* The float registers can only hold floating modes and DImode.
1309 This excludes the 32-bit decimal float mode for now. */
1310 if (FP_REGNO_P (regno
))
1312 ((SCALAR_FLOAT_MODE_P (mode
)
1313 && (mode
!= TDmode
|| (regno
% 2) == 0)
1314 && FP_REGNO_P (regno
+ HARD_REGNO_NREGS (regno
, mode
) - 1))
1315 || (GET_MODE_CLASS (mode
) == MODE_INT
1316 && GET_MODE_SIZE (mode
) == UNITS_PER_FP_WORD
)
1317 || (PAIRED_SIMD_REGNO_P (regno
) && TARGET_PAIRED_FLOAT
1318 && PAIRED_VECTOR_MODE (mode
)));
1320 /* The CR register can only hold CC modes. */
1321 if (CR_REGNO_P (regno
))
1322 return GET_MODE_CLASS (mode
) == MODE_CC
;
1324 if (XER_REGNO_P (regno
))
1325 return mode
== PSImode
;
1327 /* AltiVec only in AldyVec registers. */
1328 if (ALTIVEC_REGNO_P (regno
))
1329 return ALTIVEC_VECTOR_MODE (mode
);
1331 /* ...but GPRs can hold SIMD data on the SPE in one register. */
1332 if (SPE_SIMD_REGNO_P (regno
) && TARGET_SPE
&& SPE_VECTOR_MODE (mode
))
1335 /* We cannot put TImode anywhere except general register and it must be
1336 able to fit within the register set. */
1338 return GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
;
1341 /* Initialize rs6000_hard_regno_mode_ok_p table. */
1343 rs6000_init_hard_regno_mode_ok (void)
1347 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; ++r
)
1348 for (m
= 0; m
< NUM_MACHINE_MODES
; ++m
)
1349 if (rs6000_hard_regno_mode_ok (r
, m
))
1350 rs6000_hard_regno_mode_ok_p
[m
][r
] = true;
1354 /* The Darwin version of SUBTARGET_OVERRIDE_OPTIONS. */
1357 darwin_rs6000_override_options (void)
1359 /* The Darwin ABI always includes AltiVec, can't be (validly) turned
1361 rs6000_altivec_abi
= 1;
1362 TARGET_ALTIVEC_VRSAVE
= 1;
1363 if (DEFAULT_ABI
== ABI_DARWIN
)
1365 if (MACHO_DYNAMIC_NO_PIC_P
)
1368 warning (0, "-mdynamic-no-pic overrides -fpic or -fPIC");
1371 else if (flag_pic
== 1)
1376 if (TARGET_64BIT
&& ! TARGET_POWERPC64
)
1378 target_flags
|= MASK_POWERPC64
;
1379 warning (0, "-m64 requires PowerPC64 architecture, enabling");
1383 rs6000_default_long_calls
= 1;
1384 target_flags
|= MASK_SOFT_FLOAT
;
1387 /* Make -m64 imply -maltivec. Darwin's 64-bit ABI includes
1389 if (!flag_mkernel
&& !flag_apple_kext
1391 && ! (target_flags_explicit
& MASK_ALTIVEC
))
1392 target_flags
|= MASK_ALTIVEC
;
1394 /* Unless the user (not the configurer) has explicitly overridden
1395 it with -mcpu=G3 or -mno-altivec, then 10.5+ targets default to
1396 G4 unless targetting the kernel. */
1399 && strverscmp (darwin_macosx_version_min
, "10.5") >= 0
1400 && ! (target_flags_explicit
& MASK_ALTIVEC
)
1401 && ! rs6000_select
[1].string
)
1403 target_flags
|= MASK_ALTIVEC
;
1408 /* If not otherwise specified by a target, make 'long double' equivalent to
1411 #ifndef RS6000_DEFAULT_LONG_DOUBLE_SIZE
1412 #define RS6000_DEFAULT_LONG_DOUBLE_SIZE 64
1415 /* Override command line options. Mostly we process the processor
1416 type and sometimes adjust other TARGET_ options. */
1419 rs6000_override_options (const char *default_cpu
)
1422 struct rs6000_cpu_select
*ptr
;
1425 /* Simplifications for entries below. */
1428 POWERPC_BASE_MASK
= MASK_POWERPC
| MASK_NEW_MNEMONICS
,
1429 POWERPC_7400_MASK
= POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
| MASK_ALTIVEC
1432 /* This table occasionally claims that a processor does not support
1433 a particular feature even though it does, but the feature is slower
1434 than the alternative. Thus, it shouldn't be relied on as a
1435 complete description of the processor's support.
1437 Please keep this list in order, and don't forget to update the
1438 documentation in invoke.texi when adding a new processor or
1442 const char *const name
; /* Canonical processor name. */
1443 const enum processor_type processor
; /* Processor type enum value. */
1444 const int target_enable
; /* Target flags to enable. */
1445 } const processor_target_table
[]
1446 = {{"401", PROCESSOR_PPC403
, POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
},
1447 {"403", PROCESSOR_PPC403
,
1448 POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
| MASK_STRICT_ALIGN
},
1449 {"405", PROCESSOR_PPC405
,
1450 POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
| MASK_MULHW
| MASK_DLMZB
},
1451 {"405fp", PROCESSOR_PPC405
,
1452 POWERPC_BASE_MASK
| MASK_MULHW
| MASK_DLMZB
},
1453 {"440", PROCESSOR_PPC440
,
1454 POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
| MASK_MULHW
| MASK_DLMZB
},
1455 {"440fp", PROCESSOR_PPC440
,
1456 POWERPC_BASE_MASK
| MASK_MULHW
| MASK_DLMZB
},
1457 {"464", PROCESSOR_PPC440
,
1458 POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
| MASK_MULHW
| MASK_DLMZB
},
1459 {"464fp", PROCESSOR_PPC440
,
1460 POWERPC_BASE_MASK
| MASK_MULHW
| MASK_DLMZB
},
1461 {"505", PROCESSOR_MPCCORE
, POWERPC_BASE_MASK
},
1462 {"601", PROCESSOR_PPC601
,
1463 MASK_POWER
| POWERPC_BASE_MASK
| MASK_MULTIPLE
| MASK_STRING
},
1464 {"602", PROCESSOR_PPC603
, POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
},
1465 {"603", PROCESSOR_PPC603
, POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
},
1466 {"603e", PROCESSOR_PPC603
, POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
},
1467 {"604", PROCESSOR_PPC604
, POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
},
1468 {"604e", PROCESSOR_PPC604e
, POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
},
1469 {"620", PROCESSOR_PPC620
,
1470 POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
| MASK_POWERPC64
},
1471 {"630", PROCESSOR_PPC630
,
1472 POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
| MASK_POWERPC64
},
1473 {"740", PROCESSOR_PPC750
, POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
},
1474 {"7400", PROCESSOR_PPC7400
, POWERPC_7400_MASK
},
1475 {"7450", PROCESSOR_PPC7450
, POWERPC_7400_MASK
},
1476 {"750", PROCESSOR_PPC750
, POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
},
1477 {"801", PROCESSOR_MPCCORE
, POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
},
1478 {"821", PROCESSOR_MPCCORE
, POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
},
1479 {"823", PROCESSOR_MPCCORE
, POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
},
1480 {"8540", PROCESSOR_PPC8540
, POWERPC_BASE_MASK
| MASK_STRICT_ALIGN
},
1481 /* 8548 has a dummy entry for now. */
1482 {"8548", PROCESSOR_PPC8540
, POWERPC_BASE_MASK
| MASK_STRICT_ALIGN
},
1483 {"e300c2", PROCESSOR_PPCE300C2
, POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
},
1484 {"e300c3", PROCESSOR_PPCE300C3
, POWERPC_BASE_MASK
},
1485 {"e500mc", PROCESSOR_PPCE500MC
, POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
},
1486 {"860", PROCESSOR_MPCCORE
, POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
},
1487 {"970", PROCESSOR_POWER4
,
1488 POWERPC_7400_MASK
| MASK_PPC_GPOPT
| MASK_MFCRF
| MASK_POWERPC64
},
1489 {"cell", PROCESSOR_CELL
,
1490 POWERPC_7400_MASK
| MASK_PPC_GPOPT
| MASK_MFCRF
| MASK_POWERPC64
},
1491 {"common", PROCESSOR_COMMON
, MASK_NEW_MNEMONICS
},
1492 {"ec603e", PROCESSOR_PPC603
, POWERPC_BASE_MASK
| MASK_SOFT_FLOAT
},
1493 {"G3", PROCESSOR_PPC750
, POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
},
1494 {"G4", PROCESSOR_PPC7450
, POWERPC_7400_MASK
},
1495 {"G5", PROCESSOR_POWER4
,
1496 POWERPC_7400_MASK
| MASK_PPC_GPOPT
| MASK_MFCRF
| MASK_POWERPC64
},
1497 {"power", PROCESSOR_POWER
, MASK_POWER
| MASK_MULTIPLE
| MASK_STRING
},
1498 {"power2", PROCESSOR_POWER
,
1499 MASK_POWER
| MASK_POWER2
| MASK_MULTIPLE
| MASK_STRING
},
1500 {"power3", PROCESSOR_PPC630
,
1501 POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
| MASK_POWERPC64
},
1502 {"power4", PROCESSOR_POWER4
,
1503 POWERPC_BASE_MASK
| MASK_POWERPC64
| MASK_PPC_GPOPT
| MASK_PPC_GFXOPT
1505 {"power5", PROCESSOR_POWER5
,
1506 POWERPC_BASE_MASK
| MASK_POWERPC64
| MASK_PPC_GPOPT
| MASK_PPC_GFXOPT
1507 | MASK_MFCRF
| MASK_POPCNTB
},
1508 {"power5+", PROCESSOR_POWER5
,
1509 POWERPC_BASE_MASK
| MASK_POWERPC64
| MASK_PPC_GPOPT
| MASK_PPC_GFXOPT
1510 | MASK_MFCRF
| MASK_POPCNTB
| MASK_FPRND
},
1511 {"power6", PROCESSOR_POWER6
,
1512 POWERPC_BASE_MASK
| MASK_POWERPC64
| MASK_PPC_GPOPT
| MASK_PPC_GFXOPT
1513 | MASK_MFCRF
| MASK_POPCNTB
| MASK_FPRND
| MASK_CMPB
| MASK_DFP
},
1514 {"power6x", PROCESSOR_POWER6
,
1515 POWERPC_BASE_MASK
| MASK_POWERPC64
| MASK_PPC_GPOPT
| MASK_PPC_GFXOPT
1516 | MASK_MFCRF
| MASK_POPCNTB
| MASK_FPRND
| MASK_CMPB
| MASK_DFP
1518 {"power7", PROCESSOR_POWER5
,
1519 POWERPC_7400_MASK
| MASK_POWERPC64
| MASK_PPC_GPOPT
| MASK_MFCRF
1520 | MASK_POPCNTB
| MASK_FPRND
| MASK_CMPB
| MASK_DFP
},
1521 {"powerpc", PROCESSOR_POWERPC
, POWERPC_BASE_MASK
},
1522 {"powerpc64", PROCESSOR_POWERPC64
,
1523 POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
| MASK_POWERPC64
},
1524 {"rios", PROCESSOR_RIOS1
, MASK_POWER
| MASK_MULTIPLE
| MASK_STRING
},
1525 {"rios1", PROCESSOR_RIOS1
, MASK_POWER
| MASK_MULTIPLE
| MASK_STRING
},
1526 {"rios2", PROCESSOR_RIOS2
,
1527 MASK_POWER
| MASK_POWER2
| MASK_MULTIPLE
| MASK_STRING
},
1528 {"rsc", PROCESSOR_PPC601
, MASK_POWER
| MASK_MULTIPLE
| MASK_STRING
},
1529 {"rsc1", PROCESSOR_PPC601
, MASK_POWER
| MASK_MULTIPLE
| MASK_STRING
},
1530 {"rs64", PROCESSOR_RS64A
,
1531 POWERPC_BASE_MASK
| MASK_PPC_GFXOPT
| MASK_POWERPC64
}
1534 const size_t ptt_size
= ARRAY_SIZE (processor_target_table
);
1536 /* Some OSs don't support saving the high part of 64-bit registers on
1537 context switch. Other OSs don't support saving Altivec registers.
1538 On those OSs, we don't touch the MASK_POWERPC64 or MASK_ALTIVEC
1539 settings; if the user wants either, the user must explicitly specify
1540 them and we won't interfere with the user's specification. */
1543 POWER_MASKS
= MASK_POWER
| MASK_POWER2
| MASK_MULTIPLE
| MASK_STRING
,
1544 POWERPC_MASKS
= (POWERPC_BASE_MASK
| MASK_PPC_GPOPT
| MASK_STRICT_ALIGN
1545 | MASK_PPC_GFXOPT
| MASK_POWERPC64
| MASK_ALTIVEC
1546 | MASK_MFCRF
| MASK_POPCNTB
| MASK_FPRND
| MASK_MULHW
1547 | MASK_DLMZB
| MASK_CMPB
| MASK_MFPGPR
| MASK_DFP
)
1550 set_masks
= POWER_MASKS
| POWERPC_MASKS
| MASK_SOFT_FLOAT
;
1551 #ifdef OS_MISSING_POWERPC64
1552 if (OS_MISSING_POWERPC64
)
1553 set_masks
&= ~MASK_POWERPC64
;
1555 #ifdef OS_MISSING_ALTIVEC
1556 if (OS_MISSING_ALTIVEC
)
1557 set_masks
&= ~MASK_ALTIVEC
;
1560 /* Don't override by the processor default if given explicitly. */
1561 set_masks
&= ~target_flags_explicit
;
1563 /* Identify the processor type. */
1564 rs6000_select
[0].string
= default_cpu
;
1565 rs6000_cpu
= TARGET_POWERPC64
? PROCESSOR_DEFAULT64
: PROCESSOR_DEFAULT
;
1567 for (i
= 0; i
< ARRAY_SIZE (rs6000_select
); i
++)
1569 ptr
= &rs6000_select
[i
];
1570 if (ptr
->string
!= (char *)0 && ptr
->string
[0] != '\0')
1572 for (j
= 0; j
< ptt_size
; j
++)
1573 if (! strcmp (ptr
->string
, processor_target_table
[j
].name
))
1575 if (ptr
->set_tune_p
)
1576 rs6000_cpu
= processor_target_table
[j
].processor
;
1578 if (ptr
->set_arch_p
)
1580 target_flags
&= ~set_masks
;
1581 target_flags
|= (processor_target_table
[j
].target_enable
1588 error ("bad value (%s) for %s switch", ptr
->string
, ptr
->name
);
1592 if ((TARGET_E500
|| rs6000_cpu
== PROCESSOR_PPCE500MC
)
1593 && !rs6000_explicit_options
.isel
)
1596 if (rs6000_cpu
== PROCESSOR_PPCE300C2
|| rs6000_cpu
== PROCESSOR_PPCE300C3
1597 || rs6000_cpu
== PROCESSOR_PPCE500MC
)
1600 error ("AltiVec not supported in this target");
1602 error ("Spe not supported in this target");
1605 /* Disable Cell microcode if we are optimizing for the Cell
1606 and not optimizing for size. */
1607 if (rs6000_gen_cell_microcode
== -1)
1608 rs6000_gen_cell_microcode
= !(rs6000_cpu
== PROCESSOR_CELL
1611 /* If we are optimizing big endian systems for space, use the load/store
1612 multiple and string instructions unless we are not generating
1614 if (BYTES_BIG_ENDIAN
&& optimize_size
&& !rs6000_gen_cell_microcode
)
1615 target_flags
|= ~target_flags_explicit
& (MASK_MULTIPLE
| MASK_STRING
);
1617 /* Don't allow -mmultiple or -mstring on little endian systems
1618 unless the cpu is a 750, because the hardware doesn't support the
1619 instructions used in little endian mode, and causes an alignment
1620 trap. The 750 does not cause an alignment trap (except when the
1621 target is unaligned). */
1623 if (!BYTES_BIG_ENDIAN
&& rs6000_cpu
!= PROCESSOR_PPC750
)
1625 if (TARGET_MULTIPLE
)
1627 target_flags
&= ~MASK_MULTIPLE
;
1628 if ((target_flags_explicit
& MASK_MULTIPLE
) != 0)
1629 warning (0, "-mmultiple is not supported on little endian systems");
1634 target_flags
&= ~MASK_STRING
;
1635 if ((target_flags_explicit
& MASK_STRING
) != 0)
1636 warning (0, "-mstring is not supported on little endian systems");
1640 /* Set debug flags */
1641 if (rs6000_debug_name
)
1643 if (! strcmp (rs6000_debug_name
, "all"))
1644 rs6000_debug_stack
= rs6000_debug_arg
= 1;
1645 else if (! strcmp (rs6000_debug_name
, "stack"))
1646 rs6000_debug_stack
= 1;
1647 else if (! strcmp (rs6000_debug_name
, "arg"))
1648 rs6000_debug_arg
= 1;
1650 error ("unknown -mdebug-%s switch", rs6000_debug_name
);
1653 if (rs6000_traceback_name
)
1655 if (! strncmp (rs6000_traceback_name
, "full", 4))
1656 rs6000_traceback
= traceback_full
;
1657 else if (! strncmp (rs6000_traceback_name
, "part", 4))
1658 rs6000_traceback
= traceback_part
;
1659 else if (! strncmp (rs6000_traceback_name
, "no", 2))
1660 rs6000_traceback
= traceback_none
;
1662 error ("unknown -mtraceback arg %qs; expecting %<full%>, %<partial%> or %<none%>",
1663 rs6000_traceback_name
);
1666 if (!rs6000_explicit_options
.long_double
)
1667 rs6000_long_double_type_size
= RS6000_DEFAULT_LONG_DOUBLE_SIZE
;
1669 #ifndef POWERPC_LINUX
1670 if (!rs6000_explicit_options
.ieee
)
1671 rs6000_ieeequad
= 1;
1674 /* Enable Altivec ABI for AIX -maltivec. */
1675 if (TARGET_XCOFF
&& TARGET_ALTIVEC
)
1676 rs6000_altivec_abi
= 1;
1678 /* The AltiVec ABI is the default for PowerPC-64 GNU/Linux. For
1679 PowerPC-32 GNU/Linux, -maltivec implies the AltiVec ABI. It can
1680 be explicitly overridden in either case. */
1683 if (!rs6000_explicit_options
.altivec_abi
1684 && (TARGET_64BIT
|| TARGET_ALTIVEC
))
1685 rs6000_altivec_abi
= 1;
1687 /* Enable VRSAVE for AltiVec ABI, unless explicitly overridden. */
1688 if (!rs6000_explicit_options
.vrsave
)
1689 TARGET_ALTIVEC_VRSAVE
= rs6000_altivec_abi
;
1692 /* Set the Darwin64 ABI as default for 64-bit Darwin. */
1693 if (DEFAULT_ABI
== ABI_DARWIN
&& TARGET_64BIT
)
1695 rs6000_darwin64_abi
= 1;
1697 darwin_one_byte_bool
= 1;
1699 /* Default to natural alignment, for better performance. */
1700 rs6000_alignment_flags
= MASK_ALIGN_NATURAL
;
1703 /* Place FP constants in the constant pool instead of TOC
1704 if section anchors enabled. */
1705 if (flag_section_anchors
)
1706 TARGET_NO_FP_IN_TOC
= 1;
1708 /* Handle -mtls-size option. */
1709 rs6000_parse_tls_size_option ();
1711 #ifdef SUBTARGET_OVERRIDE_OPTIONS
1712 SUBTARGET_OVERRIDE_OPTIONS
;
1714 #ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
1715 SUBSUBTARGET_OVERRIDE_OPTIONS
;
1717 #ifdef SUB3TARGET_OVERRIDE_OPTIONS
1718 SUB3TARGET_OVERRIDE_OPTIONS
;
1721 if (TARGET_E500
|| rs6000_cpu
== PROCESSOR_PPCE500MC
)
1723 /* The e500 and e500mc do not have string instructions, and we set
1724 MASK_STRING above when optimizing for size. */
1725 if ((target_flags
& MASK_STRING
) != 0)
1726 target_flags
= target_flags
& ~MASK_STRING
;
1728 else if (rs6000_select
[1].string
!= NULL
)
1730 /* For the powerpc-eabispe configuration, we set all these by
1731 default, so let's unset them if we manually set another
1732 CPU that is not the E500. */
1733 if (!rs6000_explicit_options
.spe_abi
)
1735 if (!rs6000_explicit_options
.spe
)
1737 if (!rs6000_explicit_options
.float_gprs
)
1738 rs6000_float_gprs
= 0;
1739 if (!rs6000_explicit_options
.isel
)
1743 /* Detect invalid option combinations with E500. */
1746 rs6000_always_hint
= (rs6000_cpu
!= PROCESSOR_POWER4
1747 && rs6000_cpu
!= PROCESSOR_POWER5
1748 && rs6000_cpu
!= PROCESSOR_POWER6
1749 && rs6000_cpu
!= PROCESSOR_CELL
);
1750 rs6000_sched_groups
= (rs6000_cpu
== PROCESSOR_POWER4
1751 || rs6000_cpu
== PROCESSOR_POWER5
);
1752 rs6000_align_branch_targets
= (rs6000_cpu
== PROCESSOR_POWER4
1753 || rs6000_cpu
== PROCESSOR_POWER5
1754 || rs6000_cpu
== PROCESSOR_POWER6
);
1756 rs6000_sched_restricted_insns_priority
1757 = (rs6000_sched_groups
? 1 : 0);
1759 /* Handle -msched-costly-dep option. */
1760 rs6000_sched_costly_dep
1761 = (rs6000_sched_groups
? store_to_load_dep_costly
: no_dep_costly
);
1763 if (rs6000_sched_costly_dep_str
)
1765 if (! strcmp (rs6000_sched_costly_dep_str
, "no"))
1766 rs6000_sched_costly_dep
= no_dep_costly
;
1767 else if (! strcmp (rs6000_sched_costly_dep_str
, "all"))
1768 rs6000_sched_costly_dep
= all_deps_costly
;
1769 else if (! strcmp (rs6000_sched_costly_dep_str
, "true_store_to_load"))
1770 rs6000_sched_costly_dep
= true_store_to_load_dep_costly
;
1771 else if (! strcmp (rs6000_sched_costly_dep_str
, "store_to_load"))
1772 rs6000_sched_costly_dep
= store_to_load_dep_costly
;
1774 rs6000_sched_costly_dep
= atoi (rs6000_sched_costly_dep_str
);
1777 /* Handle -minsert-sched-nops option. */
1778 rs6000_sched_insert_nops
1779 = (rs6000_sched_groups
? sched_finish_regroup_exact
: sched_finish_none
);
1781 if (rs6000_sched_insert_nops_str
)
1783 if (! strcmp (rs6000_sched_insert_nops_str
, "no"))
1784 rs6000_sched_insert_nops
= sched_finish_none
;
1785 else if (! strcmp (rs6000_sched_insert_nops_str
, "pad"))
1786 rs6000_sched_insert_nops
= sched_finish_pad_groups
;
1787 else if (! strcmp (rs6000_sched_insert_nops_str
, "regroup_exact"))
1788 rs6000_sched_insert_nops
= sched_finish_regroup_exact
;
1790 rs6000_sched_insert_nops
= atoi (rs6000_sched_insert_nops_str
);
1793 #ifdef TARGET_REGNAMES
1794 /* If the user desires alternate register names, copy in the
1795 alternate names now. */
1796 if (TARGET_REGNAMES
)
1797 memcpy (rs6000_reg_names
, alt_reg_names
, sizeof (rs6000_reg_names
));
1800 /* Set aix_struct_return last, after the ABI is determined.
1801 If -maix-struct-return or -msvr4-struct-return was explicitly
1802 used, don't override with the ABI default. */
1803 if (!rs6000_explicit_options
.aix_struct_ret
)
1804 aix_struct_return
= (DEFAULT_ABI
!= ABI_V4
|| DRAFT_V4_STRUCT_RET
);
1806 if (TARGET_LONG_DOUBLE_128
&& !TARGET_IEEEQUAD
)
1807 REAL_MODE_FORMAT (TFmode
) = &ibm_extended_format
;
1810 ASM_GENERATE_INTERNAL_LABEL (toc_label_name
, "LCTOC", 1);
1812 /* We can only guarantee the availability of DI pseudo-ops when
1813 assembling for 64-bit targets. */
1816 targetm
.asm_out
.aligned_op
.di
= NULL
;
1817 targetm
.asm_out
.unaligned_op
.di
= NULL
;
1820 /* Set branch target alignment, if not optimizing for size. */
1823 /* Cell wants to be aligned 8byte for dual issue. */
1824 if (rs6000_cpu
== PROCESSOR_CELL
)
1826 if (align_functions
<= 0)
1827 align_functions
= 8;
1828 if (align_jumps
<= 0)
1830 if (align_loops
<= 0)
1833 if (rs6000_align_branch_targets
)
1835 if (align_functions
<= 0)
1836 align_functions
= 16;
1837 if (align_jumps
<= 0)
1839 if (align_loops
<= 0)
1842 if (align_jumps_max_skip
<= 0)
1843 align_jumps_max_skip
= 15;
1844 if (align_loops_max_skip
<= 0)
1845 align_loops_max_skip
= 15;
1848 /* Arrange to save and restore machine status around nested functions. */
1849 init_machine_status
= rs6000_init_machine_status
;
1851 /* We should always be splitting complex arguments, but we can't break
1852 Linux and Darwin ABIs at the moment. For now, only AIX is fixed. */
1853 if (DEFAULT_ABI
!= ABI_AIX
)
1854 targetm
.calls
.split_complex_arg
= NULL
;
1856 /* Initialize rs6000_cost with the appropriate target costs. */
1858 rs6000_cost
= TARGET_POWERPC64
? &size64_cost
: &size32_cost
;
1862 case PROCESSOR_RIOS1
:
1863 rs6000_cost
= &rios1_cost
;
1866 case PROCESSOR_RIOS2
:
1867 rs6000_cost
= &rios2_cost
;
1870 case PROCESSOR_RS64A
:
1871 rs6000_cost
= &rs64a_cost
;
1874 case PROCESSOR_MPCCORE
:
1875 rs6000_cost
= &mpccore_cost
;
1878 case PROCESSOR_PPC403
:
1879 rs6000_cost
= &ppc403_cost
;
1882 case PROCESSOR_PPC405
:
1883 rs6000_cost
= &ppc405_cost
;
1886 case PROCESSOR_PPC440
:
1887 rs6000_cost
= &ppc440_cost
;
1890 case PROCESSOR_PPC601
:
1891 rs6000_cost
= &ppc601_cost
;
1894 case PROCESSOR_PPC603
:
1895 rs6000_cost
= &ppc603_cost
;
1898 case PROCESSOR_PPC604
:
1899 rs6000_cost
= &ppc604_cost
;
1902 case PROCESSOR_PPC604e
:
1903 rs6000_cost
= &ppc604e_cost
;
1906 case PROCESSOR_PPC620
:
1907 rs6000_cost
= &ppc620_cost
;
1910 case PROCESSOR_PPC630
:
1911 rs6000_cost
= &ppc630_cost
;
1914 case PROCESSOR_CELL
:
1915 rs6000_cost
= &ppccell_cost
;
1918 case PROCESSOR_PPC750
:
1919 case PROCESSOR_PPC7400
:
1920 rs6000_cost
= &ppc750_cost
;
1923 case PROCESSOR_PPC7450
:
1924 rs6000_cost
= &ppc7450_cost
;
1927 case PROCESSOR_PPC8540
:
1928 rs6000_cost
= &ppc8540_cost
;
1931 case PROCESSOR_PPCE300C2
:
1932 case PROCESSOR_PPCE300C3
:
1933 rs6000_cost
= &ppce300c2c3_cost
;
1936 case PROCESSOR_PPCE500MC
:
1937 rs6000_cost
= &ppce500mc_cost
;
1940 case PROCESSOR_POWER4
:
1941 case PROCESSOR_POWER5
:
1942 rs6000_cost
= &power4_cost
;
1945 case PROCESSOR_POWER6
:
1946 rs6000_cost
= &power6_cost
;
1953 if (!PARAM_SET_P (PARAM_SIMULTANEOUS_PREFETCHES
))
1954 set_param_value ("simultaneous-prefetches",
1955 rs6000_cost
->simultaneous_prefetches
);
1956 if (!PARAM_SET_P (PARAM_L1_CACHE_SIZE
))
1957 set_param_value ("l1-cache-size", rs6000_cost
->l1_cache_size
);
1958 if (!PARAM_SET_P (PARAM_L1_CACHE_LINE_SIZE
))
1959 set_param_value ("l1-cache-line-size", rs6000_cost
->cache_line_size
);
1960 if (!PARAM_SET_P (PARAM_L2_CACHE_SIZE
))
1961 set_param_value ("l2-cache-size", rs6000_cost
->l2_cache_size
);
1963 /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0)
1964 can be optimized to ap = __builtin_next_arg (0). */
1965 if (DEFAULT_ABI
!= ABI_V4
)
1966 targetm
.expand_builtin_va_start
= NULL
;
1968 /* Set up single/double float flags.
1969 If TARGET_HARD_FLOAT is set, but neither single or double is set,
1970 then set both flags. */
1971 if (TARGET_HARD_FLOAT
&& TARGET_FPRS
1972 && rs6000_single_float
== 0 && rs6000_double_float
== 0)
1973 rs6000_single_float
= rs6000_double_float
= 1;
1975 /* Reset single and double FP flags if target is E500. */
1978 rs6000_single_float
= rs6000_double_float
= 0;
1979 if (TARGET_E500_SINGLE
)
1980 rs6000_single_float
= 1;
1981 if (TARGET_E500_DOUBLE
)
1982 rs6000_single_float
= rs6000_double_float
= 1;
1985 /* If not explicitly specified via option, decide whether to generate indexed
1986 load/store instructions. */
1987 if (TARGET_AVOID_XFORM
== -1)
1988 /* Avoid indexed addressing when targeting Power6 in order to avoid
1989 the DERAT mispredict penalty. */
1990 TARGET_AVOID_XFORM
= (rs6000_cpu
== PROCESSOR_POWER6
&& TARGET_CMPB
);
1992 rs6000_init_hard_regno_mode_ok ();
1995 /* Implement targetm.vectorize.builtin_mask_for_load. */
1997 rs6000_builtin_mask_for_load (void)
2000 return altivec_builtin_mask_for_load
;
2005 /* Implement targetm.vectorize.builtin_conversion.
2006 Returns a decl of a function that implements conversion of an integer vector
2007 into a floating-point vector, or vice-versa. TYPE is the type of the integer
2008 side of the conversion.
2009 Return NULL_TREE if it is not available. */
2011 rs6000_builtin_conversion (enum tree_code code
, tree type
)
2013 if (!TARGET_ALTIVEC
)
2018 case FIX_TRUNC_EXPR
:
2019 switch (TYPE_MODE (type
))
2022 return TYPE_UNSIGNED (type
)
2023 ? rs6000_builtin_decls
[ALTIVEC_BUILTIN_VCTUXS
]
2024 : rs6000_builtin_decls
[ALTIVEC_BUILTIN_VCTSXS
];
2030 switch (TYPE_MODE (type
))
2033 return TYPE_UNSIGNED (type
)
2034 ? rs6000_builtin_decls
[ALTIVEC_BUILTIN_VCFUX
]
2035 : rs6000_builtin_decls
[ALTIVEC_BUILTIN_VCFSX
];
2045 /* Implement targetm.vectorize.builtin_mul_widen_even. */
2047 rs6000_builtin_mul_widen_even (tree type
)
2049 if (!TARGET_ALTIVEC
)
2052 switch (TYPE_MODE (type
))
2055 return TYPE_UNSIGNED (type
)
2056 ? rs6000_builtin_decls
[ALTIVEC_BUILTIN_VMULEUH
]
2057 : rs6000_builtin_decls
[ALTIVEC_BUILTIN_VMULESH
];
2060 return TYPE_UNSIGNED (type
)
2061 ? rs6000_builtin_decls
[ALTIVEC_BUILTIN_VMULEUB
]
2062 : rs6000_builtin_decls
[ALTIVEC_BUILTIN_VMULESB
];
2068 /* Implement targetm.vectorize.builtin_mul_widen_odd. */
2070 rs6000_builtin_mul_widen_odd (tree type
)
2072 if (!TARGET_ALTIVEC
)
2075 switch (TYPE_MODE (type
))
2078 return TYPE_UNSIGNED (type
)
2079 ? rs6000_builtin_decls
[ALTIVEC_BUILTIN_VMULOUH
]
2080 : rs6000_builtin_decls
[ALTIVEC_BUILTIN_VMULOSH
];
2083 return TYPE_UNSIGNED (type
)
2084 ? rs6000_builtin_decls
[ALTIVEC_BUILTIN_VMULOUB
]
2085 : rs6000_builtin_decls
[ALTIVEC_BUILTIN_VMULOSB
];
2092 /* Return true iff, data reference of TYPE can reach vector alignment (16)
2093 after applying N number of iterations. This routine does not determine
2094 how may iterations are required to reach desired alignment. */
2097 rs6000_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED
, bool is_packed
)
2104 if (rs6000_alignment_flags
== MASK_ALIGN_NATURAL
)
2107 if (rs6000_alignment_flags
== MASK_ALIGN_POWER
)
2117 /* Assuming that all other types are naturally aligned. CHECKME! */
2122 /* Implement targetm.vectorize.builtin_vec_perm. */
2124 rs6000_builtin_vec_perm (tree type
, tree
*mask_element_type
)
2128 *mask_element_type
= unsigned_char_type_node
;
2130 switch (TYPE_MODE (type
))
2133 d
= rs6000_builtin_decls
[ALTIVEC_BUILTIN_VPERM_16QI
];
2137 d
= rs6000_builtin_decls
[ALTIVEC_BUILTIN_VPERM_8HI
];
2141 d
= rs6000_builtin_decls
[ALTIVEC_BUILTIN_VPERM_4SI
];
2145 d
= rs6000_builtin_decls
[ALTIVEC_BUILTIN_VPERM_4SF
];
2156 /* Handle generic options of the form -mfoo=yes/no.
2157 NAME is the option name.
2158 VALUE is the option value.
2159 FLAG is the pointer to the flag where to store a 1 or 0, depending on
2160 whether the option value is 'yes' or 'no' respectively. */
2162 rs6000_parse_yes_no_option (const char *name
, const char *value
, int *flag
)
2166 else if (!strcmp (value
, "yes"))
2168 else if (!strcmp (value
, "no"))
2171 error ("unknown -m%s= option specified: '%s'", name
, value
);
2174 /* Validate and record the size specified with the -mtls-size option. */
2177 rs6000_parse_tls_size_option (void)
2179 if (rs6000_tls_size_string
== 0)
2181 else if (strcmp (rs6000_tls_size_string
, "16") == 0)
2182 rs6000_tls_size
= 16;
2183 else if (strcmp (rs6000_tls_size_string
, "32") == 0)
2184 rs6000_tls_size
= 32;
2185 else if (strcmp (rs6000_tls_size_string
, "64") == 0)
2186 rs6000_tls_size
= 64;
2188 error ("bad value %qs for -mtls-size switch", rs6000_tls_size_string
);
2192 optimization_options (int level ATTRIBUTE_UNUSED
, int size ATTRIBUTE_UNUSED
)
2194 if (DEFAULT_ABI
== ABI_DARWIN
)
2195 /* The Darwin libraries never set errno, so we might as well
2196 avoid calling them when that's the only reason we would. */
2197 flag_errno_math
= 0;
2199 /* Double growth factor to counter reduced min jump length. */
2200 set_param_value ("max-grow-copy-bb-insns", 16);
2202 /* Enable section anchors by default.
2203 Skip section anchors for Objective C and Objective C++
2204 until front-ends fixed. */
2205 if (!TARGET_MACHO
&& lang_hooks
.name
[4] != 'O')
2206 flag_section_anchors
= 2;
2209 static enum fpu_type_t
2210 rs6000_parse_fpu_option (const char *option
)
2212 if (!strcmp("none", option
)) return FPU_NONE
;
2213 if (!strcmp("sp_lite", option
)) return FPU_SF_LITE
;
2214 if (!strcmp("dp_lite", option
)) return FPU_DF_LITE
;
2215 if (!strcmp("sp_full", option
)) return FPU_SF_FULL
;
2216 if (!strcmp("dp_full", option
)) return FPU_DF_FULL
;
2217 error("unknown value %s for -mfpu", option
);
2221 /* Implement TARGET_HANDLE_OPTION. */
2224 rs6000_handle_option (size_t code
, const char *arg
, int value
)
2226 enum fpu_type_t fpu_type
= FPU_NONE
;
2231 target_flags
&= ~(MASK_POWER
| MASK_POWER2
2232 | MASK_MULTIPLE
| MASK_STRING
);
2233 target_flags_explicit
|= (MASK_POWER
| MASK_POWER2
2234 | MASK_MULTIPLE
| MASK_STRING
);
2236 case OPT_mno_powerpc
:
2237 target_flags
&= ~(MASK_POWERPC
| MASK_PPC_GPOPT
2238 | MASK_PPC_GFXOPT
| MASK_POWERPC64
);
2239 target_flags_explicit
|= (MASK_POWERPC
| MASK_PPC_GPOPT
2240 | MASK_PPC_GFXOPT
| MASK_POWERPC64
);
2243 target_flags
&= ~MASK_MINIMAL_TOC
;
2244 TARGET_NO_FP_IN_TOC
= 0;
2245 TARGET_NO_SUM_IN_TOC
= 0;
2246 target_flags_explicit
|= MASK_MINIMAL_TOC
;
2247 #ifdef TARGET_USES_SYSV4_OPT
2248 /* Note, V.4 no longer uses a normal TOC, so make -mfull-toc, be
2249 just the same as -mminimal-toc. */
2250 target_flags
|= MASK_MINIMAL_TOC
;
2251 target_flags_explicit
|= MASK_MINIMAL_TOC
;
2255 #ifdef TARGET_USES_SYSV4_OPT
2257 /* Make -mtoc behave like -mminimal-toc. */
2258 target_flags
|= MASK_MINIMAL_TOC
;
2259 target_flags_explicit
|= MASK_MINIMAL_TOC
;
2263 #ifdef TARGET_USES_AIX64_OPT
2268 target_flags
|= MASK_POWERPC64
| MASK_POWERPC
;
2269 target_flags
|= ~target_flags_explicit
& MASK_PPC_GFXOPT
;
2270 target_flags_explicit
|= MASK_POWERPC64
| MASK_POWERPC
;
2273 #ifdef TARGET_USES_AIX64_OPT
2278 target_flags
&= ~MASK_POWERPC64
;
2279 target_flags_explicit
|= MASK_POWERPC64
;
2282 case OPT_minsert_sched_nops_
:
2283 rs6000_sched_insert_nops_str
= arg
;
2286 case OPT_mminimal_toc
:
2289 TARGET_NO_FP_IN_TOC
= 0;
2290 TARGET_NO_SUM_IN_TOC
= 0;
2297 target_flags
|= (MASK_MULTIPLE
| MASK_STRING
);
2298 target_flags_explicit
|= (MASK_MULTIPLE
| MASK_STRING
);
2305 target_flags
|= (MASK_POWER
| MASK_MULTIPLE
| MASK_STRING
);
2306 target_flags_explicit
|= (MASK_POWER
| MASK_MULTIPLE
| MASK_STRING
);
2310 case OPT_mpowerpc_gpopt
:
2311 case OPT_mpowerpc_gfxopt
:
2314 target_flags
|= MASK_POWERPC
;
2315 target_flags_explicit
|= MASK_POWERPC
;
2319 case OPT_maix_struct_return
:
2320 case OPT_msvr4_struct_return
:
2321 rs6000_explicit_options
.aix_struct_ret
= true;
2325 rs6000_explicit_options
.vrsave
= true;
2326 TARGET_ALTIVEC_VRSAVE
= value
;
2330 rs6000_explicit_options
.vrsave
= true;
2331 rs6000_parse_yes_no_option ("vrsave", arg
, &(TARGET_ALTIVEC_VRSAVE
));
2335 rs6000_explicit_options
.isel
= true;
2336 rs6000_isel
= value
;
2340 rs6000_explicit_options
.isel
= true;
2341 rs6000_parse_yes_no_option ("isel", arg
, &(rs6000_isel
));
2345 rs6000_explicit_options
.spe
= true;
2350 rs6000_explicit_options
.spe
= true;
2351 rs6000_parse_yes_no_option ("spe", arg
, &(rs6000_spe
));
2355 rs6000_debug_name
= arg
;
2358 #ifdef TARGET_USES_SYSV4_OPT
2360 rs6000_abi_name
= arg
;
2364 rs6000_sdata_name
= arg
;
2367 case OPT_mtls_size_
:
2368 rs6000_tls_size_string
= arg
;
2371 case OPT_mrelocatable
:
2374 target_flags
|= MASK_MINIMAL_TOC
;
2375 target_flags_explicit
|= MASK_MINIMAL_TOC
;
2376 TARGET_NO_FP_IN_TOC
= 1;
2380 case OPT_mrelocatable_lib
:
2383 target_flags
|= MASK_RELOCATABLE
| MASK_MINIMAL_TOC
;
2384 target_flags_explicit
|= MASK_RELOCATABLE
| MASK_MINIMAL_TOC
;
2385 TARGET_NO_FP_IN_TOC
= 1;
2389 target_flags
&= ~MASK_RELOCATABLE
;
2390 target_flags_explicit
|= MASK_RELOCATABLE
;
2396 if (!strcmp (arg
, "altivec"))
2398 rs6000_explicit_options
.altivec_abi
= true;
2399 rs6000_altivec_abi
= 1;
2401 /* Enabling the AltiVec ABI turns off the SPE ABI. */
2404 else if (! strcmp (arg
, "no-altivec"))
2406 rs6000_explicit_options
.altivec_abi
= true;
2407 rs6000_altivec_abi
= 0;
2409 else if (! strcmp (arg
, "spe"))
2411 rs6000_explicit_options
.spe_abi
= true;
2413 rs6000_altivec_abi
= 0;
2414 if (!TARGET_SPE_ABI
)
2415 error ("not configured for ABI: '%s'", arg
);
2417 else if (! strcmp (arg
, "no-spe"))
2419 rs6000_explicit_options
.spe_abi
= true;
2423 /* These are here for testing during development only, do not
2424 document in the manual please. */
2425 else if (! strcmp (arg
, "d64"))
2427 rs6000_darwin64_abi
= 1;
2428 warning (0, "Using darwin64 ABI");
2430 else if (! strcmp (arg
, "d32"))
2432 rs6000_darwin64_abi
= 0;
2433 warning (0, "Using old darwin ABI");
2436 else if (! strcmp (arg
, "ibmlongdouble"))
2438 rs6000_explicit_options
.ieee
= true;
2439 rs6000_ieeequad
= 0;
2440 warning (0, "Using IBM extended precision long double");
2442 else if (! strcmp (arg
, "ieeelongdouble"))
2444 rs6000_explicit_options
.ieee
= true;
2445 rs6000_ieeequad
= 1;
2446 warning (0, "Using IEEE extended precision long double");
2451 error ("unknown ABI specified: '%s'", arg
);
2457 rs6000_select
[1].string
= arg
;
2461 rs6000_select
[2].string
= arg
;
2464 case OPT_mtraceback_
:
2465 rs6000_traceback_name
= arg
;
2468 case OPT_mfloat_gprs_
:
2469 rs6000_explicit_options
.float_gprs
= true;
2470 if (! strcmp (arg
, "yes") || ! strcmp (arg
, "single"))
2471 rs6000_float_gprs
= 1;
2472 else if (! strcmp (arg
, "double"))
2473 rs6000_float_gprs
= 2;
2474 else if (! strcmp (arg
, "no"))
2475 rs6000_float_gprs
= 0;
2478 error ("invalid option for -mfloat-gprs: '%s'", arg
);
2483 case OPT_mlong_double_
:
2484 rs6000_explicit_options
.long_double
= true;
2485 rs6000_long_double_type_size
= RS6000_DEFAULT_LONG_DOUBLE_SIZE
;
2486 if (value
!= 64 && value
!= 128)
2488 error ("Unknown switch -mlong-double-%s", arg
);
2489 rs6000_long_double_type_size
= RS6000_DEFAULT_LONG_DOUBLE_SIZE
;
2493 rs6000_long_double_type_size
= value
;
2496 case OPT_msched_costly_dep_
:
2497 rs6000_sched_costly_dep_str
= arg
;
2501 rs6000_explicit_options
.alignment
= true;
2502 if (! strcmp (arg
, "power"))
2504 /* On 64-bit Darwin, power alignment is ABI-incompatible with
2505 some C library functions, so warn about it. The flag may be
2506 useful for performance studies from time to time though, so
2507 don't disable it entirely. */
2508 if (DEFAULT_ABI
== ABI_DARWIN
&& TARGET_64BIT
)
2509 warning (0, "-malign-power is not supported for 64-bit Darwin;"
2510 " it is incompatible with the installed C and C++ libraries");
2511 rs6000_alignment_flags
= MASK_ALIGN_POWER
;
2513 else if (! strcmp (arg
, "natural"))
2514 rs6000_alignment_flags
= MASK_ALIGN_NATURAL
;
2517 error ("unknown -malign-XXXXX option specified: '%s'", arg
);
2522 case OPT_msingle_float
:
2523 if (!TARGET_SINGLE_FPU
)
2524 warning (0, "-msingle-float option equivalent to -mhard-float");
2525 /* -msingle-float implies -mno-double-float and TARGET_HARD_FLOAT. */
2526 rs6000_double_float
= 0;
2527 target_flags
&= ~MASK_SOFT_FLOAT
;
2528 target_flags_explicit
|= MASK_SOFT_FLOAT
;
2531 case OPT_mdouble_float
:
2532 /* -mdouble-float implies -msingle-float and TARGET_HARD_FLOAT. */
2533 rs6000_single_float
= 1;
2534 target_flags
&= ~MASK_SOFT_FLOAT
;
2535 target_flags_explicit
|= MASK_SOFT_FLOAT
;
2538 case OPT_msimple_fpu
:
2539 if (!TARGET_SINGLE_FPU
)
2540 warning (0, "-msimple-fpu option ignored");
2543 case OPT_mhard_float
:
2544 /* -mhard_float implies -msingle-float and -mdouble-float. */
2545 rs6000_single_float
= rs6000_double_float
= 1;
2548 case OPT_msoft_float
:
2549 /* -msoft_float implies -mnosingle-float and -mnodouble-float. */
2550 rs6000_single_float
= rs6000_double_float
= 0;
2554 fpu_type
= rs6000_parse_fpu_option(arg
);
2555 if (fpu_type
!= FPU_NONE
)
2556 /* If -mfpu is not none, then turn off SOFT_FLOAT, turn on HARD_FLOAT. */
2558 target_flags
&= ~MASK_SOFT_FLOAT
;
2559 target_flags_explicit
|= MASK_SOFT_FLOAT
;
2560 rs6000_xilinx_fpu
= 1;
2561 if (fpu_type
== FPU_SF_LITE
|| fpu_type
== FPU_SF_FULL
)
2562 rs6000_single_float
= 1;
2563 if (fpu_type
== FPU_DF_LITE
|| fpu_type
== FPU_DF_FULL
)
2564 rs6000_single_float
= rs6000_double_float
= 1;
2565 if (fpu_type
== FPU_SF_LITE
|| fpu_type
== FPU_DF_LITE
)
2566 rs6000_simple_fpu
= 1;
2570 /* -mfpu=none is equivalent to -msoft-float */
2571 target_flags
|= MASK_SOFT_FLOAT
;
2572 target_flags_explicit
|= MASK_SOFT_FLOAT
;
2573 rs6000_single_float
= rs6000_double_float
= 0;
2580 /* Do anything needed at the start of the asm file. */
2583 rs6000_file_start (void)
2587 const char *start
= buffer
;
2588 struct rs6000_cpu_select
*ptr
;
2589 const char *default_cpu
= TARGET_CPU_DEFAULT
;
2590 FILE *file
= asm_out_file
;
2592 default_file_start ();
2594 #ifdef TARGET_BI_ARCH
2595 if ((TARGET_DEFAULT
^ target_flags
) & MASK_64BIT
)
2599 if (flag_verbose_asm
)
2601 sprintf (buffer
, "\n%s rs6000/powerpc options:", ASM_COMMENT_START
);
2602 rs6000_select
[0].string
= default_cpu
;
2604 for (i
= 0; i
< ARRAY_SIZE (rs6000_select
); i
++)
2606 ptr
= &rs6000_select
[i
];
2607 if (ptr
->string
!= (char *)0 && ptr
->string
[0] != '\0')
2609 fprintf (file
, "%s %s%s", start
, ptr
->name
, ptr
->string
);
2614 if (PPC405_ERRATUM77
)
2616 fprintf (file
, "%s PPC405CR_ERRATUM77", start
);
2620 #ifdef USING_ELFOS_H
2621 switch (rs6000_sdata
)
2623 case SDATA_NONE
: fprintf (file
, "%s -msdata=none", start
); start
= ""; break;
2624 case SDATA_DATA
: fprintf (file
, "%s -msdata=data", start
); start
= ""; break;
2625 case SDATA_SYSV
: fprintf (file
, "%s -msdata=sysv", start
); start
= ""; break;
2626 case SDATA_EABI
: fprintf (file
, "%s -msdata=eabi", start
); start
= ""; break;
2629 if (rs6000_sdata
&& g_switch_value
)
2631 fprintf (file
, "%s -G " HOST_WIDE_INT_PRINT_UNSIGNED
, start
,
2641 #ifdef HAVE_AS_GNU_ATTRIBUTE
2642 if (TARGET_32BIT
&& DEFAULT_ABI
== ABI_V4
)
2644 fprintf (file
, "\t.gnu_attribute 4, %d\n",
2645 ((TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_DOUBLE_FLOAT
) ? 1
2646 : (TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_SINGLE_FLOAT
) ? 3
2648 fprintf (file
, "\t.gnu_attribute 8, %d\n",
2649 (TARGET_ALTIVEC_ABI
? 2
2650 : TARGET_SPE_ABI
? 3
2652 fprintf (file
, "\t.gnu_attribute 12, %d\n",
2653 aix_struct_return
? 2 : 1);
2658 if (DEFAULT_ABI
== ABI_AIX
|| (TARGET_ELF
&& flag_pic
== 2))
2660 switch_to_section (toc_section
);
2661 switch_to_section (text_section
);
2666 /* Return nonzero if this function is known to have a null epilogue. */
2669 direct_return (void)
2671 if (reload_completed
)
2673 rs6000_stack_t
*info
= rs6000_stack_info ();
2675 if (info
->first_gp_reg_save
== 32
2676 && info
->first_fp_reg_save
== 64
2677 && info
->first_altivec_reg_save
== LAST_ALTIVEC_REGNO
+ 1
2678 && ! info
->lr_save_p
2679 && ! info
->cr_save_p
2680 && info
->vrsave_mask
== 0
2688 /* Return the number of instructions it takes to form a constant in an
2689 integer register. */
2692 num_insns_constant_wide (HOST_WIDE_INT value
)
2694 /* signed constant loadable with {cal|addi} */
2695 if ((unsigned HOST_WIDE_INT
) (value
+ 0x8000) < 0x10000)
2698 /* constant loadable with {cau|addis} */
2699 else if ((value
& 0xffff) == 0
2700 && (value
>> 31 == -1 || value
>> 31 == 0))
2703 #if HOST_BITS_PER_WIDE_INT == 64
2704 else if (TARGET_POWERPC64
)
2706 HOST_WIDE_INT low
= ((value
& 0xffffffff) ^ 0x80000000) - 0x80000000;
2707 HOST_WIDE_INT high
= value
>> 31;
2709 if (high
== 0 || high
== -1)
2715 return num_insns_constant_wide (high
) + 1;
2717 return (num_insns_constant_wide (high
)
2718 + num_insns_constant_wide (low
) + 1);
2727 num_insns_constant (rtx op
, enum machine_mode mode
)
2729 HOST_WIDE_INT low
, high
;
2731 switch (GET_CODE (op
))
2734 #if HOST_BITS_PER_WIDE_INT == 64
2735 if ((INTVAL (op
) >> 31) != 0 && (INTVAL (op
) >> 31) != -1
2736 && mask64_operand (op
, mode
))
2740 return num_insns_constant_wide (INTVAL (op
));
2743 if (mode
== SFmode
|| mode
== SDmode
)
2748 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
2749 if (DECIMAL_FLOAT_MODE_P (mode
))
2750 REAL_VALUE_TO_TARGET_DECIMAL32 (rv
, l
);
2752 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
2753 return num_insns_constant_wide ((HOST_WIDE_INT
) l
);
2756 if (mode
== VOIDmode
|| mode
== DImode
)
2758 high
= CONST_DOUBLE_HIGH (op
);
2759 low
= CONST_DOUBLE_LOW (op
);
2766 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
2767 if (DECIMAL_FLOAT_MODE_P (mode
))
2768 REAL_VALUE_TO_TARGET_DECIMAL64 (rv
, l
);
2770 REAL_VALUE_TO_TARGET_DOUBLE (rv
, l
);
2771 high
= l
[WORDS_BIG_ENDIAN
== 0];
2772 low
= l
[WORDS_BIG_ENDIAN
!= 0];
2776 return (num_insns_constant_wide (low
)
2777 + num_insns_constant_wide (high
));
2780 if ((high
== 0 && low
>= 0)
2781 || (high
== -1 && low
< 0))
2782 return num_insns_constant_wide (low
);
2784 else if (mask64_operand (op
, mode
))
2788 return num_insns_constant_wide (high
) + 1;
2791 return (num_insns_constant_wide (high
)
2792 + num_insns_constant_wide (low
) + 1);
2800 /* Interpret element ELT of the CONST_VECTOR OP as an integer value.
2801 If the mode of OP is MODE_VECTOR_INT, this simply returns the
2802 corresponding element of the vector, but for V4SFmode and V2SFmode,
2803 the corresponding "float" is interpreted as an SImode integer. */
2806 const_vector_elt_as_int (rtx op
, unsigned int elt
)
2808 rtx tmp
= CONST_VECTOR_ELT (op
, elt
);
2809 if (GET_MODE (op
) == V4SFmode
2810 || GET_MODE (op
) == V2SFmode
)
2811 tmp
= gen_lowpart (SImode
, tmp
);
2812 return INTVAL (tmp
);
2815 /* Return true if OP can be synthesized with a particular vspltisb, vspltish
2816 or vspltisw instruction. OP is a CONST_VECTOR. Which instruction is used
2817 depends on STEP and COPIES, one of which will be 1. If COPIES > 1,
2818 all items are set to the same value and contain COPIES replicas of the
2819 vsplt's operand; if STEP > 1, one in STEP elements is set to the vsplt's
2820 operand and the others are set to the value of the operand's msb. */
2823 vspltis_constant (rtx op
, unsigned step
, unsigned copies
)
2825 enum machine_mode mode
= GET_MODE (op
);
2826 enum machine_mode inner
= GET_MODE_INNER (mode
);
2829 unsigned nunits
= GET_MODE_NUNITS (mode
);
2830 unsigned bitsize
= GET_MODE_BITSIZE (inner
);
2831 unsigned mask
= GET_MODE_MASK (inner
);
2833 HOST_WIDE_INT val
= const_vector_elt_as_int (op
, nunits
- 1);
2834 HOST_WIDE_INT splat_val
= val
;
2835 HOST_WIDE_INT msb_val
= val
> 0 ? 0 : -1;
2837 /* Construct the value to be splatted, if possible. If not, return 0. */
2838 for (i
= 2; i
<= copies
; i
*= 2)
2840 HOST_WIDE_INT small_val
;
2842 small_val
= splat_val
>> bitsize
;
2844 if (splat_val
!= ((small_val
<< bitsize
) | (small_val
& mask
)))
2846 splat_val
= small_val
;
2849 /* Check if SPLAT_VAL can really be the operand of a vspltis[bhw]. */
2850 if (EASY_VECTOR_15 (splat_val
))
2853 /* Also check if we can splat, and then add the result to itself. Do so if
2854 the value is positive, of if the splat instruction is using OP's mode;
2855 for splat_val < 0, the splat and the add should use the same mode. */
2856 else if (EASY_VECTOR_15_ADD_SELF (splat_val
)
2857 && (splat_val
>= 0 || (step
== 1 && copies
== 1)))
2863 /* Check if VAL is present in every STEP-th element, and the
2864 other elements are filled with its most significant bit. */
2865 for (i
= 0; i
< nunits
- 1; ++i
)
2867 HOST_WIDE_INT desired_val
;
2868 if (((i
+ 1) & (step
- 1)) == 0)
2871 desired_val
= msb_val
;
2873 if (desired_val
!= const_vector_elt_as_int (op
, i
))
2881 /* Return true if OP is of the given MODE and can be synthesized
2882 with a vspltisb, vspltish or vspltisw. */
2885 easy_altivec_constant (rtx op
, enum machine_mode mode
)
2887 unsigned step
, copies
;
2889 if (mode
== VOIDmode
)
2890 mode
= GET_MODE (op
);
2891 else if (mode
!= GET_MODE (op
))
2894 /* Start with a vspltisw. */
2895 step
= GET_MODE_NUNITS (mode
) / 4;
2898 if (vspltis_constant (op
, step
, copies
))
2901 /* Then try with a vspltish. */
2907 if (vspltis_constant (op
, step
, copies
))
2910 /* And finally a vspltisb. */
2916 if (vspltis_constant (op
, step
, copies
))
2922 /* Generate a VEC_DUPLICATE representing a vspltis[bhw] instruction whose
2923 result is OP. Abort if it is not possible. */
2926 gen_easy_altivec_constant (rtx op
)
2928 enum machine_mode mode
= GET_MODE (op
);
2929 int nunits
= GET_MODE_NUNITS (mode
);
2930 rtx last
= CONST_VECTOR_ELT (op
, nunits
- 1);
2931 unsigned step
= nunits
/ 4;
2932 unsigned copies
= 1;
2934 /* Start with a vspltisw. */
2935 if (vspltis_constant (op
, step
, copies
))
2936 return gen_rtx_VEC_DUPLICATE (V4SImode
, gen_lowpart (SImode
, last
));
2938 /* Then try with a vspltish. */
2944 if (vspltis_constant (op
, step
, copies
))
2945 return gen_rtx_VEC_DUPLICATE (V8HImode
, gen_lowpart (HImode
, last
));
2947 /* And finally a vspltisb. */
2953 if (vspltis_constant (op
, step
, copies
))
2954 return gen_rtx_VEC_DUPLICATE (V16QImode
, gen_lowpart (QImode
, last
));
2960 output_vec_const_move (rtx
*operands
)
2963 enum machine_mode mode
;
2968 mode
= GET_MODE (dest
);
2973 if (zero_constant (vec
, mode
))
2974 return "vxor %0,%0,%0";
2976 splat_vec
= gen_easy_altivec_constant (vec
);
2977 gcc_assert (GET_CODE (splat_vec
) == VEC_DUPLICATE
);
2978 operands
[1] = XEXP (splat_vec
, 0);
2979 if (!EASY_VECTOR_15 (INTVAL (operands
[1])))
2982 switch (GET_MODE (splat_vec
))
2985 return "vspltisw %0,%1";
2988 return "vspltish %0,%1";
2991 return "vspltisb %0,%1";
2998 gcc_assert (TARGET_SPE
);
3000 /* Vector constant 0 is handled as a splitter of V2SI, and in the
3001 pattern of V1DI, V4HI, and V2SF.
3003 FIXME: We should probably return # and add post reload
3004 splitters for these, but this way is so easy ;-). */
3005 cst
= INTVAL (CONST_VECTOR_ELT (vec
, 0));
3006 cst2
= INTVAL (CONST_VECTOR_ELT (vec
, 1));
3007 operands
[1] = CONST_VECTOR_ELT (vec
, 0);
3008 operands
[2] = CONST_VECTOR_ELT (vec
, 1);
3010 return "li %0,%1\n\tevmergelo %0,%0,%0";
3012 return "li %0,%1\n\tevmergelo %0,%0,%0\n\tli %0,%2";
3015 /* Initialize TARGET of vector PAIRED to VALS. */
3018 paired_expand_vector_init (rtx target
, rtx vals
)
3020 enum machine_mode mode
= GET_MODE (target
);
3021 int n_elts
= GET_MODE_NUNITS (mode
);
3023 rtx x
, new_rtx
, tmp
, constant_op
, op1
, op2
;
3026 for (i
= 0; i
< n_elts
; ++i
)
3028 x
= XVECEXP (vals
, 0, i
);
3029 if (!CONSTANT_P (x
))
3034 /* Load from constant pool. */
3035 emit_move_insn (target
, gen_rtx_CONST_VECTOR (mode
, XVEC (vals
, 0)));
3041 /* The vector is initialized only with non-constants. */
3042 new_rtx
= gen_rtx_VEC_CONCAT (V2SFmode
, XVECEXP (vals
, 0, 0),
3043 XVECEXP (vals
, 0, 1));
3045 emit_move_insn (target
, new_rtx
);
3049 /* One field is non-constant and the other one is a constant. Load the
3050 constant from the constant pool and use ps_merge instruction to
3051 construct the whole vector. */
3052 op1
= XVECEXP (vals
, 0, 0);
3053 op2
= XVECEXP (vals
, 0, 1);
3055 constant_op
= (CONSTANT_P (op1
)) ? op1
: op2
;
3057 tmp
= gen_reg_rtx (GET_MODE (constant_op
));
3058 emit_move_insn (tmp
, constant_op
);
3060 if (CONSTANT_P (op1
))
3061 new_rtx
= gen_rtx_VEC_CONCAT (V2SFmode
, tmp
, op2
);
3063 new_rtx
= gen_rtx_VEC_CONCAT (V2SFmode
, op1
, tmp
);
3065 emit_move_insn (target
, new_rtx
);
3069 paired_expand_vector_move (rtx operands
[])
3071 rtx op0
= operands
[0], op1
= operands
[1];
3073 emit_move_insn (op0
, op1
);
3076 /* Emit vector compare for code RCODE. DEST is destination, OP1 and
3077 OP2 are two VEC_COND_EXPR operands, CC_OP0 and CC_OP1 are the two
3078 operands for the relation operation COND. This is a recursive
3082 paired_emit_vector_compare (enum rtx_code rcode
,
3083 rtx dest
, rtx op0
, rtx op1
,
3084 rtx cc_op0
, rtx cc_op1
)
3086 rtx tmp
= gen_reg_rtx (V2SFmode
);
3087 rtx tmp1
, max
, min
, equal_zero
;
3089 gcc_assert (TARGET_PAIRED_FLOAT
);
3090 gcc_assert (GET_MODE (op0
) == GET_MODE (op1
));
3096 paired_emit_vector_compare (GE
, dest
, op1
, op0
, cc_op0
, cc_op1
);
3100 emit_insn (gen_subv2sf3 (tmp
, cc_op0
, cc_op1
));
3101 emit_insn (gen_selv2sf4 (dest
, tmp
, op0
, op1
, CONST0_RTX (SFmode
)));
3105 paired_emit_vector_compare (GE
, dest
, op0
, op1
, cc_op1
, cc_op0
);
3108 paired_emit_vector_compare (LE
, dest
, op1
, op0
, cc_op0
, cc_op1
);
3111 tmp1
= gen_reg_rtx (V2SFmode
);
3112 max
= gen_reg_rtx (V2SFmode
);
3113 min
= gen_reg_rtx (V2SFmode
);
3114 equal_zero
= gen_reg_rtx (V2SFmode
);
3116 emit_insn (gen_subv2sf3 (tmp
, cc_op0
, cc_op1
));
3117 emit_insn (gen_selv2sf4
3118 (max
, tmp
, cc_op0
, cc_op1
, CONST0_RTX (SFmode
)));
3119 emit_insn (gen_subv2sf3 (tmp
, cc_op1
, cc_op0
));
3120 emit_insn (gen_selv2sf4
3121 (min
, tmp
, cc_op0
, cc_op1
, CONST0_RTX (SFmode
)));
3122 emit_insn (gen_subv2sf3 (tmp1
, min
, max
));
3123 emit_insn (gen_selv2sf4 (dest
, tmp1
, op0
, op1
, CONST0_RTX (SFmode
)));
3126 paired_emit_vector_compare (EQ
, dest
, op1
, op0
, cc_op0
, cc_op1
);
3129 paired_emit_vector_compare (LE
, dest
, op1
, op0
, cc_op0
, cc_op1
);
3132 paired_emit_vector_compare (LT
, dest
, op1
, op0
, cc_op0
, cc_op1
);
3135 paired_emit_vector_compare (GE
, dest
, op1
, op0
, cc_op0
, cc_op1
);
3138 paired_emit_vector_compare (GT
, dest
, op1
, op0
, cc_op0
, cc_op1
);
3147 /* Emit vector conditional expression.
3148 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
3149 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
3152 paired_emit_vector_cond_expr (rtx dest
, rtx op1
, rtx op2
,
3153 rtx cond
, rtx cc_op0
, rtx cc_op1
)
3155 enum rtx_code rcode
= GET_CODE (cond
);
3157 if (!TARGET_PAIRED_FLOAT
)
3160 paired_emit_vector_compare (rcode
, dest
, op1
, op2
, cc_op0
, cc_op1
);
3165 /* Initialize vector TARGET to VALS. */
3168 rs6000_expand_vector_init (rtx target
, rtx vals
)
3170 enum machine_mode mode
= GET_MODE (target
);
3171 enum machine_mode inner_mode
= GET_MODE_INNER (mode
);
3172 int n_elts
= GET_MODE_NUNITS (mode
);
3173 int n_var
= 0, one_var
= -1;
3174 bool all_same
= true, all_const_zero
= true;
3178 for (i
= 0; i
< n_elts
; ++i
)
3180 x
= XVECEXP (vals
, 0, i
);
3181 if (!CONSTANT_P (x
))
3182 ++n_var
, one_var
= i
;
3183 else if (x
!= CONST0_RTX (inner_mode
))
3184 all_const_zero
= false;
3186 if (i
> 0 && !rtx_equal_p (x
, XVECEXP (vals
, 0, 0)))
3192 rtx const_vec
= gen_rtx_CONST_VECTOR (mode
, XVEC (vals
, 0));
3193 if (mode
!= V4SFmode
&& all_const_zero
)
3195 /* Zero register. */
3196 emit_insn (gen_rtx_SET (VOIDmode
, target
,
3197 gen_rtx_XOR (mode
, target
, target
)));
3200 else if (mode
!= V4SFmode
&& easy_vector_constant (const_vec
, mode
))
3202 /* Splat immediate. */
3203 emit_insn (gen_rtx_SET (VOIDmode
, target
, const_vec
));
3207 ; /* Splat vector element. */
3210 /* Load from constant pool. */
3211 emit_move_insn (target
, const_vec
);
3216 /* Store value to stack temp. Load vector element. Splat. */
3219 mem
= assign_stack_temp (mode
, GET_MODE_SIZE (inner_mode
), 0);
3220 emit_move_insn (adjust_address_nv (mem
, inner_mode
, 0),
3221 XVECEXP (vals
, 0, 0));
3222 x
= gen_rtx_UNSPEC (VOIDmode
,
3223 gen_rtvec (1, const0_rtx
), UNSPEC_LVE
);
3224 emit_insn (gen_rtx_PARALLEL (VOIDmode
,
3226 gen_rtx_SET (VOIDmode
,
3229 x
= gen_rtx_VEC_SELECT (inner_mode
, target
,
3230 gen_rtx_PARALLEL (VOIDmode
,
3231 gen_rtvec (1, const0_rtx
)));
3232 emit_insn (gen_rtx_SET (VOIDmode
, target
,
3233 gen_rtx_VEC_DUPLICATE (mode
, x
)));
3237 /* One field is non-constant. Load constant then overwrite
3241 rtx copy
= copy_rtx (vals
);
3243 /* Load constant part of vector, substitute neighboring value for
3245 XVECEXP (copy
, 0, one_var
) = XVECEXP (vals
, 0, (one_var
+ 1) % n_elts
);
3246 rs6000_expand_vector_init (target
, copy
);
3248 /* Insert variable. */
3249 rs6000_expand_vector_set (target
, XVECEXP (vals
, 0, one_var
), one_var
);
3253 /* Construct the vector in memory one field at a time
3254 and load the whole vector. */
3255 mem
= assign_stack_temp (mode
, GET_MODE_SIZE (mode
), 0);
3256 for (i
= 0; i
< n_elts
; i
++)
3257 emit_move_insn (adjust_address_nv (mem
, inner_mode
,
3258 i
* GET_MODE_SIZE (inner_mode
)),
3259 XVECEXP (vals
, 0, i
));
3260 emit_move_insn (target
, mem
);
3263 /* Set field ELT of TARGET to VAL. */
3266 rs6000_expand_vector_set (rtx target
, rtx val
, int elt
)
3268 enum machine_mode mode
= GET_MODE (target
);
3269 enum machine_mode inner_mode
= GET_MODE_INNER (mode
);
3270 rtx reg
= gen_reg_rtx (mode
);
3272 int width
= GET_MODE_SIZE (inner_mode
);
3275 /* Load single variable value. */
3276 mem
= assign_stack_temp (mode
, GET_MODE_SIZE (inner_mode
), 0);
3277 emit_move_insn (adjust_address_nv (mem
, inner_mode
, 0), val
);
3278 x
= gen_rtx_UNSPEC (VOIDmode
,
3279 gen_rtvec (1, const0_rtx
), UNSPEC_LVE
);
3280 emit_insn (gen_rtx_PARALLEL (VOIDmode
,
3282 gen_rtx_SET (VOIDmode
,
3286 /* Linear sequence. */
3287 mask
= gen_rtx_PARALLEL (V16QImode
, rtvec_alloc (16));
3288 for (i
= 0; i
< 16; ++i
)
3289 XVECEXP (mask
, 0, i
) = GEN_INT (i
);
3291 /* Set permute mask to insert element into target. */
3292 for (i
= 0; i
< width
; ++i
)
3293 XVECEXP (mask
, 0, elt
*width
+ i
)
3294 = GEN_INT (i
+ 0x10);
3295 x
= gen_rtx_CONST_VECTOR (V16QImode
, XVEC (mask
, 0));
3296 x
= gen_rtx_UNSPEC (mode
,
3297 gen_rtvec (3, target
, reg
,
3298 force_reg (V16QImode
, x
)),
3300 emit_insn (gen_rtx_SET (VOIDmode
, target
, x
));
3303 /* Extract field ELT from VEC into TARGET. */
3306 rs6000_expand_vector_extract (rtx target
, rtx vec
, int elt
)
3308 enum machine_mode mode
= GET_MODE (vec
);
3309 enum machine_mode inner_mode
= GET_MODE_INNER (mode
);
3312 /* Allocate mode-sized buffer. */
3313 mem
= assign_stack_temp (mode
, GET_MODE_SIZE (mode
), 0);
3315 /* Add offset to field within buffer matching vector element. */
3316 mem
= adjust_address_nv (mem
, mode
, elt
* GET_MODE_SIZE (inner_mode
));
3318 /* Store single field into mode-sized buffer. */
3319 x
= gen_rtx_UNSPEC (VOIDmode
,
3320 gen_rtvec (1, const0_rtx
), UNSPEC_STVE
);
3321 emit_insn (gen_rtx_PARALLEL (VOIDmode
,
3323 gen_rtx_SET (VOIDmode
,
3326 emit_move_insn (target
, adjust_address_nv (mem
, inner_mode
, 0));
3329 /* Generates shifts and masks for a pair of rldicl or rldicr insns to
3330 implement ANDing by the mask IN. */
3332 build_mask64_2_operands (rtx in
, rtx
*out
)
3334 #if HOST_BITS_PER_WIDE_INT >= 64
3335 unsigned HOST_WIDE_INT c
, lsb
, m1
, m2
;
3338 gcc_assert (GET_CODE (in
) == CONST_INT
);
3343 /* Assume c initially something like 0x00fff000000fffff. The idea
3344 is to rotate the word so that the middle ^^^^^^ group of zeros
3345 is at the MS end and can be cleared with an rldicl mask. We then
3346 rotate back and clear off the MS ^^ group of zeros with a
3348 c
= ~c
; /* c == 0xff000ffffff00000 */
3349 lsb
= c
& -c
; /* lsb == 0x0000000000100000 */
3350 m1
= -lsb
; /* m1 == 0xfffffffffff00000 */
3351 c
= ~c
; /* c == 0x00fff000000fffff */
3352 c
&= -lsb
; /* c == 0x00fff00000000000 */
3353 lsb
= c
& -c
; /* lsb == 0x0000100000000000 */
3354 c
= ~c
; /* c == 0xff000fffffffffff */
3355 c
&= -lsb
; /* c == 0xff00000000000000 */
3357 while ((lsb
>>= 1) != 0)
3358 shift
++; /* shift == 44 on exit from loop */
3359 m1
<<= 64 - shift
; /* m1 == 0xffffff0000000000 */
3360 m1
= ~m1
; /* m1 == 0x000000ffffffffff */
3361 m2
= ~c
; /* m2 == 0x00ffffffffffffff */
3365 /* Assume c initially something like 0xff000f0000000000. The idea
3366 is to rotate the word so that the ^^^ middle group of zeros
3367 is at the LS end and can be cleared with an rldicr mask. We then
3368 rotate back and clear off the LS group of ^^^^^^^^^^ zeros with
3370 lsb
= c
& -c
; /* lsb == 0x0000010000000000 */
3371 m2
= -lsb
; /* m2 == 0xffffff0000000000 */
3372 c
= ~c
; /* c == 0x00fff0ffffffffff */
3373 c
&= -lsb
; /* c == 0x00fff00000000000 */
3374 lsb
= c
& -c
; /* lsb == 0x0000100000000000 */
3375 c
= ~c
; /* c == 0xff000fffffffffff */
3376 c
&= -lsb
; /* c == 0xff00000000000000 */
3378 while ((lsb
>>= 1) != 0)
3379 shift
++; /* shift == 44 on exit from loop */
3380 m1
= ~c
; /* m1 == 0x00ffffffffffffff */
3381 m1
>>= shift
; /* m1 == 0x0000000000000fff */
3382 m1
= ~m1
; /* m1 == 0xfffffffffffff000 */
3385 /* Note that when we only have two 0->1 and 1->0 transitions, one of the
3386 masks will be all 1's. We are guaranteed more than one transition. */
3387 out
[0] = GEN_INT (64 - shift
);
3388 out
[1] = GEN_INT (m1
);
3389 out
[2] = GEN_INT (shift
);
3390 out
[3] = GEN_INT (m2
);
3398 /* Return TRUE if OP is an invalid SUBREG operation on the e500. */
3401 invalid_e500_subreg (rtx op
, enum machine_mode mode
)
3403 if (TARGET_E500_DOUBLE
)
3405 /* Reject (subreg:SI (reg:DF)); likewise with subreg:DI or
3406 subreg:TI and reg:TF. Decimal float modes are like integer
3407 modes (only low part of each register used) for this
3409 if (GET_CODE (op
) == SUBREG
3410 && (mode
== SImode
|| mode
== DImode
|| mode
== TImode
3411 || mode
== DDmode
|| mode
== TDmode
)
3412 && REG_P (SUBREG_REG (op
))
3413 && (GET_MODE (SUBREG_REG (op
)) == DFmode
3414 || GET_MODE (SUBREG_REG (op
)) == TFmode
))
3417 /* Reject (subreg:DF (reg:DI)); likewise with subreg:TF and
3419 if (GET_CODE (op
) == SUBREG
3420 && (mode
== DFmode
|| mode
== TFmode
)
3421 && REG_P (SUBREG_REG (op
))
3422 && (GET_MODE (SUBREG_REG (op
)) == DImode
3423 || GET_MODE (SUBREG_REG (op
)) == TImode
3424 || GET_MODE (SUBREG_REG (op
)) == DDmode
3425 || GET_MODE (SUBREG_REG (op
)) == TDmode
))
3430 && GET_CODE (op
) == SUBREG
3432 && REG_P (SUBREG_REG (op
))
3433 && SPE_VECTOR_MODE (GET_MODE (SUBREG_REG (op
))))
3439 /* AIX increases natural record alignment to doubleword if the first
3440 field is an FP double while the FP fields remain word aligned. */
3443 rs6000_special_round_type_align (tree type
, unsigned int computed
,
3444 unsigned int specified
)
3446 unsigned int align
= MAX (computed
, specified
);
3447 tree field
= TYPE_FIELDS (type
);
3449 /* Skip all non field decls */
3450 while (field
!= NULL
&& TREE_CODE (field
) != FIELD_DECL
)
3451 field
= TREE_CHAIN (field
);
3453 if (field
!= NULL
&& field
!= type
)
3455 type
= TREE_TYPE (field
);
3456 while (TREE_CODE (type
) == ARRAY_TYPE
)
3457 type
= TREE_TYPE (type
);
3459 if (type
!= error_mark_node
&& TYPE_MODE (type
) == DFmode
)
3460 align
= MAX (align
, 64);
3466 /* Darwin increases record alignment to the natural alignment of
3470 darwin_rs6000_special_round_type_align (tree type
, unsigned int computed
,
3471 unsigned int specified
)
3473 unsigned int align
= MAX (computed
, specified
);
3475 if (TYPE_PACKED (type
))
3478 /* Find the first field, looking down into aggregates. */
3480 tree field
= TYPE_FIELDS (type
);
3481 /* Skip all non field decls */
3482 while (field
!= NULL
&& TREE_CODE (field
) != FIELD_DECL
)
3483 field
= TREE_CHAIN (field
);
3486 type
= TREE_TYPE (field
);
3487 while (TREE_CODE (type
) == ARRAY_TYPE
)
3488 type
= TREE_TYPE (type
);
3489 } while (AGGREGATE_TYPE_P (type
));
3491 if (! AGGREGATE_TYPE_P (type
) && type
!= error_mark_node
)
3492 align
= MAX (align
, TYPE_ALIGN (type
));
3497 /* Return 1 for an operand in small memory on V.4/eabi. */
3500 small_data_operand (rtx op ATTRIBUTE_UNUSED
,
3501 enum machine_mode mode ATTRIBUTE_UNUSED
)
3506 if (rs6000_sdata
== SDATA_NONE
|| rs6000_sdata
== SDATA_DATA
)
3509 if (DEFAULT_ABI
!= ABI_V4
)
3512 /* Vector and float memory instructions have a limited offset on the
3513 SPE, so using a vector or float variable directly as an operand is
3516 && (SPE_VECTOR_MODE (mode
) || FLOAT_MODE_P (mode
)))
3519 if (GET_CODE (op
) == SYMBOL_REF
)
3522 else if (GET_CODE (op
) != CONST
3523 || GET_CODE (XEXP (op
, 0)) != PLUS
3524 || GET_CODE (XEXP (XEXP (op
, 0), 0)) != SYMBOL_REF
3525 || GET_CODE (XEXP (XEXP (op
, 0), 1)) != CONST_INT
)
3530 rtx sum
= XEXP (op
, 0);
3531 HOST_WIDE_INT summand
;
3533 /* We have to be careful here, because it is the referenced address
3534 that must be 32k from _SDA_BASE_, not just the symbol. */
3535 summand
= INTVAL (XEXP (sum
, 1));
3536 if (summand
< 0 || (unsigned HOST_WIDE_INT
) summand
> g_switch_value
)
3539 sym_ref
= XEXP (sum
, 0);
3542 return SYMBOL_REF_SMALL_P (sym_ref
);
3548 /* Return true if either operand is a general purpose register. */
3551 gpr_or_gpr_p (rtx op0
, rtx op1
)
3553 return ((REG_P (op0
) && INT_REGNO_P (REGNO (op0
)))
3554 || (REG_P (op1
) && INT_REGNO_P (REGNO (op1
))));
3558 /* Subroutines of rs6000_legitimize_address and rs6000_legitimate_address. */
3561 constant_pool_expr_p (rtx op
)
3565 split_const (op
, &base
, &offset
);
3566 return (GET_CODE (base
) == SYMBOL_REF
3567 && CONSTANT_POOL_ADDRESS_P (base
)
3568 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (base
), Pmode
));
3572 toc_relative_expr_p (rtx op
)
3576 if (GET_CODE (op
) != CONST
)
3579 split_const (op
, &base
, &offset
);
3580 return (GET_CODE (base
) == UNSPEC
3581 && XINT (base
, 1) == UNSPEC_TOCREL
);
3585 legitimate_constant_pool_address_p (rtx x
)
3588 && GET_CODE (x
) == PLUS
3589 && GET_CODE (XEXP (x
, 0)) == REG
3590 && (TARGET_MINIMAL_TOC
|| REGNO (XEXP (x
, 0)) == TOC_REGISTER
)
3591 && toc_relative_expr_p (XEXP (x
, 1)));
3595 legitimate_small_data_p (enum machine_mode mode
, rtx x
)
3597 return (DEFAULT_ABI
== ABI_V4
3598 && !flag_pic
&& !TARGET_TOC
3599 && (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == CONST
)
3600 && small_data_operand (x
, mode
));
3603 /* SPE offset addressing is limited to 5-bits worth of double words. */
3604 #define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
3607 rs6000_legitimate_offset_address_p (enum machine_mode mode
, rtx x
, int strict
)
3609 unsigned HOST_WIDE_INT offset
, extra
;
3611 if (GET_CODE (x
) != PLUS
)
3613 if (GET_CODE (XEXP (x
, 0)) != REG
)
3615 if (!INT_REG_OK_FOR_BASE_P (XEXP (x
, 0), strict
))
3617 if (legitimate_constant_pool_address_p (x
))
3619 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
3622 offset
= INTVAL (XEXP (x
, 1));
3630 /* AltiVec vector modes. Only reg+reg addressing is valid and
3631 constant offset zero should not occur due to canonicalization. */
3638 /* Paired vector modes. Only reg+reg addressing is valid and
3639 constant offset zero should not occur due to canonicalization. */
3640 if (TARGET_PAIRED_FLOAT
)
3642 /* SPE vector modes. */
3643 return SPE_CONST_OFFSET_OK (offset
);
3646 if (TARGET_E500_DOUBLE
)
3647 return SPE_CONST_OFFSET_OK (offset
);
3651 /* On e500v2, we may have:
3653 (subreg:DF (mem:DI (plus (reg) (const_int))) 0).
3655 Which gets addressed with evldd instructions. */
3656 if (TARGET_E500_DOUBLE
)
3657 return SPE_CONST_OFFSET_OK (offset
);
3659 if (mode
== DFmode
|| mode
== DDmode
|| !TARGET_POWERPC64
)
3661 else if (offset
& 3)
3666 if (TARGET_E500_DOUBLE
)
3667 return (SPE_CONST_OFFSET_OK (offset
)
3668 && SPE_CONST_OFFSET_OK (offset
+ 8));
3672 if (mode
== TFmode
|| mode
== TDmode
|| !TARGET_POWERPC64
)
3674 else if (offset
& 3)
3685 return (offset
< 0x10000) && (offset
+ extra
< 0x10000);
3689 legitimate_indexed_address_p (rtx x
, int strict
)
3693 if (GET_CODE (x
) != PLUS
)
3699 /* Recognize the rtl generated by reload which we know will later be
3700 replaced with proper base and index regs. */
3702 && reload_in_progress
3703 && (REG_P (op0
) || GET_CODE (op0
) == PLUS
)
3707 return (REG_P (op0
) && REG_P (op1
)
3708 && ((INT_REG_OK_FOR_BASE_P (op0
, strict
)
3709 && INT_REG_OK_FOR_INDEX_P (op1
, strict
))
3710 || (INT_REG_OK_FOR_BASE_P (op1
, strict
)
3711 && INT_REG_OK_FOR_INDEX_P (op0
, strict
))));
3715 avoiding_indexed_address_p (enum machine_mode mode
)
3717 /* Avoid indexed addressing for modes that have non-indexed
3718 load/store instruction forms. */
3719 return TARGET_AVOID_XFORM
&& !ALTIVEC_VECTOR_MODE (mode
);
3723 legitimate_indirect_address_p (rtx x
, int strict
)
3725 return GET_CODE (x
) == REG
&& INT_REG_OK_FOR_BASE_P (x
, strict
);
3729 macho_lo_sum_memory_operand (rtx x
, enum machine_mode mode
)
3731 if (!TARGET_MACHO
|| !flag_pic
3732 || mode
!= SImode
|| GET_CODE (x
) != MEM
)
3736 if (GET_CODE (x
) != LO_SUM
)
3738 if (GET_CODE (XEXP (x
, 0)) != REG
)
3740 if (!INT_REG_OK_FOR_BASE_P (XEXP (x
, 0), 0))
3744 return CONSTANT_P (x
);
3748 legitimate_lo_sum_address_p (enum machine_mode mode
, rtx x
, int strict
)
3750 if (GET_CODE (x
) != LO_SUM
)
3752 if (GET_CODE (XEXP (x
, 0)) != REG
)
3754 if (!INT_REG_OK_FOR_BASE_P (XEXP (x
, 0), strict
))
3756 /* Restrict addressing for DI because of our SUBREG hackery. */
3757 if (TARGET_E500_DOUBLE
&& (mode
== DFmode
|| mode
== TFmode
3758 || mode
== DDmode
|| mode
== TDmode
3763 if (TARGET_ELF
|| TARGET_MACHO
)
3765 if (DEFAULT_ABI
!= ABI_AIX
&& DEFAULT_ABI
!= ABI_DARWIN
&& flag_pic
)
3769 if (GET_MODE_NUNITS (mode
) != 1)
3771 if (GET_MODE_BITSIZE (mode
) > 64
3772 || (GET_MODE_BITSIZE (mode
) > 32 && !TARGET_POWERPC64
3773 && !(TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_DOUBLE_FLOAT
3774 && (mode
== DFmode
|| mode
== DDmode
))))
3777 return CONSTANT_P (x
);
3784 /* Try machine-dependent ways of modifying an illegitimate address
3785 to be legitimate. If we find one, return the new, valid address.
3786 This is used from only one place: `memory_address' in explow.c.
3788 OLDX is the address as it was before break_out_memory_refs was
3789 called. In some cases it is useful to look at this to decide what
3792 MODE is passed so that this function can use GO_IF_LEGITIMATE_ADDRESS.
3794 It is always safe for this function to do nothing. It exists to
3795 recognize opportunities to optimize the output.
3797 On RS/6000, first check for the sum of a register with a constant
3798 integer that is out of range. If so, generate code to add the
3799 constant with the low-order 16 bits masked to the register and force
3800 this result into another register (this can be done with `cau').
3801 Then generate an address of REG+(CONST&0xffff), allowing for the
3802 possibility of bit 16 being a one.
3804 Then check for the sum of a register and something not constant, try to
3805 load the other things into a register and return the sum. */
3808 rs6000_legitimize_address (rtx x
, rtx oldx ATTRIBUTE_UNUSED
,
3809 enum machine_mode mode
)
3811 if (GET_CODE (x
) == SYMBOL_REF
)
3813 enum tls_model model
= SYMBOL_REF_TLS_MODEL (x
);
3815 return rs6000_legitimize_tls_address (x
, model
);
3818 if (GET_CODE (x
) == PLUS
3819 && GET_CODE (XEXP (x
, 0)) == REG
3820 && GET_CODE (XEXP (x
, 1)) == CONST_INT
3821 && (unsigned HOST_WIDE_INT
) (INTVAL (XEXP (x
, 1)) + 0x8000) >= 0x10000
3822 && !((TARGET_POWERPC64
3823 && (mode
== DImode
|| mode
== TImode
)
3824 && (INTVAL (XEXP (x
, 1)) & 3) != 0)
3825 || SPE_VECTOR_MODE (mode
)
3826 || ALTIVEC_VECTOR_MODE (mode
)
3827 || (TARGET_E500_DOUBLE
&& (mode
== DFmode
|| mode
== TFmode
3828 || mode
== DImode
|| mode
== DDmode
3829 || mode
== TDmode
))))
3831 HOST_WIDE_INT high_int
, low_int
;
3833 low_int
= ((INTVAL (XEXP (x
, 1)) & 0xffff) ^ 0x8000) - 0x8000;
3834 high_int
= INTVAL (XEXP (x
, 1)) - low_int
;
3835 sum
= force_operand (gen_rtx_PLUS (Pmode
, XEXP (x
, 0),
3836 GEN_INT (high_int
)), 0);
3837 return gen_rtx_PLUS (Pmode
, sum
, GEN_INT (low_int
));
3839 else if (GET_CODE (x
) == PLUS
3840 && GET_CODE (XEXP (x
, 0)) == REG
3841 && GET_CODE (XEXP (x
, 1)) != CONST_INT
3842 && GET_MODE_NUNITS (mode
) == 1
3843 && ((TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_DOUBLE_FLOAT
)
3845 || ((mode
!= DImode
&& mode
!= DFmode
&& mode
!= DDmode
)
3846 || (TARGET_E500_DOUBLE
&& mode
!= DDmode
)))
3847 && (TARGET_POWERPC64
|| mode
!= DImode
)
3848 && !avoiding_indexed_address_p (mode
)
3853 return gen_rtx_PLUS (Pmode
, XEXP (x
, 0),
3854 force_reg (Pmode
, force_operand (XEXP (x
, 1), 0)));
3856 else if (ALTIVEC_VECTOR_MODE (mode
))
3860 /* Make sure both operands are registers. */
3861 if (GET_CODE (x
) == PLUS
)
3862 return gen_rtx_PLUS (Pmode
, force_reg (Pmode
, XEXP (x
, 0)),
3863 force_reg (Pmode
, XEXP (x
, 1)));
3865 reg
= force_reg (Pmode
, x
);
3868 else if (SPE_VECTOR_MODE (mode
)
3869 || (TARGET_E500_DOUBLE
&& (mode
== DFmode
|| mode
== TFmode
3870 || mode
== DDmode
|| mode
== TDmode
3871 || mode
== DImode
)))
3875 /* We accept [reg + reg] and [reg + OFFSET]. */
3877 if (GET_CODE (x
) == PLUS
)
3879 rtx op1
= XEXP (x
, 0);
3880 rtx op2
= XEXP (x
, 1);
3883 op1
= force_reg (Pmode
, op1
);
3885 if (GET_CODE (op2
) != REG
3886 && (GET_CODE (op2
) != CONST_INT
3887 || !SPE_CONST_OFFSET_OK (INTVAL (op2
))
3888 || (GET_MODE_SIZE (mode
) > 8
3889 && !SPE_CONST_OFFSET_OK (INTVAL (op2
) + 8))))
3890 op2
= force_reg (Pmode
, op2
);
3892 /* We can't always do [reg + reg] for these, because [reg +
3893 reg + offset] is not a legitimate addressing mode. */
3894 y
= gen_rtx_PLUS (Pmode
, op1
, op2
);
3896 if ((GET_MODE_SIZE (mode
) > 8 || mode
== DDmode
) && REG_P (op2
))
3897 return force_reg (Pmode
, y
);
3902 return force_reg (Pmode
, x
);
3908 && GET_CODE (x
) != CONST_INT
3909 && GET_CODE (x
) != CONST_DOUBLE
3911 && GET_MODE_NUNITS (mode
) == 1
3912 && (GET_MODE_BITSIZE (mode
) <= 32
3913 || ((TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_DOUBLE_FLOAT
)
3914 && (mode
== DFmode
|| mode
== DDmode
))))
3916 rtx reg
= gen_reg_rtx (Pmode
);
3917 emit_insn (gen_elf_high (reg
, x
));
3918 return gen_rtx_LO_SUM (Pmode
, reg
, x
);
3920 else if (TARGET_MACHO
&& TARGET_32BIT
&& TARGET_NO_TOC
3923 && ! MACHO_DYNAMIC_NO_PIC_P
3925 && GET_CODE (x
) != CONST_INT
3926 && GET_CODE (x
) != CONST_DOUBLE
3928 && GET_MODE_NUNITS (mode
) == 1
3929 && ((TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_DOUBLE_FLOAT
)
3930 || (mode
!= DFmode
&& mode
!= DDmode
))
3934 rtx reg
= gen_reg_rtx (Pmode
);
3935 emit_insn (gen_macho_high (reg
, x
));
3936 return gen_rtx_LO_SUM (Pmode
, reg
, x
);
3939 && GET_CODE (x
) == SYMBOL_REF
3940 && constant_pool_expr_p (x
)
3941 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x
), Pmode
))
3943 return create_TOC_reference (x
);
3949 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
3950 We need to emit DTP-relative relocations. */
3953 rs6000_output_dwarf_dtprel (FILE *file
, int size
, rtx x
)
3958 fputs ("\t.long\t", file
);
3961 fputs (DOUBLE_INT_ASM_OP
, file
);
3966 output_addr_const (file
, x
);
3967 fputs ("@dtprel+0x8000", file
);
3970 /* Construct the SYMBOL_REF for the tls_get_addr function. */
3972 static GTY(()) rtx rs6000_tls_symbol
;
3974 rs6000_tls_get_addr (void)
3976 if (!rs6000_tls_symbol
)
3977 rs6000_tls_symbol
= init_one_libfunc ("__tls_get_addr");
3979 return rs6000_tls_symbol
;
3982 /* Construct the SYMBOL_REF for TLS GOT references. */
3984 static GTY(()) rtx rs6000_got_symbol
;
3986 rs6000_got_sym (void)
3988 if (!rs6000_got_symbol
)
3990 rs6000_got_symbol
= gen_rtx_SYMBOL_REF (Pmode
, "_GLOBAL_OFFSET_TABLE_");
3991 SYMBOL_REF_FLAGS (rs6000_got_symbol
) |= SYMBOL_FLAG_LOCAL
;
3992 SYMBOL_REF_FLAGS (rs6000_got_symbol
) |= SYMBOL_FLAG_EXTERNAL
;
3995 return rs6000_got_symbol
;
3998 /* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
3999 this (thread-local) address. */
4002 rs6000_legitimize_tls_address (rtx addr
, enum tls_model model
)
4006 dest
= gen_reg_rtx (Pmode
);
4007 if (model
== TLS_MODEL_LOCAL_EXEC
&& rs6000_tls_size
== 16)
4013 tlsreg
= gen_rtx_REG (Pmode
, 13);
4014 insn
= gen_tls_tprel_64 (dest
, tlsreg
, addr
);
4018 tlsreg
= gen_rtx_REG (Pmode
, 2);
4019 insn
= gen_tls_tprel_32 (dest
, tlsreg
, addr
);
4023 else if (model
== TLS_MODEL_LOCAL_EXEC
&& rs6000_tls_size
== 32)
4027 tmp
= gen_reg_rtx (Pmode
);
4030 tlsreg
= gen_rtx_REG (Pmode
, 13);
4031 insn
= gen_tls_tprel_ha_64 (tmp
, tlsreg
, addr
);
4035 tlsreg
= gen_rtx_REG (Pmode
, 2);
4036 insn
= gen_tls_tprel_ha_32 (tmp
, tlsreg
, addr
);
4040 insn
= gen_tls_tprel_lo_64 (dest
, tmp
, addr
);
4042 insn
= gen_tls_tprel_lo_32 (dest
, tmp
, addr
);
4047 rtx r3
, got
, tga
, tmp1
, tmp2
, eqv
;
4049 /* We currently use relocations like @got@tlsgd for tls, which
4050 means the linker will handle allocation of tls entries, placing
4051 them in the .got section. So use a pointer to the .got section,
4052 not one to secondary TOC sections used by 64-bit -mminimal-toc,
4053 or to secondary GOT sections used by 32-bit -fPIC. */
4055 got
= gen_rtx_REG (Pmode
, 2);
4059 got
= gen_rtx_REG (Pmode
, RS6000_PIC_OFFSET_TABLE_REGNUM
);
4062 rtx gsym
= rs6000_got_sym ();
4063 got
= gen_reg_rtx (Pmode
);
4065 rs6000_emit_move (got
, gsym
, Pmode
);
4071 tmp1
= gen_reg_rtx (Pmode
);
4072 tmp2
= gen_reg_rtx (Pmode
);
4073 tmp3
= gen_reg_rtx (Pmode
);
4074 mem
= gen_const_mem (Pmode
, tmp1
);
4076 first
= emit_insn (gen_load_toc_v4_PIC_1b (gsym
));
4077 emit_move_insn (tmp1
,
4078 gen_rtx_REG (Pmode
, LR_REGNO
));
4079 emit_move_insn (tmp2
, mem
);
4080 emit_insn (gen_addsi3 (tmp3
, tmp1
, tmp2
));
4081 last
= emit_move_insn (got
, tmp3
);
4082 set_unique_reg_note (last
, REG_EQUAL
, gsym
);
4087 if (model
== TLS_MODEL_GLOBAL_DYNAMIC
)
4089 r3
= gen_rtx_REG (Pmode
, 3);
4090 tga
= rs6000_tls_get_addr ();
4092 if (DEFAULT_ABI
== ABI_AIX
&& TARGET_64BIT
)
4093 insn
= gen_tls_gd_aix64 (r3
, got
, addr
, tga
, const0_rtx
);
4094 else if (DEFAULT_ABI
== ABI_AIX
&& !TARGET_64BIT
)
4095 insn
= gen_tls_gd_aix32 (r3
, got
, addr
, tga
, const0_rtx
);
4096 else if (DEFAULT_ABI
== ABI_V4
)
4097 insn
= gen_tls_gd_sysvsi (r3
, got
, addr
, tga
, const0_rtx
);
4102 insn
= emit_call_insn (insn
);
4103 RTL_CONST_CALL_P (insn
) = 1;
4104 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), r3
);
4105 if (DEFAULT_ABI
== ABI_V4
&& TARGET_SECURE_PLT
&& flag_pic
)
4106 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), pic_offset_table_rtx
);
4107 insn
= get_insns ();
4109 emit_libcall_block (insn
, dest
, r3
, addr
);
4111 else if (model
== TLS_MODEL_LOCAL_DYNAMIC
)
4113 r3
= gen_rtx_REG (Pmode
, 3);
4114 tga
= rs6000_tls_get_addr ();
4116 if (DEFAULT_ABI
== ABI_AIX
&& TARGET_64BIT
)
4117 insn
= gen_tls_ld_aix64 (r3
, got
, tga
, const0_rtx
);
4118 else if (DEFAULT_ABI
== ABI_AIX
&& !TARGET_64BIT
)
4119 insn
= gen_tls_ld_aix32 (r3
, got
, tga
, const0_rtx
);
4120 else if (DEFAULT_ABI
== ABI_V4
)
4121 insn
= gen_tls_ld_sysvsi (r3
, got
, tga
, const0_rtx
);
4126 insn
= emit_call_insn (insn
);
4127 RTL_CONST_CALL_P (insn
) = 1;
4128 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), r3
);
4129 if (DEFAULT_ABI
== ABI_V4
&& TARGET_SECURE_PLT
&& flag_pic
)
4130 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), pic_offset_table_rtx
);
4131 insn
= get_insns ();
4133 tmp1
= gen_reg_rtx (Pmode
);
4134 eqv
= gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, const0_rtx
),
4136 emit_libcall_block (insn
, tmp1
, r3
, eqv
);
4137 if (rs6000_tls_size
== 16)
4140 insn
= gen_tls_dtprel_64 (dest
, tmp1
, addr
);
4142 insn
= gen_tls_dtprel_32 (dest
, tmp1
, addr
);
4144 else if (rs6000_tls_size
== 32)
4146 tmp2
= gen_reg_rtx (Pmode
);
4148 insn
= gen_tls_dtprel_ha_64 (tmp2
, tmp1
, addr
);
4150 insn
= gen_tls_dtprel_ha_32 (tmp2
, tmp1
, addr
);
4153 insn
= gen_tls_dtprel_lo_64 (dest
, tmp2
, addr
);
4155 insn
= gen_tls_dtprel_lo_32 (dest
, tmp2
, addr
);
4159 tmp2
= gen_reg_rtx (Pmode
);
4161 insn
= gen_tls_got_dtprel_64 (tmp2
, got
, addr
);
4163 insn
= gen_tls_got_dtprel_32 (tmp2
, got
, addr
);
4165 insn
= gen_rtx_SET (Pmode
, dest
,
4166 gen_rtx_PLUS (Pmode
, tmp2
, tmp1
));
4172 /* IE, or 64-bit offset LE. */
4173 tmp2
= gen_reg_rtx (Pmode
);
4175 insn
= gen_tls_got_tprel_64 (tmp2
, got
, addr
);
4177 insn
= gen_tls_got_tprel_32 (tmp2
, got
, addr
);
4180 insn
= gen_tls_tls_64 (dest
, tmp2
, addr
);
4182 insn
= gen_tls_tls_32 (dest
, tmp2
, addr
);
4190 /* Return 1 if X contains a thread-local symbol. */
4193 rs6000_tls_referenced_p (rtx x
)
4195 if (! TARGET_HAVE_TLS
)
4198 return for_each_rtx (&x
, &rs6000_tls_symbol_ref_1
, 0);
4201 /* Return 1 if *X is a thread-local symbol. This is the same as
4202 rs6000_tls_symbol_ref except for the type of the unused argument. */
4205 rs6000_tls_symbol_ref_1 (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
4207 return RS6000_SYMBOL_REF_TLS_P (*x
);
4210 /* The convention appears to be to define this wherever it is used.
4211 With legitimize_reload_address now defined here, REG_MODE_OK_FOR_BASE_P
4212 is now used here. */
4213 #ifndef REG_MODE_OK_FOR_BASE_P
4214 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
4217 /* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to
4218 replace the input X, or the original X if no replacement is called for.
4219 The output parameter *WIN is 1 if the calling macro should goto WIN,
4222 For RS/6000, we wish to handle large displacements off a base
4223 register by splitting the addend across an addiu/addis and the mem insn.
