1 /* Graph coloring register allocator
2 Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Michael Matz <matz@suse.de>
4 and Daniel Berlin <dan@cgsoftware.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 2, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
17 You should have received a copy of the GNU General Public License along
18 with GCC; see the file COPYING. If not, write to the Free Software
19 Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
36 #include "insn-config.h"
39 /* This file is part of the graph coloring register allocator, and
40 contains the functions to change the insn stream. I.e. it adds
41 spill code, rewrites insns to use the new registers after
42 coloring and deletes coalesced moves. */
47 static void spill_coalescing (sbitmap
, sbitmap
);
48 static unsigned HOST_WIDE_INT
spill_prop_savings (struct web
*, sbitmap
);
49 static void spill_prop_insert (struct web
*, sbitmap
, sbitmap
);
50 static int spill_propagation (sbitmap
, sbitmap
, sbitmap
);
51 static void spill_coalprop (void);
52 static void allocate_spill_web (struct web
*);
53 static void choose_spill_colors (void);
54 static void rewrite_program (bitmap
);
55 static void remember_slot (struct rtx_list
**, rtx
);
56 static int slots_overlap_p (rtx
, rtx
);
57 static void delete_overlapping_slots (struct rtx_list
**, rtx
);
58 static int slot_member_p (struct rtx_list
*, rtx
);
59 static void insert_stores (bitmap
);
60 static int spill_same_color_p (struct web
*, struct web
*);
61 static bool is_partly_live_1 (sbitmap
, struct web
*);
62 static void update_spill_colors (HARD_REG_SET
*, struct web
*, int);
63 static int spill_is_free (HARD_REG_SET
*, struct web
*);
64 static void emit_loads (struct rewrite_info
*, int, rtx
);
65 static void reloads_to_loads (struct rewrite_info
*, struct ref
**,
66 unsigned int, struct web
**);
67 static void rewrite_program2 (bitmap
);
68 static void mark_refs_for_checking (struct web
*, bitmap
);
69 static void detect_web_parts_to_rebuild (void);
70 static void delete_useless_defs (void);
71 static void detect_non_changed_webs (void);
72 static void reset_changed_flag (void);
74 /* For tracking some statistics, we count the number (and cost)
75 of deleted move insns. */
76 static unsigned int deleted_move_insns
;
77 static unsigned HOST_WIDE_INT deleted_move_cost
;
79 /* This is the spill coalescing phase. In SPILLED the IDs of all
80 already spilled webs are noted. In COALESCED the IDs of webs still
81 to check for coalescing. This tries to coalesce two webs, which were
82 spilled, are connected by a move, and don't conflict. Greatly
83 reduces memory shuffling. */
86 spill_coalescing (sbitmap coalesce
, sbitmap spilled
)
90 for (ml
= wl_moves
; ml
; ml
= ml
->next
)
91 if ((m
= ml
->move
) != NULL
)
93 struct web
*s
= alias (m
->source_web
);
94 struct web
*t
= alias (m
->target_web
);
95 if ((TEST_BIT (spilled
, s
->id
) && TEST_BIT (coalesce
, t
->id
))
96 || (TEST_BIT (spilled
, t
->id
) && TEST_BIT (coalesce
, s
->id
)))
98 struct conflict_link
*wl
;
99 if (TEST_BIT (sup_igraph
, s
->id
* num_webs
+ t
->id
)
100 || TEST_BIT (sup_igraph
, t
->id
* num_webs
+ s
->id
)
101 || s
->pattern
|| t
->pattern
)
104 deleted_move_insns
++;
105 deleted_move_cost
+= BLOCK_FOR_INSN (m
->insn
)->frequency
+ 1;
106 PUT_CODE (m
->insn
, NOTE
);
107 NOTE_LINE_NUMBER (m
->insn
) = NOTE_INSN_DELETED
;
108 df_insn_modify (df
, BLOCK_FOR_INSN (m
->insn
), m
->insn
);
110 m
->target_web
->target_of_spilled_move
= 1;
112 /* May be, already coalesced due to a former move. */
114 /* Merge the nodes S and T in the I-graph. Beware: the merging
115 of conflicts relies on the fact, that in the conflict list
116 of T all of it's conflicts are noted. This is currently not
117 the case if T would be the target of a coalesced web, because
118 then (in combine () above) only those conflicts were noted in
119 T from the web which was coalesced into T, which at the time
120 of combine() were not already on the SELECT stack or were
121 itself coalesced to something other. */
122 gcc_assert (t
->type
== SPILLED
123 && s
->type
== SPILLED
);
124 remove_list (t
->dlink
, &WEBS(SPILLED
));
125 put_web (t
, COALESCED
);
130 for (wl
= t
->conflict_list
; wl
; wl
= wl
->next
)
132 struct web
*pweb
= wl
->t
;
134 record_conflict (s
, pweb
);
137 struct sub_conflict
*sl
;
138 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
140 struct web
*sweb
= NULL
;
141 if (SUBWEB_P (sl
->s
))
142 sweb
= find_subweb (s
, sl
->s
->orig_x
);
145 record_conflict (sweb
, sl
->t
);
148 /* No decrement_degree here, because we already have colored
149 the graph, and don't want to insert pweb into any other
151 pweb
->num_conflicts
-= 1 + t
->add_hardregs
;
157 /* Returns the probable saving of coalescing WEB with webs from
158 SPILLED, in terms of removed move insn cost. */
160 static unsigned HOST_WIDE_INT
161 spill_prop_savings (struct web
*web
, sbitmap spilled
)
163 unsigned HOST_WIDE_INT savings
= 0;
164 struct move_list
*ml
;
169 cost
= 1 + MEMORY_MOVE_COST (GET_MODE (web
->orig_x
), web
->regclass
, 1);
170 cost
+= 1 + MEMORY_MOVE_COST (GET_MODE (web
->orig_x
), web
->regclass
, 0);
171 for (ml
= wl_moves
; ml
; ml
= ml
->next
)
172 if ((m
= ml
->move
) != NULL
)
174 struct web
*s
= alias (m
->source_web
);
175 struct web
*t
= alias (m
->target_web
);
182 if (s
!= web
|| !TEST_BIT (spilled
, t
->id
) || t
->pattern
183 || TEST_BIT (sup_igraph
, s
->id
* num_webs
+ t
->id
)
184 || TEST_BIT (sup_igraph
, t
->id
* num_webs
+ s
->id
))
186 savings
+= BLOCK_FOR_INSN (m
->insn
)->frequency
* cost
;
191 /* This add all IDs of colored webs, which are connected to WEB by a move
192 to LIST and PROCESSED. */
195 spill_prop_insert (struct web
*web
, sbitmap list
, sbitmap processed
)
197 struct move_list
*ml
;
199 for (ml
= wl_moves
; ml
; ml
= ml
->next
)
200 if ((m
= ml
->move
) != NULL
)
202 struct web
*s
= alias (m
->source_web
);
203 struct web
*t
= alias (m
->target_web
);
210 if (s
!= web
|| t
->type
!= COLORED
|| TEST_BIT (processed
, t
->id
))
212 SET_BIT (list
, t
->id
);
213 SET_BIT (processed
, t
->id
);
217 /* The spill propagation pass. If we have to spilled webs, the first
218 connected through a move to a colored one, and the second also connected
219 to that colored one, and this colored web is only used to connect both
220 spilled webs, it might be worthwhile to spill that colored one.
221 This is the case, if the cost of the removed copy insns (all three webs
222 could be placed into the same stack slot) is higher than the spill cost
224 TO_PROP are the webs we try to propagate from (i.e. spilled ones),
225 SPILLED the set of all spilled webs so far and PROCESSED the set
226 of all webs processed so far, so we don't do work twice. */
229 spill_propagation (sbitmap to_prop
, sbitmap spilled
, sbitmap processed
)
233 sbitmap list
= sbitmap_alloc (num_webs
);
236 /* First insert colored move neighbors into the candidate list. */
237 EXECUTE_IF_SET_IN_SBITMAP (to_prop
, 0, id
,
239 spill_prop_insert (ID2WEB (id
), list
, processed
);
241 sbitmap_zero (to_prop
);
243 /* For all candidates, see, if the savings are higher than it's
245 while ((id
= sbitmap_first_set_bit (list
)) >= 0)
247 struct web
*web
= ID2WEB (id
);
248 RESET_BIT (list
, id
);
249 if (spill_prop_savings (web
, spilled
) >= web
->spill_cost
)
251 /* If so, we found a new spilled web. Insert it's colored
252 move neighbors again, and mark, that we need to repeat the
253 whole mainloop of spillprog/coalescing again. */
254 remove_web_from_list (web
);
256 put_web (web
, SPILLED
);
257 SET_BIT (spilled
, id
);
258 SET_BIT (to_prop
, id
);
259 spill_prop_insert (web
, list
, processed
);
267 /* The main phase to improve spill costs. This repeatedly runs
268 spill coalescing and spill propagation, until nothing changes. */
271 spill_coalprop (void)
273 sbitmap spilled
, processed
, to_prop
;
276 spilled
= sbitmap_alloc (num_webs
);
277 processed
= sbitmap_alloc (num_webs
);
278 to_prop
= sbitmap_alloc (num_webs
);
279 sbitmap_zero (spilled
);
280 for (d
= WEBS(SPILLED
); d
; d
= d
->next
)
281 SET_BIT (spilled
, DLIST_WEB (d
)->id
);
282 sbitmap_copy (to_prop
, spilled
);
283 sbitmap_zero (processed
);
286 spill_coalescing (to_prop
, spilled
);
287 /* XXX Currently (with optimistic coalescing) spill_propagation()
288 doesn't give better code, sometimes it gives worse (but not by much)
289 code. I believe this is because of slightly wrong cost
290 measurements. Anyway right now it isn't worth the time it takes,
291 so deactivate it for now. */
292 again
= 0 && spill_propagation (to_prop
, spilled
, processed
);
295 sbitmap_free (to_prop
);
296 sbitmap_free (processed
);
297 sbitmap_free (spilled
);
300 /* Allocate a spill slot for a WEB. Currently we spill to pseudo
301 registers, to be able to track also webs for "stack slots", and also