4224 This cuts number of extra insns needed from 3 to 1.
4226 On Darwin, we use this to generate code for floating point constants.
4227 A movsf_low is generated so we wind up with 2 instructions rather than 3.
4228 The Darwin code is inside #if TARGET_MACHO because only then are the
4229 machopic_* functions defined. */
4231 rs6000_legitimize_reload_address (rtx x
, enum machine_mode mode
,
4232 int opnum
, int type
,
4233 int ind_levels ATTRIBUTE_UNUSED
, int *win
)
4235 /* We must recognize output that we have already generated ourselves. */
4236 if (GET_CODE (x
) == PLUS
4237 && GET_CODE (XEXP (x
, 0)) == PLUS
4238 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
4239 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4240 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4242 push_reload (XEXP (x
, 0), NULL_RTX
, &XEXP (x
, 0), NULL
,
4243 BASE_REG_CLASS
, GET_MODE (x
), VOIDmode
, 0, 0,
4244 opnum
, (enum reload_type
)type
);
4250 if (DEFAULT_ABI
== ABI_DARWIN
&& flag_pic
4251 && GET_CODE (x
) == LO_SUM
4252 && GET_CODE (XEXP (x
, 0)) == PLUS
4253 && XEXP (XEXP (x
, 0), 0) == pic_offset_table_rtx
4254 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == HIGH
4255 && XEXP (XEXP (XEXP (x
, 0), 1), 0) == XEXP (x
, 1)
4256 && machopic_operand_p (XEXP (x
, 1)))
4258 /* Result of previous invocation of this function on Darwin
4259 floating point constant. */
4260 push_reload (XEXP (x
, 0), NULL_RTX
, &XEXP (x
, 0), NULL
,
4261 BASE_REG_CLASS
, Pmode
, VOIDmode
, 0, 0,
4262 opnum
, (enum reload_type
)type
);
4268 /* Force ld/std non-word aligned offset into base register by wrapping
4270 if (GET_CODE (x
) == PLUS
4271 && GET_CODE (XEXP (x
, 0)) == REG
4272 && REGNO (XEXP (x
, 0)) < 32
4273 && REG_MODE_OK_FOR_BASE_P (XEXP (x
, 0), mode
)
4274 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4275 && (INTVAL (XEXP (x
, 1)) & 3) != 0
4276 && !ALTIVEC_VECTOR_MODE (mode
)
4277 && GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
4278 && TARGET_POWERPC64
)
4280 x
= gen_rtx_PLUS (GET_MODE (x
), x
, GEN_INT (0));
4281 push_reload (XEXP (x
, 0), NULL_RTX
, &XEXP (x
, 0), NULL
,
4282 BASE_REG_CLASS
, GET_MODE (x
), VOIDmode
, 0, 0,
4283 opnum
, (enum reload_type
) type
);
4288 if (GET_CODE (x
) == PLUS
4289 && GET_CODE (XEXP (x
, 0)) == REG
4290 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
4291 && REG_MODE_OK_FOR_BASE_P (XEXP (x
, 0), mode
)
4292 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4293 && !SPE_VECTOR_MODE (mode
)
4294 && !(TARGET_E500_DOUBLE
&& (mode
== DFmode
|| mode
== TFmode
4295 || mode
== DDmode
|| mode
== TDmode
4297 && !ALTIVEC_VECTOR_MODE (mode
))
4299 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1));
4300 HOST_WIDE_INT low
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
4302 = (((val
- low
) & 0xffffffff) ^ 0x80000000) - 0x80000000;
4304 /* Check for 32-bit overflow. */
4305 if (high
+ low
!= val
)
4311 /* Reload the high part into a base reg; leave the low part
4312 in the mem directly. */
4314 x
= gen_rtx_PLUS (GET_MODE (x
),
4315 gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0),
4319 push_reload (XEXP (x
, 0), NULL_RTX
, &XEXP (x
, 0), NULL
,
4320 BASE_REG_CLASS
, GET_MODE (x
), VOIDmode
, 0, 0,
4321 opnum
, (enum reload_type
)type
);
4326 if (GET_CODE (x
) == SYMBOL_REF
4327 && !ALTIVEC_VECTOR_MODE (mode
)
4328 && !SPE_VECTOR_MODE (mode
)
4330 && DEFAULT_ABI
== ABI_DARWIN
4331 && (flag_pic
|| MACHO_DYNAMIC_NO_PIC_P
)
4333 && DEFAULT_ABI
== ABI_V4
4336 /* Don't do this for TFmode or TDmode, since the result isn't offsettable.
4337 The same goes for DImode without 64-bit gprs and DFmode and DDmode
4341 && (mode
!= DImode
|| TARGET_POWERPC64
)
4342 && ((mode
!= DFmode
&& mode
!= DDmode
) || TARGET_POWERPC64
4343 || (TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_DOUBLE_FLOAT
)))
4348 rtx offset
= machopic_gen_offset (x
);
4349 x
= gen_rtx_LO_SUM (GET_MODE (x
),
4350 gen_rtx_PLUS (Pmode
, pic_offset_table_rtx
,
4351 gen_rtx_HIGH (Pmode
, offset
)), offset
);
4355 x
= gen_rtx_LO_SUM (GET_MODE (x
),
4356 gen_rtx_HIGH (Pmode
, x
), x
);
4358 push_reload (XEXP (x
, 0), NULL_RTX
, &XEXP (x
, 0), NULL
,
4359 BASE_REG_CLASS
, Pmode
, VOIDmode
, 0, 0,
4360 opnum
, (enum reload_type
)type
);
4365 /* Reload an offset address wrapped by an AND that represents the
4366 masking of the lower bits. Strip the outer AND and let reload
4367 convert the offset address into an indirect address. */
4369 && ALTIVEC_VECTOR_MODE (mode
)
4370 && GET_CODE (x
) == AND
4371 && GET_CODE (XEXP (x
, 0)) == PLUS
4372 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
4373 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4374 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4375 && INTVAL (XEXP (x
, 1)) == -16)
4383 && GET_CODE (x
) == SYMBOL_REF
4384 && constant_pool_expr_p (x
)
4385 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x
), mode
))
4387 x
= create_TOC_reference (x
);
4395 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
4396 that is a valid memory address for an instruction.
4397 The MODE argument is the machine mode for the MEM expression
4398 that wants to use this address.
4400 On the RS/6000, there are four valid address: a SYMBOL_REF that
4401 refers to a constant pool entry of an address (or the sum of it
4402 plus a constant), a short (16-bit signed) constant plus a register,
4403 the sum of two registers, or a register indirect, possibly with an
4404 auto-increment. For DFmode, DDmode and DImode with a constant plus
4405 register, we must ensure that both words are addressable or PowerPC64
4406 with offset word aligned.
4408 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
4409 32-bit DImode, TImode, TFmode, TDmode), indexed addressing cannot be used
4410 because adjacent memory cells are accessed by adding word-sized offsets
4411 during assembly output. */
4413 rs6000_legitimate_address (enum machine_mode mode
, rtx x
, int reg_ok_strict
)
4415 /* If this is an unaligned stvx/ldvx type address, discard the outer AND. */
4417 && ALTIVEC_VECTOR_MODE (mode
)
4418 && GET_CODE (x
) == AND
4419 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4420 && INTVAL (XEXP (x
, 1)) == -16)
4423 if (RS6000_SYMBOL_REF_TLS_P (x
))
4425 if (legitimate_indirect_address_p (x
, reg_ok_strict
))
4427 if ((GET_CODE (x
) == PRE_INC
|| GET_CODE (x
) == PRE_DEC
)
4428 && !ALTIVEC_VECTOR_MODE (mode
)
4429 && !SPE_VECTOR_MODE (mode
)
4432 /* Restrict addressing for DI because of our SUBREG hackery. */
4433 && !(TARGET_E500_DOUBLE
4434 && (mode
== DFmode
|| mode
== DDmode
|| mode
== DImode
))
4436 && legitimate_indirect_address_p (XEXP (x
, 0), reg_ok_strict
))
4438 if (legitimate_small_data_p (mode
, x
))
4440 if (legitimate_constant_pool_address_p (x
))
4442 /* If not REG_OK_STRICT (before reload) let pass any stack offset. */
4444 && GET_CODE (x
) == PLUS
4445 && GET_CODE (XEXP (x
, 0)) == REG
4446 && (XEXP (x
, 0) == virtual_stack_vars_rtx
4447 || XEXP (x
, 0) == arg_pointer_rtx
)
4448 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4450 if (rs6000_legitimate_offset_address_p (mode
, x
, reg_ok_strict
))
4455 && ((TARGET_HARD_FLOAT
&& TARGET_FPRS
)
4457 || (mode
!= DFmode
&& mode
!= DDmode
)
4458 || (TARGET_E500_DOUBLE
&& mode
!= DDmode
))
4459 && (TARGET_POWERPC64
|| mode
!= DImode
)
4460 && !avoiding_indexed_address_p (mode
)
4461 && legitimate_indexed_address_p (x
, reg_ok_strict
))
4463 if (GET_CODE (x
) == PRE_MODIFY
4467 && ((TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_DOUBLE_FLOAT
)
4469 || ((mode
!= DFmode
&& mode
!= DDmode
) || TARGET_E500_DOUBLE
))
4470 && (TARGET_POWERPC64
|| mode
!= DImode
)
4471 && !ALTIVEC_VECTOR_MODE (mode
)
4472 && !SPE_VECTOR_MODE (mode
)
4473 /* Restrict addressing for DI because of our SUBREG hackery. */
4474 && !(TARGET_E500_DOUBLE
4475 && (mode
== DFmode
|| mode
== DDmode
|| mode
== DImode
))
4477 && legitimate_indirect_address_p (XEXP (x
, 0), reg_ok_strict
)
4478 && (rs6000_legitimate_offset_address_p (mode
, XEXP (x
, 1), reg_ok_strict
)
4479 || (!avoiding_indexed_address_p (mode
)
4480 && legitimate_indexed_address_p (XEXP (x
, 1), reg_ok_strict
)))
4481 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
4483 if (legitimate_lo_sum_address_p (mode
, x
, reg_ok_strict
))
4488 /* Go to LABEL if ADDR (a legitimate address expression)
4489 has an effect that depends on the machine mode it is used for.
4491 On the RS/6000 this is true of all integral offsets (since AltiVec
4492 modes don't allow them) or is a pre-increment or decrement.
4494 ??? Except that due to conceptual problems in offsettable_address_p
4495 we can't really report the problems of integral offsets. So leave
4496 this assuming that the adjustable offset must be valid for the
4497 sub-words of a TFmode operand, which is what we had before. */
4500 rs6000_mode_dependent_address (rtx addr
)
4502 switch (GET_CODE (addr
))
4505 if (GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
4507 unsigned HOST_WIDE_INT val
= INTVAL (XEXP (addr
, 1));
4508 return val
+ 12 + 0x8000 >= 0x10000;
4515 /* Auto-increment cases are now treated generically in recog.c. */
4517 return TARGET_UPDATE
;
4526 /* Implement FIND_BASE_TERM. */
4529 rs6000_find_base_term (rtx op
)
4533 split_const (op
, &base
, &offset
);
4534 if (GET_CODE (base
) == UNSPEC
)
4535 switch (XINT (base
, 1))
4538 case UNSPEC_MACHOPIC_OFFSET
:
4539 /* OP represents SYM [+ OFFSET] - ANCHOR. SYM is the base term
4540 for aliasing purposes. */
4541 return XVECEXP (base
, 0, 0);
4547 /* More elaborate version of recog's offsettable_memref_p predicate
4548 that works around the ??? note of rs6000_mode_dependent_address.
4549 In particular it accepts
4551 (mem:DI (plus:SI (reg/f:SI 31 31) (const_int 32760 [0x7ff8])))
4553 in 32-bit mode, that the recog predicate rejects. */
4556 rs6000_offsettable_memref_p (rtx op
)
4561 /* First mimic offsettable_memref_p. */
4562 if (offsettable_address_p (1, GET_MODE (op
), XEXP (op
, 0)))
4565 /* offsettable_address_p invokes rs6000_mode_dependent_address, but
4566 the latter predicate knows nothing about the mode of the memory
4567 reference and, therefore, assumes that it is the largest supported
4568 mode (TFmode). As a consequence, legitimate offsettable memory
4569 references are rejected. rs6000_legitimate_offset_address_p contains
4570 the correct logic for the PLUS case of rs6000_mode_dependent_address. */
4571 return rs6000_legitimate_offset_address_p (GET_MODE (op
), XEXP (op
, 0), 1);
4574 /* Return number of consecutive hard regs needed starting at reg REGNO
4575 to hold something of mode MODE.
4576 This is ordinarily the length in words of a value of mode MODE
4577 but can be less for certain modes in special long registers.
4579 For the SPE, GPRs are 64 bits but only 32 bits are visible in
4580 scalar instructions. The upper 32 bits are only available to the
4583 POWER and PowerPC GPRs hold 32 bits worth;
4584 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
4587 rs6000_hard_regno_nregs (int regno
, enum machine_mode mode
)
4589 if (FP_REGNO_P (regno
))
4590 return (GET_MODE_SIZE (mode
) + UNITS_PER_FP_WORD
- 1) / UNITS_PER_FP_WORD
;
4592 if (SPE_SIMD_REGNO_P (regno
) && TARGET_SPE
&& SPE_VECTOR_MODE (mode
))
4593 return (GET_MODE_SIZE (mode
) + UNITS_PER_SPE_WORD
- 1) / UNITS_PER_SPE_WORD
;
4595 if (ALTIVEC_REGNO_P (regno
))
4597 (GET_MODE_SIZE (mode
) + UNITS_PER_ALTIVEC_WORD
- 1) / UNITS_PER_ALTIVEC_WORD
;
4599 /* The value returned for SCmode in the E500 double case is 2 for
4600 ABI compatibility; storing an SCmode value in a single register
4601 would require function_arg and rs6000_spe_function_arg to handle
4602 SCmode so as to pass the value correctly in a pair of
4604 if (TARGET_E500_DOUBLE
&& FLOAT_MODE_P (mode
) && mode
!= SCmode
4605 && !DECIMAL_FLOAT_MODE_P (mode
))
4606 return (GET_MODE_SIZE (mode
) + UNITS_PER_FP_WORD
- 1) / UNITS_PER_FP_WORD
;
4608 return (GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
4611 /* Change register usage conditional on target flags. */
4613 rs6000_conditional_register_usage (void)
4617 /* Set MQ register fixed (already call_used) if not POWER
4618 architecture (RIOS1, RIOS2, RSC, and PPC601) so that it will not
4623 /* 64-bit AIX and Linux reserve GPR13 for thread-private data. */
4625 fixed_regs
[13] = call_used_regs
[13]
4626 = call_really_used_regs
[13] = 1;
4628 /* Conditionally disable FPRs. */
4629 if (TARGET_SOFT_FLOAT
|| !TARGET_FPRS
)
4630 for (i
= 32; i
< 64; i
++)
4631 fixed_regs
[i
] = call_used_regs
[i
]
4632 = call_really_used_regs
[i
] = 1;
4634 /* The TOC register is not killed across calls in a way that is
4635 visible to the compiler. */
4636 if (DEFAULT_ABI
== ABI_AIX
)
4637 call_really_used_regs
[2] = 0;
4639 if (DEFAULT_ABI
== ABI_V4
4640 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
4642 fixed_regs
[RS6000_PIC_OFFSET_TABLE_REGNUM
] = 1;
4644 if (DEFAULT_ABI
== ABI_V4
4645 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
4647 fixed_regs
[RS6000_PIC_OFFSET_TABLE_REGNUM
]
4648 = call_used_regs
[RS6000_PIC_OFFSET_TABLE_REGNUM
]
4649 = call_really_used_regs
[RS6000_PIC_OFFSET_TABLE_REGNUM
] = 1;
4651 if (DEFAULT_ABI
== ABI_DARWIN
4652 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
4653 fixed_regs
[RS6000_PIC_OFFSET_TABLE_REGNUM
]
4654 = call_used_regs
[RS6000_PIC_OFFSET_TABLE_REGNUM
]
4655 = call_really_used_regs
[RS6000_PIC_OFFSET_TABLE_REGNUM
] = 1;
4657 if (TARGET_TOC
&& TARGET_MINIMAL_TOC
)
4658 fixed_regs
[RS6000_PIC_OFFSET_TABLE_REGNUM
]
4659 = call_used_regs
[RS6000_PIC_OFFSET_TABLE_REGNUM
] = 1;
4663 global_regs
[SPEFSCR_REGNO
] = 1;
4664 /* We used to use r14 as FIXED_SCRATCH to address SPE 64-bit
4665 registers in prologues and epilogues. We no longer use r14
4666 for FIXED_SCRATCH, but we're keeping r14 out of the allocation
4667 pool for link-compatibility with older versions of GCC. Once
4668 "old" code has died out, we can return r14 to the allocation
4671 = call_used_regs
[14]
4672 = call_really_used_regs
[14] = 1;
4675 if (!TARGET_ALTIVEC
)
4677 for (i
= FIRST_ALTIVEC_REGNO
; i
<= LAST_ALTIVEC_REGNO
; ++i
)
4678 fixed_regs
[i
] = call_used_regs
[i
] = call_really_used_regs
[i
] = 1;
4679 call_really_used_regs
[VRSAVE_REGNO
] = 1;
4683 global_regs
[VSCR_REGNO
] = 1;
4685 if (TARGET_ALTIVEC_ABI
)
4687 for (i
= FIRST_ALTIVEC_REGNO
; i
< FIRST_ALTIVEC_REGNO
+ 20; ++i
)
4688 call_used_regs
[i
] = call_really_used_regs
[i
] = 1;
4690 /* AIX reserves VR20:31 in non-extended ABI mode. */
4692 for (i
= FIRST_ALTIVEC_REGNO
+ 20; i
< FIRST_ALTIVEC_REGNO
+ 32; ++i
)
4693 fixed_regs
[i
] = call_used_regs
[i
] = call_really_used_regs
[i
] = 1;
4697 /* Try to output insns to set TARGET equal to the constant C if it can
4698 be done in less than N insns. Do all computations in MODE.
4699 Returns the place where the output has been placed if it can be
4700 done and the insns have been emitted. If it would take more than N
4701 insns, zero is returned and no insns and emitted. */
4704 rs6000_emit_set_const (rtx dest
, enum machine_mode mode
,
4705 rtx source
, int n ATTRIBUTE_UNUSED
)
4707 rtx result
, insn
, set
;
4708 HOST_WIDE_INT c0
, c1
;
4715 dest
= gen_reg_rtx (mode
);
4716 emit_insn (gen_rtx_SET (VOIDmode
, dest
, source
));
4720 result
= !can_create_pseudo_p () ? dest
: gen_reg_rtx (SImode
);
4722 emit_insn (gen_rtx_SET (VOIDmode
, copy_rtx (result
),
4723 GEN_INT (INTVAL (source
)
4724 & (~ (HOST_WIDE_INT
) 0xffff))));
4725 emit_insn (gen_rtx_SET (VOIDmode
, dest
,
4726 gen_rtx_IOR (SImode
, copy_rtx (result
),
4727 GEN_INT (INTVAL (source
) & 0xffff))));
4732 switch (GET_CODE (source
))
4735 c0
= INTVAL (source
);
4740 #if HOST_BITS_PER_WIDE_INT >= 64
4741 c0
= CONST_DOUBLE_LOW (source
);
4744 c0
= CONST_DOUBLE_LOW (source
);
4745 c1
= CONST_DOUBLE_HIGH (source
);
4753 result
= rs6000_emit_set_long_const (dest
, c0
, c1
);
4760 insn
= get_last_insn ();
4761 set
= single_set (insn
);
4762 if (! CONSTANT_P (SET_SRC (set
)))
4763 set_unique_reg_note (insn
, REG_EQUAL
, source
);
4768 /* Having failed to find a 3 insn sequence in rs6000_emit_set_const,
4769 fall back to a straight forward decomposition. We do this to avoid
4770 exponential run times encountered when looking for longer sequences
4771 with rs6000_emit_set_const. */
4773 rs6000_emit_set_long_const (rtx dest
, HOST_WIDE_INT c1
, HOST_WIDE_INT c2
)
4775 if (!TARGET_POWERPC64
)
4777 rtx operand1
, operand2
;
4779 operand1
= operand_subword_force (dest
, WORDS_BIG_ENDIAN
== 0,
4781 operand2
= operand_subword_force (copy_rtx (dest
), WORDS_BIG_ENDIAN
!= 0,
4783 emit_move_insn (operand1
, GEN_INT (c1
));
4784 emit_move_insn (operand2
, GEN_INT (c2
));
4788 HOST_WIDE_INT ud1
, ud2
, ud3
, ud4
;
4791 ud2
= (c1
& 0xffff0000) >> 16;
4792 #if HOST_BITS_PER_WIDE_INT >= 64
4796 ud4
= (c2
& 0xffff0000) >> 16;
4798 if ((ud4
== 0xffff && ud3
== 0xffff && ud2
== 0xffff && (ud1
& 0x8000))
4799 || (ud4
== 0 && ud3
== 0 && ud2
== 0 && ! (ud1
& 0x8000)))
4802 emit_move_insn (dest
, GEN_INT (((ud1
^ 0x8000) - 0x8000)));
4804 emit_move_insn (dest
, GEN_INT (ud1
));
4807 else if ((ud4
== 0xffff && ud3
== 0xffff && (ud2
& 0x8000))
4808 || (ud4
== 0 && ud3
== 0 && ! (ud2
& 0x8000)))
4811 emit_move_insn (dest
, GEN_INT (((ud2
<< 16) ^ 0x80000000)
4814 emit_move_insn (dest
, GEN_INT (ud2
<< 16));
4816 emit_move_insn (copy_rtx (dest
),
4817 gen_rtx_IOR (DImode
, copy_rtx (dest
),
4820 else if ((ud4
== 0xffff && (ud3
& 0x8000))
4821 || (ud4
== 0 && ! (ud3
& 0x8000)))
4824 emit_move_insn (dest
, GEN_INT (((ud3
<< 16) ^ 0x80000000)
4827 emit_move_insn (dest
, GEN_INT (ud3
<< 16));
4830 emit_move_insn (copy_rtx (dest
),
4831 gen_rtx_IOR (DImode
, copy_rtx (dest
),
4833 emit_move_insn (copy_rtx (dest
),
4834 gen_rtx_ASHIFT (DImode
, copy_rtx (dest
),
4837 emit_move_insn (copy_rtx (dest
),
4838 gen_rtx_IOR (DImode
, copy_rtx (dest
),
4844 emit_move_insn (dest
, GEN_INT (((ud4
<< 16) ^ 0x80000000)
4847 emit_move_insn (dest
, GEN_INT (ud4
<< 16));
4850 emit_move_insn (copy_rtx (dest
),
4851 gen_rtx_IOR (DImode
, copy_rtx (dest
),
4854 emit_move_insn (copy_rtx (dest
),
4855 gen_rtx_ASHIFT (DImode
, copy_rtx (dest
),
4858 emit_move_insn (copy_rtx (dest
),
4859 gen_rtx_IOR (DImode
, copy_rtx (dest
),
4860 GEN_INT (ud2
<< 16)));
4862 emit_move_insn (copy_rtx (dest
),
4863 gen_rtx_IOR (DImode
, copy_rtx (dest
), GEN_INT (ud1
)));
4869 /* Helper for the following. Get rid of [r+r] memory refs
4870 in cases where it won't work (TImode, TFmode, TDmode). */
4873 rs6000_eliminate_indexed_memrefs (rtx operands
[2])
4875 if (GET_CODE (operands
[0]) == MEM
4876 && GET_CODE (XEXP (operands
[0], 0)) != REG
4877 && ! legitimate_constant_pool_address_p (XEXP (operands
[0], 0))
4878 && ! reload_in_progress
)
4880 = replace_equiv_address (operands
[0],
4881 copy_addr_to_reg (XEXP (operands
[0], 0)));
4883 if (GET_CODE (operands
[1]) == MEM
4884 && GET_CODE (XEXP (operands
[1], 0)) != REG
4885 && ! legitimate_constant_pool_address_p (XEXP (operands
[1], 0))
4886 && ! reload_in_progress
)
4888 = replace_equiv_address (operands
[1],
4889 copy_addr_to_reg (XEXP (operands
[1], 0)));
4892 /* Emit a move from SOURCE to DEST in mode MODE. */
4894 rs6000_emit_move (rtx dest
, rtx source
, enum machine_mode mode
)
4898 operands
[1] = source
;
4900 /* Sanity checks. Check that we get CONST_DOUBLE only when we should. */
4901 if (GET_CODE (operands
[1]) == CONST_DOUBLE
4902 && ! FLOAT_MODE_P (mode
)
4903 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
4905 /* FIXME. This should never happen. */
4906 /* Since it seems that it does, do the safe thing and convert
4908 operands
[1] = gen_int_mode (CONST_DOUBLE_LOW (operands
[1]), mode
);
4910 gcc_assert (GET_CODE (operands
[1]) != CONST_DOUBLE
4911 || FLOAT_MODE_P (mode
)
4912 || ((CONST_DOUBLE_HIGH (operands
[1]) != 0
4913 || CONST_DOUBLE_LOW (operands
[1]) < 0)
4914 && (CONST_DOUBLE_HIGH (operands
[1]) != -1
4915 || CONST_DOUBLE_LOW (operands
[1]) >= 0)));
4917 /* Check if GCC is setting up a block move that will end up using FP
4918 registers as temporaries. We must make sure this is acceptable. */
4919 if (GET_CODE (operands
[0]) == MEM
4920 && GET_CODE (operands
[1]) == MEM
4922 && (SLOW_UNALIGNED_ACCESS (DImode
, MEM_ALIGN (operands
[0]))
4923 || SLOW_UNALIGNED_ACCESS (DImode
, MEM_ALIGN (operands
[1])))
4924 && ! (SLOW_UNALIGNED_ACCESS (SImode
, (MEM_ALIGN (operands
[0]) > 32
4925 ? 32 : MEM_ALIGN (operands
[0])))
4926 || SLOW_UNALIGNED_ACCESS (SImode
, (MEM_ALIGN (operands
[1]) > 32
4928 : MEM_ALIGN (operands
[1]))))
4929 && ! MEM_VOLATILE_P (operands
[0])
4930 && ! MEM_VOLATILE_P (operands
[1]))
4932 emit_move_insn (adjust_address (operands
[0], SImode
, 0),
4933 adjust_address (operands
[1], SImode
, 0));
4934 emit_move_insn (adjust_address (copy_rtx (operands
[0]), SImode
, 4),
4935 adjust_address (copy_rtx (operands
[1]), SImode
, 4));
4939 if (can_create_pseudo_p () && GET_CODE (operands
[0]) == MEM
4940 && !gpc_reg_operand (operands
[1], mode
))
4941 operands
[1] = force_reg (mode
, operands
[1]);
4943 if (mode
== SFmode
&& ! TARGET_POWERPC
4944 && TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_DOUBLE_FLOAT
4945 && GET_CODE (operands
[0]) == MEM
)
4949 if (reload_in_progress
|| reload_completed
)
4950 regnum
= true_regnum (operands
[1]);
4951 else if (GET_CODE (operands
[1]) == REG
)
4952 regnum
= REGNO (operands
[1]);
4956 /* If operands[1] is a register, on POWER it may have
4957 double-precision data in it, so truncate it to single
4959 if (FP_REGNO_P (regnum
) || regnum
>= FIRST_PSEUDO_REGISTER
)
4962 newreg
= (!can_create_pseudo_p () ? copy_rtx (operands
[1])
4963 : gen_reg_rtx (mode
));
4964 emit_insn (gen_aux_truncdfsf2 (newreg
, operands
[1]));
4965 operands
[1] = newreg
;
4969 /* Recognize the case where operand[1] is a reference to thread-local
4970 data and load its address to a register. */
4971 if (rs6000_tls_referenced_p (operands
[1]))
4973 enum tls_model model
;
4974 rtx tmp
= operands
[1];
4977 if (GET_CODE (tmp
) == CONST
&& GET_CODE (XEXP (tmp
, 0)) == PLUS
)
4979 addend
= XEXP (XEXP (tmp
, 0), 1);
4980 tmp
= XEXP (XEXP (tmp
, 0), 0);
4983 gcc_assert (GET_CODE (tmp
) == SYMBOL_REF
);
4984 model
= SYMBOL_REF_TLS_MODEL (tmp
);
4985 gcc_assert (model
!= 0);
4987 tmp
= rs6000_legitimize_tls_address (tmp
, model
);
4990 tmp
= gen_rtx_PLUS (mode
, tmp
, addend
);
4991 tmp
= force_operand (tmp
, operands
[0]);
4996 /* Handle the case where reload calls us with an invalid address. */
4997 if (reload_in_progress
&& mode
== Pmode
4998 && (! general_operand (operands
[1], mode
)
4999 || ! nonimmediate_operand (operands
[0], mode
)))
5002 /* 128-bit constant floating-point values on Darwin should really be
5003 loaded as two parts. */
5004 if (!TARGET_IEEEQUAD
&& TARGET_LONG_DOUBLE_128
5005 && mode
== TFmode
&& GET_CODE (operands
[1]) == CONST_DOUBLE
)
5007 /* DImode is used, not DFmode, because simplify_gen_subreg doesn't
5008 know how to get a DFmode SUBREG of a TFmode. */
5009 enum machine_mode imode
= (TARGET_E500_DOUBLE
? DFmode
: DImode
);
5010 rs6000_emit_move (simplify_gen_subreg (imode
, operands
[0], mode
, 0),
5011 simplify_gen_subreg (imode
, operands
[1], mode
, 0),
5013 rs6000_emit_move (simplify_gen_subreg (imode
, operands
[0], mode
,
5014 GET_MODE_SIZE (imode
)),
5015 simplify_gen_subreg (imode
, operands
[1], mode
,
5016 GET_MODE_SIZE (imode
)),
5021 if (reload_in_progress
&& cfun
->machine
->sdmode_stack_slot
!= NULL_RTX
)
5022 cfun
->machine
->sdmode_stack_slot
=
5023 eliminate_regs (cfun
->machine
->sdmode_stack_slot
, VOIDmode
, NULL_RTX
);
5025 if (reload_in_progress
5027 && MEM_P (operands
[0])
5028 && rtx_equal_p (operands
[0], cfun
->machine
->sdmode_stack_slot
)
5029 && REG_P (operands
[1]))
5031 if (FP_REGNO_P (REGNO (operands
[1])))
5033 rtx mem
= adjust_address_nv (operands
[0], DDmode
, 0);
5034 mem
= eliminate_regs (mem
, VOIDmode
, NULL_RTX
);
5035 emit_insn (gen_movsd_store (mem
, operands
[1]));
5037 else if (INT_REGNO_P (REGNO (operands
[1])))
5039 rtx mem
= adjust_address_nv (operands
[0], mode
, 4);
5040 mem
= eliminate_regs (mem
, VOIDmode
, NULL_RTX
);
5041 emit_insn (gen_movsd_hardfloat (mem
, operands
[1]));
5047 if (reload_in_progress
5049 && REG_P (operands
[0])
5050 && MEM_P (operands
[1])
5051 && rtx_equal_p (operands
[1], cfun
->machine
->sdmode_stack_slot
))
5053 if (FP_REGNO_P (REGNO (operands
[0])))
5055 rtx mem
= adjust_address_nv (operands
[1], DDmode
, 0);
5056 mem
= eliminate_regs (mem
, VOIDmode
, NULL_RTX
);
5057 emit_insn (gen_movsd_load (operands
[0], mem
));
5059 else if (INT_REGNO_P (REGNO (operands
[0])))
5061 rtx mem
= adjust_address_nv (operands
[1], mode
, 4);
5062 mem
= eliminate_regs (mem
, VOIDmode
, NULL_RTX
);
5063 emit_insn (gen_movsd_hardfloat (operands
[0], mem
));
5070 /* FIXME: In the long term, this switch statement should go away
5071 and be replaced by a sequence of tests based on things like
5077 if (CONSTANT_P (operands
[1])
5078 && GET_CODE (operands
[1]) != CONST_INT
)
5079 operands
[1] = force_const_mem (mode
, operands
[1]);
5084 rs6000_eliminate_indexed_memrefs (operands
);
5091 if (CONSTANT_P (operands
[1])
5092 && ! easy_fp_constant (operands
[1], mode
))
5093 operands
[1] = force_const_mem (mode
, operands
[1]);
5104 if (CONSTANT_P (operands
[1])
5105 && !easy_vector_constant (operands
[1], mode
))
5106 operands
[1] = force_const_mem (mode
, operands
[1]);
5111 /* Use default pattern for address of ELF small data */
5114 && DEFAULT_ABI
== ABI_V4
5115 && (GET_CODE (operands
[1]) == SYMBOL_REF
5116 || GET_CODE (operands
[1]) == CONST
)
5117 && small_data_operand (operands
[1], mode
))
5119 emit_insn (gen_rtx_SET (VOIDmode
, operands
[0], operands
[1]));
5123 if (DEFAULT_ABI
== ABI_V4
5124 && mode
== Pmode
&& mode
== SImode
5125 && flag_pic
== 1 && got_operand (operands
[1], mode
))
5127 emit_insn (gen_movsi_got (operands
[0], operands
[1]));
5131 if ((TARGET_ELF
|| DEFAULT_ABI
== ABI_DARWIN
)
5135 && CONSTANT_P (operands
[1])
5136 && GET_CODE (operands
[1]) != HIGH
5137 && GET_CODE (operands
[1]) != CONST_INT
)
5139 rtx target
= (!can_create_pseudo_p ()
5141 : gen_reg_rtx (mode
));
5143 /* If this is a function address on -mcall-aixdesc,
5144 convert it to the address of the descriptor. */
5145 if (DEFAULT_ABI
== ABI_AIX
5146 && GET_CODE (operands
[1]) == SYMBOL_REF
5147 && XSTR (operands
[1], 0)[0] == '.')
5149 const char *name
= XSTR (operands
[1], 0);
5151 while (*name
== '.')
5153 new_ref
= gen_rtx_SYMBOL_REF (Pmode
, name
);
5154 CONSTANT_POOL_ADDRESS_P (new_ref
)
5155 = CONSTANT_POOL_ADDRESS_P (operands
[1]);
5156 SYMBOL_REF_FLAGS (new_ref
) = SYMBOL_REF_FLAGS (operands
[1]);
5157 SYMBOL_REF_USED (new_ref
) = SYMBOL_REF_USED (operands
[1]);
5158 SYMBOL_REF_DATA (new_ref
) = SYMBOL_REF_DATA (operands
[1]);
5159 operands
[1] = new_ref
;
5162 if (DEFAULT_ABI
== ABI_DARWIN
)
5165 if (MACHO_DYNAMIC_NO_PIC_P
)
5167 /* Take care of any required data indirection. */
5168 operands
[1] = rs6000_machopic_legitimize_pic_address (
5169 operands
[1], mode
, operands
[0]);
5170 if (operands
[0] != operands
[1])
5171 emit_insn (gen_rtx_SET (VOIDmode
,
5172 operands
[0], operands
[1]));
5176 emit_insn (gen_macho_high (target
, operands
[1]));
5177 emit_insn (gen_macho_low (operands
[0], target
, operands
[1]));
5181 emit_insn (gen_elf_high (target
, operands
[1]));
5182 emit_insn (gen_elf_low (operands
[0], target
, operands
[1]));
5186 /* If this is a SYMBOL_REF that refers to a constant pool entry,
5187 and we have put it in the TOC, we just need to make a TOC-relative
5190 && GET_CODE (operands
[1]) == SYMBOL_REF
5191 && constant_pool_expr_p (operands
[1])
5192 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (operands
[1]),
5193 get_pool_mode (operands
[1])))
5195 operands
[1] = create_TOC_reference (operands
[1]);
5197 else if (mode
== Pmode
5198 && CONSTANT_P (operands
[1])
5199 && ((GET_CODE (operands
[1]) != CONST_INT
5200 && ! easy_fp_constant (operands
[1], mode
))
5201 || (GET_CODE (operands
[1]) == CONST_INT
5202 && num_insns_constant (operands
[1], mode
) > 2)
5203 || (GET_CODE (operands
[0]) == REG
5204 && FP_REGNO_P (REGNO (operands
[0]))))
5205 && GET_CODE (operands
[1]) != HIGH
5206 && ! legitimate_constant_pool_address_p (operands
[1])
5207 && ! toc_relative_expr_p (operands
[1]))
5209 /* Emit a USE operation so that the constant isn't deleted if
5210 expensive optimizations are turned on because nobody
5211 references it. This should only be done for operands that
5212 contain SYMBOL_REFs with CONSTANT_POOL_ADDRESS_P set.
5213 This should not be done for operands that contain LABEL_REFs.
5214 For now, we just handle the obvious case. */
5215 if (GET_CODE (operands
[1]) != LABEL_REF
)
5216 emit_use (operands
[1]);
5219 /* Darwin uses a special PIC legitimizer. */
5220 if (DEFAULT_ABI
== ABI_DARWIN
&& MACHOPIC_INDIRECT
)
5223 rs6000_machopic_legitimize_pic_address (operands
[1], mode
,
5225 if (operands
[0] != operands
[1])
5226 emit_insn (gen_rtx_SET (VOIDmode
, operands
[0], operands
[1]));
5231 /* If we are to limit the number of things we put in the TOC and
5232 this is a symbol plus a constant we can add in one insn,
5233 just put the symbol in the TOC and add the constant. Don't do
5234 this if reload is in progress. */
5235 if (GET_CODE (operands
[1]) == CONST
5236 && TARGET_NO_SUM_IN_TOC
&& ! reload_in_progress
5237 && GET_CODE (XEXP (operands
[1], 0)) == PLUS
5238 && add_operand (XEXP (XEXP (operands
[1], 0), 1), mode
)
5239 && (GET_CODE (XEXP (XEXP (operands
[1], 0), 0)) == LABEL_REF
5240 || GET_CODE (XEXP (XEXP (operands
[1], 0), 0)) == SYMBOL_REF
)
5241 && ! side_effects_p (operands
[0]))
5244 force_const_mem (mode
, XEXP (XEXP (operands
[1], 0), 0));
5245 rtx other
= XEXP (XEXP (operands
[1], 0), 1);
5247 sym
= force_reg (mode
, sym
);
5249 emit_insn (gen_addsi3 (operands
[0], sym
, other
));
5251 emit_insn (gen_adddi3 (operands
[0], sym
, other
));
5255 operands
[1] = force_const_mem (mode
, operands
[1]);
5258 && GET_CODE (XEXP (operands
[1], 0)) == SYMBOL_REF
5259 && constant_pool_expr_p (XEXP (operands
[1], 0))
5260 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (
5261 get_pool_constant (XEXP (operands
[1], 0)),
5262 get_pool_mode (XEXP (operands
[1], 0))))
5265 = gen_const_mem (mode
,
5266 create_TOC_reference (XEXP (operands
[1], 0)));
5267 set_mem_alias_set (operands
[1], get_TOC_alias_set ());
5273 rs6000_eliminate_indexed_memrefs (operands
);
5277 emit_insn (gen_rtx_PARALLEL (VOIDmode
,
5279 gen_rtx_SET (VOIDmode
,
5280 operands
[0], operands
[1]),
5281 gen_rtx_CLOBBER (VOIDmode
,
5282 gen_rtx_SCRATCH (SImode
)))));
5291 /* Above, we may have called force_const_mem which may have returned
5292 an invalid address. If we can, fix this up; otherwise, reload will
5293 have to deal with it. */
5294 if (GET_CODE (operands
[1]) == MEM
&& ! reload_in_progress
)
5295 operands
[1] = validize_mem (operands
[1]);
5298 emit_insn (gen_rtx_SET (VOIDmode
, operands
[0], operands
[1]));
5301 /* Nonzero if we can use a floating-point register to pass this arg. */
5302 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
5303 (SCALAR_FLOAT_MODE_P (MODE) \
5304 && (CUM)->fregno <= FP_ARG_MAX_REG \
5305 && TARGET_HARD_FLOAT && TARGET_FPRS)
5307 /* Nonzero if we can use an AltiVec register to pass this arg. */
5308 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE,NAMED) \
5309 (ALTIVEC_VECTOR_MODE (MODE) \
5310 && (CUM)->vregno <= ALTIVEC_ARG_MAX_REG \
5311 && TARGET_ALTIVEC_ABI \
5314 /* Return a nonzero value to say to return the function value in
5315 memory, just as large structures are always returned. TYPE will be
5316 the data type of the value, and FNTYPE will be the type of the
5317 function doing the returning, or @code{NULL} for libcalls.
5319 The AIX ABI for the RS/6000 specifies that all structures are
5320 returned in memory. The Darwin ABI does the same. The SVR4 ABI
5321 specifies that structures <= 8 bytes are returned in r3/r4, but a
5322 draft put them in memory, and GCC used to implement the draft
5323 instead of the final standard. Therefore, aix_struct_return
5324 controls this instead of DEFAULT_ABI; V.4 targets needing backward
5325 compatibility can change DRAFT_V4_STRUCT_RET to override the
5326 default, and -m switches get the final word. See
5327 rs6000_override_options for more details.
5329 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
5330 long double support is enabled. These values are returned in memory.
5332 int_size_in_bytes returns -1 for variable size objects, which go in
5333 memory always. The cast to unsigned makes -1 > 8. */
5336 rs6000_return_in_memory (const_tree type
, const_tree fntype ATTRIBUTE_UNUSED
)
5338 /* In the darwin64 abi, try to use registers for larger structs
5340 if (rs6000_darwin64_abi
5341 && TREE_CODE (type
) == RECORD_TYPE
5342 && int_size_in_bytes (type
) > 0)
5344 CUMULATIVE_ARGS valcum
;
5348 valcum
.fregno
= FP_ARG_MIN_REG
;
5349 valcum
.vregno
= ALTIVEC_ARG_MIN_REG
;
5350 /* Do a trial code generation as if this were going to be passed
5351 as an argument; if any part goes in memory, we return NULL. */
5352 valret
= rs6000_darwin64_record_arg (&valcum
, type
, 1, true);
5355 /* Otherwise fall through to more conventional ABI rules. */
5358 if (AGGREGATE_TYPE_P (type
)
5359 && (aix_struct_return
5360 || (unsigned HOST_WIDE_INT
) int_size_in_bytes (type
) > 8))
5363 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
5364 modes only exist for GCC vector types if -maltivec. */
5365 if (TARGET_32BIT
&& !TARGET_ALTIVEC_ABI
5366 && ALTIVEC_VECTOR_MODE (TYPE_MODE (type
)))
5369 /* Return synthetic vectors in memory. */
5370 if (TREE_CODE (type
) == VECTOR_TYPE
5371 && int_size_in_bytes (type
) > (TARGET_ALTIVEC_ABI
? 16 : 8))
5373 static bool warned_for_return_big_vectors
= false;
5374 if (!warned_for_return_big_vectors
)
5376 warning (0, "GCC vector returned by reference: "
5377 "non-standard ABI extension with no compatibility guarantee");
5378 warned_for_return_big_vectors
= true;
5383 if (DEFAULT_ABI
== ABI_V4
&& TARGET_IEEEQUAD
&& TYPE_MODE (type
) == TFmode
)
5389 /* Initialize a variable CUM of type CUMULATIVE_ARGS
5390 for a call to a function whose data type is FNTYPE.
5391 For a library call, FNTYPE is 0.
5393 For incoming args we set the number of arguments in the prototype large
5394 so we never return a PARALLEL. */
5397 init_cumulative_args (CUMULATIVE_ARGS
*cum
, tree fntype
,
5398 rtx libname ATTRIBUTE_UNUSED
, int incoming
,
5399 int libcall
, int n_named_args
)
5401 static CUMULATIVE_ARGS zero_cumulative
;
5403 *cum
= zero_cumulative
;
5405 cum
->fregno
= FP_ARG_MIN_REG
;
5406 cum
->vregno
= ALTIVEC_ARG_MIN_REG
;
5407 cum
->prototype
= (fntype
&& TYPE_ARG_TYPES (fntype
));
5408 cum
->call_cookie
= ((DEFAULT_ABI
== ABI_V4
&& libcall
)
5409 ? CALL_LIBCALL
: CALL_NORMAL
);
5410 cum
->sysv_gregno
= GP_ARG_MIN_REG
;
5411 cum
->stdarg
= fntype
5412 && (TYPE_ARG_TYPES (fntype
) != 0
5413 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype
)))
5414 != void_type_node
));
5416 cum
->nargs_prototype
= 0;
5417 if (incoming
|| cum
->prototype
)
5418 cum
->nargs_prototype
= n_named_args
;
5420 /* Check for a longcall attribute. */
5421 if ((!fntype
&& rs6000_default_long_calls
)
5423 && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype
))
5424 && !lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype
))))
5425 cum
->call_cookie
|= CALL_LONG
;
5427 if (TARGET_DEBUG_ARG
)
5429 fprintf (stderr
, "\ninit_cumulative_args:");
5432 tree ret_type
= TREE_TYPE (fntype
);
5433 fprintf (stderr
, " ret code = %s,",
5434 tree_code_name
[ (int)TREE_CODE (ret_type
) ]);
5437 if (cum
->call_cookie
& CALL_LONG
)
5438 fprintf (stderr
, " longcall,");
5440 fprintf (stderr
, " proto = %d, nargs = %d\n",
5441 cum
->prototype
, cum
->nargs_prototype
);
5446 && TARGET_ALTIVEC_ABI
5447 && ALTIVEC_VECTOR_MODE (TYPE_MODE (TREE_TYPE (fntype
))))
5449 error ("cannot return value in vector register because"
5450 " altivec instructions are disabled, use -maltivec"
5455 /* Return true if TYPE must be passed on the stack and not in registers. */
5458 rs6000_must_pass_in_stack (enum machine_mode mode
, const_tree type
)
5460 if (DEFAULT_ABI
== ABI_AIX
|| TARGET_64BIT
)
5461 return must_pass_in_stack_var_size (mode
, type
);
5463 return must_pass_in_stack_var_size_or_pad (mode
, type
);
5466 /* If defined, a C expression which determines whether, and in which
5467 direction, to pad out an argument with extra space. The value
5468 should be of type `enum direction': either `upward' to pad above
5469 the argument, `downward' to pad below, or `none' to inhibit
5472 For the AIX ABI structs are always stored left shifted in their
5476 function_arg_padding (enum machine_mode mode
, const_tree type
)
5478 #ifndef AGGREGATE_PADDING_FIXED
5479 #define AGGREGATE_PADDING_FIXED 0
5481 #ifndef AGGREGATES_PAD_UPWARD_ALWAYS
5482 #define AGGREGATES_PAD_UPWARD_ALWAYS 0
5485 if (!AGGREGATE_PADDING_FIXED
)
5487 /* GCC used to pass structures of the same size as integer types as
5488 if they were in fact integers, ignoring FUNCTION_ARG_PADDING.
5489 i.e. Structures of size 1 or 2 (or 4 when TARGET_64BIT) were
5490 passed padded downward, except that -mstrict-align further
5491 muddied the water in that multi-component structures of 2 and 4
5492 bytes in size were passed padded upward.
5494 The following arranges for best compatibility with previous
5495 versions of gcc, but removes the -mstrict-align dependency. */
5496 if (BYTES_BIG_ENDIAN
)
5498 HOST_WIDE_INT size
= 0;
5500 if (mode
== BLKmode
)
5502 if (type
&& TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
)
5503 size
= int_size_in_bytes (type
);
5506 size
= GET_MODE_SIZE (mode
);
5508 if (size
== 1 || size
== 2 || size
== 4)
5514 if (AGGREGATES_PAD_UPWARD_ALWAYS
)
5516 if (type
!= 0 && AGGREGATE_TYPE_P (type
))
5520 /* Fall back to the default. */
5521 return DEFAULT_FUNCTION_ARG_PADDING (mode
, type
);
5524 /* If defined, a C expression that gives the alignment boundary, in bits,
5525 of an argument with the specified mode and type. If it is not defined,
5526 PARM_BOUNDARY is used for all arguments.
5528 V.4 wants long longs and doubles to be double word aligned. Just
5529 testing the mode size is a boneheaded way to do this as it means
5530 that other types such as complex int are also double word aligned.
5531 However, we're stuck with this because changing the ABI might break
5532 existing library interfaces.
5534 Doubleword align SPE vectors.
5535 Quadword align Altivec vectors.
5536 Quadword align large synthetic vector types. */
5539 function_arg_boundary (enum machine_mode mode
, tree type
)
5541 if (DEFAULT_ABI
== ABI_V4
5542 && (GET_MODE_SIZE (mode
) == 8
5543 || (TARGET_HARD_FLOAT
5545 && (mode
== TFmode
|| mode
== TDmode
))))
5547 else if (SPE_VECTOR_MODE (mode
)
5548 || (type
&& TREE_CODE (type
) == VECTOR_TYPE
5549 && int_size_in_bytes (type
) >= 8
5550 && int_size_in_bytes (type
) < 16))
5552 else if (ALTIVEC_VECTOR_MODE (mode
)
5553 || (type
&& TREE_CODE (type
) == VECTOR_TYPE
5554 && int_size_in_bytes (type
) >= 16))
5556 else if (rs6000_darwin64_abi
&& mode
== BLKmode
5557 && type
&& TYPE_ALIGN (type
) > 64)
5560 return PARM_BOUNDARY
;
5563 /* For a function parm of MODE and TYPE, return the starting word in
5564 the parameter area. NWORDS of the parameter area are already used. */
5567 rs6000_parm_start (enum machine_mode mode
, tree type
, unsigned int nwords
)
5570 unsigned int parm_offset
;
5572 align
= function_arg_boundary (mode
, type
) / PARM_BOUNDARY
- 1;
5573 parm_offset
= DEFAULT_ABI
== ABI_V4
? 2 : 6;
5574 return nwords
+ (-(parm_offset
+ nwords
) & align
);
5577 /* Compute the size (in words) of a function argument. */
5579 static unsigned long
5580 rs6000_arg_size (enum machine_mode mode
, tree type
)
5584 if (mode
!= BLKmode
)
5585 size
= GET_MODE_SIZE (mode
);
5587 size
= int_size_in_bytes (type
);
5590 return (size
+ 3) >> 2;
5592 return (size
+ 7) >> 3;
5595 /* Use this to flush pending int fields. */
5598 rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS
*cum
,
5599 HOST_WIDE_INT bitpos
)
5601 unsigned int startbit
, endbit
;
5602 int intregs
, intoffset
;
5603 enum machine_mode mode
;
5605 if (cum
->intoffset
== -1)
5608 intoffset
= cum
->intoffset
;
5609 cum
->intoffset
= -1;
5611 if (intoffset
% BITS_PER_WORD
!= 0)
5613 mode
= mode_for_size (BITS_PER_WORD
- intoffset
% BITS_PER_WORD
,
5615 if (mode
== BLKmode
)
5617 /* We couldn't find an appropriate mode, which happens,
5618 e.g., in packed structs when there are 3 bytes to load.
5619 Back intoffset back to the beginning of the word in this
5621 intoffset
= intoffset
& -BITS_PER_WORD
;
5625 startbit
= intoffset
& -BITS_PER_WORD
;
5626 endbit
= (bitpos
+ BITS_PER_WORD
- 1) & -BITS_PER_WORD
;
5627 intregs
= (endbit
- startbit
) / BITS_PER_WORD
;
5628 cum
->words
+= intregs
;
5631 /* The darwin64 ABI calls for us to recurse down through structs,
5632 looking for elements passed in registers. Unfortunately, we have
5633 to track int register count here also because of misalignments
5634 in powerpc alignment mode. */
5637 rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS
*cum
,
5639 HOST_WIDE_INT startbitpos
)
5643 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
5644 if (TREE_CODE (f
) == FIELD_DECL
)
5646 HOST_WIDE_INT bitpos
= startbitpos
;
5647 tree ftype
= TREE_TYPE (f
);
5648 enum machine_mode mode
;
5649 if (ftype
== error_mark_node
)
5651 mode
= TYPE_MODE (ftype
);
5653 if (DECL_SIZE (f
) != 0
5654 && host_integerp (bit_position (f
), 1))
5655 bitpos
+= int_bit_position (f
);
5657 /* ??? FIXME: else assume zero offset. */
5659 if (TREE_CODE (ftype
) == RECORD_TYPE
)
5660 rs6000_darwin64_record_arg_advance_recurse (cum
, ftype
, bitpos
);
5661 else if (USE_FP_FOR_ARG_P (cum
, mode
, ftype
))
5663 rs6000_darwin64_record_arg_advance_flush (cum
, bitpos
);
5664 cum
->fregno
+= (GET_MODE_SIZE (mode
) + 7) >> 3;
5665 cum
->words
+= (GET_MODE_SIZE (mode
) + 7) >> 3;
5667 else if (USE_ALTIVEC_FOR_ARG_P (cum
, mode
, type
, 1))
5669 rs6000_darwin64_record_arg_advance_flush (cum
, bitpos
);
5673 else if (cum
->intoffset
== -1)
5674 cum
->intoffset
= bitpos
;
5678 /* Update the data in CUM to advance over an argument
5679 of mode MODE and data type TYPE.
5680 (TYPE is null for libcalls where that information may not be available.)
5682 Note that for args passed by reference, function_arg will be called
5683 with MODE and TYPE set to that of the pointer to the arg, not the arg
5687 function_arg_advance (CUMULATIVE_ARGS
*cum
, enum machine_mode mode
,
5688 tree type
, int named
, int depth
)
5692 /* Only tick off an argument if we're not recursing. */
5694 cum
->nargs_prototype
--;
5696 if (TARGET_ALTIVEC_ABI
5697 && (ALTIVEC_VECTOR_MODE (mode
)
5698 || (type
&& TREE_CODE (type
) == VECTOR_TYPE
5699 && int_size_in_bytes (type
) == 16)))
5703 if (USE_ALTIVEC_FOR_ARG_P (cum
, mode
, type
, named
))
5706 if (!TARGET_ALTIVEC
)
5707 error ("cannot pass argument in vector register because"
5708 " altivec instructions are disabled, use -maltivec"
5711 /* PowerPC64 Linux and AIX allocate GPRs for a vector argument
5712 even if it is going to be passed in a vector register.
5713 Darwin does the same for variable-argument functions. */
5714 if ((DEFAULT_ABI
== ABI_AIX
&& TARGET_64BIT
)
5715 || (cum
->stdarg
&& DEFAULT_ABI
!= ABI_V4
))
5725 /* Vector parameters must be 16-byte aligned. This places
5726 them at 2 mod 4 in terms of words in 32-bit mode, since
5727 the parameter save area starts at offset 24 from the
5728 stack. In 64-bit mode, they just have to start on an
5729 even word, since the parameter save area is 16-byte
5730 aligned. Space for GPRs is reserved even if the argument
5731 will be passed in memory. */
5733 align
= (2 - cum
->words
) & 3;
5735 align
= cum
->words
& 1;
5736 cum
->words
+= align
+ rs6000_arg_size (mode
, type
);
5738 if (TARGET_DEBUG_ARG
)
5740 fprintf (stderr
, "function_adv: words = %2d, align=%d, ",
5742 fprintf (stderr
, "nargs = %4d, proto = %d, mode = %4s\n",
5743 cum
->nargs_prototype
, cum
->prototype
,
5744 GET_MODE_NAME (mode
));
5748 else if (TARGET_SPE_ABI
&& TARGET_SPE
&& SPE_VECTOR_MODE (mode
)
5750 && cum
->sysv_gregno
<= GP_ARG_MAX_REG
)
5753 else if (rs6000_darwin64_abi
5755 && TREE_CODE (type
) == RECORD_TYPE
5756 && (size
= int_size_in_bytes (type
)) > 0)
5758 /* Variable sized types have size == -1 and are
5759 treated as if consisting entirely of ints.
5760 Pad to 16 byte boundary if needed. */
5761 if (TYPE_ALIGN (type
) >= 2 * BITS_PER_WORD
5762 && (cum
->words
% 2) != 0)
5764 /* For varargs, we can just go up by the size of the struct. */
5766 cum
->words
+= (size
+ 7) / 8;
5769 /* It is tempting to say int register count just goes up by
5770 sizeof(type)/8, but this is wrong in a case such as
5771 { int; double; int; } [powerpc alignment]. We have to
5772 grovel through the fields for these too. */
5774 rs6000_darwin64_record_arg_advance_recurse (cum
, type
, 0);
5775 rs6000_darwin64_record_arg_advance_flush (cum
,
5776 size
* BITS_PER_UNIT
);
5779 else if (DEFAULT_ABI
== ABI_V4
)
5781 if (TARGET_HARD_FLOAT
&& TARGET_FPRS
5782 && ((TARGET_SINGLE_FLOAT
&& mode
== SFmode
)
5783 || (TARGET_DOUBLE_FLOAT
&& mode
== DFmode
)
5784 || (mode
== TFmode
&& !TARGET_IEEEQUAD
)
5785 || mode
== SDmode
|| mode
== DDmode
|| mode
== TDmode
))
5787 /* _Decimal128 must use an even/odd register pair. This assumes
5788 that the register number is odd when fregno is odd. */
5789 if (mode
== TDmode
&& (cum
->fregno
% 2) == 1)
5792 if (cum
->fregno
+ (mode
== TFmode
|| mode
== TDmode
? 1 : 0)
5793 <= FP_ARG_V4_MAX_REG
)
5794 cum
->fregno
+= (GET_MODE_SIZE (mode
) + 7) >> 3;
5797 cum
->fregno
= FP_ARG_V4_MAX_REG
+ 1;
5798 if (mode
== DFmode
|| mode
== TFmode
5799 || mode
== DDmode
|| mode
== TDmode
)
5800 cum
->words
+= cum
->words
& 1;
5801 cum
->words
+= rs6000_arg_size (mode
, type
);
5806 int n_words
= rs6000_arg_size (mode
, type
);
5807 int gregno
= cum
->sysv_gregno
;
5809 /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
5810 (r7,r8) or (r9,r10). As does any other 2 word item such
5811 as complex int due to a historical mistake. */
5813 gregno
+= (1 - gregno
) & 1;
5815 /* Multi-reg args are not split between registers and stack. */
5816 if (gregno
+ n_words
- 1 > GP_ARG_MAX_REG
)
5818 /* Long long and SPE vectors are aligned on the stack.
5819 So are other 2 word items such as complex int due to
5820 a historical mistake. */
5822 cum
->words
+= cum
->words
& 1;
5823 cum
->words
+= n_words
;
5826 /* Note: continuing to accumulate gregno past when we've started
5827 spilling to the stack indicates the fact that we've started
5828 spilling to the stack to expand_builtin_saveregs. */
5829 cum
->sysv_gregno
= gregno
+ n_words
;
5832 if (TARGET_DEBUG_ARG
)
5834 fprintf (stderr
, "function_adv: words = %2d, fregno = %2d, ",
5835 cum
->words
, cum
->fregno
);
5836 fprintf (stderr
, "gregno = %2d, nargs = %4d, proto = %d, ",
5837 cum
->sysv_gregno
, cum
->nargs_prototype
, cum
->prototype
);
5838 fprintf (stderr
, "mode = %4s, named = %d\n",
5839 GET_MODE_NAME (mode
), named
);
5844 int n_words
= rs6000_arg_size (mode
, type
);
5845 int start_words
= cum
->words
;
5846 int align_words
= rs6000_parm_start (mode
, type
, start_words
);
5848 cum
->words
= align_words
+ n_words
;
5850 if (SCALAR_FLOAT_MODE_P (mode
)
5851 && TARGET_HARD_FLOAT
&& TARGET_FPRS
)
5853 /* _Decimal128 must be passed in an even/odd float register pair.
5854 This assumes that the register number is odd when fregno is
5856 if (mode
== TDmode
&& (cum
->fregno
% 2) == 1)
5858 cum
->fregno
+= (GET_MODE_SIZE (mode
) + 7) >> 3;
5861 if (TARGET_DEBUG_ARG
)
5863 fprintf (stderr
, "function_adv: words = %2d, fregno = %2d, ",
5864 cum
->words
, cum
->fregno
);
5865 fprintf (stderr
, "nargs = %4d, proto = %d, mode = %4s, ",
5866 cum
->nargs_prototype
, cum
->prototype
, GET_MODE_NAME (mode
));
5867 fprintf (stderr
, "named = %d, align = %d, depth = %d\n",
5868 named
, align_words
- start_words
, depth
);
5874 spe_build_register_parallel (enum machine_mode mode
, int gregno
)
5881 r1
= gen_rtx_REG (DImode
, gregno
);
5882 r1
= gen_rtx_EXPR_LIST (VOIDmode
, r1
, const0_rtx
);
5883 return gen_rtx_PARALLEL (mode
, gen_rtvec (1, r1
));
5887 r1
= gen_rtx_REG (DImode
, gregno
);
5888 r1
= gen_rtx_EXPR_LIST (VOIDmode
, r1
, const0_rtx
);
5889 r3
= gen_rtx_REG (DImode
, gregno
+ 2);
5890 r3
= gen_rtx_EXPR_LIST (VOIDmode
, r3
, GEN_INT (8));
5891 return gen_rtx_PARALLEL (mode
, gen_rtvec (2, r1
, r3
));
5894 r1
= gen_rtx_REG (DImode
, gregno
);
5895 r1
= gen_rtx_EXPR_LIST (VOIDmode
, r1
, const0_rtx
);
5896 r3
= gen_rtx_REG (DImode
, gregno
+ 2);
5897 r3
= gen_rtx_EXPR_LIST (VOIDmode
, r3
, GEN_INT (8));
5898 r5
= gen_rtx_REG (DImode
, gregno
+ 4);
5899 r5
= gen_rtx_EXPR_LIST (VOIDmode
, r5
, GEN_INT (16));
5900 r7
= gen_rtx_REG (DImode
, gregno
+ 6);
5901 r7
= gen_rtx_EXPR_LIST (VOIDmode
, r7
, GEN_INT (24));
5902 return gen_rtx_PARALLEL (mode
, gen_rtvec (4, r1
, r3
, r5
, r7
));
5909 /* Determine where to put a SIMD argument on the SPE. */
5911 rs6000_spe_function_arg (CUMULATIVE_ARGS
*cum
, enum machine_mode mode
,
5914 int gregno
= cum
->sysv_gregno
;
5916 /* On E500 v2, double arithmetic is done on the full 64-bit GPR, but
5917 are passed and returned in a pair of GPRs for ABI compatibility. */
5918 if (TARGET_E500_DOUBLE
&& (mode
== DFmode
|| mode
== TFmode
5919 || mode
== DCmode
|| mode
== TCmode
))
5921 int n_words
= rs6000_arg_size (mode
, type
);
5923 /* Doubles go in an odd/even register pair (r5/r6, etc). */
5925 gregno
+= (1 - gregno
) & 1;
5927 /* Multi-reg args are not split between registers and stack. */
5928 if (gregno
+ n_words
- 1 > GP_ARG_MAX_REG
)
5931 return spe_build_register_parallel (mode
, gregno
);
5935 int n_words
= rs6000_arg_size (mode
, type
);
5937 /* SPE vectors are put in odd registers. */
5938 if (n_words
== 2 && (gregno
& 1) == 0)
5941 if (gregno
+ n_words
- 1 <= GP_ARG_MAX_REG
)
5944 enum machine_mode m
= SImode
;
5946 r1
= gen_rtx_REG (m
, gregno
);
5947 r1
= gen_rtx_EXPR_LIST (m
, r1
, const0_rtx
);
5948 r2
= gen_rtx_REG (m
, gregno
+ 1);
5949 r2
= gen_rtx_EXPR_LIST (m
, r2
, GEN_INT (4));
5950 return gen_rtx_PARALLEL (mode
, gen_rtvec (2, r1
, r2
));
5957 if (gregno
<= GP_ARG_MAX_REG
)
5958 return gen_rtx_REG (mode
, gregno
);
5964 /* A subroutine of rs6000_darwin64_record_arg. Assign the bits of the
5965 structure between cum->intoffset and bitpos to integer registers. */
5968 rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS
*cum
,
5969 HOST_WIDE_INT bitpos
, rtx rvec
[], int *k
)
5971 enum machine_mode mode
;
5973 unsigned int startbit
, endbit
;
5974 int this_regno
, intregs
, intoffset
;
5977 if (cum
->intoffset
== -1)
5980 intoffset
= cum
->intoffset
;
5981 cum
->intoffset
= -1;
5983 /* If this is the trailing part of a word, try to only load that
5984 much into the register. Otherwise load the whole register. Note
5985 that in the latter case we may pick up unwanted bits. It's not a
5986 problem at the moment but may wish to revisit. */
5988 if (intoffset
% BITS_PER_WORD
!= 0)
5990 mode
= mode_for_size (BITS_PER_WORD
- intoffset
% BITS_PER_WORD
,
5992 if (mode
== BLKmode
)
5994 /* We couldn't find an appropriate mode, which happens,
5995 e.g., in packed structs when there are 3 bytes to load.
5996 Back intoffset back to the beginning of the word in this
5998 intoffset
= intoffset
& -BITS_PER_WORD
;
6005 startbit
= intoffset
& -BITS_PER_WORD
;
6006 endbit
= (bitpos
+ BITS_PER_WORD
- 1) & -BITS_PER_WORD
;
6007 intregs
= (endbit
- startbit
) / BITS_PER_WORD
;
6008 this_regno
= cum
->words
+ intoffset
/ BITS_PER_WORD
;
6010 if (intregs
> 0 && intregs
> GP_ARG_NUM_REG
- this_regno
)
6013 intregs
= MIN (intregs
, GP_ARG_NUM_REG
- this_regno
);
6017 intoffset
/= BITS_PER_UNIT
;
6020 regno
= GP_ARG_MIN_REG
+ this_regno
;
6021 reg
= gen_rtx_REG (mode
, regno
);
6023 gen_rtx_EXPR_LIST (VOIDmode
, reg
, GEN_INT (intoffset
));
6026 intoffset
= (intoffset
| (UNITS_PER_WORD
-1)) + 1;
6030 while (intregs
> 0);
6033 /* Recursive workhorse for the following. */
6036 rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS
*cum
, const_tree type
,
6037 HOST_WIDE_INT startbitpos
, rtx rvec
[],
6042 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
6043 if (TREE_CODE (f
) == FIELD_DECL
)
6045 HOST_WIDE_INT bitpos
= startbitpos
;
6046 tree ftype
= TREE_TYPE (f
);
6047 enum machine_mode mode
;
6048 if (ftype
== error_mark_node
)
6050 mode
= TYPE_MODE (ftype
);
6052 if (DECL_SIZE (f
) != 0
6053 && host_integerp (bit_position (f
), 1))
6054 bitpos
+= int_bit_position (f
);
6056 /* ??? FIXME: else assume zero offset. */
6058 if (TREE_CODE (ftype
) == RECORD_TYPE
)
6059 rs6000_darwin64_record_arg_recurse (cum
, ftype
, bitpos
, rvec
, k
);
6060 else if (cum
->named
&& USE_FP_FOR_ARG_P (cum
, mode
, ftype
))
6065 case SCmode
: mode
= SFmode
; break;
6066 case DCmode
: mode
= DFmode
; break;
6067 case TCmode
: mode
= TFmode
; break;
6071 rs6000_darwin64_record_arg_flush (cum
, bitpos
, rvec
, k
);
6073 = gen_rtx_EXPR_LIST (VOIDmode
,
6074 gen_rtx_REG (mode
, cum
->fregno
++),
6075 GEN_INT (bitpos
/ BITS_PER_UNIT
));
6076 if (mode
== TFmode
|| mode
== TDmode
)
6079 else if (cum
->named
&& USE_ALTIVEC_FOR_ARG_P (cum
, mode
, ftype
, 1))
6081 rs6000_darwin64_record_arg_flush (cum
, bitpos
, rvec
, k
);
6083 = gen_rtx_EXPR_LIST (VOIDmode
,
6084 gen_rtx_REG (mode
, cum
->vregno
++),
6085 GEN_INT (bitpos
/ BITS_PER_UNIT
));
6087 else if (cum
->intoffset
== -1)
6088 cum
->intoffset
= bitpos
;
6092 /* For the darwin64 ABI, we want to construct a PARALLEL consisting of
6093 the register(s) to be used for each field and subfield of a struct
6094 being passed by value, along with the offset of where the
6095 register's value may be found in the block. FP fields go in FP
6096 register, vector fields go in vector registers, and everything
6097 else goes in int registers, packed as in memory.
6099 This code is also used for function return values. RETVAL indicates
6100 whether this is the case.
6102 Much of this is taken from the SPARC V9 port, which has a similar
6103 calling convention. */
6106 rs6000_darwin64_record_arg (CUMULATIVE_ARGS
*orig_cum
, const_tree type
,
6107 int named
, bool retval
)
6109 rtx rvec
[FIRST_PSEUDO_REGISTER
];
6110 int k
= 1, kbase
= 1;
6111 HOST_WIDE_INT typesize
= int_size_in_bytes (type
);
6112 /* This is a copy; modifications are not visible to our caller. */
6113 CUMULATIVE_ARGS copy_cum
= *orig_cum
;
6114 CUMULATIVE_ARGS
*cum
= ©_cum
;
6116 /* Pad to 16 byte boundary if needed. */
6117 if (!retval
&& TYPE_ALIGN (type
) >= 2 * BITS_PER_WORD
6118 && (cum
->words
% 2) != 0)
6125 /* Put entries into rvec[] for individual FP and vector fields, and
6126 for the chunks of memory that go in int regs. Note we start at
6127 element 1; 0 is reserved for an indication of using memory, and
6128 may or may not be filled in below. */
6129 rs6000_darwin64_record_arg_recurse (cum
, type
, 0, rvec
, &k
);
6130 rs6000_darwin64_record_arg_flush (cum
, typesize
* BITS_PER_UNIT
, rvec
, &k
);
6132 /* If any part of the struct went on the stack put all of it there.
6133 This hack is because the generic code for
6134 FUNCTION_ARG_PARTIAL_NREGS cannot handle cases where the register
6135 parts of the struct are not at the beginning. */
6139 return NULL_RTX
; /* doesn't go in registers at all */
6141 rvec
[0] = gen_rtx_EXPR_LIST (VOIDmode
, NULL_RTX
, const0_rtx
);
6143 if (k
> 1 || cum
->use_stack
)
6144 return gen_rtx_PARALLEL (BLKmode
, gen_rtvec_v (k
- kbase
, &rvec
[kbase
]));
6149 /* Determine where to place an argument in 64-bit mode with 32-bit ABI. */
6152 rs6000_mixed_function_arg (enum machine_mode mode
, tree type
, int align_words
)
6156 rtx rvec
[GP_ARG_NUM_REG
+ 1];
6158 if (align_words
>= GP_ARG_NUM_REG
)
6161 n_units
= rs6000_arg_size (mode
, type
);
6163 /* Optimize the simple case where the arg fits in one gpr, except in
6164 the case of BLKmode due to assign_parms assuming that registers are
6165 BITS_PER_WORD wide. */
6167 || (n_units
== 1 && mode
!= BLKmode
))
6168 return gen_rtx_REG (mode
, GP_ARG_MIN_REG
+ align_words
);
6171 if (align_words
+ n_units
> GP_ARG_NUM_REG
)
6172 /* Not all of the arg fits in gprs. Say that it goes in memory too,
6173 using a magic NULL_RTX component.
6174 This is not strictly correct. Only some of the arg belongs in
6175 memory, not all of it. However, the normal scheme using
6176 function_arg_partial_nregs can result in unusual subregs, eg.
6177 (subreg:SI (reg:DF) 4), which are not handled well. The code to
6178 store the whole arg to memory is often more efficient than code
6179 to store pieces, and we know that space is available in the right
6180 place for the whole arg. */
6181 rvec
[k
++] = gen_rtx_EXPR_LIST (VOIDmode
, NULL_RTX
, const0_rtx
);
6186 rtx r
= gen_rtx_REG (SImode
, GP_ARG_MIN_REG
+ align_words
);
6187 rtx off
= GEN_INT (i
++ * 4);
6188 rvec
[k
++] = gen_rtx_EXPR_LIST (VOIDmode
, r
, off
);
6190 while (++align_words
< GP_ARG_NUM_REG
&& --n_units
!= 0);
6192 return gen_rtx_PARALLEL (mode
, gen_rtvec_v (k
, rvec
));
6195 /* Determine where to put an argument to a function.
6196 Value is zero to push the argument on the stack,
6197 or a hard register in which to store the argument.
6199 MODE is the argument's machine mode.
6200 TYPE is the data type of the argument (as a tree).
6201 This is null for libcalls where that information may
6203 CUM is a variable of type CUMULATIVE_ARGS which gives info about
6204 the preceding args and about the function being called. It is
6205 not modified in this routine.
6206 NAMED is nonzero if this argument is a named parameter
6207 (otherwise it is an extra parameter matching an ellipsis).
6209 On RS/6000 the first eight words of non-FP are normally in registers
6210 and the rest are pushed. Under AIX, the first 13 FP args are in registers.
6211 Under V.4, the first 8 FP args are in registers.
6213 If this is floating-point and no prototype is specified, we use
6214 both an FP and integer register (or possibly FP reg and stack). Library
6215 functions (when CALL_LIBCALL is set) always have the proper types for args,
6216 so we can pass the FP value just in one register. emit_library_function
6217 doesn't support PARALLEL anyway.
6219 Note that for args passed by reference, function_arg will be called
6220 with MODE and TYPE set to that of the pointer to the arg, not the arg
6224 function_arg (CUMULATIVE_ARGS
*cum
, enum machine_mode mode
,
6225 tree type
, int named
)
6227 enum rs6000_abi abi
= DEFAULT_ABI
;
6229 /* Return a marker to indicate whether CR1 needs to set or clear the
6230 bit that V.4 uses to say fp args were passed in registers.
6231 Assume that we don't need the marker for software floating point,
6232 or compiler generated library calls. */
6233 if (mode
== VOIDmode
)
6236 && (cum
->call_cookie
& CALL_LIBCALL
) == 0
6238 || (cum
->nargs_prototype
< 0
6239 && (cum
->prototype
|| TARGET_NO_PROTOTYPE
))))
6241 /* For the SPE, we need to crxor CR6 always. */
6243 return GEN_INT (cum
->call_cookie
| CALL_V4_SET_FP_ARGS
);
6244 else if (TARGET_HARD_FLOAT
&& TARGET_FPRS
)
6245 return GEN_INT (cum
->call_cookie
6246 | ((cum
->fregno
== FP_ARG_MIN_REG
)
6247 ? CALL_V4_SET_FP_ARGS
6248 : CALL_V4_CLEAR_FP_ARGS
));
6251 return GEN_INT (cum
->call_cookie
);
6254 if (rs6000_darwin64_abi
&& mode
== BLKmode
6255 && TREE_CODE (type
) == RECORD_TYPE
)
6257 rtx rslt
= rs6000_darwin64_record_arg (cum
, type
, named
, false);
6258 if (rslt
!= NULL_RTX
)
6260 /* Else fall through to usual handling. */
6263 if (USE_ALTIVEC_FOR_ARG_P (cum
, mode
, type
, named
))
6264 if (TARGET_64BIT
&& ! cum
->prototype
)
6266 /* Vector parameters get passed in vector register
6267 and also in GPRs or memory, in absence of prototype. */
6270 align_words
= (cum
->words
+ 1) & ~1;
6272 if (align_words
>= GP_ARG_NUM_REG
)
6278 slot
= gen_rtx_REG (mode
, GP_ARG_MIN_REG
+ align_words
);
6280 return gen_rtx_PARALLEL (mode
,
6282 gen_rtx_EXPR_LIST (VOIDmode
,
6284 gen_rtx_EXPR_LIST (VOIDmode
,
6285 gen_rtx_REG (mode
, cum
->vregno
),
6289 return gen_rtx_REG (mode
, cum
->vregno
);
6290 else if (TARGET_ALTIVEC_ABI
6291 && (ALTIVEC_VECTOR_MODE (mode
)
6292 || (type
&& TREE_CODE (type
) == VECTOR_TYPE
6293 && int_size_in_bytes (type
) == 16)))
6295 if (named
|| abi
== ABI_V4
)
6299 /* Vector parameters to varargs functions under AIX or Darwin
6300 get passed in memory and possibly also in GPRs. */
6301 int align
, align_words
, n_words
;
6302 enum machine_mode part_mode
;
6304 /* Vector parameters must be 16-byte aligned. This places them at
6305 2 mod 4 in terms of words in 32-bit mode, since the parameter
6306 save area starts at offset 24 from the stack. In 64-bit mode,
6307 they just have to start on an even word, since the parameter
6308 save area is 16-byte aligned. */
6310 align
= (2 - cum
->words
) & 3;
6312 align
= cum
->words
& 1;
6313 align_words
= cum
->words
+ align
;
6315 /* Out of registers? Memory, then. */
6316 if (align_words
>= GP_ARG_NUM_REG
)
6319 if (TARGET_32BIT
&& TARGET_POWERPC64
)
6320 return rs6000_mixed_function_arg (mode
, type
, align_words
);
6322 /* The vector value goes in GPRs. Only the part of the
6323 value in GPRs is reported here. */
6325 n_words
= rs6000_arg_size (mode
, type
);
6326 if (align_words
+ n_words
> GP_ARG_NUM_REG
)
6327 /* Fortunately, there are only two possibilities, the value
6328 is either wholly in GPRs or half in GPRs and half not. */
6331 return gen_rtx_REG (part_mode
, GP_ARG_MIN_REG
+ align_words
);
6334 else if (TARGET_SPE_ABI
&& TARGET_SPE
6335 && (SPE_VECTOR_MODE (mode
)
6336 || (TARGET_E500_DOUBLE
&& (mode
== DFmode
6339 || mode
== TCmode
))))
6340 return rs6000_spe_function_arg (cum
, mode
, type
);
6342 else if (abi
== ABI_V4
)
6344 if (TARGET_HARD_FLOAT
&& TARGET_FPRS
6345 && ((TARGET_SINGLE_FLOAT
&& mode
== SFmode
)
6346 || (TARGET_DOUBLE_FLOAT
&& mode
== DFmode
)
6347 || (mode
== TFmode
&& !TARGET_IEEEQUAD
)
6348 || mode
== SDmode
|| mode
== DDmode
|| mode
== TDmode
))
6350 /* _Decimal128 must use an even/odd register pair. This assumes
6351 that the register number is odd when fregno is odd. */
6352 if (mode
== TDmode
&& (cum
->fregno
% 2) == 1)
6355 if (cum
->fregno
+ (mode
== TFmode
|| mode
== TDmode
? 1 : 0)
6356 <= FP_ARG_V4_MAX_REG
)
6357 return gen_rtx_REG (mode
, cum
->fregno
);
6363 int n_words
= rs6000_arg_size (mode
, type
);
6364 int gregno
= cum
->sysv_gregno
;
6366 /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
6367 (r7,r8) or (r9,r10). As does any other 2 word item such
6368 as complex int due to a historical mistake. */
6370 gregno
+= (1 - gregno
) & 1;
6372 /* Multi-reg args are not split between registers and stack. */
6373 if (gregno
+ n_words
- 1 > GP_ARG_MAX_REG
)
6376 if (TARGET_32BIT
&& TARGET_POWERPC64
)
6377 return rs6000_mixed_function_arg (mode
, type
,
6378 gregno
- GP_ARG_MIN_REG
);
6379 return gen_rtx_REG (mode
, gregno
);
6384 int align_words
= rs6000_parm_start (mode
, type
, cum
->words
);
6386 /* _Decimal128 must be passed in an even/odd float register pair.
6387 This assumes that the register number is odd when fregno is odd. */
6388 if (mode
== TDmode
&& (cum
->fregno
% 2) == 1)
6391 if (USE_FP_FOR_ARG_P (cum
, mode
, type
))
6393 rtx rvec
[GP_ARG_NUM_REG
+ 1];
6397 enum machine_mode fmode
= mode
;
6398 unsigned long n_fpreg
= (GET_MODE_SIZE (mode
) + 7) >> 3;
6400 if (cum
->fregno
+ n_fpreg
> FP_ARG_MAX_REG
+ 1)
6402 /* Currently, we only ever need one reg here because complex
6403 doubles are split. */
6404 gcc_assert (cum
->fregno
== FP_ARG_MAX_REG
6405 && (fmode
== TFmode
|| fmode
== TDmode
));
6407 /* Long double or _Decimal128 split over regs and memory. */
6408 fmode
= DECIMAL_FLOAT_MODE_P (fmode
) ? DDmode
: DFmode
;
6411 /* Do we also need to pass this arg in the parameter save
6414 && (cum
->nargs_prototype
<= 0
6415 || (DEFAULT_ABI
== ABI_AIX
6417 && align_words
>= GP_ARG_NUM_REG
)));
6419 if (!needs_psave
&& mode
== fmode
)
6420 return gen_rtx_REG (fmode
, cum
->fregno
);
6425 /* Describe the part that goes in gprs or the stack.
6426 This piece must come first, before the fprs. */
6427 if (align_words
< GP_ARG_NUM_REG
)
6429 unsigned long n_words
= rs6000_arg_size (mode
, type
);
6431 if (align_words
+ n_words
> GP_ARG_NUM_REG
6432 || (TARGET_32BIT
&& TARGET_POWERPC64
))
6434 /* If this is partially on the stack, then we only
6435 include the portion actually in registers here. */
6436 enum machine_mode rmode
= TARGET_32BIT
? SImode
: DImode
;
6439 if (align_words
+ n_words
> GP_ARG_NUM_REG
)
6440 /* Not all of the arg fits in gprs. Say that it
6441 goes in memory too, using a magic NULL_RTX
6442 component. Also see comment in
6443 rs6000_mixed_function_arg for why the normal
6444 function_arg_partial_nregs scheme doesn't work
6446 rvec
[k
++] = gen_rtx_EXPR_LIST (VOIDmode
, NULL_RTX
,
6450 r
= gen_rtx_REG (rmode
,
6451 GP_ARG_MIN_REG
+ align_words
);
6452 off
= GEN_INT (i
++ * GET_MODE_SIZE (rmode
));
6453 rvec
[k
++] = gen_rtx_EXPR_LIST (VOIDmode
, r
, off
);
6455 while (++align_words
< GP_ARG_NUM_REG
&& --n_words
!= 0);
6459 /* The whole arg fits in gprs. */
6460 r
= gen_rtx_REG (mode
, GP_ARG_MIN_REG
+ align_words
);
6461 rvec
[k
++] = gen_rtx_EXPR_LIST (VOIDmode
, r
, const0_rtx
);
6465 /* It's entirely in memory. */
6466 rvec
[k
++] = gen_rtx_EXPR_LIST (VOIDmode
, NULL_RTX
, const0_rtx
);
6469 /* Describe where this piece goes in the fprs. */
6470 r
= gen_rtx_REG (fmode
, cum
->fregno
);
6471 rvec
[k
++] = gen_rtx_EXPR_LIST (VOIDmode
, r
, const0_rtx
);
6473 return gen_rtx_PARALLEL (mode
, gen_rtvec_v (k
, rvec
));
6475 else if (align_words
< GP_ARG_NUM_REG
)
6477 if (TARGET_32BIT
&& TARGET_POWERPC64
)
6478 return rs6000_mixed_function_arg (mode
, type
, align_words
);
6480 if (mode
== BLKmode
)
6483 return gen_rtx_REG (mode
, GP_ARG_MIN_REG
+ align_words
);
6490 /* For an arg passed partly in registers and partly in memory, this is
6491 the number of bytes passed in registers. For args passed entirely in
6492 registers or entirely in memory, zero. When an arg is described by a
6493 PARALLEL, perhaps using more than one register type, this function
6494 returns the number of bytes used by the first element of the PARALLEL. */
6497 rs6000_arg_partial_bytes (CUMULATIVE_ARGS
*cum
, enum machine_mode mode
,
6498 tree type
, bool named
)
6503 if (DEFAULT_ABI
== ABI_V4
)
6506 if (USE_ALTIVEC_FOR_ARG_P (cum
, mode
, type
, named
)
6507 && cum
->nargs_prototype
>= 0)
6510 /* In this complicated case we just disable the partial_nregs code. */
6511 if (rs6000_darwin64_abi
&& mode
== BLKmode
6512 && TREE_CODE (type
) == RECORD_TYPE
6513 && int_size_in_bytes (type
) > 0)
6516 align_words
= rs6000_parm_start (mode
, type
, cum
->words
);
6518 if (USE_FP_FOR_ARG_P (cum
, mode
, type
))
6520 /* If we are passing this arg in the fixed parameter save area
6521 (gprs or memory) as well as fprs, then this function should
6522 return the number of partial bytes passed in the parameter
6523 save area rather than partial bytes passed in fprs. */
6525 && (cum
->nargs_prototype
<= 0
6526 || (DEFAULT_ABI
== ABI_AIX
6528 && align_words
>= GP_ARG_NUM_REG
)))
6530 else if (cum
->fregno
+ ((GET_MODE_SIZE (mode
) + 7) >> 3)
6531 > FP_ARG_MAX_REG
+ 1)
6532 ret
= (FP_ARG_MAX_REG
+ 1 - cum
->fregno
) * 8;
6533 else if (cum
->nargs_prototype
>= 0)
6537 if (align_words
< GP_ARG_NUM_REG
6538 && GP_ARG_NUM_REG
< align_words
+ rs6000_arg_size (mode
, type
))
6539 ret
= (GP_ARG_NUM_REG
- align_words
) * (TARGET_32BIT
? 4 : 8);
6541 if (ret
!= 0 && TARGET_DEBUG_ARG
)
6542 fprintf (stderr
, "rs6000_arg_partial_bytes: %d\n", ret
);
6547 /* A C expression that indicates when an argument must be passed by
6548 reference. If nonzero for an argument, a copy of that argument is
6549 made in memory and a pointer to the argument is passed instead of
6550 the argument itself. The pointer is passed in whatever way is
6551 appropriate for passing a pointer to that type.
6553 Under V.4, aggregates and long double are passed by reference.
6555 As an extension to all 32-bit ABIs, AltiVec vectors are passed by
6556 reference unless the AltiVec vector extension ABI is in force.
6558 As an extension to all ABIs, variable sized types are passed by
6562 rs6000_pass_by_reference (CUMULATIVE_ARGS
*cum ATTRIBUTE_UNUSED
,
6563 enum machine_mode mode
, const_tree type
,
6564 bool named ATTRIBUTE_UNUSED
)
6566 if (DEFAULT_ABI
== ABI_V4
&& TARGET_IEEEQUAD
&& mode
== TFmode
)
6568 if (TARGET_DEBUG_ARG
)
6569 fprintf (stderr
, "function_arg_pass_by_reference: V4 long double\n");
6576 if (DEFAULT_ABI
== ABI_V4
&& AGGREGATE_TYPE_P (type
))
6578 if (TARGET_DEBUG_ARG
)
6579 fprintf (stderr
, "function_arg_pass_by_reference: V4 aggregate\n");
6583 if (int_size_in_bytes (type
) < 0)
6585 if (TARGET_DEBUG_ARG
)
6586 fprintf (stderr
, "function_arg_pass_by_reference: variable size\n");
6590 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
6591 modes only exist for GCC vector types if -maltivec. */
6592 if (TARGET_32BIT
&& !TARGET_ALTIVEC_ABI
&& ALTIVEC_VECTOR_MODE (mode
))
6594 if (TARGET_DEBUG_ARG
)
6595 fprintf (stderr
, "function_arg_pass_by_reference: AltiVec\n");
6599 /* Pass synthetic vectors in memory. */
6600 if (TREE_CODE (type
) == VECTOR_TYPE
6601 && int_size_in_bytes (type
) > (TARGET_ALTIVEC_ABI
? 16 : 8))
6603 static bool warned_for_pass_big_vectors
= false;
6604 if (TARGET_DEBUG_ARG
)
6605 fprintf (stderr
, "function_arg_pass_by_reference: synthetic vector\n");
6606 if (!warned_for_pass_big_vectors
)
6608 warning (0, "GCC vector passed by reference: "
6609 "non-standard ABI extension with no compatibility guarantee");
6610 warned_for_pass_big_vectors
= true;
6619 rs6000_move_block_from_reg (int regno
, rtx x
, int nregs
)
6622 enum machine_mode reg_mode
= TARGET_32BIT
? SImode
: DImode
;
6627 for (i
= 0; i
< nregs
; i
++)
6629 rtx tem
= adjust_address_nv (x
, reg_mode
, i
* GET_MODE_SIZE (reg_mode
));
6630 if (reload_completed
)
6632 if (! strict_memory_address_p (reg_mode
, XEXP (tem
, 0)))
6635 tem
= simplify_gen_subreg (reg_mode
, x
, BLKmode
,
6636 i
* GET_MODE_SIZE (reg_mode
));
6639 tem
= replace_equiv_address (tem
, XEXP (tem
, 0));
6643 emit_move_insn (tem
, gen_rtx_REG (reg_mode
, regno
+ i
));
6647 /* Perform any needed actions needed for a function that is receiving a
6648 variable number of arguments.
6652 MODE and TYPE are the mode and type of the current parameter.
6654 PRETEND_SIZE is a variable that should be set to the amount of stack
6655 that must be pushed by the prolog to pretend that our caller pushed
6658 Normally, this macro will push all remaining incoming registers on the
6659 stack and set PRETEND_SIZE to the length of the registers pushed. */
6662 setup_incoming_varargs (CUMULATIVE_ARGS
*cum
, enum machine_mode mode
,
6663 tree type
, int *pretend_size ATTRIBUTE_UNUSED
,
6666 CUMULATIVE_ARGS next_cum
;
6667 int reg_size
= TARGET_32BIT
? 4 : 8;
6668 rtx save_area
= NULL_RTX
, mem
;
6669 int first_reg_offset
;
6672 /* Skip the last named argument. */
6674 function_arg_advance (&next_cum
, mode
, type
, 1, 0);
6676 if (DEFAULT_ABI
== ABI_V4
)
6678 first_reg_offset
= next_cum
.sysv_gregno
- GP_ARG_MIN_REG
;
6682 int gpr_reg_num
= 0, gpr_size
= 0, fpr_size
= 0;
6683 HOST_WIDE_INT offset
= 0;
6685 /* Try to optimize the size of the varargs save area.
6686 The ABI requires that ap.reg_save_area is doubleword
6687 aligned, but we don't need to allocate space for all
6688 the bytes, only those to which we actually will save
6690 if (cfun
->va_list_gpr_size
&& first_reg_offset
< GP_ARG_NUM_REG
)
6691 gpr_reg_num
= GP_ARG_NUM_REG
- first_reg_offset
;
6692 if (TARGET_HARD_FLOAT
&& TARGET_FPRS
6693 && next_cum
.fregno
<= FP_ARG_V4_MAX_REG
6694 && cfun
->va_list_fpr_size
)
6697 fpr_size
= (next_cum
.fregno
- FP_ARG_MIN_REG
)
6698 * UNITS_PER_FP_WORD
;
6699 if (cfun
->va_list_fpr_size
6700 < FP_ARG_V4_MAX_REG
+ 1 - next_cum
.fregno
)
6701 fpr_size
+= cfun
->va_list_fpr_size
* UNITS_PER_FP_WORD
;
6703 fpr_size
+= (FP_ARG_V4_MAX_REG
+ 1 - next_cum
.fregno
)
6704 * UNITS_PER_FP_WORD
;
6708 offset
= -((first_reg_offset
* reg_size
) & ~7);
6709 if (!fpr_size
&& gpr_reg_num
> cfun
->va_list_gpr_size
)
6711 gpr_reg_num
= cfun
->va_list_gpr_size
;
6712 if (reg_size
== 4 && (first_reg_offset
& 1))
6715 gpr_size
= (gpr_reg_num
* reg_size
+ 7) & ~7;
6718 offset
= - (int) (next_cum
.fregno
- FP_ARG_MIN_REG
)
6720 - (int) (GP_ARG_NUM_REG
* reg_size
);
6722 if (gpr_size
+ fpr_size
)
6725 = assign_stack_local (BLKmode
, gpr_size
+ fpr_size
, 64);
6726 gcc_assert (GET_CODE (reg_save_area
) == MEM
);
6727 reg_save_area
= XEXP (reg_save_area
, 0);
6728 if (GET_CODE (reg_save_area
) == PLUS
)
6730 gcc_assert (XEXP (reg_save_area
, 0)
6731 == virtual_stack_vars_rtx
);
6732 gcc_assert (GET_CODE (XEXP (reg_save_area
, 1)) == CONST_INT
);
6733 offset
+= INTVAL (XEXP (reg_save_area
, 1));
6736 gcc_assert (reg_save_area
== virtual_stack_vars_rtx
);
6739 cfun
->machine
->varargs_save_offset
= offset
;
6740 save_area
= plus_constant (virtual_stack_vars_rtx
, offset
);
6745 first_reg_offset
= next_cum
.words
;
6746 save_area
= virtual_incoming_args_rtx
;
6748 if (targetm
.calls
.must_pass_in_stack (mode
, type
))
6749 first_reg_offset
+= rs6000_arg_size (TYPE_MODE (type
), type
);
6752 set
= get_varargs_alias_set ();
6753 if (! no_rtl
&& first_reg_offset
< GP_ARG_NUM_REG
6754 && cfun
->va_list_gpr_size
)
6756 int nregs
= GP_ARG_NUM_REG
- first_reg_offset
;
6758 if (va_list_gpr_counter_field
)
6760 /* V4 va_list_gpr_size counts number of registers needed. */
6761 if (nregs
> cfun
->va_list_gpr_size
)
6762 nregs
= cfun
->va_list_gpr_size
;
6766 /* char * va_list instead counts number of bytes needed. */
6767 if (nregs
> cfun
->va_list_gpr_size
/ reg_size
)
6768 nregs
= cfun
->va_list_gpr_size
/ reg_size
;
6771 mem
= gen_rtx_MEM (BLKmode
,
6772 plus_constant (save_area
,
6773 first_reg_offset
* reg_size
));
6774 MEM_NOTRAP_P (mem
) = 1;
6775 set_mem_alias_set (mem
, set
);
6776 set_mem_align (mem
, BITS_PER_WORD
);
6778 rs6000_move_block_from_reg (GP_ARG_MIN_REG
+ first_reg_offset
, mem
,
6782 /* Save FP registers if needed. */
6783 if (DEFAULT_ABI
== ABI_V4
6784 && TARGET_HARD_FLOAT
&& TARGET_FPRS
6786 && next_cum
.fregno
<= FP_ARG_V4_MAX_REG
6787 && cfun
->va_list_fpr_size
)
6789 int fregno
= next_cum
.fregno
, nregs
;
6790 rtx cr1
= gen_rtx_REG (CCmode
, CR1_REGNO
);
6791 rtx lab
= gen_label_rtx ();
6792 int off
= (GP_ARG_NUM_REG
* reg_size
) + ((fregno
- FP_ARG_MIN_REG
)
6793 * UNITS_PER_FP_WORD
);
6796 (gen_rtx_SET (VOIDmode
,
6798 gen_rtx_IF_THEN_ELSE (VOIDmode
,
6799 gen_rtx_NE (VOIDmode
, cr1
,
6801 gen_rtx_LABEL_REF (VOIDmode
, lab
),
6805 fregno
<= FP_ARG_V4_MAX_REG
&& nregs
< cfun
->va_list_fpr_size
;
6806 fregno
++, off
+= UNITS_PER_FP_WORD
, nregs
++)
6808 mem
= gen_rtx_MEM ((TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
)
6810 plus_constant (save_area
, off
));
6811 MEM_NOTRAP_P (mem
) = 1;
6812 set_mem_alias_set (mem
, set
);
6813 set_mem_align (mem
, GET_MODE_ALIGNMENT (
6814 (TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
)
6815 ? DFmode
: SFmode
));
6816 emit_move_insn (mem
, gen_rtx_REG (
6817 (TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
)
6818 ? DFmode
: SFmode
, fregno
));
6825 /* Create the va_list data type. */
6828 rs6000_build_builtin_va_list (void)
6830 tree f_gpr
, f_fpr
, f_res
, f_ovf
, f_sav
, record
, type_decl
;
6832 /* For AIX, prefer 'char *' because that's what the system
6833 header files like. */
6834 if (DEFAULT_ABI
!= ABI_V4
)
6835 return build_pointer_type (char_type_node
);
6837 record
= (*lang_hooks
.types
.make_type
) (RECORD_TYPE
);
6838 type_decl
= build_decl (TYPE_DECL
, get_identifier ("__va_list_tag"), record
);
6840 f_gpr
= build_decl (FIELD_DECL
, get_identifier ("gpr"),
6841 unsigned_char_type_node
);
6842 f_fpr
= build_decl (FIELD_DECL
, get_identifier ("fpr"),
6843 unsigned_char_type_node
);
6844 /* Give the two bytes of padding a name, so that -Wpadded won't warn on
6846 f_res
= build_decl (FIELD_DECL
, get_identifier ("reserved"),
6847 short_unsigned_type_node
);
6848 f_ovf
= build_decl (FIELD_DECL
, get_identifier ("overflow_arg_area"),
6850 f_sav
= build_decl (FIELD_DECL
, get_identifier ("reg_save_area"),
6853 va_list_gpr_counter_field
= f_gpr
;
6854 va_list_fpr_counter_field
= f_fpr
;
6856 DECL_FIELD_CONTEXT (f_gpr
) = record
;
6857 DECL_FIELD_CONTEXT (f_fpr
) = record
;
6858 DECL_FIELD_CONTEXT (f_res
) = record
;
6859 DECL_FIELD_CONTEXT (f_ovf
) = record
;
6860 DECL_FIELD_CONTEXT (f_sav
) = record
;
6862 TREE_CHAIN (record
) = type_decl
;
6863 TYPE_NAME (record
) = type_decl
;
6864 TYPE_FIELDS (record
) = f_gpr
;
6865 TREE_CHAIN (f_gpr
) = f_fpr
;
6866 TREE_CHAIN (f_fpr
) = f_res
;
6867 TREE_CHAIN (f_res
) = f_ovf
;
6868 TREE_CHAIN (f_ovf
) = f_sav
;
6870 layout_type (record
);
6872 /* The correct type is an array type of one element. */
6873 return build_array_type (record
, build_index_type (size_zero_node
));
6876 /* Implement va_start. */
6879 rs6000_va_start (tree valist
, rtx nextarg
)
6881 HOST_WIDE_INT words
, n_gpr
, n_fpr
;
6882 tree f_gpr
, f_fpr
, f_res
, f_ovf
, f_sav
;
6883 tree gpr
, fpr
, ovf
, sav
, t
;
6885 /* Only SVR4 needs something special. */
6886 if (DEFAULT_ABI
!= ABI_V4
)
6888 std_expand_builtin_va_start (valist
, nextarg
);
6892 f_gpr
= TYPE_FIELDS (TREE_TYPE (va_list_type_node
));
6893 f_fpr
= TREE_CHAIN (f_gpr
);
6894 f_res
= TREE_CHAIN (f_fpr
);
6895 f_ovf
= TREE_CHAIN (f_res
);
6896 f_sav
= TREE_CHAIN (f_ovf
);
6898 valist
= build_va_arg_indirect_ref (valist
);
6899 gpr
= build3 (COMPONENT_REF
, TREE_TYPE (f_gpr
), valist
, f_gpr
, NULL_TREE
);
6900 fpr
= build3 (COMPONENT_REF
, TREE_TYPE (f_fpr
), unshare_expr (valist
),
6902 ovf
= build3 (COMPONENT_REF
, TREE_TYPE (f_ovf
), unshare_expr (valist
),
6904 sav
= build3 (COMPONENT_REF
, TREE_TYPE (f_sav
), unshare_expr (valist
),
6907 /* Count number of gp and fp argument registers used. */
6908 words
= crtl
->args
.info
.words
;
6909 n_gpr
= MIN (crtl
->args
.info
.sysv_gregno
- GP_ARG_MIN_REG
,
6911 n_fpr
= MIN (crtl
->args
.info
.fregno
- FP_ARG_MIN_REG
,
6914 if (TARGET_DEBUG_ARG
)
6915 fprintf (stderr
, "va_start: words = "HOST_WIDE_INT_PRINT_DEC
", n_gpr = "
6916 HOST_WIDE_INT_PRINT_DEC
", n_fpr = "HOST_WIDE_INT_PRINT_DEC
"\n",
6917 words
, n_gpr
, n_fpr
);
6919 if (cfun
->va_list_gpr_size
)
6921 t
= build2 (MODIFY_EXPR
, TREE_TYPE (gpr
), gpr
,
6922 build_int_cst (NULL_TREE
, n_gpr
));
6923 TREE_SIDE_EFFECTS (t
) = 1;
6924 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6927 if (cfun
->va_list_fpr_size
)
6929 t
= build2 (MODIFY_EXPR
, TREE_TYPE (fpr
), fpr
,
6930 build_int_cst (NULL_TREE
, n_fpr
));
6931 TREE_SIDE_EFFECTS (t
) = 1;
6932 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6935 /* Find the overflow area. */
6936 t
= make_tree (TREE_TYPE (ovf
), virtual_incoming_args_rtx
);
6938 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (ovf
), t
,
6939 size_int (words
* UNITS_PER_WORD
));
6940 t
= build2 (MODIFY_EXPR
, TREE_TYPE (ovf
), ovf
, t
);
6941 TREE_SIDE_EFFECTS (t
) = 1;
6942 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6944 /* If there were no va_arg invocations, don't set up the register
6946 if (!cfun
->va_list_gpr_size
6947 && !cfun
->va_list_fpr_size
6948 && n_gpr
< GP_ARG_NUM_REG
6949 && n_fpr
< FP_ARG_V4_MAX_REG
)
6952 /* Find the register save area. */
6953 t
= make_tree (TREE_TYPE (sav
), virtual_stack_vars_rtx
);
6954 if (cfun
->machine
->varargs_save_offset
)
6955 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (sav
), t
,
6956 size_int (cfun
->machine
->varargs_save_offset
));
6957 t
= build2 (MODIFY_EXPR
, TREE_TYPE (sav
), sav
, t
);
6958 TREE_SIDE_EFFECTS (t
) = 1;
6959 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6962 /* Implement va_arg. */
6965 rs6000_gimplify_va_arg (tree valist
, tree type
, gimple_seq
*pre_p
,
6968 tree f_gpr
, f_fpr
, f_res
, f_ovf
, f_sav
;
6969 tree gpr
, fpr
, ovf
, sav
, reg
, t
, u
;
6970 int size
, rsize
, n_reg
, sav_ofs
, sav_scale
;
6971 tree lab_false
, lab_over
, addr
;
6973 tree ptrtype
= build_pointer_type (type
);
6977 if (pass_by_reference (NULL
, TYPE_MODE (type
), type
, false))
6979 t
= rs6000_gimplify_va_arg (valist
, ptrtype
, pre_p
, post_p
);
6980 return build_va_arg_indirect_ref (t
);
6983 if (DEFAULT_ABI
!= ABI_V4
)
6985 if (targetm
.calls
.split_complex_arg
&& TREE_CODE (type
) == COMPLEX_TYPE
)
6987 tree elem_type
= TREE_TYPE (type
);
6988 enum machine_mode elem_mode
= TYPE_MODE (elem_type
);
6989 int elem_size
= GET_MODE_SIZE (elem_mode
);
6991 if (elem_size
< UNITS_PER_WORD
)
6993 tree real_part
, imag_part
;
6994 gimple_seq post
= NULL
;
6996 real_part
= rs6000_gimplify_va_arg (valist
, elem_type
, pre_p
,
6998 /* Copy the value into a temporary, lest the formal temporary
6999 be reused out from under us. */
7000 real_part
= get_initialized_tmp_var (real_part
, pre_p
, &post
);
7001 gimple_seq_add_seq (pre_p
, post
);
7003 imag_part
= rs6000_gimplify_va_arg (valist
, elem_type
, pre_p
,
7006 return build2 (COMPLEX_EXPR
, type
, real_part
, imag_part
);
7010 return std_gimplify_va_arg_expr (valist
, type
, pre_p
, post_p
);
7013 f_gpr
= TYPE_FIELDS (TREE_TYPE (va_list_type_node
));
7014 f_fpr
= TREE_CHAIN (f_gpr
);
7015 f_res
= TREE_CHAIN (f_fpr
);
7016 f_ovf
= TREE_CHAIN (f_res
);
7017 f_sav
= TREE_CHAIN (f_ovf
);
7019 valist
= build_va_arg_indirect_ref (valist
);
7020 gpr
= build3 (COMPONENT_REF
, TREE_TYPE (f_gpr
), valist
, f_gpr
, NULL_TREE
);
7021 fpr
= build3 (COMPONENT_REF
, TREE_TYPE (f_fpr
), unshare_expr (valist
),
7023 ovf
= build3 (COMPONENT_REF
, TREE_TYPE (f_ovf
), unshare_expr (valist
),
7025 sav
= build3 (COMPONENT_REF
, TREE_TYPE (f_sav
), unshare_expr (valist
),
7028 size
= int_size_in_bytes (type
);
7029 rsize
= (size
+ 3) / 4;
7032 if (TARGET_HARD_FLOAT
&& TARGET_FPRS
7033 && ((TARGET_SINGLE_FLOAT
&& TYPE_MODE (type
) == SFmode
)
7034 || (TARGET_DOUBLE_FLOAT
7035 && (TYPE_MODE (type
) == DFmode
7036 || TYPE_MODE (type
) == TFmode
7037 || TYPE_MODE (type
) == SDmode
7038 || TYPE_MODE (type
) == DDmode
7039 || TYPE_MODE (type
) == TDmode
))))
7041 /* FP args go in FP registers, if present. */
7043 n_reg
= (size
+ 7) / 8;
7044 sav_ofs
= ((TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
) ? 8 : 4) * 4;
7045 sav_scale
= ((TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
) ? 8 : 4);
7046 if (TYPE_MODE (type
) != SFmode
&& TYPE_MODE (type
) != SDmode
)
7051 /* Otherwise into GP registers. */
7060 /* Pull the value out of the saved registers.... */
7063 addr
= create_tmp_var (ptr_type_node
, "addr");
7064 DECL_POINTER_ALIAS_SET (addr
) = get_varargs_alias_set ();
7066 /* AltiVec vectors never go in registers when -mabi=altivec. */
7067 if (TARGET_ALTIVEC_ABI
&& ALTIVEC_VECTOR_MODE (TYPE_MODE (type
)))
7071 lab_false
= create_artificial_label ();
7072 lab_over
= create_artificial_label ();
7074 /* Long long and SPE vectors are aligned in the registers.