302 to possibly colorize them. These pseudos are sometimes handled
303 in a special way, where we know, that they also can represent
307 allocate_spill_web (struct web
*web
)
309 int regno
= web
->regno
;
313 slot
= gen_reg_rtx (PSEUDO_REGNO_MODE (regno
));
314 web
->stack_slot
= slot
;
317 /* This chooses a color for all SPILLED webs for interference region
318 spilling. The heuristic isn't good in any way. */
321 choose_spill_colors (void)
324 unsigned HOST_WIDE_INT
*costs
= xmalloc (FIRST_PSEUDO_REGISTER
* sizeof (costs
[0]));
325 for (d
= WEBS(SPILLED
); d
; d
= d
->next
)
327 struct web
*web
= DLIST_WEB (d
);
328 struct conflict_link
*wl
;
331 memset (costs
, 0, FIRST_PSEUDO_REGISTER
* sizeof (costs
[0]));
332 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
334 struct web
*pweb
= wl
->t
;
335 if (pweb
->type
== COLORED
|| pweb
->type
== PRECOLORED
)
336 costs
[pweb
->color
] += pweb
->spill_cost
;
339 COPY_HARD_REG_SET (avail
, web
->usable_regs
);
340 if (web
->crosses_call
)
342 /* Add an arbitrary constant cost to colors not usable by
343 call-crossing webs without saves/loads. */
344 for (c
= 0; c
< FIRST_PSEUDO_REGISTER
; c
++)
345 if (TEST_HARD_REG_BIT (call_used_reg_set
, c
))
349 for (c
= 0; c
< FIRST_PSEUDO_REGISTER
; c
++)
350 if ((bestc
< 0 || costs
[bestc
] > costs
[c
])
351 && TEST_HARD_REG_BIT (avail
, c
)
352 && HARD_REGNO_MODE_OK (c
, PSEUDO_REGNO_MODE (web
->regno
)))
355 size
= hard_regno_nregs
[c
][PSEUDO_REGNO_MODE (web
->regno
)];
357 && TEST_HARD_REG_BIT (avail
, c
+ i
); i
++);
362 ra_debug_msg (DUMP_PROCESS
, "choosing color %d for spilled web %d\n",
369 /* For statistics sake we count the number and cost of all new loads,
370 stores and emitted rematerializations. */
371 static unsigned int emitted_spill_loads
;
372 static unsigned int emitted_spill_stores
;
373 static unsigned int emitted_remat
;
374 static unsigned HOST_WIDE_INT spill_load_cost
;
375 static unsigned HOST_WIDE_INT spill_store_cost
;
376 static unsigned HOST_WIDE_INT spill_remat_cost
;
378 /* In rewrite_program2() we detect if some def us useless, in the sense,
379 that the pseudo set is not live anymore at that point. The REF_IDs
380 of such defs are noted here. */
381 static bitmap useless_defs
;
383 /* This is the simple and fast version of rewriting the program to
384 include spill code. It spills at every insn containing spilled
385 defs or uses. Loads are added only if flag_ra_spill_every_use is
386 nonzero, otherwise only stores will be added. This doesn't
387 support rematerialization.
388 NEW_DEATHS is filled with uids for insns, which probably contain
392 rewrite_program (bitmap new_deaths
)
396 bitmap b
= BITMAP_XMALLOC ();
398 /* We walk over all webs, over all uses/defs. For all webs, we need
399 to look at spilled webs, and webs coalesced to spilled ones, in case
400 their alias isn't broken up, or they got spill coalesced. */
401 for (i
= 0; i
< 2; i
++)
402 for (d
= (i
== 0) ? WEBS(SPILLED
) : WEBS(COALESCED
); d
; d
= d
->next
)
404 struct web
*web
= DLIST_WEB (d
);
405 struct web
*aweb
= alias (web
);
409 /* Is trivially true for spilled webs, but not for coalesced ones. */
410 if (aweb
->type
!= SPILLED
)
413 /* First add loads before every use, if we have to. */
414 if (flag_ra_spill_every_use
)
417 allocate_spill_web (aweb
);
418 slot
= aweb
->stack_slot
;
419 for (j
= 0; j
< web
->num_uses
; j
++)
421 rtx insns
, target
, source
;
422 rtx insn
= DF_REF_INSN (web
->uses
[j
]);
423 rtx prev
= PREV_INSN (insn
);
424 basic_block bb
= BLOCK_FOR_INSN (insn
);
425 /* Happens when spill_coalescing() deletes move insns. */
429 /* Check that we didn't already added a load for this web
430 and insn. Happens, when the an insn uses the same web
432 if (bitmap_bit_p (b
, INSN_UID (insn
)))
434 bitmap_set_bit (b
, INSN_UID (insn
));
435 target
= DF_REF_REG (web
->uses
[j
]);
438 if (GET_CODE (target
) == SUBREG
)
439 source
= simplify_gen_subreg (GET_MODE (target
), source
,
441 SUBREG_BYTE (target
));
442 ra_emit_move_insn (target
, source
);
443 insns
= get_insns ();
445 emit_insn_before (insns
, insn
);
447 if (BB_HEAD (bb
) == insn
)
448 BB_HEAD (bb
) = NEXT_INSN (prev
);
449 for (insn
= PREV_INSN (insn
); insn
!= prev
;
450 insn
= PREV_INSN (insn
))
452 set_block_for_insn (insn
, bb
);
453 df_insn_modify (df
, bb
, insn
);
456 emitted_spill_loads
++;
457 spill_load_cost
+= bb
->frequency
+ 1;
461 /* Now emit the stores after each def.
462 If any uses were loaded from stackslots (compared to
463 rematerialized or not reloaded due to IR spilling),
464 aweb->stack_slot will be set. If not, we don't need to emit
466 slot
= aweb
->stack_slot
;
469 for (j
= 0; j
< web
->num_defs
; j
++)
471 rtx insns
, source
, dest
;
472 rtx insn
= DF_REF_INSN (web
->defs
[j
]);
473 rtx following
= NEXT_INSN (insn
);
474 basic_block bb
= BLOCK_FOR_INSN (insn
);
475 /* Happens when spill_coalescing() deletes move insns. */
478 if (bitmap_bit_p (b
, INSN_UID (insn
)))
480 bitmap_set_bit (b
, INSN_UID (insn
));
482 source
= DF_REF_REG (web
->defs
[j
]);
484 if (GET_CODE (source
) == SUBREG
)
485 dest
= simplify_gen_subreg (GET_MODE (source
), dest
,
487 SUBREG_BYTE (source
));
488 ra_emit_move_insn (dest
, source
);
490 insns
= get_insns ();
494 emit_insn_after (insns
, insn
);
495 if (BB_END (bb
) == insn
)
496 BB_END (bb
) = PREV_INSN (following
);
497 for (insn
= insns
; insn
!= following
; insn
= NEXT_INSN (insn
))
499 set_block_for_insn (insn
, bb
);
500 df_insn_modify (df
, bb
, insn
);
504 df_insn_modify (df
, bb
, insn
);
505 emitted_spill_stores
++;
506 spill_store_cost
+= bb
->frequency
+ 1;
507 /* XXX we should set new_deaths for all inserted stores
508 whose pseudo dies here.
509 Note, that this isn't the case for _all_ stores. */
510 /* I.e. the next is wrong, and might cause some spilltemps
511 to be categorized as spilltemp2's (i.e. live over a death),
512 although they aren't. This might make them spill again,
513 which causes endlessness in the case, this insn is in fact
515 bitmap_set_bit (new_deaths
, INSN_UID (PREV_INSN (following
)));
522 /* A simple list of rtx's. */
525 struct rtx_list
*next
;
529 /* Adds X to *LIST. */
532 remember_slot (struct rtx_list
**list
, rtx x
)
535 /* PRE: X is not already in LIST. */
536 l
= ra_alloc (sizeof (*l
));
542 /* Given two rtx' S1 and S2, either being REGs or MEMs (or SUBREGs
543 thereof), return nonzero, if they overlap. REGs and MEMs don't
544 overlap, and if they are MEMs they must have an easy address
545 (plus (basereg) (const_inst x)), otherwise they overlap. */
548 slots_overlap_p (rtx s1
, rtx s2
)
551 HOST_WIDE_INT ofs1
= 0, ofs2
= 0;
552 int size1
= GET_MODE_SIZE (GET_MODE (s1
));
553 int size2
= GET_MODE_SIZE (GET_MODE (s2
));
554 if (GET_CODE (s1
) == SUBREG
)
555 ofs1
= SUBREG_BYTE (s1
), s1
= SUBREG_REG (s1
);
556 if (GET_CODE (s2
) == SUBREG
)
557 ofs2
= SUBREG_BYTE (s2
), s2
= SUBREG_REG (s2
);
562 if (GET_CODE (s1
) != GET_CODE (s2
))
565 if (REG_P (s1
) && REG_P (s2
))
567 if (REGNO (s1
) != REGNO (s2
))
569 if (ofs1
>= ofs2
+ size2
|| ofs2
>= ofs1
+ size1
)
573 gcc_assert (MEM_P (s1
) && GET_CODE (s2
) == MEM
);
576 if (GET_CODE (s1
) != PLUS
|| !REG_P (XEXP (s1
, 0))
577 || GET_CODE (XEXP (s1
, 1)) != CONST_INT
)
579 if (GET_CODE (s2
) != PLUS
|| !REG_P (XEXP (s2
, 0))
580 || GET_CODE (XEXP (s2
, 1)) != CONST_INT
)
582 base1
= XEXP (s1
, 0);
583 base2
= XEXP (s2
, 0);
584 if (!rtx_equal_p (base1
, base2
))
586 ofs1
+= INTVAL (XEXP (s1
, 1));
587 ofs2
+= INTVAL (XEXP (s2
, 1));
588 if (ofs1
>= ofs2
+ size2
|| ofs2
>= ofs1
+ size1
)
593 /* This deletes from *LIST all rtx's which overlap with X in the sense
594 of slots_overlap_p(). */
597 delete_overlapping_slots (struct rtx_list
**list
, rtx x
)
601 if (slots_overlap_p ((*list
)->x
, x
))
602 *list
= (*list
)->next
;
604 list
= &((*list
)->next
);
608 /* Returns nonzero, of X is member of LIST. */
611 slot_member_p (struct rtx_list
*list
, rtx x
)
613 for (;list
; list
= list
->next
)
614 if (rtx_equal_p (list
->x
, x
))
619 /* A more sophisticated (and slower) method of adding the stores, than
620 rewrite_program(). This goes backward the insn stream, adding
621 stores as it goes, but only if it hasn't just added a store to the
622 same location. NEW_DEATHS is a bitmap filled with uids of insns
623 containing deaths. */
626 insert_stores (bitmap new_deaths
)
629 rtx last_slot
= NULL_RTX
;
630 struct rtx_list
*slots
= NULL
;
632 /* We go simply backwards over basic block borders. */
633 for (insn
= get_last_insn (); insn
; insn
= PREV_INSN (insn
))
635 int uid
= INSN_UID (insn
);
637 /* If we reach a basic block border, which has more than one