7075 As are any other 2 gpr item such as complex int due to a
7076 historical mistake. */
7078 if (n_reg
== 2 && reg
== gpr
)
7081 u
= build2 (BIT_AND_EXPR
, TREE_TYPE (reg
), unshare_expr (reg
),
7082 build_int_cst (TREE_TYPE (reg
), n_reg
- 1));
7083 u
= build2 (POSTINCREMENT_EXPR
, TREE_TYPE (reg
),
7084 unshare_expr (reg
), u
);
7086 /* _Decimal128 is passed in even/odd fpr pairs; the stored
7087 reg number is 0 for f1, so we want to make it odd. */
7088 else if (reg
== fpr
&& TYPE_MODE (type
) == TDmode
)
7090 t
= build2 (BIT_IOR_EXPR
, TREE_TYPE (reg
), unshare_expr (reg
),
7091 build_int_cst (TREE_TYPE (reg
), 1));
7092 u
= build2 (MODIFY_EXPR
, void_type_node
, unshare_expr (reg
), t
);
7095 t
= fold_convert (TREE_TYPE (reg
), size_int (8 - n_reg
+ 1));
7096 t
= build2 (GE_EXPR
, boolean_type_node
, u
, t
);
7097 u
= build1 (GOTO_EXPR
, void_type_node
, lab_false
);
7098 t
= build3 (COND_EXPR
, void_type_node
, t
, u
, NULL_TREE
);
7099 gimplify_and_add (t
, pre_p
);
7103 t
= build2 (POINTER_PLUS_EXPR
, ptr_type_node
, sav
, size_int (sav_ofs
));
7105 u
= build2 (POSTINCREMENT_EXPR
, TREE_TYPE (reg
), unshare_expr (reg
),
7106 build_int_cst (TREE_TYPE (reg
), n_reg
));
7107 u
= fold_convert (sizetype
, u
);
7108 u
= build2 (MULT_EXPR
, sizetype
, u
, size_int (sav_scale
));
7109 t
= build2 (POINTER_PLUS_EXPR
, ptr_type_node
, t
, u
);
7111 /* _Decimal32 varargs are located in the second word of the 64-bit
7112 FP register for 32-bit binaries. */
7113 if (!TARGET_POWERPC64
7114 && TARGET_HARD_FLOAT
&& TARGET_FPRS
7115 && TYPE_MODE (type
) == SDmode
)
7116 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (t
), t
, size_int (size
));
7118 gimplify_assign (addr
, t
, pre_p
);
7120 gimple_seq_add_stmt (pre_p
, gimple_build_goto (lab_over
));
7122 stmt
= gimple_build_label (lab_false
);
7123 gimple_seq_add_stmt (pre_p
, stmt
);
7125 if ((n_reg
== 2 && !regalign
) || n_reg
> 2)
7127 /* Ensure that we don't find any more args in regs.
7128 Alignment has taken care of for special cases. */
7129 gimplify_assign (reg
, build_int_cst (TREE_TYPE (reg
), 8), pre_p
);
7133 /* ... otherwise out of the overflow area. */
7135 /* Care for on-stack alignment if needed. */
7139 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (t
), t
, size_int (align
- 1));
7140 t
= fold_convert (sizetype
, t
);
7141 t
= build2 (BIT_AND_EXPR
, TREE_TYPE (t
), t
,
7143 t
= fold_convert (TREE_TYPE (ovf
), t
);
7145 gimplify_expr (&t
, pre_p
, NULL
, is_gimple_val
, fb_rvalue
);
7147 gimplify_assign (unshare_expr (addr
), t
, pre_p
);
7149 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (t
), t
, size_int (size
));
7150 gimplify_assign (unshare_expr (ovf
), t
, pre_p
);
7154 stmt
= gimple_build_label (lab_over
);
7155 gimple_seq_add_stmt (pre_p
, stmt
);
7158 if (STRICT_ALIGNMENT
7159 && (TYPE_ALIGN (type
)
7160 > (unsigned) BITS_PER_UNIT
* (align
< 4 ? 4 : align
)))
7162 /* The value (of type complex double, for example) may not be
7163 aligned in memory in the saved registers, so copy via a
7164 temporary. (This is the same code as used for SPARC.) */
7165 tree tmp
= create_tmp_var (type
, "va_arg_tmp");
7166 tree dest_addr
= build_fold_addr_expr (tmp
);
7168 tree copy
= build_call_expr (implicit_built_in_decls
[BUILT_IN_MEMCPY
],
7169 3, dest_addr
, addr
, size_int (rsize
* 4));
7171 gimplify_and_add (copy
, pre_p
);
7175 addr
= fold_convert (ptrtype
, addr
);
7176 return build_va_arg_indirect_ref (addr
);
7182 def_builtin (int mask
, const char *name
, tree type
, int code
)
7184 if ((mask
& target_flags
) || TARGET_PAIRED_FLOAT
)
7186 if (rs6000_builtin_decls
[code
])
7189 rs6000_builtin_decls
[code
] =
7190 add_builtin_function (name
, type
, code
, BUILT_IN_MD
,
7195 /* Simple ternary operations: VECd = foo (VECa, VECb, VECc). */
7197 static const struct builtin_description bdesc_3arg
[] =
7199 { MASK_ALTIVEC
, CODE_FOR_altivec_vmaddfp
, "__builtin_altivec_vmaddfp", ALTIVEC_BUILTIN_VMADDFP
},
7200 { MASK_ALTIVEC
, CODE_FOR_altivec_vmhaddshs
, "__builtin_altivec_vmhaddshs", ALTIVEC_BUILTIN_VMHADDSHS
},
7201 { MASK_ALTIVEC
, CODE_FOR_altivec_vmhraddshs
, "__builtin_altivec_vmhraddshs", ALTIVEC_BUILTIN_VMHRADDSHS
},
7202 { MASK_ALTIVEC
, CODE_FOR_altivec_vmladduhm
, "__builtin_altivec_vmladduhm", ALTIVEC_BUILTIN_VMLADDUHM
},
7203 { MASK_ALTIVEC
, CODE_FOR_altivec_vmsumubm
, "__builtin_altivec_vmsumubm", ALTIVEC_BUILTIN_VMSUMUBM
},
7204 { MASK_ALTIVEC
, CODE_FOR_altivec_vmsummbm
, "__builtin_altivec_vmsummbm", ALTIVEC_BUILTIN_VMSUMMBM
},
7205 { MASK_ALTIVEC
, CODE_FOR_altivec_vmsumuhm
, "__builtin_altivec_vmsumuhm", ALTIVEC_BUILTIN_VMSUMUHM
},
7206 { MASK_ALTIVEC
, CODE_FOR_altivec_vmsumshm
, "__builtin_altivec_vmsumshm", ALTIVEC_BUILTIN_VMSUMSHM
},
7207 { MASK_ALTIVEC
, CODE_FOR_altivec_vmsumuhs
, "__builtin_altivec_vmsumuhs", ALTIVEC_BUILTIN_VMSUMUHS
},
7208 { MASK_ALTIVEC
, CODE_FOR_altivec_vmsumshs
, "__builtin_altivec_vmsumshs", ALTIVEC_BUILTIN_VMSUMSHS
},
7209 { MASK_ALTIVEC
, CODE_FOR_altivec_vnmsubfp
, "__builtin_altivec_vnmsubfp", ALTIVEC_BUILTIN_VNMSUBFP
},
7210 { MASK_ALTIVEC
, CODE_FOR_altivec_vperm_v4sf
, "__builtin_altivec_vperm_4sf", ALTIVEC_BUILTIN_VPERM_4SF
},
7211 { MASK_ALTIVEC
, CODE_FOR_altivec_vperm_v4si
, "__builtin_altivec_vperm_4si", ALTIVEC_BUILTIN_VPERM_4SI
},
7212 { MASK_ALTIVEC
, CODE_FOR_altivec_vperm_v8hi
, "__builtin_altivec_vperm_8hi", ALTIVEC_BUILTIN_VPERM_8HI
},
7213 { MASK_ALTIVEC
, CODE_FOR_altivec_vperm_v16qi
, "__builtin_altivec_vperm_16qi", ALTIVEC_BUILTIN_VPERM_16QI
},
7214 { MASK_ALTIVEC
, CODE_FOR_altivec_vsel_v4sf
, "__builtin_altivec_vsel_4sf", ALTIVEC_BUILTIN_VSEL_4SF
},
7215 { MASK_ALTIVEC
, CODE_FOR_altivec_vsel_v4si
, "__builtin_altivec_vsel_4si", ALTIVEC_BUILTIN_VSEL_4SI
},
7216 { MASK_ALTIVEC
, CODE_FOR_altivec_vsel_v8hi
, "__builtin_altivec_vsel_8hi", ALTIVEC_BUILTIN_VSEL_8HI
},
7217 { MASK_ALTIVEC
, CODE_FOR_altivec_vsel_v16qi
, "__builtin_altivec_vsel_16qi", ALTIVEC_BUILTIN_VSEL_16QI
},
7218 { MASK_ALTIVEC
, CODE_FOR_altivec_vsldoi_v16qi
, "__builtin_altivec_vsldoi_16qi", ALTIVEC_BUILTIN_VSLDOI_16QI
},
7219 { MASK_ALTIVEC
, CODE_FOR_altivec_vsldoi_v8hi
, "__builtin_altivec_vsldoi_8hi", ALTIVEC_BUILTIN_VSLDOI_8HI
},
7220 { MASK_ALTIVEC
, CODE_FOR_altivec_vsldoi_v4si
, "__builtin_altivec_vsldoi_4si", ALTIVEC_BUILTIN_VSLDOI_4SI
},
7221 { MASK_ALTIVEC
, CODE_FOR_altivec_vsldoi_v4sf
, "__builtin_altivec_vsldoi_4sf", ALTIVEC_BUILTIN_VSLDOI_4SF
},
7223 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_madd", ALTIVEC_BUILTIN_VEC_MADD
},
7224 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_madds", ALTIVEC_BUILTIN_VEC_MADDS
},
7225 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_mladd", ALTIVEC_BUILTIN_VEC_MLADD
},
7226 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_mradds", ALTIVEC_BUILTIN_VEC_MRADDS
},
7227 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_msum", ALTIVEC_BUILTIN_VEC_MSUM
},
7228 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmsumshm", ALTIVEC_BUILTIN_VEC_VMSUMSHM
},
7229 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmsumuhm", ALTIVEC_BUILTIN_VEC_VMSUMUHM
},
7230 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmsummbm", ALTIVEC_BUILTIN_VEC_VMSUMMBM
},
7231 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmsumubm", ALTIVEC_BUILTIN_VEC_VMSUMUBM
},
7232 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_msums", ALTIVEC_BUILTIN_VEC_MSUMS
},
7233 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmsumshs", ALTIVEC_BUILTIN_VEC_VMSUMSHS
},
7234 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmsumuhs", ALTIVEC_BUILTIN_VEC_VMSUMUHS
},
7235 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_nmsub", ALTIVEC_BUILTIN_VEC_NMSUB
},
7236 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_perm", ALTIVEC_BUILTIN_VEC_PERM
},
7237 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sel", ALTIVEC_BUILTIN_VEC_SEL
},
7239 { 0, CODE_FOR_paired_msub
, "__builtin_paired_msub", PAIRED_BUILTIN_MSUB
},
7240 { 0, CODE_FOR_paired_madd
, "__builtin_paired_madd", PAIRED_BUILTIN_MADD
},
7241 { 0, CODE_FOR_paired_madds0
, "__builtin_paired_madds0", PAIRED_BUILTIN_MADDS0
},
7242 { 0, CODE_FOR_paired_madds1
, "__builtin_paired_madds1", PAIRED_BUILTIN_MADDS1
},
7243 { 0, CODE_FOR_paired_nmsub
, "__builtin_paired_nmsub", PAIRED_BUILTIN_NMSUB
},
7244 { 0, CODE_FOR_paired_nmadd
, "__builtin_paired_nmadd", PAIRED_BUILTIN_NMADD
},
7245 { 0, CODE_FOR_paired_sum0
, "__builtin_paired_sum0", PAIRED_BUILTIN_SUM0
},
7246 { 0, CODE_FOR_paired_sum1
, "__builtin_paired_sum1", PAIRED_BUILTIN_SUM1
},
7247 { 0, CODE_FOR_selv2sf4
, "__builtin_paired_selv2sf4", PAIRED_BUILTIN_SELV2SF4
},
7250 /* DST operations: void foo (void *, const int, const char). */
7252 static const struct builtin_description bdesc_dst
[] =
7254 { MASK_ALTIVEC
, CODE_FOR_altivec_dst
, "__builtin_altivec_dst", ALTIVEC_BUILTIN_DST
},
7255 { MASK_ALTIVEC
, CODE_FOR_altivec_dstt
, "__builtin_altivec_dstt", ALTIVEC_BUILTIN_DSTT
},
7256 { MASK_ALTIVEC
, CODE_FOR_altivec_dstst
, "__builtin_altivec_dstst", ALTIVEC_BUILTIN_DSTST
},
7257 { MASK_ALTIVEC
, CODE_FOR_altivec_dststt
, "__builtin_altivec_dststt", ALTIVEC_BUILTIN_DSTSTT
},
7259 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_dst", ALTIVEC_BUILTIN_VEC_DST
},
7260 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_dstt", ALTIVEC_BUILTIN_VEC_DSTT
},
7261 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_dstst", ALTIVEC_BUILTIN_VEC_DSTST
},
7262 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_dststt", ALTIVEC_BUILTIN_VEC_DSTSTT
}
7265 /* Simple binary operations: VECc = foo (VECa, VECb). */
7267 static struct builtin_description bdesc_2arg
[] =
7269 { MASK_ALTIVEC
, CODE_FOR_addv16qi3
, "__builtin_altivec_vaddubm", ALTIVEC_BUILTIN_VADDUBM
},
7270 { MASK_ALTIVEC
, CODE_FOR_addv8hi3
, "__builtin_altivec_vadduhm", ALTIVEC_BUILTIN_VADDUHM
},
7271 { MASK_ALTIVEC
, CODE_FOR_addv4si3
, "__builtin_altivec_vadduwm", ALTIVEC_BUILTIN_VADDUWM
},
7272 { MASK_ALTIVEC
, CODE_FOR_addv4sf3
, "__builtin_altivec_vaddfp", ALTIVEC_BUILTIN_VADDFP
},
7273 { MASK_ALTIVEC
, CODE_FOR_altivec_vaddcuw
, "__builtin_altivec_vaddcuw", ALTIVEC_BUILTIN_VADDCUW
},
7274 { MASK_ALTIVEC
, CODE_FOR_altivec_vaddubs
, "__builtin_altivec_vaddubs", ALTIVEC_BUILTIN_VADDUBS
},
7275 { MASK_ALTIVEC
, CODE_FOR_altivec_vaddsbs
, "__builtin_altivec_vaddsbs", ALTIVEC_BUILTIN_VADDSBS
},
7276 { MASK_ALTIVEC
, CODE_FOR_altivec_vadduhs
, "__builtin_altivec_vadduhs", ALTIVEC_BUILTIN_VADDUHS
},
7277 { MASK_ALTIVEC
, CODE_FOR_altivec_vaddshs
, "__builtin_altivec_vaddshs", ALTIVEC_BUILTIN_VADDSHS
},
7278 { MASK_ALTIVEC
, CODE_FOR_altivec_vadduws
, "__builtin_altivec_vadduws", ALTIVEC_BUILTIN_VADDUWS
},
7279 { MASK_ALTIVEC
, CODE_FOR_altivec_vaddsws
, "__builtin_altivec_vaddsws", ALTIVEC_BUILTIN_VADDSWS
},
7280 { MASK_ALTIVEC
, CODE_FOR_andv4si3
, "__builtin_altivec_vand", ALTIVEC_BUILTIN_VAND
},
7281 { MASK_ALTIVEC
, CODE_FOR_andcv4si3
, "__builtin_altivec_vandc", ALTIVEC_BUILTIN_VANDC
},
7282 { MASK_ALTIVEC
, CODE_FOR_altivec_vavgub
, "__builtin_altivec_vavgub", ALTIVEC_BUILTIN_VAVGUB
},
7283 { MASK_ALTIVEC
, CODE_FOR_altivec_vavgsb
, "__builtin_altivec_vavgsb", ALTIVEC_BUILTIN_VAVGSB
},
7284 { MASK_ALTIVEC
, CODE_FOR_altivec_vavguh
, "__builtin_altivec_vavguh", ALTIVEC_BUILTIN_VAVGUH
},
7285 { MASK_ALTIVEC
, CODE_FOR_altivec_vavgsh
, "__builtin_altivec_vavgsh", ALTIVEC_BUILTIN_VAVGSH
},
7286 { MASK_ALTIVEC
, CODE_FOR_altivec_vavguw
, "__builtin_altivec_vavguw", ALTIVEC_BUILTIN_VAVGUW
},
7287 { MASK_ALTIVEC
, CODE_FOR_altivec_vavgsw
, "__builtin_altivec_vavgsw", ALTIVEC_BUILTIN_VAVGSW
},
7288 { MASK_ALTIVEC
, CODE_FOR_altivec_vcfux
, "__builtin_altivec_vcfux", ALTIVEC_BUILTIN_VCFUX
},
7289 { MASK_ALTIVEC
, CODE_FOR_altivec_vcfsx
, "__builtin_altivec_vcfsx", ALTIVEC_BUILTIN_VCFSX
},
7290 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpbfp
, "__builtin_altivec_vcmpbfp", ALTIVEC_BUILTIN_VCMPBFP
},
7291 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpequb
, "__builtin_altivec_vcmpequb", ALTIVEC_BUILTIN_VCMPEQUB
},
7292 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpequh
, "__builtin_altivec_vcmpequh", ALTIVEC_BUILTIN_VCMPEQUH
},
7293 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpequw
, "__builtin_altivec_vcmpequw", ALTIVEC_BUILTIN_VCMPEQUW
},
7294 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpeqfp
, "__builtin_altivec_vcmpeqfp", ALTIVEC_BUILTIN_VCMPEQFP
},
7295 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpgefp
, "__builtin_altivec_vcmpgefp", ALTIVEC_BUILTIN_VCMPGEFP
},
7296 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpgtub
, "__builtin_altivec_vcmpgtub", ALTIVEC_BUILTIN_VCMPGTUB
},
7297 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpgtsb
, "__builtin_altivec_vcmpgtsb", ALTIVEC_BUILTIN_VCMPGTSB
},
7298 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpgtuh
, "__builtin_altivec_vcmpgtuh", ALTIVEC_BUILTIN_VCMPGTUH
},
7299 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpgtsh
, "__builtin_altivec_vcmpgtsh", ALTIVEC_BUILTIN_VCMPGTSH
},
7300 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpgtuw
, "__builtin_altivec_vcmpgtuw", ALTIVEC_BUILTIN_VCMPGTUW
},
7301 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpgtsw
, "__builtin_altivec_vcmpgtsw", ALTIVEC_BUILTIN_VCMPGTSW
},
7302 { MASK_ALTIVEC
, CODE_FOR_altivec_vcmpgtfp
, "__builtin_altivec_vcmpgtfp", ALTIVEC_BUILTIN_VCMPGTFP
},
7303 { MASK_ALTIVEC
, CODE_FOR_altivec_vctsxs
, "__builtin_altivec_vctsxs", ALTIVEC_BUILTIN_VCTSXS
},
7304 { MASK_ALTIVEC
, CODE_FOR_altivec_vctuxs
, "__builtin_altivec_vctuxs", ALTIVEC_BUILTIN_VCTUXS
},
7305 { MASK_ALTIVEC
, CODE_FOR_umaxv16qi3
, "__builtin_altivec_vmaxub", ALTIVEC_BUILTIN_VMAXUB
},
7306 { MASK_ALTIVEC
, CODE_FOR_smaxv16qi3
, "__builtin_altivec_vmaxsb", ALTIVEC_BUILTIN_VMAXSB
},
7307 { MASK_ALTIVEC
, CODE_FOR_umaxv8hi3
, "__builtin_altivec_vmaxuh", ALTIVEC_BUILTIN_VMAXUH
},
7308 { MASK_ALTIVEC
, CODE_FOR_smaxv8hi3
, "__builtin_altivec_vmaxsh", ALTIVEC_BUILTIN_VMAXSH
},
7309 { MASK_ALTIVEC
, CODE_FOR_umaxv4si3
, "__builtin_altivec_vmaxuw", ALTIVEC_BUILTIN_VMAXUW
},
7310 { MASK_ALTIVEC
, CODE_FOR_smaxv4si3
, "__builtin_altivec_vmaxsw", ALTIVEC_BUILTIN_VMAXSW
},
7311 { MASK_ALTIVEC
, CODE_FOR_smaxv4sf3
, "__builtin_altivec_vmaxfp", ALTIVEC_BUILTIN_VMAXFP
},
7312 { MASK_ALTIVEC
, CODE_FOR_altivec_vmrghb
, "__builtin_altivec_vmrghb", ALTIVEC_BUILTIN_VMRGHB
},
7313 { MASK_ALTIVEC
, CODE_FOR_altivec_vmrghh
, "__builtin_altivec_vmrghh", ALTIVEC_BUILTIN_VMRGHH
},
7314 { MASK_ALTIVEC
, CODE_FOR_altivec_vmrghw
, "__builtin_altivec_vmrghw", ALTIVEC_BUILTIN_VMRGHW
},
7315 { MASK_ALTIVEC
, CODE_FOR_altivec_vmrglb
, "__builtin_altivec_vmrglb", ALTIVEC_BUILTIN_VMRGLB
},
7316 { MASK_ALTIVEC
, CODE_FOR_altivec_vmrglh
, "__builtin_altivec_vmrglh", ALTIVEC_BUILTIN_VMRGLH
},
7317 { MASK_ALTIVEC
, CODE_FOR_altivec_vmrglw
, "__builtin_altivec_vmrglw", ALTIVEC_BUILTIN_VMRGLW
},
7318 { MASK_ALTIVEC
, CODE_FOR_uminv16qi3
, "__builtin_altivec_vminub", ALTIVEC_BUILTIN_VMINUB
},
7319 { MASK_ALTIVEC
, CODE_FOR_sminv16qi3
, "__builtin_altivec_vminsb", ALTIVEC_BUILTIN_VMINSB
},
7320 { MASK_ALTIVEC
, CODE_FOR_uminv8hi3
, "__builtin_altivec_vminuh", ALTIVEC_BUILTIN_VMINUH
},
7321 { MASK_ALTIVEC
, CODE_FOR_sminv8hi3
, "__builtin_altivec_vminsh", ALTIVEC_BUILTIN_VMINSH
},
7322 { MASK_ALTIVEC
, CODE_FOR_uminv4si3
, "__builtin_altivec_vminuw", ALTIVEC_BUILTIN_VMINUW
},
7323 { MASK_ALTIVEC
, CODE_FOR_sminv4si3
, "__builtin_altivec_vminsw", ALTIVEC_BUILTIN_VMINSW
},
7324 { MASK_ALTIVEC
, CODE_FOR_sminv4sf3
, "__builtin_altivec_vminfp", ALTIVEC_BUILTIN_VMINFP
},
7325 { MASK_ALTIVEC
, CODE_FOR_altivec_vmuleub
, "__builtin_altivec_vmuleub", ALTIVEC_BUILTIN_VMULEUB
},
7326 { MASK_ALTIVEC
, CODE_FOR_altivec_vmulesb
, "__builtin_altivec_vmulesb", ALTIVEC_BUILTIN_VMULESB
},
7327 { MASK_ALTIVEC
, CODE_FOR_altivec_vmuleuh
, "__builtin_altivec_vmuleuh", ALTIVEC_BUILTIN_VMULEUH
},
7328 { MASK_ALTIVEC
, CODE_FOR_altivec_vmulesh
, "__builtin_altivec_vmulesh", ALTIVEC_BUILTIN_VMULESH
},
7329 { MASK_ALTIVEC
, CODE_FOR_altivec_vmuloub
, "__builtin_altivec_vmuloub", ALTIVEC_BUILTIN_VMULOUB
},
7330 { MASK_ALTIVEC
, CODE_FOR_altivec_vmulosb
, "__builtin_altivec_vmulosb", ALTIVEC_BUILTIN_VMULOSB
},
7331 { MASK_ALTIVEC
, CODE_FOR_altivec_vmulouh
, "__builtin_altivec_vmulouh", ALTIVEC_BUILTIN_VMULOUH
},
7332 { MASK_ALTIVEC
, CODE_FOR_altivec_vmulosh
, "__builtin_altivec_vmulosh", ALTIVEC_BUILTIN_VMULOSH
},
7333 { MASK_ALTIVEC
, CODE_FOR_altivec_norv4si3
, "__builtin_altivec_vnor", ALTIVEC_BUILTIN_VNOR
},
7334 { MASK_ALTIVEC
, CODE_FOR_iorv4si3
, "__builtin_altivec_vor", ALTIVEC_BUILTIN_VOR
},
7335 { MASK_ALTIVEC
, CODE_FOR_altivec_vpkuhum
, "__builtin_altivec_vpkuhum", ALTIVEC_BUILTIN_VPKUHUM
},
7336 { MASK_ALTIVEC
, CODE_FOR_altivec_vpkuwum
, "__builtin_altivec_vpkuwum", ALTIVEC_BUILTIN_VPKUWUM
},
7337 { MASK_ALTIVEC
, CODE_FOR_altivec_vpkpx
, "__builtin_altivec_vpkpx", ALTIVEC_BUILTIN_VPKPX
},
7338 { MASK_ALTIVEC
, CODE_FOR_altivec_vpkshss
, "__builtin_altivec_vpkshss", ALTIVEC_BUILTIN_VPKSHSS
},
7339 { MASK_ALTIVEC
, CODE_FOR_altivec_vpkswss
, "__builtin_altivec_vpkswss", ALTIVEC_BUILTIN_VPKSWSS
},
7340 { MASK_ALTIVEC
, CODE_FOR_altivec_vpkuhus
, "__builtin_altivec_vpkuhus", ALTIVEC_BUILTIN_VPKUHUS
},
7341 { MASK_ALTIVEC
, CODE_FOR_altivec_vpkshus
, "__builtin_altivec_vpkshus", ALTIVEC_BUILTIN_VPKSHUS
},
7342 { MASK_ALTIVEC
, CODE_FOR_altivec_vpkuwus
, "__builtin_altivec_vpkuwus", ALTIVEC_BUILTIN_VPKUWUS
},
7343 { MASK_ALTIVEC
, CODE_FOR_altivec_vpkswus
, "__builtin_altivec_vpkswus", ALTIVEC_BUILTIN_VPKSWUS
},
7344 { MASK_ALTIVEC
, CODE_FOR_altivec_vrlb
, "__builtin_altivec_vrlb", ALTIVEC_BUILTIN_VRLB
},
7345 { MASK_ALTIVEC
, CODE_FOR_altivec_vrlh
, "__builtin_altivec_vrlh", ALTIVEC_BUILTIN_VRLH
},
7346 { MASK_ALTIVEC
, CODE_FOR_altivec_vrlw
, "__builtin_altivec_vrlw", ALTIVEC_BUILTIN_VRLW
},
7347 { MASK_ALTIVEC
, CODE_FOR_vashlv16qi3
, "__builtin_altivec_vslb", ALTIVEC_BUILTIN_VSLB
},
7348 { MASK_ALTIVEC
, CODE_FOR_vashlv8hi3
, "__builtin_altivec_vslh", ALTIVEC_BUILTIN_VSLH
},
7349 { MASK_ALTIVEC
, CODE_FOR_vashlv4si3
, "__builtin_altivec_vslw", ALTIVEC_BUILTIN_VSLW
},
7350 { MASK_ALTIVEC
, CODE_FOR_altivec_vsl
, "__builtin_altivec_vsl", ALTIVEC_BUILTIN_VSL
},
7351 { MASK_ALTIVEC
, CODE_FOR_altivec_vslo
, "__builtin_altivec_vslo", ALTIVEC_BUILTIN_VSLO
},
7352 { MASK_ALTIVEC
, CODE_FOR_altivec_vspltb
, "__builtin_altivec_vspltb", ALTIVEC_BUILTIN_VSPLTB
},
7353 { MASK_ALTIVEC
, CODE_FOR_altivec_vsplth
, "__builtin_altivec_vsplth", ALTIVEC_BUILTIN_VSPLTH
},
7354 { MASK_ALTIVEC
, CODE_FOR_altivec_vspltw
, "__builtin_altivec_vspltw", ALTIVEC_BUILTIN_VSPLTW
},
7355 { MASK_ALTIVEC
, CODE_FOR_vlshrv16qi3
, "__builtin_altivec_vsrb", ALTIVEC_BUILTIN_VSRB
},
7356 { MASK_ALTIVEC
, CODE_FOR_vlshrv8hi3
, "__builtin_altivec_vsrh", ALTIVEC_BUILTIN_VSRH
},
7357 { MASK_ALTIVEC
, CODE_FOR_vlshrv4si3
, "__builtin_altivec_vsrw", ALTIVEC_BUILTIN_VSRW
},
7358 { MASK_ALTIVEC
, CODE_FOR_vashrv16qi3
, "__builtin_altivec_vsrab", ALTIVEC_BUILTIN_VSRAB
},
7359 { MASK_ALTIVEC
, CODE_FOR_vashrv8hi3
, "__builtin_altivec_vsrah", ALTIVEC_BUILTIN_VSRAH
},
7360 { MASK_ALTIVEC
, CODE_FOR_vashrv4si3
, "__builtin_altivec_vsraw", ALTIVEC_BUILTIN_VSRAW
},
7361 { MASK_ALTIVEC
, CODE_FOR_altivec_vsr
, "__builtin_altivec_vsr", ALTIVEC_BUILTIN_VSR
},
7362 { MASK_ALTIVEC
, CODE_FOR_altivec_vsro
, "__builtin_altivec_vsro", ALTIVEC_BUILTIN_VSRO
},
7363 { MASK_ALTIVEC
, CODE_FOR_subv16qi3
, "__builtin_altivec_vsububm", ALTIVEC_BUILTIN_VSUBUBM
},
7364 { MASK_ALTIVEC
, CODE_FOR_subv8hi3
, "__builtin_altivec_vsubuhm", ALTIVEC_BUILTIN_VSUBUHM
},
7365 { MASK_ALTIVEC
, CODE_FOR_subv4si3
, "__builtin_altivec_vsubuwm", ALTIVEC_BUILTIN_VSUBUWM
},
7366 { MASK_ALTIVEC
, CODE_FOR_subv4sf3
, "__builtin_altivec_vsubfp", ALTIVEC_BUILTIN_VSUBFP
},
7367 { MASK_ALTIVEC
, CODE_FOR_altivec_vsubcuw
, "__builtin_altivec_vsubcuw", ALTIVEC_BUILTIN_VSUBCUW
},
7368 { MASK_ALTIVEC
, CODE_FOR_altivec_vsububs
, "__builtin_altivec_vsububs", ALTIVEC_BUILTIN_VSUBUBS
},
7369 { MASK_ALTIVEC
, CODE_FOR_altivec_vsubsbs
, "__builtin_altivec_vsubsbs", ALTIVEC_BUILTIN_VSUBSBS
},
7370 { MASK_ALTIVEC
, CODE_FOR_altivec_vsubuhs
, "__builtin_altivec_vsubuhs", ALTIVEC_BUILTIN_VSUBUHS
},
7371 { MASK_ALTIVEC
, CODE_FOR_altivec_vsubshs
, "__builtin_altivec_vsubshs", ALTIVEC_BUILTIN_VSUBSHS
},
7372 { MASK_ALTIVEC
, CODE_FOR_altivec_vsubuws
, "__builtin_altivec_vsubuws", ALTIVEC_BUILTIN_VSUBUWS
},
7373 { MASK_ALTIVEC
, CODE_FOR_altivec_vsubsws
, "__builtin_altivec_vsubsws", ALTIVEC_BUILTIN_VSUBSWS
},
7374 { MASK_ALTIVEC
, CODE_FOR_altivec_vsum4ubs
, "__builtin_altivec_vsum4ubs", ALTIVEC_BUILTIN_VSUM4UBS
},
7375 { MASK_ALTIVEC
, CODE_FOR_altivec_vsum4sbs
, "__builtin_altivec_vsum4sbs", ALTIVEC_BUILTIN_VSUM4SBS
},
7376 { MASK_ALTIVEC
, CODE_FOR_altivec_vsum4shs
, "__builtin_altivec_vsum4shs", ALTIVEC_BUILTIN_VSUM4SHS
},
7377 { MASK_ALTIVEC
, CODE_FOR_altivec_vsum2sws
, "__builtin_altivec_vsum2sws", ALTIVEC_BUILTIN_VSUM2SWS
},
7378 { MASK_ALTIVEC
, CODE_FOR_altivec_vsumsws
, "__builtin_altivec_vsumsws", ALTIVEC_BUILTIN_VSUMSWS
},
7379 { MASK_ALTIVEC
, CODE_FOR_xorv4si3
, "__builtin_altivec_vxor", ALTIVEC_BUILTIN_VXOR
},
7381 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_add", ALTIVEC_BUILTIN_VEC_ADD
},
7382 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vaddfp", ALTIVEC_BUILTIN_VEC_VADDFP
},
7383 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vadduwm", ALTIVEC_BUILTIN_VEC_VADDUWM
},
7384 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vadduhm", ALTIVEC_BUILTIN_VEC_VADDUHM
},
7385 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vaddubm", ALTIVEC_BUILTIN_VEC_VADDUBM
},
7386 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_addc", ALTIVEC_BUILTIN_VEC_ADDC
},
7387 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_adds", ALTIVEC_BUILTIN_VEC_ADDS
},
7388 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vaddsws", ALTIVEC_BUILTIN_VEC_VADDSWS
},
7389 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vadduws", ALTIVEC_BUILTIN_VEC_VADDUWS
},
7390 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vaddshs", ALTIVEC_BUILTIN_VEC_VADDSHS
},
7391 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vadduhs", ALTIVEC_BUILTIN_VEC_VADDUHS
},
7392 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vaddsbs", ALTIVEC_BUILTIN_VEC_VADDSBS
},
7393 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vaddubs", ALTIVEC_BUILTIN_VEC_VADDUBS
},
7394 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_and", ALTIVEC_BUILTIN_VEC_AND
},
7395 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_andc", ALTIVEC_BUILTIN_VEC_ANDC
},
7396 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_avg", ALTIVEC_BUILTIN_VEC_AVG
},
7397 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vavgsw", ALTIVEC_BUILTIN_VEC_VAVGSW
},
7398 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vavguw", ALTIVEC_BUILTIN_VEC_VAVGUW
},
7399 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vavgsh", ALTIVEC_BUILTIN_VEC_VAVGSH
},
7400 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vavguh", ALTIVEC_BUILTIN_VEC_VAVGUH
},
7401 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vavgsb", ALTIVEC_BUILTIN_VEC_VAVGSB
},
7402 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vavgub", ALTIVEC_BUILTIN_VEC_VAVGUB
},
7403 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_cmpb", ALTIVEC_BUILTIN_VEC_CMPB
},
7404 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_cmpeq", ALTIVEC_BUILTIN_VEC_CMPEQ
},
7405 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpeqfp", ALTIVEC_BUILTIN_VEC_VCMPEQFP
},
7406 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpequw", ALTIVEC_BUILTIN_VEC_VCMPEQUW
},
7407 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpequh", ALTIVEC_BUILTIN_VEC_VCMPEQUH
},
7408 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpequb", ALTIVEC_BUILTIN_VEC_VCMPEQUB
},
7409 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_cmpge", ALTIVEC_BUILTIN_VEC_CMPGE
},
7410 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_cmpgt", ALTIVEC_BUILTIN_VEC_CMPGT
},
7411 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpgtfp", ALTIVEC_BUILTIN_VEC_VCMPGTFP
},
7412 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpgtsw", ALTIVEC_BUILTIN_VEC_VCMPGTSW
},
7413 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpgtuw", ALTIVEC_BUILTIN_VEC_VCMPGTUW
},
7414 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpgtsh", ALTIVEC_BUILTIN_VEC_VCMPGTSH
},
7415 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpgtuh", ALTIVEC_BUILTIN_VEC_VCMPGTUH
},
7416 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpgtsb", ALTIVEC_BUILTIN_VEC_VCMPGTSB
},
7417 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vcmpgtub", ALTIVEC_BUILTIN_VEC_VCMPGTUB
},
7418 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_cmple", ALTIVEC_BUILTIN_VEC_CMPLE
},
7419 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_cmplt", ALTIVEC_BUILTIN_VEC_CMPLT
},
7420 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_max", ALTIVEC_BUILTIN_VEC_MAX
},
7421 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmaxfp", ALTIVEC_BUILTIN_VEC_VMAXFP
},
7422 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmaxsw", ALTIVEC_BUILTIN_VEC_VMAXSW
},
7423 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmaxuw", ALTIVEC_BUILTIN_VEC_VMAXUW
},
7424 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmaxsh", ALTIVEC_BUILTIN_VEC_VMAXSH
},
7425 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmaxuh", ALTIVEC_BUILTIN_VEC_VMAXUH
},
7426 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmaxsb", ALTIVEC_BUILTIN_VEC_VMAXSB
},
7427 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmaxub", ALTIVEC_BUILTIN_VEC_VMAXUB
},
7428 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_mergeh", ALTIVEC_BUILTIN_VEC_MERGEH
},
7429 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmrghw", ALTIVEC_BUILTIN_VEC_VMRGHW
},
7430 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmrghh", ALTIVEC_BUILTIN_VEC_VMRGHH
},
7431 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmrghb", ALTIVEC_BUILTIN_VEC_VMRGHB
},
7432 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_mergel", ALTIVEC_BUILTIN_VEC_MERGEL
},
7433 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmrglw", ALTIVEC_BUILTIN_VEC_VMRGLW
},
7434 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmrglh", ALTIVEC_BUILTIN_VEC_VMRGLH
},
7435 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmrglb", ALTIVEC_BUILTIN_VEC_VMRGLB
},
7436 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_min", ALTIVEC_BUILTIN_VEC_MIN
},
7437 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vminfp", ALTIVEC_BUILTIN_VEC_VMINFP
},
7438 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vminsw", ALTIVEC_BUILTIN_VEC_VMINSW
},
7439 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vminuw", ALTIVEC_BUILTIN_VEC_VMINUW
},
7440 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vminsh", ALTIVEC_BUILTIN_VEC_VMINSH
},
7441 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vminuh", ALTIVEC_BUILTIN_VEC_VMINUH
},
7442 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vminsb", ALTIVEC_BUILTIN_VEC_VMINSB
},
7443 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vminub", ALTIVEC_BUILTIN_VEC_VMINUB
},
7444 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_mule", ALTIVEC_BUILTIN_VEC_MULE
},
7445 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmuleub", ALTIVEC_BUILTIN_VEC_VMULEUB
},
7446 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmulesb", ALTIVEC_BUILTIN_VEC_VMULESB
},
7447 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmuleuh", ALTIVEC_BUILTIN_VEC_VMULEUH
},
7448 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmulesh", ALTIVEC_BUILTIN_VEC_VMULESH
},
7449 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_mulo", ALTIVEC_BUILTIN_VEC_MULO
},
7450 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmulosh", ALTIVEC_BUILTIN_VEC_VMULOSH
},
7451 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmulouh", ALTIVEC_BUILTIN_VEC_VMULOUH
},
7452 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmulosb", ALTIVEC_BUILTIN_VEC_VMULOSB
},
7453 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vmuloub", ALTIVEC_BUILTIN_VEC_VMULOUB
},
7454 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_nor", ALTIVEC_BUILTIN_VEC_NOR
},
7455 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_or", ALTIVEC_BUILTIN_VEC_OR
},
7456 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_pack", ALTIVEC_BUILTIN_VEC_PACK
},
7457 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vpkuwum", ALTIVEC_BUILTIN_VEC_VPKUWUM
},
7458 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vpkuhum", ALTIVEC_BUILTIN_VEC_VPKUHUM
},
7459 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_packpx", ALTIVEC_BUILTIN_VEC_PACKPX
},
7460 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_packs", ALTIVEC_BUILTIN_VEC_PACKS
},
7461 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vpkswss", ALTIVEC_BUILTIN_VEC_VPKSWSS
},
7462 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vpkuwus", ALTIVEC_BUILTIN_VEC_VPKUWUS
},
7463 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vpkshss", ALTIVEC_BUILTIN_VEC_VPKSHSS
},
7464 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vpkuhus", ALTIVEC_BUILTIN_VEC_VPKUHUS
},
7465 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_packsu", ALTIVEC_BUILTIN_VEC_PACKSU
},
7466 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vpkswus", ALTIVEC_BUILTIN_VEC_VPKSWUS
},
7467 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vpkshus", ALTIVEC_BUILTIN_VEC_VPKSHUS
},
7468 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_rl", ALTIVEC_BUILTIN_VEC_RL
},
7469 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vrlw", ALTIVEC_BUILTIN_VEC_VRLW
},
7470 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vrlh", ALTIVEC_BUILTIN_VEC_VRLH
},
7471 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vrlb", ALTIVEC_BUILTIN_VEC_VRLB
},
7472 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sl", ALTIVEC_BUILTIN_VEC_SL
},
7473 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vslw", ALTIVEC_BUILTIN_VEC_VSLW
},
7474 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vslh", ALTIVEC_BUILTIN_VEC_VSLH
},
7475 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vslb", ALTIVEC_BUILTIN_VEC_VSLB
},
7476 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sll", ALTIVEC_BUILTIN_VEC_SLL
},
7477 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_slo", ALTIVEC_BUILTIN_VEC_SLO
},
7478 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sr", ALTIVEC_BUILTIN_VEC_SR
},
7479 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsrw", ALTIVEC_BUILTIN_VEC_VSRW
},
7480 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsrh", ALTIVEC_BUILTIN_VEC_VSRH
},
7481 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsrb", ALTIVEC_BUILTIN_VEC_VSRB
},
7482 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sra", ALTIVEC_BUILTIN_VEC_SRA
},
7483 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsraw", ALTIVEC_BUILTIN_VEC_VSRAW
},
7484 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsrah", ALTIVEC_BUILTIN_VEC_VSRAH
},
7485 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsrab", ALTIVEC_BUILTIN_VEC_VSRAB
},
7486 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_srl", ALTIVEC_BUILTIN_VEC_SRL
},
7487 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sro", ALTIVEC_BUILTIN_VEC_SRO
},
7488 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sub", ALTIVEC_BUILTIN_VEC_SUB
},
7489 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsubfp", ALTIVEC_BUILTIN_VEC_VSUBFP
},
7490 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsubuwm", ALTIVEC_BUILTIN_VEC_VSUBUWM
},
7491 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsubuhm", ALTIVEC_BUILTIN_VEC_VSUBUHM
},
7492 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsububm", ALTIVEC_BUILTIN_VEC_VSUBUBM
},
7493 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_subc", ALTIVEC_BUILTIN_VEC_SUBC
},
7494 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_subs", ALTIVEC_BUILTIN_VEC_SUBS
},
7495 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsubsws", ALTIVEC_BUILTIN_VEC_VSUBSWS
},
7496 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsubuws", ALTIVEC_BUILTIN_VEC_VSUBUWS
},
7497 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsubshs", ALTIVEC_BUILTIN_VEC_VSUBSHS
},
7498 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsubuhs", ALTIVEC_BUILTIN_VEC_VSUBUHS
},
7499 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsubsbs", ALTIVEC_BUILTIN_VEC_VSUBSBS
},
7500 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsububs", ALTIVEC_BUILTIN_VEC_VSUBUBS
},
7501 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sum4s", ALTIVEC_BUILTIN_VEC_SUM4S
},
7502 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsum4shs", ALTIVEC_BUILTIN_VEC_VSUM4SHS
},
7503 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsum4sbs", ALTIVEC_BUILTIN_VEC_VSUM4SBS
},
7504 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vsum4ubs", ALTIVEC_BUILTIN_VEC_VSUM4UBS
},
7505 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sum2s", ALTIVEC_BUILTIN_VEC_SUM2S
},
7506 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_sums", ALTIVEC_BUILTIN_VEC_SUMS
},
7507 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_xor", ALTIVEC_BUILTIN_VEC_XOR
},
7509 { 0, CODE_FOR_divv2sf3
, "__builtin_paired_divv2sf3", PAIRED_BUILTIN_DIVV2SF3
},
7510 { 0, CODE_FOR_addv2sf3
, "__builtin_paired_addv2sf3", PAIRED_BUILTIN_ADDV2SF3
},
7511 { 0, CODE_FOR_subv2sf3
, "__builtin_paired_subv2sf3", PAIRED_BUILTIN_SUBV2SF3
},
7512 { 0, CODE_FOR_mulv2sf3
, "__builtin_paired_mulv2sf3", PAIRED_BUILTIN_MULV2SF3
},
7513 { 0, CODE_FOR_paired_muls0
, "__builtin_paired_muls0", PAIRED_BUILTIN_MULS0
},
7514 { 0, CODE_FOR_paired_muls1
, "__builtin_paired_muls1", PAIRED_BUILTIN_MULS1
},
7515 { 0, CODE_FOR_paired_merge00
, "__builtin_paired_merge00", PAIRED_BUILTIN_MERGE00
},
7516 { 0, CODE_FOR_paired_merge01
, "__builtin_paired_merge01", PAIRED_BUILTIN_MERGE01
},
7517 { 0, CODE_FOR_paired_merge10
, "__builtin_paired_merge10", PAIRED_BUILTIN_MERGE10
},
7518 { 0, CODE_FOR_paired_merge11
, "__builtin_paired_merge11", PAIRED_BUILTIN_MERGE11
},
7520 /* Place holder, leave as first spe builtin. */
7521 { 0, CODE_FOR_spe_evaddw
, "__builtin_spe_evaddw", SPE_BUILTIN_EVADDW
},
7522 { 0, CODE_FOR_spe_evand
, "__builtin_spe_evand", SPE_BUILTIN_EVAND
},
7523 { 0, CODE_FOR_spe_evandc
, "__builtin_spe_evandc", SPE_BUILTIN_EVANDC
},
7524 { 0, CODE_FOR_spe_evdivws
, "__builtin_spe_evdivws", SPE_BUILTIN_EVDIVWS
},
7525 { 0, CODE_FOR_spe_evdivwu
, "__builtin_spe_evdivwu", SPE_BUILTIN_EVDIVWU
},
7526 { 0, CODE_FOR_spe_eveqv
, "__builtin_spe_eveqv", SPE_BUILTIN_EVEQV
},
7527 { 0, CODE_FOR_spe_evfsadd
, "__builtin_spe_evfsadd", SPE_BUILTIN_EVFSADD
},
7528 { 0, CODE_FOR_spe_evfsdiv
, "__builtin_spe_evfsdiv", SPE_BUILTIN_EVFSDIV
},
7529 { 0, CODE_FOR_spe_evfsmul
, "__builtin_spe_evfsmul", SPE_BUILTIN_EVFSMUL
},
7530 { 0, CODE_FOR_spe_evfssub
, "__builtin_spe_evfssub", SPE_BUILTIN_EVFSSUB
},
7531 { 0, CODE_FOR_spe_evmergehi
, "__builtin_spe_evmergehi", SPE_BUILTIN_EVMERGEHI
},
7532 { 0, CODE_FOR_spe_evmergehilo
, "__builtin_spe_evmergehilo", SPE_BUILTIN_EVMERGEHILO
},
7533 { 0, CODE_FOR_spe_evmergelo
, "__builtin_spe_evmergelo", SPE_BUILTIN_EVMERGELO
},
7534 { 0, CODE_FOR_spe_evmergelohi
, "__builtin_spe_evmergelohi", SPE_BUILTIN_EVMERGELOHI
},
7535 { 0, CODE_FOR_spe_evmhegsmfaa
, "__builtin_spe_evmhegsmfaa", SPE_BUILTIN_EVMHEGSMFAA
},
7536 { 0, CODE_FOR_spe_evmhegsmfan
, "__builtin_spe_evmhegsmfan", SPE_BUILTIN_EVMHEGSMFAN
},
7537 { 0, CODE_FOR_spe_evmhegsmiaa
, "__builtin_spe_evmhegsmiaa", SPE_BUILTIN_EVMHEGSMIAA
},
7538 { 0, CODE_FOR_spe_evmhegsmian
, "__builtin_spe_evmhegsmian", SPE_BUILTIN_EVMHEGSMIAN
},
7539 { 0, CODE_FOR_spe_evmhegumiaa
, "__builtin_spe_evmhegumiaa", SPE_BUILTIN_EVMHEGUMIAA
},
7540 { 0, CODE_FOR_spe_evmhegumian
, "__builtin_spe_evmhegumian", SPE_BUILTIN_EVMHEGUMIAN
},
7541 { 0, CODE_FOR_spe_evmhesmf
, "__builtin_spe_evmhesmf", SPE_BUILTIN_EVMHESMF
},
7542 { 0, CODE_FOR_spe_evmhesmfa
, "__builtin_spe_evmhesmfa", SPE_BUILTIN_EVMHESMFA
},
7543 { 0, CODE_FOR_spe_evmhesmfaaw
, "__builtin_spe_evmhesmfaaw", SPE_BUILTIN_EVMHESMFAAW
},
7544 { 0, CODE_FOR_spe_evmhesmfanw
, "__builtin_spe_evmhesmfanw", SPE_BUILTIN_EVMHESMFANW
},
7545 { 0, CODE_FOR_spe_evmhesmi
, "__builtin_spe_evmhesmi", SPE_BUILTIN_EVMHESMI
},
7546 { 0, CODE_FOR_spe_evmhesmia
, "__builtin_spe_evmhesmia", SPE_BUILTIN_EVMHESMIA
},
7547 { 0, CODE_FOR_spe_evmhesmiaaw
, "__builtin_spe_evmhesmiaaw", SPE_BUILTIN_EVMHESMIAAW
},
7548 { 0, CODE_FOR_spe_evmhesmianw
, "__builtin_spe_evmhesmianw", SPE_BUILTIN_EVMHESMIANW
},
7549 { 0, CODE_FOR_spe_evmhessf
, "__builtin_spe_evmhessf", SPE_BUILTIN_EVMHESSF
},
7550 { 0, CODE_FOR_spe_evmhessfa
, "__builtin_spe_evmhessfa", SPE_BUILTIN_EVMHESSFA
},
7551 { 0, CODE_FOR_spe_evmhessfaaw
, "__builtin_spe_evmhessfaaw", SPE_BUILTIN_EVMHESSFAAW
},
7552 { 0, CODE_FOR_spe_evmhessfanw
, "__builtin_spe_evmhessfanw", SPE_BUILTIN_EVMHESSFANW
},
7553 { 0, CODE_FOR_spe_evmhessiaaw
, "__builtin_spe_evmhessiaaw", SPE_BUILTIN_EVMHESSIAAW
},
7554 { 0, CODE_FOR_spe_evmhessianw
, "__builtin_spe_evmhessianw", SPE_BUILTIN_EVMHESSIANW
},
7555 { 0, CODE_FOR_spe_evmheumi
, "__builtin_spe_evmheumi", SPE_BUILTIN_EVMHEUMI
},
7556 { 0, CODE_FOR_spe_evmheumia
, "__builtin_spe_evmheumia", SPE_BUILTIN_EVMHEUMIA
},
7557 { 0, CODE_FOR_spe_evmheumiaaw
, "__builtin_spe_evmheumiaaw", SPE_BUILTIN_EVMHEUMIAAW
},
7558 { 0, CODE_FOR_spe_evmheumianw
, "__builtin_spe_evmheumianw", SPE_BUILTIN_EVMHEUMIANW
},
7559 { 0, CODE_FOR_spe_evmheusiaaw
, "__builtin_spe_evmheusiaaw", SPE_BUILTIN_EVMHEUSIAAW
},
7560 { 0, CODE_FOR_spe_evmheusianw
, "__builtin_spe_evmheusianw", SPE_BUILTIN_EVMHEUSIANW
},
7561 { 0, CODE_FOR_spe_evmhogsmfaa
, "__builtin_spe_evmhogsmfaa", SPE_BUILTIN_EVMHOGSMFAA
},
7562 { 0, CODE_FOR_spe_evmhogsmfan
, "__builtin_spe_evmhogsmfan", SPE_BUILTIN_EVMHOGSMFAN
},
7563 { 0, CODE_FOR_spe_evmhogsmiaa
, "__builtin_spe_evmhogsmiaa", SPE_BUILTIN_EVMHOGSMIAA
},
7564 { 0, CODE_FOR_spe_evmhogsmian
, "__builtin_spe_evmhogsmian", SPE_BUILTIN_EVMHOGSMIAN
},
7565 { 0, CODE_FOR_spe_evmhogumiaa
, "__builtin_spe_evmhogumiaa", SPE_BUILTIN_EVMHOGUMIAA
},
7566 { 0, CODE_FOR_spe_evmhogumian
, "__builtin_spe_evmhogumian", SPE_BUILTIN_EVMHOGUMIAN
},
7567 { 0, CODE_FOR_spe_evmhosmf
, "__builtin_spe_evmhosmf", SPE_BUILTIN_EVMHOSMF
},
7568 { 0, CODE_FOR_spe_evmhosmfa
, "__builtin_spe_evmhosmfa", SPE_BUILTIN_EVMHOSMFA
},
7569 { 0, CODE_FOR_spe_evmhosmfaaw
, "__builtin_spe_evmhosmfaaw", SPE_BUILTIN_EVMHOSMFAAW
},
7570 { 0, CODE_FOR_spe_evmhosmfanw
, "__builtin_spe_evmhosmfanw", SPE_BUILTIN_EVMHOSMFANW
},
7571 { 0, CODE_FOR_spe_evmhosmi
, "__builtin_spe_evmhosmi", SPE_BUILTIN_EVMHOSMI
},
7572 { 0, CODE_FOR_spe_evmhosmia
, "__builtin_spe_evmhosmia", SPE_BUILTIN_EVMHOSMIA
},
7573 { 0, CODE_FOR_spe_evmhosmiaaw
, "__builtin_spe_evmhosmiaaw", SPE_BUILTIN_EVMHOSMIAAW
},
7574 { 0, CODE_FOR_spe_evmhosmianw
, "__builtin_spe_evmhosmianw", SPE_BUILTIN_EVMHOSMIANW
},
7575 { 0, CODE_FOR_spe_evmhossf
, "__builtin_spe_evmhossf", SPE_BUILTIN_EVMHOSSF
},
7576 { 0, CODE_FOR_spe_evmhossfa
, "__builtin_spe_evmhossfa", SPE_BUILTIN_EVMHOSSFA
},
7577 { 0, CODE_FOR_spe_evmhossfaaw
, "__builtin_spe_evmhossfaaw", SPE_BUILTIN_EVMHOSSFAAW
},
7578 { 0, CODE_FOR_spe_evmhossfanw
, "__builtin_spe_evmhossfanw", SPE_BUILTIN_EVMHOSSFANW
},
7579 { 0, CODE_FOR_spe_evmhossiaaw
, "__builtin_spe_evmhossiaaw", SPE_BUILTIN_EVMHOSSIAAW
},
7580 { 0, CODE_FOR_spe_evmhossianw
, "__builtin_spe_evmhossianw", SPE_BUILTIN_EVMHOSSIANW
},
7581 { 0, CODE_FOR_spe_evmhoumi
, "__builtin_spe_evmhoumi", SPE_BUILTIN_EVMHOUMI
},
7582 { 0, CODE_FOR_spe_evmhoumia
, "__builtin_spe_evmhoumia", SPE_BUILTIN_EVMHOUMIA
},
7583 { 0, CODE_FOR_spe_evmhoumiaaw
, "__builtin_spe_evmhoumiaaw", SPE_BUILTIN_EVMHOUMIAAW
},
7584 { 0, CODE_FOR_spe_evmhoumianw
, "__builtin_spe_evmhoumianw", SPE_BUILTIN_EVMHOUMIANW
},
7585 { 0, CODE_FOR_spe_evmhousiaaw
, "__builtin_spe_evmhousiaaw", SPE_BUILTIN_EVMHOUSIAAW
},
7586 { 0, CODE_FOR_spe_evmhousianw
, "__builtin_spe_evmhousianw", SPE_BUILTIN_EVMHOUSIANW
},
7587 { 0, CODE_FOR_spe_evmwhsmf
, "__builtin_spe_evmwhsmf", SPE_BUILTIN_EVMWHSMF
},
7588 { 0, CODE_FOR_spe_evmwhsmfa
, "__builtin_spe_evmwhsmfa", SPE_BUILTIN_EVMWHSMFA
},
7589 { 0, CODE_FOR_spe_evmwhsmi
, "__builtin_spe_evmwhsmi", SPE_BUILTIN_EVMWHSMI
},
7590 { 0, CODE_FOR_spe_evmwhsmia
, "__builtin_spe_evmwhsmia", SPE_BUILTIN_EVMWHSMIA
},
7591 { 0, CODE_FOR_spe_evmwhssf
, "__builtin_spe_evmwhssf", SPE_BUILTIN_EVMWHSSF
},
7592 { 0, CODE_FOR_spe_evmwhssfa
, "__builtin_spe_evmwhssfa", SPE_BUILTIN_EVMWHSSFA
},
7593 { 0, CODE_FOR_spe_evmwhumi
, "__builtin_spe_evmwhumi", SPE_BUILTIN_EVMWHUMI
},
7594 { 0, CODE_FOR_spe_evmwhumia
, "__builtin_spe_evmwhumia", SPE_BUILTIN_EVMWHUMIA
},
7595 { 0, CODE_FOR_spe_evmwlsmiaaw
, "__builtin_spe_evmwlsmiaaw", SPE_BUILTIN_EVMWLSMIAAW
},
7596 { 0, CODE_FOR_spe_evmwlsmianw
, "__builtin_spe_evmwlsmianw", SPE_BUILTIN_EVMWLSMIANW
},
7597 { 0, CODE_FOR_spe_evmwlssiaaw
, "__builtin_spe_evmwlssiaaw", SPE_BUILTIN_EVMWLSSIAAW
},
7598 { 0, CODE_FOR_spe_evmwlssianw
, "__builtin_spe_evmwlssianw", SPE_BUILTIN_EVMWLSSIANW
},
7599 { 0, CODE_FOR_spe_evmwlumi
, "__builtin_spe_evmwlumi", SPE_BUILTIN_EVMWLUMI
},
7600 { 0, CODE_FOR_spe_evmwlumia
, "__builtin_spe_evmwlumia", SPE_BUILTIN_EVMWLUMIA
},
7601 { 0, CODE_FOR_spe_evmwlumiaaw
, "__builtin_spe_evmwlumiaaw", SPE_BUILTIN_EVMWLUMIAAW
},
7602 { 0, CODE_FOR_spe_evmwlumianw
, "__builtin_spe_evmwlumianw", SPE_BUILTIN_EVMWLUMIANW
},
7603 { 0, CODE_FOR_spe_evmwlusiaaw
, "__builtin_spe_evmwlusiaaw", SPE_BUILTIN_EVMWLUSIAAW
},
7604 { 0, CODE_FOR_spe_evmwlusianw
, "__builtin_spe_evmwlusianw", SPE_BUILTIN_EVMWLUSIANW
},
7605 { 0, CODE_FOR_spe_evmwsmf
, "__builtin_spe_evmwsmf", SPE_BUILTIN_EVMWSMF
},
7606 { 0, CODE_FOR_spe_evmwsmfa
, "__builtin_spe_evmwsmfa", SPE_BUILTIN_EVMWSMFA
},
7607 { 0, CODE_FOR_spe_evmwsmfaa
, "__builtin_spe_evmwsmfaa", SPE_BUILTIN_EVMWSMFAA
},
7608 { 0, CODE_FOR_spe_evmwsmfan
, "__builtin_spe_evmwsmfan", SPE_BUILTIN_EVMWSMFAN
},
7609 { 0, CODE_FOR_spe_evmwsmi
, "__builtin_spe_evmwsmi", SPE_BUILTIN_EVMWSMI
},
7610 { 0, CODE_FOR_spe_evmwsmia
, "__builtin_spe_evmwsmia", SPE_BUILTIN_EVMWSMIA
},
7611 { 0, CODE_FOR_spe_evmwsmiaa
, "__builtin_spe_evmwsmiaa", SPE_BUILTIN_EVMWSMIAA
},
7612 { 0, CODE_FOR_spe_evmwsmian
, "__builtin_spe_evmwsmian", SPE_BUILTIN_EVMWSMIAN
},
7613 { 0, CODE_FOR_spe_evmwssf
, "__builtin_spe_evmwssf", SPE_BUILTIN_EVMWSSF
},
7614 { 0, CODE_FOR_spe_evmwssfa
, "__builtin_spe_evmwssfa", SPE_BUILTIN_EVMWSSFA
},
7615 { 0, CODE_FOR_spe_evmwssfaa
, "__builtin_spe_evmwssfaa", SPE_BUILTIN_EVMWSSFAA
},
7616 { 0, CODE_FOR_spe_evmwssfan
, "__builtin_spe_evmwssfan", SPE_BUILTIN_EVMWSSFAN
},
7617 { 0, CODE_FOR_spe_evmwumi
, "__builtin_spe_evmwumi", SPE_BUILTIN_EVMWUMI
},
7618 { 0, CODE_FOR_spe_evmwumia
, "__builtin_spe_evmwumia", SPE_BUILTIN_EVMWUMIA
},
7619 { 0, CODE_FOR_spe_evmwumiaa
, "__builtin_spe_evmwumiaa", SPE_BUILTIN_EVMWUMIAA
},
7620 { 0, CODE_FOR_spe_evmwumian
, "__builtin_spe_evmwumian", SPE_BUILTIN_EVMWUMIAN
},
7621 { 0, CODE_FOR_spe_evnand
, "__builtin_spe_evnand", SPE_BUILTIN_EVNAND
},
7622 { 0, CODE_FOR_spe_evnor
, "__builtin_spe_evnor", SPE_BUILTIN_EVNOR
},
7623 { 0, CODE_FOR_spe_evor
, "__builtin_spe_evor", SPE_BUILTIN_EVOR
},
7624 { 0, CODE_FOR_spe_evorc
, "__builtin_spe_evorc", SPE_BUILTIN_EVORC
},
7625 { 0, CODE_FOR_spe_evrlw
, "__builtin_spe_evrlw", SPE_BUILTIN_EVRLW
},
7626 { 0, CODE_FOR_spe_evslw
, "__builtin_spe_evslw", SPE_BUILTIN_EVSLW
},
7627 { 0, CODE_FOR_spe_evsrws
, "__builtin_spe_evsrws", SPE_BUILTIN_EVSRWS
},
7628 { 0, CODE_FOR_spe_evsrwu
, "__builtin_spe_evsrwu", SPE_BUILTIN_EVSRWU
},
7629 { 0, CODE_FOR_spe_evsubfw
, "__builtin_spe_evsubfw", SPE_BUILTIN_EVSUBFW
},
7631 /* SPE binary operations expecting a 5-bit unsigned literal. */
7632 { 0, CODE_FOR_spe_evaddiw
, "__builtin_spe_evaddiw", SPE_BUILTIN_EVADDIW
},
7634 { 0, CODE_FOR_spe_evrlwi
, "__builtin_spe_evrlwi", SPE_BUILTIN_EVRLWI
},
7635 { 0, CODE_FOR_spe_evslwi
, "__builtin_spe_evslwi", SPE_BUILTIN_EVSLWI
},
7636 { 0, CODE_FOR_spe_evsrwis
, "__builtin_spe_evsrwis", SPE_BUILTIN_EVSRWIS
},
7637 { 0, CODE_FOR_spe_evsrwiu
, "__builtin_spe_evsrwiu", SPE_BUILTIN_EVSRWIU
},
7638 { 0, CODE_FOR_spe_evsubifw
, "__builtin_spe_evsubifw", SPE_BUILTIN_EVSUBIFW
},
7639 { 0, CODE_FOR_spe_evmwhssfaa
, "__builtin_spe_evmwhssfaa", SPE_BUILTIN_EVMWHSSFAA
},
7640 { 0, CODE_FOR_spe_evmwhssmaa
, "__builtin_spe_evmwhssmaa", SPE_BUILTIN_EVMWHSSMAA
},
7641 { 0, CODE_FOR_spe_evmwhsmfaa
, "__builtin_spe_evmwhsmfaa", SPE_BUILTIN_EVMWHSMFAA
},
7642 { 0, CODE_FOR_spe_evmwhsmiaa
, "__builtin_spe_evmwhsmiaa", SPE_BUILTIN_EVMWHSMIAA
},
7643 { 0, CODE_FOR_spe_evmwhusiaa
, "__builtin_spe_evmwhusiaa", SPE_BUILTIN_EVMWHUSIAA
},
7644 { 0, CODE_FOR_spe_evmwhumiaa
, "__builtin_spe_evmwhumiaa", SPE_BUILTIN_EVMWHUMIAA
},
7645 { 0, CODE_FOR_spe_evmwhssfan
, "__builtin_spe_evmwhssfan", SPE_BUILTIN_EVMWHSSFAN
},
7646 { 0, CODE_FOR_spe_evmwhssian
, "__builtin_spe_evmwhssian", SPE_BUILTIN_EVMWHSSIAN
},
7647 { 0, CODE_FOR_spe_evmwhsmfan
, "__builtin_spe_evmwhsmfan", SPE_BUILTIN_EVMWHSMFAN
},
7648 { 0, CODE_FOR_spe_evmwhsmian
, "__builtin_spe_evmwhsmian", SPE_BUILTIN_EVMWHSMIAN
},
7649 { 0, CODE_FOR_spe_evmwhusian
, "__builtin_spe_evmwhusian", SPE_BUILTIN_EVMWHUSIAN
},
7650 { 0, CODE_FOR_spe_evmwhumian
, "__builtin_spe_evmwhumian", SPE_BUILTIN_EVMWHUMIAN
},
7651 { 0, CODE_FOR_spe_evmwhgssfaa
, "__builtin_spe_evmwhgssfaa", SPE_BUILTIN_EVMWHGSSFAA
},
7652 { 0, CODE_FOR_spe_evmwhgsmfaa
, "__builtin_spe_evmwhgsmfaa", SPE_BUILTIN_EVMWHGSMFAA
},
7653 { 0, CODE_FOR_spe_evmwhgsmiaa
, "__builtin_spe_evmwhgsmiaa", SPE_BUILTIN_EVMWHGSMIAA
},
7654 { 0, CODE_FOR_spe_evmwhgumiaa
, "__builtin_spe_evmwhgumiaa", SPE_BUILTIN_EVMWHGUMIAA
},
7655 { 0, CODE_FOR_spe_evmwhgssfan
, "__builtin_spe_evmwhgssfan", SPE_BUILTIN_EVMWHGSSFAN
},
7656 { 0, CODE_FOR_spe_evmwhgsmfan
, "__builtin_spe_evmwhgsmfan", SPE_BUILTIN_EVMWHGSMFAN
},
7657 { 0, CODE_FOR_spe_evmwhgsmian
, "__builtin_spe_evmwhgsmian", SPE_BUILTIN_EVMWHGSMIAN
},
7658 { 0, CODE_FOR_spe_evmwhgumian
, "__builtin_spe_evmwhgumian", SPE_BUILTIN_EVMWHGUMIAN
},
7659 { 0, CODE_FOR_spe_brinc
, "__builtin_spe_brinc", SPE_BUILTIN_BRINC
},
7661 /* Place-holder. Leave as last binary SPE builtin. */
7662 { 0, CODE_FOR_xorv2si3
, "__builtin_spe_evxor", SPE_BUILTIN_EVXOR
}
7665 /* AltiVec predicates. */
7667 struct builtin_description_predicates
7669 const unsigned int mask
;
7670 const enum insn_code icode
;
7672 const char *const name
;
7673 const enum rs6000_builtins code
;
7676 static const struct builtin_description_predicates bdesc_altivec_preds
[] =
7678 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v4sf
, "*vcmpbfp.", "__builtin_altivec_vcmpbfp_p", ALTIVEC_BUILTIN_VCMPBFP_P
},
7679 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v4sf
, "*vcmpeqfp.", "__builtin_altivec_vcmpeqfp_p", ALTIVEC_BUILTIN_VCMPEQFP_P
},
7680 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v4sf
, "*vcmpgefp.", "__builtin_altivec_vcmpgefp_p", ALTIVEC_BUILTIN_VCMPGEFP_P
},
7681 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v4sf
, "*vcmpgtfp.", "__builtin_altivec_vcmpgtfp_p", ALTIVEC_BUILTIN_VCMPGTFP_P
},
7682 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v4si
, "*vcmpequw.", "__builtin_altivec_vcmpequw_p", ALTIVEC_BUILTIN_VCMPEQUW_P
},
7683 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v4si
, "*vcmpgtsw.", "__builtin_altivec_vcmpgtsw_p", ALTIVEC_BUILTIN_VCMPGTSW_P
},
7684 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v4si
, "*vcmpgtuw.", "__builtin_altivec_vcmpgtuw_p", ALTIVEC_BUILTIN_VCMPGTUW_P
},
7685 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v8hi
, "*vcmpgtuh.", "__builtin_altivec_vcmpgtuh_p", ALTIVEC_BUILTIN_VCMPGTUH_P
},
7686 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v8hi
, "*vcmpgtsh.", "__builtin_altivec_vcmpgtsh_p", ALTIVEC_BUILTIN_VCMPGTSH_P
},
7687 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v8hi
, "*vcmpequh.", "__builtin_altivec_vcmpequh_p", ALTIVEC_BUILTIN_VCMPEQUH_P
},
7688 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v16qi
, "*vcmpequb.", "__builtin_altivec_vcmpequb_p", ALTIVEC_BUILTIN_VCMPEQUB_P
},
7689 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v16qi
, "*vcmpgtsb.", "__builtin_altivec_vcmpgtsb_p", ALTIVEC_BUILTIN_VCMPGTSB_P
},
7690 { MASK_ALTIVEC
, CODE_FOR_altivec_predicate_v16qi
, "*vcmpgtub.", "__builtin_altivec_vcmpgtub_p", ALTIVEC_BUILTIN_VCMPGTUB_P
},
7692 { MASK_ALTIVEC
, 0, NULL
, "__builtin_vec_vcmpeq_p", ALTIVEC_BUILTIN_VCMPEQ_P
},
7693 { MASK_ALTIVEC
, 0, NULL
, "__builtin_vec_vcmpgt_p", ALTIVEC_BUILTIN_VCMPGT_P
},
7694 { MASK_ALTIVEC
, 0, NULL
, "__builtin_vec_vcmpge_p", ALTIVEC_BUILTIN_VCMPGE_P
}
7697 /* SPE predicates. */
7698 static struct builtin_description bdesc_spe_predicates
[] =
7700 /* Place-holder. Leave as first. */
7701 { 0, CODE_FOR_spe_evcmpeq
, "__builtin_spe_evcmpeq", SPE_BUILTIN_EVCMPEQ
},
7702 { 0, CODE_FOR_spe_evcmpgts
, "__builtin_spe_evcmpgts", SPE_BUILTIN_EVCMPGTS
},
7703 { 0, CODE_FOR_spe_evcmpgtu
, "__builtin_spe_evcmpgtu", SPE_BUILTIN_EVCMPGTU
},
7704 { 0, CODE_FOR_spe_evcmplts
, "__builtin_spe_evcmplts", SPE_BUILTIN_EVCMPLTS
},
7705 { 0, CODE_FOR_spe_evcmpltu
, "__builtin_spe_evcmpltu", SPE_BUILTIN_EVCMPLTU
},
7706 { 0, CODE_FOR_spe_evfscmpeq
, "__builtin_spe_evfscmpeq", SPE_BUILTIN_EVFSCMPEQ
},
7707 { 0, CODE_FOR_spe_evfscmpgt
, "__builtin_spe_evfscmpgt", SPE_BUILTIN_EVFSCMPGT
},
7708 { 0, CODE_FOR_spe_evfscmplt
, "__builtin_spe_evfscmplt", SPE_BUILTIN_EVFSCMPLT
},
7709 { 0, CODE_FOR_spe_evfststeq
, "__builtin_spe_evfststeq", SPE_BUILTIN_EVFSTSTEQ
},
7710 { 0, CODE_FOR_spe_evfststgt
, "__builtin_spe_evfststgt", SPE_BUILTIN_EVFSTSTGT
},
7711 /* Place-holder. Leave as last. */
7712 { 0, CODE_FOR_spe_evfststlt
, "__builtin_spe_evfststlt", SPE_BUILTIN_EVFSTSTLT
},
7715 /* SPE evsel predicates. */
7716 static struct builtin_description bdesc_spe_evsel
[] =
7718 /* Place-holder. Leave as first. */
7719 { 0, CODE_FOR_spe_evcmpgts
, "__builtin_spe_evsel_gts", SPE_BUILTIN_EVSEL_CMPGTS
},
7720 { 0, CODE_FOR_spe_evcmpgtu
, "__builtin_spe_evsel_gtu", SPE_BUILTIN_EVSEL_CMPGTU
},
7721 { 0, CODE_FOR_spe_evcmplts
, "__builtin_spe_evsel_lts", SPE_BUILTIN_EVSEL_CMPLTS
},
7722 { 0, CODE_FOR_spe_evcmpltu
, "__builtin_spe_evsel_ltu", SPE_BUILTIN_EVSEL_CMPLTU
},
7723 { 0, CODE_FOR_spe_evcmpeq
, "__builtin_spe_evsel_eq", SPE_BUILTIN_EVSEL_CMPEQ
},
7724 { 0, CODE_FOR_spe_evfscmpgt
, "__builtin_spe_evsel_fsgt", SPE_BUILTIN_EVSEL_FSCMPGT
},
7725 { 0, CODE_FOR_spe_evfscmplt
, "__builtin_spe_evsel_fslt", SPE_BUILTIN_EVSEL_FSCMPLT
},
7726 { 0, CODE_FOR_spe_evfscmpeq
, "__builtin_spe_evsel_fseq", SPE_BUILTIN_EVSEL_FSCMPEQ
},
7727 { 0, CODE_FOR_spe_evfststgt
, "__builtin_spe_evsel_fststgt", SPE_BUILTIN_EVSEL_FSTSTGT
},
7728 { 0, CODE_FOR_spe_evfststlt
, "__builtin_spe_evsel_fststlt", SPE_BUILTIN_EVSEL_FSTSTLT
},
7729 /* Place-holder. Leave as last. */
7730 { 0, CODE_FOR_spe_evfststeq
, "__builtin_spe_evsel_fststeq", SPE_BUILTIN_EVSEL_FSTSTEQ
},
7733 /* PAIRED predicates. */
7734 static const struct builtin_description bdesc_paired_preds
[] =
7736 /* Place-holder. Leave as first. */
7737 { 0, CODE_FOR_paired_cmpu0
, "__builtin_paired_cmpu0", PAIRED_BUILTIN_CMPU0
},
7738 /* Place-holder. Leave as last. */
7739 { 0, CODE_FOR_paired_cmpu1
, "__builtin_paired_cmpu1", PAIRED_BUILTIN_CMPU1
},
7742 /* ABS* operations. */
7744 static const struct builtin_description bdesc_abs
[] =
7746 { MASK_ALTIVEC
, CODE_FOR_absv4si2
, "__builtin_altivec_abs_v4si", ALTIVEC_BUILTIN_ABS_V4SI
},
7747 { MASK_ALTIVEC
, CODE_FOR_absv8hi2
, "__builtin_altivec_abs_v8hi", ALTIVEC_BUILTIN_ABS_V8HI
},
7748 { MASK_ALTIVEC
, CODE_FOR_absv4sf2
, "__builtin_altivec_abs_v4sf", ALTIVEC_BUILTIN_ABS_V4SF
},
7749 { MASK_ALTIVEC
, CODE_FOR_absv16qi2
, "__builtin_altivec_abs_v16qi", ALTIVEC_BUILTIN_ABS_V16QI
},
7750 { MASK_ALTIVEC
, CODE_FOR_altivec_abss_v4si
, "__builtin_altivec_abss_v4si", ALTIVEC_BUILTIN_ABSS_V4SI
},
7751 { MASK_ALTIVEC
, CODE_FOR_altivec_abss_v8hi
, "__builtin_altivec_abss_v8hi", ALTIVEC_BUILTIN_ABSS_V8HI
},
7752 { MASK_ALTIVEC
, CODE_FOR_altivec_abss_v16qi
, "__builtin_altivec_abss_v16qi", ALTIVEC_BUILTIN_ABSS_V16QI
}
7755 /* Simple unary operations: VECb = foo (unsigned literal) or VECb =
7758 static struct builtin_description bdesc_1arg
[] =
7760 { MASK_ALTIVEC
, CODE_FOR_altivec_vexptefp
, "__builtin_altivec_vexptefp", ALTIVEC_BUILTIN_VEXPTEFP
},
7761 { MASK_ALTIVEC
, CODE_FOR_altivec_vlogefp
, "__builtin_altivec_vlogefp", ALTIVEC_BUILTIN_VLOGEFP
},
7762 { MASK_ALTIVEC
, CODE_FOR_altivec_vrefp
, "__builtin_altivec_vrefp", ALTIVEC_BUILTIN_VREFP
},
7763 { MASK_ALTIVEC
, CODE_FOR_altivec_vrfim
, "__builtin_altivec_vrfim", ALTIVEC_BUILTIN_VRFIM
},
7764 { MASK_ALTIVEC
, CODE_FOR_altivec_vrfin
, "__builtin_altivec_vrfin", ALTIVEC_BUILTIN_VRFIN
},
7765 { MASK_ALTIVEC
, CODE_FOR_altivec_vrfip
, "__builtin_altivec_vrfip", ALTIVEC_BUILTIN_VRFIP
},
7766 { MASK_ALTIVEC
, CODE_FOR_ftruncv4sf2
, "__builtin_altivec_vrfiz", ALTIVEC_BUILTIN_VRFIZ
},
7767 { MASK_ALTIVEC
, CODE_FOR_altivec_vrsqrtefp
, "__builtin_altivec_vrsqrtefp", ALTIVEC_BUILTIN_VRSQRTEFP
},
7768 { MASK_ALTIVEC
, CODE_FOR_altivec_vspltisb
, "__builtin_altivec_vspltisb", ALTIVEC_BUILTIN_VSPLTISB
},
7769 { MASK_ALTIVEC
, CODE_FOR_altivec_vspltish
, "__builtin_altivec_vspltish", ALTIVEC_BUILTIN_VSPLTISH
},
7770 { MASK_ALTIVEC
, CODE_FOR_altivec_vspltisw
, "__builtin_altivec_vspltisw", ALTIVEC_BUILTIN_VSPLTISW
},
7771 { MASK_ALTIVEC
, CODE_FOR_altivec_vupkhsb
, "__builtin_altivec_vupkhsb", ALTIVEC_BUILTIN_VUPKHSB
},
7772 { MASK_ALTIVEC
, CODE_FOR_altivec_vupkhpx
, "__builtin_altivec_vupkhpx", ALTIVEC_BUILTIN_VUPKHPX
},
7773 { MASK_ALTIVEC
, CODE_FOR_altivec_vupkhsh
, "__builtin_altivec_vupkhsh", ALTIVEC_BUILTIN_VUPKHSH
},
7774 { MASK_ALTIVEC
, CODE_FOR_altivec_vupklsb
, "__builtin_altivec_vupklsb", ALTIVEC_BUILTIN_VUPKLSB
},
7775 { MASK_ALTIVEC
, CODE_FOR_altivec_vupklpx
, "__builtin_altivec_vupklpx", ALTIVEC_BUILTIN_VUPKLPX
},
7776 { MASK_ALTIVEC
, CODE_FOR_altivec_vupklsh
, "__builtin_altivec_vupklsh", ALTIVEC_BUILTIN_VUPKLSH
},
7778 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_abs", ALTIVEC_BUILTIN_VEC_ABS
},
7779 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_abss", ALTIVEC_BUILTIN_VEC_ABSS
},
7780 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_ceil", ALTIVEC_BUILTIN_VEC_CEIL
},
7781 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_expte", ALTIVEC_BUILTIN_VEC_EXPTE
},
7782 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_floor", ALTIVEC_BUILTIN_VEC_FLOOR
},
7783 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_loge", ALTIVEC_BUILTIN_VEC_LOGE
},
7784 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_mtvscr", ALTIVEC_BUILTIN_VEC_MTVSCR
},
7785 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_re", ALTIVEC_BUILTIN_VEC_RE
},
7786 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_round", ALTIVEC_BUILTIN_VEC_ROUND
},
7787 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_rsqrte", ALTIVEC_BUILTIN_VEC_RSQRTE
},
7788 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_trunc", ALTIVEC_BUILTIN_VEC_TRUNC
},
7789 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_unpackh", ALTIVEC_BUILTIN_VEC_UNPACKH
},
7790 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vupkhsh", ALTIVEC_BUILTIN_VEC_VUPKHSH
},
7791 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vupkhpx", ALTIVEC_BUILTIN_VEC_VUPKHPX
},
7792 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vupkhsb", ALTIVEC_BUILTIN_VEC_VUPKHSB
},
7793 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_unpackl", ALTIVEC_BUILTIN_VEC_UNPACKL
},
7794 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vupklpx", ALTIVEC_BUILTIN_VEC_VUPKLPX
},
7795 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vupklsh", ALTIVEC_BUILTIN_VEC_VUPKLSH
},
7796 { MASK_ALTIVEC
, CODE_FOR_nothing
, "__builtin_vec_vupklsb", ALTIVEC_BUILTIN_VEC_VUPKLSB
},
7798 /* The SPE unary builtins must start with SPE_BUILTIN_EVABS and
7799 end with SPE_BUILTIN_EVSUBFUSIAAW. */
7800 { 0, CODE_FOR_spe_evabs
, "__builtin_spe_evabs", SPE_BUILTIN_EVABS
},
7801 { 0, CODE_FOR_spe_evaddsmiaaw
, "__builtin_spe_evaddsmiaaw", SPE_BUILTIN_EVADDSMIAAW
},
7802 { 0, CODE_FOR_spe_evaddssiaaw
, "__builtin_spe_evaddssiaaw", SPE_BUILTIN_EVADDSSIAAW
},
7803 { 0, CODE_FOR_spe_evaddumiaaw
, "__builtin_spe_evaddumiaaw", SPE_BUILTIN_EVADDUMIAAW
},
7804 { 0, CODE_FOR_spe_evaddusiaaw
, "__builtin_spe_evaddusiaaw", SPE_BUILTIN_EVADDUSIAAW
},
7805 { 0, CODE_FOR_spe_evcntlsw
, "__builtin_spe_evcntlsw", SPE_BUILTIN_EVCNTLSW
},
7806 { 0, CODE_FOR_spe_evcntlzw
, "__builtin_spe_evcntlzw", SPE_BUILTIN_EVCNTLZW
},
7807 { 0, CODE_FOR_spe_evextsb
, "__builtin_spe_evextsb", SPE_BUILTIN_EVEXTSB
},
7808 { 0, CODE_FOR_spe_evextsh
, "__builtin_spe_evextsh", SPE_BUILTIN_EVEXTSH
},
7809 { 0, CODE_FOR_spe_evfsabs
, "__builtin_spe_evfsabs", SPE_BUILTIN_EVFSABS
},
7810 { 0, CODE_FOR_spe_evfscfsf
, "__builtin_spe_evfscfsf", SPE_BUILTIN_EVFSCFSF
},
7811 { 0, CODE_FOR_spe_evfscfsi
, "__builtin_spe_evfscfsi", SPE_BUILTIN_EVFSCFSI
},
7812 { 0, CODE_FOR_spe_evfscfuf
, "__builtin_spe_evfscfuf", SPE_BUILTIN_EVFSCFUF
},
7813 { 0, CODE_FOR_spe_evfscfui
, "__builtin_spe_evfscfui", SPE_BUILTIN_EVFSCFUI
},
7814 { 0, CODE_FOR_spe_evfsctsf
, "__builtin_spe_evfsctsf", SPE_BUILTIN_EVFSCTSF
},
7815 { 0, CODE_FOR_spe_evfsctsi
, "__builtin_spe_evfsctsi", SPE_BUILTIN_EVFSCTSI
},
7816 { 0, CODE_FOR_spe_evfsctsiz
, "__builtin_spe_evfsctsiz", SPE_BUILTIN_EVFSCTSIZ
},
7817 { 0, CODE_FOR_spe_evfsctuf
, "__builtin_spe_evfsctuf", SPE_BUILTIN_EVFSCTUF
},
7818 { 0, CODE_FOR_spe_evfsctui
, "__builtin_spe_evfsctui", SPE_BUILTIN_EVFSCTUI
},
7819 { 0, CODE_FOR_spe_evfsctuiz
, "__builtin_spe_evfsctuiz", SPE_BUILTIN_EVFSCTUIZ
},
7820 { 0, CODE_FOR_spe_evfsnabs
, "__builtin_spe_evfsnabs", SPE_BUILTIN_EVFSNABS
},
7821 { 0, CODE_FOR_spe_evfsneg
, "__builtin_spe_evfsneg", SPE_BUILTIN_EVFSNEG
},
7822 { 0, CODE_FOR_spe_evmra
, "__builtin_spe_evmra", SPE_BUILTIN_EVMRA
},
7823 { 0, CODE_FOR_negv2si2
, "__builtin_spe_evneg", SPE_BUILTIN_EVNEG
},
7824 { 0, CODE_FOR_spe_evrndw
, "__builtin_spe_evrndw", SPE_BUILTIN_EVRNDW
},
7825 { 0, CODE_FOR_spe_evsubfsmiaaw
, "__builtin_spe_evsubfsmiaaw", SPE_BUILTIN_EVSUBFSMIAAW
},
7826 { 0, CODE_FOR_spe_evsubfssiaaw
, "__builtin_spe_evsubfssiaaw", SPE_BUILTIN_EVSUBFSSIAAW
},
7827 { 0, CODE_FOR_spe_evsubfumiaaw
, "__builtin_spe_evsubfumiaaw", SPE_BUILTIN_EVSUBFUMIAAW
},
7829 /* Place-holder. Leave as last unary SPE builtin. */
7830 { 0, CODE_FOR_spe_evsubfusiaaw
, "__builtin_spe_evsubfusiaaw", SPE_BUILTIN_EVSUBFUSIAAW
},
7832 { 0, CODE_FOR_absv2sf2
, "__builtin_paired_absv2sf2", PAIRED_BUILTIN_ABSV2SF2
},
7833 { 0, CODE_FOR_nabsv2sf2
, "__builtin_paired_nabsv2sf2", PAIRED_BUILTIN_NABSV2SF2
},
7834 { 0, CODE_FOR_negv2sf2
, "__builtin_paired_negv2sf2", PAIRED_BUILTIN_NEGV2SF2
},
7835 { 0, CODE_FOR_sqrtv2sf2
, "__builtin_paired_sqrtv2sf2", PAIRED_BUILTIN_SQRTV2SF2
},
7836 { 0, CODE_FOR_resv2sf2
, "__builtin_paired_resv2sf2", PAIRED_BUILTIN_RESV2SF2
}
7840 rs6000_expand_unop_builtin (enum insn_code icode
, tree exp
, rtx target
)
7843 tree arg0
= CALL_EXPR_ARG (exp
, 0);
7844 rtx op0
= expand_normal (arg0
);
7845 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
7846 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
7848 if (icode
== CODE_FOR_nothing
)
7849 /* Builtin not supported on this processor. */
7852 /* If we got invalid arguments bail out before generating bad rtl. */
7853 if (arg0
== error_mark_node
)
7856 if (icode
== CODE_FOR_altivec_vspltisb
7857 || icode
== CODE_FOR_altivec_vspltish
7858 || icode
== CODE_FOR_altivec_vspltisw
7859 || icode
== CODE_FOR_spe_evsplatfi
7860 || icode
== CODE_FOR_spe_evsplati
)
7862 /* Only allow 5-bit *signed* literals. */
7863 if (GET_CODE (op0
) != CONST_INT
7864 || INTVAL (op0
) > 15
7865 || INTVAL (op0
) < -16)
7867 error ("argument 1 must be a 5-bit signed literal");
7873 || GET_MODE (target
) != tmode
7874 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
7875 target
= gen_reg_rtx (tmode
);
7877 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
7878 op0
= copy_to_mode_reg (mode0
, op0
);
7880 pat
= GEN_FCN (icode
) (target
, op0
);
7889 altivec_expand_abs_builtin (enum insn_code icode
, tree exp
, rtx target
)
7891 rtx pat
, scratch1
, scratch2
;
7892 tree arg0
= CALL_EXPR_ARG (exp
, 0);
7893 rtx op0
= expand_normal (arg0
);
7894 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
7895 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
7897 /* If we have invalid arguments, bail out before generating bad rtl. */
7898 if (arg0
== error_mark_node
)
7902 || GET_MODE (target
) != tmode
7903 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
7904 target
= gen_reg_rtx (tmode
);
7906 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
7907 op0
= copy_to_mode_reg (mode0
, op0
);
7909 scratch1
= gen_reg_rtx (mode0
);
7910 scratch2
= gen_reg_rtx (mode0
);
7912 pat
= GEN_FCN (icode
) (target
, op0
, scratch1
, scratch2
);
7921 rs6000_expand_binop_builtin (enum insn_code icode
, tree exp
, rtx target
)
7924 tree arg0
= CALL_EXPR_ARG (exp
, 0);
7925 tree arg1
= CALL_EXPR_ARG (exp
, 1);
7926 rtx op0
= expand_normal (arg0
);
7927 rtx op1
= expand_normal (arg1
);
7928 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
7929 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
7930 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
7932 if (icode
== CODE_FOR_nothing
)
7933 /* Builtin not supported on this processor. */
7936 /* If we got invalid arguments bail out before generating bad rtl. */
7937 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
7940 if (icode
== CODE_FOR_altivec_vcfux
7941 || icode
== CODE_FOR_altivec_vcfsx
7942 || icode
== CODE_FOR_altivec_vctsxs
7943 || icode
== CODE_FOR_altivec_vctuxs
7944 || icode
== CODE_FOR_altivec_vspltb
7945 || icode
== CODE_FOR_altivec_vsplth
7946 || icode
== CODE_FOR_altivec_vspltw
7947 || icode
== CODE_FOR_spe_evaddiw
7948 || icode
== CODE_FOR_spe_evldd
7949 || icode
== CODE_FOR_spe_evldh
7950 || icode
== CODE_FOR_spe_evldw
7951 || icode
== CODE_FOR_spe_evlhhesplat
7952 || icode
== CODE_FOR_spe_evlhhossplat
7953 || icode
== CODE_FOR_spe_evlhhousplat
7954 || icode
== CODE_FOR_spe_evlwhe
7955 || icode
== CODE_FOR_spe_evlwhos
7956 || icode
== CODE_FOR_spe_evlwhou
7957 || icode
== CODE_FOR_spe_evlwhsplat
7958 || icode
== CODE_FOR_spe_evlwwsplat
7959 || icode
== CODE_FOR_spe_evrlwi
7960 || icode
== CODE_FOR_spe_evslwi
7961 || icode
== CODE_FOR_spe_evsrwis
7962 || icode
== CODE_FOR_spe_evsubifw
7963 || icode
== CODE_FOR_spe_evsrwiu
)
7965 /* Only allow 5-bit unsigned literals. */
7967 if (TREE_CODE (arg1
) != INTEGER_CST
7968 || TREE_INT_CST_LOW (arg1
) & ~0x1f)
7970 error ("argument 2 must be a 5-bit unsigned literal");
7976 || GET_MODE (target
) != tmode
7977 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
7978 target
= gen_reg_rtx (tmode
);
7980 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
7981 op0
= copy_to_mode_reg (mode0
, op0
);
7982 if (! (*insn_data
[icode
].operand
[2].predicate
) (op1
, mode1
))
7983 op1
= copy_to_mode_reg (mode1
, op1
);
7985 pat
= GEN_FCN (icode
) (target
, op0
, op1
);
7994 altivec_expand_predicate_builtin (enum insn_code icode
, const char *opcode
,
7995 tree exp
, rtx target
)
7998 tree cr6_form
= CALL_EXPR_ARG (exp
, 0);
7999 tree arg0
= CALL_EXPR_ARG (exp
, 1);
8000 tree arg1
= CALL_EXPR_ARG (exp
, 2);
8001 rtx op0
= expand_normal (arg0
);
8002 rtx op1
= expand_normal (arg1
);
8003 enum machine_mode tmode
= SImode
;
8004 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
8005 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
8008 if (TREE_CODE (cr6_form
) != INTEGER_CST
)
8010 error ("argument 1 of __builtin_altivec_predicate must be a constant");
8014 cr6_form_int
= TREE_INT_CST_LOW (cr6_form
);
8016 gcc_assert (mode0
== mode1
);
8018 /* If we have invalid arguments, bail out before generating bad rtl. */
8019 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8023 || GET_MODE (target
) != tmode
8024 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
8025 target
= gen_reg_rtx (tmode
);
8027 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
8028 op0
= copy_to_mode_reg (mode0
, op0
);
8029 if (! (*insn_data
[icode
].operand
[2].predicate
) (op1
, mode1
))
8030 op1
= copy_to_mode_reg (mode1
, op1
);
8032 scratch
= gen_reg_rtx (mode0
);
8034 pat
= GEN_FCN (icode
) (scratch
, op0
, op1
,
8035 gen_rtx_SYMBOL_REF (Pmode
, opcode
));
8040 /* The vec_any* and vec_all* predicates use the same opcodes for two
8041 different operations, but the bits in CR6 will be different
8042 depending on what information we want. So we have to play tricks
8043 with CR6 to get the right bits out.