638 outgoing edge, we simply forget all already emitted stores. */
640 || JUMP_P (insn
) || can_throw_internal (insn
))
642 last_slot
= NULL_RTX
;
648 /* If this insn was not just added in this pass. */
649 if (uid
< insn_df_max_uid
)
652 rtx following
= NEXT_INSN (insn
);
653 basic_block bb
= BLOCK_FOR_INSN (insn
);
654 struct ra_insn_info info
;
657 for (n
= 0; n
< info
.num_defs
; n
++)
659 struct web
*web
= def2web
[DF_REF_ID (info
.defs
[n
])];
660 struct web
*aweb
= alias (find_web_for_subweb (web
));
662 if (aweb
->type
!= SPILLED
|| !aweb
->stack_slot
)
664 slot
= aweb
->stack_slot
;
665 source
= DF_REF_REG (info
.defs
[n
]);
666 /* adjust_address() might generate code. */
668 if (GET_CODE (source
) == SUBREG
)
669 slot
= simplify_gen_subreg (GET_MODE (source
), slot
,
671 SUBREG_BYTE (source
));
672 /* If we have no info about emitted stores, or it didn't
673 contain the location we intend to use soon, then
675 if ((!last_slot
|| !rtx_equal_p (slot
, last_slot
))
676 && ! slot_member_p (slots
, slot
))
680 remember_slot (&slots
, slot
);
681 ra_emit_move_insn (slot
, source
);
682 insns
= get_insns ();
686 emit_insn_after (insns
, insn
);
687 if (BB_END (bb
) == insn
)
688 BB_END (bb
) = PREV_INSN (following
);
689 for (ni
= insns
; ni
!= following
; ni
= NEXT_INSN (ni
))
691 set_block_for_insn (ni
, bb
);
692 df_insn_modify (df
, bb
, ni
);
696 df_insn_modify (df
, bb
, insn
);
697 emitted_spill_stores
++;
698 spill_store_cost
+= bb
->frequency
+ 1;
699 bitmap_set_bit (new_deaths
, INSN_UID (PREV_INSN (following
)));
703 /* Otherwise ignore insns from adjust_address() above. */
708 /* If we look at a load generated by the allocator, forget
709 the last emitted slot, and additionally clear all slots
710 overlapping it's source (after all, we need it again). */
711 /* XXX If we emit the stack-ref directly into the using insn the
712 following needs a change, because that is no new insn. Preferably
713 we would add some notes to the insn, what stackslots are needed
715 if (uid
>= last_max_uid
)
717 rtx set
= single_set (insn
);
718 last_slot
= NULL_RTX
;
719 /* If this was no simple set, give up, and forget everything. */
724 if (1 || MEM_P (SET_SRC (set
)))
725 delete_overlapping_slots (&slots
, SET_SRC (set
));
731 /* Returns 1 if both colored webs have some hardregs in common, even if
732 they are not the same width. */
735 spill_same_color_p (struct web
*web1
, struct web
*web2
)
737 int c1
, size1
, c2
, size2
;
738 if ((c1
= alias (web1
)->color
) < 0 || c1
== an_unusable_color
)
740 if ((c2
= alias (web2
)->color
) < 0 || c2
== an_unusable_color
)
743 size1
= web1
->type
== PRECOLORED
744 ? 1 : hard_regno_nregs
[c1
][PSEUDO_REGNO_MODE (web1
->regno
)];
745 size2
= web2
->type
== PRECOLORED
746 ? 1 : hard_regno_nregs
[c2
][PSEUDO_REGNO_MODE (web2
->regno
)];
747 if (c1
>= c2
+ size2
|| c2
>= c1
+ size1
)
752 /* Given the set of live web IDs LIVE, returns nonzero, if any of WEBs
753 subwebs (or WEB itself) is live. */
756 is_partly_live_1 (sbitmap live
, struct web
*web
)
759 if (TEST_BIT (live
, web
->id
))
761 while ((web
= web
->subreg_next
));
765 /* Fast version in case WEB has no subwebs. */
766 #define is_partly_live(live, web) ((!web->subreg_next) \
767 ? TEST_BIT (live, web->id) \
768 : is_partly_live_1 (live, web))
770 /* Change the set of currently IN_USE colors according to
771 WEB's color. Either add those colors to the hardreg set (if ADD
772 is nonzero), or remove them. */
775 update_spill_colors (HARD_REG_SET
*in_use
, struct web
*web
, int add
)
778 if ((c
= alias (find_web_for_subweb (web
))->color
) < 0
779 || c
== an_unusable_color
)
781 size
= hard_regno_nregs
[c
][GET_MODE (web
->orig_x
)];
784 c
+= subreg_regno_offset (c
, GET_MODE (SUBREG_REG (web
->orig_x
)),
785 SUBREG_BYTE (web
->orig_x
),
786 GET_MODE (web
->orig_x
));
788 else if (web
->type
== PRECOLORED
)
792 SET_HARD_REG_BIT (*in_use
, c
+ size
);
795 CLEAR_HARD_REG_BIT (*in_use
, c
+ size
);
798 /* Given a set of hardregs currently IN_USE and the color C of WEB,
799 return -1 if WEB has no color, 1 of it has the unusable color,
800 0 if one of it's used hardregs are in use, and 1 otherwise.