8045 If you think this is disgusting, look at the specs for the
8046 AltiVec predicates. */
8048 switch (cr6_form_int
)
8051 emit_insn (gen_cr6_test_for_zero (target
));
8054 emit_insn (gen_cr6_test_for_zero_reverse (target
));
8057 emit_insn (gen_cr6_test_for_lt (target
));
8060 emit_insn (gen_cr6_test_for_lt_reverse (target
));
8063 error ("argument 1 of __builtin_altivec_predicate is out of range");
8071 paired_expand_lv_builtin (enum insn_code icode
, tree exp
, rtx target
)
8074 tree arg0
= CALL_EXPR_ARG (exp
, 0);
8075 tree arg1
= CALL_EXPR_ARG (exp
, 1);
8076 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
8077 enum machine_mode mode0
= Pmode
;
8078 enum machine_mode mode1
= Pmode
;
8079 rtx op0
= expand_normal (arg0
);
8080 rtx op1
= expand_normal (arg1
);
8082 if (icode
== CODE_FOR_nothing
)
8083 /* Builtin not supported on this processor. */
8086 /* If we got invalid arguments bail out before generating bad rtl. */
8087 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8091 || GET_MODE (target
) != tmode
8092 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
8093 target
= gen_reg_rtx (tmode
);
8095 op1
= copy_to_mode_reg (mode1
, op1
);
8097 if (op0
== const0_rtx
)
8099 addr
= gen_rtx_MEM (tmode
, op1
);
8103 op0
= copy_to_mode_reg (mode0
, op0
);
8104 addr
= gen_rtx_MEM (tmode
, gen_rtx_PLUS (Pmode
, op0
, op1
));
8107 pat
= GEN_FCN (icode
) (target
, addr
);
8117 altivec_expand_lv_builtin (enum insn_code icode
, tree exp
, rtx target
, bool blk
)
8120 tree arg0
= CALL_EXPR_ARG (exp
, 0);
8121 tree arg1
= CALL_EXPR_ARG (exp
, 1);
8122 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
8123 enum machine_mode mode0
= Pmode
;
8124 enum machine_mode mode1
= Pmode
;
8125 rtx op0
= expand_normal (arg0
);
8126 rtx op1
= expand_normal (arg1
);
8128 if (icode
== CODE_FOR_nothing
)
8129 /* Builtin not supported on this processor. */
8132 /* If we got invalid arguments bail out before generating bad rtl. */
8133 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8137 || GET_MODE (target
) != tmode
8138 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
8139 target
= gen_reg_rtx (tmode
);
8141 op1
= copy_to_mode_reg (mode1
, op1
);
8143 if (op0
== const0_rtx
)
8145 addr
= gen_rtx_MEM (blk
? BLKmode
: tmode
, op1
);
8149 op0
= copy_to_mode_reg (mode0
, op0
);
8150 addr
= gen_rtx_MEM (blk
? BLKmode
: tmode
, gen_rtx_PLUS (Pmode
, op0
, op1
));
8153 pat
= GEN_FCN (icode
) (target
, addr
);
8163 spe_expand_stv_builtin (enum insn_code icode
, tree exp
)
8165 tree arg0
= CALL_EXPR_ARG (exp
, 0);
8166 tree arg1
= CALL_EXPR_ARG (exp
, 1);
8167 tree arg2
= CALL_EXPR_ARG (exp
, 2);
8168 rtx op0
= expand_normal (arg0
);
8169 rtx op1
= expand_normal (arg1
);
8170 rtx op2
= expand_normal (arg2
);
8172 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
8173 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
8174 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
8176 /* Invalid arguments. Bail before doing anything stoopid! */
8177 if (arg0
== error_mark_node
8178 || arg1
== error_mark_node
8179 || arg2
== error_mark_node
)
8182 if (! (*insn_data
[icode
].operand
[2].predicate
) (op0
, mode2
))
8183 op0
= copy_to_mode_reg (mode2
, op0
);
8184 if (! (*insn_data
[icode
].operand
[0].predicate
) (op1
, mode0
))
8185 op1
= copy_to_mode_reg (mode0
, op1
);
8186 if (! (*insn_data
[icode
].operand
[1].predicate
) (op2
, mode1
))
8187 op2
= copy_to_mode_reg (mode1
, op2
);
8189 pat
= GEN_FCN (icode
) (op1
, op2
, op0
);
8196 paired_expand_stv_builtin (enum insn_code icode
, tree exp
)
8198 tree arg0
= CALL_EXPR_ARG (exp
, 0);
8199 tree arg1
= CALL_EXPR_ARG (exp
, 1);
8200 tree arg2
= CALL_EXPR_ARG (exp
, 2);
8201 rtx op0
= expand_normal (arg0
);
8202 rtx op1
= expand_normal (arg1
);
8203 rtx op2
= expand_normal (arg2
);
8205 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
8206 enum machine_mode mode1
= Pmode
;
8207 enum machine_mode mode2
= Pmode
;
8209 /* Invalid arguments. Bail before doing anything stoopid! */
8210 if (arg0
== error_mark_node
8211 || arg1
== error_mark_node
8212 || arg2
== error_mark_node
)
8215 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, tmode
))
8216 op0
= copy_to_mode_reg (tmode
, op0
);
8218 op2
= copy_to_mode_reg (mode2
, op2
);
8220 if (op1
== const0_rtx
)
8222 addr
= gen_rtx_MEM (tmode
, op2
);
8226 op1
= copy_to_mode_reg (mode1
, op1
);
8227 addr
= gen_rtx_MEM (tmode
, gen_rtx_PLUS (Pmode
, op1
, op2
));
8230 pat
= GEN_FCN (icode
) (addr
, op0
);
8237 altivec_expand_stv_builtin (enum insn_code icode
, tree exp
)
8239 tree arg0
= CALL_EXPR_ARG (exp
, 0);
8240 tree arg1
= CALL_EXPR_ARG (exp
, 1);
8241 tree arg2
= CALL_EXPR_ARG (exp
, 2);
8242 rtx op0
= expand_normal (arg0
);
8243 rtx op1
= expand_normal (arg1
);
8244 rtx op2
= expand_normal (arg2
);
8246 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
8247 enum machine_mode mode1
= Pmode
;
8248 enum machine_mode mode2
= Pmode
;
8250 /* Invalid arguments. Bail before doing anything stoopid! */
8251 if (arg0
== error_mark_node
8252 || arg1
== error_mark_node
8253 || arg2
== error_mark_node
)
8256 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, tmode
))
8257 op0
= copy_to_mode_reg (tmode
, op0
);
8259 op2
= copy_to_mode_reg (mode2
, op2
);
8261 if (op1
== const0_rtx
)
8263 addr
= gen_rtx_MEM (tmode
, op2
);
8267 op1
= copy_to_mode_reg (mode1
, op1
);
8268 addr
= gen_rtx_MEM (tmode
, gen_rtx_PLUS (Pmode
, op1
, op2
));
8271 pat
= GEN_FCN (icode
) (addr
, op0
);
8278 rs6000_expand_ternop_builtin (enum insn_code icode
, tree exp
, rtx target
)
8281 tree arg0
= CALL_EXPR_ARG (exp
, 0);
8282 tree arg1
= CALL_EXPR_ARG (exp
, 1);
8283 tree arg2
= CALL_EXPR_ARG (exp
, 2);
8284 rtx op0
= expand_normal (arg0
);
8285 rtx op1
= expand_normal (arg1
);
8286 rtx op2
= expand_normal (arg2
);
8287 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
8288 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
8289 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
8290 enum machine_mode mode2
= insn_data
[icode
].operand
[3].mode
;
8292 if (icode
== CODE_FOR_nothing
)
8293 /* Builtin not supported on this processor. */
8296 /* If we got invalid arguments bail out before generating bad rtl. */
8297 if (arg0
== error_mark_node
8298 || arg1
== error_mark_node
8299 || arg2
== error_mark_node
)
8302 if (icode
== CODE_FOR_altivec_vsldoi_v4sf
8303 || icode
== CODE_FOR_altivec_vsldoi_v4si
8304 || icode
== CODE_FOR_altivec_vsldoi_v8hi
8305 || icode
== CODE_FOR_altivec_vsldoi_v16qi
)
8307 /* Only allow 4-bit unsigned literals. */
8309 if (TREE_CODE (arg2
) != INTEGER_CST
8310 || TREE_INT_CST_LOW (arg2
) & ~0xf)
8312 error ("argument 3 must be a 4-bit unsigned literal");
8318 || GET_MODE (target
) != tmode
8319 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
8320 target
= gen_reg_rtx (tmode
);
8322 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
8323 op0
= copy_to_mode_reg (mode0
, op0
);
8324 if (! (*insn_data
[icode
].operand
[2].predicate
) (op1
, mode1
))
8325 op1
= copy_to_mode_reg (mode1
, op1
);
8326 if (! (*insn_data
[icode
].operand
[3].predicate
) (op2
, mode2
))
8327 op2
= copy_to_mode_reg (mode2
, op2
);
8329 if (TARGET_PAIRED_FLOAT
&& icode
== CODE_FOR_selv2sf4
)
8330 pat
= GEN_FCN (icode
) (target
, op0
, op1
, op2
, CONST0_RTX (SFmode
));
8332 pat
= GEN_FCN (icode
) (target
, op0
, op1
, op2
);
8340 /* Expand the lvx builtins. */
8342 altivec_expand_ld_builtin (tree exp
, rtx target
, bool *expandedp
)
8344 tree fndecl
= TREE_OPERAND (CALL_EXPR_FN (exp
), 0);
8345 unsigned int fcode
= DECL_FUNCTION_CODE (fndecl
);
8347 enum machine_mode tmode
, mode0
;
8349 enum insn_code icode
;
8353 case ALTIVEC_BUILTIN_LD_INTERNAL_16qi
:
8354 icode
= CODE_FOR_altivec_lvx_v16qi
;
8356 case ALTIVEC_BUILTIN_LD_INTERNAL_8hi
:
8357 icode
= CODE_FOR_altivec_lvx_v8hi
;
8359 case ALTIVEC_BUILTIN_LD_INTERNAL_4si
:
8360 icode
= CODE_FOR_altivec_lvx_v4si
;
8362 case ALTIVEC_BUILTIN_LD_INTERNAL_4sf
:
8363 icode
= CODE_FOR_altivec_lvx_v4sf
;
8372 arg0
= CALL_EXPR_ARG (exp
, 0);
8373 op0
= expand_normal (arg0
);
8374 tmode
= insn_data
[icode
].operand
[0].mode
;
8375 mode0
= insn_data
[icode
].operand
[1].mode
;
8378 || GET_MODE (target
) != tmode
8379 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
8380 target
= gen_reg_rtx (tmode
);
8382 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
8383 op0
= gen_rtx_MEM (mode0
, copy_to_mode_reg (Pmode
, op0
));
8385 pat
= GEN_FCN (icode
) (target
, op0
);
8392 /* Expand the stvx builtins. */
8394 altivec_expand_st_builtin (tree exp
, rtx target ATTRIBUTE_UNUSED
,
8397 tree fndecl
= TREE_OPERAND (CALL_EXPR_FN (exp
), 0);
8398 unsigned int fcode
= DECL_FUNCTION_CODE (fndecl
);
8400 enum machine_mode mode0
, mode1
;
8402 enum insn_code icode
;
8406 case ALTIVEC_BUILTIN_ST_INTERNAL_16qi
:
8407 icode
= CODE_FOR_altivec_stvx_v16qi
;
8409 case ALTIVEC_BUILTIN_ST_INTERNAL_8hi
:
8410 icode
= CODE_FOR_altivec_stvx_v8hi
;
8412 case ALTIVEC_BUILTIN_ST_INTERNAL_4si
:
8413 icode
= CODE_FOR_altivec_stvx_v4si
;
8415 case ALTIVEC_BUILTIN_ST_INTERNAL_4sf
:
8416 icode
= CODE_FOR_altivec_stvx_v4sf
;
8423 arg0
= CALL_EXPR_ARG (exp
, 0);
8424 arg1
= CALL_EXPR_ARG (exp
, 1);
8425 op0
= expand_normal (arg0
);
8426 op1
= expand_normal (arg1
);
8427 mode0
= insn_data
[icode
].operand
[0].mode
;
8428 mode1
= insn_data
[icode
].operand
[1].mode
;
8430 if (! (*insn_data
[icode
].operand
[0].predicate
) (op0
, mode0
))
8431 op0
= gen_rtx_MEM (mode0
, copy_to_mode_reg (Pmode
, op0
));
8432 if (! (*insn_data
[icode
].operand
[1].predicate
) (op1
, mode1
))
8433 op1
= copy_to_mode_reg (mode1
, op1
);
8435 pat
= GEN_FCN (icode
) (op0
, op1
);
8443 /* Expand the dst builtins. */
8445 altivec_expand_dst_builtin (tree exp
, rtx target ATTRIBUTE_UNUSED
,
8448 tree fndecl
= TREE_OPERAND (CALL_EXPR_FN (exp
), 0);
8449 unsigned int fcode
= DECL_FUNCTION_CODE (fndecl
);
8450 tree arg0
, arg1
, arg2
;
8451 enum machine_mode mode0
, mode1
, mode2
;
8452 rtx pat
, op0
, op1
, op2
;
8453 const struct builtin_description
*d
;
8458 /* Handle DST variants. */
8460 for (i
= 0; i
< ARRAY_SIZE (bdesc_dst
); i
++, d
++)
8461 if (d
->code
== fcode
)
8463 arg0
= CALL_EXPR_ARG (exp
, 0);
8464 arg1
= CALL_EXPR_ARG (exp
, 1);
8465 arg2
= CALL_EXPR_ARG (exp
, 2);
8466 op0
= expand_normal (arg0
);
8467 op1
= expand_normal (arg1
);
8468 op2
= expand_normal (arg2
);
8469 mode0
= insn_data
[d
->icode
].operand
[0].mode
;
8470 mode1
= insn_data
[d
->icode
].operand
[1].mode
;
8471 mode2
= insn_data
[d
->icode
].operand
[2].mode
;
8473 /* Invalid arguments, bail out before generating bad rtl. */
8474 if (arg0
== error_mark_node
8475 || arg1
== error_mark_node
8476 || arg2
== error_mark_node
)
8481 if (TREE_CODE (arg2
) != INTEGER_CST
8482 || TREE_INT_CST_LOW (arg2
) & ~0x3)
8484 error ("argument to %qs must be a 2-bit unsigned literal", d
->name
);
8488 if (! (*insn_data
[d
->icode
].operand
[0].predicate
) (op0
, mode0
))
8489 op0
= copy_to_mode_reg (Pmode
, op0
);
8490 if (! (*insn_data
[d
->icode
].operand
[1].predicate
) (op1
, mode1
))
8491 op1
= copy_to_mode_reg (mode1
, op1
);
8493 pat
= GEN_FCN (d
->icode
) (op0
, op1
, op2
);
8503 /* Expand vec_init builtin. */
8505 altivec_expand_vec_init_builtin (tree type
, tree exp
, rtx target
)
8507 enum machine_mode tmode
= TYPE_MODE (type
);
8508 enum machine_mode inner_mode
= GET_MODE_INNER (tmode
);
8509 int i
, n_elt
= GET_MODE_NUNITS (tmode
);
8510 rtvec v
= rtvec_alloc (n_elt
);
8512 gcc_assert (VECTOR_MODE_P (tmode
));
8513 gcc_assert (n_elt
== call_expr_nargs (exp
));
8515 for (i
= 0; i
< n_elt
; ++i
)
8517 rtx x
= expand_normal (CALL_EXPR_ARG (exp
, i
));
8518 RTVEC_ELT (v
, i
) = gen_lowpart (inner_mode
, x
);
8521 if (!target
|| !register_operand (target
, tmode
))
8522 target
= gen_reg_rtx (tmode
);
8524 rs6000_expand_vector_init (target
, gen_rtx_PARALLEL (tmode
, v
));
8528 /* Return the integer constant in ARG. Constrain it to be in the range
8529 of the subparts of VEC_TYPE; issue an error if not. */
8532 get_element_number (tree vec_type
, tree arg
)
8534 unsigned HOST_WIDE_INT elt
, max
= TYPE_VECTOR_SUBPARTS (vec_type
) - 1;
8536 if (!host_integerp (arg
, 1)
8537 || (elt
= tree_low_cst (arg
, 1), elt
> max
))
8539 error ("selector must be an integer constant in the range 0..%wi", max
);
8546 /* Expand vec_set builtin. */
8548 altivec_expand_vec_set_builtin (tree exp
)
8550 enum machine_mode tmode
, mode1
;
8551 tree arg0
, arg1
, arg2
;
8555 arg0
= CALL_EXPR_ARG (exp
, 0);
8556 arg1
= CALL_EXPR_ARG (exp
, 1);
8557 arg2
= CALL_EXPR_ARG (exp
, 2);
8559 tmode
= TYPE_MODE (TREE_TYPE (arg0
));
8560 mode1
= TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0
)));
8561 gcc_assert (VECTOR_MODE_P (tmode
));
8563 op0
= expand_expr (arg0
, NULL_RTX
, tmode
, 0);
8564 op1
= expand_expr (arg1
, NULL_RTX
, mode1
, 0);
8565 elt
= get_element_number (TREE_TYPE (arg0
), arg2
);
8567 if (GET_MODE (op1
) != mode1
&& GET_MODE (op1
) != VOIDmode
)
8568 op1
= convert_modes (mode1
, GET_MODE (op1
), op1
, true);
8570 op0
= force_reg (tmode
, op0
);
8571 op1
= force_reg (mode1
, op1
);
8573 rs6000_expand_vector_set (op0
, op1
, elt
);
8578 /* Expand vec_ext builtin. */
8580 altivec_expand_vec_ext_builtin (tree exp
, rtx target
)
8582 enum machine_mode tmode
, mode0
;
8587 arg0
= CALL_EXPR_ARG (exp
, 0);
8588 arg1
= CALL_EXPR_ARG (exp
, 1);
8590 op0
= expand_normal (arg0
);
8591 elt
= get_element_number (TREE_TYPE (arg0
), arg1
);
8593 tmode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0
)));
8594 mode0
= TYPE_MODE (TREE_TYPE (arg0
));
8595 gcc_assert (VECTOR_MODE_P (mode0
));
8597 op0
= force_reg (mode0
, op0
);
8599 if (optimize
|| !target
|| !register_operand (target
, tmode
))
8600 target
= gen_reg_rtx (tmode
);
8602 rs6000_expand_vector_extract (target
, op0
, elt
);
8607 /* Expand the builtin in EXP and store the result in TARGET. Store
8608 true in *EXPANDEDP if we found a builtin to expand. */
8610 altivec_expand_builtin (tree exp
, rtx target
, bool *expandedp
)
8612 const struct builtin_description
*d
;
8613 const struct builtin_description_predicates
*dp
;
8615 enum insn_code icode
;
8616 tree fndecl
= TREE_OPERAND (CALL_EXPR_FN (exp
), 0);
8619 enum machine_mode tmode
, mode0
;
8620 unsigned int fcode
= DECL_FUNCTION_CODE (fndecl
);
8622 if (fcode
>= ALTIVEC_BUILTIN_OVERLOADED_FIRST
8623 && fcode
<= ALTIVEC_BUILTIN_OVERLOADED_LAST
)
8626 error ("unresolved overload for Altivec builtin %qF", fndecl
);
8630 target
= altivec_expand_ld_builtin (exp
, target
, expandedp
);
8634 target
= altivec_expand_st_builtin (exp
, target
, expandedp
);
8638 target
= altivec_expand_dst_builtin (exp
, target
, expandedp
);
8646 case ALTIVEC_BUILTIN_STVX
:
8647 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx
, exp
);
8648 case ALTIVEC_BUILTIN_STVEBX
:
8649 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvebx
, exp
);
8650 case ALTIVEC_BUILTIN_STVEHX
:
8651 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvehx
, exp
);
8652 case ALTIVEC_BUILTIN_STVEWX
:
8653 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvewx
, exp
);
8654 case ALTIVEC_BUILTIN_STVXL
:
8655 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl
, exp
);
8657 case ALTIVEC_BUILTIN_STVLX
:
8658 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlx
, exp
);
8659 case ALTIVEC_BUILTIN_STVLXL
:
8660 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlxl
, exp
);
8661 case ALTIVEC_BUILTIN_STVRX
:
8662 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrx
, exp
);
8663 case ALTIVEC_BUILTIN_STVRXL
:
8664 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrxl
, exp
);
8666 case ALTIVEC_BUILTIN_MFVSCR
:
8667 icode
= CODE_FOR_altivec_mfvscr
;
8668 tmode
= insn_data
[icode
].operand
[0].mode
;
8671 || GET_MODE (target
) != tmode
8672 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
8673 target
= gen_reg_rtx (tmode
);
8675 pat
= GEN_FCN (icode
) (target
);
8681 case ALTIVEC_BUILTIN_MTVSCR
:
8682 icode
= CODE_FOR_altivec_mtvscr
;
8683 arg0
= CALL_EXPR_ARG (exp
, 0);
8684 op0
= expand_normal (arg0
);
8685 mode0
= insn_data
[icode
].operand
[0].mode
;
8687 /* If we got invalid arguments bail out before generating bad rtl. */
8688 if (arg0
== error_mark_node
)
8691 if (! (*insn_data
[icode
].operand
[0].predicate
) (op0
, mode0
))
8692 op0
= copy_to_mode_reg (mode0
, op0
);
8694 pat
= GEN_FCN (icode
) (op0
);
8699 case ALTIVEC_BUILTIN_DSSALL
:
8700 emit_insn (gen_altivec_dssall ());
8703 case ALTIVEC_BUILTIN_DSS
:
8704 icode
= CODE_FOR_altivec_dss
;
8705 arg0
= CALL_EXPR_ARG (exp
, 0);
8707 op0
= expand_normal (arg0
);
8708 mode0
= insn_data
[icode
].operand
[0].mode
;
8710 /* If we got invalid arguments bail out before generating bad rtl. */
8711 if (arg0
== error_mark_node
)
8714 if (TREE_CODE (arg0
) != INTEGER_CST
8715 || TREE_INT_CST_LOW (arg0
) & ~0x3)
8717 error ("argument to dss must be a 2-bit unsigned literal");
8721 if (! (*insn_data
[icode
].operand
[0].predicate
) (op0
, mode0
))
8722 op0
= copy_to_mode_reg (mode0
, op0
);
8724 emit_insn (gen_altivec_dss (op0
));
8727 case ALTIVEC_BUILTIN_VEC_INIT_V4SI
:
8728 case ALTIVEC_BUILTIN_VEC_INIT_V8HI
:
8729 case ALTIVEC_BUILTIN_VEC_INIT_V16QI
:
8730 case ALTIVEC_BUILTIN_VEC_INIT_V4SF
:
8731 return altivec_expand_vec_init_builtin (TREE_TYPE (exp
), exp
, target
);
8733 case ALTIVEC_BUILTIN_VEC_SET_V4SI
:
8734 case ALTIVEC_BUILTIN_VEC_SET_V8HI
:
8735 case ALTIVEC_BUILTIN_VEC_SET_V16QI
:
8736 case ALTIVEC_BUILTIN_VEC_SET_V4SF
:
8737 return altivec_expand_vec_set_builtin (exp
);
8739 case ALTIVEC_BUILTIN_VEC_EXT_V4SI
:
8740 case ALTIVEC_BUILTIN_VEC_EXT_V8HI
:
8741 case ALTIVEC_BUILTIN_VEC_EXT_V16QI
:
8742 case ALTIVEC_BUILTIN_VEC_EXT_V4SF
:
8743 return altivec_expand_vec_ext_builtin (exp
, target
);
8750 /* Expand abs* operations. */
8752 for (i
= 0; i
< ARRAY_SIZE (bdesc_abs
); i
++, d
++)
8753 if (d
->code
== fcode
)
8754 return altivec_expand_abs_builtin (d
->icode
, exp
, target
);
8756 /* Expand the AltiVec predicates. */
8757 dp
= bdesc_altivec_preds
;
8758 for (i
= 0; i
< ARRAY_SIZE (bdesc_altivec_preds
); i
++, dp
++)
8759 if (dp
->code
== fcode
)
8760 return altivec_expand_predicate_builtin (dp
->icode
, dp
->opcode
,
8763 /* LV* are funky. We initialized them differently. */
8766 case ALTIVEC_BUILTIN_LVSL
:
8767 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsl
,
8768 exp
, target
, false);
8769 case ALTIVEC_BUILTIN_LVSR
:
8770 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsr
,
8771 exp
, target
, false);
8772 case ALTIVEC_BUILTIN_LVEBX
:
8773 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvebx
,
8774 exp
, target
, false);
8775 case ALTIVEC_BUILTIN_LVEHX
:
8776 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvehx
,
8777 exp
, target
, false);
8778 case ALTIVEC_BUILTIN_LVEWX
:
8779 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvewx
,
8780 exp
, target
, false);
8781 case ALTIVEC_BUILTIN_LVXL
:
8782 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl
,
8783 exp
, target
, false);
8784 case ALTIVEC_BUILTIN_LVX
:
8785 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx
,
8786 exp
, target
, false);
8787 case ALTIVEC_BUILTIN_LVLX
:
8788 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlx
,
8790 case ALTIVEC_BUILTIN_LVLXL
:
8791 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlxl
,
8793 case ALTIVEC_BUILTIN_LVRX
:
8794 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrx
,
8796 case ALTIVEC_BUILTIN_LVRXL
:
8797 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrxl
,
8808 /* Expand the builtin in EXP and store the result in TARGET. Store
8809 true in *EXPANDEDP if we found a builtin to expand. */
8811 paired_expand_builtin (tree exp
, rtx target
, bool * expandedp
)
8813 tree fndecl
= TREE_OPERAND (CALL_EXPR_FN (exp
), 0);
8814 unsigned int fcode
= DECL_FUNCTION_CODE (fndecl
);
8815 const struct builtin_description
*d
;
8822 case PAIRED_BUILTIN_STX
:
8823 return paired_expand_stv_builtin (CODE_FOR_paired_stx
, exp
);
8824 case PAIRED_BUILTIN_LX
:
8825 return paired_expand_lv_builtin (CODE_FOR_paired_lx
, exp
, target
);
8831 /* Expand the paired predicates. */
8832 d
= bdesc_paired_preds
;
8833 for (i
= 0; i
< ARRAY_SIZE (bdesc_paired_preds
); i
++, d
++)
8834 if (d
->code
== fcode
)
8835 return paired_expand_predicate_builtin (d
->icode
, exp
, target
);
8841 /* Binops that need to be initialized manually, but can be expanded
8842 automagically by rs6000_expand_binop_builtin. */
8843 static struct builtin_description bdesc_2arg_spe
[] =
8845 { 0, CODE_FOR_spe_evlddx
, "__builtin_spe_evlddx", SPE_BUILTIN_EVLDDX
},
8846 { 0, CODE_FOR_spe_evldwx
, "__builtin_spe_evldwx", SPE_BUILTIN_EVLDWX
},
8847 { 0, CODE_FOR_spe_evldhx
, "__builtin_spe_evldhx", SPE_BUILTIN_EVLDHX
},
8848 { 0, CODE_FOR_spe_evlwhex
, "__builtin_spe_evlwhex", SPE_BUILTIN_EVLWHEX
},
8849 { 0, CODE_FOR_spe_evlwhoux
, "__builtin_spe_evlwhoux", SPE_BUILTIN_EVLWHOUX
},
8850 { 0, CODE_FOR_spe_evlwhosx
, "__builtin_spe_evlwhosx", SPE_BUILTIN_EVLWHOSX
},
8851 { 0, CODE_FOR_spe_evlwwsplatx
, "__builtin_spe_evlwwsplatx", SPE_BUILTIN_EVLWWSPLATX
},
8852 { 0, CODE_FOR_spe_evlwhsplatx
, "__builtin_spe_evlwhsplatx", SPE_BUILTIN_EVLWHSPLATX
},
8853 { 0, CODE_FOR_spe_evlhhesplatx
, "__builtin_spe_evlhhesplatx", SPE_BUILTIN_EVLHHESPLATX
},
8854 { 0, CODE_FOR_spe_evlhhousplatx
, "__builtin_spe_evlhhousplatx", SPE_BUILTIN_EVLHHOUSPLATX
},
8855 { 0, CODE_FOR_spe_evlhhossplatx
, "__builtin_spe_evlhhossplatx", SPE_BUILTIN_EVLHHOSSPLATX
},
8856 { 0, CODE_FOR_spe_evldd
, "__builtin_spe_evldd", SPE_BUILTIN_EVLDD
},
8857 { 0, CODE_FOR_spe_evldw
, "__builtin_spe_evldw", SPE_BUILTIN_EVLDW
},
8858 { 0, CODE_FOR_spe_evldh
, "__builtin_spe_evldh", SPE_BUILTIN_EVLDH
},
8859 { 0, CODE_FOR_spe_evlwhe
, "__builtin_spe_evlwhe", SPE_BUILTIN_EVLWHE
},
8860 { 0, CODE_FOR_spe_evlwhou
, "__builtin_spe_evlwhou", SPE_BUILTIN_EVLWHOU
},
8861 { 0, CODE_FOR_spe_evlwhos
, "__builtin_spe_evlwhos", SPE_BUILTIN_EVLWHOS
},
8862 { 0, CODE_FOR_spe_evlwwsplat
, "__builtin_spe_evlwwsplat", SPE_BUILTIN_EVLWWSPLAT
},
8863 { 0, CODE_FOR_spe_evlwhsplat
, "__builtin_spe_evlwhsplat", SPE_BUILTIN_EVLWHSPLAT
},
8864 { 0, CODE_FOR_spe_evlhhesplat
, "__builtin_spe_evlhhesplat", SPE_BUILTIN_EVLHHESPLAT
},
8865 { 0, CODE_FOR_spe_evlhhousplat
, "__builtin_spe_evlhhousplat", SPE_BUILTIN_EVLHHOUSPLAT
},
8866 { 0, CODE_FOR_spe_evlhhossplat
, "__builtin_spe_evlhhossplat", SPE_BUILTIN_EVLHHOSSPLAT
}
8869 /* Expand the builtin in EXP and store the result in TARGET. Store
8870 true in *EXPANDEDP if we found a builtin to expand.
8872 This expands the SPE builtins that are not simple unary and binary
8875 spe_expand_builtin (tree exp
, rtx target
, bool *expandedp
)
8877 tree fndecl
= TREE_OPERAND (CALL_EXPR_FN (exp
), 0);
8879 unsigned int fcode
= DECL_FUNCTION_CODE (fndecl
);
8880 enum insn_code icode
;
8881 enum machine_mode tmode
, mode0
;
8883 struct builtin_description
*d
;
8888 /* Syntax check for a 5-bit unsigned immediate. */
8891 case SPE_BUILTIN_EVSTDD
:
8892 case SPE_BUILTIN_EVSTDH
:
8893 case SPE_BUILTIN_EVSTDW
:
8894 case SPE_BUILTIN_EVSTWHE
:
8895 case SPE_BUILTIN_EVSTWHO
:
8896 case SPE_BUILTIN_EVSTWWE
:
8897 case SPE_BUILTIN_EVSTWWO
:
8898 arg1
= CALL_EXPR_ARG (exp
, 2);
8899 if (TREE_CODE (arg1
) != INTEGER_CST
8900 || TREE_INT_CST_LOW (arg1
) & ~0x1f)
8902 error ("argument 2 must be a 5-bit unsigned literal");
8910 /* The evsplat*i instructions are not quite generic. */
8913 case SPE_BUILTIN_EVSPLATFI
:
8914 return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplatfi
,
8916 case SPE_BUILTIN_EVSPLATI
:
8917 return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplati
,
8923 d
= (struct builtin_description
*) bdesc_2arg_spe
;
8924 for (i
= 0; i
< ARRAY_SIZE (bdesc_2arg_spe
); ++i
, ++d
)
8925 if (d
->code
== fcode
)
8926 return rs6000_expand_binop_builtin (d
->icode
, exp
, target
);
8928 d
= (struct builtin_description
*) bdesc_spe_predicates
;
8929 for (i
= 0; i
< ARRAY_SIZE (bdesc_spe_predicates
); ++i
, ++d
)
8930 if (d
->code
== fcode
)
8931 return spe_expand_predicate_builtin (d
->icode
, exp
, target
);
8933 d
= (struct builtin_description
*) bdesc_spe_evsel
;
8934 for (i
= 0; i
< ARRAY_SIZE (bdesc_spe_evsel
); ++i
, ++d
)
8935 if (d
->code
== fcode
)
8936 return spe_expand_evsel_builtin (d
->icode
, exp
, target
);
8940 case SPE_BUILTIN_EVSTDDX
:
8941 return spe_expand_stv_builtin (CODE_FOR_spe_evstddx
, exp
);
8942 case SPE_BUILTIN_EVSTDHX
:
8943 return spe_expand_stv_builtin (CODE_FOR_spe_evstdhx
, exp
);
8944 case SPE_BUILTIN_EVSTDWX
:
8945 return spe_expand_stv_builtin (CODE_FOR_spe_evstdwx
, exp
);
8946 case SPE_BUILTIN_EVSTWHEX
:
8947 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhex
, exp
);
8948 case SPE_BUILTIN_EVSTWHOX
:
8949 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhox
, exp
);
8950 case SPE_BUILTIN_EVSTWWEX
:
8951 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwex
, exp
);
8952 case SPE_BUILTIN_EVSTWWOX
:
8953 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwox
, exp
);
8954 case SPE_BUILTIN_EVSTDD
:
8955 return spe_expand_stv_builtin (CODE_FOR_spe_evstdd
, exp
);
8956 case SPE_BUILTIN_EVSTDH
:
8957 return spe_expand_stv_builtin (CODE_FOR_spe_evstdh
, exp
);
8958 case SPE_BUILTIN_EVSTDW
:
8959 return spe_expand_stv_builtin (CODE_FOR_spe_evstdw
, exp
);
8960 case SPE_BUILTIN_EVSTWHE
:
8961 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhe
, exp
);
8962 case SPE_BUILTIN_EVSTWHO
:
8963 return spe_expand_stv_builtin (CODE_FOR_spe_evstwho
, exp
);
8964 case SPE_BUILTIN_EVSTWWE
:
8965 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwe
, exp
);
8966 case SPE_BUILTIN_EVSTWWO
:
8967 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwo
, exp
);
8968 case SPE_BUILTIN_MFSPEFSCR
:
8969 icode
= CODE_FOR_spe_mfspefscr
;
8970 tmode
= insn_data
[icode
].operand
[0].mode
;
8973 || GET_MODE (target
) != tmode
8974 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
8975 target
= gen_reg_rtx (tmode
);
8977 pat
= GEN_FCN (icode
) (target
);
8982 case SPE_BUILTIN_MTSPEFSCR
:
8983 icode
= CODE_FOR_spe_mtspefscr
;
8984 arg0
= CALL_EXPR_ARG (exp
, 0);
8985 op0
= expand_normal (arg0
);
8986 mode0
= insn_data
[icode
].operand
[0].mode
;
8988 if (arg0
== error_mark_node
)
8991 if (! (*insn_data
[icode
].operand
[0].predicate
) (op0
, mode0
))
8992 op0
= copy_to_mode_reg (mode0
, op0
);
8994 pat
= GEN_FCN (icode
) (op0
);
9007 paired_expand_predicate_builtin (enum insn_code icode
, tree exp
, rtx target
)
9009 rtx pat
, scratch
, tmp
;
9010 tree form
= CALL_EXPR_ARG (exp
, 0);
9011 tree arg0
= CALL_EXPR_ARG (exp
, 1);
9012 tree arg1
= CALL_EXPR_ARG (exp
, 2);
9013 rtx op0
= expand_normal (arg0
);
9014 rtx op1
= expand_normal (arg1
);
9015 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
9016 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
9020 if (TREE_CODE (form
) != INTEGER_CST
)
9022 error ("argument 1 of __builtin_paired_predicate must be a constant");
9026 form_int
= TREE_INT_CST_LOW (form
);
9028 gcc_assert (mode0
== mode1
);
9030 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
9034 || GET_MODE (target
) != SImode
9035 || !(*insn_data
[icode
].operand
[0].predicate
) (target
, SImode
))
9036 target
= gen_reg_rtx (SImode
);
9037 if (!(*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
9038 op0
= copy_to_mode_reg (mode0
, op0
);
9039 if (!(*insn_data
[icode
].operand
[2].predicate
) (op1
, mode1
))
9040 op1
= copy_to_mode_reg (mode1
, op1
);
9042 scratch
= gen_reg_rtx (CCFPmode
);
9044 pat
= GEN_FCN (icode
) (scratch
, op0
, op1
);
9066 emit_insn (gen_move_from_CR_ov_bit (target
, scratch
));
9069 error ("argument 1 of __builtin_paired_predicate is out of range");
9073 tmp
= gen_rtx_fmt_ee (code
, SImode
, scratch
, const0_rtx
);
9074 emit_move_insn (target
, tmp
);
9079 spe_expand_predicate_builtin (enum insn_code icode
, tree exp
, rtx target
)
9081 rtx pat
, scratch
, tmp
;
9082 tree form
= CALL_EXPR_ARG (exp
, 0);
9083 tree arg0
= CALL_EXPR_ARG (exp
, 1);
9084 tree arg1
= CALL_EXPR_ARG (exp
, 2);
9085 rtx op0
= expand_normal (arg0
);
9086 rtx op1
= expand_normal (arg1
);
9087 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
9088 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
9092 if (TREE_CODE (form
) != INTEGER_CST
)
9094 error ("argument 1 of __builtin_spe_predicate must be a constant");
9098 form_int
= TREE_INT_CST_LOW (form
);
9100 gcc_assert (mode0
== mode1
);
9102 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
9106 || GET_MODE (target
) != SImode
9107 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, SImode
))
9108 target
= gen_reg_rtx (SImode
);
9110 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
9111 op0
= copy_to_mode_reg (mode0
, op0
);
9112 if (! (*insn_data
[icode
].operand
[2].predicate
) (op1
, mode1
))
9113 op1
= copy_to_mode_reg (mode1
, op1
);
9115 scratch
= gen_reg_rtx (CCmode
);
9117 pat
= GEN_FCN (icode
) (scratch
, op0
, op1
);
9122 /* There are 4 variants for each predicate: _any_, _all_, _upper_,
9123 _lower_. We use one compare, but look in different bits of the
9124 CR for each variant.
9126 There are 2 elements in each SPE simd type (upper/lower). The CR
9127 bits are set as follows:
9129 BIT0 | BIT 1 | BIT 2 | BIT 3
9130 U | L | (U | L) | (U & L)
9132 So, for an "all" relationship, BIT 3 would be set.
9133 For an "any" relationship, BIT 2 would be set. Etc.
9135 Following traditional nomenclature, these bits map to:
9137 BIT0 | BIT 1 | BIT 2 | BIT 3
9140 Later, we will generate rtl to look in the LT/EQ/EQ/OV bits.
9145 /* All variant. OV bit. */
9147 /* We need to get to the OV bit, which is the ORDERED bit. We
9148 could generate (ordered:SI (reg:CC xx) (const_int 0)), but
9149 that's ugly and will make validate_condition_mode die.
9150 So let's just use another pattern. */
9151 emit_insn (gen_move_from_CR_ov_bit (target
, scratch
));
9153 /* Any variant. EQ bit. */
9157 /* Upper variant. LT bit. */
9161 /* Lower variant. GT bit. */
9166 error ("argument 1 of __builtin_spe_predicate is out of range");
9170 tmp
= gen_rtx_fmt_ee (code
, SImode
, scratch
, const0_rtx
);
9171 emit_move_insn (target
, tmp
);
9176 /* The evsel builtins look like this:
9178 e = __builtin_spe_evsel_OP (a, b, c, d);
9182 e[upper] = a[upper] *OP* b[upper] ? c[upper] : d[upper];
9183 e[lower] = a[lower] *OP* b[lower] ? c[lower] : d[lower];
9187 spe_expand_evsel_builtin (enum insn_code icode
, tree exp
, rtx target
)
9190 tree arg0
= CALL_EXPR_ARG (exp
, 0);
9191 tree arg1
= CALL_EXPR_ARG (exp
, 1);
9192 tree arg2
= CALL_EXPR_ARG (exp
, 2);
9193 tree arg3
= CALL_EXPR_ARG (exp
, 3);
9194 rtx op0
= expand_normal (arg0
);
9195 rtx op1
= expand_normal (arg1
);
9196 rtx op2
= expand_normal (arg2
);
9197 rtx op3
= expand_normal (arg3
);
9198 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
9199 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
9201 gcc_assert (mode0
== mode1
);
9203 if (arg0
== error_mark_node
|| arg1
== error_mark_node
9204 || arg2
== error_mark_node
|| arg3
== error_mark_node
)
9208 || GET_MODE (target
) != mode0
9209 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, mode0
))
9210 target
= gen_reg_rtx (mode0
);
9212 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
9213 op0
= copy_to_mode_reg (mode0
, op0
);
9214 if (! (*insn_data
[icode
].operand
[1].predicate
) (op1
, mode1
))
9215 op1
= copy_to_mode_reg (mode0
, op1
);
9216 if (! (*insn_data
[icode
].operand
[1].predicate
) (op2
, mode1
))
9217 op2
= copy_to_mode_reg (mode0
, op2
);
9218 if (! (*insn_data
[icode
].operand
[1].predicate
) (op3
, mode1
))
9219 op3
= copy_to_mode_reg (mode0
, op3
);
9221 /* Generate the compare. */
9222 scratch
= gen_reg_rtx (CCmode
);
9223 pat
= GEN_FCN (icode
) (scratch
, op0
, op1
);
9228 if (mode0
== V2SImode
)
9229 emit_insn (gen_spe_evsel (target
, op2
, op3
, scratch
));
9231 emit_insn (gen_spe_evsel_fs (target
, op2
, op3
, scratch
));
9236 /* Expand an expression EXP that calls a built-in function,
9237 with result going to TARGET if that's convenient
9238 (and in mode MODE if that's convenient).
9239 SUBTARGET may be used as the target for computing one of EXP's operands.
9240 IGNORE is nonzero if the value is to be ignored. */
9243 rs6000_expand_builtin (tree exp
, rtx target
, rtx subtarget ATTRIBUTE_UNUSED
,
9244 enum machine_mode mode ATTRIBUTE_UNUSED
,
9245 int ignore ATTRIBUTE_UNUSED
)
9247 tree fndecl
= TREE_OPERAND (CALL_EXPR_FN (exp
), 0);
9248 unsigned int fcode
= DECL_FUNCTION_CODE (fndecl
);
9249 const struct builtin_description
*d
;
9254 if (fcode
== RS6000_BUILTIN_RECIP
)
9255 return rs6000_expand_binop_builtin (CODE_FOR_recipdf3
, exp
, target
);
9257 if (fcode
== RS6000_BUILTIN_RECIPF
)
9258 return rs6000_expand_binop_builtin (CODE_FOR_recipsf3
, exp
, target
);
9260 if (fcode
== RS6000_BUILTIN_RSQRTF
)
9261 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtsf2
, exp
, target
);
9263 if (fcode
== ALTIVEC_BUILTIN_MASK_FOR_LOAD
9264 || fcode
== ALTIVEC_BUILTIN_MASK_FOR_STORE
)
9266 int icode
= (int) CODE_FOR_altivec_lvsr
;
9267 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
9268 enum machine_mode mode
= insn_data
[icode
].operand
[1].mode
;
9272 gcc_assert (TARGET_ALTIVEC
);
9274 arg
= CALL_EXPR_ARG (exp
, 0);
9275 gcc_assert (TREE_CODE (TREE_TYPE (arg
)) == POINTER_TYPE
);
9276 op
= expand_expr (arg
, NULL_RTX
, Pmode
, EXPAND_NORMAL
);
9277 addr
= memory_address (mode
, op
);
9278 if (fcode
== ALTIVEC_BUILTIN_MASK_FOR_STORE
)
9282 /* For the load case need to negate the address. */
9283 op
= gen_reg_rtx (GET_MODE (addr
));
9284 emit_insn (gen_rtx_SET (VOIDmode
, op
,
9285 gen_rtx_NEG (GET_MODE (addr
), addr
)));
9287 op
= gen_rtx_MEM (mode
, op
);
9290 || GET_MODE (target
) != tmode
9291 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
9292 target
= gen_reg_rtx (tmode
);
9294 /*pat = gen_altivec_lvsr (target, op);*/
9295 pat
= GEN_FCN (icode
) (target
, op
);
9303 /* FIXME: There's got to be a nicer way to handle this case than
9304 constructing a new CALL_EXPR. */
9305 if (fcode
== ALTIVEC_BUILTIN_VCFUX
9306 || fcode
== ALTIVEC_BUILTIN_VCFSX
9307 || fcode
== ALTIVEC_BUILTIN_VCTUXS
9308 || fcode
== ALTIVEC_BUILTIN_VCTSXS
)
9310 if (call_expr_nargs (exp
) == 1)
9311 exp
= build_call_nary (TREE_TYPE (exp
), CALL_EXPR_FN (exp
),
9312 2, CALL_EXPR_ARG (exp
, 0), integer_zero_node
);
9317 ret
= altivec_expand_builtin (exp
, target
, &success
);
9324 ret
= spe_expand_builtin (exp
, target
, &success
);
9329 if (TARGET_PAIRED_FLOAT
)
9331 ret
= paired_expand_builtin (exp
, target
, &success
);
9337 gcc_assert (TARGET_ALTIVEC
|| TARGET_SPE
|| TARGET_PAIRED_FLOAT
);
9339 /* Handle simple unary operations. */
9340 d
= (struct builtin_description
*) bdesc_1arg
;
9341 for (i
= 0; i
< ARRAY_SIZE (bdesc_1arg
); i
++, d
++)
9342 if (d
->code
== fcode
)
9343 return rs6000_expand_unop_builtin (d
->icode
, exp
, target
);
9345 /* Handle simple binary operations. */
9346 d
= (struct builtin_description
*) bdesc_2arg
;
9347 for (i
= 0; i
< ARRAY_SIZE (bdesc_2arg
); i
++, d
++)
9348 if (d
->code
== fcode
)
9349 return rs6000_expand_binop_builtin (d
->icode
, exp
, target
);
9351 /* Handle simple ternary operations. */
9353 for (i
= 0; i
< ARRAY_SIZE (bdesc_3arg
); i
++, d
++)
9354 if (d
->code
== fcode
)
9355 return rs6000_expand_ternop_builtin (d
->icode
, exp
, target
);
9361 rs6000_init_builtins (void)
9365 V2SI_type_node
= build_vector_type (intSI_type_node
, 2);
9366 V2SF_type_node
= build_vector_type (float_type_node
, 2);
9367 V4HI_type_node
= build_vector_type (intHI_type_node
, 4);
9368 V4SI_type_node
= build_vector_type (intSI_type_node
, 4);
9369 V4SF_type_node
= build_vector_type (float_type_node
, 4);
9370 V8HI_type_node
= build_vector_type (intHI_type_node
, 8);
9371 V16QI_type_node
= build_vector_type (intQI_type_node
, 16);
9373 unsigned_V16QI_type_node
= build_vector_type (unsigned_intQI_type_node
, 16);
9374 unsigned_V8HI_type_node
= build_vector_type (unsigned_intHI_type_node
, 8);
9375 unsigned_V4SI_type_node
= build_vector_type (unsigned_intSI_type_node
, 4);
9377 opaque_V2SF_type_node
= build_opaque_vector_type (float_type_node
, 2);
9378 opaque_V2SI_type_node
= build_opaque_vector_type (intSI_type_node
, 2);
9379 opaque_p_V2SI_type_node
= build_pointer_type (opaque_V2SI_type_node
);
9380 opaque_V4SI_type_node
= build_opaque_vector_type (intSI_type_node
, 4);
9382 /* The 'vector bool ...' types must be kept distinct from 'vector unsigned ...'
9383 types, especially in C++ land. Similarly, 'vector pixel' is distinct from
9384 'vector unsigned short'. */
9386 bool_char_type_node
= build_distinct_type_copy (unsigned_intQI_type_node
);
9387 bool_short_type_node
= build_distinct_type_copy (unsigned_intHI_type_node
);
9388 bool_int_type_node
= build_distinct_type_copy (unsigned_intSI_type_node
);
9389 pixel_type_node
= build_distinct_type_copy (unsigned_intHI_type_node
);
9391 long_integer_type_internal_node
= long_integer_type_node
;
9392 long_unsigned_type_internal_node
= long_unsigned_type_node
;
9393 intQI_type_internal_node
= intQI_type_node
;
9394 uintQI_type_internal_node
= unsigned_intQI_type_node
;
9395 intHI_type_internal_node
= intHI_type_node
;
9396 uintHI_type_internal_node
= unsigned_intHI_type_node
;
9397 intSI_type_internal_node
= intSI_type_node
;
9398 uintSI_type_internal_node
= unsigned_intSI_type_node
;
9399 float_type_internal_node
= float_type_node
;
9400 void_type_internal_node
= void_type_node
;
9402 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__bool char"),
9403 bool_char_type_node
);
9404 TYPE_NAME (bool_char_type_node
) = tdecl
;
9405 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9406 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__bool short"),
9407 bool_short_type_node
);
9408 TYPE_NAME (bool_short_type_node
) = tdecl
;
9409 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9410 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__bool int"),
9411 bool_int_type_node
);
9412 TYPE_NAME (bool_int_type_node
) = tdecl
;
9413 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9414 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__pixel"),
9416 TYPE_NAME (pixel_type_node
) = tdecl
;
9417 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9419 bool_V16QI_type_node
= build_vector_type (bool_char_type_node
, 16);
9420 bool_V8HI_type_node
= build_vector_type (bool_short_type_node
, 8);
9421 bool_V4SI_type_node
= build_vector_type (bool_int_type_node
, 4);
9422 pixel_V8HI_type_node
= build_vector_type (pixel_type_node
, 8);
9424 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector unsigned char"),
9425 unsigned_V16QI_type_node
);
9426 TYPE_NAME (unsigned_V16QI_type_node
) = tdecl
;
9427 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9428 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector signed char"),
9430 TYPE_NAME (V16QI_type_node
) = tdecl
;
9431 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9432 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector __bool char"),
9433 bool_V16QI_type_node
);
9434 TYPE_NAME ( bool_V16QI_type_node
) = tdecl
;
9435 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9437 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector unsigned short"),
9438 unsigned_V8HI_type_node
);
9439 TYPE_NAME (unsigned_V8HI_type_node
) = tdecl
;
9440 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9441 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector signed short"),
9443 TYPE_NAME (V8HI_type_node
) = tdecl
;
9444 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9445 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector __bool short"),
9446 bool_V8HI_type_node
);
9447 TYPE_NAME (bool_V8HI_type_node
) = tdecl
;
9448 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9450 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector unsigned int"),
9451 unsigned_V4SI_type_node
);
9452 TYPE_NAME (unsigned_V4SI_type_node
) = tdecl
;
9453 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9454 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector signed int"),
9456 TYPE_NAME (V4SI_type_node
) = tdecl
;
9457 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9458 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector __bool int"),
9459 bool_V4SI_type_node
);
9460 TYPE_NAME (bool_V4SI_type_node
) = tdecl
;
9461 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9463 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector float"),
9465 TYPE_NAME (V4SF_type_node
) = tdecl
;
9466 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9467 tdecl
= build_decl (TYPE_DECL
, get_identifier ("__vector __pixel"),
9468 pixel_V8HI_type_node
);
9469 TYPE_NAME (pixel_V8HI_type_node
) = tdecl
;
9470 (*lang_hooks
.decls
.pushdecl
) (tdecl
);
9472 if (TARGET_PAIRED_FLOAT
)
9473 paired_init_builtins ();
9475 spe_init_builtins ();
9477 altivec_init_builtins ();
9478 if (TARGET_ALTIVEC
|| TARGET_SPE
|| TARGET_PAIRED_FLOAT
)
9479 rs6000_common_init_builtins ();
9480 if (TARGET_PPC_GFXOPT
)
9482 tree ftype
= build_function_type_list (float_type_node
,
9486 def_builtin (MASK_PPC_GFXOPT
, "__builtin_recipdivf", ftype
,
9487 RS6000_BUILTIN_RECIPF
);
9489 ftype
= build_function_type_list (float_type_node
,
9492 def_builtin (MASK_PPC_GFXOPT
, "__builtin_rsqrtf", ftype
,
9493 RS6000_BUILTIN_RSQRTF
);
9497 tree ftype
= build_function_type_list (double_type_node
,
9501 def_builtin (MASK_POPCNTB
, "__builtin_recipdiv", ftype
,
9502 RS6000_BUILTIN_RECIP
);
9507 /* AIX libm provides clog as __clog. */
9508 if (built_in_decls
[BUILT_IN_CLOG
])
9509 set_user_assembler_name (built_in_decls
[BUILT_IN_CLOG
], "__clog");
9512 #ifdef SUBTARGET_INIT_BUILTINS
9513 SUBTARGET_INIT_BUILTINS
;
9517 /* Search through a set of builtins and enable the mask bits.
9518 DESC is an array of builtins.
9519 SIZE is the total number of builtins.
9520 START is the builtin enum at which to start.
9521 END is the builtin enum at which to end. */
9523 enable_mask_for_builtins (struct builtin_description
*desc
, int size
,
9524 enum rs6000_builtins start
,
9525 enum rs6000_builtins end
)
9529 for (i
= 0; i
< size
; ++i
)
9530 if (desc
[i
].code
== start
)
9536 for (; i
< size
; ++i
)
9538 /* Flip all the bits on. */
9539 desc
[i
].mask
= target_flags
;
9540 if (desc
[i
].code
== end
)
9546 spe_init_builtins (void)
9548 tree endlink
= void_list_node
;
9549 tree puint_type_node
= build_pointer_type (unsigned_type_node
);
9550 tree pushort_type_node
= build_pointer_type (short_unsigned_type_node
);
9551 struct builtin_description
*d
;
9554 tree v2si_ftype_4_v2si
9555 = build_function_type
9556 (opaque_V2SI_type_node
,
9557 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9558 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9559 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9560 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9563 tree v2sf_ftype_4_v2sf
9564 = build_function_type
9565 (opaque_V2SF_type_node
,
9566 tree_cons (NULL_TREE
, opaque_V2SF_type_node
,
9567 tree_cons (NULL_TREE
, opaque_V2SF_type_node
,
9568 tree_cons (NULL_TREE
, opaque_V2SF_type_node
,
9569 tree_cons (NULL_TREE
, opaque_V2SF_type_node
,
9572 tree int_ftype_int_v2si_v2si
9573 = build_function_type
9575 tree_cons (NULL_TREE
, integer_type_node
,
9576 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9577 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9580 tree int_ftype_int_v2sf_v2sf
9581 = build_function_type
9583 tree_cons (NULL_TREE
, integer_type_node
,
9584 tree_cons (NULL_TREE
, opaque_V2SF_type_node
,
9585 tree_cons (NULL_TREE
, opaque_V2SF_type_node
,
9588 tree void_ftype_v2si_puint_int
9589 = build_function_type (void_type_node
,
9590 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9591 tree_cons (NULL_TREE
, puint_type_node
,
9592 tree_cons (NULL_TREE
,
9596 tree void_ftype_v2si_puint_char
9597 = build_function_type (void_type_node
,
9598 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9599 tree_cons (NULL_TREE
, puint_type_node
,
9600 tree_cons (NULL_TREE
,
9604 tree void_ftype_v2si_pv2si_int
9605 = build_function_type (void_type_node
,
9606 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9607 tree_cons (NULL_TREE
, opaque_p_V2SI_type_node
,
9608 tree_cons (NULL_TREE
,
9612 tree void_ftype_v2si_pv2si_char
9613 = build_function_type (void_type_node
,
9614 tree_cons (NULL_TREE
, opaque_V2SI_type_node
,
9615 tree_cons (NULL_TREE
, opaque_p_V2SI_type_node
,
9616 tree_cons (NULL_TREE
,
9621 = build_function_type (void_type_node
,
9622 tree_cons (NULL_TREE
, integer_type_node
, endlink
));
9625 = build_function_type (integer_type_node
, endlink
);
9627 tree v2si_ftype_pv2si_int
9628 = build_function_type (opaque_V2SI_type_node
,
9629 tree_cons (NULL_TREE
, opaque_p_V2SI_type_node
,
9630 tree_cons (NULL_TREE
, integer_type_node
,
9633 tree v2si_ftype_puint_int
9634 = build_function_type (opaque_V2SI_type_node
,
9635 tree_cons (NULL_TREE
, puint_type_node
,
9636 tree_cons (NULL_TREE
, integer_type_node
,
9639 tree v2si_ftype_pushort_int
9640 = build_function_type (opaque_V2SI_type_node
,
9641 tree_cons (NULL_TREE
, pushort_type_node
,
9642 tree_cons (NULL_TREE
, integer_type_node
,
9645 tree v2si_ftype_signed_char
9646 = build_function_type (opaque_V2SI_type_node
,
9647 tree_cons (NULL_TREE
, signed_char_type_node
,
9650 /* The initialization of the simple binary and unary builtins is
9651 done in rs6000_common_init_builtins, but we have to enable the
9652 mask bits here manually because we have run out of `target_flags'
9653 bits. We really need to redesign this mask business. */
9655 enable_mask_for_builtins ((struct builtin_description
*) bdesc_2arg
,
9656 ARRAY_SIZE (bdesc_2arg
),
9659 enable_mask_for_builtins ((struct builtin_description
*) bdesc_1arg
,
9660 ARRAY_SIZE (bdesc_1arg
),
9662 SPE_BUILTIN_EVSUBFUSIAAW
);
9663 enable_mask_for_builtins ((struct builtin_description
*) bdesc_spe_predicates
,
9664 ARRAY_SIZE (bdesc_spe_predicates
),
9665 SPE_BUILTIN_EVCMPEQ
,
9666 SPE_BUILTIN_EVFSTSTLT
);
9667 enable_mask_for_builtins ((struct builtin_description
*) bdesc_spe_evsel
,
9668 ARRAY_SIZE (bdesc_spe_evsel
),
9669 SPE_BUILTIN_EVSEL_CMPGTS
,
9670 SPE_BUILTIN_EVSEL_FSTSTEQ
);
9672 (*lang_hooks
.decls
.pushdecl
)
9673 (build_decl (TYPE_DECL
, get_identifier ("__ev64_opaque__"),
9674 opaque_V2SI_type_node
));
9676 /* Initialize irregular SPE builtins. */
9678 def_builtin (target_flags
, "__builtin_spe_mtspefscr", void_ftype_int
, SPE_BUILTIN_MTSPEFSCR
);
9679 def_builtin (target_flags
, "__builtin_spe_mfspefscr", int_ftype_void
, SPE_BUILTIN_MFSPEFSCR
);
9680 def_builtin (target_flags
, "__builtin_spe_evstddx", void_ftype_v2si_pv2si_int
, SPE_BUILTIN_EVSTDDX
);
9681 def_builtin (target_flags
, "__builtin_spe_evstdhx", void_ftype_v2si_pv2si_int
, SPE_BUILTIN_EVSTDHX
);
9682 def_builtin (target_flags
, "__builtin_spe_evstdwx", void_ftype_v2si_pv2si_int
, SPE_BUILTIN_EVSTDWX
);
9683 def_builtin (target_flags
, "__builtin_spe_evstwhex", void_ftype_v2si_puint_int
, SPE_BUILTIN_EVSTWHEX
);
9684 def_builtin (target_flags
, "__builtin_spe_evstwhox", void_ftype_v2si_puint_int
, SPE_BUILTIN_EVSTWHOX
);
9685 def_builtin (target_flags
, "__builtin_spe_evstwwex", void_ftype_v2si_puint_int
, SPE_BUILTIN_EVSTWWEX
);
9686 def_builtin (target_flags
, "__builtin_spe_evstwwox", void_ftype_v2si_puint_int
, SPE_BUILTIN_EVSTWWOX
);
9687 def_builtin (target_flags
, "__builtin_spe_evstdd", void_ftype_v2si_pv2si_char
, SPE_BUILTIN_EVSTDD
);
9688 def_builtin (target_flags
, "__builtin_spe_evstdh", void_ftype_v2si_pv2si_char
, SPE_BUILTIN_EVSTDH
);
9689 def_builtin (target_flags
, "__builtin_spe_evstdw", void_ftype_v2si_pv2si_char
, SPE_BUILTIN_EVSTDW
);
9690 def_builtin (target_flags
, "__builtin_spe_evstwhe", void_ftype_v2si_puint_char
, SPE_BUILTIN_EVSTWHE
);
9691 def_builtin (target_flags
, "__builtin_spe_evstwho", void_ftype_v2si_puint_char
, SPE_BUILTIN_EVSTWHO
);
9692 def_builtin (target_flags
, "__builtin_spe_evstwwe", void_ftype_v2si_puint_char
, SPE_BUILTIN_EVSTWWE
);
9693 def_builtin (target_flags
, "__builtin_spe_evstwwo", void_ftype_v2si_puint_char
, SPE_BUILTIN_EVSTWWO
);
9694 def_builtin (target_flags
, "__builtin_spe_evsplatfi", v2si_ftype_signed_char
, SPE_BUILTIN_EVSPLATFI
);
9695 def_builtin (target_flags
, "__builtin_spe_evsplati", v2si_ftype_signed_char
, SPE_BUILTIN_EVSPLATI
);
9698 def_builtin (target_flags
, "__builtin_spe_evlddx", v2si_ftype_pv2si_int
, SPE_BUILTIN_EVLDDX
);
9699 def_builtin (target_flags
, "__builtin_spe_evldwx", v2si_ftype_pv2si_int
, SPE_BUILTIN_EVLDWX
);
9700 def_builtin (target_flags
, "__builtin_spe_evldhx", v2si_ftype_pv2si_int
, SPE_BUILTIN_EVLDHX
);
9701 def_builtin (target_flags
, "__builtin_spe_evlwhex", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWHEX
);
9702 def_builtin (target_flags
, "__builtin_spe_evlwhoux", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWHOUX
);
9703 def_builtin (target_flags
, "__builtin_spe_evlwhosx", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWHOSX
);
9704 def_builtin (target_flags
, "__builtin_spe_evlwwsplatx", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWWSPLATX
);
9705 def_builtin (target_flags
, "__builtin_spe_evlwhsplatx", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWHSPLATX
);
9706 def_builtin (target_flags
, "__builtin_spe_evlhhesplatx", v2si_ftype_pushort_int
, SPE_BUILTIN_EVLHHESPLATX
);
9707 def_builtin (target_flags
, "__builtin_spe_evlhhousplatx", v2si_ftype_pushort_int
, SPE_BUILTIN_EVLHHOUSPLATX
);
9708 def_builtin (target_flags
, "__builtin_spe_evlhhossplatx", v2si_ftype_pushort_int
, SPE_BUILTIN_EVLHHOSSPLATX
);
9709 def_builtin (target_flags
, "__builtin_spe_evldd", v2si_ftype_pv2si_int
, SPE_BUILTIN_EVLDD
);
9710 def_builtin (target_flags
, "__builtin_spe_evldw", v2si_ftype_pv2si_int
, SPE_BUILTIN_EVLDW
);
9711 def_builtin (target_flags
, "__builtin_spe_evldh", v2si_ftype_pv2si_int
, SPE_BUILTIN_EVLDH
);
9712 def_builtin (target_flags
, "__builtin_spe_evlhhesplat", v2si_ftype_pushort_int
, SPE_BUILTIN_EVLHHESPLAT
);
9713 def_builtin (target_flags
, "__builtin_spe_evlhhossplat", v2si_ftype_pushort_int
, SPE_BUILTIN_EVLHHOSSPLAT
);
9714 def_builtin (target_flags
, "__builtin_spe_evlhhousplat", v2si_ftype_pushort_int
, SPE_BUILTIN_EVLHHOUSPLAT
);
9715 def_builtin (target_flags
, "__builtin_spe_evlwhe", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWHE
);
9716 def_builtin (target_flags
, "__builtin_spe_evlwhos", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWHOS
);
9717 def_builtin (target_flags
, "__builtin_spe_evlwhou", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWHOU
);
9718 def_builtin (target_flags
, "__builtin_spe_evlwhsplat", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWHSPLAT
);
9719 def_builtin (target_flags
, "__builtin_spe_evlwwsplat", v2si_ftype_puint_int
, SPE_BUILTIN_EVLWWSPLAT
);
9722 d
= (struct builtin_description
*) bdesc_spe_predicates
;
9723 for (i
= 0; i
< ARRAY_SIZE (bdesc_spe_predicates
); ++i
, d
++)
9727 switch (insn_data
[d
->icode
].operand
[1].mode
)
9730 type
= int_ftype_int_v2si_v2si
;
9733 type
= int_ftype_int_v2sf_v2sf
;
9739 def_builtin (d
->mask
, d
->name
, type
, d
->code
);
9742 /* Evsel predicates. */
9743 d
= (struct builtin_description
*) bdesc_spe_evsel
;
9744 for (i
= 0; i
< ARRAY_SIZE (bdesc_spe_evsel
); ++i
, d
++)
9748 switch (insn_data
[d
->icode
].operand
[1].mode
)
9751 type
= v2si_ftype_4_v2si
;
9754 type
= v2sf_ftype_4_v2sf
;
9760 def_builtin (d
->mask
, d
->name
, type
, d
->code
);
9765 paired_init_builtins (void)
9767 const struct builtin_description
*d
;
9769 tree endlink
= void_list_node
;
9771 tree int_ftype_int_v2sf_v2sf
9772 = build_function_type
9774 tree_cons (NULL_TREE
, integer_type_node
,
9775 tree_cons (NULL_TREE
, V2SF_type_node
,
9776 tree_cons (NULL_TREE
, V2SF_type_node
,
9778 tree pcfloat_type_node
=
9779 build_pointer_type (build_qualified_type
9780 (float_type_node
, TYPE_QUAL_CONST
));
9782 tree v2sf_ftype_long_pcfloat
= build_function_type_list (V2SF_type_node
,
9783 long_integer_type_node
,
9786 tree void_ftype_v2sf_long_pcfloat
=
9787 build_function_type_list (void_type_node
,
9789 long_integer_type_node
,
9794 def_builtin (0, "__builtin_paired_lx", v2sf_ftype_long_pcfloat
,
9798 def_builtin (0, "__builtin_paired_stx", void_ftype_v2sf_long_pcfloat
,
9799 PAIRED_BUILTIN_STX
);
9802 d
= bdesc_paired_preds
;
9803 for (i
= 0; i
< ARRAY_SIZE (bdesc_paired_preds
); ++i
, d
++)
9807 switch (insn_data
[d
->icode
].operand
[1].mode
)
9810 type
= int_ftype_int_v2sf_v2sf
;
9816 def_builtin (d
->mask
, d
->name
, type
, d
->code
);
9821 altivec_init_builtins (void)
9823 const struct builtin_description
*d
;
9824 const struct builtin_description_predicates
*dp
;
9828 tree pfloat_type_node
= build_pointer_type (float_type_node
);
9829 tree pint_type_node
= build_pointer_type (integer_type_node
);
9830 tree pshort_type_node
= build_pointer_type (short_integer_type_node
);
9831 tree pchar_type_node
= build_pointer_type (char_type_node
);
9833 tree pvoid_type_node
= build_pointer_type (void_type_node
);
9835 tree pcfloat_type_node
= build_pointer_type (build_qualified_type (float_type_node
, TYPE_QUAL_CONST
));
9836 tree pcint_type_node
= build_pointer_type (build_qualified_type (integer_type_node
, TYPE_QUAL_CONST
));
9837 tree pcshort_type_node
= build_pointer_type (build_qualified_type (short_integer_type_node
, TYPE_QUAL_CONST
));
9838 tree pcchar_type_node
= build_pointer_type (build_qualified_type (char_type_node
, TYPE_QUAL_CONST
));
9840 tree pcvoid_type_node
= build_pointer_type (build_qualified_type (void_type_node
, TYPE_QUAL_CONST
));
9842 tree int_ftype_opaque
9843 = build_function_type_list (integer_type_node
,
9844 opaque_V4SI_type_node
, NULL_TREE
);
9845 tree opaque_ftype_opaque
9846 = build_function_type (integer_type_node
,
9848 tree opaque_ftype_opaque_int
9849 = build_function_type_list (opaque_V4SI_type_node
,
9850 opaque_V4SI_type_node
, integer_type_node
, NULL_TREE
);
9851 tree opaque_ftype_opaque_opaque_int
9852 = build_function_type_list (opaque_V4SI_type_node
,
9853 opaque_V4SI_type_node
, opaque_V4SI_type_node
,
9854 integer_type_node
, NULL_TREE
);
9855 tree int_ftype_int_opaque_opaque
9856 = build_function_type_list (integer_type_node
,
9857 integer_type_node
, opaque_V4SI_type_node
,
9858 opaque_V4SI_type_node
, NULL_TREE
);
9859 tree int_ftype_int_v4si_v4si
9860 = build_function_type_list (integer_type_node
,
9861 integer_type_node
, V4SI_type_node
,
9862 V4SI_type_node
, NULL_TREE
);
9863 tree v4sf_ftype_pcfloat
9864 = build_function_type_list (V4SF_type_node
, pcfloat_type_node
, NULL_TREE
);
9865 tree void_ftype_pfloat_v4sf
9866 = build_function_type_list (void_type_node
,
9867 pfloat_type_node
, V4SF_type_node
, NULL_TREE
);
9868 tree v4si_ftype_pcint
9869 = build_function_type_list (V4SI_type_node
, pcint_type_node
, NULL_TREE
);
9870 tree void_ftype_pint_v4si
9871 = build_function_type_list (void_type_node
,
9872 pint_type_node
, V4SI_type_node
, NULL_TREE
);
9873 tree v8hi_ftype_pcshort
9874 = build_function_type_list (V8HI_type_node
, pcshort_type_node
, NULL_TREE
);
9875 tree void_ftype_pshort_v8hi
9876 = build_function_type_list (void_type_node
,
9877 pshort_type_node
, V8HI_type_node
, NULL_TREE
);
9878 tree v16qi_ftype_pcchar
9879 = build_function_type_list (V16QI_type_node
, pcchar_type_node
, NULL_TREE
);
9880 tree void_ftype_pchar_v16qi
9881 = build_function_type_list (void_type_node
,
9882 pchar_type_node
, V16QI_type_node
, NULL_TREE
);
9883 tree void_ftype_v4si
9884 = build_function_type_list (void_type_node
, V4SI_type_node
, NULL_TREE
);
9885 tree v8hi_ftype_void
9886 = build_function_type (V8HI_type_node
, void_list_node
);
9887 tree void_ftype_void
9888 = build_function_type (void_type_node
, void_list_node
);
9890 = build_function_type_list (void_type_node
, integer_type_node
, NULL_TREE
);
9892 tree opaque_ftype_long_pcvoid
9893 = build_function_type_list (opaque_V4SI_type_node
,
9894 long_integer_type_node
, pcvoid_type_node
, NULL_TREE
);
9895 tree v16qi_ftype_long_pcvoid
9896 = build_function_type_list (V16QI_type_node
,
9897 long_integer_type_node
, pcvoid_type_node
, NULL_TREE
);
9898 tree v8hi_ftype_long_pcvoid
9899 = build_function_type_list (V8HI_type_node
,
9900 long_integer_type_node
, pcvoid_type_node
, NULL_TREE
);
9901 tree v4si_ftype_long_pcvoid
9902 = build_function_type_list (V4SI_type_node
,
9903 long_integer_type_node
, pcvoid_type_node
, NULL_TREE
);
9905 tree void_ftype_opaque_long_pvoid
9906 = build_function_type_list (void_type_node
,
9907 opaque_V4SI_type_node
, long_integer_type_node
,
9908 pvoid_type_node
, NULL_TREE
);
9909 tree void_ftype_v4si_long_pvoid
9910 = build_function_type_list (void_type_node
,
9911 V4SI_type_node
, long_integer_type_node
,
9912 pvoid_type_node
, NULL_TREE
);
9913 tree void_ftype_v16qi_long_pvoid
9914 = build_function_type_list (void_type_node
,
9915 V16QI_type_node
, long_integer_type_node
,
9916 pvoid_type_node
, NULL_TREE
);
9917 tree void_ftype_v8hi_long_pvoid
9918 = build_function_type_list (void_type_node
,
9919 V8HI_type_node
, long_integer_type_node
,
9920 pvoid_type_node
, NULL_TREE
);
9921 tree int_ftype_int_v8hi_v8hi
9922 = build_function_type_list (integer_type_node
,
9923 integer_type_node
, V8HI_type_node
,
9924 V8HI_type_node
, NULL_TREE
);
9925 tree int_ftype_int_v16qi_v16qi
9926 = build_function_type_list (integer_type_node
,
9927 integer_type_node
, V16QI_type_node
,
9928 V16QI_type_node
, NULL_TREE
);
9929 tree int_ftype_int_v4sf_v4sf
9930 = build_function_type_list (integer_type_node
,
9931 integer_type_node
, V4SF_type_node
,
9932 V4SF_type_node
, NULL_TREE
);
9933 tree v4si_ftype_v4si
9934 = build_function_type_list (V4SI_type_node
, V4SI_type_node
, NULL_TREE
);
9935 tree v8hi_ftype_v8hi
9936 = build_function_type_list (V8HI_type_node
, V8HI_type_node
, NULL_TREE
);
9937 tree v16qi_ftype_v16qi
9938 = build_function_type_list (V16QI_type_node
, V16QI_type_node
, NULL_TREE
);
9939 tree v4sf_ftype_v4sf
9940 = build_function_type_list (V4SF_type_node
, V4SF_type_node
, NULL_TREE
);
9941 tree void_ftype_pcvoid_int_int
9942 = build_function_type_list (void_type_node
,
9943 pcvoid_type_node
, integer_type_node
,
9944 integer_type_node
, NULL_TREE
);
9946 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_ld_internal_4sf", v4sf_ftype_pcfloat
,
9947 ALTIVEC_BUILTIN_LD_INTERNAL_4sf
);
9948 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_st_internal_4sf", void_ftype_pfloat_v4sf
,
9949 ALTIVEC_BUILTIN_ST_INTERNAL_4sf
);
9950 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_ld_internal_4si", v4si_ftype_pcint
,
9951 ALTIVEC_BUILTIN_LD_INTERNAL_4si
);
9952 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_st_internal_4si", void_ftype_pint_v4si
,
9953 ALTIVEC_BUILTIN_ST_INTERNAL_4si
);
9954 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_ld_internal_8hi", v8hi_ftype_pcshort
,
9955 ALTIVEC_BUILTIN_LD_INTERNAL_8hi
);
9956 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_st_internal_8hi", void_ftype_pshort_v8hi
,
9957 ALTIVEC_BUILTIN_ST_INTERNAL_8hi
);
9958 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_ld_internal_16qi", v16qi_ftype_pcchar
,
9959 ALTIVEC_BUILTIN_LD_INTERNAL_16qi
);
9960 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_st_internal_16qi", void_ftype_pchar_v16qi
,
9961 ALTIVEC_BUILTIN_ST_INTERNAL_16qi
);
9962 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_mtvscr", void_ftype_v4si
, ALTIVEC_BUILTIN_MTVSCR
);
9963 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_mfvscr", v8hi_ftype_void
, ALTIVEC_BUILTIN_MFVSCR
);
9964 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_dssall", void_ftype_void
, ALTIVEC_BUILTIN_DSSALL
);
9965 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_dss", void_ftype_int
, ALTIVEC_BUILTIN_DSS
);
9966 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvsl", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVSL
);
9967 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvsr", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVSR
);
9968 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvebx", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVEBX
);
9969 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvehx", v8hi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVEHX
);
9970 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvewx", v4si_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVEWX
);
9971 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvxl", v4si_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVXL
);
9972 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvx", v4si_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVX
);
9973 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_stvx", void_ftype_v4si_long_pvoid
, ALTIVEC_BUILTIN_STVX
);
9974 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_stvewx", void_ftype_v4si_long_pvoid
, ALTIVEC_BUILTIN_STVEWX
);
9975 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_stvxl", void_ftype_v4si_long_pvoid
, ALTIVEC_BUILTIN_STVXL
);
9976 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_stvebx", void_ftype_v16qi_long_pvoid
, ALTIVEC_BUILTIN_STVEBX
);
9977 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_stvehx", void_ftype_v8hi_long_pvoid
, ALTIVEC_BUILTIN_STVEHX
);
9978 def_builtin (MASK_ALTIVEC
, "__builtin_vec_ld", opaque_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LD
);
9979 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lde", opaque_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LDE
);
9980 def_builtin (MASK_ALTIVEC
, "__builtin_vec_ldl", opaque_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LDL
);
9981 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lvsl", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LVSL
);
9982 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lvsr", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LVSR
);
9983 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lvebx", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LVEBX
);
9984 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lvehx", v8hi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LVEHX
);
9985 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lvewx", v4si_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LVEWX
);
9986 def_builtin (MASK_ALTIVEC
, "__builtin_vec_st", void_ftype_opaque_long_pvoid
, ALTIVEC_BUILTIN_VEC_ST
);
9987 def_builtin (MASK_ALTIVEC
, "__builtin_vec_ste", void_ftype_opaque_long_pvoid
, ALTIVEC_BUILTIN_VEC_STE
);
9988 def_builtin (MASK_ALTIVEC
, "__builtin_vec_stl", void_ftype_opaque_long_pvoid
, ALTIVEC_BUILTIN_VEC_STL
);
9989 def_builtin (MASK_ALTIVEC
, "__builtin_vec_stvewx", void_ftype_opaque_long_pvoid
, ALTIVEC_BUILTIN_VEC_STVEWX
);
9990 def_builtin (MASK_ALTIVEC
, "__builtin_vec_stvebx", void_ftype_opaque_long_pvoid
, ALTIVEC_BUILTIN_VEC_STVEBX
);
9991 def_builtin (MASK_ALTIVEC
, "__builtin_vec_stvehx", void_ftype_opaque_long_pvoid
, ALTIVEC_BUILTIN_VEC_STVEHX
);
9993 if (rs6000_cpu
== PROCESSOR_CELL
)
9995 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvlx", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVLX
);
9996 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvlxl", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVLXL
);
9997 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvrx", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVRX
);
9998 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_lvrxl", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_LVRXL
);
10000 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lvlx", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LVLX
);
10001 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lvlxl", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LVLXL
);
10002 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lvrx", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LVRX
);
10003 def_builtin (MASK_ALTIVEC
, "__builtin_vec_lvrxl", v16qi_ftype_long_pcvoid
, ALTIVEC_BUILTIN_VEC_LVRXL
);
10005 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_stvlx", void_ftype_v16qi_long_pvoid
, ALTIVEC_BUILTIN_STVLX
);
10006 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_stvlxl", void_ftype_v16qi_long_pvoid
, ALTIVEC_BUILTIN_STVLXL
);
10007 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_stvrx", void_ftype_v16qi_long_pvoid
, ALTIVEC_BUILTIN_STVRX
);
10008 def_builtin (MASK_ALTIVEC
, "__builtin_altivec_stvrxl", void_ftype_v16qi_long_pvoid
, ALTIVEC_BUILTIN_STVRXL
);
10010 def_builtin (MASK_ALTIVEC
, "__builtin_vec_stvlx", void_ftype_v16qi_long_pvoid
, ALTIVEC_BUILTIN_VEC_STVLX
);
10011 def_builtin (MASK_ALTIVEC
, "__builtin_vec_stvlxl", void_ftype_v16qi_long_pvoid
, ALTIVEC_BUILTIN_VEC_STVLXL
);
10012 def_builtin (MASK_ALTIVEC
, "__builtin_vec_stvrx", void_ftype_v16qi_long_pvoid
, ALTIVEC_BUILTIN_VEC_STVRX
);
10013 def_builtin (MASK_ALTIVEC
, "__builtin_vec_stvrxl", void_ftype_v16qi_long_pvoid
, ALTIVEC_BUILTIN_VEC_STVRXL
);
10015 def_builtin (MASK_ALTIVEC
, "__builtin_vec_step", int_ftype_opaque
, ALTIVEC_BUILTIN_VEC_STEP
);
10016 def_builtin (MASK_ALTIVEC
, "__builtin_vec_splats", opaque_ftype_opaque
, ALTIVEC_BUILTIN_VEC_SPLATS
);
10017 def_builtin (MASK_ALTIVEC
, "__builtin_vec_promote", opaque_ftype_opaque
, ALTIVEC_BUILTIN_VEC_PROMOTE
);
10019 def_builtin (MASK_ALTIVEC
, "__builtin_vec_sld", opaque_ftype_opaque_opaque_int
, ALTIVEC_BUILTIN_VEC_SLD
);
10020 def_builtin (MASK_ALTIVEC
, "__builtin_vec_splat", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_SPLAT
);
10021 def_builtin (MASK_ALTIVEC
, "__builtin_vec_extract", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_EXTRACT
);
10022 def_builtin (MASK_ALTIVEC
, "__builtin_vec_insert", opaque_ftype_opaque_opaque_int
, ALTIVEC_BUILTIN_VEC_INSERT
);
10023 def_builtin (MASK_ALTIVEC
, "__builtin_vec_vspltw", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_VSPLTW
);
10024 def_builtin (MASK_ALTIVEC
, "__builtin_vec_vsplth", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_VSPLTH
);
10025 def_builtin (MASK_ALTIVEC
, "__builtin_vec_vspltb", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_VSPLTB
);
10026 def_builtin (MASK_ALTIVEC
, "__builtin_vec_ctf", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_CTF
);
10027 def_builtin (MASK_ALTIVEC
, "__builtin_vec_vcfsx", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_VCFSX
);
10028 def_builtin (MASK_ALTIVEC
, "__builtin_vec_vcfux", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_VCFUX
);
10029 def_builtin (MASK_ALTIVEC
, "__builtin_vec_cts", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_CTS
);
10030 def_builtin (MASK_ALTIVEC
, "__builtin_vec_ctu", opaque_ftype_opaque_int
, ALTIVEC_BUILTIN_VEC_CTU
);
10032 /* Add the DST variants. */
10034 for (i
= 0; i
< ARRAY_SIZE (bdesc_dst
); i
++, d
++)
10035 def_builtin (d
->mask
, d
->name
, void_ftype_pcvoid_int_int
, d
->code
);
10037 /* Initialize the predicates. */
10038 dp
= bdesc_altivec_preds
;
10039 for (i
= 0; i
< ARRAY_SIZE (bdesc_altivec_preds
); i
++, dp
++)
10041 enum machine_mode mode1
;
10043 bool is_overloaded
= dp
->code
>= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10044 && dp
->code
<= ALTIVEC_BUILTIN_OVERLOADED_LAST
;
10049 mode1
= insn_data
[dp
->icode
].operand
[1].mode
;
10054 type
= int_ftype_int_opaque_opaque
;
10057 type
= int_ftype_int_v4si_v4si
;
10060 type
= int_ftype_int_v8hi_v8hi
;
10063 type
= int_ftype_int_v16qi_v16qi
;
10066 type
= int_ftype_int_v4sf_v4sf
;
10069 gcc_unreachable ();
10072 def_builtin (dp
->mask
, dp
->name
, type
, dp
->code
);
10075 /* Initialize the abs* operators. */
10077 for (i
= 0; i
< ARRAY_SIZE (bdesc_abs
); i
++, d
++)
10079 enum machine_mode mode0
;
10082 mode0
= insn_data
[d
->icode
].operand
[0].mode
;
10087 type
= v4si_ftype_v4si
;
10090 type
= v8hi_ftype_v8hi
;
10093 type
= v16qi_ftype_v16qi
;
10096 type
= v4sf_ftype_v4sf
;
10099 gcc_unreachable ();
10102 def_builtin (d
->mask
, d
->name
, type
, d
->code
);
10105 if (TARGET_ALTIVEC
)
10109 /* Initialize target builtin that implements
10110 targetm.vectorize.builtin_mask_for_load. */
10112 decl
= add_builtin_function ("__builtin_altivec_mask_for_load",
10113 v16qi_ftype_long_pcvoid
,
10114 ALTIVEC_BUILTIN_MASK_FOR_LOAD
,
10115 BUILT_IN_MD
, NULL
, NULL_TREE
);
10116 TREE_READONLY (decl
) = 1;
10117 /* Record the decl. Will be used by rs6000_builtin_mask_for_load. */
10118 altivec_builtin_mask_for_load
= decl
;
10121 /* Access to the vec_init patterns. */
10122 ftype
= build_function_type_list (V4SI_type_node
, integer_type_node
,
10123 integer_type_node
, integer_type_node
,
10124 integer_type_node
, NULL_TREE
);
10125 def_builtin (MASK_ALTIVEC
, "__builtin_vec_init_v4si", ftype
,
10126 ALTIVEC_BUILTIN_VEC_INIT_V4SI
);
10128 ftype
= build_function_type_list (V8HI_type_node
, short_integer_type_node
,
10129 short_integer_type_node
,
10130 short_integer_type_node
,
10131 short_integer_type_node
,
10132 short_integer_type_node
,
10133 short_integer_type_node
,
10134 short_integer_type_node
,
10135 short_integer_type_node
, NULL_TREE
);
10136 def_builtin (MASK_ALTIVEC
, "__builtin_vec_init_v8hi", ftype
,
10137 ALTIVEC_BUILTIN_VEC_INIT_V8HI
);
10139 ftype
= build_function_type_list (V16QI_type_node
, char_type_node
,
10140 char_type_node
, char_type_node
,
10141 char_type_node
, char_type_node
,
10142 char_type_node
, char_type_node
,
10143 char_type_node
, char_type_node
,
10144 char_type_node
, char_type_node
,
10145 char_type_node
, char_type_node
,
10146 char_type_node
, char_type_node
,
10147 char_type_node
, NULL_TREE
);
10148 def_builtin (MASK_ALTIVEC
, "__builtin_vec_init_v16qi", ftype
,
10149 ALTIVEC_BUILTIN_VEC_INIT_V16QI
);
10151 ftype
= build_function_type_list (V4SF_type_node
, float_type_node
,
10152 float_type_node
, float_type_node
,
10153 float_type_node
, NULL_TREE
);
10154 def_builtin (MASK_ALTIVEC
, "__builtin_vec_init_v4sf", ftype
,
10155 ALTIVEC_BUILTIN_VEC_INIT_V4SF
);
10157 /* Access to the vec_set patterns. */
10158 ftype
= build_function_type_list (V4SI_type_node
, V4SI_type_node
,
10160 integer_type_node
, NULL_TREE
);
10161 def_builtin (MASK_ALTIVEC
, "__builtin_vec_set_v4si", ftype
,
10162 ALTIVEC_BUILTIN_VEC_SET_V4SI
);
10164 ftype
= build_function_type_list (V8HI_type_node
, V8HI_type_node
,
10166 integer_type_node
, NULL_TREE
);
10167 def_builtin (MASK_ALTIVEC
, "__builtin_vec_set_v8hi", ftype
,
10168 ALTIVEC_BUILTIN_VEC_SET_V8HI
);
10170 ftype
= build_function_type_list (V8HI_type_node
, V16QI_type_node
,
10172 integer_type_node
, NULL_TREE
);
10173 def_builtin (MASK_ALTIVEC
, "__builtin_vec_set_v16qi", ftype
,
10174 ALTIVEC_BUILTIN_VEC_SET_V16QI
);
10176 ftype
= build_function_type_list (V4SF_type_node
, V4SF_type_node
,
10178 integer_type_node
, NULL_TREE
);
10179 def_builtin (MASK_ALTIVEC
, "__builtin_vec_set_v4sf", ftype
,
10180 ALTIVEC_BUILTIN_VEC_SET_V4SF
);
10182 /* Access to the vec_extract patterns. */
10183 ftype
= build_function_type_list (intSI_type_node
, V4SI_type_node
,
10184 integer_type_node
, NULL_TREE
);
10185 def_builtin (MASK_ALTIVEC
, "__builtin_vec_ext_v4si", ftype
,
10186 ALTIVEC_BUILTIN_VEC_EXT_V4SI
);
10188 ftype
= build_function_type_list (intHI_type_node
, V8HI_type_node
,
10189 integer_type_node
, NULL_TREE
);
10190 def_builtin (MASK_ALTIVEC
, "__builtin_vec_ext_v8hi", ftype
,
10191 ALTIVEC_BUILTIN_VEC_EXT_V8HI
);
10193 ftype
= build_function_type_list (intQI_type_node
, V16QI_type_node
,
10194 integer_type_node
, NULL_TREE
);
10195 def_builtin (MASK_ALTIVEC
, "__builtin_vec_ext_v16qi", ftype
,
10196 ALTIVEC_BUILTIN_VEC_EXT_V16QI
);
10198 ftype
= build_function_type_list (float_type_node
, V4SF_type_node
,
10199 integer_type_node
, NULL_TREE
);
10200 def_builtin (MASK_ALTIVEC
, "__builtin_vec_ext_v4sf", ftype
,
10201 ALTIVEC_BUILTIN_VEC_EXT_V4SF
);
10205 rs6000_common_init_builtins (void)
10207 const struct builtin_description
*d
;
10210 tree v2sf_ftype_v2sf_v2sf_v2sf
10211 = build_function_type_list (V2SF_type_node
,
10212 V2SF_type_node
, V2SF_type_node
,
10213 V2SF_type_node
, NULL_TREE
);
10215 tree v4sf_ftype_v4sf_v4sf_v16qi
10216 = build_function_type_list (V4SF_type_node
,
10217 V4SF_type_node
, V4SF_type_node
,
10218 V16QI_type_node
, NULL_TREE
);
10219 tree v4si_ftype_v4si_v4si_v16qi
10220 = build_function_type_list (V4SI_type_node
,
10221 V4SI_type_node
, V4SI_type_node
,
10222 V16QI_type_node
, NULL_TREE
);
10223 tree v8hi_ftype_v8hi_v8hi_v16qi
10224 = build_function_type_list (V8HI_type_node
,
10225 V8HI_type_node
, V8HI_type_node
,
10226 V16QI_type_node
, NULL_TREE
);
10227 tree v16qi_ftype_v16qi_v16qi_v16qi
10228 = build_function_type_list (V16QI_type_node
,
10229 V16QI_type_node
, V16QI_type_node
,
10230 V16QI_type_node
, NULL_TREE
);
10231 tree v4si_ftype_int
10232 = build_function_type_list (V4SI_type_node
, integer_type_node
, NULL_TREE
);
10233 tree v8hi_ftype_int
10234 = build_function_type_list (V8HI_type_node
, integer_type_node
, NULL_TREE
);
10235 tree v16qi_ftype_int
10236 = build_function_type_list (V16QI_type_node
, integer_type_node
, NULL_TREE
);
10237 tree v8hi_ftype_v16qi
10238 = build_function_type_list (V8HI_type_node
, V16QI_type_node
, NULL_TREE
);
10239 tree v4sf_ftype_v4sf
10240 = build_function_type_list (V4SF_type_node
, V4SF_type_node
, NULL_TREE
);
10242 tree v2si_ftype_v2si_v2si
10243 = build_function_type_list (opaque_V2SI_type_node
,
10244 opaque_V2SI_type_node
,
10245 opaque_V2SI_type_node
, NULL_TREE
);
10247 tree v2sf_ftype_v2sf_v2sf_spe
10248 = build_function_type_list (opaque_V2SF_type_node
,
10249 opaque_V2SF_type_node
,
10250 opaque_V2SF_type_node
, NULL_TREE
);
10252 tree v2sf_ftype_v2sf_v2sf
10253 = build_function_type_list (V2SF_type_node
,
10255 V2SF_type_node
, NULL_TREE
);
10258 tree v2si_ftype_int_int
10259 = build_function_type_list (opaque_V2SI_type_node
,
10260 integer_type_node
, integer_type_node
,
10263 tree opaque_ftype_opaque
10264 = build_function_type_list (opaque_V4SI_type_node
,
10265 opaque_V4SI_type_node
, NULL_TREE
);
10267 tree v2si_ftype_v2si
10268 = build_function_type_list (opaque_V2SI_type_node
,
10269 opaque_V2SI_type_node
, NULL_TREE
);
10271 tree v2sf_ftype_v2sf_spe
10272 = build_function_type_list (opaque_V2SF_type_node
,
10273 opaque_V2SF_type_node
, NULL_TREE
);
10275 tree v2sf_ftype_v2sf
10276 = build_function_type_list (V2SF_type_node
,
10277 V2SF_type_node
, NULL_TREE
);
10279 tree v2sf_ftype_v2si
10280 = build_function_type_list (opaque_V2SF_type_node
,
10281 opaque_V2SI_type_node
, NULL_TREE
);
10283 tree v2si_ftype_v2sf
10284 = build_function_type_list (opaque_V2SI_type_node
,
10285 opaque_V2SF_type_node
, NULL_TREE
);
10287 tree v2si_ftype_v2si_char
10288 = build_function_type_list (opaque_V2SI_type_node
,
10289 opaque_V2SI_type_node
,
10290 char_type_node
, NULL_TREE
);
10292 tree v2si_ftype_int_char
10293 = build_function_type_list (opaque_V2SI_type_node
,
10294 integer_type_node
, char_type_node
, NULL_TREE
);
10296 tree v2si_ftype_char
10297 = build_function_type_list (opaque_V2SI_type_node
,
10298 char_type_node
, NULL_TREE
);
10300 tree int_ftype_int_int
10301 = build_function_type_list (integer_type_node
,
10302 integer_type_node
, integer_type_node
,
10305 tree opaque_ftype_opaque_opaque
10306 = build_function_type_list (opaque_V4SI_type_node
,
10307 opaque_V4SI_type_node
, opaque_V4SI_type_node
, NULL_TREE
);
10308 tree v4si_ftype_v4si_v4si
10309 = build_function_type_list (V4SI_type_node
,
10310 V4SI_type_node
, V4SI_type_node
, NULL_TREE
);
10311 tree v4sf_ftype_v4si_int
10312 = build_function_type_list (V4SF_type_node
,
10313 V4SI_type_node
, integer_type_node
, NULL_TREE
);
10314 tree v4si_ftype_v4sf_int
10315 = build_function_type_list (V4SI_type_node
,
10316 V4SF_type_node
, integer_type_node
, NULL_TREE
);
10317 tree v4si_ftype_v4si_int
10318 = build_function_type_list (V4SI_type_node
,
10319 V4SI_type_node
, integer_type_node
, NULL_TREE
);
10320 tree v8hi_ftype_v8hi_int
10321 = build_function_type_list (V8HI_type_node
,
10322 V8HI_type_node
, integer_type_node
, NULL_TREE
);
10323 tree v16qi_ftype_v16qi_int
10324 = build_function_type_list (V16QI_type_node
,
10325 V16QI_type_node
, integer_type_node
, NULL_TREE
);
10326 tree v16qi_ftype_v16qi_v16qi_int
10327 = build_function_type_list (V16QI_type_node
,
10328 V16QI_type_node
, V16QI_type_node
,
10329 integer_type_node
, NULL_TREE
);
10330 tree v8hi_ftype_v8hi_v8hi_int
10331 = build_function_type_list (V8HI_type_node
,
10332 V8HI_type_node
, V8HI_type_node
,
10333 integer_type_node
, NULL_TREE
);
10334 tree v4si_ftype_v4si_v4si_int
10335 = build_function_type_list (V4SI_type_node
,
10336 V4SI_type_node
, V4SI_type_node
,
10337 integer_type_node
, NULL_TREE
);
10338 tree v4sf_ftype_v4sf_v4sf_int
10339 = build_function_type_list (V4SF_type_node
,
10340 V4SF_type_node
, V4SF_type_node
,
10341 integer_type_node
, NULL_TREE
);
10342 tree v4sf_ftype_v4sf_v4sf
10343 = build_function_type_list (V4SF_type_node
,
10344 V4SF_type_node
, V4SF_type_node
, NULL_TREE
);
10345 tree opaque_ftype_opaque_opaque_opaque
10346 = build_function_type_list (opaque_V4SI_type_node
,
10347 opaque_V4SI_type_node
, opaque_V4SI_type_node
,
10348 opaque_V4SI_type_node
, NULL_TREE
);
10349 tree v4sf_ftype_v4sf_v4sf_v4si
10350 = build_function_type_list (V4SF_type_node
,
10351 V4SF_type_node
, V4SF_type_node
,
10352 V4SI_type_node
, NULL_TREE
);
10353 tree v4sf_ftype_v4sf_v4sf_v4sf
10354 = build_function_type_list (V4SF_type_node
,
10355 V4SF_type_node
, V4SF_type_node
,
10356 V4SF_type_node
, NULL_TREE
);
10357 tree v4si_ftype_v4si_v4si_v4si
10358 = build_function_type_list (V4SI_type_node
,
10359 V4SI_type_node
, V4SI_type_node
,
10360 V4SI_type_node
, NULL_TREE
);
10361 tree v8hi_ftype_v8hi_v8hi
10362 = build_function_type_list (V8HI_type_node
,
10363 V8HI_type_node
, V8HI_type_node
, NULL_TREE
);
10364 tree v8hi_ftype_v8hi_v8hi_v8hi
10365 = build_function_type_list (V8HI_type_node
,
10366 V8HI_type_node
, V8HI_type_node
,
10367 V8HI_type_node
, NULL_TREE
);
10368 tree v4si_ftype_v8hi_v8hi_v4si
10369 = build_function_type_list (V4SI_type_node
,
10370 V8HI_type_node
, V8HI_type_node
,
10371 V4SI_type_node
, NULL_TREE
);
10372 tree v4si_ftype_v16qi_v16qi_v4si
10373 = build_function_type_list (V4SI_type_node
,
10374 V16QI_type_node
, V16QI_type_node
,
10375 V4SI_type_node
, NULL_TREE
);
10376 tree v16qi_ftype_v16qi_v16qi
10377 = build_function_type_list (V16QI_type_node
,
10378 V16QI_type_node
, V16QI_type_node
, NULL_TREE
);
10379 tree v4si_ftype_v4sf_v4sf
10380 = build_function_type_list (V4SI_type_node
,
10381 V4SF_type_node
, V4SF_type_node
, NULL_TREE
);
10382 tree v8hi_ftype_v16qi_v16qi
10383 = build_function_type_list (V8HI_type_node
,
10384 V16QI_type_node
, V16QI_type_node
, NULL_TREE
);
10385 tree v4si_ftype_v8hi_v8hi
10386 = build_function_type_list (V4SI_type_node
,
10387 V8HI_type_node
, V8HI_type_node
, NULL_TREE
);
10388 tree v8hi_ftype_v4si_v4si
10389 = build_function_type_list (V8HI_type_node
,
10390 V4SI_type_node
, V4SI_type_node
, NULL_TREE
);
10391 tree v16qi_ftype_v8hi_v8hi
10392 = build_function_type_list (V16QI_type_node
,
10393 V8HI_type_node
, V8HI_type_node
, NULL_TREE
);
10394 tree v4si_ftype_v16qi_v4si
10395 = build_function_type_list (V4SI_type_node
,
10396 V16QI_type_node
, V4SI_type_node
, NULL_TREE
);
10397 tree v4si_ftype_v16qi_v16qi
10398 = build_function_type_list (V4SI_type_node
,
10399 V16QI_type_node
, V16QI_type_node
, NULL_TREE
);
10400 tree v4si_ftype_v8hi_v4si
10401 = build_function_type_list (V4SI_type_node
,
10402 V8HI_type_node
, V4SI_type_node
, NULL_TREE
);
10403 tree v4si_ftype_v8hi
10404 = build_function_type_list (V4SI_type_node
, V8HI_type_node
, NULL_TREE
);
10405 tree int_ftype_v4si_v4si
10406 = build_function_type_list (integer_type_node
,
10407 V4SI_type_node
, V4SI_type_node
, NULL_TREE
);
10408 tree int_ftype_v4sf_v4sf
10409 = build_function_type_list (integer_type_node
,
10410 V4SF_type_node
, V4SF_type_node
, NULL_TREE
);
10411 tree int_ftype_v16qi_v16qi
10412 = build_function_type_list (integer_type_node
,
10413 V16QI_type_node
, V16QI_type_node
, NULL_TREE
);
10414 tree int_ftype_v8hi_v8hi
10415 = build_function_type_list (integer_type_node
,
10416 V8HI_type_node
, V8HI_type_node
, NULL_TREE
);
10418 /* Add the simple ternary operators. */
10420 for (i
= 0; i
< ARRAY_SIZE (bdesc_3arg
); i
++, d
++)
10422 enum machine_mode mode0
, mode1
, mode2
, mode3
;
10424 bool is_overloaded
= d
->code
>= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10425 && d
->code
<= ALTIVEC_BUILTIN_OVERLOADED_LAST
;
10436 if (d
->name
== 0 || d
->icode
== CODE_FOR_nothing
)
10439 mode0
= insn_data
[d
->icode
].operand
[0].mode
;
10440 mode1
= insn_data
[d
->icode
].operand
[1].mode
;
10441 mode2
= insn_data
[d
->icode
].operand
[2].mode
;
10442 mode3
= insn_data
[d
->icode
].operand
[3].mode
;
10445 /* When all four are of the same mode. */
10446 if (mode0
== mode1
&& mode1
== mode2
&& mode2
== mode3
)
10451 type
= opaque_ftype_opaque_opaque_opaque
;
10454 type
= v4si_ftype_v4si_v4si_v4si
;
10457 type
= v4sf_ftype_v4sf_v4sf_v4sf
;
10460 type
= v8hi_ftype_v8hi_v8hi_v8hi
;
10463 type
= v16qi_ftype_v16qi_v16qi_v16qi
;
10466 type
= v2sf_ftype_v2sf_v2sf_v2sf
;
10469 gcc_unreachable ();
10472 else if (mode0
== mode1
&& mode1
== mode2
&& mode3
== V16QImode
)
10477 type
= v4si_ftype_v4si_v4si_v16qi
;
10480 type
= v4sf_ftype_v4sf_v4sf_v16qi
;
10483 type
= v8hi_ftype_v8hi_v8hi_v16qi
;
10486 type
= v16qi_ftype_v16qi_v16qi_v16qi
;
10489 gcc_unreachable ();
10492 else if (mode0
== V4SImode
&& mode1
== V16QImode
&& mode2
== V16QImode
10493 && mode3
== V4SImode
)
10494 type
= v4si_ftype_v16qi_v16qi_v4si
;
10495 else if (mode0
== V4SImode
&& mode1
== V8HImode
&& mode2
== V8HImode
10496 && mode3
== V4SImode
)
10497 type
= v4si_ftype_v8hi_v8hi_v4si
;
10498 else if (mode0
== V4SFmode
&& mode1
== V4SFmode
&& mode2
== V4SFmode
10499 && mode3
== V4SImode
)
10500 type
= v4sf_ftype_v4sf_v4sf_v4si
;
10502 /* vchar, vchar, vchar, 4-bit literal. */
10503 else if (mode0
== V16QImode
&& mode1
== mode0
&& mode2
== mode0
10504 && mode3
== QImode
)
10505 type
= v16qi_ftype_v16qi_v16qi_int
;
10507 /* vshort, vshort, vshort, 4-bit literal. */
10508 else if (mode0
== V8HImode
&& mode1
== mode0
&& mode2
== mode0
10509 && mode3
== QImode
)
10510 type
= v8hi_ftype_v8hi_v8hi_int
;
10512 /* vint, vint, vint, 4-bit literal. */
10513 else if (mode0
== V4SImode
&& mode1
== mode0
&& mode2
== mode0
10514 && mode3
== QImode
)
10515 type
= v4si_ftype_v4si_v4si_int
;
10517 /* vfloat, vfloat, vfloat, 4-bit literal. */
10518 else if (mode0
== V4SFmode
&& mode1
== mode0
&& mode2
== mode0
10519 && mode3
== QImode
)
10520 type
= v4sf_ftype_v4sf_v4sf_int
;
10523 gcc_unreachable ();
10525 def_builtin (d
->mask
, d
->name
, type
, d
->code
);
10528 /* Add the simple binary operators. */
10529 d
= (struct builtin_description
*) bdesc_2arg
;
10530 for (i
= 0; i
< ARRAY_SIZE (bdesc_2arg
); i
++, d
++)
10532 enum machine_mode mode0
, mode1
, mode2
;
10534 bool is_overloaded
= d
->code
>= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10535 && d
->code
<= ALTIVEC_BUILTIN_OVERLOADED_LAST
;
10545 if (d
->name
== 0 || d
->icode
== CODE_FOR_nothing
)
10548 mode0
= insn_data
[d
->icode
].operand
[0].mode
;
10549 mode1
= insn_data
[d
->icode
].operand
[1].mode
;
10550 mode2
= insn_data
[d
->icode
].operand
[2].mode
;
10553 /* When all three operands are of the same mode. */
10554 if (mode0
== mode1
&& mode1
== mode2
)
10559 type
= opaque_ftype_opaque_opaque
;
10562 type
= v4sf_ftype_v4sf_v4sf
;
10565 type
= v4si_ftype_v4si_v4si
;
10568 type
= v16qi_ftype_v16qi_v16qi
;
10571 type
= v8hi_ftype_v8hi_v8hi
;
10574 type
= v2si_ftype_v2si_v2si
;
10577 if (TARGET_PAIRED_FLOAT
)
10578 type
= v2sf_ftype_v2sf_v2sf
;
10580 type
= v2sf_ftype_v2sf_v2sf_spe
;
10583 type
= int_ftype_int_int
;
10586 gcc_unreachable ();
10590 /* A few other combos we really don't want to do manually. */
10592 /* vint, vfloat, vfloat. */
10593 else if (mode0
== V4SImode
&& mode1
== V4SFmode
&& mode2
== V4SFmode
)
10594 type
= v4si_ftype_v4sf_v4sf
;
10596 /* vshort, vchar, vchar. */
10597 else if (mode0
== V8HImode
&& mode1
== V16QImode
&& mode2
== V16QImode
)
10598 type
= v8hi_ftype_v16qi_v16qi
;
10600 /* vint, vshort, vshort. */
10601 else if (mode0
== V4SImode
&& mode1
== V8HImode
&& mode2
== V8HImode
)
10602 type
= v4si_ftype_v8hi_v8hi
;
10604 /* vshort, vint, vint. */
10605 else if (mode0
== V8HImode
&& mode1
== V4SImode
&& mode2
== V4SImode
)
10606 type
= v8hi_ftype_v4si_v4si
;
10608 /* vchar, vshort, vshort. */
10609 else if (mode0
== V16QImode
&& mode1
== V8HImode
&& mode2
== V8HImode
)
10610 type
= v16qi_ftype_v8hi_v8hi
;
10612 /* vint, vchar, vint. */
10613 else if (mode0
== V4SImode
&& mode1
== V16QImode
&& mode2
== V4SImode
)
10614 type
= v4si_ftype_v16qi_v4si
;
10616 /* vint, vchar, vchar. */
10617 else if (mode0
== V4SImode
&& mode1
== V16QImode
&& mode2
== V16QImode
)
10618 type
= v4si_ftype_v16qi_v16qi
;
10620 /* vint, vshort, vint. */
10621 else if (mode0
== V4SImode
&& mode1
== V8HImode
&& mode2
== V4SImode
)
10622 type
= v4si_ftype_v8hi_v4si
;
10624 /* vint, vint, 5-bit literal. */
10625 else if (mode0
== V4SImode
&& mode1
== V4SImode
&& mode2
== QImode
)
10626 type
= v4si_ftype_v4si_int
;
10628 /* vshort, vshort, 5-bit literal. */
10629 else if (mode0
== V8HImode
&& mode1
== V8HImode
&& mode2
== QImode
)
10630 type
= v8hi_ftype_v8hi_int
;
10632 /* vchar, vchar, 5-bit literal. */
10633 else if (mode0
== V16QImode
&& mode1
== V16QImode
&& mode2
== QImode
)
10634 type
= v16qi_ftype_v16qi_int
;
10636 /* vfloat, vint, 5-bit literal. */
10637 else if (mode0
== V4SFmode
&& mode1
== V4SImode
&& mode2
== QImode
)
10638 type
= v4sf_ftype_v4si_int
;
10640 /* vint, vfloat, 5-bit literal. */
10641 else if (mode0
== V4SImode
&& mode1
== V4SFmode
&& mode2
== QImode
)
10642 type
= v4si_ftype_v4sf_int
;
10644 else if (mode0
== V2SImode
&& mode1
== SImode
&& mode2
== SImode
)
10645 type
= v2si_ftype_int_int
;
10647 else if (mode0
== V2SImode
&& mode1
== V2SImode
&& mode2
== QImode
)
10648 type
= v2si_ftype_v2si_char
;
10650 else if (mode0
== V2SImode
&& mode1
== SImode
&& mode2
== QImode
)
10651 type
= v2si_ftype_int_char
;
10656 gcc_assert (mode0
== SImode
);
10660 type
= int_ftype_v4si_v4si
;
10663 type
= int_ftype_v4sf_v4sf
;
10666 type
= int_ftype_v16qi_v16qi
;
10669 type
= int_ftype_v8hi_v8hi
;
10672 gcc_unreachable ();
10676 def_builtin (d
->mask
, d
->name
, type
, d
->code
);
10679 /* Add the simple unary operators. */
10680 d
= (struct builtin_description
*) bdesc_1arg
;
10681 for (i
= 0; i
< ARRAY_SIZE (bdesc_1arg
); i
++, d
++)
10683 enum machine_mode mode0
, mode1
;
10685 bool is_overloaded
= d
->code
>= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10686 && d
->code
<= ALTIVEC_BUILTIN_OVERLOADED_LAST
;
10695 if (d
->name
== 0 || d
->icode
== CODE_FOR_nothing
)
10698 mode0
= insn_data
[d
->icode
].operand
[0].mode
;
10699 mode1
= insn_data
[d
->icode
].operand
[1].mode
;
10702 if (mode0
== V4SImode
&& mode1
== QImode
)
10703 type
= v4si_ftype_int
;
10704 else if (mode0
== V8HImode
&& mode1
== QImode
)
10705 type
= v8hi_ftype_int
;
10706 else if (mode0
== V16QImode
&& mode1
== QImode
)
10707 type
= v16qi_ftype_int
;
10708 else if (mode0
== VOIDmode
&& mode1
== VOIDmode
)
10709 type
= opaque_ftype_opaque
;
10710 else if (mode0
== V4SFmode
&& mode1
== V4SFmode
)
10711 type
= v4sf_ftype_v4sf
;
10712 else if (mode0
== V8HImode
&& mode1
== V16QImode
)
10713 type
= v8hi_ftype_v16qi
;
10714 else if (mode0
== V4SImode
&& mode1
== V8HImode
)
10715 type
= v4si_ftype_v8hi
;
10716 else if (mode0
== V2SImode
&& mode1
== V2SImode
)
10717 type
= v2si_ftype_v2si
;
10718 else if (mode0
== V2SFmode
&& mode1
== V2SFmode
)
10720 if (TARGET_PAIRED_FLOAT
)
10721 type
= v2sf_ftype_v2sf
;
10723 type
= v2sf_ftype_v2sf_spe
;
10725 else if (mode0
== V2SFmode
&& mode1
== V2SImode
)
10726 type
= v2sf_ftype_v2si
;
10727 else if (mode0
== V2SImode
&& mode1
== V2SFmode
)
10728 type
= v2si_ftype_v2sf
;
10729 else if (mode0
== V2SImode
&& mode1
== QImode
)
10730 type
= v2si_ftype_char
;
10732 gcc_unreachable ();
10734 def_builtin (d
->mask
, d
->name
, type
, d
->code
);
10739 rs6000_init_libfuncs (void)
10741 if (DEFAULT_ABI
!= ABI_V4
&& TARGET_XCOFF
10742 && !TARGET_POWER2
&& !TARGET_POWERPC
)
10744 /* AIX library routines for float->int conversion. */
10745 set_conv_libfunc (sfix_optab
, SImode
, DFmode
, "__itrunc");
10746 set_conv_libfunc (ufix_optab
, SImode
, DFmode
, "__uitrunc");
10747 set_conv_libfunc (sfix_optab
, SImode
, TFmode
, "_qitrunc");
10748 set_conv_libfunc (ufix_optab
, SImode
, TFmode
, "_quitrunc");
10751 if (!TARGET_IEEEQUAD
)
10752 /* AIX/Darwin/64-bit Linux quad floating point routines. */
10753 if (!TARGET_XL_COMPAT
)
10755 set_optab_libfunc (add_optab
, TFmode
, "__gcc_qadd");
10756 set_optab_libfunc (sub_optab
, TFmode
, "__gcc_qsub");
10757 set_optab_libfunc (smul_optab
, TFmode
, "__gcc_qmul");
10758 set_optab_libfunc (sdiv_optab
, TFmode
, "__gcc_qdiv");
10760 if (!(TARGET_HARD_FLOAT
&& (TARGET_FPRS
|| TARGET_E500_DOUBLE
)))
10762 set_optab_libfunc (neg_optab
, TFmode
, "__gcc_qneg");
10763 set_optab_libfunc (eq_optab
, TFmode
, "__gcc_qeq");
10764 set_optab_libfunc (ne_optab
, TFmode
, "__gcc_qne");
10765 set_optab_libfunc (gt_optab
, TFmode
, "__gcc_qgt");
10766 set_optab_libfunc (ge_optab
, TFmode
, "__gcc_qge");
10767 set_optab_libfunc (lt_optab
, TFmode
, "__gcc_qlt");
10768 set_optab_libfunc (le_optab
, TFmode
, "__gcc_qle");
10770 set_conv_libfunc (sext_optab
, TFmode
, SFmode
, "__gcc_stoq");
10771 set_conv_libfunc (sext_optab
, TFmode
, DFmode
, "__gcc_dtoq");
10772 set_conv_libfunc (trunc_optab
, SFmode
, TFmode
, "__gcc_qtos");
10773 set_conv_libfunc (trunc_optab
, DFmode
, TFmode
, "__gcc_qtod");
10774 set_conv_libfunc (sfix_optab
, SImode
, TFmode
, "__gcc_qtoi");
10775 set_conv_libfunc (ufix_optab
, SImode
, TFmode
, "__gcc_qtou");
10776 set_conv_libfunc (sfloat_optab
, TFmode
, SImode
, "__gcc_itoq");
10777 set_conv_libfunc (ufloat_optab
, TFmode
, SImode
, "__gcc_utoq");
10780 if (!(TARGET_HARD_FLOAT
&& TARGET_FPRS
))
10781 set_optab_libfunc (unord_optab
, TFmode
, "__gcc_qunord");
10785 set_optab_libfunc (add_optab
, TFmode
, "_xlqadd");
10786 set_optab_libfunc (sub_optab
, TFmode
, "_xlqsub");
10787 set_optab_libfunc (smul_optab
, TFmode
, "_xlqmul");
10788 set_optab_libfunc (sdiv_optab
, TFmode
, "_xlqdiv");
10792 /* 32-bit SVR4 quad floating point routines. */
10794 set_optab_libfunc (add_optab
, TFmode
, "_q_add");
10795 set_optab_libfunc (sub_optab
, TFmode
, "_q_sub");
10796 set_optab_libfunc (neg_optab
, TFmode
, "_q_neg");
10797 set_optab_libfunc (smul_optab
, TFmode
, "_q_mul");
10798 set_optab_libfunc (sdiv_optab
, TFmode
, "_q_div");
10799 if (TARGET_PPC_GPOPT
|| TARGET_POWER2
)
10800 set_optab_libfunc (sqrt_optab
, TFmode
, "_q_sqrt");
10802 set_optab_libfunc (eq_optab
, TFmode
, "_q_feq");
10803 set_optab_libfunc (ne_optab
, TFmode
, "_q_fne");
10804 set_optab_libfunc (gt_optab
, TFmode
, "_q_fgt");
10805 set_optab_libfunc (ge_optab
, TFmode
, "_q_fge");
10806 set_optab_libfunc (lt_optab
, TFmode
, "_q_flt");
10807 set_optab_libfunc (le_optab
, TFmode
, "_q_fle");
10809 set_conv_libfunc (sext_optab
, TFmode
, SFmode
, "_q_stoq");
10810 set_conv_libfunc (sext_optab
, TFmode
, DFmode
, "_q_dtoq");
10811 set_conv_libfunc (trunc_optab
, SFmode
, TFmode
, "_q_qtos");
10812 set_conv_libfunc (trunc_optab
, DFmode
, TFmode
, "_q_qtod");
10813 set_conv_libfunc (sfix_optab
, SImode
, TFmode
, "_q_qtoi");
10814 set_conv_libfunc (ufix_optab
, SImode
, TFmode
, "_q_qtou");
10815 set_conv_libfunc (sfloat_optab
, TFmode
, SImode
, "_q_itoq");
10816 set_conv_libfunc (ufloat_optab
, TFmode
, SImode
, "_q_utoq");
10821 /* Expand a block clear operation, and return 1 if successful. Return 0
10822 if we should let the compiler generate normal code.