801 Generally, if WEB can't be left colorized return 1. */
804 spill_is_free (HARD_REG_SET
*in_use
, struct web
*web
)
807 if ((c
= alias (web
)->color
) < 0)
809 if (c
== an_unusable_color
)
811 size
= web
->type
== PRECOLORED
812 ? 1 : hard_regno_nregs
[c
][PSEUDO_REGNO_MODE (web
->regno
)];
814 if (TEST_HARD_REG_BIT (*in_use
, c
+ size
))
820 /* Structure for passing between rewrite_program2() and emit_loads(). */
823 /* The web IDs which currently would need a reload. These are
824 currently live spilled webs, whose color was still free. */
826 /* We need a scratch bitmap, but don't want to allocate one a zillion
829 /* Web IDs of currently live webs. This are the precise IDs,
830 not just those of the superwebs. If only on part is live, only
831 that ID is placed here. */
833 /* An array of webs, which currently need a load added.
834 They will be emitted when seeing the first death. */
835 struct web
**needed_loads
;
836 /* The current number of entries in needed_loads. */
838 /* The number of bits set in need_reload. */
840 /* The current set of hardregs not available. */
841 HARD_REG_SET colors_in_use
;
842 /* Nonzero, if we just added some spill temps to need_reload or
843 needed_loads. In this case we don't wait for the next death
844 to emit their loads. */
845 int any_spilltemps_spilled
;
846 /* Nonzero, if we currently need to emit the loads. E.g. when we
847 saw an insn containing deaths. */
851 /* The needed_loads list of RI contains some webs for which
852 we add the actual load insns here. They are added just before
853 their use last seen. NL_FIRST_RELOAD is the index of the first
854 load which is a converted reload, all other entries are normal
855 loads. LAST_BLOCK_INSN is the last insn of the current basic block. */
858 emit_loads (struct rewrite_info
*ri
, int nl_first_reload
, rtx last_block_insn
)
861 for (j
= ri
->nl_size
; j
;)
863 struct web
*web
= ri
->needed_loads
[--j
];
867 rtx before
= NULL_RTX
, after
= NULL_RTX
;
869 /* When spilltemps were spilled for the last insns, their
870 loads already are emitted, which is noted by setting
871 needed_loads[] for it to 0. */
874 supweb
= find_web_for_subweb (web
);
875 gcc_assert (supweb
->regno
< max_normal_pseudo
);
876 /* Check for web being a spilltemp, if we only want to
877 load spilltemps. Also remember, that we emitted that
878 load, which we don't need to do when we have a death,
879 because then all of needed_loads[] is emptied. */
882 if (!supweb
->spill_temp
)
885 ri
->needed_loads
[j
] = 0;
888 /* The adding of reloads doesn't depend on liveness. */
889 if (j
< nl_first_reload
&& !TEST_BIT (ri
->live
, web
->id
))
891 aweb
= alias (supweb
);
896 /* XXX If we later allow non-constant sources for rematerialization
897 we must also disallow coalescing _to_ rematerialized webs
898 (at least then disallow spilling them, which we already ensure
899 when flag_ra_break_aliases), or not take the pattern but a
901 gcc_assert (aweb
== supweb
);
902 slot
= copy_rtx (supweb
->pattern
);
903 reg
= copy_rtx (supweb
->orig_x
);
904 /* Sanity check. orig_x should be a REG rtx, which should be
905 shared over all RTL, so copy_rtx should have no effect. */
906 gcc_assert (reg
== supweb
->orig_x
);
910 allocate_spill_web (aweb
);
911 slot
= aweb
->stack_slot
;
913 /* If we don't copy the RTL there might be some SUBREG
914 rtx shared in the next iteration although being in
915 different webs, which leads to wrong code. */
916 reg
= copy_rtx (web
->orig_x
);
917 if (GET_CODE (reg
) == SUBREG
)
918 /*slot = adjust_address (slot, GET_MODE (reg), SUBREG_BYTE
920 slot
= simplify_gen_subreg (GET_MODE (reg
), slot
, GET_MODE (slot
),
923 ra_emit_move_insn (reg
, slot
);
926 before
= web
->last_use_insn
;
927 web
->last_use_insn
= NULL_RTX
;
930 if (JUMP_P (last_block_insn
))
931 before
= last_block_insn
;
933 after
= last_block_insn
;
937 rtx foll
= NEXT_INSN (after
);
938 bb
= BLOCK_FOR_INSN (after
);
939 emit_insn_after (ni
, after
);
940 if (BB_END (bb
) == after
)
941 BB_END (bb
) = PREV_INSN (foll
);
942 for (ni
= NEXT_INSN (after
); ni
!= foll
; ni
= NEXT_INSN (ni
))
944 set_block_for_insn (ni
, bb
);
945 df_insn_modify (df
, bb
, ni
);
950 rtx prev
= PREV_INSN (before
);
951 bb
= BLOCK_FOR_INSN (before
);
952 emit_insn_before (ni
, before
);
953 if (BB_HEAD (bb
) == before
)
954 BB_HEAD (bb
) = NEXT_INSN (prev
);
955 for (; ni
!= before
; ni
= NEXT_INSN (ni
))
957 set_block_for_insn (ni
, bb
);
958 df_insn_modify (df
, bb
, ni
);
964 spill_remat_cost
+= bb
->frequency
+ 1;
968 emitted_spill_loads
++;
969 spill_load_cost
+= bb
->frequency
+ 1;
971 RESET_BIT (ri
->live
, web
->id
);
972 /* In the special case documented above only emit the reloads and
974 if (ri
->need_load
== 2 && j
< nl_first_reload
)
981 /* Given a set of reloads in RI, an array of NUM_REFS references (either
982 uses or defs) in REFS, and REF2WEB to translate ref IDs to webs
983 (either use2web or def2web) convert some reloads to loads.
984 This looks at the webs referenced, and how they change the set of
985 available colors. Now put all still live webs, which needed reloads,
986 and whose colors isn't free anymore, on the needed_loads list. */
989 reloads_to_loads (struct rewrite_info
*ri
, struct ref
**refs
,
990 unsigned int num_refs
, struct web
**ref2web
)
993 int num_reloads
= ri
->num_reloads
;
994 for (n
= 0; n
< num_refs
&& num_reloads
; n
++)
996 struct web
*web
= ref2web
[DF_REF_ID (refs
[n
])];
997 struct web
*supweb
= find_web_for_subweb (web
);
1000 /* Only emit reloads when entering their interference
1001 region. A use of a spilled web never opens an
1002 interference region, independent of it's color. */
1003 if (alias (supweb
)->type
== SPILLED
)
1005 if (supweb
->type
== PRECOLORED
1006 && TEST_HARD_REG_BIT (never_use_colors
, supweb
->color
))
1008 /* Note, that if web (and supweb) are DEFs, we already cleared
1009 the corresponding bits in live. I.e. is_death becomes true, which
1011 is_death
= !TEST_BIT (ri
->live
, supweb
->id
);
1012 is_death
&= !TEST_BIT (ri
->live
, web
->id
);
1015 int old_num_r
= num_reloads
;
1016 bitmap_clear (ri
->scratch
);
1017 EXECUTE_IF_SET_IN_BITMAP (ri
->need_reload
, 0, j
,
1019 struct web
*web2
= ID2WEB (j
);
1020 struct web
*aweb2
= alias (find_web_for_subweb (web2
));
1021 gcc_assert (spill_is_free (&(ri
->colors_in_use
), aweb2
) != 0);
1022 if (spill_same_color_p (supweb
, aweb2
)
1023 /* && interfere (web, web2) */)
1027 ri
->needed_loads
[ri
->nl_size
++] = web2
;
1030 bitmap_set_bit (ri
->scratch
, j
);
1034 if (num_reloads
!= old_num_r
)
1035 bitmap_operation (ri
->need_reload
, ri
->need_reload
, ri
->scratch
,
1039 ri
->num_reloads
= num_reloads
;
1042 /* This adds loads for spilled webs to the program. It uses a kind of
1043 interference region spilling. If flag_ra_ir_spilling is zero it
1044 only uses improved chaitin spilling (adding loads only at insns
1045 containing deaths). */
1048 rewrite_program2 (bitmap new_deaths
)
1050 basic_block bb
= NULL
;
1051 int nl_first_reload
;
1052 struct rewrite_info ri
;
1054 ri
.needed_loads
= xmalloc (num_webs
* sizeof (struct web
*));
1055 ri
.need_reload
= BITMAP_XMALLOC ();
1056 ri
.scratch
= BITMAP_XMALLOC ();
1057 ri
.live
= sbitmap_alloc (num_webs
);
1060 for (insn
= get_last_insn (); insn
; insn
= PREV_INSN (insn
))
1062 basic_block last_bb
= NULL
;
1063 rtx last_block_insn
;
1066 insn
= prev_real_insn (insn
);
1067 while (insn
&& !(bb
= BLOCK_FOR_INSN (insn
)))
1068 insn
= prev_real_insn (insn
);
1072 last_block_insn
= insn
;
1074 sbitmap_zero (ri
.live
);
1075 CLEAR_HARD_REG_SET (ri
.colors_in_use
);
1076 EXECUTE_IF_SET_IN_BITMAP (live_at_end
[i
- 2], 0, j
,
1078 struct web
*web
= use2web
[j
];
1079 struct web
*aweb
= alias (find_web_for_subweb (web
));
1080 /* A web is only live at end, if it isn't spilled. If we wouldn't
1081 check this, the last uses of spilled web per basic block
1082 wouldn't be detected as deaths, although they are in the final
1083 code. This would lead to cumulating many loads without need,
1084 only increasing register pressure. */
1085 /* XXX do add also spilled webs which got a color for IR spilling.