10824 operands[0] is the destination
10825 operands[1] is the length
10826 operands[3] is the alignment */
10829 expand_block_clear (rtx operands
[])
10831 rtx orig_dest
= operands
[0];
10832 rtx bytes_rtx
= operands
[1];
10833 rtx align_rtx
= operands
[3];
10834 bool constp
= (GET_CODE (bytes_rtx
) == CONST_INT
);
10835 HOST_WIDE_INT align
;
10836 HOST_WIDE_INT bytes
;
10841 /* If this is not a fixed size move, just call memcpy */
10845 /* This must be a fixed size alignment */
10846 gcc_assert (GET_CODE (align_rtx
) == CONST_INT
);
10847 align
= INTVAL (align_rtx
) * BITS_PER_UNIT
;
10849 /* Anything to clear? */
10850 bytes
= INTVAL (bytes_rtx
);
10854 /* Use the builtin memset after a point, to avoid huge code bloat.
10855 When optimize_size, avoid any significant code bloat; calling
10856 memset is about 4 instructions, so allow for one instruction to
10857 load zero and three to do clearing. */
10858 if (TARGET_ALTIVEC
&& align
>= 128)
10860 else if (TARGET_POWERPC64
&& align
>= 32)
10862 else if (TARGET_SPE
&& align
>= 64)
10867 if (optimize_size
&& bytes
> 3 * clear_step
)
10869 if (! optimize_size
&& bytes
> 8 * clear_step
)
10872 for (offset
= 0; bytes
> 0; offset
+= clear_bytes
, bytes
-= clear_bytes
)
10874 enum machine_mode mode
= BLKmode
;
10877 if (bytes
>= 16 && TARGET_ALTIVEC
&& align
>= 128)
10882 else if (bytes
>= 8 && TARGET_SPE
&& align
>= 64)
10887 else if (bytes
>= 8 && TARGET_POWERPC64
10888 /* 64-bit loads and stores require word-aligned
10890 && (align
>= 64 || (!STRICT_ALIGNMENT
&& align
>= 32)))
10895 else if (bytes
>= 4 && (align
>= 32 || !STRICT_ALIGNMENT
))
10896 { /* move 4 bytes */
10900 else if (bytes
>= 2 && (align
>= 16 || !STRICT_ALIGNMENT
))
10901 { /* move 2 bytes */
10905 else /* move 1 byte at a time */
10911 dest
= adjust_address (orig_dest
, mode
, offset
);
10913 emit_move_insn (dest
, CONST0_RTX (mode
));
10920 /* Expand a block move operation, and return 1 if successful. Return 0
10921 if we should let the compiler generate normal code.
10923 operands[0] is the destination
10924 operands[1] is the source
10925 operands[2] is the length
10926 operands[3] is the alignment */
10928 #define MAX_MOVE_REG 4
10931 expand_block_move (rtx operands
[])
10933 rtx orig_dest
= operands
[0];
10934 rtx orig_src
= operands
[1];
10935 rtx bytes_rtx
= operands
[2];
10936 rtx align_rtx
= operands
[3];
10937 int constp
= (GET_CODE (bytes_rtx
) == CONST_INT
);
10942 rtx stores
[MAX_MOVE_REG
];
10945 /* If this is not a fixed size move, just call memcpy */
10949 /* This must be a fixed size alignment */
10950 gcc_assert (GET_CODE (align_rtx
) == CONST_INT
);
10951 align
= INTVAL (align_rtx
) * BITS_PER_UNIT
;
10953 /* Anything to move? */
10954 bytes
= INTVAL (bytes_rtx
);
10958 /* store_one_arg depends on expand_block_move to handle at least the size of
10959 reg_parm_stack_space. */
10960 if (bytes
> (TARGET_POWERPC64
? 64 : 32))
10963 for (offset
= 0; bytes
> 0; offset
+= move_bytes
, bytes
-= move_bytes
)
10966 rtx (*movmemsi
) (rtx
, rtx
, rtx
, rtx
);
10967 rtx (*mov
) (rtx
, rtx
);
10969 enum machine_mode mode
= BLKmode
;
10972 /* Altivec first, since it will be faster than a string move
10973 when it applies, and usually not significantly larger. */
10974 if (TARGET_ALTIVEC
&& bytes
>= 16 && align
>= 128)
10978 gen_func
.mov
= gen_movv4si
;
10980 else if (TARGET_SPE
&& bytes
>= 8 && align
>= 64)
10984 gen_func
.mov
= gen_movv2si
;
10986 else if (TARGET_STRING
10987 && bytes
> 24 /* move up to 32 bytes at a time */
10993 && ! fixed_regs
[10]
10994 && ! fixed_regs
[11]
10995 && ! fixed_regs
[12])
10997 move_bytes
= (bytes
> 32) ? 32 : bytes
;
10998 gen_func
.movmemsi
= gen_movmemsi_8reg
;
11000 else if (TARGET_STRING
11001 && bytes
> 16 /* move up to 24 bytes at a time */
11007 && ! fixed_regs
[10])
11009 move_bytes
= (bytes
> 24) ? 24 : bytes
;
11010 gen_func
.movmemsi
= gen_movmemsi_6reg
;
11012 else if (TARGET_STRING
11013 && bytes
> 8 /* move up to 16 bytes at a time */
11017 && ! fixed_regs
[8])
11019 move_bytes
= (bytes
> 16) ? 16 : bytes
;
11020 gen_func
.movmemsi
= gen_movmemsi_4reg
;
11022 else if (bytes
>= 8 && TARGET_POWERPC64
11023 /* 64-bit loads and stores require word-aligned
11025 && (align
>= 64 || (!STRICT_ALIGNMENT
&& align
>= 32)))
11029 gen_func
.mov
= gen_movdi
;
11031 else if (TARGET_STRING
&& bytes
> 4 && !TARGET_POWERPC64
)
11032 { /* move up to 8 bytes at a time */
11033 move_bytes
= (bytes
> 8) ? 8 : bytes
;
11034 gen_func
.movmemsi
= gen_movmemsi_2reg
;
11036 else if (bytes
>= 4 && (align
>= 32 || !STRICT_ALIGNMENT
))
11037 { /* move 4 bytes */
11040 gen_func
.mov
= gen_movsi
;
11042 else if (bytes
>= 2 && (align
>= 16 || !STRICT_ALIGNMENT
))
11043 { /* move 2 bytes */
11046 gen_func
.mov
= gen_movhi
;
11048 else if (TARGET_STRING
&& bytes
> 1)
11049 { /* move up to 4 bytes at a time */
11050 move_bytes
= (bytes
> 4) ? 4 : bytes
;
11051 gen_func
.movmemsi
= gen_movmemsi_1reg
;
11053 else /* move 1 byte at a time */
11057 gen_func
.mov
= gen_movqi
;
11060 src
= adjust_address (orig_src
, mode
, offset
);
11061 dest
= adjust_address (orig_dest
, mode
, offset
);
11063 if (mode
!= BLKmode
)
11065 rtx tmp_reg
= gen_reg_rtx (mode
);
11067 emit_insn ((*gen_func
.mov
) (tmp_reg
, src
));
11068 stores
[num_reg
++] = (*gen_func
.mov
) (dest
, tmp_reg
);
11071 if (mode
== BLKmode
|| num_reg
>= MAX_MOVE_REG
|| bytes
== move_bytes
)
11074 for (i
= 0; i
< num_reg
; i
++)
11075 emit_insn (stores
[i
]);
11079 if (mode
== BLKmode
)
11081 /* Move the address into scratch registers. The movmemsi
11082 patterns require zero offset. */
11083 if (!REG_P (XEXP (src
, 0)))
11085 rtx src_reg
= copy_addr_to_reg (XEXP (src
, 0));
11086 src
= replace_equiv_address (src
, src_reg
);
11088 set_mem_size (src
, GEN_INT (move_bytes
));
11090 if (!REG_P (XEXP (dest
, 0)))
11092 rtx dest_reg
= copy_addr_to_reg (XEXP (dest
, 0));
11093 dest
= replace_equiv_address (dest
, dest_reg
);
11095 set_mem_size (dest
, GEN_INT (move_bytes
));
11097 emit_insn ((*gen_func
.movmemsi
) (dest
, src
,
11098 GEN_INT (move_bytes
& 31),
11107 /* Return a string to perform a load_multiple operation.
11108 operands[0] is the vector.
11109 operands[1] is the source address.
11110 operands[2] is the first destination register. */
11113 rs6000_output_load_multiple (rtx operands
[3])
11115 /* We have to handle the case where the pseudo used to contain the address
11116 is assigned to one of the output registers. */
11118 int words
= XVECLEN (operands
[0], 0);
11121 if (XVECLEN (operands
[0], 0) == 1)
11122 return "{l|lwz} %2,0(%1)";
11124 for (i
= 0; i
< words
; i
++)
11125 if (refers_to_regno_p (REGNO (operands
[2]) + i
,
11126 REGNO (operands
[2]) + i
+ 1, operands
[1], 0))
11130 xop
[0] = GEN_INT (4 * (words
-1));
11131 xop
[1] = operands
[1];
11132 xop
[2] = operands
[2];
11133 output_asm_insn ("{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,%0(%1)", xop
);
11138 xop
[0] = GEN_INT (4 * (words
-1));
11139 xop
[1] = operands
[1];
11140 xop
[2] = gen_rtx_REG (SImode
, REGNO (operands
[2]) + 1);
11141 output_asm_insn ("{cal %1,4(%1)|addi %1,%1,4}\n\t{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,-4(%1)", xop
);
11146 for (j
= 0; j
< words
; j
++)
11149 xop
[0] = GEN_INT (j
* 4);
11150 xop
[1] = operands
[1];
11151 xop
[2] = gen_rtx_REG (SImode
, REGNO (operands
[2]) + j
);
11152 output_asm_insn ("{l|lwz} %2,%0(%1)", xop
);
11154 xop
[0] = GEN_INT (i
* 4);
11155 xop
[1] = operands
[1];
11156 output_asm_insn ("{l|lwz} %1,%0(%1)", xop
);
11161 return "{lsi|lswi} %2,%1,%N0";
11165 /* A validation routine: say whether CODE, a condition code, and MODE
11166 match. The other alternatives either don't make sense or should
11167 never be generated. */
11170 validate_condition_mode (enum rtx_code code
, enum machine_mode mode
)
11172 gcc_assert ((GET_RTX_CLASS (code
) == RTX_COMPARE
11173 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
11174 && GET_MODE_CLASS (mode
) == MODE_CC
);
11176 /* These don't make sense. */
11177 gcc_assert ((code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
)
11178 || mode
!= CCUNSmode
);
11180 gcc_assert ((code
!= GTU
&& code
!= LTU
&& code
!= GEU
&& code
!= LEU
)
11181 || mode
== CCUNSmode
);
11183 gcc_assert (mode
== CCFPmode
11184 || (code
!= ORDERED
&& code
!= UNORDERED
11185 && code
!= UNEQ
&& code
!= LTGT
11186 && code
!= UNGT
&& code
!= UNLT
11187 && code
!= UNGE
&& code
!= UNLE
));
11189 /* These should never be generated except for
11190 flag_finite_math_only. */
11191 gcc_assert (mode
!= CCFPmode
11192 || flag_finite_math_only
11193 || (code
!= LE
&& code
!= GE
11194 && code
!= UNEQ
&& code
!= LTGT
11195 && code
!= UNGT
&& code
!= UNLT
));
11197 /* These are invalid; the information is not there. */
11198 gcc_assert (mode
!= CCEQmode
|| code
== EQ
|| code
== NE
);
11202 /* Return 1 if ANDOP is a mask that has no bits on that are not in the
11203 mask required to convert the result of a rotate insn into a shift
11204 left insn of SHIFTOP bits. Both are known to be SImode CONST_INT. */
11207 includes_lshift_p (rtx shiftop
, rtx andop
)
11209 unsigned HOST_WIDE_INT shift_mask
= ~(unsigned HOST_WIDE_INT
) 0;
11211 shift_mask
<<= INTVAL (shiftop
);
11213 return (INTVAL (andop
) & 0xffffffff & ~shift_mask
) == 0;
11216 /* Similar, but for right shift. */
11219 includes_rshift_p (rtx shiftop
, rtx andop
)
11221 unsigned HOST_WIDE_INT shift_mask
= ~(unsigned HOST_WIDE_INT
) 0;
11223 shift_mask
>>= INTVAL (shiftop
);
11225 return (INTVAL (andop
) & 0xffffffff & ~shift_mask
) == 0;
11228 /* Return 1 if ANDOP is a mask suitable for use with an rldic insn
11229 to perform a left shift. It must have exactly SHIFTOP least
11230 significant 0's, then one or more 1's, then zero or more 0's. */
11233 includes_rldic_lshift_p (rtx shiftop
, rtx andop
)
11235 if (GET_CODE (andop
) == CONST_INT
)
11237 HOST_WIDE_INT c
, lsb
, shift_mask
;
11239 c
= INTVAL (andop
);
11240 if (c
== 0 || c
== ~0)
11244 shift_mask
<<= INTVAL (shiftop
);
11246 /* Find the least significant one bit. */
11249 /* It must coincide with the LSB of the shift mask. */
11250 if (-lsb
!= shift_mask
)
11253 /* Invert to look for the next transition (if any). */
11256 /* Remove the low group of ones (originally low group of zeros). */
11259 /* Again find the lsb, and check we have all 1's above. */
11263 else if (GET_CODE (andop
) == CONST_DOUBLE
11264 && (GET_MODE (andop
) == VOIDmode
|| GET_MODE (andop
) == DImode
))
11266 HOST_WIDE_INT low
, high
, lsb
;
11267 HOST_WIDE_INT shift_mask_low
, shift_mask_high
;
11269 low
= CONST_DOUBLE_LOW (andop
);
11270 if (HOST_BITS_PER_WIDE_INT
< 64)
11271 high
= CONST_DOUBLE_HIGH (andop
);
11273 if ((low
== 0 && (HOST_BITS_PER_WIDE_INT
>= 64 || high
== 0))
11274 || (low
== ~0 && (HOST_BITS_PER_WIDE_INT
>= 64 || high
== ~0)))
11277 if (HOST_BITS_PER_WIDE_INT
< 64 && low
== 0)
11279 shift_mask_high
= ~0;
11280 if (INTVAL (shiftop
) > 32)
11281 shift_mask_high
<<= INTVAL (shiftop
) - 32;
11283 lsb
= high
& -high
;
11285 if (-lsb
!= shift_mask_high
|| INTVAL (shiftop
) < 32)
11291 lsb
= high
& -high
;
11292 return high
== -lsb
;
11295 shift_mask_low
= ~0;
11296 shift_mask_low
<<= INTVAL (shiftop
);
11300 if (-lsb
!= shift_mask_low
)
11303 if (HOST_BITS_PER_WIDE_INT
< 64)
11308 if (HOST_BITS_PER_WIDE_INT
< 64 && low
== 0)
11310 lsb
= high
& -high
;
11311 return high
== -lsb
;
11315 return low
== -lsb
&& (HOST_BITS_PER_WIDE_INT
>= 64 || high
== ~0);
11321 /* Return 1 if ANDOP is a mask suitable for use with an rldicr insn
11322 to perform a left shift. It must have SHIFTOP or more least
11323 significant 0's, with the remainder of the word 1's. */
11326 includes_rldicr_lshift_p (rtx shiftop
, rtx andop
)
11328 if (GET_CODE (andop
) == CONST_INT
)
11330 HOST_WIDE_INT c
, lsb
, shift_mask
;
11333 shift_mask
<<= INTVAL (shiftop
);
11334 c
= INTVAL (andop
);
11336 /* Find the least significant one bit. */
11339 /* It must be covered by the shift mask.
11340 This test also rejects c == 0. */
11341 if ((lsb
& shift_mask
) == 0)
11344 /* Check we have all 1's above the transition, and reject all 1's. */
11345 return c
== -lsb
&& lsb
!= 1;
11347 else if (GET_CODE (andop
) == CONST_DOUBLE
11348 && (GET_MODE (andop
) == VOIDmode
|| GET_MODE (andop
) == DImode
))
11350 HOST_WIDE_INT low
, lsb
, shift_mask_low
;
11352 low
= CONST_DOUBLE_LOW (andop
);
11354 if (HOST_BITS_PER_WIDE_INT
< 64)
11356 HOST_WIDE_INT high
, shift_mask_high
;
11358 high
= CONST_DOUBLE_HIGH (andop
);
11362 shift_mask_high
= ~0;
11363 if (INTVAL (shiftop
) > 32)
11364 shift_mask_high
<<= INTVAL (shiftop
) - 32;
11366 lsb
= high
& -high
;
11368 if ((lsb
& shift_mask_high
) == 0)
11371 return high
== -lsb
;
11377 shift_mask_low
= ~0;
11378 shift_mask_low
<<= INTVAL (shiftop
);
11382 if ((lsb
& shift_mask_low
) == 0)
11385 return low
== -lsb
&& lsb
!= 1;
11391 /* Return 1 if operands will generate a valid arguments to rlwimi
11392 instruction for insert with right shift in 64-bit mode. The mask may
11393 not start on the first bit or stop on the last bit because wrap-around
11394 effects of instruction do not correspond to semantics of RTL insn. */
11397 insvdi_rshift_rlwimi_p (rtx sizeop
, rtx startop
, rtx shiftop
)
11399 if (INTVAL (startop
) > 32
11400 && INTVAL (startop
) < 64
11401 && INTVAL (sizeop
) > 1
11402 && INTVAL (sizeop
) + INTVAL (startop
) < 64
11403 && INTVAL (shiftop
) > 0
11404 && INTVAL (sizeop
) + INTVAL (shiftop
) < 32
11405 && (64 - (INTVAL (shiftop
) & 63)) >= INTVAL (sizeop
))
11411 /* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
11412 for lfq and stfq insns iff the registers are hard registers. */
11415 registers_ok_for_quad_peep (rtx reg1
, rtx reg2
)
11417 /* We might have been passed a SUBREG. */
11418 if (GET_CODE (reg1
) != REG
|| GET_CODE (reg2
) != REG
)
11421 /* We might have been passed non floating point registers. */
11422 if (!FP_REGNO_P (REGNO (reg1
))
11423 || !FP_REGNO_P (REGNO (reg2
)))
11426 return (REGNO (reg1
) == REGNO (reg2
) - 1);
11429 /* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.
11430 addr1 and addr2 must be in consecutive memory locations
11431 (addr2 == addr1 + 8). */
11434 mems_ok_for_quad_peep (rtx mem1
, rtx mem2
)
11437 unsigned int reg1
, reg2
;
11438 int offset1
, offset2
;
11440 /* The mems cannot be volatile. */
11441 if (MEM_VOLATILE_P (mem1
) || MEM_VOLATILE_P (mem2
))
11444 addr1
= XEXP (mem1
, 0);
11445 addr2
= XEXP (mem2
, 0);
11447 /* Extract an offset (if used) from the first addr. */
11448 if (GET_CODE (addr1
) == PLUS
)
11450 /* If not a REG, return zero. */
11451 if (GET_CODE (XEXP (addr1
, 0)) != REG
)
11455 reg1
= REGNO (XEXP (addr1
, 0));
11456 /* The offset must be constant! */
11457 if (GET_CODE (XEXP (addr1
, 1)) != CONST_INT
)
11459 offset1
= INTVAL (XEXP (addr1
, 1));
11462 else if (GET_CODE (addr1
) != REG
)
11466 reg1
= REGNO (addr1
);
11467 /* This was a simple (mem (reg)) expression. Offset is 0. */
11471 /* And now for the second addr. */
11472 if (GET_CODE (addr2
) == PLUS
)
11474 /* If not a REG, return zero. */
11475 if (GET_CODE (XEXP (addr2
, 0)) != REG
)
11479 reg2
= REGNO (XEXP (addr2
, 0));
11480 /* The offset must be constant. */
11481 if (GET_CODE (XEXP (addr2
, 1)) != CONST_INT
)
11483 offset2
= INTVAL (XEXP (addr2
, 1));
11486 else if (GET_CODE (addr2
) != REG
)
11490 reg2
= REGNO (addr2
);
11491 /* This was a simple (mem (reg)) expression. Offset is 0. */
11495 /* Both of these must have the same base register. */
11499 /* The offset for the second addr must be 8 more than the first addr. */
11500 if (offset2
!= offset1
+ 8)
11503 /* All the tests passed. addr1 and addr2 are valid for lfq or stfq
11510 rs6000_secondary_memory_needed_rtx (enum machine_mode mode
)
11512 static bool eliminated
= false;
11513 if (mode
!= SDmode
)
11514 return assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
11517 rtx mem
= cfun
->machine
->sdmode_stack_slot
;
11518 gcc_assert (mem
!= NULL_RTX
);
11522 mem
= eliminate_regs (mem
, VOIDmode
, NULL_RTX
);
11523 cfun
->machine
->sdmode_stack_slot
= mem
;
11531 rs6000_check_sdmode (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
11533 /* Don't walk into types. */
11534 if (*tp
== NULL_TREE
|| *tp
== error_mark_node
|| TYPE_P (*tp
))
11536 *walk_subtrees
= 0;
11540 switch (TREE_CODE (*tp
))
11548 case ALIGN_INDIRECT_REF
:
11549 case MISALIGNED_INDIRECT_REF
:
11550 case VIEW_CONVERT_EXPR
:
11551 if (TYPE_MODE (TREE_TYPE (*tp
)) == SDmode
)
11562 /* Allocate a 64-bit stack slot to be used for copying SDmode
11563 values through if this function has any SDmode references. */
11566 rs6000_alloc_sdmode_stack_slot (void)
11570 gimple_stmt_iterator gsi
;
11572 gcc_assert (cfun
->machine
->sdmode_stack_slot
== NULL_RTX
);
11575 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
11577 tree ret
= walk_gimple_op (gsi_stmt (gsi
), rs6000_check_sdmode
, NULL
);
11580 rtx stack
= assign_stack_local (DDmode
, GET_MODE_SIZE (DDmode
), 0);
11581 cfun
->machine
->sdmode_stack_slot
= adjust_address_nv (stack
,
11587 /* Check for any SDmode parameters of the function. */
11588 for (t
= DECL_ARGUMENTS (cfun
->decl
); t
; t
= TREE_CHAIN (t
))
11590 if (TREE_TYPE (t
) == error_mark_node
)
11593 if (TYPE_MODE (TREE_TYPE (t
)) == SDmode
11594 || TYPE_MODE (DECL_ARG_TYPE (t
)) == SDmode
)
11596 rtx stack
= assign_stack_local (DDmode
, GET_MODE_SIZE (DDmode
), 0);
11597 cfun
->machine
->sdmode_stack_slot
= adjust_address_nv (stack
,
11605 rs6000_instantiate_decls (void)
11607 if (cfun
->machine
->sdmode_stack_slot
!= NULL_RTX
)
11608 instantiate_decl_rtl (cfun
->machine
->sdmode_stack_slot
);
11611 /* Return the register class of a scratch register needed to copy IN into
11612 or out of a register in RCLASS in MODE. If it can be done directly,
11613 NO_REGS is returned. */
11616 rs6000_secondary_reload_class (enum reg_class rclass
,
11617 enum machine_mode mode ATTRIBUTE_UNUSED
,
11622 if (TARGET_ELF
|| (DEFAULT_ABI
== ABI_DARWIN
11624 && MACHOPIC_INDIRECT
11628 /* We cannot copy a symbolic operand directly into anything
11629 other than BASE_REGS for TARGET_ELF. So indicate that a
11630 register from BASE_REGS is needed as an intermediate
11633 On Darwin, pic addresses require a load from memory, which
11634 needs a base register. */
11635 if (rclass
!= BASE_REGS
11636 && (GET_CODE (in
) == SYMBOL_REF
11637 || GET_CODE (in
) == HIGH
11638 || GET_CODE (in
) == LABEL_REF
11639 || GET_CODE (in
) == CONST
))
11643 if (GET_CODE (in
) == REG
)
11645 regno
= REGNO (in
);
11646 if (regno
>= FIRST_PSEUDO_REGISTER
)
11648 regno
= true_regnum (in
);
11649 if (regno
>= FIRST_PSEUDO_REGISTER
)
11653 else if (GET_CODE (in
) == SUBREG
)
11655 regno
= true_regnum (in
);
11656 if (regno
>= FIRST_PSEUDO_REGISTER
)
11662 /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
11664 if (rclass
== GENERAL_REGS
|| rclass
== BASE_REGS
11665 || (regno
>= 0 && INT_REGNO_P (regno
)))
11668 /* Constants, memory, and FP registers can go into FP registers. */
11669 if ((regno
== -1 || FP_REGNO_P (regno
))
11670 && (rclass
== FLOAT_REGS
|| rclass
== NON_SPECIAL_REGS
))
11671 return (mode
!= SDmode
) ? NO_REGS
: GENERAL_REGS
;
11673 /* Memory, and AltiVec registers can go into AltiVec registers. */
11674 if ((regno
== -1 || ALTIVEC_REGNO_P (regno
))
11675 && rclass
== ALTIVEC_REGS
)
11678 /* We can copy among the CR registers. */
11679 if ((rclass
== CR_REGS
|| rclass
== CR0_REGS
)
11680 && regno
>= 0 && CR_REGNO_P (regno
))
11683 /* Otherwise, we need GENERAL_REGS. */
11684 return GENERAL_REGS
;
11687 /* Given a comparison operation, return the bit number in CCR to test. We
11688 know this is a valid comparison.
11690 SCC_P is 1 if this is for an scc. That means that %D will have been
11691 used instead of %C, so the bits will be in different places.
11693 Return -1 if OP isn't a valid comparison for some reason. */
11696 ccr_bit (rtx op
, int scc_p
)
11698 enum rtx_code code
= GET_CODE (op
);
11699 enum machine_mode cc_mode
;
11704 if (!COMPARISON_P (op
))
11707 reg
= XEXP (op
, 0);
11709 gcc_assert (GET_CODE (reg
) == REG
&& CR_REGNO_P (REGNO (reg
)));
11711 cc_mode
= GET_MODE (reg
);
11712 cc_regnum
= REGNO (reg
);
11713 base_bit
= 4 * (cc_regnum
- CR0_REGNO
);
11715 validate_condition_mode (code
, cc_mode
);
11717 /* When generating a sCOND operation, only positive conditions are
11720 || code
== EQ
|| code
== GT
|| code
== LT
|| code
== UNORDERED
11721 || code
== GTU
|| code
== LTU
);
11726 return scc_p
? base_bit
+ 3 : base_bit
+ 2;
11728 return base_bit
+ 2;
11729 case GT
: case GTU
: case UNLE
:
11730 return base_bit
+ 1;
11731 case LT
: case LTU
: case UNGE
:
11733 case ORDERED
: case UNORDERED
:
11734 return base_bit
+ 3;
11737 /* If scc, we will have done a cror to put the bit in the
11738 unordered position. So test that bit. For integer, this is ! LT
11739 unless this is an scc insn. */
11740 return scc_p
? base_bit
+ 3 : base_bit
;
11743 return scc_p
? base_bit
+ 3 : base_bit
+ 1;
11746 gcc_unreachable ();
11750 /* Return the GOT register. */
11753 rs6000_got_register (rtx value ATTRIBUTE_UNUSED
)
11755 /* The second flow pass currently (June 1999) can't update
11756 regs_ever_live without disturbing other parts of the compiler, so
11757 update it here to make the prolog/epilogue code happy. */
11758 if (!can_create_pseudo_p ()
11759 && !df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM
))
11760 df_set_regs_ever_live (RS6000_PIC_OFFSET_TABLE_REGNUM
, true);
11762 crtl
->uses_pic_offset_table
= 1;
11764 return pic_offset_table_rtx
;
11767 /* Function to init struct machine_function.
11768 This will be called, via a pointer variable,
11769 from push_function_context. */
11771 static struct machine_function
*
11772 rs6000_init_machine_status (void)
11774 return GGC_CNEW (machine_function
);
11777 /* These macros test for integers and extract the low-order bits. */
11779 ((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE) \
11780 && GET_MODE (X) == VOIDmode)
11782 #define INT_LOWPART(X) \
11783 (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X))
11786 extract_MB (rtx op
)
11789 unsigned long val
= INT_LOWPART (op
);
11791 /* If the high bit is zero, the value is the first 1 bit we find
11793 if ((val
& 0x80000000) == 0)
11795 gcc_assert (val
& 0xffffffff);
11798 while (((val
<<= 1) & 0x80000000) == 0)
11803 /* If the high bit is set and the low bit is not, or the mask is all
11804 1's, the value is zero. */
11805 if ((val
& 1) == 0 || (val
& 0xffffffff) == 0xffffffff)
11808 /* Otherwise we have a wrap-around mask. Look for the first 0 bit
11811 while (((val
>>= 1) & 1) != 0)
11818 extract_ME (rtx op
)
11821 unsigned long val
= INT_LOWPART (op
);
11823 /* If the low bit is zero, the value is the first 1 bit we find from
11825 if ((val
& 1) == 0)
11827 gcc_assert (val
& 0xffffffff);
11830 while (((val
>>= 1) & 1) == 0)
11836 /* If the low bit is set and the high bit is not, or the mask is all
11837 1's, the value is 31. */
11838 if ((val
& 0x80000000) == 0 || (val
& 0xffffffff) == 0xffffffff)
11841 /* Otherwise we have a wrap-around mask. Look for the first 0 bit
11844 while (((val
<<= 1) & 0x80000000) != 0)
11850 /* Locate some local-dynamic symbol still in use by this function
11851 so that we can print its name in some tls_ld pattern. */
11853 static const char *
11854 rs6000_get_some_local_dynamic_name (void)
11858 if (cfun
->machine
->some_ld_name
)
11859 return cfun
->machine
->some_ld_name
;
11861 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
11863 && for_each_rtx (&PATTERN (insn
),
11864 rs6000_get_some_local_dynamic_name_1
, 0))
11865 return cfun
->machine
->some_ld_name
;
11867 gcc_unreachable ();
11870 /* Helper function for rs6000_get_some_local_dynamic_name. */
11873 rs6000_get_some_local_dynamic_name_1 (rtx
*px
, void *data ATTRIBUTE_UNUSED
)
11877 if (GET_CODE (x
) == SYMBOL_REF
)
11879 const char *str
= XSTR (x
, 0);
11880 if (SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
11882 cfun
->machine
->some_ld_name
= str
;
11890 /* Write out a function code label. */
11893 rs6000_output_function_entry (FILE *file
, const char *fname
)
11895 if (fname
[0] != '.')
11897 switch (DEFAULT_ABI
)
11900 gcc_unreachable ();
11906 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file
, "L.");
11915 RS6000_OUTPUT_BASENAME (file
, fname
);
11917 assemble_name (file
, fname
);
11920 /* Print an operand. Recognize special options, documented below. */
11923 #define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
11924 #define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
11926 #define SMALL_DATA_RELOC "sda21"
11927 #define SMALL_DATA_REG 0
11931 print_operand (FILE *file
, rtx x
, int code
)
11935 unsigned HOST_WIDE_INT uval
;
11940 /* Write out an instruction after the call which may be replaced
11941 with glue code by the loader. This depends on the AIX version. */
11942 asm_fprintf (file
, RS6000_CALL_GLUE
);
11945 /* %a is output_address. */
11948 /* If X is a constant integer whose low-order 5 bits are zero,
11949 write 'l'. Otherwise, write 'r'. This is a kludge to fix a bug
11950 in the AIX assembler where "sri" with a zero shift count
11951 writes a trash instruction. */
11952 if (GET_CODE (x
) == CONST_INT
&& (INTVAL (x
) & 31) == 0)
11959 /* If constant, low-order 16 bits of constant, unsigned.
11960 Otherwise, write normally. */
11962 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INT_LOWPART (x
) & 0xffff);
11964 print_operand (file
, x
, 0);
11968 /* If the low-order bit is zero, write 'r'; otherwise, write 'l'
11969 for 64-bit mask direction. */
11970 putc (((INT_LOWPART (x
) & 1) == 0 ? 'r' : 'l'), file
);
11973 /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise
11977 /* X is a CR register. Print the number of the GT bit of the CR. */
11978 if (GET_CODE (x
) != REG
|| ! CR_REGNO_P (REGNO (x
)))
11979 output_operand_lossage ("invalid %%E value");
11981 fprintf (file
, "%d", 4 * (REGNO (x
) - CR0_REGNO
) + 1);
11985 /* Like 'J' but get to the GT bit only. */
11986 gcc_assert (GET_CODE (x
) == REG
);
11988 /* Bit 1 is GT bit. */
11989 i
= 4 * (REGNO (x
) - CR0_REGNO
) + 1;
11991 /* Add one for shift count in rlinm for scc. */
11992 fprintf (file
, "%d", i
+ 1);
11996 /* X is a CR register. Print the number of the EQ bit of the CR */
11997 if (GET_CODE (x
) != REG
|| ! CR_REGNO_P (REGNO (x
)))
11998 output_operand_lossage ("invalid %%E value");
12000 fprintf (file
, "%d", 4 * (REGNO (x
) - CR0_REGNO
) + 2);
12004 /* X is a CR register. Print the shift count needed to move it
12005 to the high-order four bits. */
12006 if (GET_CODE (x
) != REG
|| ! CR_REGNO_P (REGNO (x
)))
12007 output_operand_lossage ("invalid %%f value");
12009 fprintf (file
, "%d", 4 * (REGNO (x
) - CR0_REGNO
));
12013 /* Similar, but print the count for the rotate in the opposite
12015 if (GET_CODE (x
) != REG
|| ! CR_REGNO_P (REGNO (x
)))
12016 output_operand_lossage ("invalid %%F value");
12018 fprintf (file
, "%d", 32 - 4 * (REGNO (x
) - CR0_REGNO
));
12022 /* X is a constant integer. If it is negative, print "m",
12023 otherwise print "z". This is to make an aze or ame insn. */
12024 if (GET_CODE (x
) != CONST_INT
)
12025 output_operand_lossage ("invalid %%G value");
12026 else if (INTVAL (x
) >= 0)
12033 /* If constant, output low-order five bits. Otherwise, write
12036 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INT_LOWPART (x
) & 31);
12038 print_operand (file
, x
, 0);
12042 /* If constant, output low-order six bits. Otherwise, write
12045 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INT_LOWPART (x
) & 63);
12047 print_operand (file
, x
, 0);
12051 /* Print `i' if this is a constant, else nothing. */
12057 /* Write the bit number in CCR for jump. */
12058 i
= ccr_bit (x
, 0);
12060 output_operand_lossage ("invalid %%j code");
12062 fprintf (file
, "%d", i
);
12066 /* Similar, but add one for shift count in rlinm for scc and pass
12067 scc flag to `ccr_bit'. */
12068 i
= ccr_bit (x
, 1);
12070 output_operand_lossage ("invalid %%J code");
12072 /* If we want bit 31, write a shift count of zero, not 32. */
12073 fprintf (file
, "%d", i
== 31 ? 0 : i
+ 1);
12077 /* X must be a constant. Write the 1's complement of the
12080 output_operand_lossage ("invalid %%k value");
12082 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, ~ INT_LOWPART (x
));
12086 /* X must be a symbolic constant on ELF. Write an
12087 expression suitable for an 'addi' that adds in the low 16
12088 bits of the MEM. */
12089 if (GET_CODE (x
) != CONST
)
12091 print_operand_address (file
, x
);
12092 fputs ("@l", file
);
12096 if (GET_CODE (XEXP (x
, 0)) != PLUS
12097 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) != SYMBOL_REF
12098 && GET_CODE (XEXP (XEXP (x
, 0), 0)) != LABEL_REF
)
12099 || GET_CODE (XEXP (XEXP (x
, 0), 1)) != CONST_INT
)
12100 output_operand_lossage ("invalid %%K value");
12101 print_operand_address (file
, XEXP (XEXP (x
, 0), 0));
12102 fputs ("@l", file
);
12103 /* For GNU as, there must be a non-alphanumeric character
12104 between 'l' and the number. The '-' is added by
12105 print_operand() already. */
12106 if (INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0)
12108 print_operand (file
, XEXP (XEXP (x
, 0), 1), 0);
12112 /* %l is output_asm_label. */
12115 /* Write second word of DImode or DFmode reference. Works on register
12116 or non-indexed memory only. */
12117 if (GET_CODE (x
) == REG
)
12118 fputs (reg_names
[REGNO (x
) + 1], file
);
12119 else if (GET_CODE (x
) == MEM
)
12121 /* Handle possible auto-increment. Since it is pre-increment and
12122 we have already done it, we can just use an offset of word. */
12123 if (GET_CODE (XEXP (x
, 0)) == PRE_INC
12124 || GET_CODE (XEXP (x
, 0)) == PRE_DEC
)
12125 output_address (plus_constant (XEXP (XEXP (x
, 0), 0),
12127 else if (GET_CODE (XEXP (x
, 0)) == PRE_MODIFY
)
12128 output_address (plus_constant (XEXP (XEXP (x
, 0), 0),
12131 output_address (XEXP (adjust_address_nv (x
, SImode
,
12135 if (small_data_operand (x
, GET_MODE (x
)))
12136 fprintf (file
, "@%s(%s)", SMALL_DATA_RELOC
,
12137 reg_names
[SMALL_DATA_REG
]);
12142 /* MB value for a mask operand. */
12143 if (! mask_operand (x
, SImode
))
12144 output_operand_lossage ("invalid %%m value");
12146 fprintf (file
, "%d", extract_MB (x
));
12150 /* ME value for a mask operand. */
12151 if (! mask_operand (x
, SImode
))
12152 output_operand_lossage ("invalid %%M value");
12154 fprintf (file
, "%d", extract_ME (x
));
12157 /* %n outputs the negative of its operand. */
12160 /* Write the number of elements in the vector times 4. */
12161 if (GET_CODE (x
) != PARALLEL
)
12162 output_operand_lossage ("invalid %%N value");
12164 fprintf (file
, "%d", XVECLEN (x
, 0) * 4);
12168 /* Similar, but subtract 1 first. */
12169 if (GET_CODE (x
) != PARALLEL
)
12170 output_operand_lossage ("invalid %%O value");
12172 fprintf (file
, "%d", (XVECLEN (x
, 0) - 1) * 4);
12176 /* X is a CONST_INT that is a power of two. Output the logarithm. */
12178 || INT_LOWPART (x
) < 0
12179 || (i
= exact_log2 (INT_LOWPART (x
))) < 0)
12180 output_operand_lossage ("invalid %%p value");
12182 fprintf (file
, "%d", i
);
12186 /* The operand must be an indirect memory reference. The result
12187 is the register name. */
12188 if (GET_CODE (x
) != MEM
|| GET_CODE (XEXP (x
, 0)) != REG
12189 || REGNO (XEXP (x
, 0)) >= 32)
12190 output_operand_lossage ("invalid %%P value");
12192 fputs (reg_names
[REGNO (XEXP (x
, 0))], file
);
12196 /* This outputs the logical code corresponding to a boolean
12197 expression. The expression may have one or both operands
12198 negated (if one, only the first one). For condition register
12199 logical operations, it will also treat the negated
12200 CR codes as NOTs, but not handle NOTs of them. */
12202 const char *const *t
= 0;
12204 enum rtx_code code
= GET_CODE (x
);
12205 static const char * const tbl
[3][3] = {
12206 { "and", "andc", "nor" },
12207 { "or", "orc", "nand" },
12208 { "xor", "eqv", "xor" } };
12212 else if (code
== IOR
)
12214 else if (code
== XOR
)
12217 output_operand_lossage ("invalid %%q value");
12219 if (GET_CODE (XEXP (x
, 0)) != NOT
)
12223 if (GET_CODE (XEXP (x
, 1)) == NOT
)
12241 /* X is a CR register. Print the mask for `mtcrf'. */
12242 if (GET_CODE (x
) != REG
|| ! CR_REGNO_P (REGNO (x
)))
12243 output_operand_lossage ("invalid %%R value");
12245 fprintf (file
, "%d", 128 >> (REGNO (x
) - CR0_REGNO
));
12249 /* Low 5 bits of 32 - value */
12251 output_operand_lossage ("invalid %%s value");
12253 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, (32 - INT_LOWPART (x
)) & 31);
12257 /* PowerPC64 mask position. All 0's is excluded.
12258 CONST_INT 32-bit mask is considered sign-extended so any
12259 transition must occur within the CONST_INT, not on the boundary. */
12260 if (! mask64_operand (x
, DImode
))
12261 output_operand_lossage ("invalid %%S value");
12263 uval
= INT_LOWPART (x
);
12265 if (uval
& 1) /* Clear Left */
12267 #if HOST_BITS_PER_WIDE_INT > 64
12268 uval
&= ((unsigned HOST_WIDE_INT
) 1 << 64) - 1;
12272 else /* Clear Right */
12275 #if HOST_BITS_PER_WIDE_INT > 64
12276 uval
&= ((unsigned HOST_WIDE_INT
) 1 << 64) - 1;
12282 gcc_assert (i
>= 0);
12283 fprintf (file
, "%d", i
);
12287 /* Like 'J' but get to the OVERFLOW/UNORDERED bit. */
12288 gcc_assert (GET_CODE (x
) == REG
&& GET_MODE (x
) == CCmode
);
12290 /* Bit 3 is OV bit. */
12291 i
= 4 * (REGNO (x
) - CR0_REGNO
) + 3;
12293 /* If we want bit 31, write a shift count of zero, not 32. */
12294 fprintf (file
, "%d", i
== 31 ? 0 : i
+ 1);
12298 /* Print the symbolic name of a branch target register. */
12299 if (GET_CODE (x
) != REG
|| (REGNO (x
) != LR_REGNO
12300 && REGNO (x
) != CTR_REGNO
))
12301 output_operand_lossage ("invalid %%T value");
12302 else if (REGNO (x
) == LR_REGNO
)
12303 fputs (TARGET_NEW_MNEMONICS
? "lr" : "r", file
);
12305 fputs ("ctr", file
);
12309 /* High-order 16 bits of constant for use in unsigned operand. */
12311 output_operand_lossage ("invalid %%u value");
12313 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
12314 (INT_LOWPART (x
) >> 16) & 0xffff);
12318 /* High-order 16 bits of constant for use in signed operand. */
12320 output_operand_lossage ("invalid %%v value");
12322 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
12323 (INT_LOWPART (x
) >> 16) & 0xffff);
12327 /* Print `u' if this has an auto-increment or auto-decrement. */
12328 if (GET_CODE (x
) == MEM
12329 && (GET_CODE (XEXP (x
, 0)) == PRE_INC
12330 || GET_CODE (XEXP (x
, 0)) == PRE_DEC
12331 || GET_CODE (XEXP (x
, 0)) == PRE_MODIFY
))
12336 /* Print the trap code for this operand. */
12337 switch (GET_CODE (x
))
12340 fputs ("eq", file
); /* 4 */
12343 fputs ("ne", file
); /* 24 */
12346 fputs ("lt", file
); /* 16 */
12349 fputs ("le", file
); /* 20 */
12352 fputs ("gt", file
); /* 8 */
12355 fputs ("ge", file
); /* 12 */
12358 fputs ("llt", file
); /* 2 */
12361 fputs ("lle", file
); /* 6 */
12364 fputs ("lgt", file
); /* 1 */
12367 fputs ("lge", file
); /* 5 */
12370 gcc_unreachable ();
12375 /* If constant, low-order 16 bits of constant, signed. Otherwise, write
12378 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
,
12379 ((INT_LOWPART (x
) & 0xffff) ^ 0x8000) - 0x8000);
12381 print_operand (file
, x
, 0);
12385 /* MB value for a PowerPC64 rldic operand. */
12386 val
= (GET_CODE (x
) == CONST_INT
12387 ? INTVAL (x
) : CONST_DOUBLE_HIGH (x
));
12392 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
12393 if ((val
<<= 1) < 0)
12396 #if HOST_BITS_PER_WIDE_INT == 32
12397 if (GET_CODE (x
) == CONST_INT
&& i
>= 0)
12398 i
+= 32; /* zero-extend high-part was all 0's */
12399 else if (GET_CODE (x
) == CONST_DOUBLE
&& i
== 32)
12401 val
= CONST_DOUBLE_LOW (x
);
12407 for ( ; i
< 64; i
++)
12408 if ((val
<<= 1) < 0)
12413 fprintf (file
, "%d", i
+ 1);
12417 if (GET_CODE (x
) == MEM
12418 && (legitimate_indexed_address_p (XEXP (x
, 0), 0)
12419 || (GET_CODE (XEXP (x
, 0)) == PRE_MODIFY
12420 && legitimate_indexed_address_p (XEXP (XEXP (x
, 0), 1), 0))))
12425 /* Like 'L', for third word of TImode */
12426 if (GET_CODE (x
) == REG
)
12427 fputs (reg_names
[REGNO (x
) + 2], file
);
12428 else if (GET_CODE (x
) == MEM
)
12430 if (GET_CODE (XEXP (x
, 0)) == PRE_INC
12431 || GET_CODE (XEXP (x
, 0)) == PRE_DEC
)
12432 output_address (plus_constant (XEXP (XEXP (x
, 0), 0), 8));
12433 else if (GET_CODE (XEXP (x
, 0)) == PRE_MODIFY
)
12434 output_address (plus_constant (XEXP (XEXP (x
, 0), 0), 8));
12436 output_address (XEXP (adjust_address_nv (x
, SImode
, 8), 0));
12437 if (small_data_operand (x
, GET_MODE (x
)))
12438 fprintf (file
, "@%s(%s)", SMALL_DATA_RELOC
,
12439 reg_names
[SMALL_DATA_REG
]);
12444 /* X is a SYMBOL_REF. Write out the name preceded by a
12445 period and without any trailing data in brackets. Used for function
12446 names. If we are configured for System V (or the embedded ABI) on
12447 the PowerPC, do not emit the period, since those systems do not use
12448 TOCs and the like. */
12449 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
12451 /* Mark the decl as referenced so that cgraph will output the
12453 if (SYMBOL_REF_DECL (x
))
12454 mark_decl_referenced (SYMBOL_REF_DECL (x
));
12456 /* For macho, check to see if we need a stub. */
12459 const char *name
= XSTR (x
, 0);
12461 if (MACHOPIC_INDIRECT
12462 && machopic_classify_symbol (x
) == MACHOPIC_UNDEFINED_FUNCTION
)
12463 name
= machopic_indirection_name (x
, /*stub_p=*/true);
12465 assemble_name (file
, name
);
12467 else if (!DOT_SYMBOLS
)
12468 assemble_name (file
, XSTR (x
, 0));
12470 rs6000_output_function_entry (file
, XSTR (x
, 0));
12474 /* Like 'L', for last word of TImode. */
12475 if (GET_CODE (x
) == REG
)
12476 fputs (reg_names
[REGNO (x
) + 3], file
);
12477 else if (GET_CODE (x
) == MEM
)
12479 if (GET_CODE (XEXP (x
, 0)) == PRE_INC
12480 || GET_CODE (XEXP (x
, 0)) == PRE_DEC
)
12481 output_address (plus_constant (XEXP (XEXP (x
, 0), 0), 12));
12482 else if (GET_CODE (XEXP (x
, 0)) == PRE_MODIFY
)
12483 output_address (plus_constant (XEXP (XEXP (x
, 0), 0), 12));
12485 output_address (XEXP (adjust_address_nv (x
, SImode
, 12), 0));
12486 if (small_data_operand (x
, GET_MODE (x
)))
12487 fprintf (file
, "@%s(%s)", SMALL_DATA_RELOC
,
12488 reg_names
[SMALL_DATA_REG
]);
12492 /* Print AltiVec or SPE memory operand. */
12497 gcc_assert (GET_CODE (x
) == MEM
);
12501 /* Ugly hack because %y is overloaded. */
12502 if ((TARGET_SPE
|| TARGET_E500_DOUBLE
)
12503 && (GET_MODE_SIZE (GET_MODE (x
)) == 8
12504 || GET_MODE (x
) == TFmode
12505 || GET_MODE (x
) == TImode
))
12507 /* Handle [reg]. */
12508 if (GET_CODE (tmp
) == REG
)
12510 fprintf (file
, "0(%s)", reg_names
[REGNO (tmp
)]);
12513 /* Handle [reg+UIMM]. */
12514 else if (GET_CODE (tmp
) == PLUS
&&
12515 GET_CODE (XEXP (tmp
, 1)) == CONST_INT
)
12519 gcc_assert (GET_CODE (XEXP (tmp
, 0)) == REG
);
12521 x
= INTVAL (XEXP (tmp
, 1));
12522 fprintf (file
, "%d(%s)", x
, reg_names
[REGNO (XEXP (tmp
, 0))]);
12526 /* Fall through. Must be [reg+reg]. */
12529 && GET_CODE (tmp
) == AND
12530 && GET_CODE (XEXP (tmp
, 1)) == CONST_INT
12531 && INTVAL (XEXP (tmp
, 1)) == -16)
12532 tmp
= XEXP (tmp
, 0);
12533 if (GET_CODE (tmp
) == REG
)
12534 fprintf (file
, "0,%s", reg_names
[REGNO (tmp
)]);
12537 if (!GET_CODE (tmp
) == PLUS
12538 || !REG_P (XEXP (tmp
, 0))
12539 || !REG_P (XEXP (tmp
, 1)))
12541 output_operand_lossage ("invalid %%y value, try using the 'Z' constraint");
12545 if (REGNO (XEXP (tmp
, 0)) == 0)
12546 fprintf (file
, "%s,%s", reg_names
[ REGNO (XEXP (tmp
, 1)) ],
12547 reg_names
[ REGNO (XEXP (tmp
, 0)) ]);
12549 fprintf (file
, "%s,%s", reg_names
[ REGNO (XEXP (tmp
, 0)) ],
12550 reg_names
[ REGNO (XEXP (tmp
, 1)) ]);
12556 if (GET_CODE (x
) == REG
)
12557 fprintf (file
, "%s", reg_names
[REGNO (x
)]);
12558 else if (GET_CODE (x
) == MEM
)
12560 /* We need to handle PRE_INC and PRE_DEC here, since we need to
12561 know the width from the mode. */
12562 if (GET_CODE (XEXP (x
, 0)) == PRE_INC
)
12563 fprintf (file
, "%d(%s)", GET_MODE_SIZE (GET_MODE (x
)),
12564 reg_names
[REGNO (XEXP (XEXP (x
, 0), 0))]);
12565 else if (GET_CODE (XEXP (x
, 0)) == PRE_DEC
)
12566 fprintf (file
, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x
)),
12567 reg_names
[REGNO (XEXP (XEXP (x
, 0), 0))]);
12568 else if (GET_CODE (XEXP (x
, 0)) == PRE_MODIFY
)
12569 output_address (XEXP (XEXP (x
, 0), 1));
12571 output_address (XEXP (x
, 0));
12574 output_addr_const (file
, x
);
12578 assemble_name (file
, rs6000_get_some_local_dynamic_name ());
12582 output_operand_lossage ("invalid %%xn code");
12586 /* Print the address of an operand. */
12589 print_operand_address (FILE *file
, rtx x
)
12591 if (GET_CODE (x
) == REG
)
12592 fprintf (file
, "0(%s)", reg_names
[ REGNO (x
) ]);
12593 else if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == CONST
12594 || GET_CODE (x
) == LABEL_REF
)
12596 output_addr_const (file
, x
);
12597 if (small_data_operand (x
, GET_MODE (x
)))
12598 fprintf (file
, "@%s(%s)", SMALL_DATA_RELOC
,
12599 reg_names
[SMALL_DATA_REG
]);
12601 gcc_assert (!TARGET_TOC
);
12603 else if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == REG
)
12605 gcc_assert (REG_P (XEXP (x
, 0)));
12606 if (REGNO (XEXP (x
, 0)) == 0)
12607 fprintf (file
, "%s,%s", reg_names
[ REGNO (XEXP (x
, 1)) ],
12608 reg_names
[ REGNO (XEXP (x
, 0)) ]);
12610 fprintf (file
, "%s,%s", reg_names
[ REGNO (XEXP (x
, 0)) ],
12611 reg_names
[ REGNO (XEXP (x
, 1)) ]);
12613 else if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
12614 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
"(%s)",
12615 INTVAL (XEXP (x
, 1)), reg_names
[ REGNO (XEXP (x
, 0)) ]);
12617 else if (GET_CODE (x
) == LO_SUM
&& GET_CODE (XEXP (x
, 0)) == REG
12618 && CONSTANT_P (XEXP (x
, 1)))
12620 output_addr_const (file
, XEXP (x
, 1));
12621 fprintf (file
, "@l(%s)", reg_names
[ REGNO (XEXP (x
, 0)) ]);
12625 else if (GET_CODE (x
) == LO_SUM
&& GET_CODE (XEXP (x
, 0)) == REG
12626 && CONSTANT_P (XEXP (x
, 1)))
12628 fprintf (file
, "lo16(");
12629 output_addr_const (file
, XEXP (x
, 1));
12630 fprintf (file
, ")(%s)", reg_names
[ REGNO (XEXP (x
, 0)) ]);
12633 else if (legitimate_constant_pool_address_p (x
))
12635 output_addr_const (file
, XEXP (x
, 1));
12636 fprintf (file
, "(%s)", reg_names
[REGNO (XEXP (x
, 0))]);
12639 gcc_unreachable ();
12642 /* Implement OUTPUT_ADDR_CONST_EXTRA for address X. */
12645 rs6000_output_addr_const_extra (FILE *file
, rtx x
)
12647 if (GET_CODE (x
) == UNSPEC
)
12648 switch (XINT (x
, 1))
12650 case UNSPEC_TOCREL
:
12651 x
= XVECEXP (x
, 0, 0);
12652 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
12653 output_addr_const (file
, x
);
12654 if (!TARGET_AIX
|| (TARGET_ELF
&& TARGET_MINIMAL_TOC
))
12657 assemble_name (file
, toc_label_name
);
12659 else if (TARGET_ELF
)
12660 fputs ("@toc", file
);
12664 case UNSPEC_MACHOPIC_OFFSET
:
12665 output_addr_const (file
, XVECEXP (x
, 0, 0));
12667 machopic_output_function_base_name (file
);
12674 /* Target hook for assembling integer objects. The PowerPC version has
12675 to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP
12676 is defined. It also needs to handle DI-mode objects on 64-bit
12680 rs6000_assemble_integer (rtx x
, unsigned int size
, int aligned_p
)
12682 #ifdef RELOCATABLE_NEEDS_FIXUP
12683 /* Special handling for SI values. */
12684 if (RELOCATABLE_NEEDS_FIXUP
&& size
== 4 && aligned_p
)
12686 static int recurse
= 0;
12688 /* For -mrelocatable, we mark all addresses that need to be fixed up
12689 in the .fixup section. */
12690 if (TARGET_RELOCATABLE
12691 && in_section
!= toc_section
12692 && in_section
!= text_section
12693 && !unlikely_text_section_p (in_section
)
12695 && GET_CODE (x
) != CONST_INT
12696 && GET_CODE (x
) != CONST_DOUBLE
12702 ASM_GENERATE_INTERNAL_LABEL (buf
, "LCP", fixuplabelno
);
12704 ASM_OUTPUT_LABEL (asm_out_file
, buf
);
12705 fprintf (asm_out_file
, "\t.long\t(");
12706 output_addr_const (asm_out_file
, x
);
12707 fprintf (asm_out_file
, ")@fixup\n");
12708 fprintf (asm_out_file
, "\t.section\t\".fixup\",\"aw\"\n");
12709 ASM_OUTPUT_ALIGN (asm_out_file
, 2);
12710 fprintf (asm_out_file
, "\t.long\t");
12711 assemble_name (asm_out_file
, buf
);
12712 fprintf (asm_out_file
, "\n\t.previous\n");
12716 /* Remove initial .'s to turn a -mcall-aixdesc function
12717 address into the address of the descriptor, not the function
12719 else if (GET_CODE (x
) == SYMBOL_REF
12720 && XSTR (x
, 0)[0] == '.'
12721 && DEFAULT_ABI
== ABI_AIX
)
12723 const char *name
= XSTR (x
, 0);
12724 while (*name
== '.')
12727 fprintf (asm_out_file
, "\t.long\t%s\n", name
);
12731 #endif /* RELOCATABLE_NEEDS_FIXUP */
12732 return default_assemble_integer (x
, size
, aligned_p
);
12735 #ifdef HAVE_GAS_HIDDEN
12736 /* Emit an assembler directive to set symbol visibility for DECL to
12737 VISIBILITY_TYPE. */
12740 rs6000_assemble_visibility (tree decl
, int vis
)
12742 /* Functions need to have their entry point symbol visibility set as
12743 well as their descriptor symbol visibility. */
12744 if (DEFAULT_ABI
== ABI_AIX
12746 && TREE_CODE (decl
) == FUNCTION_DECL
)
12748 static const char * const visibility_types
[] = {
12749 NULL
, "internal", "hidden", "protected"
12752 const char *name
, *type
;
12754 name
= ((* targetm
.strip_name_encoding
)
12755 (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
))));
12756 type
= visibility_types
[vis
];
12758 fprintf (asm_out_file
, "\t.%s\t%s\n", type
, name
);
12759 fprintf (asm_out_file
, "\t.%s\t.%s\n", type
, name
);
12762 default_assemble_visibility (decl
, vis
);
12767 rs6000_reverse_condition (enum machine_mode mode
, enum rtx_code code
)
12769 /* Reversal of FP compares takes care -- an ordered compare
12770 becomes an unordered compare and vice versa. */
12771 if (mode
== CCFPmode
12772 && (!flag_finite_math_only
12773 || code
== UNLT
|| code
== UNLE
|| code
== UNGT
|| code
== UNGE
12774 || code
== UNEQ
|| code
== LTGT
))
12775 return reverse_condition_maybe_unordered (code
);
12777 return reverse_condition (code
);
12780 /* Generate a compare for CODE. Return a brand-new rtx that
12781 represents the result of the compare. */
12784 rs6000_generate_compare (enum rtx_code code
)
12786 enum machine_mode comp_mode
;
12787 rtx compare_result
;
12789 if (rs6000_compare_fp_p
)
12790 comp_mode
= CCFPmode
;
12791 else if (code
== GTU
|| code
== LTU
12792 || code
== GEU
|| code
== LEU
)
12793 comp_mode
= CCUNSmode
;
12794 else if ((code
== EQ
|| code
== NE
)
12795 && GET_CODE (rs6000_compare_op0
) == SUBREG
12796 && GET_CODE (rs6000_compare_op1
) == SUBREG
12797 && SUBREG_PROMOTED_UNSIGNED_P (rs6000_compare_op0
)
12798 && SUBREG_PROMOTED_UNSIGNED_P (rs6000_compare_op1
))
12799 /* These are unsigned values, perhaps there will be a later
12800 ordering compare that can be shared with this one.
12801 Unfortunately we cannot detect the signedness of the operands
12802 for non-subregs. */
12803 comp_mode
= CCUNSmode
;
12805 comp_mode
= CCmode
;
12807 /* First, the compare. */
12808 compare_result
= gen_reg_rtx (comp_mode
);
12810 /* E500 FP compare instructions on the GPRs. Yuck! */
12811 if ((!TARGET_FPRS
&& TARGET_HARD_FLOAT
)
12812 && rs6000_compare_fp_p
)
12814 rtx cmp
, or_result
, compare_result2
;
12815 enum machine_mode op_mode
= GET_MODE (rs6000_compare_op0
);
12817 if (op_mode
== VOIDmode
)
12818 op_mode
= GET_MODE (rs6000_compare_op1
);
12820 /* The E500 FP compare instructions toggle the GT bit (CR bit 1) only.
12821 This explains the following mess. */
12825 case EQ
: case UNEQ
: case NE
: case LTGT
:
12829 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12830 ? gen_tstsfeq_gpr (compare_result
, rs6000_compare_op0
,
12831 rs6000_compare_op1
)
12832 : gen_cmpsfeq_gpr (compare_result
, rs6000_compare_op0
,
12833 rs6000_compare_op1
);
12837 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12838 ? gen_tstdfeq_gpr (compare_result
, rs6000_compare_op0
,
12839 rs6000_compare_op1
)
12840 : gen_cmpdfeq_gpr (compare_result
, rs6000_compare_op0
,
12841 rs6000_compare_op1
);
12845 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12846 ? gen_tsttfeq_gpr (compare_result
, rs6000_compare_op0
,
12847 rs6000_compare_op1
)
12848 : gen_cmptfeq_gpr (compare_result
, rs6000_compare_op0
,
12849 rs6000_compare_op1
);
12853 gcc_unreachable ();
12857 case GT
: case GTU
: case UNGT
: case UNGE
: case GE
: case GEU
:
12861 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12862 ? gen_tstsfgt_gpr (compare_result
, rs6000_compare_op0
,
12863 rs6000_compare_op1
)
12864 : gen_cmpsfgt_gpr (compare_result
, rs6000_compare_op0
,
12865 rs6000_compare_op1
);
12869 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12870 ? gen_tstdfgt_gpr (compare_result
, rs6000_compare_op0
,
12871 rs6000_compare_op1
)
12872 : gen_cmpdfgt_gpr (compare_result
, rs6000_compare_op0
,
12873 rs6000_compare_op1
);
12877 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12878 ? gen_tsttfgt_gpr (compare_result
, rs6000_compare_op0
,
12879 rs6000_compare_op1
)
12880 : gen_cmptfgt_gpr (compare_result
, rs6000_compare_op0
,
12881 rs6000_compare_op1
);
12885 gcc_unreachable ();
12889 case LT
: case LTU
: case UNLT
: case UNLE
: case LE
: case LEU
:
12893 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12894 ? gen_tstsflt_gpr (compare_result
, rs6000_compare_op0
,
12895 rs6000_compare_op1
)
12896 : gen_cmpsflt_gpr (compare_result
, rs6000_compare_op0
,
12897 rs6000_compare_op1
);
12901 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12902 ? gen_tstdflt_gpr (compare_result
, rs6000_compare_op0
,
12903 rs6000_compare_op1
)
12904 : gen_cmpdflt_gpr (compare_result
, rs6000_compare_op0
,
12905 rs6000_compare_op1
);
12909 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12910 ? gen_tsttflt_gpr (compare_result
, rs6000_compare_op0
,
12911 rs6000_compare_op1
)
12912 : gen_cmptflt_gpr (compare_result
, rs6000_compare_op0
,
12913 rs6000_compare_op1
);
12917 gcc_unreachable ();
12921 gcc_unreachable ();
12924 /* Synthesize LE and GE from LT/GT || EQ. */
12925 if (code
== LE
|| code
== GE
|| code
== LEU
|| code
== GEU
)
12931 case LE
: code
= LT
; break;
12932 case GE
: code
= GT
; break;
12933 case LEU
: code
= LT
; break;
12934 case GEU
: code
= GT
; break;
12935 default: gcc_unreachable ();
12938 compare_result2
= gen_reg_rtx (CCFPmode
);
12944 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12945 ? gen_tstsfeq_gpr (compare_result2
, rs6000_compare_op0
,
12946 rs6000_compare_op1
)
12947 : gen_cmpsfeq_gpr (compare_result2
, rs6000_compare_op0
,
12948 rs6000_compare_op1
);
12952 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12953 ? gen_tstdfeq_gpr (compare_result2
, rs6000_compare_op0
,
12954 rs6000_compare_op1
)
12955 : gen_cmpdfeq_gpr (compare_result2
, rs6000_compare_op0
,
12956 rs6000_compare_op1
);
12960 cmp
= (flag_finite_math_only
&& !flag_trapping_math
)
12961 ? gen_tsttfeq_gpr (compare_result2
, rs6000_compare_op0
,
12962 rs6000_compare_op1
)
12963 : gen_cmptfeq_gpr (compare_result2
, rs6000_compare_op0
,
12964 rs6000_compare_op1
);
12968 gcc_unreachable ();
12972 /* OR them together. */
12973 or_result
= gen_reg_rtx (CCFPmode
);
12974 cmp
= gen_e500_cr_ior_compare (or_result
, compare_result
,
12976 compare_result
= or_result
;
12981 if (code
== NE
|| code
== LTGT
)
12991 /* Generate XLC-compatible TFmode compare as PARALLEL with extra
12992 CLOBBERs to match cmptf_internal2 pattern. */
12993 if (comp_mode
== CCFPmode
&& TARGET_XL_COMPAT
12994 && GET_MODE (rs6000_compare_op0
) == TFmode
12995 && !TARGET_IEEEQUAD
12996 && TARGET_HARD_FLOAT
&& TARGET_FPRS
&& TARGET_LONG_DOUBLE_128
)
12997 emit_insn (gen_rtx_PARALLEL (VOIDmode
,
12999 gen_rtx_SET (VOIDmode
,
13001 gen_rtx_COMPARE (comp_mode
,
13002 rs6000_compare_op0
,
13003 rs6000_compare_op1
)),
13004 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (DFmode
)),
13005 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (DFmode
)),
13006 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (DFmode
)),
13007 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (DFmode
)),
13008 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (DFmode
)),
13009 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (DFmode
)),
13010 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (DFmode
)),
13011 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (DFmode
)))));
13012 else if (GET_CODE (rs6000_compare_op1
) == UNSPEC
13013 && XINT (rs6000_compare_op1
, 1) == UNSPEC_SP_TEST
)
13015 rtx op1
= XVECEXP (rs6000_compare_op1
, 0, 0);
13016 comp_mode
= CCEQmode
;
13017 compare_result
= gen_reg_rtx (CCEQmode
);
13019 emit_insn (gen_stack_protect_testdi (compare_result
,
13020 rs6000_compare_op0
, op1
));
13022 emit_insn (gen_stack_protect_testsi (compare_result
,
13023 rs6000_compare_op0
, op1
));
13026 emit_insn (gen_rtx_SET (VOIDmode
, compare_result
,
13027 gen_rtx_COMPARE (comp_mode
,
13028 rs6000_compare_op0
,
13029 rs6000_compare_op1
)));
13032 /* Some kinds of FP comparisons need an OR operation;
13033 under flag_finite_math_only we don't bother. */
13034 if (rs6000_compare_fp_p
13035 && !flag_finite_math_only
13036 && !(TARGET_HARD_FLOAT
&& !TARGET_FPRS
)
13037 && (code
== LE
|| code
== GE
13038 || code
== UNEQ
|| code
== LTGT
13039 || code
== UNGT
|| code
== UNLT
))
13041 enum rtx_code or1
, or2
;
13042 rtx or1_rtx
, or2_rtx
, compare2_rtx
;
13043 rtx or_result
= gen_reg_rtx (CCEQmode
);
13047 case LE
: or1
= LT
; or2
= EQ
; break;
13048 case GE
: or1
= GT
; or2
= EQ
; break;
13049 case UNEQ
: or1
= UNORDERED
; or2
= EQ
; break;
13050 case LTGT
: or1
= LT
; or2
= GT
; break;
13051 case UNGT
: or1
= UNORDERED
; or2
= GT
; break;
13052 case UNLT
: or1
= UNORDERED
; or2
= LT
; break;
13053 default: gcc_unreachable ();
13055 validate_condition_mode (or1
, comp_mode
);
13056 validate_condition_mode (or2
, comp_mode
);
13057 or1_rtx
= gen_rtx_fmt_ee (or1
, SImode
, compare_result
, const0_rtx
);
13058 or2_rtx
= gen_rtx_fmt_ee (or2
, SImode
, compare_result
, const0_rtx
);
13059 compare2_rtx
= gen_rtx_COMPARE (CCEQmode
,
13060 gen_rtx_IOR (SImode
, or1_rtx
, or2_rtx
),
13062 emit_insn (gen_rtx_SET (VOIDmode
, or_result
, compare2_rtx
));
13064 compare_result
= or_result
;
13068 validate_condition_mode (code
, GET_MODE (compare_result
));
13070 return gen_rtx_fmt_ee (code
, VOIDmode
, compare_result
, const0_rtx
);
13074 /* Emit the RTL for an sCOND pattern. */
13077 rs6000_emit_sCOND (enum rtx_code code
, rtx result
)
13080 enum machine_mode op_mode
;
13081 enum rtx_code cond_code
;
13083 condition_rtx
= rs6000_generate_compare (code
);
13084 cond_code
= GET_CODE (condition_rtx
);
13086 if (rs6000_compare_fp_p
13087 && !TARGET_FPRS
&& TARGET_HARD_FLOAT
)
13091 PUT_MODE (condition_rtx
, SImode
);
13092 t
= XEXP (condition_rtx
, 0);
13094 gcc_assert (cond_code
== NE
|| cond_code
== EQ
);
13096 if (cond_code
== NE
)
13097 emit_insn (gen_e500_flip_gt_bit (t
, t
));
13099 emit_insn (gen_move_from_CR_gt_bit (result
, t
));
13103 if (cond_code
== NE
13104 || cond_code
== GE
|| cond_code
== LE
13105 || cond_code
== GEU
|| cond_code
== LEU
13106 || cond_code
== ORDERED
|| cond_code
== UNGE
|| cond_code
== UNLE
)
13108 rtx not_result
= gen_reg_rtx (CCEQmode
);
13109 rtx not_op
, rev_cond_rtx
;
13110 enum machine_mode cc_mode
;
13112 cc_mode
= GET_MODE (XEXP (condition_rtx
, 0));
13114 rev_cond_rtx
= gen_rtx_fmt_ee (rs6000_reverse_condition (cc_mode
, cond_code
),
13115 SImode
, XEXP (condition_rtx
, 0), const0_rtx
);
13116 not_op
= gen_rtx_COMPARE (CCEQmode
, rev_cond_rtx
, const0_rtx
);
13117 emit_insn (gen_rtx_SET (VOIDmode
, not_result
, not_op
));
13118 condition_rtx
= gen_rtx_EQ (VOIDmode
, not_result
, const0_rtx
);
13121 op_mode
= GET_MODE (rs6000_compare_op0
);
13122 if (op_mode
== VOIDmode
)
13123 op_mode
= GET_MODE (rs6000_compare_op1
);
13125 if (TARGET_POWERPC64
&& (op_mode
== DImode
|| rs6000_compare_fp_p
))
13127 PUT_MODE (condition_rtx
, DImode
);
13128 convert_move (result
, condition_rtx
, 0);
13132 PUT_MODE (condition_rtx
, SImode
);
13133 emit_insn (gen_rtx_SET (VOIDmode
, result
, condition_rtx
));
13137 /* Emit a branch of kind CODE to location LOC. */
13140 rs6000_emit_cbranch (enum rtx_code code
, rtx loc
)
13142 rtx condition_rtx
, loc_ref
;
13144 condition_rtx
= rs6000_generate_compare (code
);
13145 loc_ref
= gen_rtx_LABEL_REF (VOIDmode
, loc
);
13146 emit_jump_insn (gen_rtx_SET (VOIDmode
, pc_rtx
,
13147 gen_rtx_IF_THEN_ELSE (VOIDmode
, condition_rtx
,
13148 loc_ref
, pc_rtx
)));
13151 /* Return the string to output a conditional branch to LABEL, which is
13152 the operand number of the label, or -1 if the branch is really a
13153 conditional return.
13155 OP is the conditional expression. XEXP (OP, 0) is assumed to be a
13156 condition code register and its mode specifies what kind of
13157 comparison we made.
13159 REVERSED is nonzero if we should reverse the sense of the comparison.
13161 INSN is the insn. */
13164 output_cbranch (rtx op
, const char *label
, int reversed
, rtx insn
)
13166 static char string
[64];
13167 enum rtx_code code
= GET_CODE (op
);
13168 rtx cc_reg
= XEXP (op
, 0);
13169 enum machine_mode mode
= GET_MODE (cc_reg
);
13170 int cc_regno
= REGNO (cc_reg
) - CR0_REGNO
;
13171 int need_longbranch
= label
!= NULL
&& get_attr_length (insn
) == 8;
13172 int really_reversed
= reversed
^ need_longbranch
;
13178 validate_condition_mode (code
, mode
);
13180 /* Work out which way this really branches. We could use
13181 reverse_condition_maybe_unordered here always but this
13182 makes the resulting assembler clearer. */
13183 if (really_reversed
)
13185 /* Reversal of FP compares takes care -- an ordered compare
13186 becomes an unordered compare and vice versa. */
13187 if (mode
== CCFPmode
)
13188 code
= reverse_condition_maybe_unordered (code
);
13190 code
= reverse_condition (code
);
13193 if ((!TARGET_FPRS
&& TARGET_HARD_FLOAT
) && mode
== CCFPmode
)
13195 /* The efscmp/tst* instructions twiddle bit 2, which maps nicely
13200 /* Opposite of GT. */
13209 gcc_unreachable ();
13215 /* Not all of these are actually distinct opcodes, but
13216 we distinguish them for clarity of the resulting assembler. */
13217 case NE
: case LTGT
:
13218 ccode
= "ne"; break;
13219 case EQ
: case UNEQ
:
13220 ccode
= "eq"; break;
13222 ccode
= "ge"; break;
13223 case GT
: case GTU
: case UNGT
:
13224 ccode
= "gt"; break;
13226 ccode
= "le"; break;
13227 case LT
: case LTU
: case UNLT
:
13228 ccode
= "lt"; break;
13229 case UNORDERED
: ccode
= "un"; break;
13230 case ORDERED
: ccode
= "nu"; break;
13231 case UNGE
: ccode
= "nl"; break;
13232 case UNLE
: ccode
= "ng"; break;
13234 gcc_unreachable ();
13237 /* Maybe we have a guess as to how likely the branch is.
13238 The old mnemonics don't have a way to specify this information. */
13240 note
= find_reg_note (insn
, REG_BR_PROB
, NULL_RTX
);
13241 if (note
!= NULL_RTX
)
13243 /* PROB is the difference from 50%. */
13244 int prob
= INTVAL (XEXP (note
, 0)) - REG_BR_PROB_BASE
/ 2;
13246 /* Only hint for highly probable/improbable branches on newer
13247 cpus as static prediction overrides processor dynamic
13248 prediction. For older cpus we may as well always hint, but
13249 assume not taken for branches that are very close to 50% as a
13250 mispredicted taken branch is more expensive than a
13251 mispredicted not-taken branch. */
13252 if (rs6000_always_hint
13253 || (abs (prob
) > REG_BR_PROB_BASE
/ 100 * 48
13254 && br_prob_note_reliable_p (note
)))
13256 if (abs (prob
) > REG_BR_PROB_BASE
/ 20
13257 && ((prob
> 0) ^ need_longbranch
))
13265 s
+= sprintf (s
, "{b%sr|b%slr%s} ", ccode
, ccode
, pred
);
13267 s
+= sprintf (s
, "{b%s|b%s%s} ", ccode
, ccode
, pred
);
13269 /* We need to escape any '%' characters in the reg_names string.
13270 Assume they'd only be the first character.... */
13271 if (reg_names
[cc_regno
+ CR0_REGNO
][0] == '%')
13273 s
+= sprintf (s
, "%s", reg_names
[cc_regno
+ CR0_REGNO
]);
13277 /* If the branch distance was too far, we may have to use an
13278 unconditional branch to go the distance. */
13279 if (need_longbranch
)
13280 s
+= sprintf (s
, ",$+8\n\tb %s", label
);
13282 s
+= sprintf (s
, ",%s", label
);
13288 /* Return the string to flip the GT bit on a CR. */
13290 output_e500_flip_gt_bit (rtx dst
, rtx src
)
13292 static char string
[64];
13295 gcc_assert (GET_CODE (dst
) == REG
&& CR_REGNO_P (REGNO (dst
))
13296 && GET_CODE (src
) == REG
&& CR_REGNO_P (REGNO (src
)));
13299 a
= 4 * (REGNO (dst
) - CR0_REGNO
) + 1;
13300 b
= 4 * (REGNO (src
) - CR0_REGNO
) + 1;
13302 sprintf (string
, "crnot %d,%d", a
, b
);
13306 /* Return insn index for the vector compare instruction for given CODE,
13307 and DEST_MODE, OP_MODE. Return INSN_NOT_AVAILABLE if valid insn is
13311 get_vec_cmp_insn (enum rtx_code code
,
13312 enum machine_mode dest_mode
,
13313 enum machine_mode op_mode
)
13315 if (!TARGET_ALTIVEC
)
13316 return INSN_NOT_AVAILABLE
;
13321 if (dest_mode
== V16QImode
&& op_mode
== V16QImode
)
13322 return UNSPEC_VCMPEQUB
;
13323 if (dest_mode
== V8HImode
&& op_mode
== V8HImode
)
13324 return UNSPEC_VCMPEQUH
;
13325 if (dest_mode
== V4SImode
&& op_mode
== V4SImode
)
13326 return UNSPEC_VCMPEQUW
;
13327 if (dest_mode
== V4SImode
&& op_mode
== V4SFmode
)
13328 return UNSPEC_VCMPEQFP
;
13331 if (dest_mode
== V4SImode
&& op_mode
== V4SFmode
)
13332 return UNSPEC_VCMPGEFP
;
13334 if (dest_mode
== V16QImode
&& op_mode
== V16QImode
)
13335 return UNSPEC_VCMPGTSB
;
13336 if (dest_mode
== V8HImode
&& op_mode
== V8HImode
)
13337 return UNSPEC_VCMPGTSH
;
13338 if (dest_mode
== V4SImode
&& op_mode
== V4SImode
)
13339 return UNSPEC_VCMPGTSW
;
13340 if (dest_mode
== V4SImode
&& op_mode
== V4SFmode
)
13341 return UNSPEC_VCMPGTFP
;
13344 if (dest_mode
== V16QImode
&& op_mode
== V16QImode
)
13345 return UNSPEC_VCMPGTUB
;
13346 if (dest_mode
== V8HImode
&& op_mode
== V8HImode
)
13347 return UNSPEC_VCMPGTUH
;
13348 if (dest_mode
== V4SImode
&& op_mode
== V4SImode
)
13349 return UNSPEC_VCMPGTUW
;
13354 return INSN_NOT_AVAILABLE
;
13357 /* Emit vector compare for operands OP0 and OP1 using code RCODE.
13358 DMODE is expected destination mode. This is a recursive function. */
13361 rs6000_emit_vector_compare (enum rtx_code rcode
,
13363 enum machine_mode dmode
)
13367 enum machine_mode dest_mode
;
13368 enum machine_mode op_mode
= GET_MODE (op1
);
13370 gcc_assert (TARGET_ALTIVEC
);
13371 gcc_assert (GET_MODE (op0
) == GET_MODE (op1
));
13373 /* Floating point vector compare instructions uses destination V4SImode.
13374 Move destination to appropriate mode later. */
13375 if (dmode
== V4SFmode
)
13376 dest_mode
= V4SImode
;
13380 mask
= gen_reg_rtx (dest_mode
);
13381 vec_cmp_insn
= get_vec_cmp_insn (rcode
, dest_mode
, op_mode
);
13383 if (vec_cmp_insn
== INSN_NOT_AVAILABLE
)
13385 bool swap_operands
= false;
13386 bool try_again
= false;
13391 swap_operands
= true;
13396 swap_operands
= true;
13404 /* Invert condition and try again.
13405 e.g., A != B becomes ~(A==B). */
13407 enum rtx_code rev_code
;
13408 enum insn_code nor_code
;
13411 rev_code
= reverse_condition_maybe_unordered (rcode
);
13412 eq_rtx
= rs6000_emit_vector_compare (rev_code
, op0
, op1
,
13415 nor_code
= optab_handler (one_cmpl_optab
, (int)dest_mode
)->insn_code
;
13416 gcc_assert (nor_code
!= CODE_FOR_nothing
);
13417 emit_insn (GEN_FCN (nor_code
) (mask
, eq_rtx
));
13419 if (dmode
!= dest_mode
)
13421 rtx temp
= gen_reg_rtx (dest_mode
);
13422 convert_move (temp
, mask
, 0);
13432 /* Try GT/GTU/LT/LTU OR EQ */
13435 enum insn_code ior_code
;
13436 enum rtx_code new_code
;
13457 gcc_unreachable ();
13460 c_rtx
= rs6000_emit_vector_compare (new_code
,
13461 op0
, op1
, dest_mode
);
13462 eq_rtx
= rs6000_emit_vector_compare (EQ
, op0
, op1
,
13465 ior_code
= optab_handler (ior_optab
, (int)dest_mode
)->insn_code
;
13466 gcc_assert (ior_code
!= CODE_FOR_nothing
);
13467 emit_insn (GEN_FCN (ior_code
) (mask
, c_rtx
, eq_rtx
));
13468 if (dmode
!= dest_mode
)
13470 rtx temp
= gen_reg_rtx (dest_mode
);
13471 convert_move (temp
, mask
, 0);
13478 gcc_unreachable ();
13483 vec_cmp_insn
= get_vec_cmp_insn (rcode
, dest_mode
, op_mode
);
13484 /* You only get two chances. */
13485 gcc_assert (vec_cmp_insn
!= INSN_NOT_AVAILABLE
);
13497 emit_insn (gen_rtx_SET (VOIDmode
, mask
,
13498 gen_rtx_UNSPEC (dest_mode
,
13499 gen_rtvec (2, op0
, op1
),
13501 if (dmode
!= dest_mode
)
13503 rtx temp
= gen_reg_rtx (dest_mode
);
13504 convert_move (temp
, mask
, 0);
13510 /* Return vector select instruction for MODE. Return INSN_NOT_AVAILABLE, if
13511 valid insn doesn exist for given mode. */
13514 get_vsel_insn (enum machine_mode mode
)
13519 return UNSPEC_VSEL4SI
;
13522 return UNSPEC_VSEL4SF
;
13525 return UNSPEC_VSEL8HI
;
13528 return UNSPEC_VSEL16QI
;
13531 return INSN_NOT_AVAILABLE
;
13534 return INSN_NOT_AVAILABLE
;
13537 /* Emit vector select insn where DEST is destination using
13538 operands OP1, OP2 and MASK. */
13541 rs6000_emit_vector_select (rtx dest
, rtx op1
, rtx op2
, rtx mask
)
13544 enum machine_mode dest_mode
= GET_MODE (dest
);
13545 int vsel_insn_index
= get_vsel_insn (GET_MODE (dest
));
13547 temp
= gen_reg_rtx (dest_mode
);
13549 /* For each vector element, select op1 when mask is 1 otherwise
13551 t
= gen_rtx_SET (VOIDmode
, temp
,
13552 gen_rtx_UNSPEC (dest_mode
,
13553 gen_rtvec (3, op2
, op1
, mask
),
13556 emit_move_insn (dest
, temp
);
13560 /* Emit vector conditional expression.
13561 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
13562 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
13565 rs6000_emit_vector_cond_expr (rtx dest
, rtx op1
, rtx op2
,
13566 rtx cond
, rtx cc_op0
, rtx cc_op1
)
13568 enum machine_mode dest_mode
= GET_MODE (dest
);
13569 enum rtx_code rcode
= GET_CODE (cond
);
13572 if (!TARGET_ALTIVEC
)
13575 /* Get the vector mask for the given relational operations. */
13576 mask
= rs6000_emit_vector_compare (rcode
, cc_op0
, cc_op1
, dest_mode
);
13578 rs6000_emit_vector_select (dest
, op1
, op2
, mask
);
13583 /* Emit a conditional move: move TRUE_COND to DEST if OP of the
13584 operands of the last comparison is nonzero/true, FALSE_COND if it
13585 is zero/false. Return 0 if the hardware has no such operation. */
13588 rs6000_emit_cmove (rtx dest
, rtx op
, rtx true_cond
, rtx false_cond
)
13590 enum rtx_code code
= GET_CODE (op
);
13591 rtx op0
= rs6000_compare_op0
;
13592 rtx op1
= rs6000_compare_op1
;
13593 REAL_VALUE_TYPE c1
;
13594 enum machine_mode compare_mode
= GET_MODE (op0
);
13595 enum machine_mode result_mode
= GET_MODE (dest
);
13597 bool is_against_zero
;
13599 /* These modes should always match. */
13600 if (GET_MODE (op1
) != compare_mode
13601 /* In the isel case however, we can use a compare immediate, so
13602 op1 may be a small constant. */
13603 && (!TARGET_ISEL
|| !short_cint_operand (op1
, VOIDmode
)))
13605 if (GET_MODE (true_cond
) != result_mode
)
13607 if (GET_MODE (false_cond
) != result_mode
)
13610 /* First, work out if the hardware can do this at all, or
13611 if it's too slow.... */
13612 if (! rs6000_compare_fp_p
)
13615 return rs6000_emit_int_cmove (dest
, op
, true_cond
, false_cond
);
13618 else if (TARGET_HARD_FLOAT
&& !TARGET_FPRS
13619 && SCALAR_FLOAT_MODE_P (compare_mode
))
13622 is_against_zero
= op1
== CONST0_RTX (compare_mode
);
13624 /* A floating-point subtract might overflow, underflow, or produce
13625 an inexact result, thus changing the floating-point flags, so it
13626 can't be generated if we care about that. It's safe if one side
13627 of the construct is zero, since then no subtract will be
13629 if (SCALAR_FLOAT_MODE_P (compare_mode
)
13630 && flag_trapping_math
&& ! is_against_zero
)
13633 /* Eliminate half of the comparisons by switching operands, this
13634 makes the remaining code simpler. */
13635 if (code
== UNLT
|| code
== UNGT
|| code
== UNORDERED
|| code
== NE
13636 || code
== LTGT
|| code
== LT
|| code
== UNLE
)
13638 code
= reverse_condition_maybe_unordered (code
);
13640 true_cond
= false_cond
;
13644 /* UNEQ and LTGT take four instructions for a comparison with zero,
13645 it'll probably be faster to use a branch here too. */
13646 if (code
== UNEQ
&& HONOR_NANS (compare_mode
))
13649 if (GET_CODE (op1
) == CONST_DOUBLE
)
13650 REAL_VALUE_FROM_CONST_DOUBLE (c1
, op1
);
13652 /* We're going to try to implement comparisons by performing
13653 a subtract, then comparing against zero. Unfortunately,
13654 Inf - Inf is NaN which is not zero, and so if we don't
13655 know that the operand is finite and the comparison
13656 would treat EQ different to UNORDERED, we can't do it. */
13657 if (HONOR_INFINITIES (compare_mode
)
13658 && code
!= GT
&& code
!= UNGE
13659 && (GET_CODE (op1
) != CONST_DOUBLE
|| real_isinf (&c1
))
13660 /* Constructs of the form (a OP b ? a : b) are safe. */
13661 && ((! rtx_equal_p (op0
, false_cond
) && ! rtx_equal_p (op1
, false_cond
))
13662 || (! rtx_equal_p (op0
, true_cond
)
13663 && ! rtx_equal_p (op1
, true_cond
))))
13666 /* At this point we know we can use fsel. */
13668 /* Reduce the comparison to a comparison against zero. */
13669 if (! is_against_zero
)
13671 temp
= gen_reg_rtx (compare_mode
);
13672 emit_insn (gen_rtx_SET (VOIDmode
, temp
,
13673 gen_rtx_MINUS (compare_mode
, op0
, op1
)));
13675 op1
= CONST0_RTX (compare_mode
);
13678 /* If we don't care about NaNs we can reduce some of the comparisons
13679 down to faster ones. */
13680 if (! HONOR_NANS (compare_mode
))
13686 true_cond
= false_cond
;
13699 /* Now, reduce everything down to a GE. */
13706 temp
= gen_reg_rtx (compare_mode
);
13707 emit_insn (gen_rtx_SET (VOIDmode
, temp
, gen_rtx_NEG (compare_mode
, op0
)));
13712 temp
= gen_reg_rtx (compare_mode
);
13713 emit_insn (gen_rtx_SET (VOIDmode
, temp
, gen_rtx_ABS (compare_mode
, op0
)));
13718 temp
= gen_reg_rtx (compare_mode
);
13719 emit_insn (gen_rtx_SET (VOIDmode
, temp
,
13720 gen_rtx_NEG (compare_mode
,
13721 gen_rtx_ABS (compare_mode
, op0
))));
13726 /* a UNGE 0 <-> (a GE 0 || -a UNLT 0) */
13727 temp
= gen_reg_rtx (result_mode
);
13728 emit_insn (gen_rtx_SET (VOIDmode
, temp
,
13729 gen_rtx_IF_THEN_ELSE (result_mode
,
13730 gen_rtx_GE (VOIDmode
,
13732 true_cond
, false_cond
)));
13733 false_cond
= true_cond
;
13736 temp
= gen_reg_rtx (compare_mode
);
13737 emit_insn (gen_rtx_SET (VOIDmode
, temp
, gen_rtx_NEG (compare_mode
, op0
)));
13742 /* a GT 0 <-> (a GE 0 && -a UNLT 0) */
13743 temp
= gen_reg_rtx (result_mode
);
13744 emit_insn (gen_rtx_SET (VOIDmode
, temp
,
13745 gen_rtx_IF_THEN_ELSE (result_mode
,
13746 gen_rtx_GE (VOIDmode
,
13748 true_cond
, false_cond
)));
13749 true_cond
= false_cond
;
13752 temp
= gen_reg_rtx (compare_mode
);
13753 emit_insn (gen_rtx_SET (VOIDmode
, temp
, gen_rtx_NEG (compare_mode
, op0
)));
13758 gcc_unreachable ();
13761 emit_insn (gen_rtx_SET (VOIDmode
, dest
,
13762 gen_rtx_IF_THEN_ELSE (result_mode
,
13763 gen_rtx_GE (VOIDmode
,
13765 true_cond
, false_cond
)));
13769 /* Same as above, but for ints (isel). */
13772 rs6000_emit_int_cmove (rtx dest
, rtx op
, rtx true_cond
, rtx false_cond
)
13774 rtx condition_rtx
, cr
;
13776 /* All isel implementations thus far are 32-bits. */
13777 if (GET_MODE (rs6000_compare_op0
) != SImode
)
13780 /* We still have to do the compare, because isel doesn't do a
13781 compare, it just looks at the CRx bits set by a previous compare
13783 condition_rtx
= rs6000_generate_compare (GET_CODE (op
));
13784 cr
= XEXP (condition_rtx
, 0);
13786 if (GET_MODE (cr
) == CCmode
)
13787 emit_insn (gen_isel_signed (dest
, condition_rtx
,
13788 true_cond
, false_cond
, cr
));
13790 emit_insn (gen_isel_unsigned (dest
, condition_rtx
,
13791 true_cond
, false_cond
, cr
));
13797 output_isel (rtx
*operands
)
13799 enum rtx_code code
;
13801 code
= GET_CODE (operands
[1]);
13802 if (code
== GE
|| code
== GEU
|| code
== LE
|| code
== LEU
|| code
== NE
)
13804 PUT_CODE (operands
[1], reverse_condition (code
));
13805 return "isel %0,%3,%2,%j1";
13808 return "isel %0,%2,%3,%j1";
13812 rs6000_emit_minmax (rtx dest
, enum rtx_code code
, rtx op0
, rtx op1
)
13814 enum machine_mode mode
= GET_MODE (op0
);
13818 if (code
== SMAX
|| code
== SMIN
)
13823 if (code
== SMAX
|| code
== UMAX
)
13824 target
= emit_conditional_move (dest
, c
, op0
, op1
, mode
,
13825 op0
, op1
, mode
, 0);
13827 target
= emit_conditional_move (dest
, c
, op0
, op1
, mode
,
13828 op1
, op0
, mode
, 0);
13829 gcc_assert (target
);
13830 if (target
!= dest
)
13831 emit_move_insn (dest
, target
);
13834 /* Emit instructions to perform a load-reserved/store-conditional operation.
13835 The operation performed is an atomic
13836 (set M (CODE:MODE M OP))
13837 If not NULL, BEFORE is atomically set to M before the operation, and
13838 AFTER is set to M after the operation (that is, (CODE:MODE M OP)).
13839 If SYNC_P then a memory barrier is emitted before the operation.
13840 Either OP or M may be wrapped in a NOT operation. */
13843 rs6000_emit_sync (enum rtx_code code
, enum machine_mode mode
,
13844 rtx m
, rtx op
, rtx before_param
, rtx after_param
,
13847 enum machine_mode used_mode
;
13848 rtx the_op
, set_before
, set_after
, set_atomic
, cc_scratch
, before
, after
;
13851 HOST_WIDE_INT imask
= GET_MODE_MASK (mode
);
13852 rtx shift
= NULL_RTX
;
13855 emit_insn (gen_lwsync ());
13859 /* If this is smaller than SImode, we'll have to use SImode with
13861 if (mode
== QImode
|| mode
== HImode
)
13865 if (MEM_ALIGN (used_m
) >= 32)
13868 if (BYTES_BIG_ENDIAN
)
13869 ishift
= GET_MODE_BITSIZE (SImode
) - GET_MODE_BITSIZE (mode
);
13871 shift
= GEN_INT (ishift
);
13872 used_m
= change_address (used_m
, SImode
, 0);
13876 rtx addrSI
, aligned_addr
;
13877 int shift_mask
= mode
== QImode
? 0x18 : 0x10;
13879 addrSI
= gen_lowpart_common (SImode
,
13880 force_reg (Pmode
, XEXP (used_m
, 0)));
13881 addrSI
= force_reg (SImode
, addrSI
);
13882 shift
= gen_reg_rtx (SImode
);
13884 emit_insn (gen_rlwinm (shift
, addrSI
, GEN_INT (3),
13885 GEN_INT (shift_mask
)));
13886 emit_insn (gen_xorsi3 (shift
, shift
, GEN_INT (shift_mask
)));
13888 aligned_addr
= expand_binop (Pmode
, and_optab
,
13890 GEN_INT (-4), NULL_RTX
,
13891 1, OPTAB_LIB_WIDEN
);
13892 used_m
= change_address (used_m
, SImode
, aligned_addr
);
13893 set_mem_align (used_m
, 32);
13895 /* It's safe to keep the old alias set of USED_M, because
13896 the operation is atomic and only affects the original
13900 if (GET_CODE (op
) == NOT
)
13902 oldop
= lowpart_subreg (SImode
, XEXP (op
, 0), mode
);
13903 oldop
= gen_rtx_NOT (SImode
, oldop
);
13906 oldop
= lowpart_subreg (SImode
, op
, mode
);
13912 newop
= expand_binop (SImode
, and_optab
,
13913 oldop
, GEN_INT (imask
), NULL_RTX
,
13914 1, OPTAB_LIB_WIDEN
);
13915 emit_insn (gen_ashlsi3 (newop
, newop
, shift
));
13918 case NOT
: /* NAND */
13919 newop
= expand_binop (SImode
, ior_optab
,
13920 oldop
, GEN_INT (~imask
), NULL_RTX
,
13921 1, OPTAB_LIB_WIDEN
);
13922 emit_insn (gen_rotlsi3 (newop
, newop
, shift
));
13926 newop
= expand_binop (SImode
, ior_optab
,
13927 oldop
, GEN_INT (~imask
), NULL_RTX
,
13928 1, OPTAB_LIB_WIDEN
);
13929 emit_insn (gen_rotlsi3 (newop
, newop
, shift
));
13937 newop
= expand_binop (SImode
, and_optab
,
13938 oldop
, GEN_INT (imask
), NULL_RTX
,
13939 1, OPTAB_LIB_WIDEN
);
13940 emit_insn (gen_ashlsi3 (newop
, newop
, shift
));
13942 mask
= gen_reg_rtx (SImode
);
13943 emit_move_insn (mask
, GEN_INT (imask
));
13944 emit_insn (gen_ashlsi3 (mask
, mask
, shift
));
13947 newop
= gen_rtx_PLUS (SImode
, m
, newop
);
13949 newop
= gen_rtx_MINUS (SImode
, m
, newop
);
13950 newop
= gen_rtx_AND (SImode
, newop
, mask
);
13951 newop
= gen_rtx_IOR (SImode
, newop
,
13952 gen_rtx_AND (SImode
,
13953 gen_rtx_NOT (SImode
, mask
),
13959 gcc_unreachable ();
13963 used_mode
= SImode
;
13964 before
= gen_reg_rtx (used_mode
);
13965 after
= gen_reg_rtx (used_mode
);
13970 before
= before_param
;
13971 after
= after_param
;
13973 if (before
== NULL_RTX
)
13974 before
= gen_reg_rtx (used_mode
);
13975 if (after
== NULL_RTX
)
13976 after
= gen_reg_rtx (used_mode
);
13979 if ((code
== PLUS
|| code
== MINUS
)
13980 && used_mode
!= mode
)
13981 the_op
= op
; /* Computed above. */
13982 else if (GET_CODE (op
) == NOT
&& GET_CODE (m
) != NOT
)
13983 the_op
= gen_rtx_fmt_ee (code
, used_mode
, op
, m
);
13984 else if (code
== NOT
)
13985 the_op
= gen_rtx_fmt_ee (IOR
, used_mode
,
13986 gen_rtx_NOT (used_mode
, m
),
13987 gen_rtx_NOT (used_mode
, op
));
13989 the_op
= gen_rtx_fmt_ee (code
, used_mode
, m
, op
);
13991 set_after
= gen_rtx_SET (VOIDmode
, after
, the_op
);
13992 set_before
= gen_rtx_SET (VOIDmode
, before
, used_m
);
13993 set_atomic
= gen_rtx_SET (VOIDmode
, used_m
,
13994 gen_rtx_UNSPEC (used_mode
,
13995 gen_rtvec (1, the_op
),
13997 cc_scratch
= gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (CCmode
));
13999 if ((code
== PLUS
|| code
== MINUS
) && used_mode
!= mode
)
14000 vec
= gen_rtvec (5, set_after
, set_before
, set_atomic
, cc_scratch
,
14001 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_SCRATCH (SImode
)));
14003 vec
= gen_rtvec (4, set_after
, set_before
, set_atomic
, cc_scratch
);
14004 emit_insn (gen_rtx_PARALLEL (VOIDmode
, vec
));
14006 /* Shift and mask the return values properly. */
14007 if (used_mode
!= mode
&& before_param
)
14009 emit_insn (gen_lshrsi3 (before
, before
, shift
));
14010 convert_move (before_param
, before
, 1);
14013 if (used_mode
!= mode
&& after_param
)
14015 emit_insn (gen_lshrsi3 (after
, after
, shift
));
14016 convert_move (after_param
, after
, 1);
14019 /* The previous sequence will end with a branch that's dependent on
14020 the conditional store, so placing an isync will ensure that no
14021 other instructions (especially, no load or store instructions)
14022 can start before the atomic operation completes. */
14024 emit_insn (gen_isync ());
14027 /* A subroutine of the atomic operation splitters. Jump to LABEL if
14028 COND is true. Mark the jump as unlikely to be taken. */
14031 emit_unlikely_jump (rtx cond
, rtx label
)
14033 rtx very_unlikely
= GEN_INT (REG_BR_PROB_BASE
/ 100 - 1);
14036 x
= gen_rtx_IF_THEN_ELSE (VOIDmode
, cond
, label
, pc_rtx
);
14037 x
= emit_jump_insn (gen_rtx_SET (VOIDmode
, pc_rtx
, x
));
14038 REG_NOTES (x
) = gen_rtx_EXPR_LIST (REG_BR_PROB
, very_unlikely
, NULL_RTX
);
14041 /* A subroutine of the atomic operation splitters. Emit a load-locked
14042 instruction in MODE. */
14045 emit_load_locked (enum machine_mode mode
, rtx reg
, rtx mem
)
14047 rtx (*fn
) (rtx
, rtx
) = NULL
;
14048 if (mode
== SImode
)
14049 fn
= gen_load_locked_si
;
14050 else if (mode
== DImode
)
14051 fn
= gen_load_locked_di
;
14052 emit_insn (fn (reg
, mem
));
14055 /* A subroutine of the atomic operation splitters. Emit a store-conditional
14056 instruction in MODE. */
14059 emit_store_conditional (enum machine_mode mode
, rtx res
, rtx mem
, rtx val
)
14061 rtx (*fn
) (rtx
, rtx
, rtx
) = NULL
;
14062 if (mode
== SImode
)
14063 fn
= gen_store_conditional_si
;
14064 else if (mode
== DImode
)
14065 fn
= gen_store_conditional_di
;
14067 /* Emit sync before stwcx. to address PPC405 Erratum. */
14068 if (PPC405_ERRATUM77
)
14069 emit_insn (gen_memory_barrier ());
14071 emit_insn (fn (res
, mem
, val
));
14074 /* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
14075 to perform. MEM is the memory on which to operate. VAL is the second
14076 operand of the binary operator. BEFORE and AFTER are optional locations to
14077 return the value of MEM either before of after the operation. SCRATCH is
14078 a scratch register. */
14081 rs6000_split_atomic_op (enum rtx_code code
, rtx mem
, rtx val
,
14082 rtx before
, rtx after
, rtx scratch
)
14084 enum machine_mode mode
= GET_MODE (mem
);
14085 rtx label
, x
, cond
= gen_rtx_REG (CCmode
, CR0_REGNO
);
14087 emit_insn (gen_lwsync ());
14089 label
= gen_label_rtx ();
14090 emit_label (label
);
14091 label
= gen_rtx_LABEL_REF (VOIDmode
, label
);
14093 if (before
== NULL_RTX
)
14095 emit_load_locked (mode
, before
, mem
);
14098 x
= gen_rtx_IOR (mode
,
14099 gen_rtx_NOT (mode
, before
),
14100 gen_rtx_NOT (mode
, val
));
14101 else if (code
== AND
)
14102 x
= gen_rtx_UNSPEC (mode
, gen_rtvec (2, before
, val
), UNSPEC_AND
);
14104 x
= gen_rtx_fmt_ee (code
, mode
, before
, val
);
14106 if (after
!= NULL_RTX
)
14107 emit_insn (gen_rtx_SET (VOIDmode
, after
, copy_rtx (x
)));
14108 emit_insn (gen_rtx_SET (VOIDmode
, scratch
, x
));
14110 emit_store_conditional (mode
, cond
, mem
, scratch
);
14112 x
= gen_rtx_NE (VOIDmode
, cond
, const0_rtx
);
14113 emit_unlikely_jump (x
, label
);
14115 emit_insn (gen_isync ());
14118 /* Expand an atomic compare and swap operation. MEM is the memory on which
14119 to operate. OLDVAL is the old value to be compared. NEWVAL is the new
14120 value to be stored. SCRATCH is a scratch GPR. */
14123 rs6000_split_compare_and_swap (rtx retval
, rtx mem
, rtx oldval
, rtx newval
,
14126 enum machine_mode mode
= GET_MODE (mem
);
14127 rtx label1
, label2
, x
, cond
= gen_rtx_REG (CCmode
, CR0_REGNO
);
14129 emit_insn (gen_lwsync ());
14131 label1
= gen_rtx_LABEL_REF (VOIDmode
, gen_label_rtx ());
14132 label2
= gen_rtx_LABEL_REF (VOIDmode
, gen_label_rtx ());
14133 emit_label (XEXP (label1
, 0));
14135 emit_load_locked (mode
, retval
, mem
);
14137 x
= gen_rtx_COMPARE (CCmode
, retval
, oldval
);
14138 emit_insn (gen_rtx_SET (VOIDmode
, cond
, x
));
14140 x
= gen_rtx_NE (VOIDmode
, cond
, const0_rtx
);
14141 emit_unlikely_jump (x
, label2
);
14143 emit_move_insn (scratch
, newval
);
14144 emit_store_conditional (mode
, cond
, mem
, scratch
);
14146 x
= gen_rtx_NE (VOIDmode
, cond
, const0_rtx
);
14147 emit_unlikely_jump (x
, label1
);
14149 emit_insn (gen_isync ());
14150 emit_label (XEXP (label2
, 0));
14153 /* Expand an atomic test and set operation. MEM is the memory on which
14154 to operate. VAL is the value set. SCRATCH is a scratch GPR. */
14157 rs6000_split_lock_test_and_set (rtx retval
, rtx mem
, rtx val
, rtx scratch
)
14159 enum machine_mode mode
= GET_MODE (mem
);
14160 rtx label
, x
, cond
= gen_rtx_REG (CCmode
, CR0_REGNO
);
14162 label
= gen_rtx_LABEL_REF (VOIDmode
, gen_label_rtx ());
14163 emit_label (XEXP (label
, 0));
14165 emit_load_locked (mode
, retval
, mem
);
14166 emit_move_insn (scratch
, val
);
14167 emit_store_conditional (mode
, cond
, mem
, scratch
);
14169 x
= gen_rtx_NE (VOIDmode
, cond
, const0_rtx
);
14170 emit_unlikely_jump (x
, label
);
14172 emit_insn (gen_isync ());
14176 rs6000_expand_compare_and_swapqhi (rtx dst
, rtx mem
, rtx oldval
, rtx newval
)
14178 enum machine_mode mode
= GET_MODE (mem
);
14179 rtx addrSI
, align
, wdst
, shift
, mask
;
14180 HOST_WIDE_INT shift_mask
= mode
== QImode
? 0x18 : 0x10;
14181 HOST_WIDE_INT imask
= GET_MODE_MASK (mode
);
14183 /* Shift amount for subword relative to aligned word. */
14184 addrSI
= force_reg (GET_MODE (XEXP (mem
, 0)), XEXP (mem
, 0));
14185 addrSI
= force_reg (SImode
, gen_lowpart_common (SImode
, addrSI
));
14186 shift
= gen_reg_rtx (SImode
);
14187 emit_insn (gen_rlwinm (shift
, addrSI
, GEN_INT (3),
14188 GEN_INT (shift_mask
)));
14189 emit_insn (gen_xorsi3 (shift
, shift
, GEN_INT (shift_mask
)));
14191 /* Shift and mask old value into position within word. */
14192 oldval
= convert_modes (SImode
, mode
, oldval
, 1);
14193 oldval
= expand_binop (SImode
, and_optab
,
14194 oldval
, GEN_INT (imask
), NULL_RTX
,
14195 1, OPTAB_LIB_WIDEN
);
14196 emit_insn (gen_ashlsi3 (oldval
, oldval
, shift
));
14198 /* Shift and mask new value into position within word. */
14199 newval
= convert_modes (SImode
, mode
, newval
, 1);
14200 newval
= expand_binop (SImode
, and_optab
,
14201 newval
, GEN_INT (imask
), NULL_RTX
,
14202 1, OPTAB_LIB_WIDEN
);
14203 emit_insn (gen_ashlsi3 (newval
, newval
, shift
));
14205 /* Mask for insertion. */
14206 mask
= gen_reg_rtx (SImode
);
14207 emit_move_insn (mask
, GEN_INT (imask
));
14208 emit_insn (gen_ashlsi3 (mask
, mask
, shift
));
14210 /* Address of aligned word containing subword. */
14211 align
= expand_binop (Pmode
, and_optab
, XEXP (mem
, 0), GEN_INT (-4),
14212 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
14213 mem
= change_address (mem
, SImode
, align
);
14214 set_mem_align (mem
, 32);
14215 MEM_VOLATILE_P (mem
) = 1;
14217 wdst
= gen_reg_rtx (SImode
);
14218 emit_insn (gen_sync_compare_and_swapqhi_internal (wdst
, mask
,
14219 oldval
, newval
, mem
));
14221 /* Shift the result back. */
14222 emit_insn (gen_lshrsi3 (wdst
, wdst
, shift
));
14224 emit_move_insn (dst
, gen_lowpart (mode
, wdst
));
14228 rs6000_split_compare_and_swapqhi (rtx dest
, rtx mask
,
14229 rtx oldval
, rtx newval
, rtx mem
,
14232 rtx label1
, label2
, x
, cond
= gen_rtx_REG (CCmode
, CR0_REGNO
);
14234 emit_insn (gen_lwsync ());
14235 label1
= gen_rtx_LABEL_REF (VOIDmode
, gen_label_rtx ());
14236 label2
= gen_rtx_LABEL_REF (VOIDmode
, gen_label_rtx ());
14237 emit_label (XEXP (label1
, 0));
14239 emit_load_locked (SImode
, scratch
, mem
);
14241 /* Mask subword within loaded value for comparison with oldval.
14242 Use UNSPEC_AND to avoid clobber.*/
14243 emit_insn (gen_rtx_SET (SImode
, dest
,
14244 gen_rtx_UNSPEC (SImode
,
14245 gen_rtvec (2, scratch
, mask
),
14248 x
= gen_rtx_COMPARE (CCmode
, dest
, oldval
);
14249 emit_insn (gen_rtx_SET (VOIDmode
, cond
, x
));
14251 x
= gen_rtx_NE (VOIDmode
, cond
, const0_rtx
);
14252 emit_unlikely_jump (x
, label2
);
14254 /* Clear subword within loaded value for insertion of new value. */
14255 emit_insn (gen_rtx_SET (SImode
, scratch
,
14256 gen_rtx_AND (SImode
,
14257 gen_rtx_NOT (SImode
, mask
), scratch
)));
14258 emit_insn (gen_iorsi3 (scratch
, scratch
, newval
));
14259 emit_store_conditional (SImode
, cond
, mem
, scratch
);
14261 x
= gen_rtx_NE (VOIDmode
, cond
, const0_rtx
);
14262 emit_unlikely_jump (x
, label1
);
14264 emit_insn (gen_isync ());
14265 emit_label (XEXP (label2
, 0));
14269 /* Emit instructions to move SRC to DST. Called by splitters for
14270 multi-register moves. It will emit at most one instruction for
14271 each register that is accessed; that is, it won't emit li/lis pairs
14272 (or equivalent for 64-bit code). One of SRC or DST must be a hard
14276 rs6000_split_multireg_move (rtx dst
, rtx src
)
14278 /* The register number of the first register being moved. */
14280 /* The mode that is to be moved. */
14281 enum machine_mode mode
;
14282 /* The mode that the move is being done in, and its size. */
14283 enum machine_mode reg_mode
;
14285 /* The number of registers that will be moved. */
14288 reg
= REG_P (dst
) ? REGNO (dst
) : REGNO (src
);
14289 mode
= GET_MODE (dst
);
14290 nregs
= hard_regno_nregs
[reg
][mode
];
14291 if (FP_REGNO_P (reg
))
14292 reg_mode
= DECIMAL_FLOAT_MODE_P (mode
) ? DDmode
:
14293 ((TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
) ? DFmode
: SFmode
);
14294 else if (ALTIVEC_REGNO_P (reg
))
14295 reg_mode
= V16QImode
;
14296 else if (TARGET_E500_DOUBLE
&& mode
== TFmode
)
14299 reg_mode
= word_mode
;
14300 reg_mode_size
= GET_MODE_SIZE (reg_mode
);
14302 gcc_assert (reg_mode_size
* nregs
== GET_MODE_SIZE (mode
));
14304 if (REG_P (src
) && REG_P (dst
) && (REGNO (src
) < REGNO (dst
)))
14306 /* Move register range backwards, if we might have destructive
14309 for (i
= nregs
- 1; i
>= 0; i
--)
14310 emit_insn (gen_rtx_SET (VOIDmode
,
14311 simplify_gen_subreg (reg_mode
, dst
, mode
,
14312 i
* reg_mode_size
),
14313 simplify_gen_subreg (reg_mode
, src
, mode
,
14314 i
* reg_mode_size
)));
14320 bool used_update
= false;
14322 if (MEM_P (src
) && INT_REGNO_P (reg
))
14326 if (GET_CODE (XEXP (src
, 0)) == PRE_INC
14327 || GET_CODE (XEXP (src
, 0)) == PRE_DEC
)
14330 breg
= XEXP (XEXP (src
, 0), 0);
14331 delta_rtx
= (GET_CODE (XEXP (src
, 0)) == PRE_INC
14332 ? GEN_INT (GET_MODE_SIZE (GET_MODE (src
)))
14333 : GEN_INT (-GET_MODE_SIZE (GET_MODE (src
))));
14334 emit_insn (TARGET_32BIT
14335 ? gen_addsi3 (breg
, breg
, delta_rtx
)
14336 : gen_adddi3 (breg
, breg
, delta_rtx
));
14337 src
= replace_equiv_address (src
, breg
);
14339 else if (! rs6000_offsettable_memref_p (src
))
14342 basereg
= gen_rtx_REG (Pmode
, reg
);
14343 emit_insn (gen_rtx_SET (VOIDmode
, basereg
, XEXP (src
, 0)));
14344 src
= replace_equiv_address (src
, basereg
);
14347 breg
= XEXP (src
, 0);
14348 if (GET_CODE (breg
) == PLUS
|| GET_CODE (breg
) == LO_SUM
)
14349 breg
= XEXP (breg
, 0);
14351 /* If the base register we are using to address memory is
14352 also a destination reg, then change that register last. */
14354 && REGNO (breg
) >= REGNO (dst
)
14355 && REGNO (breg
) < REGNO (dst
) + nregs
)
14356 j
= REGNO (breg
) - REGNO (dst
);
14359 if (GET_CODE (dst
) == MEM
&& INT_REGNO_P (reg
))
14363 if (GET_CODE (XEXP (dst
, 0)) == PRE_INC
14364 || GET_CODE (XEXP (dst
, 0)) == PRE_DEC
)
14367 breg
= XEXP (XEXP (dst
, 0), 0);
14368 delta_rtx
= (GET_CODE (XEXP (dst
, 0)) == PRE_INC
14369 ? GEN_INT (GET_MODE_SIZE (GET_MODE (dst
)))
14370 : GEN_INT (-GET_MODE_SIZE (GET_MODE (dst
))));
14372 /* We have to update the breg before doing the store.
14373 Use store with update, if available. */
14377 rtx nsrc
= simplify_gen_subreg (reg_mode
, src
, mode
, 0);
14378 emit_insn (TARGET_32BIT
14379 ? (TARGET_POWERPC64
14380 ? gen_movdi_si_update (breg
, breg
, delta_rtx
, nsrc
)
14381 : gen_movsi_update (breg
, breg
, delta_rtx
, nsrc
))
14382 : gen_movdi_di_update (breg
, breg
, delta_rtx
, nsrc
));
14383 used_update
= true;
14386 emit_insn (TARGET_32BIT
14387 ? gen_addsi3 (breg
, breg
, delta_rtx
)
14388 : gen_adddi3 (breg
, breg
, delta_rtx
));
14389 dst
= replace_equiv_address (dst
, breg
);
14392 gcc_assert (rs6000_offsettable_memref_p (dst
));
14395 for (i
= 0; i
< nregs
; i
++)
14397 /* Calculate index to next subword. */
14402 /* If compiler already emitted move of first word by
14403 store with update, no need to do anything. */
14404 if (j
== 0 && used_update
)
14407 emit_insn (gen_rtx_SET (VOIDmode
,
14408 simplify_gen_subreg (reg_mode
, dst
, mode
,
14409 j
* reg_mode_size
),
14410 simplify_gen_subreg (reg_mode
, src
, mode
,
14411 j
* reg_mode_size
)));
14417 /* This page contains routines that are used to determine what the
14418 function prologue and epilogue code will do and write them out. */
14420 /* Return the first fixed-point register that is required to be
14421 saved. 32 if none. */
14424 first_reg_to_save (void)
14428 /* Find lowest numbered live register. */
14429 for (first_reg
= 13; first_reg
<= 31; first_reg
++)
14430 if (df_regs_ever_live_p (first_reg
)
14431 && (! call_used_regs
[first_reg
]
14432 || (first_reg
== RS6000_PIC_OFFSET_TABLE_REGNUM
14433 && ((DEFAULT_ABI
== ABI_V4
&& flag_pic
!= 0)
14434 || (DEFAULT_ABI
== ABI_DARWIN
&& flag_pic
)
14435 || (TARGET_TOC
&& TARGET_MINIMAL_TOC
)))))
14440 && crtl
->uses_pic_offset_table
14441 && first_reg
> RS6000_PIC_OFFSET_TABLE_REGNUM
)
14442 return RS6000_PIC_OFFSET_TABLE_REGNUM
;
14448 /* Similar, for FP regs. */
14451 first_fp_reg_to_save (void)
14455 /* Find lowest numbered live register. */
14456 for (first_reg
= 14 + 32; first_reg
<= 63; first_reg
++)
14457 if (df_regs_ever_live_p (first_reg
))
14463 /* Similar, for AltiVec regs. */
14466 first_altivec_reg_to_save (void)
14470 /* Stack frame remains as is unless we are in AltiVec ABI. */
14471 if (! TARGET_ALTIVEC_ABI
)
14472 return LAST_ALTIVEC_REGNO
+ 1;
14474 /* On Darwin, the unwind routines are compiled without
14475 TARGET_ALTIVEC, and use save_world to save/restore the
14476 altivec registers when necessary. */
14477 if (DEFAULT_ABI
== ABI_DARWIN
&& crtl
->calls_eh_return
14478 && ! TARGET_ALTIVEC
)
14479 return FIRST_ALTIVEC_REGNO
+ 20;
14481 /* Find lowest numbered live register. */
14482 for (i
= FIRST_ALTIVEC_REGNO
+ 20; i
<= LAST_ALTIVEC_REGNO
; ++i
)
14483 if (df_regs_ever_live_p (i
))
14489 /* Return a 32-bit mask of the AltiVec registers we need to set in
14490 VRSAVE. Bit n of the return value is 1 if Vn is live. The MSB in
14491 the 32-bit word is 0. */
14493 static unsigned int
14494 compute_vrsave_mask (void)
14496 unsigned int i
, mask
= 0;
14498 /* On Darwin, the unwind routines are compiled without
14499 TARGET_ALTIVEC, and use save_world to save/restore the
14500 call-saved altivec registers when necessary. */
14501 if (DEFAULT_ABI
== ABI_DARWIN
&& crtl
->calls_eh_return
14502 && ! TARGET_ALTIVEC
)
14505 /* First, find out if we use _any_ altivec registers. */
14506 for (i
= FIRST_ALTIVEC_REGNO
; i
<= LAST_ALTIVEC_REGNO
; ++i
)
14507 if (df_regs_ever_live_p (i
))
14508 mask
|= ALTIVEC_REG_BIT (i
);
14513 /* Next, remove the argument registers from the set. These must
14514 be in the VRSAVE mask set by the caller, so we don't need to add
14515 them in again. More importantly, the mask we compute here is
14516 used to generate CLOBBERs in the set_vrsave insn, and we do not
14517 wish the argument registers to die. */
14518 for (i
= crtl
->args
.info
.vregno
- 1; i
>= ALTIVEC_ARG_MIN_REG
; --i
)
14519 mask
&= ~ALTIVEC_REG_BIT (i
);
14521 /* Similarly, remove the return value from the set. */
14524 diddle_return_value (is_altivec_return_reg
, &yes
);
14526 mask
&= ~ALTIVEC_REG_BIT (ALTIVEC_ARG_RETURN
);
14532 /* For a very restricted set of circumstances, we can cut down the
14533 size of prologues/epilogues by calling our own save/restore-the-world
14537 compute_save_world_info (rs6000_stack_t
*info_ptr
)
14539 info_ptr
->world_save_p
= 1;
14540 info_ptr
->world_save_p
14541 = (WORLD_SAVE_P (info_ptr
)
14542 && DEFAULT_ABI
== ABI_DARWIN
14543 && ! (cfun
->calls_setjmp
&& flag_exceptions
)
14544 && info_ptr
->first_fp_reg_save
== FIRST_SAVED_FP_REGNO
14545 && info_ptr
->first_gp_reg_save
== FIRST_SAVED_GP_REGNO
14546 && info_ptr
->first_altivec_reg_save
== FIRST_SAVED_ALTIVEC_REGNO
14547 && info_ptr
->cr_save_p
);
14549 /* This will not work in conjunction with sibcalls. Make sure there
14550 are none. (This check is expensive, but seldom executed.) */
14551 if (WORLD_SAVE_P (info_ptr
))
14554 for ( insn
= get_last_insn_anywhere (); insn
; insn
= PREV_INSN (insn
))
14555 if ( GET_CODE (insn
) == CALL_INSN
14556 && SIBLING_CALL_P (insn
))
14558 info_ptr
->world_save_p
= 0;
14563 if (WORLD_SAVE_P (info_ptr
))
14565 /* Even if we're not touching VRsave, make sure there's room on the
14566 stack for it, if it looks like we're calling SAVE_WORLD, which
14567 will attempt to save it. */
14568 info_ptr
->vrsave_size
= 4;
14570 /* If we are going to save the world, we need to save the link register too. */
14571 info_ptr
->lr_save_p
= 1;
14573 /* "Save" the VRsave register too if we're saving the world. */
14574 if (info_ptr
->vrsave_mask
== 0)
14575 info_ptr
->vrsave_mask
= compute_vrsave_mask ();
14577 /* Because the Darwin register save/restore routines only handle
14578 F14 .. F31 and V20 .. V31 as per the ABI, perform a consistency
14580 gcc_assert (info_ptr
->first_fp_reg_save
>= FIRST_SAVED_FP_REGNO
14581 && (info_ptr
->first_altivec_reg_save
14582 >= FIRST_SAVED_ALTIVEC_REGNO
));
14589 is_altivec_return_reg (rtx reg
, void *xyes
)
14591 bool *yes
= (bool *) xyes
;
14592 if (REGNO (reg
) == ALTIVEC_ARG_RETURN
)
14597 /* Calculate the stack information for the current function. This is
14598 complicated by having two separate calling sequences, the AIX calling
14599 sequence and the V.4 calling sequence.
14601 AIX (and Darwin/Mac OS X) stack frames look like:
14603 SP----> +---------------------------------------+
14604 | back chain to caller | 0 0
14605 +---------------------------------------+
14606 | saved CR | 4 8 (8-11)
14607 +---------------------------------------+
14609 +---------------------------------------+
14610 | reserved for compilers | 12 24
14611 +---------------------------------------+
14612 | reserved for binders | 16 32
14613 +---------------------------------------+
14614 | saved TOC pointer | 20 40
14615 +---------------------------------------+
14616 | Parameter save area (P) | 24 48
14617 +---------------------------------------+
14618 | Alloca space (A) | 24+P etc.
14619 +---------------------------------------+
14620 | Local variable space (L) | 24+P+A
14621 +---------------------------------------+
14622 | Float/int conversion temporary (X) | 24+P+A+L
14623 +---------------------------------------+
14624 | Save area for AltiVec registers (W) | 24+P+A+L+X
14625 +---------------------------------------+
14626 | AltiVec alignment padding (Y) | 24+P+A+L+X+W
14627 +---------------------------------------+
14628 | Save area for VRSAVE register (Z) | 24+P+A+L+X+W+Y
14629 +---------------------------------------+
14630 | Save area for GP registers (G) | 24+P+A+X+L+X+W+Y+Z
14631 +---------------------------------------+
14632 | Save area for FP registers (F) | 24+P+A+X+L+X+W+Y+Z+G
14633 +---------------------------------------+
14634 old SP->| back chain to caller's caller |
14635 +---------------------------------------+
14637 The required alignment for AIX configurations is two words (i.e., 8
14641 V.4 stack frames look like:
14643 SP----> +---------------------------------------+
14644 | back chain to caller | 0
14645 +---------------------------------------+
14646 | caller's saved LR | 4
14647 +---------------------------------------+
14648 | Parameter save area (P) | 8
14649 +---------------------------------------+
14650 | Alloca space (A) | 8+P
14651 +---------------------------------------+
14652 | Varargs save area (V) | 8+P+A
14653 +---------------------------------------+
14654 | Local variable space (L) | 8+P+A+V
14655 +---------------------------------------+
14656 | Float/int conversion temporary (X) | 8+P+A+V+L
14657 +---------------------------------------+
14658 | Save area for AltiVec registers (W) | 8+P+A+V+L+X
14659 +---------------------------------------+
14660 | AltiVec alignment padding (Y) | 8+P+A+V+L+X+W
14661 +---------------------------------------+
14662 | Save area for VRSAVE register (Z) | 8+P+A+V+L+X+W+Y
14663 +---------------------------------------+
14664 | SPE: area for 64-bit GP registers |
14665 +---------------------------------------+
14666 | SPE alignment padding |
14667 +---------------------------------------+
14668 | saved CR (C) | 8+P+A+V+L+X+W+Y+Z
14669 +---------------------------------------+
14670 | Save area for GP registers (G) | 8+P+A+V+L+X+W+Y+Z+C
14671 +---------------------------------------+
14672 | Save area for FP registers (F) | 8+P+A+V+L+X+W+Y+Z+C+G
14673 +---------------------------------------+
14674 old SP->| back chain to caller's caller |
14675 +---------------------------------------+
14677 The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is
14678 given. (But note below and in sysv4.h that we require only 8 and
14679 may round up the size of our stack frame anyways. The historical
14680 reason is early versions of powerpc-linux which didn't properly
14681 align the stack at program startup. A happy side-effect is that
14682 -mno-eabi libraries can be used with -meabi programs.)
14684 The EABI configuration defaults to the V.4 layout. However,
14685 the stack alignment requirements may differ. If -mno-eabi is not
14686 given, the required stack alignment is 8 bytes; if -mno-eabi is
14687 given, the required alignment is 16 bytes. (But see V.4 comment
14690 #ifndef ABI_STACK_BOUNDARY
14691 #define ABI_STACK_BOUNDARY STACK_BOUNDARY
14694 static rs6000_stack_t
*
14695 rs6000_stack_info (void)
14697 static rs6000_stack_t info
;
14698 rs6000_stack_t
*info_ptr
= &info
;
14699 int reg_size
= TARGET_32BIT
? 4 : 8;
14703 HOST_WIDE_INT non_fixed_size
;
14705 memset (&info
, 0, sizeof (info
));
14709 /* Cache value so we don't rescan instruction chain over and over. */
14710 if (cfun
->machine
->insn_chain_scanned_p
== 0)
14711 cfun
->machine
->insn_chain_scanned_p
14712 = spe_func_has_64bit_regs_p () + 1;
14713 info_ptr
->spe_64bit_regs_used
= cfun
->machine
->insn_chain_scanned_p
- 1;
14716 /* Select which calling sequence. */
14717 info_ptr
->abi
= DEFAULT_ABI
;
14719 /* Calculate which registers need to be saved & save area size. */
14720 info_ptr
->first_gp_reg_save
= first_reg_to_save ();
14721 /* Assume that we will have to save RS6000_PIC_OFFSET_TABLE_REGNUM,
14722 even if it currently looks like we won't. Reload may need it to
14723 get at a constant; if so, it will have already created a constant
14724 pool entry for it. */
14725 if (((TARGET_TOC
&& TARGET_MINIMAL_TOC
)
14726 || (flag_pic
== 1 && DEFAULT_ABI
== ABI_V4
)
14727 || (flag_pic
&& DEFAULT_ABI
== ABI_DARWIN
))
14728 && crtl
->uses_const_pool
14729 && info_ptr
->first_gp_reg_save
> RS6000_PIC_OFFSET_TABLE_REGNUM
)
14730 first_gp
= RS6000_PIC_OFFSET_TABLE_REGNUM
;
14732 first_gp
= info_ptr
->first_gp_reg_save
;
14734 info_ptr
->gp_size
= reg_size
* (32 - first_gp
);
14736 /* For the SPE, we have an additional upper 32-bits on each GPR.
14737 Ideally we should save the entire 64-bits only when the upper
14738 half is used in SIMD instructions. Since we only record
14739 registers live (not the size they are used in), this proves
14740 difficult because we'd have to traverse the instruction chain at
14741 the right time, taking reload into account. This is a real pain,
14742 so we opt to save the GPRs in 64-bits always if but one register
14743 gets used in 64-bits. Otherwise, all the registers in the frame
14744 get saved in 32-bits.
14746 So... since when we save all GPRs (except the SP) in 64-bits, the
14747 traditional GP save area will be empty. */
14748 if (TARGET_SPE_ABI
&& info_ptr
->spe_64bit_regs_used
!= 0)
14749 info_ptr
->gp_size
= 0;
14751 info_ptr
->first_fp_reg_save
= first_fp_reg_to_save ();
14752 info_ptr
->fp_size
= 8 * (64 - info_ptr
->first_fp_reg_save
);
14754 info_ptr
->first_altivec_reg_save
= first_altivec_reg_to_save ();
14755 info_ptr
->altivec_size
= 16 * (LAST_ALTIVEC_REGNO
+ 1
14756 - info_ptr
->first_altivec_reg_save
);
14758 /* Does this function call anything? */
14759 info_ptr
->calls_p
= (! current_function_is_leaf
14760 || cfun
->machine
->ra_needs_full_frame
);
14762 /* Determine if we need to save the link register. */
14763 if ((DEFAULT_ABI
== ABI_AIX
14765 && !TARGET_PROFILE_KERNEL
)
14766 #ifdef TARGET_RELOCATABLE
14767 || (TARGET_RELOCATABLE
&& (get_pool_size () != 0))
14769 || (info_ptr
->first_fp_reg_save
!= 64
14770 && !FP_SAVE_INLINE (info_ptr
->first_fp_reg_save
))
14771 || (DEFAULT_ABI
== ABI_V4
&& cfun
->calls_alloca
)
14772 || info_ptr
->calls_p
14773 || rs6000_ra_ever_killed ())
14775 info_ptr
->lr_save_p
= 1;
14776 df_set_regs_ever_live (LR_REGNO
, true);
14779 /* Determine if we need to save the condition code registers. */
14780 if (df_regs_ever_live_p (CR2_REGNO
)
14781 || df_regs_ever_live_p (CR3_REGNO
)
14782 || df_regs_ever_live_p (CR4_REGNO
))
14784 info_ptr
->cr_save_p
= 1;
14785 if (DEFAULT_ABI
== ABI_V4
)
14786 info_ptr
->cr_size
= reg_size
;
14789 /* If the current function calls __builtin_eh_return, then we need
14790 to allocate stack space for registers that will hold data for
14791 the exception handler. */
14792 if (crtl
->calls_eh_return
)
14795 for (i
= 0; EH_RETURN_DATA_REGNO (i
) != INVALID_REGNUM
; ++i
)
14798 /* SPE saves EH registers in 64-bits. */
14799 ehrd_size
= i
* (TARGET_SPE_ABI
14800 && info_ptr
->spe_64bit_regs_used
!= 0
14801 ? UNITS_PER_SPE_WORD
: UNITS_PER_WORD
);
14806 /* Determine various sizes. */
14807 info_ptr
->reg_size
= reg_size
;
14808 info_ptr
->fixed_size
= RS6000_SAVE_AREA
;
14809 info_ptr
->vars_size
= RS6000_ALIGN (get_frame_size (), 8);
14810 info_ptr
->parm_size
= RS6000_ALIGN (crtl
->outgoing_args_size
,
14811 TARGET_ALTIVEC
? 16 : 8);
14812 if (FRAME_GROWS_DOWNWARD
)
14813 info_ptr
->vars_size
14814 += RS6000_ALIGN (info_ptr
->fixed_size
+ info_ptr
->vars_size
14815 + info_ptr
->parm_size
,
14816 ABI_STACK_BOUNDARY
/ BITS_PER_UNIT
)
14817 - (info_ptr
->fixed_size
+ info_ptr
->vars_size
14818 + info_ptr
->parm_size
);
14820 if (TARGET_SPE_ABI
&& info_ptr
->spe_64bit_regs_used
!= 0)
14821 info_ptr
->spe_gp_size
= 8 * (32 - first_gp
);
14823 info_ptr
->spe_gp_size
= 0;
14825 if (TARGET_ALTIVEC_ABI
)
14826 info_ptr
->vrsave_mask
= compute_vrsave_mask ();
14828 info_ptr
->vrsave_mask
= 0;
14830 if (TARGET_ALTIVEC_VRSAVE
&& info_ptr
->vrsave_mask
)
14831 info_ptr
->vrsave_size
= 4;
14833 info_ptr
->vrsave_size
= 0;
14835 compute_save_world_info (info_ptr
);
14837 /* Calculate the offsets. */
14838 switch (DEFAULT_ABI
)
14842 gcc_unreachable ();
14846 info_ptr
->fp_save_offset
= - info_ptr
->fp_size
;
14847 info_ptr
->gp_save_offset
= info_ptr
->fp_save_offset
- info_ptr
->gp_size
;
14849 if (TARGET_ALTIVEC_ABI
)
14851 info_ptr
->vrsave_save_offset
14852 = info_ptr
->gp_save_offset
- info_ptr
->vrsave_size
;
14854 /* Align stack so vector save area is on a quadword boundary.
14855 The padding goes above the vectors. */
14856 if (info_ptr
->altivec_size
!= 0)
14857 info_ptr
->altivec_padding_size
14858 = info_ptr
->vrsave_save_offset
& 0xF;
14860 info_ptr
->altivec_padding_size
= 0;
14862 info_ptr
->altivec_save_offset
14863 = info_ptr
->vrsave_save_offset
14864 - info_ptr
->altivec_padding_size
14865 - info_ptr
->altivec_size
;
14866 gcc_assert (info_ptr
->altivec_size
== 0
14867 || info_ptr
->altivec_save_offset
% 16 == 0);
14869 /* Adjust for AltiVec case. */
14870 info_ptr
->ehrd_offset
= info_ptr
->altivec_save_offset
- ehrd_size
;
14873 info_ptr
->ehrd_offset
= info_ptr
->gp_save_offset
- ehrd_size
;
14874 info_ptr
->cr_save_offset
= reg_size
; /* first word when 64-bit. */
14875 info_ptr
->lr_save_offset
= 2*reg_size
;
14879 info_ptr
->fp_save_offset
= - info_ptr
->fp_size
;
14880 info_ptr
->gp_save_offset
= info_ptr
->fp_save_offset
- info_ptr
->gp_size
;
14881 info_ptr
->cr_save_offset
= info_ptr
->gp_save_offset
- info_ptr
->cr_size
;
14883 if (TARGET_SPE_ABI
&& info_ptr
->spe_64bit_regs_used
!= 0)
14885 /* Align stack so SPE GPR save area is aligned on a
14886 double-word boundary. */
14887 if (info_ptr
->spe_gp_size
!= 0 && info_ptr
->cr_save_offset
!= 0)
14888 info_ptr
->spe_padding_size
14889 = 8 - (-info_ptr
->cr_save_offset
% 8);
14891 info_ptr
->spe_padding_size
= 0;
14893 info_ptr
->spe_gp_save_offset
14894 = info_ptr
->cr_save_offset
14895 - info_ptr
->spe_padding_size
14896 - info_ptr
->spe_gp_size
;
14898 /* Adjust for SPE case. */
14899 info_ptr
->ehrd_offset
= info_ptr
->spe_gp_save_offset
;
14901 else if (TARGET_ALTIVEC_ABI
)
14903 info_ptr
->vrsave_save_offset
14904 = info_ptr
->cr_save_offset
- info_ptr
->vrsave_size
;
14906 /* Align stack so vector save area is on a quadword boundary. */
14907 if (info_ptr
->altivec_size
!= 0)
14908 info_ptr
->altivec_padding_size
14909 = 16 - (-info_ptr
->vrsave_save_offset
% 16);
14911 info_ptr
->altivec_padding_size
= 0;
14913 info_ptr
->altivec_save_offset
14914 = info_ptr
->vrsave_save_offset
14915 - info_ptr
->altivec_padding_size
14916 - info_ptr
->altivec_size
;
14918 /* Adjust for AltiVec case. */
14919 info_ptr
->ehrd_offset
= info_ptr
->altivec_save_offset
;
14922 info_ptr
->ehrd_offset
= info_ptr
->cr_save_offset
;
14923 info_ptr
->ehrd_offset
-= ehrd_size
;
14924 info_ptr
->lr_save_offset
= reg_size
;
14928 save_align
= (TARGET_ALTIVEC_ABI
|| DEFAULT_ABI
== ABI_DARWIN
) ? 16 : 8;
14929 info_ptr
->save_size
= RS6000_ALIGN (info_ptr
->fp_size
14930 + info_ptr
->gp_size
14931 + info_ptr
->altivec_size
14932 + info_ptr
->altivec_padding_size
14933 + info_ptr
->spe_gp_size
14934 + info_ptr
->spe_padding_size
14936 + info_ptr
->cr_size
14937 + info_ptr
->vrsave_size
,
14940 non_fixed_size
= (info_ptr
->vars_size
14941 + info_ptr
->parm_size
14942 + info_ptr
->save_size
);
14944 info_ptr
->total_size
= RS6000_ALIGN (non_fixed_size
+ info_ptr
->fixed_size
,
14945 ABI_STACK_BOUNDARY
/ BITS_PER_UNIT
);
14947 /* Determine if we need to allocate any stack frame:
14949 For AIX we need to push the stack if a frame pointer is needed
14950 (because the stack might be dynamically adjusted), if we are
14951 debugging, if we make calls, or if the sum of fp_save, gp_save,
14952 and local variables are more than the space needed to save all
14953 non-volatile registers: 32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8
14954 + 18*8 = 288 (GPR13 reserved).
14956 For V.4 we don't have the stack cushion that AIX uses, but assume
14957 that the debugger can handle stackless frames. */
14959 if (info_ptr
->calls_p
)
14960 info_ptr
->push_p
= 1;
14962 else if (DEFAULT_ABI
== ABI_V4
)
14963 info_ptr
->push_p
= non_fixed_size
!= 0;
14965 else if (frame_pointer_needed
)
14966 info_ptr
->push_p
= 1;
14968 else if (TARGET_XCOFF
&& write_symbols
!= NO_DEBUG
)
14969 info_ptr
->push_p
= 1;
14972 info_ptr
->push_p
= non_fixed_size
> (TARGET_32BIT
? 220 : 288);
14974 /* Zero offsets if we're not saving those registers. */
14975 if (info_ptr
->fp_size
== 0)
14976 info_ptr
->fp_save_offset
= 0;
14978 if (info_ptr
->gp_size
== 0)
14979 info_ptr
->gp_save_offset
= 0;
14981 if (! TARGET_ALTIVEC_ABI
|| info_ptr
->altivec_size
== 0)
14982 info_ptr
->altivec_save_offset
= 0;
14984 if (! TARGET_ALTIVEC_ABI
|| info_ptr
->vrsave_mask
== 0)
14985 info_ptr
->vrsave_save_offset
= 0;
14987 if (! TARGET_SPE_ABI
14988 || info_ptr
->spe_64bit_regs_used
== 0
14989 || info_ptr
->spe_gp_size
== 0)
14990 info_ptr
->spe_gp_save_offset
= 0;
14992 if (! info_ptr
->lr_save_p
)
14993 info_ptr
->lr_save_offset
= 0;
14995 if (! info_ptr
->cr_save_p
)
14996 info_ptr
->cr_save_offset
= 0;
15001 /* Return true if the current function uses any GPRs in 64-bit SIMD
15005 spe_func_has_64bit_regs_p (void)
15009 /* Functions that save and restore all the call-saved registers will
15010 need to save/restore the registers in 64-bits. */
15011 if (crtl
->calls_eh_return
15012 || cfun
->calls_setjmp
15013 || crtl
->has_nonlocal_goto
)
15016 insns
= get_insns ();
15018 for (insn
= NEXT_INSN (insns
); insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
15024 /* FIXME: This should be implemented with attributes...
15026 (set_attr "spe64" "true")....then,
15027 if (get_spe64(insn)) return true;
15029 It's the only reliable way to do the stuff below. */
15031 i
= PATTERN (insn
);
15032 if (GET_CODE (i
) == SET
)
15034 enum machine_mode mode
= GET_MODE (SET_SRC (i
));
15036 if (SPE_VECTOR_MODE (mode
))
15038 if (TARGET_E500_DOUBLE
&& (mode
== DFmode
|| mode
== TFmode
))
15048 debug_stack_info (rs6000_stack_t
*info
)
15050 const char *abi_string
;
15053 info
= rs6000_stack_info ();
15055 fprintf (stderr
, "\nStack information for function %s:\n",
15056 ((current_function_decl
&& DECL_NAME (current_function_decl
))
15057 ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl
))
15062 default: abi_string
= "Unknown"; break;
15063 case ABI_NONE
: abi_string
= "NONE"; break;
15064 case ABI_AIX
: abi_string
= "AIX"; break;
15065 case ABI_DARWIN
: abi_string
= "Darwin"; break;
15066 case ABI_V4
: abi_string
= "V.4"; break;
15069 fprintf (stderr
, "\tABI = %5s\n", abi_string
);
15071 if (TARGET_ALTIVEC_ABI
)
15072 fprintf (stderr
, "\tALTIVEC ABI extensions enabled.\n");
15074 if (TARGET_SPE_ABI
)
15075 fprintf (stderr
, "\tSPE ABI extensions enabled.\n");
15077 if (info
->first_gp_reg_save
!= 32)
15078 fprintf (stderr
, "\tfirst_gp_reg_save = %5d\n", info
->first_gp_reg_save
);
15080 if (info
->first_fp_reg_save
!= 64)
15081 fprintf (stderr
, "\tfirst_fp_reg_save = %5d\n", info
->first_fp_reg_save
);
15083 if (info
->first_altivec_reg_save
<= LAST_ALTIVEC_REGNO
)
15084 fprintf (stderr
, "\tfirst_altivec_reg_save = %5d\n",
15085 info
->first_altivec_reg_save
);
15087 if (info
->lr_save_p
)
15088 fprintf (stderr
, "\tlr_save_p = %5d\n", info
->lr_save_p
);
15090 if (info
->cr_save_p
)
15091 fprintf (stderr
, "\tcr_save_p = %5d\n", info
->cr_save_p
);
15093 if (info
->vrsave_mask
)
15094 fprintf (stderr
, "\tvrsave_mask = 0x%x\n", info
->vrsave_mask
);
15097 fprintf (stderr
, "\tpush_p = %5d\n", info
->push_p
);
15100 fprintf (stderr
, "\tcalls_p = %5d\n", info
->calls_p
);
15102 if (info
->gp_save_offset
)
15103 fprintf (stderr
, "\tgp_save_offset = %5d\n", info
->gp_save_offset
);
15105 if (info
->fp_save_offset
)
15106 fprintf (stderr
, "\tfp_save_offset = %5d\n", info
->fp_save_offset
);
15108 if (info
->altivec_save_offset
)
15109 fprintf (stderr
, "\taltivec_save_offset = %5d\n",
15110 info
->altivec_save_offset
);
15112 if (info
->spe_gp_save_offset
)
15113 fprintf (stderr
, "\tspe_gp_save_offset = %5d\n",
15114 info
->spe_gp_save_offset
);
15116 if (info
->vrsave_save_offset
)
15117 fprintf (stderr
, "\tvrsave_save_offset = %5d\n",
15118 info
->vrsave_save_offset
);
15120 if (info
->lr_save_offset
)
15121 fprintf (stderr
, "\tlr_save_offset = %5d\n", info
->lr_save_offset
);
15123 if (info
->cr_save_offset
)
15124 fprintf (stderr
, "\tcr_save_offset = %5d\n", info
->cr_save_offset
);
15126 if (info
->varargs_save_offset
)
15127 fprintf (stderr
, "\tvarargs_save_offset = %5d\n", info
->varargs_save_offset
);
15129 if (info
->total_size
)
15130 fprintf (stderr
, "\ttotal_size = "HOST_WIDE_INT_PRINT_DEC
"\n",
15133 if (info
->vars_size
)
15134 fprintf (stderr
, "\tvars_size = "HOST_WIDE_INT_PRINT_DEC
"\n",
15137 if (info
->parm_size
)
15138 fprintf (stderr
, "\tparm_size = %5d\n", info
->parm_size
);
15140 if (info
->fixed_size
)
15141 fprintf (stderr
, "\tfixed_size = %5d\n", info
->fixed_size
);
15144 fprintf (stderr
, "\tgp_size = %5d\n", info
->gp_size
);
15146 if (info
->spe_gp_size
)
15147 fprintf (stderr
, "\tspe_gp_size = %5d\n", info
->spe_gp_size
);
15150 fprintf (stderr
, "\tfp_size = %5d\n", info
->fp_size
);
15152 if (info
->altivec_size
)
15153 fprintf (stderr
, "\taltivec_size = %5d\n", info
->altivec_size
);
15155 if (info
->vrsave_size
)
15156 fprintf (stderr
, "\tvrsave_size = %5d\n", info
->vrsave_size
);
15158 if (info
->altivec_padding_size
)
15159 fprintf (stderr
, "\taltivec_padding_size= %5d\n",
15160 info
->altivec_padding_size
);
15162 if (info
->spe_padding_size
)
15163 fprintf (stderr
, "\tspe_padding_size = %5d\n",
15164 info
->spe_padding_size
);
15167 fprintf (stderr
, "\tcr_size = %5d\n", info
->cr_size
);
15169 if (info
->save_size
)
15170 fprintf (stderr
, "\tsave_size = %5d\n", info
->save_size
);
15172 if (info
->reg_size
!= 4)
15173 fprintf (stderr
, "\treg_size = %5d\n", info
->reg_size
);
15175 fprintf (stderr
, "\n");
15179 rs6000_return_addr (int count
, rtx frame
)
15181 /* Currently we don't optimize very well between prolog and body
15182 code and for PIC code the code can be actually quite bad, so
15183 don't try to be too clever here. */
15184 if (count
!= 0 || (DEFAULT_ABI
!= ABI_AIX
&& flag_pic
))
15186 cfun
->machine
->ra_needs_full_frame
= 1;
15193 plus_constant (copy_to_reg
15194 (gen_rtx_MEM (Pmode
,
15195 memory_address (Pmode
, frame
))),
15196 RETURN_ADDRESS_OFFSET
)));
15199 cfun
->machine
->ra_need_lr
= 1;
15200 return get_hard_reg_initial_val (Pmode
, LR_REGNO
);
15203 /* Say whether a function is a candidate for sibcall handling or not.
15204 We do not allow indirect calls to be optimized into sibling calls.
15205 Also, we can't do it if there are any vector parameters; there's
15206 nowhere to put the VRsave code so it works; note that functions with
15207 vector parameters are required to have a prototype, so the argument
15208 type info must be available here. (The tail recursion case can work
15209 with vector parameters, but there's no way to distinguish here.) */
15211 rs6000_function_ok_for_sibcall (tree decl
, tree exp ATTRIBUTE_UNUSED
)
15216 if (TARGET_ALTIVEC_VRSAVE
)
15218 for (type
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
15219 type
; type
= TREE_CHAIN (type
))
15221 if (TREE_CODE (TREE_VALUE (type
)) == VECTOR_TYPE
)
15225 if (DEFAULT_ABI
== ABI_DARWIN
15226 || ((*targetm
.binds_local_p
) (decl
)
15227 && (DEFAULT_ABI
!= ABI_AIX
|| !DECL_EXTERNAL (decl
))))
15229 tree attr_list
= TYPE_ATTRIBUTES (TREE_TYPE (decl
));
15231 if (!lookup_attribute ("longcall", attr_list
)
15232 || lookup_attribute ("shortcall", attr_list
))
15239 /* NULL if INSN insn is valid within a low-overhead loop.
15240 Otherwise return why doloop cannot be applied.
15241 PowerPC uses the COUNT register for branch on table instructions. */
15243 static const char *
15244 rs6000_invalid_within_doloop (const_rtx insn
)
15247 return "Function call in the loop.";
15250 && (GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
15251 || GET_CODE (PATTERN (insn
)) == ADDR_VEC
))
15252 return "Computed branch in the loop.";
15258 rs6000_ra_ever_killed (void)
15264 if (cfun
->is_thunk
)
15267 /* regs_ever_live has LR marked as used if any sibcalls are present,
15268 but this should not force saving and restoring in the
15269 pro/epilogue. Likewise, reg_set_between_p thinks a sibcall
15270 clobbers LR, so that is inappropriate. */
15272 /* Also, the prologue can generate a store into LR that
15273 doesn't really count, like this:
15276 bcl to set PIC register
15280 When we're called from the epilogue, we need to avoid counting
15281 this as a store. */
15283 push_topmost_sequence ();
15284 top
= get_insns ();
15285 pop_topmost_sequence ();
15286 reg
= gen_rtx_REG (Pmode
, LR_REGNO
);
15288 for (insn
= NEXT_INSN (top
); insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
15294 if (!SIBLING_CALL_P (insn
))
15297 else if (find_regno_note (insn
, REG_INC
, LR_REGNO
))
15299 else if (set_of (reg
, insn
) != NULL_RTX
15300 && !prologue_epilogue_contains (insn
))
15307 /* Emit instructions needed to load the TOC register.
15308 This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is
15309 a constant pool; or for SVR4 -fpic. */
15312 rs6000_emit_load_toc_table (int fromprolog
)
15315 dest
= gen_rtx_REG (Pmode
, RS6000_PIC_OFFSET_TABLE_REGNUM
);
15317 if (TARGET_ELF
&& TARGET_SECURE_PLT
&& DEFAULT_ABI
!= ABI_AIX
&& flag_pic
)
15320 rtx lab
, tmp1
, tmp2
, got
;
15322 ASM_GENERATE_INTERNAL_LABEL (buf
, "LCF", rs6000_pic_labelno
);
15323 lab
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (buf
));
15325 got
= gen_rtx_SYMBOL_REF (Pmode
, toc_label_name
);
15327 got
= rs6000_got_sym ();
15328 tmp1
= tmp2
= dest
;
15331 tmp1
= gen_reg_rtx (Pmode
);
15332 tmp2
= gen_reg_rtx (Pmode
);
15334 emit_insn (gen_load_toc_v4_PIC_1 (lab
));
15335 emit_move_insn (tmp1
,
15336 gen_rtx_REG (Pmode
, LR_REGNO
));
15337 emit_insn (gen_load_toc_v4_PIC_3b (tmp2
, tmp1
, got
, lab
));
15338 emit_insn (gen_load_toc_v4_PIC_3c (dest
, tmp2
, got
, lab
));
15340 else if (TARGET_ELF
&& DEFAULT_ABI
== ABI_V4
&& flag_pic
== 1)
15342 emit_insn (gen_load_toc_v4_pic_si ());
15343 emit_move_insn (dest
, gen_rtx_REG (Pmode
, LR_REGNO
));
15345 else if (TARGET_ELF
&& DEFAULT_ABI
!= ABI_AIX
&& flag_pic
== 2)
15348 rtx temp0
= (fromprolog
15349 ? gen_rtx_REG (Pmode
, 0)
15350 : gen_reg_rtx (Pmode
));
15356 ASM_GENERATE_INTERNAL_LABEL (buf
, "LCF", rs6000_pic_labelno
);
15357 symF
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (buf
));
15359 ASM_GENERATE_INTERNAL_LABEL (buf
, "LCL", rs6000_pic_labelno
);
15360 symL
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (buf
));
15362 emit_insn (gen_load_toc_v4_PIC_1 (symF
));
15363 emit_move_insn (dest
,
15364 gen_rtx_REG (Pmode
, LR_REGNO
));
15365 emit_insn (gen_load_toc_v4_PIC_2 (temp0
, dest
, symL
, symF
));
15371 tocsym
= gen_rtx_SYMBOL_REF (Pmode
, toc_label_name
);
15372 emit_insn (gen_load_toc_v4_PIC_1b (tocsym
));
15373 emit_move_insn (dest
,
15374 gen_rtx_REG (Pmode
, LR_REGNO
));
15375 emit_move_insn (temp0
, gen_rtx_MEM (Pmode
, dest
));
15377 emit_insn (gen_addsi3 (dest
, temp0
, dest
));
15379 else if (TARGET_ELF
&& !TARGET_AIX
&& flag_pic
== 0 && TARGET_MINIMAL_TOC
)
15381 /* This is for AIX code running in non-PIC ELF32. */
15384 ASM_GENERATE_INTERNAL_LABEL (buf
, "LCTOC", 1);
15385 realsym
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (buf
));
15387 emit_insn (gen_elf_high (dest
, realsym
));
15388 emit_insn (gen_elf_low (dest
, dest
, realsym
));
15392 gcc_assert (DEFAULT_ABI
== ABI_AIX
);
15395 emit_insn (gen_load_toc_aix_si (dest
));
15397 emit_insn (gen_load_toc_aix_di (dest
));
15401 /* Emit instructions to restore the link register after determining where
15402 its value has been stored. */
15405 rs6000_emit_eh_reg_restore (rtx source
, rtx scratch
)
15407 rs6000_stack_t
*info
= rs6000_stack_info ();
15410 operands
[0] = source
;
15411 operands
[1] = scratch
;
15413 if (info
->lr_save_p
)
15415 rtx frame_rtx
= stack_pointer_rtx
;
15416 HOST_WIDE_INT sp_offset
= 0;
15419 if (frame_pointer_needed
15420 || cfun
->calls_alloca
15421 || info
->total_size
> 32767)
15423 tmp
= gen_frame_mem (Pmode
, frame_rtx
);
15424 emit_move_insn (operands
[1], tmp
);
15425 frame_rtx
= operands
[1];
15427 else if (info
->push_p
)
15428 sp_offset
= info
->total_size
;
15430 tmp
= plus_constant (frame_rtx
, info
->lr_save_offset
+ sp_offset
);
15431 tmp
= gen_frame_mem (Pmode
, tmp
);
15432 emit_move_insn (tmp
, operands
[0]);
15435 emit_move_insn (gen_rtx_REG (Pmode
, LR_REGNO
), operands
[0]);
15438 static GTY(()) alias_set_type set
= -1;
15441 get_TOC_alias_set (void)
15444 set
= new_alias_set ();
15448 /* This returns nonzero if the current function uses the TOC. This is
15449 determined by the presence of (use (unspec ... UNSPEC_TOC)), which
15450 is generated by the ABI_V4 load_toc_* patterns. */
15457 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
15460 rtx pat
= PATTERN (insn
);
15463 if (GET_CODE (pat
) == PARALLEL
)
15464 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
15466 rtx sub
= XVECEXP (pat
, 0, i
);
15467 if (GET_CODE (sub
) == USE
)
15469 sub
= XEXP (sub
, 0);
15470 if (GET_CODE (sub
) == UNSPEC
15471 && XINT (sub
, 1) == UNSPEC_TOC
)
15481 create_TOC_reference (rtx symbol
)
15483 if (!can_create_pseudo_p ())
15484 df_set_regs_ever_live (TOC_REGISTER
, true);
15485 return gen_rtx_PLUS (Pmode
,
15486 gen_rtx_REG (Pmode
, TOC_REGISTER
),
15487 gen_rtx_CONST (Pmode
,
15488 gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, symbol
), UNSPEC_TOCREL
)));
15491 /* If _Unwind_* has been called from within the same module,
15492 toc register is not guaranteed to be saved to 40(1) on function
15493 entry. Save it there in that case. */
15496 rs6000_aix_emit_builtin_unwind_init (void)
15499 rtx stack_top
= gen_reg_rtx (Pmode
);
15500 rtx opcode_addr
= gen_reg_rtx (Pmode
);
15501 rtx opcode
= gen_reg_rtx (SImode
);
15502 rtx tocompare
= gen_reg_rtx (SImode
);
15503 rtx no_toc_save_needed
= gen_label_rtx ();
15505 mem
= gen_frame_mem (Pmode
, hard_frame_pointer_rtx
);
15506 emit_move_insn (stack_top
, mem
);
15508 mem
= gen_frame_mem (Pmode
,
15509 gen_rtx_PLUS (Pmode
, stack_top
,
15510 GEN_INT (2 * GET_MODE_SIZE (Pmode
))));
15511 emit_move_insn (opcode_addr
, mem
);
15512 emit_move_insn (opcode
, gen_rtx_MEM (SImode
, opcode_addr
));
15513 emit_move_insn (tocompare
, gen_int_mode (TARGET_32BIT
? 0x80410014
15514 : 0xE8410028, SImode
));
15516 do_compare_rtx_and_jump (opcode
, tocompare
, EQ
, 1,
15517 SImode
, NULL_RTX
, NULL_RTX
,
15518 no_toc_save_needed
);
15520 mem
= gen_frame_mem (Pmode
,
15521 gen_rtx_PLUS (Pmode
, stack_top
,
15522 GEN_INT (5 * GET_MODE_SIZE (Pmode
))));
15523 emit_move_insn (mem
, gen_rtx_REG (Pmode
, 2));
15524 emit_label (no_toc_save_needed
);
15527 /* This ties together stack memory (MEM with an alias set of frame_alias_set)
15528 and the change to the stack pointer. */
15531 rs6000_emit_stack_tie (void)
15533 rtx mem
= gen_frame_mem (BLKmode
,
15534 gen_rtx_REG (Pmode
, STACK_POINTER_REGNUM
));
15536 emit_insn (gen_stack_tie (mem
));
15539 /* Emit the correct code for allocating stack space, as insns.
15540 If COPY_R12, make sure a copy of the old frame is left in r12.
15541 If COPY_R11, make sure a copy of the old frame is left in r11,
15542 in preference to r12 if COPY_R12.
15543 The generated code may use hard register 0 as a temporary. */
15546 rs6000_emit_allocate_stack (HOST_WIDE_INT size
, int copy_r12
, int copy_r11
)
15549 rtx stack_reg
= gen_rtx_REG (Pmode
, STACK_POINTER_REGNUM
);
15550 rtx tmp_reg
= gen_rtx_REG (Pmode
, 0);
15551 rtx todec
= gen_int_mode (-size
, Pmode
);
15554 if (INTVAL (todec
) != -size
)
15556 warning (0, "stack frame too large");
15557 emit_insn (gen_trap ());
15561 if (crtl
->limit_stack
)
15563 if (REG_P (stack_limit_rtx
)
15564 && REGNO (stack_limit_rtx
) > 1
15565 && REGNO (stack_limit_rtx
) <= 31)
15567 emit_insn (TARGET_32BIT
15568 ? gen_addsi3 (tmp_reg
,
15571 : gen_adddi3 (tmp_reg
,
15575 emit_insn (gen_cond_trap (LTU
, stack_reg
, tmp_reg
,
15578 else if (GET_CODE (stack_limit_rtx
) == SYMBOL_REF
15580 && DEFAULT_ABI
== ABI_V4
)
15582 rtx toload
= gen_rtx_CONST (VOIDmode
,
15583 gen_rtx_PLUS (Pmode
,
15587 emit_insn (gen_elf_high (tmp_reg
, toload
));
15588 emit_insn (gen_elf_low (tmp_reg
, tmp_reg
, toload
));
15589 emit_insn (gen_cond_trap (LTU
, stack_reg
, tmp_reg
,
15593 warning (0, "stack limit expression is not supported");
15596 if (copy_r12
|| copy_r11
)
15597 emit_move_insn (copy_r11
15598 ? gen_rtx_REG (Pmode
, 11)
15599 : gen_rtx_REG (Pmode
, 12),
15604 /* Need a note here so that try_split doesn't get confused. */
15605 if (get_last_insn () == NULL_RTX
)
15606 emit_note (NOTE_INSN_DELETED
);
15607 insn
= emit_move_insn (tmp_reg
, todec
);
15608 try_split (PATTERN (insn
), insn
, 0);
15612 insn
= emit_insn (TARGET_32BIT
15613 ? gen_movsi_update_stack (stack_reg
, stack_reg
,
15615 : gen_movdi_di_update_stack (stack_reg
, stack_reg
,
15616 todec
, stack_reg
));
15617 /* Since we didn't use gen_frame_mem to generate the MEM, grab
15618 it now and set the alias set/attributes. The above gen_*_update
15619 calls will generate a PARALLEL with the MEM set being the first
15621 par
= PATTERN (insn
);
15622 gcc_assert (GET_CODE (par
) == PARALLEL
);
15623 set
= XVECEXP (par
, 0, 0);
15624 gcc_assert (GET_CODE (set
) == SET
);
15625 mem
= SET_DEST (set
);
15626 gcc_assert (MEM_P (mem
));
15627 MEM_NOTRAP_P (mem
) = 1;
15628 set_mem_alias_set (mem
, get_frame_alias_set ());
15630 RTX_FRAME_RELATED_P (insn
) = 1;
15632 gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR
,
15633 gen_rtx_SET (VOIDmode
, stack_reg
,
15634 gen_rtx_PLUS (Pmode
, stack_reg
,
15639 /* Add to 'insn' a note which is PATTERN (INSN) but with REG replaced
15640 with (plus:P (reg 1) VAL), and with REG2 replaced with RREG if REG2
15641 is not NULL. It would be nice if dwarf2out_frame_debug_expr could
15642 deduce these equivalences by itself so it wasn't necessary to hold
15643 its hand so much. */
15646 rs6000_frame_related (rtx insn
, rtx reg
, HOST_WIDE_INT val
,
15647 rtx reg2
, rtx rreg
)
15651 /* copy_rtx will not make unique copies of registers, so we need to
15652 ensure we don't have unwanted sharing here. */
15654 reg
= gen_raw_REG (GET_MODE (reg
), REGNO (reg
));
15657 reg
= gen_raw_REG (GET_MODE (reg
), REGNO (reg
));
15659 real
= copy_rtx (PATTERN (insn
));
15661 if (reg2
!= NULL_RTX
)
15662 real
= replace_rtx (real
, reg2
, rreg
);
15664 real
= replace_rtx (real
, reg
,
15665 gen_rtx_PLUS (Pmode
, gen_rtx_REG (Pmode
,
15666 STACK_POINTER_REGNUM
),
15669 /* We expect that 'real' is either a SET or a PARALLEL containing
15670 SETs (and possibly other stuff). In a PARALLEL, all the SETs
15671 are important so they all have to be marked RTX_FRAME_RELATED_P. */
15673 if (GET_CODE (real
) == SET
)
15677 temp
= simplify_rtx (SET_SRC (set
));
15679 SET_SRC (set
) = temp
;
15680 temp
= simplify_rtx (SET_DEST (set
));
15682 SET_DEST (set
) = temp
;
15683 if (GET_CODE (SET_DEST (set
)) == MEM
)
15685 temp
= simplify_rtx (XEXP (SET_DEST (set
), 0));
15687 XEXP (SET_DEST (set
), 0) = temp
;
15694 gcc_assert (GET_CODE (real
) == PARALLEL
);
15695 for (i
= 0; i
< XVECLEN (real
, 0); i
++)
15696 if (GET_CODE (XVECEXP (real
, 0, i
)) == SET
)
15698 rtx set
= XVECEXP (real
, 0, i
);
15700 temp
= simplify_rtx (SET_SRC (set
));
15702 SET_SRC (set
) = temp
;
15703 temp
= simplify_rtx (SET_DEST (set
));
15705 SET_DEST (set
) = temp
;
15706 if (GET_CODE (SET_DEST (set
)) == MEM
)
15708 temp
= simplify_rtx (XEXP (SET_DEST (set
), 0));
15710 XEXP (SET_DEST (set
), 0) = temp
;
15712 RTX_FRAME_RELATED_P (set
) = 1;
15716 RTX_FRAME_RELATED_P (insn
) = 1;
15717 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR
,
15722 /* Returns an insn that has a vrsave set operation with the
15723 appropriate CLOBBERs. */
15726 generate_set_vrsave (rtx reg
, rs6000_stack_t
*info
, int epiloguep
)
15729 rtx insn
, clobs
[TOTAL_ALTIVEC_REGS
+ 1];
15730 rtx vrsave
= gen_rtx_REG (SImode
, VRSAVE_REGNO
);
15733 = gen_rtx_SET (VOIDmode
,
15735 gen_rtx_UNSPEC_VOLATILE (SImode
,
15736 gen_rtvec (2, reg
, vrsave
),
15737 UNSPECV_SET_VRSAVE
));
15741 /* We need to clobber the registers in the mask so the scheduler
15742 does not move sets to VRSAVE before sets of AltiVec registers.
15744 However, if the function receives nonlocal gotos, reload will set
15745 all call saved registers live. We will end up with:
15747 (set (reg 999) (mem))
15748 (parallel [ (set (reg vrsave) (unspec blah))
15749 (clobber (reg 999))])
15751 The clobber will cause the store into reg 999 to be dead, and
15752 flow will attempt to delete an epilogue insn. In this case, we
15753 need an unspec use/set of the register. */
15755 for (i
= FIRST_ALTIVEC_REGNO
; i
<= LAST_ALTIVEC_REGNO
; ++i
)
15756 if (info
->vrsave_mask
& ALTIVEC_REG_BIT (i
))
15758 if (!epiloguep
|| call_used_regs
[i
])
15759 clobs
[nclobs
++] = gen_rtx_CLOBBER (VOIDmode
,
15760 gen_rtx_REG (V4SImode
, i
));
15763 rtx reg
= gen_rtx_REG (V4SImode
, i
);
15766 = gen_rtx_SET (VOIDmode
,
15768 gen_rtx_UNSPEC (V4SImode
,
15769 gen_rtvec (1, reg
), 27));
15773 insn
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nclobs
));
15775 for (i
= 0; i
< nclobs
; ++i
)
15776 XVECEXP (insn
, 0, i
) = clobs
[i
];
15781 /* Save a register into the frame, and emit RTX_FRAME_RELATED_P notes.
15782 Save REGNO into [FRAME_REG + OFFSET] in mode MODE. */
15785 emit_frame_save (rtx frame_reg
, rtx frame_ptr
, enum machine_mode mode
,
15786 unsigned int regno
, int offset
, HOST_WIDE_INT total_size
)
15788 rtx reg
, offset_rtx
, insn
, mem
, addr
, int_rtx
;
15789 rtx replacea
, replaceb
;
15791 int_rtx
= GEN_INT (offset
);
15793 /* Some cases that need register indexed addressing. */
15794 if ((TARGET_ALTIVEC_ABI
&& ALTIVEC_VECTOR_MODE (mode
))
15795 || (TARGET_E500_DOUBLE
&& mode
== DFmode
)
15797 && SPE_VECTOR_MODE (mode
)
15798 && !SPE_CONST_OFFSET_OK (offset
)))
15800 /* Whomever calls us must make sure r11 is available in the
15801 flow path of instructions in the prologue. */
15802 offset_rtx
= gen_rtx_REG (Pmode
, 11);
15803 emit_move_insn (offset_rtx
, int_rtx
);
15805 replacea
= offset_rtx
;
15806 replaceb
= int_rtx
;
15810 offset_rtx
= int_rtx
;
15811 replacea
= NULL_RTX
;
15812 replaceb
= NULL_RTX
;
15815 reg
= gen_rtx_REG (mode
, regno
);
15816 addr
= gen_rtx_PLUS (Pmode
, frame_reg
, offset_rtx
);
15817 mem
= gen_frame_mem (mode
, addr
);
15819 insn
= emit_move_insn (mem
, reg
);
15821 rs6000_frame_related (insn
, frame_ptr
, total_size
, replacea
, replaceb
);
15824 /* Emit an offset memory reference suitable for a frame store, while
15825 converting to a valid addressing mode. */
15828 gen_frame_mem_offset (enum machine_mode mode
, rtx reg
, int offset
)
15830 rtx int_rtx
, offset_rtx
;
15832 int_rtx
= GEN_INT (offset
);
15834 if ((TARGET_SPE_ABI
&& SPE_VECTOR_MODE (mode
))
15835 || (TARGET_E500_DOUBLE
&& mode
== DFmode
))
15837 offset_rtx
= gen_rtx_REG (Pmode
, FIXED_SCRATCH
);
15838 emit_move_insn (offset_rtx
, int_rtx
);
15841 offset_rtx
= int_rtx
;
15843 return gen_frame_mem (mode
, gen_rtx_PLUS (Pmode
, reg
, offset_rtx
));
15846 /* Look for user-defined global regs. We should not save and restore these,
15847 and cannot use stmw/lmw if there are any in its range. */
15850 no_global_regs_above (int first
, bool gpr
)
15853 for (i
= first
; i
< gpr
? 32 : 64 ; i
++)
15854 if (global_regs
[i
])
15859 #ifndef TARGET_FIX_AND_CONTINUE
15860 #define TARGET_FIX_AND_CONTINUE 0
15863 /* It's really GPR 13 and FPR 14, but we need the smaller of the two. */
15864 #define FIRST_SAVRES_REGISTER FIRST_SAVED_GP_REGNO
15865 #define LAST_SAVRES_REGISTER 31
15866 #define N_SAVRES_REGISTERS (LAST_SAVRES_REGISTER - FIRST_SAVRES_REGISTER + 1)
15868 static GTY(()) rtx savres_routine_syms
[N_SAVRES_REGISTERS
][8];
15870 /* Return the symbol for an out-of-line register save/restore routine.
15871 We are saving/restoring GPRs if GPR is true. */
15874 rs6000_savres_routine_sym (rs6000_stack_t
*info
, bool savep
, bool gpr
, bool exitp
)
15876 int regno
= gpr
? info
->first_gp_reg_save
: (info
->first_fp_reg_save
- 32);
15878 int select
= ((savep
? 1 : 0) << 2
15880 /* On the SPE, we never have any FPRs, but we do have
15881 32/64-bit versions of the routines. */
15882 ? (TARGET_SPE_ABI
&& info
->spe_64bit_regs_used
? 1 : 0)
15886 /* Don't generate bogus routine names. */
15887 gcc_assert (FIRST_SAVRES_REGISTER
<= regno
&& regno
<= LAST_SAVRES_REGISTER
);
15889 sym
= savres_routine_syms
[regno
-FIRST_SAVRES_REGISTER
][select
];
15894 const char *action
;
15895 const char *regkind
;
15896 const char *exit_suffix
;
15898 action
= savep
? "save" : "rest";
15900 /* SPE has slightly different names for its routines depending on
15901 whether we are saving 32-bit or 64-bit registers. */
15902 if (TARGET_SPE_ABI
)
15904 /* No floating point saves on the SPE. */
15907 regkind
= info
->spe_64bit_regs_used
? "64gpr" : "32gpr";
15910 regkind
= gpr
? "gpr" : "fpr";
15912 exit_suffix
= exitp
? "_x" : "";
15914 sprintf (name
, "_%s%s_%d%s", action
, regkind
, regno
, exit_suffix
);
15916 sym
= savres_routine_syms
[regno
-FIRST_SAVRES_REGISTER
][select
]
15917 = gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (name
));
15923 /* Emit a sequence of insns, including a stack tie if needed, for
15924 resetting the stack pointer. If SAVRES is true, then don't reset the
15925 stack pointer, but move the base of the frame into r11 for use by
15926 out-of-line register restore routines. */
15929 rs6000_emit_stack_reset (rs6000_stack_t
*info
,
15930 rtx sp_reg_rtx
, rtx frame_reg_rtx
,
15931 int sp_offset
, bool savres
)
15933 /* This blockage is needed so that sched doesn't decide to move
15934 the sp change before the register restores. */
15935 if (frame_reg_rtx
!= sp_reg_rtx
15937 && info
->spe_64bit_regs_used
!= 0
15938 && info
->first_gp_reg_save
!= 32))
15939 rs6000_emit_stack_tie ();
15941 if (frame_reg_rtx
!= sp_reg_rtx
)
15943 if (sp_offset
!= 0)
15944 emit_insn (gen_addsi3 (sp_reg_rtx
, frame_reg_rtx
,
15945 GEN_INT (sp_offset
)));
15947 emit_move_insn (sp_reg_rtx
, frame_reg_rtx
);
15949 else if (sp_offset
!= 0)
15951 /* If we are restoring registers out-of-line, we will be using the
15952 "exit" variants of the restore routines, which will reset the
15953 stack for us. But we do need to point r11 into the right place
15954 for those routines. */
15955 rtx dest_reg
= (savres
15956 ? gen_rtx_REG (Pmode
, 11)
15959 emit_insn (TARGET_32BIT
15960 ? gen_addsi3 (dest_reg
, sp_reg_rtx
,
15961 GEN_INT (sp_offset
))
15962 : gen_adddi3 (dest_reg
, sp_reg_rtx
,
15963 GEN_INT (sp_offset
)));
15967 /* Construct a parallel rtx describing the effect of a call to an
15968 out-of-line register save/restore routine. */
15971 rs6000_make_savres_rtx (rs6000_stack_t
*info
,
15972 rtx frame_reg_rtx
, int save_area_offset
,
15973 enum machine_mode reg_mode
,
15974 bool savep
, bool gpr
, bool exitp
)
15977 int offset
, start_reg
, end_reg
, n_regs
;
15978 int reg_size
= GET_MODE_SIZE (reg_mode
);
15984 ? info
->first_gp_reg_save
15985 : info
->first_fp_reg_save
);
15986 end_reg
= gpr
? 32 : 64;
15987 n_regs
= end_reg
- start_reg
;
15988 p
= rtvec_alloc ((exitp
? 4 : 3) + n_regs
);
15990 /* If we're saving registers, then we should never say we're exiting. */
15991 gcc_assert ((savep
&& !exitp
) || !savep
);
15994 RTVEC_ELT (p
, offset
++) = gen_rtx_RETURN (VOIDmode
);
15996 RTVEC_ELT (p
, offset
++)
15997 = gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (Pmode
, 65));
15999 sym
= rs6000_savres_routine_sym (info
, savep
, gpr
, exitp
);
16000 RTVEC_ELT (p
, offset
++) = gen_rtx_USE (VOIDmode
, sym
);
16001 RTVEC_ELT (p
, offset
++) = gen_rtx_USE (VOIDmode
, gen_rtx_REG (Pmode
, 11));
16003 for (i
= 0; i
< end_reg
- start_reg
; i
++)
16005 rtx addr
, reg
, mem
;
16006 reg
= gen_rtx_REG (reg_mode
, start_reg
+ i
);
16007 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16008 GEN_INT (save_area_offset
+ reg_size
*i
));
16009 mem
= gen_frame_mem (reg_mode
, addr
);
16011 RTVEC_ELT (p
, i
+ offset
) = gen_rtx_SET (VOIDmode
,
16013 savep
? reg
: mem
);
16016 return gen_rtx_PARALLEL (VOIDmode
, p
);
16019 /* Determine whether the gp REG is really used. */
16022 rs6000_reg_live_or_pic_offset_p (int reg
)
16024 return ((df_regs_ever_live_p (reg
)
16025 && (!call_used_regs
[reg
]
16026 || (reg
== RS6000_PIC_OFFSET_TABLE_REGNUM
16027 && TARGET_TOC
&& TARGET_MINIMAL_TOC
)))
16028 || (reg
== RS6000_PIC_OFFSET_TABLE_REGNUM
16029 && ((DEFAULT_ABI
== ABI_V4
&& flag_pic
!= 0)
16030 || (DEFAULT_ABI
== ABI_DARWIN
&& flag_pic
))));
16034 SAVRES_MULTIPLE
= 0x1,
16035 SAVRES_INLINE_FPRS
= 0x2,
16036 SAVRES_INLINE_GPRS
= 0x4
16039 /* Determine the strategy for savings/restoring registers. */
16042 rs6000_savres_strategy (rs6000_stack_t
*info
, bool savep
,
16043 int using_static_chain_p
, int sibcall
)
16045 bool using_multiple_p
;
16047 bool savres_fprs_inline
;
16048 bool savres_gprs_inline
;
16049 bool noclobber_global_gprs
16050 = no_global_regs_above (info
->first_gp_reg_save
, /*gpr=*/true);
16052 using_multiple_p
= (TARGET_MULTIPLE
&& ! TARGET_POWERPC64
16053 && (!TARGET_SPE_ABI
16054 || info
->spe_64bit_regs_used
== 0)
16055 && info
->first_gp_reg_save
< 31
16056 && noclobber_global_gprs
);
16057 /* Don't bother to try to save things out-of-line if r11 is occupied
16058 by the static chain. It would require too much fiddling and the
16059 static chain is rarely used anyway. */
16060 common
= (using_static_chain_p
16062 || crtl
->calls_eh_return
16063 || !info
->lr_save_p
16064 || cfun
->machine
->ra_need_lr
16065 || info
->total_size
> 32767);
16066 savres_fprs_inline
= (common
16067 || info
->first_fp_reg_save
== 64
16068 || !no_global_regs_above (info
->first_fp_reg_save
,
16070 || FP_SAVE_INLINE (info
->first_fp_reg_save
));
16071 savres_gprs_inline
= (common
16072 /* Saving CR interferes with the exit routines
16073 used on the SPE, so just punt here. */
16076 && info
->spe_64bit_regs_used
!= 0
16077 && info
->cr_save_p
!= 0)
16078 || info
->first_gp_reg_save
== 32
16079 || !noclobber_global_gprs
16080 || GP_SAVE_INLINE (info
->first_gp_reg_save
));
16083 /* If we are going to use store multiple, then don't even bother
16084 with the out-of-line routines, since the store-multiple instruction
16085 will always be smaller. */
16086 savres_gprs_inline
= savres_gprs_inline
|| using_multiple_p
;
16089 /* The situation is more complicated with load multiple. We'd
16090 prefer to use the out-of-line routines for restores, since the
16091 "exit" out-of-line routines can handle the restore of LR and
16092 the frame teardown. But we can only use the out-of-line
16093 routines if we know that we've used store multiple or
16094 out-of-line routines in the prologue, i.e. if we've saved all
16095 the registers from first_gp_reg_save. Otherwise, we risk
16096 loading garbage from the stack. Furthermore, we can only use
16097 the "exit" out-of-line gpr restore if we haven't saved any
16099 bool saved_all
= !savres_gprs_inline
|| using_multiple_p
;
16101 if (saved_all
&& info
->first_fp_reg_save
!= 64)
16102 /* We can't use the exit routine; use load multiple if it's
16104 savres_gprs_inline
= savres_gprs_inline
|| using_multiple_p
;
16107 return (using_multiple_p
16108 | (savres_fprs_inline
<< 1)
16109 | (savres_gprs_inline
<< 2));
16112 /* Emit function prologue as insns. */
16115 rs6000_emit_prologue (void)
16117 rs6000_stack_t
*info
= rs6000_stack_info ();
16118 enum machine_mode reg_mode
= Pmode
;
16119 int reg_size
= TARGET_32BIT
? 4 : 8;
16120 rtx sp_reg_rtx
= gen_rtx_REG (Pmode
, STACK_POINTER_REGNUM
);
16121 rtx frame_ptr_rtx
= gen_rtx_REG (Pmode
, 12);
16122 rtx frame_reg_rtx
= sp_reg_rtx
;
16123 rtx cr_save_rtx
= NULL_RTX
;
16126 int saving_FPRs_inline
;
16127 int saving_GPRs_inline
;
16128 int using_store_multiple
;
16129 int using_static_chain_p
= (cfun
->static_chain_decl
!= NULL_TREE
16130 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM
)
16131 && !call_used_regs
[STATIC_CHAIN_REGNUM
]);
16132 HOST_WIDE_INT sp_offset
= 0;
16134 if (TARGET_FIX_AND_CONTINUE
)
16136 /* gdb on darwin arranges to forward a function from the old
16137 address by modifying the first 5 instructions of the function
16138 to branch to the overriding function. This is necessary to
16139 permit function pointers that point to the old function to
16140 actually forward to the new function. */
16141 emit_insn (gen_nop ());
16142 emit_insn (gen_nop ());
16143 emit_insn (gen_nop ());
16144 emit_insn (gen_nop ());
16145 emit_insn (gen_nop ());
16148 if (TARGET_SPE_ABI
&& info
->spe_64bit_regs_used
!= 0)
16150 reg_mode
= V2SImode
;
16154 strategy
= rs6000_savres_strategy (info
, /*savep=*/true,
16155 /*static_chain_p=*/using_static_chain_p
,
16157 using_store_multiple
= strategy
& SAVRES_MULTIPLE
;
16158 saving_FPRs_inline
= strategy
& SAVRES_INLINE_FPRS
;
16159 saving_GPRs_inline
= strategy
& SAVRES_INLINE_GPRS
;
16161 /* For V.4, update stack before we do any saving and set back pointer. */
16162 if (! WORLD_SAVE_P (info
)
16164 && (DEFAULT_ABI
== ABI_V4
16165 || crtl
->calls_eh_return
))
16167 bool need_r11
= (TARGET_SPE
16168 ? (!saving_GPRs_inline
16169 && info
->spe_64bit_regs_used
== 0)
16170 : (!saving_FPRs_inline
|| !saving_GPRs_inline
));
16171 if (info
->total_size
< 32767)
16172 sp_offset
= info
->total_size
;
16174 frame_reg_rtx
= (need_r11
16175 ? gen_rtx_REG (Pmode
, 11)
16177 rs6000_emit_allocate_stack (info
->total_size
,
16178 (frame_reg_rtx
!= sp_reg_rtx
16179 && (info
->cr_save_p
16181 || info
->first_fp_reg_save
< 64
16182 || info
->first_gp_reg_save
< 32
16185 if (frame_reg_rtx
!= sp_reg_rtx
)
16186 rs6000_emit_stack_tie ();
16189 /* Handle world saves specially here. */
16190 if (WORLD_SAVE_P (info
))
16197 /* save_world expects lr in r0. */
16198 reg0
= gen_rtx_REG (Pmode
, 0);
16199 if (info
->lr_save_p
)
16201 insn
= emit_move_insn (reg0
,
16202 gen_rtx_REG (Pmode
, LR_REGNO
));
16203 RTX_FRAME_RELATED_P (insn
) = 1;
16206 /* The SAVE_WORLD and RESTORE_WORLD routines make a number of
16207 assumptions about the offsets of various bits of the stack
16209 gcc_assert (info
->gp_save_offset
== -220
16210 && info
->fp_save_offset
== -144
16211 && info
->lr_save_offset
== 8
16212 && info
->cr_save_offset
== 4
16215 && (!crtl
->calls_eh_return
16216 || info
->ehrd_offset
== -432)
16217 && info
->vrsave_save_offset
== -224
16218 && info
->altivec_save_offset
== -416);
16220 treg
= gen_rtx_REG (SImode
, 11);
16221 emit_move_insn (treg
, GEN_INT (-info
->total_size
));
16223 /* SAVE_WORLD takes the caller's LR in R0 and the frame size
16224 in R11. It also clobbers R12, so beware! */
16226 /* Preserve CR2 for save_world prologues */
16228 sz
+= 32 - info
->first_gp_reg_save
;
16229 sz
+= 64 - info
->first_fp_reg_save
;
16230 sz
+= LAST_ALTIVEC_REGNO
- info
->first_altivec_reg_save
+ 1;
16231 p
= rtvec_alloc (sz
);
16233 RTVEC_ELT (p
, j
++) = gen_rtx_CLOBBER (VOIDmode
,
16234 gen_rtx_REG (SImode
,
16236 RTVEC_ELT (p
, j
++) = gen_rtx_USE (VOIDmode
,
16237 gen_rtx_SYMBOL_REF (Pmode
,
16239 /* We do floats first so that the instruction pattern matches
16241 for (i
= 0; i
< 64 - info
->first_fp_reg_save
; i
++)
16243 rtx reg
= gen_rtx_REG (((TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
)
16244 ? DFmode
: SFmode
),
16245 info
->first_fp_reg_save
+ i
);
16246 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16247 GEN_INT (info
->fp_save_offset
16248 + sp_offset
+ 8 * i
));
16249 rtx mem
= gen_frame_mem (((TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
)
16250 ? DFmode
: SFmode
), addr
);
16252 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, mem
, reg
);
16254 for (i
= 0; info
->first_altivec_reg_save
+ i
<= LAST_ALTIVEC_REGNO
; i
++)
16256 rtx reg
= gen_rtx_REG (V4SImode
, info
->first_altivec_reg_save
+ i
);
16257 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16258 GEN_INT (info
->altivec_save_offset
16259 + sp_offset
+ 16 * i
));
16260 rtx mem
= gen_frame_mem (V4SImode
, addr
);
16262 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, mem
, reg
);
16264 for (i
= 0; i
< 32 - info
->first_gp_reg_save
; i
++)
16266 rtx reg
= gen_rtx_REG (reg_mode
, info
->first_gp_reg_save
+ i
);
16267 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16268 GEN_INT (info
->gp_save_offset
16269 + sp_offset
+ reg_size
* i
));
16270 rtx mem
= gen_frame_mem (reg_mode
, addr
);
16272 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, mem
, reg
);
16276 /* CR register traditionally saved as CR2. */
16277 rtx reg
= gen_rtx_REG (reg_mode
, CR2_REGNO
);
16278 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16279 GEN_INT (info
->cr_save_offset
16281 rtx mem
= gen_frame_mem (reg_mode
, addr
);
16283 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, mem
, reg
);
16285 /* Explain about use of R0. */
16286 if (info
->lr_save_p
)
16288 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16289 GEN_INT (info
->lr_save_offset
16291 rtx mem
= gen_frame_mem (reg_mode
, addr
);
16293 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, mem
, reg0
);
16295 /* Explain what happens to the stack pointer. */
16297 rtx newval
= gen_rtx_PLUS (Pmode
, sp_reg_rtx
, treg
);
16298 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, sp_reg_rtx
, newval
);
16301 insn
= emit_insn (gen_rtx_PARALLEL (VOIDmode
, p
));
16302 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16303 treg
, GEN_INT (-info
->total_size
));
16304 sp_offset
= info
->total_size
;
16307 /* If we use the link register, get it into r0. */
16308 if (!WORLD_SAVE_P (info
) && info
->lr_save_p
)
16310 rtx addr
, reg
, mem
;
16312 insn
= emit_move_insn (gen_rtx_REG (Pmode
, 0),
16313 gen_rtx_REG (Pmode
, LR_REGNO
));
16314 RTX_FRAME_RELATED_P (insn
) = 1;
16316 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16317 GEN_INT (info
->lr_save_offset
+ sp_offset
));
16318 reg
= gen_rtx_REG (Pmode
, 0);
16319 mem
= gen_rtx_MEM (Pmode
, addr
);
16320 /* This should not be of rs6000_sr_alias_set, because of
16321 __builtin_return_address. */
16323 insn
= emit_move_insn (mem
, reg
);
16324 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16325 NULL_RTX
, NULL_RTX
);
16328 /* If we need to save CR, put it into r12. */
16329 if (!WORLD_SAVE_P (info
) && info
->cr_save_p
&& frame_reg_rtx
!= frame_ptr_rtx
)
16333 cr_save_rtx
= gen_rtx_REG (SImode
, 12);
16334 insn
= emit_insn (gen_movesi_from_cr (cr_save_rtx
));
16335 RTX_FRAME_RELATED_P (insn
) = 1;
16336 /* Now, there's no way that dwarf2out_frame_debug_expr is going
16337 to understand '(unspec:SI [(reg:CC 68) ...] UNSPEC_MOVESI_FROM_CR)'.
16338 But that's OK. All we have to do is specify that _one_ condition
16339 code register is saved in this stack slot. The thrower's epilogue
16340 will then restore all the call-saved registers.
16341 We use CR2_REGNO (70) to be compatible with gcc-2.95 on Linux. */
16342 set
= gen_rtx_SET (VOIDmode
, cr_save_rtx
,
16343 gen_rtx_REG (SImode
, CR2_REGNO
));
16344 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR
,
16349 /* Do any required saving of fpr's. If only one or two to save, do
16350 it ourselves. Otherwise, call function. */
16351 if (!WORLD_SAVE_P (info
) && saving_FPRs_inline
)
16354 for (i
= 0; i
< 64 - info
->first_fp_reg_save
; i
++)
16355 if ((df_regs_ever_live_p (info
->first_fp_reg_save
+i
)
16356 && ! call_used_regs
[info
->first_fp_reg_save
+i
]))
16357 emit_frame_save (frame_reg_rtx
, frame_ptr_rtx
,
16358 (TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
)
16360 info
->first_fp_reg_save
+ i
,
16361 info
->fp_save_offset
+ sp_offset
+ 8 * i
,
16364 else if (!WORLD_SAVE_P (info
) && info
->first_fp_reg_save
!= 64)
16368 par
= rs6000_make_savres_rtx (info
, frame_reg_rtx
,
16369 info
->fp_save_offset
+ sp_offset
,
16371 /*savep=*/true, /*gpr=*/false,
16373 insn
= emit_insn (par
);
16374 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16375 NULL_RTX
, NULL_RTX
);
16378 /* Save GPRs. This is done as a PARALLEL if we are using
16379 the store-multiple instructions. */
16380 if (!WORLD_SAVE_P (info
)
16382 && info
->spe_64bit_regs_used
!= 0
16383 && info
->first_gp_reg_save
!= 32)
16386 rtx spe_save_area_ptr
;
16388 /* Determine whether we can address all of the registers that need
16389 to be saved with an offset from the stack pointer that fits in
16390 the small const field for SPE memory instructions. */
16391 int spe_regs_addressable_via_sp
16392 = (SPE_CONST_OFFSET_OK(info
->spe_gp_save_offset
+ sp_offset
16393 + (32 - info
->first_gp_reg_save
- 1) * reg_size
)
16394 && saving_GPRs_inline
);
16397 if (spe_regs_addressable_via_sp
)
16399 spe_save_area_ptr
= frame_reg_rtx
;
16400 spe_offset
= info
->spe_gp_save_offset
+ sp_offset
;
16404 /* Make r11 point to the start of the SPE save area. We need
16405 to be careful here if r11 is holding the static chain. If
16406 it is, then temporarily save it in r0. We would use r0 as
16407 our base register here, but using r0 as a base register in
16408 loads and stores means something different from what we
16410 int ool_adjust
= (saving_GPRs_inline
16412 : (info
->first_gp_reg_save
16413 - (FIRST_SAVRES_REGISTER
+1))*8);
16414 HOST_WIDE_INT offset
= (info
->spe_gp_save_offset
16415 + sp_offset
- ool_adjust
);
16417 if (using_static_chain_p
)
16419 rtx r0
= gen_rtx_REG (Pmode
, 0);
16420 gcc_assert (info
->first_gp_reg_save
> 11);
16422 emit_move_insn (r0
, gen_rtx_REG (Pmode
, 11));
16425 spe_save_area_ptr
= gen_rtx_REG (Pmode
, 11);
16426 insn
= emit_insn (gen_addsi3 (spe_save_area_ptr
,
16428 GEN_INT (offset
)));
16429 /* We need to make sure the move to r11 gets noted for
16430 properly outputting unwind information. */
16431 if (!saving_GPRs_inline
)
16432 rs6000_frame_related (insn
, frame_reg_rtx
, offset
,
16433 NULL_RTX
, NULL_RTX
);
16437 if (saving_GPRs_inline
)
16439 for (i
= 0; i
< 32 - info
->first_gp_reg_save
; i
++)
16440 if (rs6000_reg_live_or_pic_offset_p (info
->first_gp_reg_save
+ i
))
16442 rtx reg
= gen_rtx_REG (reg_mode
, info
->first_gp_reg_save
+ i
);
16443 rtx offset
, addr
, mem
;
16445 /* We're doing all this to ensure that the offset fits into
16446 the immediate offset of 'evstdd'. */
16447 gcc_assert (SPE_CONST_OFFSET_OK (reg_size
* i
+ spe_offset
));
16449 offset
= GEN_INT (reg_size
* i
+ spe_offset
);
16450 addr
= gen_rtx_PLUS (Pmode
, spe_save_area_ptr
, offset
);
16451 mem
= gen_rtx_MEM (V2SImode
, addr
);
16453 insn
= emit_move_insn (mem
, reg
);
16455 rs6000_frame_related (insn
, spe_save_area_ptr
,
16456 info
->spe_gp_save_offset
16457 + sp_offset
+ reg_size
* i
,
16458 offset
, const0_rtx
);
16465 par
= rs6000_make_savres_rtx (info
, gen_rtx_REG (Pmode
, 11),
16467 /*savep=*/true, /*gpr=*/true,
16469 insn
= emit_insn (par
);
16470 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16471 NULL_RTX
, NULL_RTX
);
16475 /* Move the static chain pointer back. */
16476 if (using_static_chain_p
&& !spe_regs_addressable_via_sp
)
16477 emit_move_insn (gen_rtx_REG (Pmode
, 11), gen_rtx_REG (Pmode
, 0));
16479 else if (!WORLD_SAVE_P (info
) && !saving_GPRs_inline
)
16483 /* Need to adjust r11 if we saved any FPRs. */
16484 if (info
->first_fp_reg_save
!= 64)
16486 rtx r11
= gen_rtx_REG (reg_mode
, 11);
16487 rtx offset
= GEN_INT (info
->total_size
16488 + (-8 * (64-info
->first_fp_reg_save
)));
16489 rtx ptr_reg
= (sp_reg_rtx
== frame_reg_rtx
16490 ? sp_reg_rtx
: r11
);
16492 emit_insn (TARGET_32BIT
16493 ? gen_addsi3 (r11
, ptr_reg
, offset
)
16494 : gen_adddi3 (r11
, ptr_reg
, offset
));
16497 par
= rs6000_make_savres_rtx (info
, frame_reg_rtx
,
16498 info
->gp_save_offset
+ sp_offset
,
16500 /*savep=*/true, /*gpr=*/true,
16502 insn
= emit_insn (par
);
16503 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16504 NULL_RTX
, NULL_RTX
);
16506 else if (!WORLD_SAVE_P (info
) && using_store_multiple
)
16510 p
= rtvec_alloc (32 - info
->first_gp_reg_save
);
16511 for (i
= 0; i
< 32 - info
->first_gp_reg_save
; i
++)
16513 rtx addr
, reg
, mem
;
16514 reg
= gen_rtx_REG (reg_mode
, info
->first_gp_reg_save
+ i
);
16515 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16516 GEN_INT (info
->gp_save_offset
16519 mem
= gen_frame_mem (reg_mode
, addr
);
16521 RTVEC_ELT (p
, i
) = gen_rtx_SET (VOIDmode
, mem
, reg
);
16523 insn
= emit_insn (gen_rtx_PARALLEL (VOIDmode
, p
));
16524 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16525 NULL_RTX
, NULL_RTX
);
16527 else if (!WORLD_SAVE_P (info
))
16530 for (i
= 0; i
< 32 - info
->first_gp_reg_save
; i
++)
16531 if (rs6000_reg_live_or_pic_offset_p (info
->first_gp_reg_save
+ i
))
16533 rtx addr
, reg
, mem
;
16534 reg
= gen_rtx_REG (reg_mode
, info
->first_gp_reg_save
+ i
);
16536 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16537 GEN_INT (info
->gp_save_offset
16540 mem
= gen_frame_mem (reg_mode
, addr
);
16542 insn
= emit_move_insn (mem
, reg
);
16543 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16544 NULL_RTX
, NULL_RTX
);
16548 /* ??? There's no need to emit actual instructions here, but it's the
16549 easiest way to get the frame unwind information emitted. */
16550 if (crtl
->calls_eh_return
)
16552 unsigned int i
, regno
;
16554 /* In AIX ABI we need to pretend we save r2 here. */
16557 rtx addr
, reg
, mem
;
16559 reg
= gen_rtx_REG (reg_mode
, 2);
16560 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16561 GEN_INT (sp_offset
+ 5 * reg_size
));
16562 mem
= gen_frame_mem (reg_mode
, addr
);
16564 insn
= emit_move_insn (mem
, reg
);
16565 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16566 NULL_RTX
, NULL_RTX
);
16567 PATTERN (insn
) = gen_blockage ();
16572 regno
= EH_RETURN_DATA_REGNO (i
);
16573 if (regno
== INVALID_REGNUM
)
16576 emit_frame_save (frame_reg_rtx
, frame_ptr_rtx
, reg_mode
, regno
,
16577 info
->ehrd_offset
+ sp_offset
16578 + reg_size
* (int) i
,
16583 /* Save CR if we use any that must be preserved. */
16584 if (!WORLD_SAVE_P (info
) && info
->cr_save_p
)
16586 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16587 GEN_INT (info
->cr_save_offset
+ sp_offset
));
16588 rtx mem
= gen_frame_mem (SImode
, addr
);
16589 /* See the large comment above about why CR2_REGNO is used. */
16590 rtx magic_eh_cr_reg
= gen_rtx_REG (SImode
, CR2_REGNO
);
16592 /* If r12 was used to hold the original sp, copy cr into r0 now
16594 if (REGNO (frame_reg_rtx
) == 12)
16598 cr_save_rtx
= gen_rtx_REG (SImode
, 0);
16599 insn
= emit_insn (gen_movesi_from_cr (cr_save_rtx
));
16600 RTX_FRAME_RELATED_P (insn
) = 1;
16601 set
= gen_rtx_SET (VOIDmode
, cr_save_rtx
, magic_eh_cr_reg
);
16602 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR
,
16607 insn
= emit_move_insn (mem
, cr_save_rtx
);
16609 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16610 NULL_RTX
, NULL_RTX
);
16613 /* Update stack and set back pointer unless this is V.4,
16614 for which it was done previously. */
16615 if (!WORLD_SAVE_P (info
) && info
->push_p
16616 && !(DEFAULT_ABI
== ABI_V4
|| crtl
->calls_eh_return
))
16618 if (info
->total_size
< 32767)
16619 sp_offset
= info
->total_size
;
16621 frame_reg_rtx
= frame_ptr_rtx
;
16622 rs6000_emit_allocate_stack (info
->total_size
,
16623 (frame_reg_rtx
!= sp_reg_rtx
16624 && ((info
->altivec_size
!= 0)
16625 || (info
->vrsave_mask
!= 0)
16628 if (frame_reg_rtx
!= sp_reg_rtx
)
16629 rs6000_emit_stack_tie ();
16632 /* Set frame pointer, if needed. */
16633 if (frame_pointer_needed
)
16635 insn
= emit_move_insn (gen_rtx_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
),
16637 RTX_FRAME_RELATED_P (insn
) = 1;
16640 /* Save AltiVec registers if needed. Save here because the red zone does
16641 not include AltiVec registers. */
16642 if (!WORLD_SAVE_P (info
) && TARGET_ALTIVEC_ABI
&& info
->altivec_size
!= 0)
16646 /* There should be a non inline version of this, for when we
16647 are saving lots of vector registers. */
16648 for (i
= info
->first_altivec_reg_save
; i
<= LAST_ALTIVEC_REGNO
; ++i
)
16649 if (info
->vrsave_mask
& ALTIVEC_REG_BIT (i
))
16651 rtx areg
, savereg
, mem
;
16654 offset
= info
->altivec_save_offset
+ sp_offset
16655 + 16 * (i
- info
->first_altivec_reg_save
);
16657 savereg
= gen_rtx_REG (V4SImode
, i
);
16659 areg
= gen_rtx_REG (Pmode
, 0);
16660 emit_move_insn (areg
, GEN_INT (offset
));
16662 /* AltiVec addressing mode is [reg+reg]. */
16663 mem
= gen_frame_mem (V4SImode
,
16664 gen_rtx_PLUS (Pmode
, frame_reg_rtx
, areg
));
16666 insn
= emit_move_insn (mem
, savereg
);
16668 rs6000_frame_related (insn
, frame_ptr_rtx
, info
->total_size
,
16669 areg
, GEN_INT (offset
));
16673 /* VRSAVE is a bit vector representing which AltiVec registers
16674 are used. The OS uses this to determine which vector
16675 registers to save on a context switch. We need to save
16676 VRSAVE on the stack frame, add whatever AltiVec registers we
16677 used in this function, and do the corresponding magic in the
16680 if (TARGET_ALTIVEC
&& TARGET_ALTIVEC_VRSAVE
16681 && info
->vrsave_mask
!= 0)
16683 rtx reg
, mem
, vrsave
;
16686 /* Get VRSAVE onto a GPR. Note that ABI_V4 might be using r12
16687 as frame_reg_rtx and r11 as the static chain pointer for
16688 nested functions. */
16689 reg
= gen_rtx_REG (SImode
, 0);
16690 vrsave
= gen_rtx_REG (SImode
, VRSAVE_REGNO
);
16692 emit_insn (gen_get_vrsave_internal (reg
));
16694 emit_insn (gen_rtx_SET (VOIDmode
, reg
, vrsave
));
16696 if (!WORLD_SAVE_P (info
))
16699 offset
= info
->vrsave_save_offset
+ sp_offset
;
16700 mem
= gen_frame_mem (SImode
,
16701 gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16702 GEN_INT (offset
)));
16703 insn
= emit_move_insn (mem
, reg
);
16706 /* Include the registers in the mask. */
16707 emit_insn (gen_iorsi3 (reg
, reg
, GEN_INT ((int) info
->vrsave_mask
)));
16709 insn
= emit_insn (generate_set_vrsave (reg
, info
, 0));
16712 /* If we are using RS6000_PIC_OFFSET_TABLE_REGNUM, we need to set it up. */
16713 if ((TARGET_TOC
&& TARGET_MINIMAL_TOC
&& get_pool_size () != 0)
16714 || (DEFAULT_ABI
== ABI_V4
16715 && (flag_pic
== 1 || (flag_pic
&& TARGET_SECURE_PLT
))
16716 && df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM
)))
16718 /* If emit_load_toc_table will use the link register, we need to save
16719 it. We use R12 for this purpose because emit_load_toc_table
16720 can use register 0. This allows us to use a plain 'blr' to return
16721 from the procedure more often. */
16722 int save_LR_around_toc_setup
= (TARGET_ELF
16723 && DEFAULT_ABI
!= ABI_AIX
16725 && ! info
->lr_save_p
16726 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0);
16727 if (save_LR_around_toc_setup
)
16729 rtx lr
= gen_rtx_REG (Pmode
, LR_REGNO
);
16731 insn
= emit_move_insn (frame_ptr_rtx
, lr
);
16732 RTX_FRAME_RELATED_P (insn
) = 1;
16734 rs6000_emit_load_toc_table (TRUE
);
16736 insn
= emit_move_insn (lr
, frame_ptr_rtx
);
16737 RTX_FRAME_RELATED_P (insn
) = 1;
16740 rs6000_emit_load_toc_table (TRUE
);
16744 if (DEFAULT_ABI
== ABI_DARWIN
16745 && flag_pic
&& crtl
->uses_pic_offset_table
)
16747 rtx lr
= gen_rtx_REG (Pmode
, LR_REGNO
);
16748 rtx src
= gen_rtx_SYMBOL_REF (Pmode
, MACHOPIC_FUNCTION_BASE_NAME
);
16750 /* Save and restore LR locally around this call (in R0). */
16751 if (!info
->lr_save_p
)
16752 emit_move_insn (gen_rtx_REG (Pmode
, 0), lr
);
16754 emit_insn (gen_load_macho_picbase (src
));
16756 emit_move_insn (gen_rtx_REG (Pmode
,
16757 RS6000_PIC_OFFSET_TABLE_REGNUM
),
16760 if (!info
->lr_save_p
)
16761 emit_move_insn (lr
, gen_rtx_REG (Pmode
, 0));
16766 /* Write function prologue. */
16769 rs6000_output_function_prologue (FILE *file
,
16770 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
16772 rs6000_stack_t
*info
= rs6000_stack_info ();
16774 if (TARGET_DEBUG_STACK
)
16775 debug_stack_info (info
);
16777 /* Write .extern for any function we will call to save and restore
16779 if (info
->first_fp_reg_save
< 64
16780 && !FP_SAVE_INLINE (info
->first_fp_reg_save
))
16781 fprintf (file
, "\t.extern %s%d%s\n\t.extern %s%d%s\n",
16782 SAVE_FP_PREFIX
, info
->first_fp_reg_save
- 32, SAVE_FP_SUFFIX
,
16783 RESTORE_FP_PREFIX
, info
->first_fp_reg_save
- 32, RESTORE_FP_SUFFIX
);
16785 /* Write .extern for AIX common mode routines, if needed. */
16786 if (! TARGET_POWER
&& ! TARGET_POWERPC
&& ! common_mode_defined
)
16788 fputs ("\t.extern __mulh\n", file
);
16789 fputs ("\t.extern __mull\n", file
);
16790 fputs ("\t.extern __divss\n", file
);
16791 fputs ("\t.extern __divus\n", file
);
16792 fputs ("\t.extern __quoss\n", file
);
16793 fputs ("\t.extern __quous\n", file
);
16794 common_mode_defined
= 1;
16797 if (! HAVE_prologue
)
16801 /* A NOTE_INSN_DELETED is supposed to be at the start and end of
16802 the "toplevel" insn chain. */
16803 emit_note (NOTE_INSN_DELETED
);
16804 rs6000_emit_prologue ();
16805 emit_note (NOTE_INSN_DELETED
);
16807 /* Expand INSN_ADDRESSES so final() doesn't crash. */
16811 for (insn
= get_insns (); insn
!= 0; insn
= NEXT_INSN (insn
))
16813 INSN_ADDRESSES_NEW (insn
, addr
);
16818 if (TARGET_DEBUG_STACK
)
16819 debug_rtx_list (get_insns (), 100);
16820 final (get_insns (), file
, FALSE
);
16824 rs6000_pic_labelno
++;
16827 /* Non-zero if vmx regs are restored before the frame pop, zero if
16828 we restore after the pop when possible. */
16829 #define ALWAYS_RESTORE_ALTIVEC_BEFORE_POP 0
16831 /* Reload CR from REG. */
16834 rs6000_restore_saved_cr (rtx reg
, int using_mfcr_multiple
)
16839 if (using_mfcr_multiple
)
16841 for (i
= 0; i
< 8; i
++)
16842 if (df_regs_ever_live_p (CR0_REGNO
+i
) && ! call_used_regs
[CR0_REGNO
+i
])
16844 gcc_assert (count
);
16847 if (using_mfcr_multiple
&& count
> 1)
16852 p
= rtvec_alloc (count
);
16855 for (i
= 0; i
< 8; i
++)
16856 if (df_regs_ever_live_p (CR0_REGNO
+i
) && ! call_used_regs
[CR0_REGNO
+i
])
16858 rtvec r
= rtvec_alloc (2);
16859 RTVEC_ELT (r
, 0) = reg
;
16860 RTVEC_ELT (r
, 1) = GEN_INT (1 << (7-i
));
16861 RTVEC_ELT (p
, ndx
) =
16862 gen_rtx_SET (VOIDmode
, gen_rtx_REG (CCmode
, CR0_REGNO
+i
),
16863 gen_rtx_UNSPEC (CCmode
, r
, UNSPEC_MOVESI_TO_CR
));
16866 emit_insn (gen_rtx_PARALLEL (VOIDmode
, p
));
16867 gcc_assert (ndx
== count
);
16870 for (i
= 0; i
< 8; i
++)
16871 if (df_regs_ever_live_p (CR0_REGNO
+i
) && ! call_used_regs
[CR0_REGNO
+i
])
16873 emit_insn (gen_movsi_to_cr_one (gen_rtx_REG (CCmode
,
16879 /* Emit function epilogue as insns.
16881 At present, dwarf2out_frame_debug_expr doesn't understand
16882 register restores, so we don't bother setting RTX_FRAME_RELATED_P
16883 anywhere in the epilogue. Most of the insns below would in any case
16884 need special notes to explain where r11 is in relation to the stack. */
16887 rs6000_emit_epilogue (int sibcall
)
16889 rs6000_stack_t
*info
;
16890 int restoring_GPRs_inline
;
16891 int restoring_FPRs_inline
;
16892 int using_load_multiple
;
16893 int using_mtcr_multiple
;
16894 int use_backchain_to_restore_sp
;
16898 rtx sp_reg_rtx
= gen_rtx_REG (Pmode
, 1);
16899 rtx frame_reg_rtx
= sp_reg_rtx
;
16900 enum machine_mode reg_mode
= Pmode
;
16901 int reg_size
= TARGET_32BIT
? 4 : 8;
16904 info
= rs6000_stack_info ();
16906 if (TARGET_SPE_ABI
&& info
->spe_64bit_regs_used
!= 0)
16908 reg_mode
= V2SImode
;
16912 strategy
= rs6000_savres_strategy (info
, /*savep=*/false,
16913 /*static_chain_p=*/0, sibcall
);
16914 using_load_multiple
= strategy
& SAVRES_MULTIPLE
;
16915 restoring_FPRs_inline
= strategy
& SAVRES_INLINE_FPRS
;
16916 restoring_GPRs_inline
= strategy
& SAVRES_INLINE_GPRS
;
16917 using_mtcr_multiple
= (rs6000_cpu
== PROCESSOR_PPC601
16918 || rs6000_cpu
== PROCESSOR_PPC603
16919 || rs6000_cpu
== PROCESSOR_PPC750
16921 /* Restore via the backchain when we have a large frame, since this
16922 is more efficient than an addis, addi pair. The second condition
16923 here will not trigger at the moment; We don't actually need a
16924 frame pointer for alloca, but the generic parts of the compiler
16925 give us one anyway. */
16926 use_backchain_to_restore_sp
= (info
->total_size
> 32767
16927 || info
->total_size
16928 + (info
->lr_save_p
? info
->lr_save_offset
: 0)
16930 || (cfun
->calls_alloca
16931 && !frame_pointer_needed
));
16932 restore_lr
= (info
->lr_save_p
16933 && restoring_GPRs_inline
16934 && restoring_FPRs_inline
);
16936 if (WORLD_SAVE_P (info
))
16940 const char *alloc_rname
;
16943 /* eh_rest_world_r10 will return to the location saved in the LR
16944 stack slot (which is not likely to be our caller.)
16945 Input: R10 -- stack adjustment. Clobbers R0, R11, R12, R7, R8.
16946 rest_world is similar, except any R10 parameter is ignored.
16947 The exception-handling stuff that was here in 2.95 is no
16948 longer necessary. */
16952 + 32 - info
->first_gp_reg_save
16953 + LAST_ALTIVEC_REGNO
+ 1 - info
->first_altivec_reg_save
16954 + 63 + 1 - info
->first_fp_reg_save
);
16956 strcpy (rname
, ((crtl
->calls_eh_return
) ?
16957 "*eh_rest_world_r10" : "*rest_world"));
16958 alloc_rname
= ggc_strdup (rname
);
16961 RTVEC_ELT (p
, j
++) = gen_rtx_RETURN (VOIDmode
);
16962 RTVEC_ELT (p
, j
++) = gen_rtx_USE (VOIDmode
,
16963 gen_rtx_REG (Pmode
,
16966 = gen_rtx_USE (VOIDmode
, gen_rtx_SYMBOL_REF (Pmode
, alloc_rname
));
16967 /* The instruction pattern requires a clobber here;
16968 it is shared with the restVEC helper. */
16970 = gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (Pmode
, 11));
16973 /* CR register traditionally saved as CR2. */
16974 rtx reg
= gen_rtx_REG (reg_mode
, CR2_REGNO
);
16975 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16976 GEN_INT (info
->cr_save_offset
));
16977 rtx mem
= gen_frame_mem (reg_mode
, addr
);
16979 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, reg
, mem
);
16982 for (i
= 0; i
< 32 - info
->first_gp_reg_save
; i
++)
16984 rtx reg
= gen_rtx_REG (reg_mode
, info
->first_gp_reg_save
+ i
);
16985 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16986 GEN_INT (info
->gp_save_offset
16988 rtx mem
= gen_frame_mem (reg_mode
, addr
);
16990 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, reg
, mem
);
16992 for (i
= 0; info
->first_altivec_reg_save
+ i
<= LAST_ALTIVEC_REGNO
; i
++)
16994 rtx reg
= gen_rtx_REG (V4SImode
, info
->first_altivec_reg_save
+ i
);
16995 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
16996 GEN_INT (info
->altivec_save_offset
16998 rtx mem
= gen_frame_mem (V4SImode
, addr
);
17000 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, reg
, mem
);
17002 for (i
= 0; info
->first_fp_reg_save
+ i
<= 63; i
++)
17004 rtx reg
= gen_rtx_REG (((TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
)
17005 ? DFmode
: SFmode
),
17006 info
->first_fp_reg_save
+ i
);
17007 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
17008 GEN_INT (info
->fp_save_offset
17010 rtx mem
= gen_frame_mem (((TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
)
17011 ? DFmode
: SFmode
), addr
);
17013 RTVEC_ELT (p
, j
++) = gen_rtx_SET (VOIDmode
, reg
, mem
);
17016 = gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (Pmode
, 0));
17018 = gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (SImode
, 12));
17020 = gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (SImode
, 7));
17022 = gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (SImode
, 8));
17024 = gen_rtx_USE (VOIDmode
, gen_rtx_REG (SImode
, 10));
17025 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode
, p
));
17030 /* frame_reg_rtx + sp_offset points to the top of this stack frame. */
17032 sp_offset
= info
->total_size
;
17034 /* Restore AltiVec registers if we must do so before adjusting the
17036 if (TARGET_ALTIVEC_ABI
17037 && info
->altivec_size
!= 0
17038 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17039 || (DEFAULT_ABI
!= ABI_V4
17040 && info
->altivec_save_offset
< (TARGET_32BIT
? -220 : -288))))
17044 if (use_backchain_to_restore_sp
)
17046 frame_reg_rtx
= gen_rtx_REG (Pmode
, 11);
17047 emit_move_insn (frame_reg_rtx
,
17048 gen_rtx_MEM (Pmode
, sp_reg_rtx
));
17051 else if (frame_pointer_needed
)
17052 frame_reg_rtx
= hard_frame_pointer_rtx
;
17054 for (i
= info
->first_altivec_reg_save
; i
<= LAST_ALTIVEC_REGNO
; ++i
)
17055 if (info
->vrsave_mask
& ALTIVEC_REG_BIT (i
))
17057 rtx addr
, areg
, mem
;
17059 areg
= gen_rtx_REG (Pmode
, 0);
17061 (areg
, GEN_INT (info
->altivec_save_offset
17063 + 16 * (i
- info
->first_altivec_reg_save
)));
17065 /* AltiVec addressing mode is [reg+reg]. */
17066 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
, areg
);
17067 mem
= gen_frame_mem (V4SImode
, addr
);
17069 emit_move_insn (gen_rtx_REG (V4SImode
, i
), mem
);
17073 /* Restore VRSAVE if we must do so before adjusting the stack. */
17075 && TARGET_ALTIVEC_VRSAVE
17076 && info
->vrsave_mask
!= 0
17077 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17078 || (DEFAULT_ABI
!= ABI_V4
17079 && info
->vrsave_save_offset
< (TARGET_32BIT
? -220 : -288))))
17081 rtx addr
, mem
, reg
;
17083 if (frame_reg_rtx
== sp_reg_rtx
)
17085 if (use_backchain_to_restore_sp
)
17087 frame_reg_rtx
= gen_rtx_REG (Pmode
, 11);
17088 emit_move_insn (frame_reg_rtx
,
17089 gen_rtx_MEM (Pmode
, sp_reg_rtx
));
17092 else if (frame_pointer_needed
)
17093 frame_reg_rtx
= hard_frame_pointer_rtx
;
17096 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
17097 GEN_INT (info
->vrsave_save_offset
+ sp_offset
));
17098 mem
= gen_frame_mem (SImode
, addr
);
17099 reg
= gen_rtx_REG (SImode
, 12);
17100 emit_move_insn (reg
, mem
);
17102 emit_insn (generate_set_vrsave (reg
, info
, 1));
17105 /* If we have a large stack frame, restore the old stack pointer
17106 using the backchain. */
17107 if (use_backchain_to_restore_sp
)
17109 if (frame_reg_rtx
== sp_reg_rtx
)
17111 /* Under V.4, don't reset the stack pointer until after we're done
17112 loading the saved registers. */
17113 if (DEFAULT_ABI
== ABI_V4
)
17114 frame_reg_rtx
= gen_rtx_REG (Pmode
, 11);
17116 emit_move_insn (frame_reg_rtx
,
17117 gen_rtx_MEM (Pmode
, sp_reg_rtx
));
17120 else if (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17121 && DEFAULT_ABI
== ABI_V4
)
17122 /* frame_reg_rtx has been set up by the altivec restore. */
17126 emit_move_insn (sp_reg_rtx
, frame_reg_rtx
);
17127 frame_reg_rtx
= sp_reg_rtx
;
17130 /* If we have a frame pointer, we can restore the old stack pointer
17132 else if (frame_pointer_needed
)
17134 frame_reg_rtx
= sp_reg_rtx
;
17135 if (DEFAULT_ABI
== ABI_V4
)
17136 frame_reg_rtx
= gen_rtx_REG (Pmode
, 11);
17138 emit_insn (TARGET_32BIT
17139 ? gen_addsi3 (frame_reg_rtx
, hard_frame_pointer_rtx
,
17140 GEN_INT (info
->total_size
))
17141 : gen_adddi3 (frame_reg_rtx
, hard_frame_pointer_rtx
,
17142 GEN_INT (info
->total_size
)));
17145 else if (info
->push_p
17146 && DEFAULT_ABI
!= ABI_V4
17147 && !crtl
->calls_eh_return
)
17149 emit_insn (TARGET_32BIT
17150 ? gen_addsi3 (sp_reg_rtx
, sp_reg_rtx
,
17151 GEN_INT (info
->total_size
))
17152 : gen_adddi3 (sp_reg_rtx
, sp_reg_rtx
,
17153 GEN_INT (info
->total_size
)));
17157 /* Restore AltiVec registers if we have not done so already. */
17158 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17159 && TARGET_ALTIVEC_ABI
17160 && info
->altivec_size
!= 0
17161 && (DEFAULT_ABI
== ABI_V4
17162 || info
->altivec_save_offset
>= (TARGET_32BIT
? -220 : -288)))
17166 for (i
= info
->first_altivec_reg_save
; i
<= LAST_ALTIVEC_REGNO
; ++i
)
17167 if (info
->vrsave_mask
& ALTIVEC_REG_BIT (i
))
17169 rtx addr
, areg
, mem
;
17171 areg
= gen_rtx_REG (Pmode
, 0);
17173 (areg
, GEN_INT (info
->altivec_save_offset
17175 + 16 * (i
- info
->first_altivec_reg_save
)));
17177 /* AltiVec addressing mode is [reg+reg]. */
17178 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
, areg
);
17179 mem
= gen_frame_mem (V4SImode
, addr
);
17181 emit_move_insn (gen_rtx_REG (V4SImode
, i
), mem
);
17185 /* Restore VRSAVE if we have not done so already. */
17186 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17188 && TARGET_ALTIVEC_VRSAVE
17189 && info
->vrsave_mask
!= 0
17190 && (DEFAULT_ABI
== ABI_V4
17191 || info
->vrsave_save_offset
>= (TARGET_32BIT
? -220 : -288)))
17193 rtx addr
, mem
, reg
;
17195 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
17196 GEN_INT (info
->vrsave_save_offset
+ sp_offset
));
17197 mem
= gen_frame_mem (SImode
, addr
);
17198 reg
= gen_rtx_REG (SImode
, 12);
17199 emit_move_insn (reg
, mem
);
17201 emit_insn (generate_set_vrsave (reg
, info
, 1));
17204 /* Get the old lr if we saved it. If we are restoring registers
17205 out-of-line, then the out-of-line routines can do this for us. */
17208 rtx mem
= gen_frame_mem_offset (Pmode
, frame_reg_rtx
,
17209 info
->lr_save_offset
+ sp_offset
);
17211 emit_move_insn (gen_rtx_REG (Pmode
, 0), mem
);
17214 /* Get the old cr if we saved it. */
17215 if (info
->cr_save_p
)
17217 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
17218 GEN_INT (info
->cr_save_offset
+ sp_offset
));
17219 rtx mem
= gen_frame_mem (SImode
, addr
);
17221 emit_move_insn (gen_rtx_REG (SImode
, 12), mem
);
17224 /* Set LR here to try to overlap restores below. */
17226 emit_move_insn (gen_rtx_REG (Pmode
, LR_REGNO
),
17227 gen_rtx_REG (Pmode
, 0));
17229 /* Load exception handler data registers, if needed. */
17230 if (crtl
->calls_eh_return
)
17232 unsigned int i
, regno
;
17236 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
17237 GEN_INT (sp_offset
+ 5 * reg_size
));
17238 rtx mem
= gen_frame_mem (reg_mode
, addr
);
17240 emit_move_insn (gen_rtx_REG (reg_mode
, 2), mem
);
17247 regno
= EH_RETURN_DATA_REGNO (i
);
17248 if (regno
== INVALID_REGNUM
)
17251 mem
= gen_frame_mem_offset (reg_mode
, frame_reg_rtx
,
17252 info
->ehrd_offset
+ sp_offset
17253 + reg_size
* (int) i
);
17255 emit_move_insn (gen_rtx_REG (reg_mode
, regno
), mem
);
17259 /* Restore GPRs. This is done as a PARALLEL if we are using
17260 the load-multiple instructions. */
17262 && info
->spe_64bit_regs_used
!= 0
17263 && info
->first_gp_reg_save
!= 32)
17265 /* Determine whether we can address all of the registers that need
17266 to be saved with an offset from the stack pointer that fits in
17267 the small const field for SPE memory instructions. */
17268 int spe_regs_addressable_via_sp
17269 = (SPE_CONST_OFFSET_OK(info
->spe_gp_save_offset
+ sp_offset
17270 + (32 - info
->first_gp_reg_save
- 1) * reg_size
)
17271 && restoring_GPRs_inline
);
17274 if (spe_regs_addressable_via_sp
)
17275 spe_offset
= info
->spe_gp_save_offset
+ sp_offset
;
17278 rtx old_frame_reg_rtx
= frame_reg_rtx
;
17279 /* Make r11 point to the start of the SPE save area. We worried about
17280 not clobbering it when we were saving registers in the prologue.
17281 There's no need to worry here because the static chain is passed
17282 anew to every function. */
17283 int ool_adjust
= (restoring_GPRs_inline
17285 : (info
->first_gp_reg_save
17286 - (FIRST_SAVRES_REGISTER
+1))*8);
17288 if (frame_reg_rtx
== sp_reg_rtx
)
17289 frame_reg_rtx
= gen_rtx_REG (Pmode
, 11);
17290 emit_insn (gen_addsi3 (frame_reg_rtx
, old_frame_reg_rtx
,
17291 GEN_INT (info
->spe_gp_save_offset
17294 /* Keep the invariant that frame_reg_rtx + sp_offset points
17295 at the top of the stack frame. */
17296 sp_offset
= -info
->spe_gp_save_offset
;
17301 if (restoring_GPRs_inline
)
17303 for (i
= 0; i
< 32 - info
->first_gp_reg_save
; i
++)
17304 if (rs6000_reg_live_or_pic_offset_p (info
->first_gp_reg_save
+ i
))
17306 rtx offset
, addr
, mem
;
17308 /* We're doing all this to ensure that the immediate offset
17309 fits into the immediate field of 'evldd'. */
17310 gcc_assert (SPE_CONST_OFFSET_OK (spe_offset
+ reg_size
* i
));
17312 offset
= GEN_INT (spe_offset
+ reg_size
* i
);
17313 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
, offset
);
17314 mem
= gen_rtx_MEM (V2SImode
, addr
);
17316 emit_move_insn (gen_rtx_REG (reg_mode
, info
->first_gp_reg_save
+ i
),
17324 par
= rs6000_make_savres_rtx (info
, gen_rtx_REG (Pmode
, 11),
17326 /*savep=*/false, /*gpr=*/true,
17328 emit_jump_insn (par
);
17330 /* We don't want anybody else emitting things after we jumped
17335 else if (!restoring_GPRs_inline
)
17337 /* We are jumping to an out-of-line function. */
17338 bool can_use_exit
= info
->first_fp_reg_save
== 64;
17341 /* Emit stack reset code if we need it. */
17343 rs6000_emit_stack_reset (info
, sp_reg_rtx
, frame_reg_rtx
,
17344 sp_offset
, can_use_exit
);
17346 emit_insn (gen_addsi3 (gen_rtx_REG (Pmode
, 11),
17348 GEN_INT (sp_offset
- info
->fp_size
)));
17350 par
= rs6000_make_savres_rtx (info
, frame_reg_rtx
,
17351 info
->gp_save_offset
, reg_mode
,
17352 /*savep=*/false, /*gpr=*/true,
17353 /*exitp=*/can_use_exit
);
17357 if (info
->cr_save_p
)
17358 rs6000_restore_saved_cr (gen_rtx_REG (SImode
, 12),
17359 using_mtcr_multiple
);
17361 emit_jump_insn (par
);
17363 /* We don't want anybody else emitting things after we jumped
17370 else if (using_load_multiple
)
17373 p
= rtvec_alloc (32 - info
->first_gp_reg_save
);
17374 for (i
= 0; i
< 32 - info
->first_gp_reg_save
; i
++)
17376 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
17377 GEN_INT (info
->gp_save_offset
17380 rtx mem
= gen_frame_mem (reg_mode
, addr
);
17383 gen_rtx_SET (VOIDmode
,
17384 gen_rtx_REG (reg_mode
, info
->first_gp_reg_save
+ i
),
17387 emit_insn (gen_rtx_PARALLEL (VOIDmode
, p
));
17391 for (i
= 0; i
< 32 - info
->first_gp_reg_save
; i
++)
17392 if (rs6000_reg_live_or_pic_offset_p (info
->first_gp_reg_save
+ i
))
17394 rtx addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
17395 GEN_INT (info
->gp_save_offset
17398 rtx mem
= gen_frame_mem (reg_mode
, addr
);
17400 emit_move_insn (gen_rtx_REG (reg_mode
,
17401 info
->first_gp_reg_save
+ i
), mem
);
17405 /* Restore fpr's if we need to do it without calling a function. */
17406 if (restoring_FPRs_inline
)
17407 for (i
= 0; i
< 64 - info
->first_fp_reg_save
; i
++)
17408 if ((df_regs_ever_live_p (info
->first_fp_reg_save
+i
)
17409 && ! call_used_regs
[info
->first_fp_reg_save
+i
]))
17412 addr
= gen_rtx_PLUS (Pmode
, frame_reg_rtx
,
17413 GEN_INT (info
->fp_save_offset
17416 mem
= gen_frame_mem (((TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
)
17417 ? DFmode
: SFmode
), addr
);
17419 emit_move_insn (gen_rtx_REG (((TARGET_HARD_FLOAT
17420 && TARGET_DOUBLE_FLOAT
)
17421 ? DFmode
: SFmode
),
17422 info
->first_fp_reg_save
+ i
),
17426 /* If we saved cr, restore it here. Just those that were used. */
17427 if (info
->cr_save_p
)
17428 rs6000_restore_saved_cr (gen_rtx_REG (SImode
, 12), using_mtcr_multiple
);
17430 /* If this is V.4, unwind the stack pointer after all of the loads
17432 rs6000_emit_stack_reset (info
, sp_reg_rtx
, frame_reg_rtx
,
17433 sp_offset
, !restoring_FPRs_inline
);
17435 if (crtl
->calls_eh_return
)
17437 rtx sa
= EH_RETURN_STACKADJ_RTX
;
17438 emit_insn (TARGET_32BIT
17439 ? gen_addsi3 (sp_reg_rtx
, sp_reg_rtx
, sa
)
17440 : gen_adddi3 (sp_reg_rtx
, sp_reg_rtx
, sa
));
17446 if (! restoring_FPRs_inline
)
17447 p
= rtvec_alloc (4 + 64 - info
->first_fp_reg_save
);
17449 p
= rtvec_alloc (2);
17451 RTVEC_ELT (p
, 0) = gen_rtx_RETURN (VOIDmode
);
17452 RTVEC_ELT (p
, 1) = (restoring_FPRs_inline
17453 ? gen_rtx_USE (VOIDmode
, gen_rtx_REG (Pmode
, 65))
17454 : gen_rtx_CLOBBER (VOIDmode
,
17455 gen_rtx_REG (Pmode
, 65)));
17457 /* If we have to restore more than two FP registers, branch to the
17458 restore function. It will return to our caller. */
17459 if (! restoring_FPRs_inline
)
17464 sym
= rs6000_savres_routine_sym (info
,
17468 RTVEC_ELT (p
, 2) = gen_rtx_USE (VOIDmode
, sym
);
17469 RTVEC_ELT (p
, 3) = gen_rtx_USE (VOIDmode
,
17470 gen_rtx_REG (Pmode
, 11));
17471 for (i
= 0; i
< 64 - info
->first_fp_reg_save
; i
++)
17474 addr
= gen_rtx_PLUS (Pmode
, sp_reg_rtx
,
17475 GEN_INT (info
->fp_save_offset
+ 8*i
));
17476 mem
= gen_frame_mem (DFmode
, addr
);
17478 RTVEC_ELT (p
, i
+4) =
17479 gen_rtx_SET (VOIDmode
,
17480 gen_rtx_REG (DFmode
, info
->first_fp_reg_save
+ i
),
17485 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode
, p
));
17489 /* Write function epilogue. */
17492 rs6000_output_function_epilogue (FILE *file
,
17493 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
17495 if (! HAVE_epilogue
)
17497 rtx insn
= get_last_insn ();
17498 /* If the last insn was a BARRIER, we don't have to write anything except
17499 the trace table. */
17500 if (GET_CODE (insn
) == NOTE
)
17501 insn
= prev_nonnote_insn (insn
);
17502 if (insn
== 0 || GET_CODE (insn
) != BARRIER
)
17504 /* This is slightly ugly, but at least we don't have two
17505 copies of the epilogue-emitting code. */
17508 /* A NOTE_INSN_DELETED is supposed to be at the start
17509 and end of the "toplevel" insn chain. */
17510 emit_note (NOTE_INSN_DELETED
);
17511 rs6000_emit_epilogue (FALSE
);
17512 emit_note (NOTE_INSN_DELETED
);
17514 /* Expand INSN_ADDRESSES so final() doesn't crash. */
17518 for (insn
= get_insns (); insn
!= 0; insn
= NEXT_INSN (insn
))
17520 INSN_ADDRESSES_NEW (insn
, addr
);
17525 if (TARGET_DEBUG_STACK
)
17526 debug_rtx_list (get_insns (), 100);
17527 final (get_insns (), file
, FALSE
);
17533 macho_branch_islands ();
17534 /* Mach-O doesn't support labels at the end of objects, so if
17535 it looks like we might want one, insert a NOP. */
17537 rtx insn
= get_last_insn ();
17540 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_LABEL
)
17541 insn
= PREV_INSN (insn
);
17545 && NOTE_KIND (insn
) == NOTE_INSN_DELETED_LABEL
)))
17546 fputs ("\tnop\n", file
);
17550 /* Output a traceback table here. See /usr/include/sys/debug.h for info
17553 We don't output a traceback table if -finhibit-size-directive was
17554 used. The documentation for -finhibit-size-directive reads
17555 ``don't output a @code{.size} assembler directive, or anything
17556 else that would cause trouble if the function is split in the
17557 middle, and the two halves are placed at locations far apart in
17558 memory.'' The traceback table has this property, since it
17559 includes the offset from the start of the function to the
17560 traceback table itself.
17562 System V.4 Powerpc's (and the embedded ABI derived from it) use a
17563 different traceback table. */
17564 if (DEFAULT_ABI
== ABI_AIX
&& ! flag_inhibit_size_directive
17565 && rs6000_traceback
!= traceback_none
&& !cfun
->is_thunk
)
17567 const char *fname
= NULL
;
17568 const char *language_string
= lang_hooks
.name
;
17569 int fixed_parms
= 0, float_parms
= 0, parm_info
= 0;
17571 int optional_tbtab
;
17572 rs6000_stack_t
*info
= rs6000_stack_info ();
17574 if (rs6000_traceback
== traceback_full
)
17575 optional_tbtab
= 1;
17576 else if (rs6000_traceback
== traceback_part
)
17577 optional_tbtab
= 0;
17579 optional_tbtab
= !optimize_size
&& !TARGET_ELF
;
17581 if (optional_tbtab
)
17583 fname
= XSTR (XEXP (DECL_RTL (current_function_decl
), 0), 0);
17584 while (*fname
== '.') /* V.4 encodes . in the name */
17587 /* Need label immediately before tbtab, so we can compute
17588 its offset from the function start. */
17589 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file
, "LT");
17590 ASM_OUTPUT_LABEL (file
, fname
);
17593 /* The .tbtab pseudo-op can only be used for the first eight
17594 expressions, since it can't handle the possibly variable
17595 length fields that follow. However, if you omit the optional
17596 fields, the assembler outputs zeros for all optional fields
17597 anyways, giving each variable length field is minimum length
17598 (as defined in sys/debug.h). Thus we can not use the .tbtab
17599 pseudo-op at all. */
17601 /* An all-zero word flags the start of the tbtab, for debuggers
17602 that have to find it by searching forward from the entry
17603 point or from the current pc. */
17604 fputs ("\t.long 0\n", file
);
17606 /* Tbtab format type. Use format type 0. */
17607 fputs ("\t.byte 0,", file
);
17609 /* Language type. Unfortunately, there does not seem to be any
17610 official way to discover the language being compiled, so we
17611 use language_string.
17612 C is 0. Fortran is 1. Pascal is 2. Ada is 3. C++ is 9.
17613 Java is 13. Objective-C is 14. Objective-C++ isn't assigned
17614 a number, so for now use 9. */
17615 if (! strcmp (language_string
, "GNU C"))
17617 else if (! strcmp (language_string
, "GNU F77")
17618 || ! strcmp (language_string
, "GNU Fortran"))
17620 else if (! strcmp (language_string
, "GNU Pascal"))
17622 else if (! strcmp (language_string
, "GNU Ada"))
17624 else if (! strcmp (language_string
, "GNU C++")
17625 || ! strcmp (language_string
, "GNU Objective-C++"))
17627 else if (! strcmp (language_string
, "GNU Java"))
17629 else if (! strcmp (language_string
, "GNU Objective-C"))
17632 gcc_unreachable ();
17633 fprintf (file
, "%d,", i
);
17635 /* 8 single bit fields: global linkage (not set for C extern linkage,
17636 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
17637 from start of procedure stored in tbtab, internal function, function
17638 has controlled storage, function has no toc, function uses fp,
17639 function logs/aborts fp operations. */
17640 /* Assume that fp operations are used if any fp reg must be saved. */
17641 fprintf (file
, "%d,",
17642 (optional_tbtab
<< 5) | ((info
->first_fp_reg_save
!= 64) << 1));
17644 /* 6 bitfields: function is interrupt handler, name present in
17645 proc table, function calls alloca, on condition directives
17646 (controls stack walks, 3 bits), saves condition reg, saves
17648 /* The `function calls alloca' bit seems to be set whenever reg 31 is
17649 set up as a frame pointer, even when there is no alloca call. */
17650 fprintf (file
, "%d,",
17651 ((optional_tbtab
<< 6)
17652 | ((optional_tbtab
& frame_pointer_needed
) << 5)
17653 | (info
->cr_save_p
<< 1)
17654 | (info
->lr_save_p
)));
17656 /* 3 bitfields: saves backchain, fixup code, number of fpr saved
17658 fprintf (file
, "%d,",
17659 (info
->push_p
<< 7) | (64 - info
->first_fp_reg_save
));
17661 /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits). */
17662 fprintf (file
, "%d,", (32 - first_reg_to_save ()));
17664 if (optional_tbtab
)
17666 /* Compute the parameter info from the function decl argument
17669 int next_parm_info_bit
= 31;
17671 for (decl
= DECL_ARGUMENTS (current_function_decl
);
17672 decl
; decl
= TREE_CHAIN (decl
))
17674 rtx parameter
= DECL_INCOMING_RTL (decl
);
17675 enum machine_mode mode
= GET_MODE (parameter
);
17677 if (GET_CODE (parameter
) == REG
)
17679 if (SCALAR_FLOAT_MODE_P (mode
))
17700 gcc_unreachable ();
17703 /* If only one bit will fit, don't or in this entry. */
17704 if (next_parm_info_bit
> 0)
17705 parm_info
|= (bits
<< (next_parm_info_bit
- 1));
17706 next_parm_info_bit
-= 2;
17710 fixed_parms
+= ((GET_MODE_SIZE (mode
)
17711 + (UNITS_PER_WORD
- 1))
17713 next_parm_info_bit
-= 1;
17719 /* Number of fixed point parameters. */
17720 /* This is actually the number of words of fixed point parameters; thus
17721 an 8 byte struct counts as 2; and thus the maximum value is 8. */
17722 fprintf (file
, "%d,", fixed_parms
);
17724 /* 2 bitfields: number of floating point parameters (7 bits), parameters
17726 /* This is actually the number of fp registers that hold parameters;
17727 and thus the maximum value is 13. */
17728 /* Set parameters on stack bit if parameters are not in their original
17729 registers, regardless of whether they are on the stack? Xlc
17730 seems to set the bit when not optimizing. */
17731 fprintf (file
, "%d\n", ((float_parms
<< 1) | (! optimize
)));
17733 if (! optional_tbtab
)
17736 /* Optional fields follow. Some are variable length. */
17738 /* Parameter types, left adjusted bit fields: 0 fixed, 10 single float,
17739 11 double float. */
17740 /* There is an entry for each parameter in a register, in the order that
17741 they occur in the parameter list. Any intervening arguments on the
17742 stack are ignored. If the list overflows a long (max possible length
17743 34 bits) then completely leave off all elements that don't fit. */
17744 /* Only emit this long if there was at least one parameter. */
17745 if (fixed_parms
|| float_parms
)
17746 fprintf (file
, "\t.long %d\n", parm_info
);
17748 /* Offset from start of code to tb table. */
17749 fputs ("\t.long ", file
);
17750 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file
, "LT");
17752 RS6000_OUTPUT_BASENAME (file
, fname
);
17754 assemble_name (file
, fname
);
17756 rs6000_output_function_entry (file
, fname
);
17759 /* Interrupt handler mask. */
17760 /* Omit this long, since we never set the interrupt handler bit
17763 /* Number of CTL (controlled storage) anchors. */
17764 /* Omit this long, since the has_ctl bit is never set above. */
17766 /* Displacement into stack of each CTL anchor. */
17767 /* Omit this list of longs, because there are no CTL anchors. */
17769 /* Length of function name. */
17772 fprintf (file
, "\t.short %d\n", (int) strlen (fname
));
17774 /* Function name. */
17775 assemble_string (fname
, strlen (fname
));
17777 /* Register for alloca automatic storage; this is always reg 31.
17778 Only emit this if the alloca bit was set above. */
17779 if (frame_pointer_needed
)
17780 fputs ("\t.byte 31\n", file
);
17782 fputs ("\t.align 2\n", file
);
17786 /* A C compound statement that outputs the assembler code for a thunk
17787 function, used to implement C++ virtual function calls with
17788 multiple inheritance. The thunk acts as a wrapper around a virtual
17789 function, adjusting the implicit object parameter before handing
17790 control off to the real function.
17792 First, emit code to add the integer DELTA to the location that
17793 contains the incoming first argument. Assume that this argument
17794 contains a pointer, and is the one used to pass the `this' pointer
17795 in C++. This is the incoming argument *before* the function
17796 prologue, e.g. `%o0' on a sparc. The addition must preserve the
17797 values of all other incoming arguments.
17799 After the addition, emit code to jump to FUNCTION, which is a
17800 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does
17801 not touch the return address. Hence returning from FUNCTION will
17802 return to whoever called the current `thunk'.
17804 The effect must be as if FUNCTION had been called directly with the
17805 adjusted first argument. This macro is responsible for emitting
17806 all of the code for a thunk function; output_function_prologue()
17807 and output_function_epilogue() are not invoked.
17809 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
17810 been extracted from it.) It might possibly be useful on some
17811 targets, but probably not.
17813 If you do not define this macro, the target-independent code in the
17814 C++ frontend will generate a less efficient heavyweight thunk that
17815 calls FUNCTION instead of jumping to it. The generic approach does
17816 not support varargs. */
17819 rs6000_output_mi_thunk (FILE *file
, tree thunk_fndecl ATTRIBUTE_UNUSED
,
17820 HOST_WIDE_INT delta
, HOST_WIDE_INT vcall_offset
,
17823 rtx this_rtx
, insn
, funexp
;
17825 reload_completed
= 1;
17826 epilogue_completed
= 1;
17828 /* Mark the end of the (empty) prologue. */
17829 emit_note (NOTE_INSN_PROLOGUE_END
);
17831 /* Find the "this" pointer. If the function returns a structure,
17832 the structure return pointer is in r3. */
17833 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function
)), function
))
17834 this_rtx
= gen_rtx_REG (Pmode
, 4);
17836 this_rtx
= gen_rtx_REG (Pmode
, 3);
17838 /* Apply the constant offset, if required. */
17841 rtx delta_rtx
= GEN_INT (delta
);
17842 emit_insn (TARGET_32BIT
17843 ? gen_addsi3 (this_rtx
, this_rtx
, delta_rtx
)
17844 : gen_adddi3 (this_rtx
, this_rtx
, delta_rtx
));
17847 /* Apply the offset from the vtable, if required. */
17850 rtx vcall_offset_rtx
= GEN_INT (vcall_offset
);
17851 rtx tmp
= gen_rtx_REG (Pmode
, 12);
17853 emit_move_insn (tmp
, gen_rtx_MEM (Pmode
, this_rtx
));
17854 if (((unsigned HOST_WIDE_INT
) vcall_offset
) + 0x8000 >= 0x10000)
17856 emit_insn (TARGET_32BIT
17857 ? gen_addsi3 (tmp
, tmp
, vcall_offset_rtx
)
17858 : gen_adddi3 (tmp
, tmp
, vcall_offset_rtx
));
17859 emit_move_insn (tmp
, gen_rtx_MEM (Pmode
, tmp
));
17863 rtx loc
= gen_rtx_PLUS (Pmode
, tmp
, vcall_offset_rtx
);
17865 emit_move_insn (tmp
, gen_rtx_MEM (Pmode
, loc
));
17867 emit_insn (TARGET_32BIT
17868 ? gen_addsi3 (this_rtx
, this_rtx
, tmp
)
17869 : gen_adddi3 (this_rtx
, this_rtx
, tmp
));
17872 /* Generate a tail call to the target function. */
17873 if (!TREE_USED (function
))
17875 assemble_external (function
);
17876 TREE_USED (function
) = 1;
17878 funexp
= XEXP (DECL_RTL (function
), 0);
17879 funexp
= gen_rtx_MEM (FUNCTION_MODE
, funexp
);
17882 if (MACHOPIC_INDIRECT
)
17883 funexp
= machopic_indirect_call_target (funexp
);
17886 /* gen_sibcall expects reload to convert scratch pseudo to LR so we must
17887 generate sibcall RTL explicitly. */
17888 insn
= emit_call_insn (
17889 gen_rtx_PARALLEL (VOIDmode
,
17891 gen_rtx_CALL (VOIDmode
,
17892 funexp
, const0_rtx
),
17893 gen_rtx_USE (VOIDmode
, const0_rtx
),
17894 gen_rtx_USE (VOIDmode
,
17895 gen_rtx_REG (SImode
,
17897 gen_rtx_RETURN (VOIDmode
))));
17898 SIBLING_CALL_P (insn
) = 1;
17901 /* Run just enough of rest_of_compilation to get the insns emitted.
17902 There's not really enough bulk here to make other passes such as
17903 instruction scheduling worth while. Note that use_thunk calls
17904 assemble_start_function and assemble_end_function. */
17905 insn
= get_insns ();
17906 insn_locators_alloc ();
17907 shorten_branches (insn
);
17908 final_start_function (insn
, file
, 1);
17909 final (insn
, file
, 1);
17910 final_end_function ();
17911 free_after_compilation (cfun
);
17913 reload_completed
= 0;
17914 epilogue_completed
= 0;
17917 /* A quick summary of the various types of 'constant-pool tables'
17920 Target Flags Name One table per
17921 AIX (none) AIX TOC object file
17922 AIX -mfull-toc AIX TOC object file
17923 AIX -mminimal-toc AIX minimal TOC translation unit
17924 SVR4/EABI (none) SVR4 SDATA object file
17925 SVR4/EABI -fpic SVR4 pic object file
17926 SVR4/EABI -fPIC SVR4 PIC translation unit
17927 SVR4/EABI -mrelocatable EABI TOC function
17928 SVR4/EABI -maix AIX TOC object file
17929 SVR4/EABI -maix -mminimal-toc
17930 AIX minimal TOC translation unit
17932 Name Reg. Set by entries contains:
17933 made by addrs? fp? sum?
17935 AIX TOC 2 crt0 as Y option option
17936 AIX minimal TOC 30 prolog gcc Y Y option
17937 SVR4 SDATA 13 crt0 gcc N Y N
17938 SVR4 pic 30 prolog ld Y not yet N
17939 SVR4 PIC 30 prolog gcc Y option option
17940 EABI TOC 30 prolog gcc Y option option
17944 /* Hash functions for the hash table. */
17947 rs6000_hash_constant (rtx k
)
17949 enum rtx_code code
= GET_CODE (k
);
17950 enum machine_mode mode
= GET_MODE (k
);
17951 unsigned result
= (code
<< 3) ^ mode
;
17952 const char *format
;
17955 format
= GET_RTX_FORMAT (code
);
17956 flen
= strlen (format
);
17962 return result
* 1231 + (unsigned) INSN_UID (XEXP (k
, 0));
17965 if (mode
!= VOIDmode
)
17966 return real_hash (CONST_DOUBLE_REAL_VALUE (k
)) * result
;
17978 for (; fidx
< flen
; fidx
++)
17979 switch (format
[fidx
])
17984 const char *str
= XSTR (k
, fidx
);
17985 len
= strlen (str
);
17986 result
= result
* 613 + len
;
17987 for (i
= 0; i
< len
; i
++)
17988 result
= result
* 613 + (unsigned) str
[i
];
17993 result
= result
* 1231 + rs6000_hash_constant (XEXP (k
, fidx
));
17997 result
= result
* 613 + (unsigned) XINT (k
, fidx
);
18000 if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT
))
18001 result
= result
* 613 + (unsigned) XWINT (k
, fidx
);
18005 for (i
= 0; i
< sizeof (HOST_WIDE_INT
) / sizeof (unsigned); i
++)
18006 result
= result
* 613 + (unsigned) (XWINT (k
, fidx
)
18013 gcc_unreachable ();
18020 toc_hash_function (const void *hash_entry
)
18022 const struct toc_hash_struct
*thc
=
18023 (const struct toc_hash_struct
*) hash_entry
;
18024 return rs6000_hash_constant (thc
->key
) ^ thc
->key_mode
;
18027 /* Compare H1 and H2 for equivalence. */
18030 toc_hash_eq (const void *h1
, const void *h2
)
18032 rtx r1
= ((const struct toc_hash_struct
*) h1
)->key
;
18033 rtx r2
= ((const struct toc_hash_struct
*) h2
)->key
;
18035 if (((const struct toc_hash_struct
*) h1
)->key_mode
18036 != ((const struct toc_hash_struct
*) h2
)->key_mode
)
18039 return rtx_equal_p (r1
, r2
);
18042 /* These are the names given by the C++ front-end to vtables, and
18043 vtable-like objects. Ideally, this logic should not be here;
18044 instead, there should be some programmatic way of inquiring as
18045 to whether or not an object is a vtable. */
18047 #define VTABLE_NAME_P(NAME) \
18048 (strncmp ("_vt.", name, strlen ("_vt.")) == 0 \
18049 || strncmp ("_ZTV", name, strlen ("_ZTV")) == 0 \
18050 || strncmp ("_ZTT", name, strlen ("_ZTT")) == 0 \
18051 || strncmp ("_ZTI", name, strlen ("_ZTI")) == 0 \
18052 || strncmp ("_ZTC", name, strlen ("_ZTC")) == 0)
18054 #ifdef NO_DOLLAR_IN_LABEL
18055 /* Return a GGC-allocated character string translating dollar signs in
18056 input NAME to underscores. Used by XCOFF ASM_OUTPUT_LABELREF. */
18059 rs6000_xcoff_strip_dollar (const char *name
)
18064 p
= strchr (name
, '$');
18066 if (p
== 0 || p
== name
)
18069 len
= strlen (name
);
18070 strip
= (char *) alloca (len
+ 1);
18071 strcpy (strip
, name
);
18072 p
= strchr (strip
, '$');
18076 p
= strchr (p
+ 1, '$');
18079 return ggc_alloc_string (strip
, len
);
18084 rs6000_output_symbol_ref (FILE *file
, rtx x
)
18086 /* Currently C++ toc references to vtables can be emitted before it
18087 is decided whether the vtable is public or private. If this is
18088 the case, then the linker will eventually complain that there is
18089 a reference to an unknown section. Thus, for vtables only,
18090 we emit the TOC reference to reference the symbol and not the
18092 const char *name
= XSTR (x
, 0);
18094 if (VTABLE_NAME_P (name
))
18096 RS6000_OUTPUT_BASENAME (file
, name
);
18099 assemble_name (file
, name
);
18102 /* Output a TOC entry. We derive the entry name from what is being
18106 output_toc (FILE *file
, rtx x
, int labelno
, enum machine_mode mode
)
18109 const char *name
= buf
;
18111 HOST_WIDE_INT offset
= 0;
18113 gcc_assert (!TARGET_NO_TOC
);
18115 /* When the linker won't eliminate them, don't output duplicate
18116 TOC entries (this happens on AIX if there is any kind of TOC,
18117 and on SVR4 under -fPIC or -mrelocatable). Don't do this for
18119 if (TARGET_TOC
&& GET_CODE (x
) != LABEL_REF
)
18121 struct toc_hash_struct
*h
;
18124 /* Create toc_hash_table. This can't be done at OVERRIDE_OPTIONS
18125 time because GGC is not initialized at that point. */
18126 if (toc_hash_table
== NULL
)
18127 toc_hash_table
= htab_create_ggc (1021, toc_hash_function
,
18128 toc_hash_eq
, NULL
);
18130 h
= GGC_NEW (struct toc_hash_struct
);
18132 h
->key_mode
= mode
;
18133 h
->labelno
= labelno
;
18135 found
= htab_find_slot (toc_hash_table
, h
, 1);
18136 if (*found
== NULL
)
18138 else /* This is indeed a duplicate.
18139 Set this label equal to that label. */
18141 fputs ("\t.set ", file
);
18142 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file
, "LC");
18143 fprintf (file
, "%d,", labelno
);
18144 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file
, "LC");
18145 fprintf (file
, "%d\n", ((*(const struct toc_hash_struct
**)
18151 /* If we're going to put a double constant in the TOC, make sure it's
18152 aligned properly when strict alignment is on. */
18153 if (GET_CODE (x
) == CONST_DOUBLE
18154 && STRICT_ALIGNMENT
18155 && GET_MODE_BITSIZE (mode
) >= 64
18156 && ! (TARGET_NO_FP_IN_TOC
&& ! TARGET_MINIMAL_TOC
)) {
18157 ASM_OUTPUT_ALIGN (file
, 3);
18160 (*targetm
.asm_out
.internal_label
) (file
, "LC", labelno
);
18162 /* Handle FP constants specially. Note that if we have a minimal
18163 TOC, things we put here aren't actually in the TOC, so we can allow
18165 if (GET_CODE (x
) == CONST_DOUBLE
&&
18166 (GET_MODE (x
) == TFmode
|| GET_MODE (x
) == TDmode
))
18168 REAL_VALUE_TYPE rv
;
18171 REAL_VALUE_FROM_CONST_DOUBLE (rv
, x
);
18172 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x
)))
18173 REAL_VALUE_TO_TARGET_DECIMAL128 (rv
, k
);
18175 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, k
);
18179 if (TARGET_MINIMAL_TOC
)
18180 fputs (DOUBLE_INT_ASM_OP
, file
);
18182 fprintf (file
, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
18183 k
[0] & 0xffffffff, k
[1] & 0xffffffff,
18184 k
[2] & 0xffffffff, k
[3] & 0xffffffff);
18185 fprintf (file
, "0x%lx%08lx,0x%lx%08lx\n",
18186 k
[0] & 0xffffffff, k
[1] & 0xffffffff,
18187 k
[2] & 0xffffffff, k
[3] & 0xffffffff);
18192 if (TARGET_MINIMAL_TOC
)
18193 fputs ("\t.long ", file
);
18195 fprintf (file
, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
18196 k
[0] & 0xffffffff, k
[1] & 0xffffffff,
18197 k
[2] & 0xffffffff, k
[3] & 0xffffffff);
18198 fprintf (file
, "0x%lx,0x%lx,0x%lx,0x%lx\n",
18199 k
[0] & 0xffffffff, k
[1] & 0xffffffff,
18200 k
[2] & 0xffffffff, k
[3] & 0xffffffff);
18204 else if (GET_CODE (x
) == CONST_DOUBLE
&&
18205 (GET_MODE (x
) == DFmode
|| GET_MODE (x
) == DDmode
))
18207 REAL_VALUE_TYPE rv
;
18210 REAL_VALUE_FROM_CONST_DOUBLE (rv
, x
);
18212 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x
)))
18213 REAL_VALUE_TO_TARGET_DECIMAL64 (rv
, k
);
18215 REAL_VALUE_TO_TARGET_DOUBLE (rv
, k
);
18219 if (TARGET_MINIMAL_TOC
)
18220 fputs (DOUBLE_INT_ASM_OP
, file
);
18222 fprintf (file
, "\t.tc FD_%lx_%lx[TC],",
18223 k
[0] & 0xffffffff, k
[1] & 0xffffffff);
18224 fprintf (file
, "0x%lx%08lx\n",
18225 k
[0] & 0xffffffff, k
[1] & 0xffffffff);
18230 if (TARGET_MINIMAL_TOC
)
18231 fputs ("\t.long ", file
);
18233 fprintf (file
, "\t.tc FD_%lx_%lx[TC],",
18234 k
[0] & 0xffffffff, k
[1] & 0xffffffff);
18235 fprintf (file
, "0x%lx,0x%lx\n",
18236 k
[0] & 0xffffffff, k
[1] & 0xffffffff);
18240 else if (GET_CODE (x
) == CONST_DOUBLE
&&
18241 (GET_MODE (x
) == SFmode
|| GET_MODE (x
) == SDmode
))
18243 REAL_VALUE_TYPE rv
;
18246 REAL_VALUE_FROM_CONST_DOUBLE (rv
, x
);
18247 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x
)))
18248 REAL_VALUE_TO_TARGET_DECIMAL32 (rv
, l
);
18250 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
18254 if (TARGET_MINIMAL_TOC
)
18255 fputs (DOUBLE_INT_ASM_OP
, file
);
18257 fprintf (file
, "\t.tc FS_%lx[TC],", l
& 0xffffffff);
18258 fprintf (file
, "0x%lx00000000\n", l
& 0xffffffff);
18263 if (TARGET_MINIMAL_TOC
)
18264 fputs ("\t.long ", file
);
18266 fprintf (file
, "\t.tc FS_%lx[TC],", l
& 0xffffffff);
18267 fprintf (file
, "0x%lx\n", l
& 0xffffffff);
18271 else if (GET_MODE (x
) == VOIDmode
18272 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
))
18274 unsigned HOST_WIDE_INT low
;
18275 HOST_WIDE_INT high
;
18277 if (GET_CODE (x
) == CONST_DOUBLE
)
18279 low
= CONST_DOUBLE_LOW (x
);
18280 high
= CONST_DOUBLE_HIGH (x
);
18283 #if HOST_BITS_PER_WIDE_INT == 32
18286 high
= (low
& 0x80000000) ? ~0 : 0;
18290 low
= INTVAL (x
) & 0xffffffff;
18291 high
= (HOST_WIDE_INT
) INTVAL (x
) >> 32;
18295 /* TOC entries are always Pmode-sized, but since this
18296 is a bigendian machine then if we're putting smaller
18297 integer constants in the TOC we have to pad them.
18298 (This is still a win over putting the constants in
18299 a separate constant pool, because then we'd have
18300 to have both a TOC entry _and_ the actual constant.)
18302 For a 32-bit target, CONST_INT values are loaded and shifted
18303 entirely within `low' and can be stored in one TOC entry. */
18305 /* It would be easy to make this work, but it doesn't now. */
18306 gcc_assert (!TARGET_64BIT
|| POINTER_SIZE
>= GET_MODE_BITSIZE (mode
));
18308 if (POINTER_SIZE
> GET_MODE_BITSIZE (mode
))
18310 #if HOST_BITS_PER_WIDE_INT == 32
18311 lshift_double (low
, high
, POINTER_SIZE
- GET_MODE_BITSIZE (mode
),
18312 POINTER_SIZE
, &low
, &high
, 0);
18315 low
<<= POINTER_SIZE
- GET_MODE_BITSIZE (mode
);
18316 high
= (HOST_WIDE_INT
) low
>> 32;
18323 if (TARGET_MINIMAL_TOC
)
18324 fputs (DOUBLE_INT_ASM_OP
, file
);
18326 fprintf (file
, "\t.tc ID_%lx_%lx[TC],",
18327 (long) high
& 0xffffffff, (long) low
& 0xffffffff);
18328 fprintf (file
, "0x%lx%08lx\n",
18329 (long) high
& 0xffffffff, (long) low
& 0xffffffff);
18334 if (POINTER_SIZE
< GET_MODE_BITSIZE (mode
))
18336 if (TARGET_MINIMAL_TOC
)
18337 fputs ("\t.long ", file
);
18339 fprintf (file
, "\t.tc ID_%lx_%lx[TC],",
18340 (long) high
& 0xffffffff, (long) low
& 0xffffffff);
18341 fprintf (file
, "0x%lx,0x%lx\n",
18342 (long) high
& 0xffffffff, (long) low
& 0xffffffff);
18346 if (TARGET_MINIMAL_TOC
)
18347 fputs ("\t.long ", file
);
18349 fprintf (file
, "\t.tc IS_%lx[TC],", (long) low
& 0xffffffff);
18350 fprintf (file
, "0x%lx\n", (long) low
& 0xffffffff);
18356 if (GET_CODE (x
) == CONST
)
18358 gcc_assert (GET_CODE (XEXP (x
, 0)) == PLUS
);
18360 base
= XEXP (XEXP (x
, 0), 0);
18361 offset
= INTVAL (XEXP (XEXP (x
, 0), 1));
18364 switch (GET_CODE (base
))
18367 name
= XSTR (base
, 0);
18371 ASM_GENERATE_INTERNAL_LABEL (buf
, "L",
18372 CODE_LABEL_NUMBER (XEXP (base
, 0)));
18376 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (base
));
18380 gcc_unreachable ();
18383 if (TARGET_MINIMAL_TOC
)
18384 fputs (TARGET_32BIT
? "\t.long " : DOUBLE_INT_ASM_OP
, file
);
18387 fputs ("\t.tc ", file
);
18388 RS6000_OUTPUT_BASENAME (file
, name
);
18391 fprintf (file
, ".N" HOST_WIDE_INT_PRINT_UNSIGNED
, - offset
);
18393 fprintf (file
, ".P" HOST_WIDE_INT_PRINT_UNSIGNED
, offset
);
18395 fputs ("[TC],", file
);
18398 /* Currently C++ toc references to vtables can be emitted before it
18399 is decided whether the vtable is public or private. If this is
18400 the case, then the linker will eventually complain that there is
18401 a TOC reference to an unknown section. Thus, for vtables only,
18402 we emit the TOC reference to reference the symbol and not the
18404 if (VTABLE_NAME_P (name
))
18406 RS6000_OUTPUT_BASENAME (file
, name
);
18408 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, offset
);
18409 else if (offset
> 0)
18410 fprintf (file
, "+" HOST_WIDE_INT_PRINT_DEC
, offset
);
18413 output_addr_const (file
, x
);
18417 /* Output an assembler pseudo-op to write an ASCII string of N characters
18418 starting at P to FILE.
18420 On the RS/6000, we have to do this using the .byte operation and
18421 write out special characters outside the quoted string.
18422 Also, the assembler is broken; very long strings are truncated,
18423 so we must artificially break them up early. */
18426 output_ascii (FILE *file
, const char *p
, int n
)
18429 int i
, count_string
;
18430 const char *for_string
= "\t.byte \"";
18431 const char *for_decimal
= "\t.byte ";
18432 const char *to_close
= NULL
;
18435 for (i
= 0; i
< n
; i
++)
18438 if (c
>= ' ' && c
< 0177)
18441 fputs (for_string
, file
);
18444 /* Write two quotes to get one. */
18452 for_decimal
= "\"\n\t.byte ";
18456 if (count_string
>= 512)
18458 fputs (to_close
, file
);
18460 for_string
= "\t.byte \"";
18461 for_decimal
= "\t.byte ";
18469 fputs (for_decimal
, file
);
18470 fprintf (file
, "%d", c
);
18472 for_string
= "\n\t.byte \"";
18473 for_decimal
= ", ";
18479 /* Now close the string if we have written one. Then end the line. */
18481 fputs (to_close
, file
);
18484 /* Generate a unique section name for FILENAME for a section type
18485 represented by SECTION_DESC. Output goes into BUF.
18487 SECTION_DESC can be any string, as long as it is different for each
18488 possible section type.
18490 We name the section in the same manner as xlc. The name begins with an
18491 underscore followed by the filename (after stripping any leading directory
18492 names) with the last period replaced by the string SECTION_DESC. If
18493 FILENAME does not contain a period, SECTION_DESC is appended to the end of
18497 rs6000_gen_section_name (char **buf
, const char *filename
,
18498 const char *section_desc
)
18500 const char *q
, *after_last_slash
, *last_period
= 0;
18504 after_last_slash
= filename
;
18505 for (q
= filename
; *q
; q
++)
18508 after_last_slash
= q
+ 1;
18509 else if (*q
== '.')
18513 len
= strlen (after_last_slash
) + strlen (section_desc
) + 2;
18514 *buf
= (char *) xmalloc (len
);
18519 for (q
= after_last_slash
; *q
; q
++)
18521 if (q
== last_period
)
18523 strcpy (p
, section_desc
);
18524 p
+= strlen (section_desc
);
18528 else if (ISALNUM (*q
))
18532 if (last_period
== 0)
18533 strcpy (p
, section_desc
);
18538 /* Emit profile function. */
18541 output_profile_hook (int labelno ATTRIBUTE_UNUSED
)
18543 /* Non-standard profiling for kernels, which just saves LR then calls
18544 _mcount without worrying about arg saves. The idea is to change
18545 the function prologue as little as possible as it isn't easy to
18546 account for arg save/restore code added just for _mcount. */
18547 if (TARGET_PROFILE_KERNEL
)
18550 if (DEFAULT_ABI
== ABI_AIX
)
18552 #ifndef NO_PROFILE_COUNTERS
18553 # define NO_PROFILE_COUNTERS 0
18555 if (NO_PROFILE_COUNTERS
)
18556 emit_library_call (init_one_libfunc (RS6000_MCOUNT
), 0, VOIDmode
, 0);
18560 const char *label_name
;
18563 ASM_GENERATE_INTERNAL_LABEL (buf
, "LP", labelno
);
18564 label_name
= (*targetm
.strip_name_encoding
) (ggc_strdup (buf
));
18565 fun
= gen_rtx_SYMBOL_REF (Pmode
, label_name
);
18567 emit_library_call (init_one_libfunc (RS6000_MCOUNT
), 0, VOIDmode
, 1,
18571 else if (DEFAULT_ABI
== ABI_DARWIN
)
18573 const char *mcount_name
= RS6000_MCOUNT
;
18574 int caller_addr_regno
= LR_REGNO
;
18576 /* Be conservative and always set this, at least for now. */
18577 crtl
->uses_pic_offset_table
= 1;
18580 /* For PIC code, set up a stub and collect the caller's address
18581 from r0, which is where the prologue puts it. */
18582 if (MACHOPIC_INDIRECT
18583 && crtl
->uses_pic_offset_table
)
18584 caller_addr_regno
= 0;
18586 emit_library_call (gen_rtx_SYMBOL_REF (Pmode
, mcount_name
),
18588 gen_rtx_REG (Pmode
, caller_addr_regno
), Pmode
);
18592 /* Write function profiler code. */
18595 output_function_profiler (FILE *file
, int labelno
)
18599 switch (DEFAULT_ABI
)
18602 gcc_unreachable ();
18607 warning (0, "no profiling of 64-bit code for this ABI");
18610 ASM_GENERATE_INTERNAL_LABEL (buf
, "LP", labelno
);
18611 fprintf (file
, "\tmflr %s\n", reg_names
[0]);
18612 if (NO_PROFILE_COUNTERS
)
18614 asm_fprintf (file
, "\t{st|stw} %s,4(%s)\n",
18615 reg_names
[0], reg_names
[1]);
18617 else if (TARGET_SECURE_PLT
&& flag_pic
)
18619 asm_fprintf (file
, "\tbcl 20,31,1f\n1:\n\t{st|stw} %s,4(%s)\n",
18620 reg_names
[0], reg_names
[1]);
18621 asm_fprintf (file
, "\tmflr %s\n", reg_names
[12]);
18622 asm_fprintf (file
, "\t{cau|addis} %s,%s,",
18623 reg_names
[12], reg_names
[12]);
18624 assemble_name (file
, buf
);
18625 asm_fprintf (file
, "-1b@ha\n\t{cal|la} %s,", reg_names
[0]);
18626 assemble_name (file
, buf
);
18627 asm_fprintf (file
, "-1b@l(%s)\n", reg_names
[12]);
18629 else if (flag_pic
== 1)
18631 fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file
);
18632 asm_fprintf (file
, "\t{st|stw} %s,4(%s)\n",
18633 reg_names
[0], reg_names
[1]);
18634 asm_fprintf (file
, "\tmflr %s\n", reg_names
[12]);
18635 asm_fprintf (file
, "\t{l|lwz} %s,", reg_names
[0]);
18636 assemble_name (file
, buf
);
18637 asm_fprintf (file
, "@got(%s)\n", reg_names
[12]);
18639 else if (flag_pic
> 1)
18641 asm_fprintf (file
, "\t{st|stw} %s,4(%s)\n",
18642 reg_names
[0], reg_names
[1]);
18643 /* Now, we need to get the address of the label. */
18644 fputs ("\tbcl 20,31,1f\n\t.long ", file
);
18645 assemble_name (file
, buf
);
18646 fputs ("-.\n1:", file
);
18647 asm_fprintf (file
, "\tmflr %s\n", reg_names
[11]);
18648 asm_fprintf (file
, "\t{l|lwz} %s,0(%s)\n",
18649 reg_names
[0], reg_names
[11]);
18650 asm_fprintf (file
, "\t{cax|add} %s,%s,%s\n",
18651 reg_names
[0], reg_names
[0], reg_names
[11]);
18655 asm_fprintf (file
, "\t{liu|lis} %s,", reg_names
[12]);
18656 assemble_name (file
, buf
);
18657 fputs ("@ha\n", file
);
18658 asm_fprintf (file
, "\t{st|stw} %s,4(%s)\n",
18659 reg_names
[0], reg_names
[1]);
18660 asm_fprintf (file
, "\t{cal|la} %s,", reg_names
[0]);
18661 assemble_name (file
, buf
);
18662 asm_fprintf (file
, "@l(%s)\n", reg_names
[12]);
18665 /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH. */
18666 fprintf (file
, "\tbl %s%s\n",
18667 RS6000_MCOUNT
, flag_pic
? "@plt" : "");
18672 if (!TARGET_PROFILE_KERNEL
)
18674 /* Don't do anything, done in output_profile_hook (). */
18678 gcc_assert (!TARGET_32BIT
);
18680 asm_fprintf (file
, "\tmflr %s\n", reg_names
[0]);
18681 asm_fprintf (file
, "\tstd %s,16(%s)\n", reg_names
[0], reg_names
[1]);
18683 if (cfun
->static_chain_decl
!= NULL
)
18685 asm_fprintf (file
, "\tstd %s,24(%s)\n",
18686 reg_names
[STATIC_CHAIN_REGNUM
], reg_names
[1]);
18687 fprintf (file
, "\tbl %s\n", RS6000_MCOUNT
);
18688 asm_fprintf (file
, "\tld %s,24(%s)\n",
18689 reg_names
[STATIC_CHAIN_REGNUM
], reg_names
[1]);
18692 fprintf (file
, "\tbl %s\n", RS6000_MCOUNT
);
18700 /* The following variable value is the last issued insn. */
18702 static rtx last_scheduled_insn
;
18704 /* The following variable helps to balance issuing of load and
18705 store instructions */
18707 static int load_store_pendulum
;
18709 /* Power4 load update and store update instructions are cracked into a
18710 load or store and an integer insn which are executed in the same cycle.
18711 Branches have their own dispatch slot which does not count against the
18712 GCC issue rate, but it changes the program flow so there are no other
18713 instructions to issue in this cycle. */
18716 rs6000_variable_issue (FILE *stream ATTRIBUTE_UNUSED
,
18717 int verbose ATTRIBUTE_UNUSED
,
18718 rtx insn
, int more
)
18720 last_scheduled_insn
= insn
;
18721 if (GET_CODE (PATTERN (insn
)) == USE
18722 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
18724 cached_can_issue_more
= more
;
18725 return cached_can_issue_more
;
18728 if (insn_terminates_group_p (insn
, current_group
))
18730 cached_can_issue_more
= 0;
18731 return cached_can_issue_more
;
18734 /* If no reservation, but reach here */
18735 if (recog_memoized (insn
) < 0)
18738 if (rs6000_sched_groups
)
18740 if (is_microcoded_insn (insn
))
18741 cached_can_issue_more
= 0;
18742 else if (is_cracked_insn (insn
))
18743 cached_can_issue_more
= more
> 2 ? more
- 2 : 0;
18745 cached_can_issue_more
= more
- 1;
18747 return cached_can_issue_more
;
18750 if (rs6000_cpu_attr
== CPU_CELL
&& is_nonpipeline_insn (insn
))
18753 cached_can_issue_more
= more
- 1;
18754 return cached_can_issue_more
;
18757 /* Adjust the cost of a scheduling dependency. Return the new cost of
18758 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
18761 rs6000_adjust_cost (rtx insn
, rtx link
, rtx dep_insn
, int cost
)
18763 enum attr_type attr_type
;
18765 if (! recog_memoized (insn
))
18768 switch (REG_NOTE_KIND (link
))
18772 /* Data dependency; DEP_INSN writes a register that INSN reads
18773 some cycles later. */
18775 /* Separate a load from a narrower, dependent store. */
18776 if (rs6000_sched_groups
18777 && GET_CODE (PATTERN (insn
)) == SET
18778 && GET_CODE (PATTERN (dep_insn
)) == SET
18779 && GET_CODE (XEXP (PATTERN (insn
), 1)) == MEM
18780 && GET_CODE (XEXP (PATTERN (dep_insn
), 0)) == MEM
18781 && (GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (insn
), 1)))
18782 > GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (dep_insn
), 0)))))
18785 attr_type
= get_attr_type (insn
);
18790 /* Tell the first scheduling pass about the latency between
18791 a mtctr and bctr (and mtlr and br/blr). The first
18792 scheduling pass will not know about this latency since
18793 the mtctr instruction, which has the latency associated
18794 to it, will be generated by reload. */
18795 return TARGET_POWER
? 5 : 4;
18797 /* Leave some extra cycles between a compare and its
18798 dependent branch, to inhibit expensive mispredicts. */
18799 if ((rs6000_cpu_attr
== CPU_PPC603
18800 || rs6000_cpu_attr
== CPU_PPC604
18801 || rs6000_cpu_attr
== CPU_PPC604E
18802 || rs6000_cpu_attr
== CPU_PPC620
18803 || rs6000_cpu_attr
== CPU_PPC630
18804 || rs6000_cpu_attr
== CPU_PPC750
18805 || rs6000_cpu_attr
== CPU_PPC7400
18806 || rs6000_cpu_attr
== CPU_PPC7450
18807 || rs6000_cpu_attr
== CPU_POWER4
18808 || rs6000_cpu_attr
== CPU_POWER5
18809 || rs6000_cpu_attr
== CPU_CELL
)
18810 && recog_memoized (dep_insn
)
18811 && (INSN_CODE (dep_insn
) >= 0))
18813 switch (get_attr_type (dep_insn
))
18817 case TYPE_DELAYED_COMPARE
:
18818 case TYPE_IMUL_COMPARE
:
18819 case TYPE_LMUL_COMPARE
:
18820 case TYPE_FPCOMPARE
:
18821 case TYPE_CR_LOGICAL
:
18822 case TYPE_DELAYED_CR
:
18831 case TYPE_STORE_UX
:
18833 case TYPE_FPSTORE_U
:
18834 case TYPE_FPSTORE_UX
:
18835 if ((rs6000_cpu
== PROCESSOR_POWER6
)
18836 && recog_memoized (dep_insn
)
18837 && (INSN_CODE (dep_insn
) >= 0))
18840 if (GET_CODE (PATTERN (insn
)) != SET
)
18841 /* If this happens, we have to extend this to schedule
18842 optimally. Return default for now. */
18845 /* Adjust the cost for the case where the value written
18846 by a fixed point operation is used as the address
18847 gen value on a store. */
18848 switch (get_attr_type (dep_insn
))
18855 if (! store_data_bypass_p (dep_insn
, insn
))
18859 case TYPE_LOAD_EXT
:
18860 case TYPE_LOAD_EXT_U
:
18861 case TYPE_LOAD_EXT_UX
:
18862 case TYPE_VAR_SHIFT_ROTATE
:
18863 case TYPE_VAR_DELAYED_COMPARE
:
18865 if (! store_data_bypass_p (dep_insn
, insn
))
18871 case TYPE_FAST_COMPARE
:
18874 case TYPE_INSERT_WORD
:
18875 case TYPE_INSERT_DWORD
:
18876 case TYPE_FPLOAD_U
:
18877 case TYPE_FPLOAD_UX
:
18879 case TYPE_STORE_UX
:
18880 case TYPE_FPSTORE_U
:
18881 case TYPE_FPSTORE_UX
:
18883 if (! store_data_bypass_p (dep_insn
, insn
))
18891 case TYPE_IMUL_COMPARE
:
18892 case TYPE_LMUL_COMPARE
:
18894 if (! store_data_bypass_p (dep_insn
, insn
))
18900 if (! store_data_bypass_p (dep_insn
, insn
))
18906 if (! store_data_bypass_p (dep_insn
, insn
))
18919 case TYPE_LOAD_EXT
:
18920 case TYPE_LOAD_EXT_U
:
18921 case TYPE_LOAD_EXT_UX
:
18922 if ((rs6000_cpu
== PROCESSOR_POWER6
)
18923 && recog_memoized (dep_insn
)
18924 && (INSN_CODE (dep_insn
) >= 0))
18927 /* Adjust the cost for the case where the value written
18928 by a fixed point instruction is used within the address
18929 gen portion of a subsequent load(u)(x) */
18930 switch (get_attr_type (dep_insn
))
18937 if (set_to_load_agen (dep_insn
, insn
))
18941 case TYPE_LOAD_EXT
:
18942 case TYPE_LOAD_EXT_U
:
18943 case TYPE_LOAD_EXT_UX
:
18944 case TYPE_VAR_SHIFT_ROTATE
:
18945 case TYPE_VAR_DELAYED_COMPARE
:
18947 if (set_to_load_agen (dep_insn
, insn
))
18953 case TYPE_FAST_COMPARE
:
18956 case TYPE_INSERT_WORD
:
18957 case TYPE_INSERT_DWORD
:
18958 case TYPE_FPLOAD_U
:
18959 case TYPE_FPLOAD_UX
:
18961 case TYPE_STORE_UX
:
18962 case TYPE_FPSTORE_U
:
18963 case TYPE_FPSTORE_UX
:
18965 if (set_to_load_agen (dep_insn
, insn
))
18973 case TYPE_IMUL_COMPARE
:
18974 case TYPE_LMUL_COMPARE
:
18976 if (set_to_load_agen (dep_insn
, insn
))
18982 if (set_to_load_agen (dep_insn
, insn
))
18988 if (set_to_load_agen (dep_insn
, insn
))
18999 if ((rs6000_cpu
== PROCESSOR_POWER6
)
19000 && recog_memoized (dep_insn
)
19001 && (INSN_CODE (dep_insn
) >= 0)
19002 && (get_attr_type (dep_insn
) == TYPE_MFFGPR
))
19009 /* Fall out to return default cost. */
19013 case REG_DEP_OUTPUT
:
19014 /* Output dependency; DEP_INSN writes a register that INSN writes some
19016 if ((rs6000_cpu
== PROCESSOR_POWER6
)
19017 && recog_memoized (dep_insn
)
19018 && (INSN_CODE (dep_insn
) >= 0))
19020 attr_type
= get_attr_type (insn
);
19025 if (get_attr_type (dep_insn
) == TYPE_FP
)
19029 if (get_attr_type (dep_insn
) == TYPE_MFFGPR
)
19037 /* Anti dependency; DEP_INSN reads a register that INSN writes some
19042 gcc_unreachable ();
19048 /* The function returns a true if INSN is microcoded.
19049 Return false otherwise. */
19052 is_microcoded_insn (rtx insn
)
19054 if (!insn
|| !INSN_P (insn
)
19055 || GET_CODE (PATTERN (insn
)) == USE
19056 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
19059 if (rs6000_cpu_attr
== CPU_CELL
)
19060 return get_attr_cell_micro (insn
) == CELL_MICRO_ALWAYS
;
19062 if (rs6000_sched_groups
)
19064 enum attr_type type
= get_attr_type (insn
);
19065 if (type
== TYPE_LOAD_EXT_U
19066 || type
== TYPE_LOAD_EXT_UX
19067 || type
== TYPE_LOAD_UX
19068 || type
== TYPE_STORE_UX
19069 || type
== TYPE_MFCR
)
19076 /* The function returns true if INSN is cracked into 2 instructions
19077 by the processor (and therefore occupies 2 issue slots). */
19080 is_cracked_insn (rtx insn
)
19082 if (!insn
|| !INSN_P (insn
)
19083 || GET_CODE (PATTERN (insn
)) == USE
19084 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
19087 if (rs6000_sched_groups
)
19089 enum attr_type type
= get_attr_type (insn
);
19090 if (type
== TYPE_LOAD_U
|| type
== TYPE_STORE_U
19091 || type
== TYPE_FPLOAD_U
|| type
== TYPE_FPSTORE_U
19092 || type
== TYPE_FPLOAD_UX
|| type
== TYPE_FPSTORE_UX
19093 || type
== TYPE_LOAD_EXT
|| type
== TYPE_DELAYED_CR
19094 || type
== TYPE_COMPARE
|| type
== TYPE_DELAYED_COMPARE
19095 || type
== TYPE_IMUL_COMPARE
|| type
== TYPE_LMUL_COMPARE
19096 || type
== TYPE_IDIV
|| type
== TYPE_LDIV
19097 || type
== TYPE_INSERT_WORD
)
19104 /* The function returns true if INSN can be issued only from
19105 the branch slot. */
19108 is_branch_slot_insn (rtx insn
)
19110 if (!insn
|| !INSN_P (insn
)
19111 || GET_CODE (PATTERN (insn
)) == USE
19112 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
19115 if (rs6000_sched_groups
)
19117 enum attr_type type
= get_attr_type (insn
);
19118 if (type
== TYPE_BRANCH
|| type
== TYPE_JMPREG
)
19126 /* The function returns true if out_inst sets a value that is
19127 used in the address generation computation of in_insn */
19129 set_to_load_agen (rtx out_insn
, rtx in_insn
)
19131 rtx out_set
, in_set
;
19133 /* For performance reasons, only handle the simple case where
19134 both loads are a single_set. */
19135 out_set
= single_set (out_insn
);
19138 in_set
= single_set (in_insn
);
19140 return reg_mentioned_p (SET_DEST (out_set
), SET_SRC (in_set
));
19146 /* The function returns true if the target storage location of
19147 out_insn is adjacent to the target storage location of in_insn */
19148 /* Return 1 if memory locations are adjacent. */
19151 adjacent_mem_locations (rtx insn1
, rtx insn2
)
19154 rtx a
= get_store_dest (PATTERN (insn1
));
19155 rtx b
= get_store_dest (PATTERN (insn2
));
19157 if ((GET_CODE (XEXP (a
, 0)) == REG
19158 || (GET_CODE (XEXP (a
, 0)) == PLUS
19159 && GET_CODE (XEXP (XEXP (a
, 0), 1)) == CONST_INT
))
19160 && (GET_CODE (XEXP (b
, 0)) == REG
19161 || (GET_CODE (XEXP (b
, 0)) == PLUS
19162 && GET_CODE (XEXP (XEXP (b
, 0), 1)) == CONST_INT
)))
19164 HOST_WIDE_INT val0
= 0, val1
= 0, val_diff
;
19167 if (GET_CODE (XEXP (a
, 0)) == PLUS
)
19169 reg0
= XEXP (XEXP (a
, 0), 0);
19170 val0
= INTVAL (XEXP (XEXP (a
, 0), 1));
19173 reg0
= XEXP (a
, 0);
19175 if (GET_CODE (XEXP (b
, 0)) == PLUS
)
19177 reg1
= XEXP (XEXP (b
, 0), 0);
19178 val1
= INTVAL (XEXP (XEXP (b
, 0), 1));
19181 reg1
= XEXP (b
, 0);
19183 val_diff
= val1
- val0
;
19185 return ((REGNO (reg0
) == REGNO (reg1
))
19186 && ((MEM_SIZE (a
) && val_diff
== INTVAL (MEM_SIZE (a
)))
19187 || (MEM_SIZE (b
) && val_diff
== -INTVAL (MEM_SIZE (b
)))));
19193 /* A C statement (sans semicolon) to update the integer scheduling
19194 priority INSN_PRIORITY (INSN). Increase the priority to execute the
19195 INSN earlier, reduce the priority to execute INSN later. Do not
19196 define this macro if you do not need to adjust the scheduling
19197 priorities of insns. */
19200 rs6000_adjust_priority (rtx insn ATTRIBUTE_UNUSED
, int priority
)
19202 /* On machines (like the 750) which have asymmetric integer units,
19203 where one integer unit can do multiply and divides and the other
19204 can't, reduce the priority of multiply/divide so it is scheduled
19205 before other integer operations. */
19208 if (! INSN_P (insn
))
19211 if (GET_CODE (PATTERN (insn
)) == USE
)
19214 switch (rs6000_cpu_attr
) {
19216 switch (get_attr_type (insn
))
19223 fprintf (stderr
, "priority was %#x (%d) before adjustment\n",
19224 priority
, priority
);
19225 if (priority
>= 0 && priority
< 0x01000000)
19232 if (insn_must_be_first_in_group (insn
)
19233 && reload_completed
19234 && current_sched_info
->sched_max_insns_priority
19235 && rs6000_sched_restricted_insns_priority
)
19238 /* Prioritize insns that can be dispatched only in the first
19240 if (rs6000_sched_restricted_insns_priority
== 1)
19241 /* Attach highest priority to insn. This means that in
19242 haifa-sched.c:ready_sort(), dispatch-slot restriction considerations
19243 precede 'priority' (critical path) considerations. */
19244 return current_sched_info
->sched_max_insns_priority
;
19245 else if (rs6000_sched_restricted_insns_priority
== 2)
19246 /* Increase priority of insn by a minimal amount. This means that in
19247 haifa-sched.c:ready_sort(), only 'priority' (critical path)
19248 considerations precede dispatch-slot restriction considerations. */
19249 return (priority
+ 1);
19252 if (rs6000_cpu
== PROCESSOR_POWER6
19253 && ((load_store_pendulum
== -2 && is_load_insn (insn
))
19254 || (load_store_pendulum
== 2 && is_store_insn (insn
))))
19255 /* Attach highest priority to insn if the scheduler has just issued two
19256 stores and this instruction is a load, or two loads and this instruction
19257 is a store. Power6 wants loads and stores scheduled alternately
19259 return current_sched_info
->sched_max_insns_priority
;
19264 /* Return true if the instruction is nonpipelined on the Cell. */
19266 is_nonpipeline_insn (rtx insn
)
19268 enum attr_type type
;
19269 if (!insn
|| !INSN_P (insn
)
19270 || GET_CODE (PATTERN (insn
)) == USE
19271 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
19274 type
= get_attr_type (insn
);
19275 if (type
== TYPE_IMUL
19276 || type
== TYPE_IMUL2
19277 || type
== TYPE_IMUL3
19278 || type
== TYPE_LMUL
19279 || type
== TYPE_IDIV
19280 || type
== TYPE_LDIV
19281 || type
== TYPE_SDIV
19282 || type
== TYPE_DDIV
19283 || type
== TYPE_SSQRT
19284 || type
== TYPE_DSQRT
19285 || type
== TYPE_MFCR
19286 || type
== TYPE_MFCRF
19287 || type
== TYPE_MFJMPR
)
19295 /* Return how many instructions the machine can issue per cycle. */
19298 rs6000_issue_rate (void)
19300 /* Use issue rate of 1 for first scheduling pass to decrease degradation. */
19301 if (!reload_completed
)
19304 switch (rs6000_cpu_attr
) {
19305 case CPU_RIOS1
: /* ? */
19307 case CPU_PPC601
: /* ? */
19316 case CPU_PPCE300C2
:
19317 case CPU_PPCE300C3
:
19318 case CPU_PPCE500MC
:
19335 /* Return how many instructions to look ahead for better insn
19339 rs6000_use_sched_lookahead (void)
19341 if (rs6000_cpu_attr
== CPU_PPC8540
)
19343 if (rs6000_cpu_attr
== CPU_CELL
)
19344 return (reload_completed
? 8 : 0);
19348 /* We are choosing insn from the ready queue. Return nonzero if INSN can be chosen. */
19350 rs6000_use_sched_lookahead_guard (rtx insn
)
19352 if (rs6000_cpu_attr
!= CPU_CELL
)
19355 if (insn
== NULL_RTX
|| !INSN_P (insn
))
19358 if (!reload_completed
19359 || is_nonpipeline_insn (insn
)
19360 || is_microcoded_insn (insn
))
19366 /* Determine is PAT refers to memory. */
19369 is_mem_ref (rtx pat
)
19375 /* stack_tie does not produce any real memory traffic. */
19376 if (GET_CODE (pat
) == UNSPEC
19377 && XINT (pat
, 1) == UNSPEC_TIE
)
19380 if (GET_CODE (pat
) == MEM
)
19383 /* Recursively process the pattern. */
19384 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
19386 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0 && !ret
; i
--)
19389 ret
|= is_mem_ref (XEXP (pat
, i
));
19390 else if (fmt
[i
] == 'E')
19391 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
19392 ret
|= is_mem_ref (XVECEXP (pat
, i
, j
));
19398 /* Determine if PAT is a PATTERN of a load insn. */
19401 is_load_insn1 (rtx pat
)
19403 if (!pat
|| pat
== NULL_RTX
)
19406 if (GET_CODE (pat
) == SET
)
19407 return is_mem_ref (SET_SRC (pat
));
19409 if (GET_CODE (pat
) == PARALLEL
)
19413 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
19414 if (is_load_insn1 (XVECEXP (pat
, 0, i
)))
19421 /* Determine if INSN loads from memory. */
19424 is_load_insn (rtx insn
)
19426 if (!insn
|| !INSN_P (insn
))
19429 if (GET_CODE (insn
) == CALL_INSN
)
19432 return is_load_insn1 (PATTERN (insn
));
19435 /* Determine if PAT is a PATTERN of a store insn. */
19438 is_store_insn1 (rtx pat
)
19440 if (!pat
|| pat
== NULL_RTX
)
19443 if (GET_CODE (pat
) == SET
)
19444 return is_mem_ref (SET_DEST (pat
));
19446 if (GET_CODE (pat
) == PARALLEL
)
19450 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
19451 if (is_store_insn1 (XVECEXP (pat
, 0, i
)))
19458 /* Determine if INSN stores to memory. */
19461 is_store_insn (rtx insn
)
19463 if (!insn
|| !INSN_P (insn
))
19466 return is_store_insn1 (PATTERN (insn
));
19469 /* Return the dest of a store insn. */
19472 get_store_dest (rtx pat
)
19474 gcc_assert (is_store_insn1 (pat
));
19476 if (GET_CODE (pat
) == SET
)
19477 return SET_DEST (pat
);
19478 else if (GET_CODE (pat
) == PARALLEL
)
19482 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
19484 rtx inner_pat
= XVECEXP (pat
, 0, i
);
19485 if (GET_CODE (inner_pat
) == SET
19486 && is_mem_ref (SET_DEST (inner_pat
)))
19490 /* We shouldn't get here, because we should have either a simple
19491 store insn or a store with update which are covered above. */
19495 /* Returns whether the dependence between INSN and NEXT is considered
19496 costly by the given target. */
19499 rs6000_is_costly_dependence (dep_t dep
, int cost
, int distance
)
19504 /* If the flag is not enabled - no dependence is considered costly;
19505 allow all dependent insns in the same group.
19506 This is the most aggressive option. */
19507 if (rs6000_sched_costly_dep
== no_dep_costly
)
19510 /* If the flag is set to 1 - a dependence is always considered costly;
19511 do not allow dependent instructions in the same group.
19512 This is the most conservative option. */
19513 if (rs6000_sched_costly_dep
== all_deps_costly
)
19516 insn
= DEP_PRO (dep
);
19517 next
= DEP_CON (dep
);
19519 if (rs6000_sched_costly_dep
== store_to_load_dep_costly
19520 && is_load_insn (next
)
19521 && is_store_insn (insn
))
19522 /* Prevent load after store in the same group. */
19525 if (rs6000_sched_costly_dep
== true_store_to_load_dep_costly
19526 && is_load_insn (next
)
19527 && is_store_insn (insn
)
19528 && DEP_TYPE (dep
) == REG_DEP_TRUE
)
19529 /* Prevent load after store in the same group if it is a true
19533 /* The flag is set to X; dependences with latency >= X are considered costly,
19534 and will not be scheduled in the same group. */
19535 if (rs6000_sched_costly_dep
<= max_dep_latency
19536 && ((cost
- distance
) >= (int)rs6000_sched_costly_dep
))
19542 /* Return the next insn after INSN that is found before TAIL is reached,
19543 skipping any "non-active" insns - insns that will not actually occupy
19544 an issue slot. Return NULL_RTX if such an insn is not found. */
19547 get_next_active_insn (rtx insn
, rtx tail
)
19549 if (insn
== NULL_RTX
|| insn
== tail
)
19554 insn
= NEXT_INSN (insn
);
19555 if (insn
== NULL_RTX
|| insn
== tail
)
19560 || (NONJUMP_INSN_P (insn
)
19561 && GET_CODE (PATTERN (insn
)) != USE
19562 && GET_CODE (PATTERN (insn
)) != CLOBBER
19563 && INSN_CODE (insn
) != CODE_FOR_stack_tie
))
19569 /* We are about to begin issuing insns for this clock cycle. */
19572 rs6000_sched_reorder (FILE *dump ATTRIBUTE_UNUSED
, int sched_verbose
,
19573 rtx
*ready ATTRIBUTE_UNUSED
,
19574 int *pn_ready ATTRIBUTE_UNUSED
,
19575 int clock_var ATTRIBUTE_UNUSED
)
19577 int n_ready
= *pn_ready
;
19580 fprintf (dump
, "// rs6000_sched_reorder :\n");
19582 /* Reorder the ready list, if the second to last ready insn
19583 is a nonepipeline insn. */
19584 if (rs6000_cpu_attr
== CPU_CELL
&& n_ready
> 1)
19586 if (is_nonpipeline_insn (ready
[n_ready
- 1])
19587 && (recog_memoized (ready
[n_ready
- 2]) > 0))
19588 /* Simply swap first two insns. */
19590 rtx tmp
= ready
[n_ready
- 1];
19591 ready
[n_ready
- 1] = ready
[n_ready
- 2];
19592 ready
[n_ready
- 2] = tmp
;
19596 if (rs6000_cpu
== PROCESSOR_POWER6
)
19597 load_store_pendulum
= 0;
19599 return rs6000_issue_rate ();
19602 /* Like rs6000_sched_reorder, but called after issuing each insn. */
19605 rs6000_sched_reorder2 (FILE *dump
, int sched_verbose
, rtx
*ready
,
19606 int *pn_ready
, int clock_var ATTRIBUTE_UNUSED
)
19609 fprintf (dump
, "// rs6000_sched_reorder2 :\n");
19611 /* For Power6, we need to handle some special cases to try and keep the
19612 store queue from overflowing and triggering expensive flushes.
19614 This code monitors how load and store instructions are being issued
19615 and skews the ready list one way or the other to increase the likelihood
19616 that a desired instruction is issued at the proper time.
19618 A couple of things are done. First, we maintain a "load_store_pendulum"
19619 to track the current state of load/store issue.
19621 - If the pendulum is at zero, then no loads or stores have been
19622 issued in the current cycle so we do nothing.
19624 - If the pendulum is 1, then a single load has been issued in this
19625 cycle and we attempt to locate another load in the ready list to
19628 - If the pendulum is -2, then two stores have already been
19629 issued in this cycle, so we increase the priority of the first load
19630 in the ready list to increase it's likelihood of being chosen first
19633 - If the pendulum is -1, then a single store has been issued in this
19634 cycle and we attempt to locate another store in the ready list to
19635 issue with it, preferring a store to an adjacent memory location to
19636 facilitate store pairing in the store queue.
19638 - If the pendulum is 2, then two loads have already been
19639 issued in this cycle, so we increase the priority of the first store
19640 in the ready list to increase it's likelihood of being chosen first
19643 - If the pendulum < -2 or > 2, then do nothing.
19645 Note: This code covers the most common scenarios. There exist non
19646 load/store instructions which make use of the LSU and which
19647 would need to be accounted for to strictly model the behavior
19648 of the machine. Those instructions are currently unaccounted
19649 for to help minimize compile time overhead of this code.
19651 if (rs6000_cpu
== PROCESSOR_POWER6
&& last_scheduled_insn
)
19657 if (is_store_insn (last_scheduled_insn
))
19658 /* Issuing a store, swing the load_store_pendulum to the left */
19659 load_store_pendulum
--;
19660 else if (is_load_insn (last_scheduled_insn
))
19661 /* Issuing a load, swing the load_store_pendulum to the right */
19662 load_store_pendulum
++;
19664 return cached_can_issue_more
;
19666 /* If the pendulum is balanced, or there is only one instruction on
19667 the ready list, then all is well, so return. */
19668 if ((load_store_pendulum
== 0) || (*pn_ready
<= 1))
19669 return cached_can_issue_more
;
19671 if (load_store_pendulum
== 1)
19673 /* A load has been issued in this cycle. Scan the ready list
19674 for another load to issue with it */
19679 if (is_load_insn (ready
[pos
]))
19681 /* Found a load. Move it to the head of the ready list,
19682 and adjust it's priority so that it is more likely to
19685 for (i
=pos
; i
<*pn_ready
-1; i
++)
19686 ready
[i
] = ready
[i
+ 1];
19687 ready
[*pn_ready
-1] = tmp
;
19689 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp
))
19690 INSN_PRIORITY (tmp
)++;
19696 else if (load_store_pendulum
== -2)
19698 /* Two stores have been issued in this cycle. Increase the
19699 priority of the first load in the ready list to favor it for
19700 issuing in the next cycle. */
19705 if (is_load_insn (ready
[pos
])
19707 && INSN_PRIORITY_KNOWN (ready
[pos
]))
19709 INSN_PRIORITY (ready
[pos
])++;
19711 /* Adjust the pendulum to account for the fact that a load
19712 was found and increased in priority. This is to prevent
19713 increasing the priority of multiple loads */
19714 load_store_pendulum
--;
19721 else if (load_store_pendulum
== -1)
19723 /* A store has been issued in this cycle. Scan the ready list for
19724 another store to issue with it, preferring a store to an adjacent
19726 int first_store_pos
= -1;
19732 if (is_store_insn (ready
[pos
]))
19734 /* Maintain the index of the first store found on the
19736 if (first_store_pos
== -1)
19737 first_store_pos
= pos
;
19739 if (is_store_insn (last_scheduled_insn
)
19740 && adjacent_mem_locations (last_scheduled_insn
,ready
[pos
]))
19742 /* Found an adjacent store. Move it to the head of the
19743 ready list, and adjust it's priority so that it is
19744 more likely to stay there */
19746 for (i
=pos
; i
<*pn_ready
-1; i
++)
19747 ready
[i
] = ready
[i
+ 1];
19748 ready
[*pn_ready
-1] = tmp
;
19750 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp
))
19751 INSN_PRIORITY (tmp
)++;
19753 first_store_pos
= -1;
19761 if (first_store_pos
>= 0)
19763 /* An adjacent store wasn't found, but a non-adjacent store was,
19764 so move the non-adjacent store to the front of the ready
19765 list, and adjust its priority so that it is more likely to
19767 tmp
= ready
[first_store_pos
];
19768 for (i
=first_store_pos
; i
<*pn_ready
-1; i
++)
19769 ready
[i
] = ready
[i
+ 1];
19770 ready
[*pn_ready
-1] = tmp
;
19771 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp
))
19772 INSN_PRIORITY (tmp
)++;
19775 else if (load_store_pendulum
== 2)
19777 /* Two loads have been issued in this cycle. Increase the priority
19778 of the first store in the ready list to favor it for issuing in
19784 if (is_store_insn (ready
[pos
])
19786 && INSN_PRIORITY_KNOWN (ready
[pos
]))
19788 INSN_PRIORITY (ready
[pos
])++;
19790 /* Adjust the pendulum to account for the fact that a store
19791 was found and increased in priority. This is to prevent
19792 increasing the priority of multiple stores */
19793 load_store_pendulum
++;
19802 return cached_can_issue_more
;
19805 /* Return whether the presence of INSN causes a dispatch group termination
19806 of group WHICH_GROUP.
19808 If WHICH_GROUP == current_group, this function will return true if INSN
19809 causes the termination of the current group (i.e, the dispatch group to
19810 which INSN belongs). This means that INSN will be the last insn in the
19811 group it belongs to.
19813 If WHICH_GROUP == previous_group, this function will return true if INSN
19814 causes the termination of the previous group (i.e, the dispatch group that
19815 precedes the group to which INSN belongs). This means that INSN will be
19816 the first insn in the group it belongs to). */
19819 insn_terminates_group_p (rtx insn
, enum group_termination which_group
)
19826 first
= insn_must_be_first_in_group (insn
);
19827 last
= insn_must_be_last_in_group (insn
);
19832 if (which_group
== current_group
)
19834 else if (which_group
== previous_group
)
19842 insn_must_be_first_in_group (rtx insn
)
19844 enum attr_type type
;
19847 || insn
== NULL_RTX
19848 || GET_CODE (insn
) == NOTE
19849 || GET_CODE (PATTERN (insn
)) == USE
19850 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
19853 switch (rs6000_cpu
)
19855 case PROCESSOR_POWER5
:
19856 if (is_cracked_insn (insn
))
19858 case PROCESSOR_POWER4
:
19859 if (is_microcoded_insn (insn
))
19862 if (!rs6000_sched_groups
)
19865 type
= get_attr_type (insn
);
19872 case TYPE_DELAYED_CR
:
19873 case TYPE_CR_LOGICAL
:
19887 case PROCESSOR_POWER6
:
19888 type
= get_attr_type (insn
);
19892 case TYPE_INSERT_DWORD
:
19896 case TYPE_VAR_SHIFT_ROTATE
:
19903 case TYPE_INSERT_WORD
:
19904 case TYPE_DELAYED_COMPARE
:
19905 case TYPE_IMUL_COMPARE
:
19906 case TYPE_LMUL_COMPARE
:
19907 case TYPE_FPCOMPARE
:
19918 case TYPE_LOAD_EXT_UX
:
19920 case TYPE_STORE_UX
:
19921 case TYPE_FPLOAD_U
:
19922 case TYPE_FPLOAD_UX
:
19923 case TYPE_FPSTORE_U
:
19924 case TYPE_FPSTORE_UX
:
19938 insn_must_be_last_in_group (rtx insn
)
19940 enum attr_type type
;
19943 || insn
== NULL_RTX
19944 || GET_CODE (insn
) == NOTE
19945 || GET_CODE (PATTERN (insn
)) == USE
19946 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
19949 switch (rs6000_cpu
) {
19950 case PROCESSOR_POWER4
:
19951 case PROCESSOR_POWER5
:
19952 if (is_microcoded_insn (insn
))
19955 if (is_branch_slot_insn (insn
))
19959 case PROCESSOR_POWER6
:
19960 type
= get_attr_type (insn
);
19967 case TYPE_VAR_SHIFT_ROTATE
:
19974 case TYPE_DELAYED_COMPARE
:
19975 case TYPE_IMUL_COMPARE
:
19976 case TYPE_LMUL_COMPARE
:
19977 case TYPE_FPCOMPARE
:
19998 /* Return true if it is recommended to keep NEXT_INSN "far" (in a separate
19999 dispatch group) from the insns in GROUP_INSNS. Return false otherwise. */
20002 is_costly_group (rtx
*group_insns
, rtx next_insn
)
20005 int issue_rate
= rs6000_issue_rate ();
20007 for (i
= 0; i
< issue_rate
; i
++)
20009 sd_iterator_def sd_it
;
20011 rtx insn
= group_insns
[i
];
20016 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
20018 rtx next
= DEP_CON (dep
);
20020 if (next
== next_insn
20021 && rs6000_is_costly_dependence (dep
, dep_cost (dep
), 0))
20029 /* Utility of the function redefine_groups.
20030 Check if it is too costly to schedule NEXT_INSN together with GROUP_INSNS
20031 in the same dispatch group. If so, insert nops before NEXT_INSN, in order
20032 to keep it "far" (in a separate group) from GROUP_INSNS, following
20033 one of the following schemes, depending on the value of the flag
20034 -minsert_sched_nops = X:
20035 (1) X == sched_finish_regroup_exact: insert exactly as many nops as needed
20036 in order to force NEXT_INSN into a separate group.
20037 (2) X < sched_finish_regroup_exact: insert exactly X nops.
20038 GROUP_END, CAN_ISSUE_MORE and GROUP_COUNT record the state after nop
20039 insertion (has a group just ended, how many vacant issue slots remain in the
20040 last group, and how many dispatch groups were encountered so far). */
20043 force_new_group (int sched_verbose
, FILE *dump
, rtx
*group_insns
,
20044 rtx next_insn
, bool *group_end
, int can_issue_more
,
20049 int issue_rate
= rs6000_issue_rate ();
20050 bool end
= *group_end
;
20053 if (next_insn
== NULL_RTX
)
20054 return can_issue_more
;
20056 if (rs6000_sched_insert_nops
> sched_finish_regroup_exact
)
20057 return can_issue_more
;
20059 force
= is_costly_group (group_insns
, next_insn
);
20061 return can_issue_more
;
20063 if (sched_verbose
> 6)
20064 fprintf (dump
,"force: group count = %d, can_issue_more = %d\n",
20065 *group_count
,can_issue_more
);
20067 if (rs6000_sched_insert_nops
== sched_finish_regroup_exact
)
20070 can_issue_more
= 0;
20072 /* Since only a branch can be issued in the last issue_slot, it is
20073 sufficient to insert 'can_issue_more - 1' nops if next_insn is not
20074 a branch. If next_insn is a branch, we insert 'can_issue_more' nops;
20075 in this case the last nop will start a new group and the branch
20076 will be forced to the new group. */
20077 if (can_issue_more
&& !is_branch_slot_insn (next_insn
))
20080 while (can_issue_more
> 0)
20083 emit_insn_before (nop
, next_insn
);
20091 if (rs6000_sched_insert_nops
< sched_finish_regroup_exact
)
20093 int n_nops
= rs6000_sched_insert_nops
;
20095 /* Nops can't be issued from the branch slot, so the effective
20096 issue_rate for nops is 'issue_rate - 1'. */
20097 if (can_issue_more
== 0)
20098 can_issue_more
= issue_rate
;
20100 if (can_issue_more
== 0)
20102 can_issue_more
= issue_rate
- 1;
20105 for (i
= 0; i
< issue_rate
; i
++)
20107 group_insns
[i
] = 0;
20114 emit_insn_before (nop
, next_insn
);
20115 if (can_issue_more
== issue_rate
- 1) /* new group begins */
20118 if (can_issue_more
== 0)
20120 can_issue_more
= issue_rate
- 1;
20123 for (i
= 0; i
< issue_rate
; i
++)
20125 group_insns
[i
] = 0;
20131 /* Scale back relative to 'issue_rate' (instead of 'issue_rate - 1'). */
20134 /* Is next_insn going to start a new group? */
20137 || (can_issue_more
== 1 && !is_branch_slot_insn (next_insn
))
20138 || (can_issue_more
<= 2 && is_cracked_insn (next_insn
))
20139 || (can_issue_more
< issue_rate
&&
20140 insn_terminates_group_p (next_insn
, previous_group
)));
20141 if (*group_end
&& end
)
20144 if (sched_verbose
> 6)
20145 fprintf (dump
, "done force: group count = %d, can_issue_more = %d\n",
20146 *group_count
, can_issue_more
);
20147 return can_issue_more
;
20150 return can_issue_more
;
20153 /* This function tries to synch the dispatch groups that the compiler "sees"
20154 with the dispatch groups that the processor dispatcher is expected to
20155 form in practice. It tries to achieve this synchronization by forcing the
20156 estimated processor grouping on the compiler (as opposed to the function
20157 'pad_goups' which tries to force the scheduler's grouping on the processor).
20159 The function scans the insn sequence between PREV_HEAD_INSN and TAIL and
20160 examines the (estimated) dispatch groups that will be formed by the processor
20161 dispatcher. It marks these group boundaries to reflect the estimated
20162 processor grouping, overriding the grouping that the scheduler had marked.
20163 Depending on the value of the flag '-minsert-sched-nops' this function can
20164 force certain insns into separate groups or force a certain distance between
20165 them by inserting nops, for example, if there exists a "costly dependence"
20168 The function estimates the group boundaries that the processor will form as
20169 follows: It keeps track of how many vacant issue slots are available after
20170 each insn. A subsequent insn will start a new group if one of the following
20172 - no more vacant issue slots remain in the current dispatch group.
20173 - only the last issue slot, which is the branch slot, is vacant, but the next
20174 insn is not a branch.
20175 - only the last 2 or less issue slots, including the branch slot, are vacant,
20176 which means that a cracked insn (which occupies two issue slots) can't be
20177 issued in this group.
20178 - less than 'issue_rate' slots are vacant, and the next insn always needs to
20179 start a new group. */
20182 redefine_groups (FILE *dump
, int sched_verbose
, rtx prev_head_insn
, rtx tail
)
20184 rtx insn
, next_insn
;
20186 int can_issue_more
;
20189 int group_count
= 0;
20193 issue_rate
= rs6000_issue_rate ();
20194 group_insns
= XALLOCAVEC (rtx
, issue_rate
);
20195 for (i
= 0; i
< issue_rate
; i
++)
20197 group_insns
[i
] = 0;
20199 can_issue_more
= issue_rate
;
20201 insn
= get_next_active_insn (prev_head_insn
, tail
);
20204 while (insn
!= NULL_RTX
)
20206 slot
= (issue_rate
- can_issue_more
);
20207 group_insns
[slot
] = insn
;
20209 rs6000_variable_issue (dump
, sched_verbose
, insn
, can_issue_more
);
20210 if (insn_terminates_group_p (insn
, current_group
))
20211 can_issue_more
= 0;
20213 next_insn
= get_next_active_insn (insn
, tail
);
20214 if (next_insn
== NULL_RTX
)
20215 return group_count
+ 1;
20217 /* Is next_insn going to start a new group? */
20219 = (can_issue_more
== 0
20220 || (can_issue_more
== 1 && !is_branch_slot_insn (next_insn
))
20221 || (can_issue_more
<= 2 && is_cracked_insn (next_insn
))
20222 || (can_issue_more
< issue_rate
&&
20223 insn_terminates_group_p (next_insn
, previous_group
)));
20225 can_issue_more
= force_new_group (sched_verbose
, dump
, group_insns
,
20226 next_insn
, &group_end
, can_issue_more
,
20232 can_issue_more
= 0;
20233 for (i
= 0; i
< issue_rate
; i
++)
20235 group_insns
[i
] = 0;
20239 if (GET_MODE (next_insn
) == TImode
&& can_issue_more
)
20240 PUT_MODE (next_insn
, VOIDmode
);
20241 else if (!can_issue_more
&& GET_MODE (next_insn
) != TImode
)
20242 PUT_MODE (next_insn
, TImode
);
20245 if (can_issue_more
== 0)
20246 can_issue_more
= issue_rate
;
20249 return group_count
;
20252 /* Scan the insn sequence between PREV_HEAD_INSN and TAIL and examine the
20253 dispatch group boundaries that the scheduler had marked. Pad with nops
20254 any dispatch groups which have vacant issue slots, in order to force the
20255 scheduler's grouping on the processor dispatcher. The function
20256 returns the number of dispatch groups found. */
20259 pad_groups (FILE *dump
, int sched_verbose
, rtx prev_head_insn
, rtx tail
)
20261 rtx insn
, next_insn
;
20264 int can_issue_more
;
20266 int group_count
= 0;
20268 /* Initialize issue_rate. */
20269 issue_rate
= rs6000_issue_rate ();
20270 can_issue_more
= issue_rate
;
20272 insn
= get_next_active_insn (prev_head_insn
, tail
);
20273 next_insn
= get_next_active_insn (insn
, tail
);
20275 while (insn
!= NULL_RTX
)
20278 rs6000_variable_issue (dump
, sched_verbose
, insn
, can_issue_more
);
20280 group_end
= (next_insn
== NULL_RTX
|| GET_MODE (next_insn
) == TImode
);
20282 if (next_insn
== NULL_RTX
)
20287 /* If the scheduler had marked group termination at this location
20288 (between insn and next_insn), and neither insn nor next_insn will
20289 force group termination, pad the group with nops to force group
20292 && (rs6000_sched_insert_nops
== sched_finish_pad_groups
)
20293 && !insn_terminates_group_p (insn
, current_group
)
20294 && !insn_terminates_group_p (next_insn
, previous_group
))
20296 if (!is_branch_slot_insn (next_insn
))
20299 while (can_issue_more
)
20302 emit_insn_before (nop
, next_insn
);
20307 can_issue_more
= issue_rate
;
20312 next_insn
= get_next_active_insn (insn
, tail
);
20315 return group_count
;
20318 /* We're beginning a new block. Initialize data structures as necessary. */
20321 rs6000_sched_init (FILE *dump ATTRIBUTE_UNUSED
,
20322 int sched_verbose ATTRIBUTE_UNUSED
,
20323 int max_ready ATTRIBUTE_UNUSED
)
20325 last_scheduled_insn
= NULL_RTX
;
20326 load_store_pendulum
= 0;
20329 /* The following function is called at the end of scheduling BB.
20330 After reload, it inserts nops at insn group bundling. */
20333 rs6000_sched_finish (FILE *dump
, int sched_verbose
)
20338 fprintf (dump
, "=== Finishing schedule.\n");
20340 if (reload_completed
&& rs6000_sched_groups
)
20342 /* Do not run sched_finish hook when selective scheduling enabled. */
20343 if (sel_sched_p ())
20346 if (rs6000_sched_insert_nops
== sched_finish_none
)
20349 if (rs6000_sched_insert_nops
== sched_finish_pad_groups
)
20350 n_groups
= pad_groups (dump
, sched_verbose
,
20351 current_sched_info
->prev_head
,
20352 current_sched_info
->next_tail
);
20354 n_groups
= redefine_groups (dump
, sched_verbose
,
20355 current_sched_info
->prev_head
,
20356 current_sched_info
->next_tail
);
20358 if (sched_verbose
>= 6)
20360 fprintf (dump
, "ngroups = %d\n", n_groups
);
20361 print_rtl (dump
, current_sched_info
->prev_head
);
20362 fprintf (dump
, "Done finish_sched\n");
20367 struct _rs6000_sched_context
20369 short cached_can_issue_more
;
20370 rtx last_scheduled_insn
;
20371 int load_store_pendulum
;
20374 typedef struct _rs6000_sched_context rs6000_sched_context_def
;
20375 typedef rs6000_sched_context_def
*rs6000_sched_context_t
;
20377 /* Allocate store for new scheduling context. */
20379 rs6000_alloc_sched_context (void)
20381 return xmalloc (sizeof (rs6000_sched_context_def
));
20384 /* If CLEAN_P is true then initializes _SC with clean data,
20385 and from the global context otherwise. */
20387 rs6000_init_sched_context (void *_sc
, bool clean_p
)
20389 rs6000_sched_context_t sc
= (rs6000_sched_context_t
) _sc
;
20393 sc
->cached_can_issue_more
= 0;
20394 sc
->last_scheduled_insn
= NULL_RTX
;
20395 sc
->load_store_pendulum
= 0;
20399 sc
->cached_can_issue_more
= cached_can_issue_more
;
20400 sc
->last_scheduled_insn
= last_scheduled_insn
;
20401 sc
->load_store_pendulum
= load_store_pendulum
;
20405 /* Sets the global scheduling context to the one pointed to by _SC. */
20407 rs6000_set_sched_context (void *_sc
)
20409 rs6000_sched_context_t sc
= (rs6000_sched_context_t
) _sc
;
20411 gcc_assert (sc
!= NULL
);
20413 cached_can_issue_more
= sc
->cached_can_issue_more
;
20414 last_scheduled_insn
= sc
->last_scheduled_insn
;
20415 load_store_pendulum
= sc
->load_store_pendulum
;
20420 rs6000_free_sched_context (void *_sc
)
20422 gcc_assert (_sc
!= NULL
);
20428 /* Length in units of the trampoline for entering a nested function. */
20431 rs6000_trampoline_size (void)
20435 switch (DEFAULT_ABI
)
20438 gcc_unreachable ();
20441 ret
= (TARGET_32BIT
) ? 12 : 24;
20446 ret
= (TARGET_32BIT
) ? 40 : 48;
20453 /* Emit RTL insns to initialize the variable parts of a trampoline.
20454 FNADDR is an RTX for the address of the function's pure code.
20455 CXT is an RTX for the static chain value for the function. */
20458 rs6000_initialize_trampoline (rtx addr
, rtx fnaddr
, rtx cxt
)
20460 int regsize
= (TARGET_32BIT
) ? 4 : 8;
20461 rtx ctx_reg
= force_reg (Pmode
, cxt
);
20463 switch (DEFAULT_ABI
)
20466 gcc_unreachable ();
20468 /* Macros to shorten the code expansions below. */
20469 #define MEM_DEREF(addr) gen_rtx_MEM (Pmode, memory_address (Pmode, addr))
20470 #define MEM_PLUS(addr,offset) \
20471 gen_rtx_MEM (Pmode, memory_address (Pmode, plus_constant (addr, offset)))
20473 /* Under AIX, just build the 3 word function descriptor */
20476 rtx fn_reg
= gen_reg_rtx (Pmode
);
20477 rtx toc_reg
= gen_reg_rtx (Pmode
);
20478 emit_move_insn (fn_reg
, MEM_DEREF (fnaddr
));
20479 emit_move_insn (toc_reg
, MEM_PLUS (fnaddr
, regsize
));
20480 emit_move_insn (MEM_DEREF (addr
), fn_reg
);
20481 emit_move_insn (MEM_PLUS (addr
, regsize
), toc_reg
);
20482 emit_move_insn (MEM_PLUS (addr
, 2*regsize
), ctx_reg
);
20486 /* Under V.4/eabi/darwin, __trampoline_setup does the real work. */
20489 emit_library_call (gen_rtx_SYMBOL_REF (Pmode
, "__trampoline_setup"),
20490 FALSE
, VOIDmode
, 4,
20492 GEN_INT (rs6000_trampoline_size ()), SImode
,
20502 /* Table of valid machine attributes. */
20504 const struct attribute_spec rs6000_attribute_table
[] =
20506 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
20507 { "altivec", 1, 1, false, true, false, rs6000_handle_altivec_attribute
},
20508 { "longcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute
},
20509 { "shortcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute
},
20510 { "ms_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute
},
20511 { "gcc_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute
},
20512 #ifdef SUBTARGET_ATTRIBUTE_TABLE
20513 SUBTARGET_ATTRIBUTE_TABLE
,
20515 { NULL
, 0, 0, false, false, false, NULL
}
20518 /* Handle the "altivec" attribute. The attribute may have
20519 arguments as follows:
20521 __attribute__((altivec(vector__)))
20522 __attribute__((altivec(pixel__))) (always followed by 'unsigned short')
20523 __attribute__((altivec(bool__))) (always followed by 'unsigned')
20525 and may appear more than once (e.g., 'vector bool char') in a
20526 given declaration. */
20529 rs6000_handle_altivec_attribute (tree
*node
,
20530 tree name ATTRIBUTE_UNUSED
,
20532 int flags ATTRIBUTE_UNUSED
,
20533 bool *no_add_attrs
)
20535 tree type
= *node
, result
= NULL_TREE
;
20536 enum machine_mode mode
;
20539 = ((args
&& TREE_CODE (args
) == TREE_LIST
&& TREE_VALUE (args
)
20540 && TREE_CODE (TREE_VALUE (args
)) == IDENTIFIER_NODE
)
20541 ? *IDENTIFIER_POINTER (TREE_VALUE (args
))
20544 while (POINTER_TYPE_P (type
)
20545 || TREE_CODE (type
) == FUNCTION_TYPE
20546 || TREE_CODE (type
) == METHOD_TYPE
20547 || TREE_CODE (type
) == ARRAY_TYPE
)
20548 type
= TREE_TYPE (type
);
20550 mode
= TYPE_MODE (type
);
20552 /* Check for invalid AltiVec type qualifiers. */
20553 if (type
== long_unsigned_type_node
|| type
== long_integer_type_node
)
20556 error ("use of %<long%> in AltiVec types is invalid for 64-bit code");
20557 else if (rs6000_warn_altivec_long
)
20558 warning (0, "use of %<long%> in AltiVec types is deprecated; use %<int%>");
20560 else if (type
== long_long_unsigned_type_node
20561 || type
== long_long_integer_type_node
)
20562 error ("use of %<long long%> in AltiVec types is invalid");
20563 else if (type
== double_type_node
)
20564 error ("use of %<double%> in AltiVec types is invalid");
20565 else if (type
== long_double_type_node
)
20566 error ("use of %<long double%> in AltiVec types is invalid");
20567 else if (type
== boolean_type_node
)
20568 error ("use of boolean types in AltiVec types is invalid");
20569 else if (TREE_CODE (type
) == COMPLEX_TYPE
)
20570 error ("use of %<complex%> in AltiVec types is invalid");
20571 else if (DECIMAL_FLOAT_MODE_P (mode
))
20572 error ("use of decimal floating point types in AltiVec types is invalid");
20574 switch (altivec_type
)
20577 unsigned_p
= TYPE_UNSIGNED (type
);
20581 result
= (unsigned_p
? unsigned_V4SI_type_node
: V4SI_type_node
);
20584 result
= (unsigned_p
? unsigned_V8HI_type_node
: V8HI_type_node
);
20587 result
= (unsigned_p
? unsigned_V16QI_type_node
: V16QI_type_node
);
20589 case SFmode
: result
= V4SF_type_node
; break;
20590 /* If the user says 'vector int bool', we may be handed the 'bool'
20591 attribute _before_ the 'vector' attribute, and so select the
20592 proper type in the 'b' case below. */
20593 case V4SImode
: case V8HImode
: case V16QImode
: case V4SFmode
:
20601 case SImode
: case V4SImode
: result
= bool_V4SI_type_node
; break;
20602 case HImode
: case V8HImode
: result
= bool_V8HI_type_node
; break;
20603 case QImode
: case V16QImode
: result
= bool_V16QI_type_node
;
20610 case V8HImode
: result
= pixel_V8HI_type_node
;
20616 /* Propagate qualifiers attached to the element type
20617 onto the vector type. */
20618 if (result
&& result
!= type
&& TYPE_QUALS (type
))
20619 result
= build_qualified_type (result
, TYPE_QUALS (type
));
20621 *no_add_attrs
= true; /* No need to hang on to the attribute. */
20624 *node
= lang_hooks
.types
.reconstruct_complex_type (*node
, result
);
20629 /* AltiVec defines four built-in scalar types that serve as vector
20630 elements; we must teach the compiler how to mangle them. */
20632 static const char *
20633 rs6000_mangle_type (const_tree type
)
20635 type
= TYPE_MAIN_VARIANT (type
);
20637 if (TREE_CODE (type
) != VOID_TYPE
&& TREE_CODE (type
) != BOOLEAN_TYPE
20638 && TREE_CODE (type
) != INTEGER_TYPE
&& TREE_CODE (type
) != REAL_TYPE
)
20641 if (type
== bool_char_type_node
) return "U6__boolc";
20642 if (type
== bool_short_type_node
) return "U6__bools";
20643 if (type
== pixel_type_node
) return "u7__pixel";
20644 if (type
== bool_int_type_node
) return "U6__booli";
20646 /* Mangle IBM extended float long double as `g' (__float128) on
20647 powerpc*-linux where long-double-64 previously was the default. */
20648 if (TYPE_MAIN_VARIANT (type
) == long_double_type_node
20650 && TARGET_LONG_DOUBLE_128
20651 && !TARGET_IEEEQUAD
)
20654 /* For all other types, use normal C++ mangling. */
20658 /* Handle a "longcall" or "shortcall" attribute; arguments as in
20659 struct attribute_spec.handler. */
20662 rs6000_handle_longcall_attribute (tree
*node
, tree name
,
20663 tree args ATTRIBUTE_UNUSED
,
20664 int flags ATTRIBUTE_UNUSED
,
20665 bool *no_add_attrs
)
20667 if (TREE_CODE (*node
) != FUNCTION_TYPE
20668 && TREE_CODE (*node
) != FIELD_DECL
20669 && TREE_CODE (*node
) != TYPE_DECL
)
20671 warning (OPT_Wattributes
, "%qs attribute only applies to functions",
20672 IDENTIFIER_POINTER (name
));
20673 *no_add_attrs
= true;
20679 /* Set longcall attributes on all functions declared when
20680 rs6000_default_long_calls is true. */
20682 rs6000_set_default_type_attributes (tree type
)
20684 if (rs6000_default_long_calls
20685 && (TREE_CODE (type
) == FUNCTION_TYPE
20686 || TREE_CODE (type
) == METHOD_TYPE
))
20687 TYPE_ATTRIBUTES (type
) = tree_cons (get_identifier ("longcall"),
20689 TYPE_ATTRIBUTES (type
));
20692 darwin_set_default_type_attributes (type
);
20696 /* Return a reference suitable for calling a function with the
20697 longcall attribute. */
20700 rs6000_longcall_ref (rtx call_ref
)
20702 const char *call_name
;
20705 if (GET_CODE (call_ref
) != SYMBOL_REF
)
20708 /* System V adds '.' to the internal name, so skip them. */
20709 call_name
= XSTR (call_ref
, 0);
20710 if (*call_name
== '.')
20712 while (*call_name
== '.')
20715 node
= get_identifier (call_name
);
20716 call_ref
= gen_rtx_SYMBOL_REF (VOIDmode
, IDENTIFIER_POINTER (node
));
20719 return force_reg (Pmode
, call_ref
);
20722 #ifndef TARGET_USE_MS_BITFIELD_LAYOUT
20723 #define TARGET_USE_MS_BITFIELD_LAYOUT 0
20726 /* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in
20727 struct attribute_spec.handler. */
20729 rs6000_handle_struct_attribute (tree
*node
, tree name
,
20730 tree args ATTRIBUTE_UNUSED
,
20731 int flags ATTRIBUTE_UNUSED
, bool *no_add_attrs
)
20734 if (DECL_P (*node
))
20736 if (TREE_CODE (*node
) == TYPE_DECL
)
20737 type
= &TREE_TYPE (*node
);
20742 if (!(type
&& (TREE_CODE (*type
) == RECORD_TYPE
20743 || TREE_CODE (*type
) == UNION_TYPE
)))
20745 warning (OPT_Wattributes
, "%qs attribute ignored", IDENTIFIER_POINTER (name
));
20746 *no_add_attrs
= true;
20749 else if ((is_attribute_p ("ms_struct", name
)
20750 && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type
)))
20751 || ((is_attribute_p ("gcc_struct", name
)
20752 && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type
)))))
20754 warning (OPT_Wattributes
, "%qs incompatible attribute ignored",
20755 IDENTIFIER_POINTER (name
));
20756 *no_add_attrs
= true;
20763 rs6000_ms_bitfield_layout_p (const_tree record_type
)
20765 return (TARGET_USE_MS_BITFIELD_LAYOUT
&&
20766 !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type
)))
20767 || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type
));
20770 #ifdef USING_ELFOS_H
20772 /* A get_unnamed_section callback, used for switching to toc_section. */
20775 rs6000_elf_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED
)
20777 if (DEFAULT_ABI
== ABI_AIX
20778 && TARGET_MINIMAL_TOC
20779 && !TARGET_RELOCATABLE
)
20781 if (!toc_initialized
)
20783 toc_initialized
= 1;
20784 fprintf (asm_out_file
, "%s\n", TOC_SECTION_ASM_OP
);
20785 (*targetm
.asm_out
.internal_label
) (asm_out_file
, "LCTOC", 0);
20786 fprintf (asm_out_file
, "\t.tc ");
20787 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file
, "LCTOC1[TC],");
20788 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file
, "LCTOC1");
20789 fprintf (asm_out_file
, "\n");
20791 fprintf (asm_out_file
, "%s\n", MINIMAL_TOC_SECTION_ASM_OP
);
20792 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file
, "LCTOC1");
20793 fprintf (asm_out_file
, " = .+32768\n");
20796 fprintf (asm_out_file
, "%s\n", MINIMAL_TOC_SECTION_ASM_OP
);
20798 else if (DEFAULT_ABI
== ABI_AIX
&& !TARGET_RELOCATABLE
)
20799 fprintf (asm_out_file
, "%s\n", TOC_SECTION_ASM_OP
);
20802 fprintf (asm_out_file
, "%s\n", MINIMAL_TOC_SECTION_ASM_OP
);
20803 if (!toc_initialized
)
20805 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file
, "LCTOC1");
20806 fprintf (asm_out_file
, " = .+32768\n");
20807 toc_initialized
= 1;
20812 /* Implement TARGET_ASM_INIT_SECTIONS. */
20815 rs6000_elf_asm_init_sections (void)
20818 = get_unnamed_section (0, rs6000_elf_output_toc_section_asm_op
, NULL
);
20821 = get_unnamed_section (SECTION_WRITE
, output_section_asm_op
,
20822 SDATA2_SECTION_ASM_OP
);
20825 /* Implement TARGET_SELECT_RTX_SECTION. */
20828 rs6000_elf_select_rtx_section (enum machine_mode mode
, rtx x
,
20829 unsigned HOST_WIDE_INT align
)
20831 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x
, mode
))
20832 return toc_section
;
20834 return default_elf_select_rtx_section (mode
, x
, align
);
20837 /* For a SYMBOL_REF, set generic flags and then perform some
20838 target-specific processing.
20840 When the AIX ABI is requested on a non-AIX system, replace the
20841 function name with the real name (with a leading .) rather than the
20842 function descriptor name. This saves a lot of overriding code to
20843 read the prefixes. */
20846 rs6000_elf_encode_section_info (tree decl
, rtx rtl
, int first
)
20848 default_encode_section_info (decl
, rtl
, first
);
20851 && TREE_CODE (decl
) == FUNCTION_DECL
20853 && DEFAULT_ABI
== ABI_AIX
)
20855 rtx sym_ref
= XEXP (rtl
, 0);
20856 size_t len
= strlen (XSTR (sym_ref
, 0));
20857 char *str
= XALLOCAVEC (char, len
+ 2);
20859 memcpy (str
+ 1, XSTR (sym_ref
, 0), len
+ 1);
20860 XSTR (sym_ref
, 0) = ggc_alloc_string (str
, len
+ 1);
20865 compare_section_name (const char *section
, const char *templ
)
20869 len
= strlen (templ
);
20870 return (strncmp (section
, templ
, len
) == 0
20871 && (section
[len
] == 0 || section
[len
] == '.'));
20875 rs6000_elf_in_small_data_p (const_tree decl
)
20877 if (rs6000_sdata
== SDATA_NONE
)
20880 /* We want to merge strings, so we never consider them small data. */
20881 if (TREE_CODE (decl
) == STRING_CST
)
20884 /* Functions are never in the small data area. */
20885 if (TREE_CODE (decl
) == FUNCTION_DECL
)
20888 if (TREE_CODE (decl
) == VAR_DECL
&& DECL_SECTION_NAME (decl
))
20890 const char *section
= TREE_STRING_POINTER (DECL_SECTION_NAME (decl
));
20891 if (compare_section_name (section
, ".sdata")
20892 || compare_section_name (section
, ".sdata2")
20893 || compare_section_name (section
, ".gnu.linkonce.s")
20894 || compare_section_name (section
, ".sbss")
20895 || compare_section_name (section
, ".sbss2")
20896 || compare_section_name (section
, ".gnu.linkonce.sb")
20897 || strcmp (section
, ".PPC.EMB.sdata0") == 0
20898 || strcmp (section
, ".PPC.EMB.sbss0") == 0)
20903 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (decl
));
20906 && (unsigned HOST_WIDE_INT
) size
<= g_switch_value
20907 /* If it's not public, and we're not going to reference it there,
20908 there's no need to put it in the small data section. */
20909 && (rs6000_sdata
!= SDATA_DATA
|| TREE_PUBLIC (decl
)))
20916 #endif /* USING_ELFOS_H */
20918 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. */
20921 rs6000_use_blocks_for_constant_p (enum machine_mode mode
, const_rtx x
)
20923 return !ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x
, mode
);
20926 /* Return a REG that occurs in ADDR with coefficient 1.
20927 ADDR can be effectively incremented by incrementing REG.
20929 r0 is special and we must not select it as an address
20930 register by this routine since our caller will try to
20931 increment the returned register via an "la" instruction. */
20934 find_addr_reg (rtx addr
)
20936 while (GET_CODE (addr
) == PLUS
)
20938 if (GET_CODE (XEXP (addr
, 0)) == REG
20939 && REGNO (XEXP (addr
, 0)) != 0)
20940 addr
= XEXP (addr
, 0);
20941 else if (GET_CODE (XEXP (addr
, 1)) == REG
20942 && REGNO (XEXP (addr
, 1)) != 0)
20943 addr
= XEXP (addr
, 1);
20944 else if (CONSTANT_P (XEXP (addr
, 0)))
20945 addr
= XEXP (addr
, 1);
20946 else if (CONSTANT_P (XEXP (addr
, 1)))
20947 addr
= XEXP (addr
, 0);
20949 gcc_unreachable ();
20951 gcc_assert (GET_CODE (addr
) == REG
&& REGNO (addr
) != 0);
20956 rs6000_fatal_bad_address (rtx op
)
20958 fatal_insn ("bad address", op
);
20963 static tree branch_island_list
= 0;
20965 /* Remember to generate a branch island for far calls to the given
20969 add_compiler_branch_island (tree label_name
, tree function_name
,
20972 tree branch_island
= build_tree_list (function_name
, label_name
);
20973 TREE_TYPE (branch_island
) = build_int_cst (NULL_TREE
, line_number
);
20974 TREE_CHAIN (branch_island
) = branch_island_list
;
20975 branch_island_list
= branch_island
;
20978 #define BRANCH_ISLAND_LABEL_NAME(BRANCH_ISLAND) TREE_VALUE (BRANCH_ISLAND)
20979 #define BRANCH_ISLAND_FUNCTION_NAME(BRANCH_ISLAND) TREE_PURPOSE (BRANCH_ISLAND)
20980 #define BRANCH_ISLAND_LINE_NUMBER(BRANCH_ISLAND) \
20981 TREE_INT_CST_LOW (TREE_TYPE (BRANCH_ISLAND))
20983 /* Generate far-jump branch islands for everything on the
20984 branch_island_list. Invoked immediately after the last instruction
20985 of the epilogue has been emitted; the branch-islands must be
20986 appended to, and contiguous with, the function body. Mach-O stubs
20987 are generated in machopic_output_stub(). */
20990 macho_branch_islands (void)
20993 tree branch_island
;
20995 for (branch_island
= branch_island_list
;
20997 branch_island
= TREE_CHAIN (branch_island
))
20999 const char *label
=
21000 IDENTIFIER_POINTER (BRANCH_ISLAND_LABEL_NAME (branch_island
));
21002 IDENTIFIER_POINTER (BRANCH_ISLAND_FUNCTION_NAME (branch_island
));
21003 char name_buf
[512];
21004 /* Cheap copy of the details from the Darwin ASM_OUTPUT_LABELREF(). */
21005 if (name
[0] == '*' || name
[0] == '&')
21006 strcpy (name_buf
, name
+1);
21010 strcpy (name_buf
+1, name
);
21012 strcpy (tmp_buf
, "\n");
21013 strcat (tmp_buf
, label
);
21014 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
21015 if (write_symbols
== DBX_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
21016 dbxout_stabd (N_SLINE
, BRANCH_ISLAND_LINE_NUMBER (branch_island
));
21017 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
21020 strcat (tmp_buf
, ":\n\tmflr r0\n\tbcl 20,31,");
21021 strcat (tmp_buf
, label
);
21022 strcat (tmp_buf
, "_pic\n");
21023 strcat (tmp_buf
, label
);
21024 strcat (tmp_buf
, "_pic:\n\tmflr r11\n");
21026 strcat (tmp_buf
, "\taddis r11,r11,ha16(");
21027 strcat (tmp_buf
, name_buf
);
21028 strcat (tmp_buf
, " - ");
21029 strcat (tmp_buf
, label
);
21030 strcat (tmp_buf
, "_pic)\n");
21032 strcat (tmp_buf
, "\tmtlr r0\n");
21034 strcat (tmp_buf
, "\taddi r12,r11,lo16(");
21035 strcat (tmp_buf
, name_buf
);
21036 strcat (tmp_buf
, " - ");
21037 strcat (tmp_buf
, label
);
21038 strcat (tmp_buf
, "_pic)\n");
21040 strcat (tmp_buf
, "\tmtctr r12\n\tbctr\n");
21044 strcat (tmp_buf
, ":\nlis r12,hi16(");
21045 strcat (tmp_buf
, name_buf
);
21046 strcat (tmp_buf
, ")\n\tori r12,r12,lo16(");
21047 strcat (tmp_buf
, name_buf
);
21048 strcat (tmp_buf
, ")\n\tmtctr r12\n\tbctr");
21050 output_asm_insn (tmp_buf
, 0);
21051 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
21052 if (write_symbols
== DBX_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
21053 dbxout_stabd (N_SLINE
, BRANCH_ISLAND_LINE_NUMBER (branch_island
));
21054 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
21057 branch_island_list
= 0;
21060 /* NO_PREVIOUS_DEF checks in the link list whether the function name is
21061 already there or not. */
21064 no_previous_def (tree function_name
)
21066 tree branch_island
;
21067 for (branch_island
= branch_island_list
;
21069 branch_island
= TREE_CHAIN (branch_island
))
21070 if (function_name
== BRANCH_ISLAND_FUNCTION_NAME (branch_island
))
21075 /* GET_PREV_LABEL gets the label name from the previous definition of
21079 get_prev_label (tree function_name
)
21081 tree branch_island
;
21082 for (branch_island
= branch_island_list
;
21084 branch_island
= TREE_CHAIN (branch_island
))
21085 if (function_name
== BRANCH_ISLAND_FUNCTION_NAME (branch_island
))
21086 return BRANCH_ISLAND_LABEL_NAME (branch_island
);
21090 #ifndef DARWIN_LINKER_GENERATES_ISLANDS
21091 #define DARWIN_LINKER_GENERATES_ISLANDS 0
21094 /* KEXTs still need branch islands. */
21095 #define DARWIN_GENERATE_ISLANDS (!DARWIN_LINKER_GENERATES_ISLANDS \
21096 || flag_mkernel || flag_apple_kext)
21098 /* INSN is either a function call or a millicode call. It may have an
21099 unconditional jump in its delay slot.
21101 CALL_DEST is the routine we are calling. */
21104 output_call (rtx insn
, rtx
*operands
, int dest_operand_number
,
21105 int cookie_operand_number
)
21107 static char buf
[256];
21108 if (DARWIN_GENERATE_ISLANDS
21109 && GET_CODE (operands
[dest_operand_number
]) == SYMBOL_REF
21110 && (INTVAL (operands
[cookie_operand_number
]) & CALL_LONG
))
21113 tree funname
= get_identifier (XSTR (operands
[dest_operand_number
], 0));
21115 if (no_previous_def (funname
))
21117 rtx label_rtx
= gen_label_rtx ();
21118 char *label_buf
, temp_buf
[256];
21119 ASM_GENERATE_INTERNAL_LABEL (temp_buf
, "L",
21120 CODE_LABEL_NUMBER (label_rtx
));
21121 label_buf
= temp_buf
[0] == '*' ? temp_buf
+ 1 : temp_buf
;
21122 labelname
= get_identifier (label_buf
);
21123 add_compiler_branch_island (labelname
, funname
, insn_line (insn
));
21126 labelname
= get_prev_label (funname
);
21128 /* "jbsr foo, L42" is Mach-O for "Link as 'bl foo' if a 'bl'
21129 instruction will reach 'foo', otherwise link as 'bl L42'".
21130 "L42" should be a 'branch island', that will do a far jump to
21131 'foo'. Branch islands are generated in
21132 macho_branch_islands(). */
21133 sprintf (buf
, "jbsr %%z%d,%.246s",
21134 dest_operand_number
, IDENTIFIER_POINTER (labelname
));
21137 sprintf (buf
, "bl %%z%d", dest_operand_number
);
21141 /* Generate PIC and indirect symbol stubs. */
21144 machopic_output_stub (FILE *file
, const char *symb
, const char *stub
)
21146 unsigned int length
;
21147 char *symbol_name
, *lazy_ptr_name
;
21148 char *local_label_0
;
21149 static int label
= 0;
21151 /* Lose our funky encoding stuff so it doesn't contaminate the stub. */
21152 symb
= (*targetm
.strip_name_encoding
) (symb
);
21155 length
= strlen (symb
);
21156 symbol_name
= XALLOCAVEC (char, length
+ 32);
21157 GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name
, symb
, length
);
21159 lazy_ptr_name
= XALLOCAVEC (char, length
+ 32);
21160 GEN_LAZY_PTR_NAME_FOR_SYMBOL (lazy_ptr_name
, symb
, length
);
21163 switch_to_section (darwin_sections
[machopic_picsymbol_stub1_section
]);
21165 switch_to_section (darwin_sections
[machopic_symbol_stub1_section
]);
21169 fprintf (file
, "\t.align 5\n");
21171 fprintf (file
, "%s:\n", stub
);
21172 fprintf (file
, "\t.indirect_symbol %s\n", symbol_name
);
21175 local_label_0
= XALLOCAVEC (char, sizeof ("\"L00000000000$spb\""));
21176 sprintf (local_label_0
, "\"L%011d$spb\"", label
);
21178 fprintf (file
, "\tmflr r0\n");
21179 fprintf (file
, "\tbcl 20,31,%s\n", local_label_0
);
21180 fprintf (file
, "%s:\n\tmflr r11\n", local_label_0
);
21181 fprintf (file
, "\taddis r11,r11,ha16(%s-%s)\n",
21182 lazy_ptr_name
, local_label_0
);
21183 fprintf (file
, "\tmtlr r0\n");
21184 fprintf (file
, "\t%s r12,lo16(%s-%s)(r11)\n",
21185 (TARGET_64BIT
? "ldu" : "lwzu"),
21186 lazy_ptr_name
, local_label_0
);
21187 fprintf (file
, "\tmtctr r12\n");
21188 fprintf (file
, "\tbctr\n");
21192 fprintf (file
, "\t.align 4\n");
21194 fprintf (file
, "%s:\n", stub
);
21195 fprintf (file
, "\t.indirect_symbol %s\n", symbol_name
);
21197 fprintf (file
, "\tlis r11,ha16(%s)\n", lazy_ptr_name
);
21198 fprintf (file
, "\t%s r12,lo16(%s)(r11)\n",
21199 (TARGET_64BIT
? "ldu" : "lwzu"),
21201 fprintf (file
, "\tmtctr r12\n");
21202 fprintf (file
, "\tbctr\n");
21205 switch_to_section (darwin_sections
[machopic_lazy_symbol_ptr_section
]);
21206 fprintf (file
, "%s:\n", lazy_ptr_name
);
21207 fprintf (file
, "\t.indirect_symbol %s\n", symbol_name
);
21208 fprintf (file
, "%sdyld_stub_binding_helper\n",
21209 (TARGET_64BIT
? DOUBLE_INT_ASM_OP
: "\t.long\t"));
21212 /* Legitimize PIC addresses. If the address is already
21213 position-independent, we return ORIG. Newly generated
21214 position-independent addresses go into a reg. This is REG if non
21215 zero, otherwise we allocate register(s) as necessary. */
21217 #define SMALL_INT(X) ((UINTVAL (X) + 0x8000) < 0x10000)
21220 rs6000_machopic_legitimize_pic_address (rtx orig
, enum machine_mode mode
,
21225 if (reg
== NULL
&& ! reload_in_progress
&& ! reload_completed
)
21226 reg
= gen_reg_rtx (Pmode
);
21228 if (GET_CODE (orig
) == CONST
)
21232 if (GET_CODE (XEXP (orig
, 0)) == PLUS
21233 && XEXP (XEXP (orig
, 0), 0) == pic_offset_table_rtx
)
21236 gcc_assert (GET_CODE (XEXP (orig
, 0)) == PLUS
);
21238 /* Use a different reg for the intermediate value, as
21239 it will be marked UNCHANGING. */
21240 reg_temp
= !can_create_pseudo_p () ? reg
: gen_reg_rtx (Pmode
);
21241 base
= rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig
, 0), 0),
21244 rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig
, 0), 1),
21247 if (GET_CODE (offset
) == CONST_INT
)
21249 if (SMALL_INT (offset
))
21250 return plus_constant (base
, INTVAL (offset
));
21251 else if (! reload_in_progress
&& ! reload_completed
)
21252 offset
= force_reg (Pmode
, offset
);
21255 rtx mem
= force_const_mem (Pmode
, orig
);
21256 return machopic_legitimize_pic_address (mem
, Pmode
, reg
);
21259 return gen_rtx_PLUS (Pmode
, base
, offset
);
21262 /* Fall back on generic machopic code. */
21263 return machopic_legitimize_pic_address (orig
, mode
, reg
);
21266 /* Output a .machine directive for the Darwin assembler, and call
21267 the generic start_file routine. */
21270 rs6000_darwin_file_start (void)
21272 static const struct
21278 { "ppc64", "ppc64", MASK_64BIT
},
21279 { "970", "ppc970", MASK_PPC_GPOPT
| MASK_MFCRF
| MASK_POWERPC64
},
21280 { "power4", "ppc970", 0 },
21281 { "G5", "ppc970", 0 },
21282 { "7450", "ppc7450", 0 },
21283 { "7400", "ppc7400", MASK_ALTIVEC
},
21284 { "G4", "ppc7400", 0 },
21285 { "750", "ppc750", 0 },
21286 { "740", "ppc750", 0 },
21287 { "G3", "ppc750", 0 },
21288 { "604e", "ppc604e", 0 },
21289 { "604", "ppc604", 0 },
21290 { "603e", "ppc603", 0 },
21291 { "603", "ppc603", 0 },
21292 { "601", "ppc601", 0 },
21293 { NULL
, "ppc", 0 } };
21294 const char *cpu_id
= "";
21297 rs6000_file_start ();
21298 darwin_file_start ();
21300 /* Determine the argument to -mcpu=. Default to G3 if not specified. */
21301 for (i
= 0; i
< ARRAY_SIZE (rs6000_select
); i
++)
21302 if (rs6000_select
[i
].set_arch_p
&& rs6000_select
[i
].string
21303 && rs6000_select
[i
].string
[0] != '\0')
21304 cpu_id
= rs6000_select
[i
].string
;
21306 /* Look through the mapping array. Pick the first name that either
21307 matches the argument, has a bit set in IF_SET that is also set
21308 in the target flags, or has a NULL name. */
21311 while (mapping
[i
].arg
!= NULL
21312 && strcmp (mapping
[i
].arg
, cpu_id
) != 0
21313 && (mapping
[i
].if_set
& target_flags
) == 0)
21316 fprintf (asm_out_file
, "\t.machine %s\n", mapping
[i
].name
);
21319 #endif /* TARGET_MACHO */
21323 rs6000_elf_reloc_rw_mask (void)
21327 else if (DEFAULT_ABI
== ABI_AIX
)
21333 /* Record an element in the table of global constructors. SYMBOL is
21334 a SYMBOL_REF of the function to be called; PRIORITY is a number
21335 between 0 and MAX_INIT_PRIORITY.
21337 This differs from default_named_section_asm_out_constructor in
21338 that we have special handling for -mrelocatable. */
21341 rs6000_elf_asm_out_constructor (rtx symbol
, int priority
)
21343 const char *section
= ".ctors";
21346 if (priority
!= DEFAULT_INIT_PRIORITY
)
21348 sprintf (buf
, ".ctors.%.5u",
21349 /* Invert the numbering so the linker puts us in the proper
21350 order; constructors are run from right to left, and the
21351 linker sorts in increasing order. */
21352 MAX_INIT_PRIORITY
- priority
);
21356 switch_to_section (get_section (section
, SECTION_WRITE
, NULL
));
21357 assemble_align (POINTER_SIZE
);
21359 if (TARGET_RELOCATABLE
)
21361 fputs ("\t.long (", asm_out_file
);
21362 output_addr_const (asm_out_file
, symbol
);
21363 fputs (")@fixup\n", asm_out_file
);
21366 assemble_integer (symbol
, POINTER_SIZE
/ BITS_PER_UNIT
, POINTER_SIZE
, 1);
21370 rs6000_elf_asm_out_destructor (rtx symbol
, int priority
)
21372 const char *section
= ".dtors";
21375 if (priority
!= DEFAULT_INIT_PRIORITY
)
21377 sprintf (buf
, ".dtors.%.5u",
21378 /* Invert the numbering so the linker puts us in the proper
21379 order; constructors are run from right to left, and the
21380 linker sorts in increasing order. */
21381 MAX_INIT_PRIORITY
- priority
);
21385 switch_to_section (get_section (section
, SECTION_WRITE
, NULL
));
21386 assemble_align (POINTER_SIZE
);
21388 if (TARGET_RELOCATABLE
)
21390 fputs ("\t.long (", asm_out_file
);
21391 output_addr_const (asm_out_file
, symbol
);
21392 fputs (")@fixup\n", asm_out_file
);
21395 assemble_integer (symbol
, POINTER_SIZE
/ BITS_PER_UNIT
, POINTER_SIZE
, 1);
21399 rs6000_elf_declare_function_name (FILE *file
, const char *name
, tree decl
)
21403 fputs ("\t.section\t\".opd\",\"aw\"\n\t.align 3\n", file
);
21404 ASM_OUTPUT_LABEL (file
, name
);
21405 fputs (DOUBLE_INT_ASM_OP
, file
);
21406 rs6000_output_function_entry (file
, name
);
21407 fputs (",.TOC.@tocbase,0\n\t.previous\n", file
);
21410 fputs ("\t.size\t", file
);
21411 assemble_name (file
, name
);
21412 fputs (",24\n\t.type\t.", file
);
21413 assemble_name (file
, name
);
21414 fputs (",@function\n", file
);
21415 if (TREE_PUBLIC (decl
) && ! DECL_WEAK (decl
))
21417 fputs ("\t.globl\t.", file
);
21418 assemble_name (file
, name
);
21423 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
21424 ASM_DECLARE_RESULT (file
, DECL_RESULT (decl
));
21425 rs6000_output_function_entry (file
, name
);
21426 fputs (":\n", file
);
21430 if (TARGET_RELOCATABLE
21431 && !TARGET_SECURE_PLT
21432 && (get_pool_size () != 0 || crtl
->profile
)
21437 (*targetm
.asm_out
.internal_label
) (file
, "LCL", rs6000_pic_labelno
);
21439 ASM_GENERATE_INTERNAL_LABEL (buf
, "LCTOC", 1);
21440 fprintf (file
, "\t.long ");
21441 assemble_name (file
, buf
);
21443 ASM_GENERATE_INTERNAL_LABEL (buf
, "LCF", rs6000_pic_labelno
);
21444 assemble_name (file
, buf
);
21448 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
21449 ASM_DECLARE_RESULT (file
, DECL_RESULT (decl
));
21451 if (DEFAULT_ABI
== ABI_AIX
)
21453 const char *desc_name
, *orig_name
;
21455 orig_name
= (*targetm
.strip_name_encoding
) (name
);
21456 desc_name
= orig_name
;
21457 while (*desc_name
== '.')
21460 if (TREE_PUBLIC (decl
))
21461 fprintf (file
, "\t.globl %s\n", desc_name
);
21463 fprintf (file
, "%s\n", MINIMAL_TOC_SECTION_ASM_OP
);
21464 fprintf (file
, "%s:\n", desc_name
);
21465 fprintf (file
, "\t.long %s\n", orig_name
);
21466 fputs ("\t.long _GLOBAL_OFFSET_TABLE_\n", file
);
21467 if (DEFAULT_ABI
== ABI_AIX
)
21468 fputs ("\t.long 0\n", file
);
21469 fprintf (file
, "\t.previous\n");
21471 ASM_OUTPUT_LABEL (file
, name
);
21475 rs6000_elf_end_indicate_exec_stack (void)
21478 file_end_indicate_exec_stack ();
21484 rs6000_xcoff_asm_output_anchor (rtx symbol
)
21488 sprintf (buffer
, "$ + " HOST_WIDE_INT_PRINT_DEC
,
21489 SYMBOL_REF_BLOCK_OFFSET (symbol
));
21490 ASM_OUTPUT_DEF (asm_out_file
, XSTR (symbol
, 0), buffer
);
21494 rs6000_xcoff_asm_globalize_label (FILE *stream
, const char *name
)
21496 fputs (GLOBAL_ASM_OP
, stream
);
21497 RS6000_OUTPUT_BASENAME (stream
, name
);
21498 putc ('\n', stream
);
21501 /* A get_unnamed_decl callback, used for read-only sections. PTR
21502 points to the section string variable. */
21505 rs6000_xcoff_output_readonly_section_asm_op (const void *directive
)
21507 fprintf (asm_out_file
, "\t.csect %s[RO],%s\n",
21508 *(const char *const *) directive
,
21509 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR
);
21512 /* Likewise for read-write sections. */
21515 rs6000_xcoff_output_readwrite_section_asm_op (const void *directive
)
21517 fprintf (asm_out_file
, "\t.csect %s[RW],%s\n",
21518 *(const char *const *) directive
,
21519 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR
);
21522 /* A get_unnamed_section callback, used for switching to toc_section. */
21525 rs6000_xcoff_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED
)
21527 if (TARGET_MINIMAL_TOC
)
21529 /* toc_section is always selected at least once from
21530 rs6000_xcoff_file_start, so this is guaranteed to
21531 always be defined once and only once in each file. */
21532 if (!toc_initialized
)
21534 fputs ("\t.toc\nLCTOC..1:\n", asm_out_file
);
21535 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file
);
21536 toc_initialized
= 1;
21538 fprintf (asm_out_file
, "\t.csect toc_table[RW]%s\n",
21539 (TARGET_32BIT
? "" : ",3"));
21542 fputs ("\t.toc\n", asm_out_file
);
21545 /* Implement TARGET_ASM_INIT_SECTIONS. */
21548 rs6000_xcoff_asm_init_sections (void)
21550 read_only_data_section
21551 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op
,
21552 &xcoff_read_only_section_name
);
21554 private_data_section
21555 = get_unnamed_section (SECTION_WRITE
,
21556 rs6000_xcoff_output_readwrite_section_asm_op
,
21557 &xcoff_private_data_section_name
);
21559 read_only_private_data_section
21560 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op
,
21561 &xcoff_private_data_section_name
);
21564 = get_unnamed_section (0, rs6000_xcoff_output_toc_section_asm_op
, NULL
);
21566 readonly_data_section
= read_only_data_section
;
21567 exception_section
= data_section
;
21571 rs6000_xcoff_reloc_rw_mask (void)
21577 rs6000_xcoff_asm_named_section (const char *name
, unsigned int flags
,
21578 tree decl ATTRIBUTE_UNUSED
)
21581 static const char * const suffix
[3] = { "PR", "RO", "RW" };
21583 if (flags
& SECTION_CODE
)
21585 else if (flags
& SECTION_WRITE
)
21590 fprintf (asm_out_file
, "\t.csect %s%s[%s],%u\n",
21591 (flags
& SECTION_CODE
) ? "." : "",
21592 name
, suffix
[smclass
], flags
& SECTION_ENTSIZE
);
21596 rs6000_xcoff_select_section (tree decl
, int reloc
,
21597 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED
)
21599 if (decl_readonly_section (decl
, reloc
))
21601 if (TREE_PUBLIC (decl
))
21602 return read_only_data_section
;
21604 return read_only_private_data_section
;
21608 if (TREE_PUBLIC (decl
))
21609 return data_section
;
21611 return private_data_section
;
21616 rs6000_xcoff_unique_section (tree decl
, int reloc ATTRIBUTE_UNUSED
)
21620 /* Use select_section for private and uninitialized data. */
21621 if (!TREE_PUBLIC (decl
)
21622 || DECL_COMMON (decl
)
21623 || DECL_INITIAL (decl
) == NULL_TREE
21624 || DECL_INITIAL (decl
) == error_mark_node
21625 || (flag_zero_initialized_in_bss
21626 && initializer_zerop (DECL_INITIAL (decl
))))
21629 name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
));
21630 name
= (*targetm
.strip_name_encoding
) (name
);
21631 DECL_SECTION_NAME (decl
) = build_string (strlen (name
), name
);
21634 /* Select section for constant in constant pool.
21636 On RS/6000, all constants are in the private read-only data area.
21637 However, if this is being placed in the TOC it must be output as a
21641 rs6000_xcoff_select_rtx_section (enum machine_mode mode
, rtx x
,
21642 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED
)
21644 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x
, mode
))
21645 return toc_section
;
21647 return read_only_private_data_section
;
21650 /* Remove any trailing [DS] or the like from the symbol name. */
21652 static const char *
21653 rs6000_xcoff_strip_name_encoding (const char *name
)
21658 len
= strlen (name
);
21659 if (name
[len
- 1] == ']')
21660 return ggc_alloc_string (name
, len
- 4);
21665 /* Section attributes. AIX is always PIC. */
21667 static unsigned int
21668 rs6000_xcoff_section_type_flags (tree decl
, const char *name
, int reloc
)
21670 unsigned int align
;
21671 unsigned int flags
= default_section_type_flags (decl
, name
, reloc
);
21673 /* Align to at least UNIT size. */
21674 if (flags
& SECTION_CODE
)
21675 align
= MIN_UNITS_PER_WORD
;
21677 /* Increase alignment of large objects if not already stricter. */
21678 align
= MAX ((DECL_ALIGN (decl
) / BITS_PER_UNIT
),
21679 int_size_in_bytes (TREE_TYPE (decl
)) > MIN_UNITS_PER_WORD
21680 ? UNITS_PER_FP_WORD
: MIN_UNITS_PER_WORD
);
21682 return flags
| (exact_log2 (align
) & SECTION_ENTSIZE
);
21685 /* Output at beginning of assembler file.
21687 Initialize the section names for the RS/6000 at this point.
21689 Specify filename, including full path, to assembler.
21691 We want to go into the TOC section so at least one .toc will be emitted.
21692 Also, in order to output proper .bs/.es pairs, we need at least one static
21693 [RW] section emitted.
21695 Finally, declare mcount when profiling to make the assembler happy. */
21698 rs6000_xcoff_file_start (void)
21700 rs6000_gen_section_name (&xcoff_bss_section_name
,
21701 main_input_filename
, ".bss_");
21702 rs6000_gen_section_name (&xcoff_private_data_section_name
,
21703 main_input_filename
, ".rw_");
21704 rs6000_gen_section_name (&xcoff_read_only_section_name
,
21705 main_input_filename
, ".ro_");
21707 fputs ("\t.file\t", asm_out_file
);
21708 output_quoted_string (asm_out_file
, main_input_filename
);
21709 fputc ('\n', asm_out_file
);
21710 if (write_symbols
!= NO_DEBUG
)
21711 switch_to_section (private_data_section
);
21712 switch_to_section (text_section
);
21714 fprintf (asm_out_file
, "\t.extern %s\n", RS6000_MCOUNT
);
21715 rs6000_file_start ();
21718 /* Output at end of assembler file.
21719 On the RS/6000, referencing data should automatically pull in text. */
21722 rs6000_xcoff_file_end (void)
21724 switch_to_section (text_section
);
21725 fputs ("_section_.text:\n", asm_out_file
);
21726 switch_to_section (data_section
);
21727 fputs (TARGET_32BIT
21728 ? "\t.long _section_.text\n" : "\t.llong _section_.text\n",
21731 #endif /* TARGET_XCOFF */
21733 /* Compute a (partial) cost for rtx X. Return true if the complete
21734 cost has been computed, and false if subexpressions should be
21735 scanned. In either case, *TOTAL contains the cost result. */
21738 rs6000_rtx_costs (rtx x
, int code
, int outer_code
, int *total
,
21741 enum machine_mode mode
= GET_MODE (x
);
21745 /* On the RS/6000, if it is valid in the insn, it is free. */
21747 if (((outer_code
== SET
21748 || outer_code
== PLUS
21749 || outer_code
== MINUS
)
21750 && (satisfies_constraint_I (x
)
21751 || satisfies_constraint_L (x
)))
21752 || (outer_code
== AND
21753 && (satisfies_constraint_K (x
)
21755 ? satisfies_constraint_L (x
)
21756 : satisfies_constraint_J (x
))
21757 || mask_operand (x
, mode
)
21759 && mask64_operand (x
, DImode
))))
21760 || ((outer_code
== IOR
|| outer_code
== XOR
)
21761 && (satisfies_constraint_K (x
)
21763 ? satisfies_constraint_L (x
)
21764 : satisfies_constraint_J (x
))))
21765 || outer_code
== ASHIFT
21766 || outer_code
== ASHIFTRT
21767 || outer_code
== LSHIFTRT
21768 || outer_code
== ROTATE
21769 || outer_code
== ROTATERT
21770 || outer_code
== ZERO_EXTRACT
21771 || (outer_code
== MULT
21772 && satisfies_constraint_I (x
))
21773 || ((outer_code
== DIV
|| outer_code
== UDIV
21774 || outer_code
== MOD
|| outer_code
== UMOD
)
21775 && exact_log2 (INTVAL (x
)) >= 0)
21776 || (outer_code
== COMPARE
21777 && (satisfies_constraint_I (x
)
21778 || satisfies_constraint_K (x
)))
21779 || (outer_code
== EQ
21780 && (satisfies_constraint_I (x
)
21781 || satisfies_constraint_K (x
)
21783 ? satisfies_constraint_L (x
)
21784 : satisfies_constraint_J (x
))))
21785 || (outer_code
== GTU
21786 && satisfies_constraint_I (x
))
21787 || (outer_code
== LTU
21788 && satisfies_constraint_P (x
)))
21793 else if ((outer_code
== PLUS
21794 && reg_or_add_cint_operand (x
, VOIDmode
))
21795 || (outer_code
== MINUS
21796 && reg_or_sub_cint_operand (x
, VOIDmode
))
21797 || ((outer_code
== SET
21798 || outer_code
== IOR
21799 || outer_code
== XOR
)
21801 & ~ (unsigned HOST_WIDE_INT
) 0xffffffff) == 0))
21803 *total
= COSTS_N_INSNS (1);
21809 if (mode
== DImode
&& code
== CONST_DOUBLE
)
21811 if ((outer_code
== IOR
|| outer_code
== XOR
)
21812 && CONST_DOUBLE_HIGH (x
) == 0
21813 && (CONST_DOUBLE_LOW (x
)
21814 & ~ (unsigned HOST_WIDE_INT
) 0xffff) == 0)
21819 else if ((outer_code
== AND
&& and64_2_operand (x
, DImode
))
21820 || ((outer_code
== SET
21821 || outer_code
== IOR
21822 || outer_code
== XOR
)
21823 && CONST_DOUBLE_HIGH (x
) == 0))
21825 *total
= COSTS_N_INSNS (1);
21835 /* When optimizing for size, MEM should be slightly more expensive
21836 than generating address, e.g., (plus (reg) (const)).
21837 L1 cache latency is about two instructions. */
21838 *total
= !speed
? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
21846 if (mode
== DFmode
)
21848 if (GET_CODE (XEXP (x
, 0)) == MULT
)
21850 /* FNMA accounted in outer NEG. */
21851 if (outer_code
== NEG
)
21852 *total
= rs6000_cost
->dmul
- rs6000_cost
->fp
;
21854 *total
= rs6000_cost
->dmul
;
21857 *total
= rs6000_cost
->fp
;
21859 else if (mode
== SFmode
)
21861 /* FNMA accounted in outer NEG. */
21862 if (outer_code
== NEG
&& GET_CODE (XEXP (x
, 0)) == MULT
)
21865 *total
= rs6000_cost
->fp
;
21868 *total
= COSTS_N_INSNS (1);
21872 if (mode
== DFmode
)
21874 if (GET_CODE (XEXP (x
, 0)) == MULT
21875 || GET_CODE (XEXP (x
, 1)) == MULT
)
21877 /* FNMA accounted in outer NEG. */
21878 if (outer_code
== NEG
)
21879 *total
= rs6000_cost
->dmul
- rs6000_cost
->fp
;
21881 *total
= rs6000_cost
->dmul
;
21884 *total
= rs6000_cost
->fp
;
21886 else if (mode
== SFmode
)
21888 /* FNMA accounted in outer NEG. */
21889 if (outer_code
== NEG
&& GET_CODE (XEXP (x
, 0)) == MULT
)
21892 *total
= rs6000_cost
->fp
;
21895 *total
= COSTS_N_INSNS (1);
21899 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
21900 && satisfies_constraint_I (XEXP (x
, 1)))
21902 if (INTVAL (XEXP (x
, 1)) >= -256
21903 && INTVAL (XEXP (x
, 1)) <= 255)
21904 *total
= rs6000_cost
->mulsi_const9
;
21906 *total
= rs6000_cost
->mulsi_const
;
21908 /* FMA accounted in outer PLUS/MINUS. */
21909 else if ((mode
== DFmode
|| mode
== SFmode
)
21910 && (outer_code
== PLUS
|| outer_code
== MINUS
))
21912 else if (mode
== DFmode
)
21913 *total
= rs6000_cost
->dmul
;
21914 else if (mode
== SFmode
)
21915 *total
= rs6000_cost
->fp
;
21916 else if (mode
== DImode
)
21917 *total
= rs6000_cost
->muldi
;
21919 *total
= rs6000_cost
->mulsi
;
21924 if (FLOAT_MODE_P (mode
))
21926 *total
= mode
== DFmode
? rs6000_cost
->ddiv
21927 : rs6000_cost
->sdiv
;
21934 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
21935 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0)
21937 if (code
== DIV
|| code
== MOD
)
21939 *total
= COSTS_N_INSNS (2);
21942 *total
= COSTS_N_INSNS (1);
21946 if (GET_MODE (XEXP (x
, 1)) == DImode
)
21947 *total
= rs6000_cost
->divdi
;
21949 *total
= rs6000_cost
->divsi
;
21951 /* Add in shift and subtract for MOD. */
21952 if (code
== MOD
|| code
== UMOD
)
21953 *total
+= COSTS_N_INSNS (2);
21958 *total
= COSTS_N_INSNS (4);
21962 *total
= COSTS_N_INSNS (6);
21966 if (outer_code
== AND
|| outer_code
== IOR
|| outer_code
== XOR
)
21978 *total
= COSTS_N_INSNS (1);
21986 /* Handle mul_highpart. */
21987 if (outer_code
== TRUNCATE
21988 && GET_CODE (XEXP (x
, 0)) == MULT
)
21990 if (mode
== DImode
)
21991 *total
= rs6000_cost
->muldi
;
21993 *total
= rs6000_cost
->mulsi
;
21996 else if (outer_code
== AND
)
21999 *total
= COSTS_N_INSNS (1);
22004 if (GET_CODE (XEXP (x
, 0)) == MEM
)
22007 *total
= COSTS_N_INSNS (1);
22013 if (!FLOAT_MODE_P (mode
))
22015 *total
= COSTS_N_INSNS (1);
22021 case UNSIGNED_FLOAT
:
22024 case FLOAT_TRUNCATE
:
22025 *total
= rs6000_cost
->fp
;
22029 if (mode
== DFmode
)
22032 *total
= rs6000_cost
->fp
;
22036 switch (XINT (x
, 1))
22039 *total
= rs6000_cost
->fp
;
22051 *total
= COSTS_N_INSNS (1);
22054 else if (FLOAT_MODE_P (mode
)
22055 && TARGET_PPC_GFXOPT
&& TARGET_HARD_FLOAT
&& TARGET_FPRS
)
22057 *total
= rs6000_cost
->fp
;
22065 /* Carry bit requires mode == Pmode.
22066 NEG or PLUS already counted so only add one. */
22068 && (outer_code
== NEG
|| outer_code
== PLUS
))
22070 *total
= COSTS_N_INSNS (1);
22073 if (outer_code
== SET
)
22075 if (XEXP (x
, 1) == const0_rtx
)
22077 *total
= COSTS_N_INSNS (2);
22080 else if (mode
== Pmode
)
22082 *total
= COSTS_N_INSNS (3);
22091 if (outer_code
== SET
&& (XEXP (x
, 1) == const0_rtx
))
22093 *total
= COSTS_N_INSNS (2);
22097 if (outer_code
== COMPARE
)
22111 /* A C expression returning the cost of moving data from a register of class
22112 CLASS1 to one of CLASS2. */
22115 rs6000_register_move_cost (enum machine_mode mode
,
22116 enum reg_class from
, enum reg_class to
)
22118 /* Moves from/to GENERAL_REGS. */
22119 if (reg_classes_intersect_p (to
, GENERAL_REGS
)
22120 || reg_classes_intersect_p (from
, GENERAL_REGS
))
22122 if (! reg_classes_intersect_p (to
, GENERAL_REGS
))
22125 if (from
== FLOAT_REGS
|| from
== ALTIVEC_REGS
)
22126 return (rs6000_memory_move_cost (mode
, from
, 0)
22127 + rs6000_memory_move_cost (mode
, GENERAL_REGS
, 0));
22129 /* It's more expensive to move CR_REGS than CR0_REGS because of the
22131 else if (from
== CR_REGS
)
22134 /* Power6 has slower LR/CTR moves so make them more expensive than
22135 memory in order to bias spills to memory .*/
22136 else if (rs6000_cpu
== PROCESSOR_POWER6
22137 && reg_classes_intersect_p (from
, LINK_OR_CTR_REGS
))
22138 return 6 * hard_regno_nregs
[0][mode
];
22141 /* A move will cost one instruction per GPR moved. */
22142 return 2 * hard_regno_nregs
[0][mode
];
22145 /* Moving between two similar registers is just one instruction. */
22146 else if (reg_classes_intersect_p (to
, from
))
22147 return (mode
== TFmode
|| mode
== TDmode
) ? 4 : 2;
22149 /* Everything else has to go through GENERAL_REGS. */
22151 return (rs6000_register_move_cost (mode
, GENERAL_REGS
, to
)
22152 + rs6000_register_move_cost (mode
, from
, GENERAL_REGS
));
22155 /* A C expressions returning the cost of moving data of MODE from a register to
22159 rs6000_memory_move_cost (enum machine_mode mode
, enum reg_class rclass
,
22160 int in ATTRIBUTE_UNUSED
)
22162 if (reg_classes_intersect_p (rclass
, GENERAL_REGS
))
22163 return 4 * hard_regno_nregs
[0][mode
];
22164 else if (reg_classes_intersect_p (rclass
, FLOAT_REGS
))
22165 return 4 * hard_regno_nregs
[32][mode
];
22166 else if (reg_classes_intersect_p (rclass
, ALTIVEC_REGS
))
22167 return 4 * hard_regno_nregs
[FIRST_ALTIVEC_REGNO
][mode
];
22169 return 4 + rs6000_register_move_cost (mode
, rclass
, GENERAL_REGS
);
22172 /* Returns a code for a target-specific builtin that implements
22173 reciprocal of the function, or NULL_TREE if not available. */
22176 rs6000_builtin_reciprocal (unsigned int fn
, bool md_fn
,
22177 bool sqrt ATTRIBUTE_UNUSED
)
22179 if (! (TARGET_RECIP
&& TARGET_PPC_GFXOPT
&& !optimize_size
22180 && flag_finite_math_only
&& !flag_trapping_math
22181 && flag_unsafe_math_optimizations
))
22189 case BUILT_IN_SQRTF
:
22190 return rs6000_builtin_decls
[RS6000_BUILTIN_RSQRTF
];
22197 /* Newton-Raphson approximation of single-precision floating point divide n/d.
22198 Assumes no trapping math and finite arguments. */
22201 rs6000_emit_swdivsf (rtx dst
, rtx n
, rtx d
)
22203 rtx x0
, e0
, e1
, y1
, u0
, v0
, one
;
22205 x0
= gen_reg_rtx (SFmode
);
22206 e0
= gen_reg_rtx (SFmode
);
22207 e1
= gen_reg_rtx (SFmode
);
22208 y1
= gen_reg_rtx (SFmode
);
22209 u0
= gen_reg_rtx (SFmode
);
22210 v0
= gen_reg_rtx (SFmode
);
22211 one
= force_reg (SFmode
, CONST_DOUBLE_FROM_REAL_VALUE (dconst1
, SFmode
));
22213 /* x0 = 1./d estimate */
22214 emit_insn (gen_rtx_SET (VOIDmode
, x0
,
22215 gen_rtx_UNSPEC (SFmode
, gen_rtvec (1, d
),
22217 /* e0 = 1. - d * x0 */
22218 emit_insn (gen_rtx_SET (VOIDmode
, e0
,
22219 gen_rtx_MINUS (SFmode
, one
,
22220 gen_rtx_MULT (SFmode
, d
, x0
))));
22221 /* e1 = e0 + e0 * e0 */
22222 emit_insn (gen_rtx_SET (VOIDmode
, e1
,
22223 gen_rtx_PLUS (SFmode
,
22224 gen_rtx_MULT (SFmode
, e0
, e0
), e0
)));
22225 /* y1 = x0 + e1 * x0 */
22226 emit_insn (gen_rtx_SET (VOIDmode
, y1
,
22227 gen_rtx_PLUS (SFmode
,
22228 gen_rtx_MULT (SFmode
, e1
, x0
), x0
)));
22230 emit_insn (gen_rtx_SET (VOIDmode
, u0
,
22231 gen_rtx_MULT (SFmode
, n
, y1
)));
22232 /* v0 = n - d * u0 */
22233 emit_insn (gen_rtx_SET (VOIDmode
, v0
,
22234 gen_rtx_MINUS (SFmode
, n
,
22235 gen_rtx_MULT (SFmode
, d
, u0
))));
22236 /* dst = u0 + v0 * y1 */
22237 emit_insn (gen_rtx_SET (VOIDmode
, dst
,
22238 gen_rtx_PLUS (SFmode
,
22239 gen_rtx_MULT (SFmode
, v0
, y1
), u0
)));
22242 /* Newton-Raphson approximation of double-precision floating point divide n/d.
22243 Assumes no trapping math and finite arguments. */
22246 rs6000_emit_swdivdf (rtx dst
, rtx n
, rtx d
)
22248 rtx x0
, e0
, e1
, e2
, y1
, y2
, y3
, u0
, v0
, one
;
22250 x0
= gen_reg_rtx (DFmode
);
22251 e0
= gen_reg_rtx (DFmode
);
22252 e1
= gen_reg_rtx (DFmode
);
22253 e2
= gen_reg_rtx (DFmode
);
22254 y1
= gen_reg_rtx (DFmode
);
22255 y2
= gen_reg_rtx (DFmode
);
22256 y3
= gen_reg_rtx (DFmode
);
22257 u0
= gen_reg_rtx (DFmode
);
22258 v0
= gen_reg_rtx (DFmode
);
22259 one
= force_reg (DFmode
, CONST_DOUBLE_FROM_REAL_VALUE (dconst1
, DFmode
));
22261 /* x0 = 1./d estimate */
22262 emit_insn (gen_rtx_SET (VOIDmode
, x0
,
22263 gen_rtx_UNSPEC (DFmode
, gen_rtvec (1, d
),
22265 /* e0 = 1. - d * x0 */
22266 emit_insn (gen_rtx_SET (VOIDmode
, e0
,
22267 gen_rtx_MINUS (DFmode
, one
,
22268 gen_rtx_MULT (SFmode
, d
, x0
))));
22269 /* y1 = x0 + e0 * x0 */
22270 emit_insn (gen_rtx_SET (VOIDmode
, y1
,
22271 gen_rtx_PLUS (DFmode
,
22272 gen_rtx_MULT (DFmode
, e0
, x0
), x0
)));
22274 emit_insn (gen_rtx_SET (VOIDmode
, e1
,
22275 gen_rtx_MULT (DFmode
, e0
, e0
)));
22276 /* y2 = y1 + e1 * y1 */
22277 emit_insn (gen_rtx_SET (VOIDmode
, y2
,
22278 gen_rtx_PLUS (DFmode
,
22279 gen_rtx_MULT (DFmode
, e1
, y1
), y1
)));
22281 emit_insn (gen_rtx_SET (VOIDmode
, e2
,
22282 gen_rtx_MULT (DFmode
, e1
, e1
)));
22283 /* y3 = y2 + e2 * y2 */
22284 emit_insn (gen_rtx_SET (VOIDmode
, y3
,
22285 gen_rtx_PLUS (DFmode
,
22286 gen_rtx_MULT (DFmode
, e2
, y2
), y2
)));
22288 emit_insn (gen_rtx_SET (VOIDmode
, u0
,
22289 gen_rtx_MULT (DFmode
, n
, y3
)));
22290 /* v0 = n - d * u0 */
22291 emit_insn (gen_rtx_SET (VOIDmode
, v0
,
22292 gen_rtx_MINUS (DFmode
, n
,
22293 gen_rtx_MULT (DFmode
, d
, u0
))));
22294 /* dst = u0 + v0 * y3 */
22295 emit_insn (gen_rtx_SET (VOIDmode
, dst
,
22296 gen_rtx_PLUS (DFmode
,
22297 gen_rtx_MULT (DFmode
, v0
, y3
), u0
)));
22301 /* Newton-Raphson approximation of single-precision floating point rsqrt.
22302 Assumes no trapping math and finite arguments. */
22305 rs6000_emit_swrsqrtsf (rtx dst
, rtx src
)
22307 rtx x0
, x1
, x2
, y1
, u0
, u1
, u2
, v0
, v1
, v2
, t0
,
22308 half
, one
, halfthree
, c1
, cond
, label
;
22310 x0
= gen_reg_rtx (SFmode
);
22311 x1
= gen_reg_rtx (SFmode
);
22312 x2
= gen_reg_rtx (SFmode
);
22313 y1
= gen_reg_rtx (SFmode
);
22314 u0
= gen_reg_rtx (SFmode
);
22315 u1
= gen_reg_rtx (SFmode
);
22316 u2
= gen_reg_rtx (SFmode
);
22317 v0
= gen_reg_rtx (SFmode
);
22318 v1
= gen_reg_rtx (SFmode
);
22319 v2
= gen_reg_rtx (SFmode
);
22320 t0
= gen_reg_rtx (SFmode
);
22321 halfthree
= gen_reg_rtx (SFmode
);
22322 cond
= gen_rtx_REG (CCFPmode
, CR1_REGNO
);
22323 label
= gen_rtx_LABEL_REF (VOIDmode
, gen_label_rtx ());
22325 /* check 0.0, 1.0, NaN, Inf by testing src * src = src */
22326 emit_insn (gen_rtx_SET (VOIDmode
, t0
,
22327 gen_rtx_MULT (SFmode
, src
, src
)));
22329 emit_insn (gen_rtx_SET (VOIDmode
, cond
,
22330 gen_rtx_COMPARE (CCFPmode
, t0
, src
)));
22331 c1
= gen_rtx_EQ (VOIDmode
, cond
, const0_rtx
);
22332 emit_unlikely_jump (c1
, label
);
22334 half
= force_reg (SFmode
, CONST_DOUBLE_FROM_REAL_VALUE (dconsthalf
, SFmode
));
22335 one
= force_reg (SFmode
, CONST_DOUBLE_FROM_REAL_VALUE (dconst1
, SFmode
));
22337 /* halfthree = 1.5 = 1.0 + 0.5 */
22338 emit_insn (gen_rtx_SET (VOIDmode
, halfthree
,
22339 gen_rtx_PLUS (SFmode
, one
, half
)));
22341 /* x0 = rsqrt estimate */
22342 emit_insn (gen_rtx_SET (VOIDmode
, x0
,
22343 gen_rtx_UNSPEC (SFmode
, gen_rtvec (1, src
),
22346 /* y1 = 0.5 * src = 1.5 * src - src -> fewer constants */
22347 emit_insn (gen_rtx_SET (VOIDmode
, y1
,
22348 gen_rtx_MINUS (SFmode
,
22349 gen_rtx_MULT (SFmode
, src
, halfthree
),
22352 /* x1 = x0 * (1.5 - y1 * (x0 * x0)) */
22353 emit_insn (gen_rtx_SET (VOIDmode
, u0
,
22354 gen_rtx_MULT (SFmode
, x0
, x0
)));
22355 emit_insn (gen_rtx_SET (VOIDmode
, v0
,
22356 gen_rtx_MINUS (SFmode
,
22358 gen_rtx_MULT (SFmode
, y1
, u0
))));
22359 emit_insn (gen_rtx_SET (VOIDmode
, x1
,
22360 gen_rtx_MULT (SFmode
, x0
, v0
)));
22362 /* x2 = x1 * (1.5 - y1 * (x1 * x1)) */
22363 emit_insn (gen_rtx_SET (VOIDmode
, u1
,
22364 gen_rtx_MULT (SFmode
, x1
, x1
)));
22365 emit_insn (gen_rtx_SET (VOIDmode
, v1
,
22366 gen_rtx_MINUS (SFmode
,
22368 gen_rtx_MULT (SFmode
, y1
, u1
))));
22369 emit_insn (gen_rtx_SET (VOIDmode
, x2
,
22370 gen_rtx_MULT (SFmode
, x1
, v1
)));
22372 /* dst = x2 * (1.5 - y1 * (x2 * x2)) */
22373 emit_insn (gen_rtx_SET (VOIDmode
, u2
,
22374 gen_rtx_MULT (SFmode
, x2
, x2
)));
22375 emit_insn (gen_rtx_SET (VOIDmode
, v2
,
22376 gen_rtx_MINUS (SFmode
,
22378 gen_rtx_MULT (SFmode
, y1
, u2
))));
22379 emit_insn (gen_rtx_SET (VOIDmode
, dst
,
22380 gen_rtx_MULT (SFmode
, x2
, v2
)));
22382 emit_label (XEXP (label
, 0));
22385 /* Emit popcount intrinsic on TARGET_POPCNTB targets. DST is the
22386 target, and SRC is the argument operand. */
22389 rs6000_emit_popcount (rtx dst
, rtx src
)
22391 enum machine_mode mode
= GET_MODE (dst
);
22394 tmp1
= gen_reg_rtx (mode
);
22396 if (mode
== SImode
)
22398 emit_insn (gen_popcntbsi2 (tmp1
, src
));
22399 tmp2
= expand_mult (SImode
, tmp1
, GEN_INT (0x01010101),
22401 tmp2
= force_reg (SImode
, tmp2
);
22402 emit_insn (gen_lshrsi3 (dst
, tmp2
, GEN_INT (24)));
22406 emit_insn (gen_popcntbdi2 (tmp1
, src
));
22407 tmp2
= expand_mult (DImode
, tmp1
,
22408 GEN_INT ((HOST_WIDE_INT
)
22409 0x01010101 << 32 | 0x01010101),
22411 tmp2
= force_reg (DImode
, tmp2
);
22412 emit_insn (gen_lshrdi3 (dst
, tmp2
, GEN_INT (56)));
22417 /* Emit parity intrinsic on TARGET_POPCNTB targets. DST is the
22418 target, and SRC is the argument operand. */
22421 rs6000_emit_parity (rtx dst
, rtx src
)
22423 enum machine_mode mode
= GET_MODE (dst
);
22426 tmp
= gen_reg_rtx (mode
);
22427 if (mode
== SImode
)
22429 /* Is mult+shift >= shift+xor+shift+xor? */
22430 if (rs6000_cost
->mulsi_const
>= COSTS_N_INSNS (3))
22432 rtx tmp1
, tmp2
, tmp3
, tmp4
;
22434 tmp1
= gen_reg_rtx (SImode
);
22435 emit_insn (gen_popcntbsi2 (tmp1
, src
));
22437 tmp2
= gen_reg_rtx (SImode
);
22438 emit_insn (gen_lshrsi3 (tmp2
, tmp1
, GEN_INT (16)));
22439 tmp3
= gen_reg_rtx (SImode
);
22440 emit_insn (gen_xorsi3 (tmp3
, tmp1
, tmp2
));
22442 tmp4
= gen_reg_rtx (SImode
);
22443 emit_insn (gen_lshrsi3 (tmp4
, tmp3
, GEN_INT (8)));
22444 emit_insn (gen_xorsi3 (tmp
, tmp3
, tmp4
));
22447 rs6000_emit_popcount (tmp
, src
);
22448 emit_insn (gen_andsi3 (dst
, tmp
, const1_rtx
));
22452 /* Is mult+shift >= shift+xor+shift+xor+shift+xor? */
22453 if (rs6000_cost
->muldi
>= COSTS_N_INSNS (5))
22455 rtx tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
;
22457 tmp1
= gen_reg_rtx (DImode
);
22458 emit_insn (gen_popcntbdi2 (tmp1
, src
));
22460 tmp2
= gen_reg_rtx (DImode
);
22461 emit_insn (gen_lshrdi3 (tmp2
, tmp1
, GEN_INT (32)));
22462 tmp3
= gen_reg_rtx (DImode
);
22463 emit_insn (gen_xordi3 (tmp3
, tmp1
, tmp2
));
22465 tmp4
= gen_reg_rtx (DImode
);
22466 emit_insn (gen_lshrdi3 (tmp4
, tmp3
, GEN_INT (16)));
22467 tmp5
= gen_reg_rtx (DImode
);
22468 emit_insn (gen_xordi3 (tmp5
, tmp3
, tmp4
));
22470 tmp6
= gen_reg_rtx (DImode
);
22471 emit_insn (gen_lshrdi3 (tmp6
, tmp5
, GEN_INT (8)));
22472 emit_insn (gen_xordi3 (tmp
, tmp5
, tmp6
));
22475 rs6000_emit_popcount (tmp
, src
);
22476 emit_insn (gen_anddi3 (dst
, tmp
, const1_rtx
));
22480 /* Return an RTX representing where to find the function value of a
22481 function returning MODE. */
22483 rs6000_complex_function_value (enum machine_mode mode
)
22485 unsigned int regno
;
22487 enum machine_mode inner
= GET_MODE_INNER (mode
);
22488 unsigned int inner_bytes
= GET_MODE_SIZE (inner
);
22490 if (FLOAT_MODE_P (mode
) && TARGET_HARD_FLOAT
&& TARGET_FPRS
)
22491 regno
= FP_ARG_RETURN
;
22494 regno
= GP_ARG_RETURN
;
22496 /* 32-bit is OK since it'll go in r3/r4. */
22497 if (TARGET_32BIT
&& inner_bytes
>= 4)
22498 return gen_rtx_REG (mode
, regno
);
22501 if (inner_bytes
>= 8)
22502 return gen_rtx_REG (mode
, regno
);
22504 r1
= gen_rtx_EXPR_LIST (inner
, gen_rtx_REG (inner
, regno
),
22506 r2
= gen_rtx_EXPR_LIST (inner
, gen_rtx_REG (inner
, regno
+ 1),
22507 GEN_INT (inner_bytes
));
22508 return gen_rtx_PARALLEL (mode
, gen_rtvec (2, r1
, r2
));
22511 /* Define how to find the value returned by a function.
22512 VALTYPE is the data type of the value (as a tree).
22513 If the precise function being called is known, FUNC is its FUNCTION_DECL;
22514 otherwise, FUNC is 0.
22516 On the SPE, both FPs and vectors are returned in r3.
22518 On RS/6000 an integer value is in r3 and a floating-point value is in
22519 fp1, unless -msoft-float. */
22522 rs6000_function_value (const_tree valtype
, const_tree func ATTRIBUTE_UNUSED
)
22524 enum machine_mode mode
;
22525 unsigned int regno
;
22527 /* Special handling for structs in darwin64. */
22528 if (rs6000_darwin64_abi
22529 && TYPE_MODE (valtype
) == BLKmode
22530 && TREE_CODE (valtype
) == RECORD_TYPE
22531 && int_size_in_bytes (valtype
) > 0)
22533 CUMULATIVE_ARGS valcum
;
22537 valcum
.fregno
= FP_ARG_MIN_REG
;
22538 valcum
.vregno
= ALTIVEC_ARG_MIN_REG
;
22539 /* Do a trial code generation as if this were going to be passed as
22540 an argument; if any part goes in memory, we return NULL. */
22541 valret
= rs6000_darwin64_record_arg (&valcum
, valtype
, 1, true);
22544 /* Otherwise fall through to standard ABI rules. */
22547 if (TARGET_32BIT
&& TARGET_POWERPC64
&& TYPE_MODE (valtype
) == DImode
)
22549 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
22550 return gen_rtx_PARALLEL (DImode
,
22552 gen_rtx_EXPR_LIST (VOIDmode
,
22553 gen_rtx_REG (SImode
, GP_ARG_RETURN
),
22555 gen_rtx_EXPR_LIST (VOIDmode
,
22556 gen_rtx_REG (SImode
,
22557 GP_ARG_RETURN
+ 1),
22560 if (TARGET_32BIT
&& TARGET_POWERPC64
&& TYPE_MODE (valtype
) == DCmode
)
22562 return gen_rtx_PARALLEL (DCmode
,
22564 gen_rtx_EXPR_LIST (VOIDmode
,
22565 gen_rtx_REG (SImode
, GP_ARG_RETURN
),
22567 gen_rtx_EXPR_LIST (VOIDmode
,
22568 gen_rtx_REG (SImode
,
22569 GP_ARG_RETURN
+ 1),
22571 gen_rtx_EXPR_LIST (VOIDmode
,
22572 gen_rtx_REG (SImode
,
22573 GP_ARG_RETURN
+ 2),
22575 gen_rtx_EXPR_LIST (VOIDmode
,
22576 gen_rtx_REG (SImode
,
22577 GP_ARG_RETURN
+ 3),
22581 mode
= TYPE_MODE (valtype
);
22582 if ((INTEGRAL_TYPE_P (valtype
) && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
22583 || POINTER_TYPE_P (valtype
))
22584 mode
= TARGET_32BIT
? SImode
: DImode
;
22586 if (DECIMAL_FLOAT_MODE_P (mode
) && TARGET_HARD_FLOAT
&& TARGET_FPRS
)
22587 /* _Decimal128 must use an even/odd register pair. */
22588 regno
= (mode
== TDmode
) ? FP_ARG_RETURN
+ 1 : FP_ARG_RETURN
;
22589 else if (SCALAR_FLOAT_TYPE_P (valtype
) && TARGET_HARD_FLOAT
&& TARGET_FPRS
22590 && ((TARGET_SINGLE_FLOAT
&& (mode
== SFmode
)) || TARGET_DOUBLE_FLOAT
))
22591 regno
= FP_ARG_RETURN
;
22592 else if (TREE_CODE (valtype
) == COMPLEX_TYPE
22593 && targetm
.calls
.split_complex_arg
)
22594 return rs6000_complex_function_value (mode
);
22595 else if (TREE_CODE (valtype
) == VECTOR_TYPE
22596 && TARGET_ALTIVEC
&& TARGET_ALTIVEC_ABI
22597 && ALTIVEC_VECTOR_MODE (mode
))
22598 regno
= ALTIVEC_ARG_RETURN
;
22599 else if (TARGET_E500_DOUBLE
&& TARGET_HARD_FLOAT
22600 && (mode
== DFmode
|| mode
== DCmode
22601 || mode
== TFmode
|| mode
== TCmode
))
22602 return spe_build_register_parallel (mode
, GP_ARG_RETURN
);
22604 regno
= GP_ARG_RETURN
;
22606 return gen_rtx_REG (mode
, regno
);
22609 /* Define how to find the value returned by a library function
22610 assuming the value has mode MODE. */
22612 rs6000_libcall_value (enum machine_mode mode
)
22614 unsigned int regno
;
22616 if (TARGET_32BIT
&& TARGET_POWERPC64
&& mode
== DImode
)
22618 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
22619 return gen_rtx_PARALLEL (DImode
,
22621 gen_rtx_EXPR_LIST (VOIDmode
,
22622 gen_rtx_REG (SImode
, GP_ARG_RETURN
),
22624 gen_rtx_EXPR_LIST (VOIDmode
,
22625 gen_rtx_REG (SImode
,
22626 GP_ARG_RETURN
+ 1),
22630 if (DECIMAL_FLOAT_MODE_P (mode
) && TARGET_HARD_FLOAT
&& TARGET_FPRS
)
22631 /* _Decimal128 must use an even/odd register pair. */
22632 regno
= (mode
== TDmode
) ? FP_ARG_RETURN
+ 1 : FP_ARG_RETURN
;
22633 else if (SCALAR_FLOAT_MODE_P (mode
)
22634 && TARGET_HARD_FLOAT
&& TARGET_FPRS
)
22635 regno
= FP_ARG_RETURN
;
22636 else if (ALTIVEC_VECTOR_MODE (mode
)
22637 && TARGET_ALTIVEC
&& TARGET_ALTIVEC_ABI
)
22638 regno
= ALTIVEC_ARG_RETURN
;
22639 else if (COMPLEX_MODE_P (mode
) && targetm
.calls
.split_complex_arg
)
22640 return rs6000_complex_function_value (mode
);
22641 else if (TARGET_E500_DOUBLE
&& TARGET_HARD_FLOAT
22642 && (mode
== DFmode
|| mode
== DCmode
22643 || mode
== TFmode
|| mode
== TCmode
))
22644 return spe_build_register_parallel (mode
, GP_ARG_RETURN
);
22646 regno
= GP_ARG_RETURN
;
22648 return gen_rtx_REG (mode
, regno
);
22651 /* Define the offset between two registers, FROM to be eliminated and its
22652 replacement TO, at the start of a routine. */
22654 rs6000_initial_elimination_offset (int from
, int to
)
22656 rs6000_stack_t
*info
= rs6000_stack_info ();
22657 HOST_WIDE_INT offset
;
22659 if (from
== HARD_FRAME_POINTER_REGNUM
&& to
== STACK_POINTER_REGNUM
)
22660 offset
= info
->push_p
? 0 : -info
->total_size
;
22661 else if (from
== FRAME_POINTER_REGNUM
&& to
== STACK_POINTER_REGNUM
)
22663 offset
= info
->push_p
? 0 : -info
->total_size
;
22664 if (FRAME_GROWS_DOWNWARD
)
22665 offset
+= info
->fixed_size
+ info
->vars_size
+ info
->parm_size
;
22667 else if (from
== FRAME_POINTER_REGNUM
&& to
== HARD_FRAME_POINTER_REGNUM
)
22668 offset
= FRAME_GROWS_DOWNWARD
22669 ? info
->fixed_size
+ info
->vars_size
+ info
->parm_size
22671 else if (from
== ARG_POINTER_REGNUM
&& to
== HARD_FRAME_POINTER_REGNUM
)
22672 offset
= info
->total_size
;
22673 else if (from
== ARG_POINTER_REGNUM
&& to
== STACK_POINTER_REGNUM
)
22674 offset
= info
->push_p
? info
->total_size
: 0;
22675 else if (from
== RS6000_PIC_OFFSET_TABLE_REGNUM
)
22678 gcc_unreachable ();
22684 rs6000_dwarf_register_span (rtx reg
)
22688 unsigned regno
= REGNO (reg
);
22689 enum machine_mode mode
= GET_MODE (reg
);
22693 && (SPE_VECTOR_MODE (GET_MODE (reg
))
22694 || (TARGET_E500_DOUBLE
&& FLOAT_MODE_P (mode
)
22695 && mode
!= SFmode
&& mode
!= SDmode
&& mode
!= SCmode
)))
22700 regno
= REGNO (reg
);
22702 /* The duality of the SPE register size wreaks all kinds of havoc.
22703 This is a way of distinguishing r0 in 32-bits from r0 in
22705 words
= (GET_MODE_SIZE (mode
) + UNITS_PER_FP_WORD
- 1) / UNITS_PER_FP_WORD
;
22706 gcc_assert (words
<= 4);
22707 for (i
= 0; i
< words
; i
++, regno
++)
22709 if (BYTES_BIG_ENDIAN
)
22711 parts
[2 * i
] = gen_rtx_REG (SImode
, regno
+ 1200);
22712 parts
[2 * i
+ 1] = gen_rtx_REG (SImode
, regno
);
22716 parts
[2 * i
] = gen_rtx_REG (SImode
, regno
);
22717 parts
[2 * i
+ 1] = gen_rtx_REG (SImode
, regno
+ 1200);
22721 return gen_rtx_PARALLEL (VOIDmode
, gen_rtvec_v (words
* 2, parts
));
22724 /* Fill in sizes for SPE register high parts in table used by unwinder. */
22727 rs6000_init_dwarf_reg_sizes_extra (tree address
)
22732 enum machine_mode mode
= TYPE_MODE (char_type_node
);
22733 rtx addr
= expand_expr (address
, NULL_RTX
, VOIDmode
, 0);
22734 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
22735 rtx value
= gen_int_mode (4, mode
);
22737 for (i
= 1201; i
< 1232; i
++)
22739 int column
= DWARF_REG_TO_UNWIND_COLUMN (i
);
22740 HOST_WIDE_INT offset
22741 = DWARF_FRAME_REGNUM (column
) * GET_MODE_SIZE (mode
);
22743 emit_move_insn (adjust_address (mem
, mode
, offset
), value
);
22748 /* Map internal gcc register numbers to DWARF2 register numbers. */
22751 rs6000_dbx_register_number (unsigned int regno
)
22753 if (regno
<= 63 || write_symbols
!= DWARF2_DEBUG
)
22755 if (regno
== MQ_REGNO
)
22757 if (regno
== LR_REGNO
)
22759 if (regno
== CTR_REGNO
)
22761 if (CR_REGNO_P (regno
))
22762 return regno
- CR0_REGNO
+ 86;
22763 if (regno
== XER_REGNO
)
22765 if (ALTIVEC_REGNO_P (regno
))
22766 return regno
- FIRST_ALTIVEC_REGNO
+ 1124;
22767 if (regno
== VRSAVE_REGNO
)
22769 if (regno
== VSCR_REGNO
)
22771 if (regno
== SPE_ACC_REGNO
)
22773 if (regno
== SPEFSCR_REGNO
)
22775 /* SPE high reg number. We get these values of regno from
22776 rs6000_dwarf_register_span. */
22777 gcc_assert (regno
>= 1200 && regno
< 1232);
22781 /* target hook eh_return_filter_mode */
22782 static enum machine_mode
22783 rs6000_eh_return_filter_mode (void)
22785 return TARGET_32BIT
? SImode
: word_mode
;
22788 /* Target hook for scalar_mode_supported_p. */
22790 rs6000_scalar_mode_supported_p (enum machine_mode mode
)
22792 if (DECIMAL_FLOAT_MODE_P (mode
))
22795 return default_scalar_mode_supported_p (mode
);
22798 /* Target hook for vector_mode_supported_p. */
22800 rs6000_vector_mode_supported_p (enum machine_mode mode
)
22803 if (TARGET_PAIRED_FLOAT
&& PAIRED_VECTOR_MODE (mode
))
22806 if (TARGET_SPE
&& SPE_VECTOR_MODE (mode
))
22809 else if (TARGET_ALTIVEC
&& ALTIVEC_VECTOR_MODE (mode
))
22816 /* Target hook for invalid_arg_for_unprototyped_fn. */
22817 static const char *
22818 invalid_arg_for_unprototyped_fn (const_tree typelist
, const_tree funcdecl
, const_tree val
)
22820 return (!rs6000_darwin64_abi
22822 && TREE_CODE (TREE_TYPE (val
)) == VECTOR_TYPE
22823 && (funcdecl
== NULL_TREE
22824 || (TREE_CODE (funcdecl
) == FUNCTION_DECL
22825 && DECL_BUILT_IN_CLASS (funcdecl
) != BUILT_IN_MD
)))
22826 ? N_("AltiVec argument passed to unprototyped function")
22830 /* For TARGET_SECURE_PLT 32-bit PIC code we can save PIC register
22831 setup by using __stack_chk_fail_local hidden function instead of
22832 calling __stack_chk_fail directly. Otherwise it is better to call
22833 __stack_chk_fail directly. */
22836 rs6000_stack_protect_fail (void)
22838 return (DEFAULT_ABI
== ABI_V4
&& TARGET_SECURE_PLT
&& flag_pic
)
22839 ? default_hidden_stack_protect_fail ()
22840 : default_external_stack_protect_fail ();
22844 rs6000_final_prescan_insn (rtx insn
, rtx
*operand ATTRIBUTE_UNUSED
,
22845 int num_operands ATTRIBUTE_UNUSED
)
22847 if (rs6000_warn_cell_microcode
)
22850 int insn_code_number
= recog_memoized (insn
);
22851 location_t location
= locator_location (INSN_LOCATOR (insn
));
22853 /* Punt on insns we cannot recognize. */
22854 if (insn_code_number
< 0)
22857 temp
= get_insn_template (insn_code_number
, insn
);
22859 if (get_attr_cell_micro (insn
) == CELL_MICRO_ALWAYS
)
22860 warning_at (location
, OPT_mwarn_cell_microcode
,
22861 "emitting microcode insn %s\t[%s] #%d",
22862 temp
, insn_data
[INSN_CODE (insn
)].name
, INSN_UID (insn
));
22863 else if (get_attr_cell_micro (insn
) == CELL_MICRO_CONDITIONAL
)
22864 warning_at (location
, OPT_mwarn_cell_microcode
,
22865 "emitting conditional microcode insn %s\t[%s] #%d",
22866 temp
, insn_data
[INSN_CODE (insn
)].name
, INSN_UID (insn
));
22870 #include "gt-rs6000.h"