1086 Remember to not add to colors_in_use in that case. */
1087 if (aweb
->type
!= SPILLED
/*|| aweb->color >= 0*/)
1089 SET_BIT (ri
.live
, web
->id
);
1090 if (aweb
->type
!= SPILLED
)
1091 update_spill_colors (&(ri
.colors_in_use
), web
, 1);
1095 bitmap_clear (ri
.need_reload
);
1097 ri
.any_spilltemps_spilled
= 0;
1098 if (flag_ra_ir_spilling
)
1102 /* XXX If we don't add spilled nodes into live above, the following
1103 becomes an empty loop. */
1104 for (pass
= 0; pass
< 2; pass
++)
1105 for (d
= (pass
) ? WEBS(SPILLED
) : WEBS(COALESCED
); d
; d
= d
->next
)
1107 struct web
*web
= DLIST_WEB (d
);
1108 struct web
*aweb
= alias (web
);
1109 if (aweb
->type
!= SPILLED
)
1111 if (is_partly_live (ri
.live
, web
)
1112 && spill_is_free (&(ri
.colors_in_use
), web
) > 0)
1115 bitmap_set_bit (ri
.need_reload
, web
->id
);
1116 /* Last using insn is somewhere in another block. */
1117 web
->last_use_insn
= NULL_RTX
;
1123 for (; insn
; insn
= PREV_INSN (insn
))
1125 struct ra_insn_info info
;
1128 memset (&info
, 0, sizeof info
);
1130 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
) != last_bb
)
1132 int index
= BLOCK_FOR_INSN (insn
)->index
+ 2;
1133 EXECUTE_IF_SET_IN_BITMAP (live_at_end
[index
- 2], 0, j
,
1135 struct web
*web
= use2web
[j
];
1136 struct web
*aweb
= alias (find_web_for_subweb (web
));
1137 if (aweb
->type
!= SPILLED
)
1139 SET_BIT (ri
.live
, web
->id
);
1140 update_spill_colors (&(ri
.colors_in_use
), web
, 1);
1143 bitmap_clear (ri
.scratch
);
1144 EXECUTE_IF_SET_IN_BITMAP (ri
.need_reload
, 0, j
,
1146 struct web
*web2
= ID2WEB (j
);
1147 struct web
*supweb2
= find_web_for_subweb (web2
);
1148 struct web
*aweb2
= alias (supweb2
);
1149 if (spill_is_free (&(ri
.colors_in_use
), aweb2
) <= 0)
1153 ri
.needed_loads
[ri
.nl_size
++] = web2
;
1156 bitmap_set_bit (ri
.scratch
, j
);
1160 bitmap_operation (ri
.need_reload
, ri
.need_reload
, ri
.scratch
,
1162 last_bb
= BLOCK_FOR_INSN (insn
);
1163 last_block_insn
= insn
;
1164 if (!INSN_P (last_block_insn
))
1165 last_block_insn
= prev_real_insn (last_block_insn
);
1170 info
= insn_df
[INSN_UID (insn
)];
1173 for (n
= 0; n
< info
.num_defs
; n
++)
1175 struct ref
*ref
= info
.defs
[n
];
1176 struct web
*web
= def2web
[DF_REF_ID (ref
)];
1177 struct web
*supweb
= find_web_for_subweb (web
);
1181 supweb
= find_web_for_subweb (web
);
1182 /* Webs which are defined here, but also used in the same insn
1183 are rmw webs, or this use isn't a death because of looping
1184 constructs. In neither case makes this def available it's
1185 resources. Reloads for it are still needed, it's still
1186 live and it's colors don't become free. */
1187 for (n2
= 0; n2
< info
.num_uses
; n2
++)
1189 struct web
*web2
= use2web
[DF_REF_ID (info
.uses
[n2
])];
1190 if (supweb
== find_web_for_subweb (web2
))
1199 if (!is_partly_live (ri
.live
, supweb
))
1200 bitmap_set_bit (useless_defs
, DF_REF_ID (ref
));
1202 RESET_BIT (ri
.live
, web
->id
);
1203 if (bitmap_bit_p (ri
.need_reload
, web
->id
))
1206 bitmap_clear_bit (ri
.need_reload
, web
->id
);
1210 /* XXX subwebs aren't precisely tracked here. We have
1211 everything we need (inverse webs), but the code isn't
1212 yet written. We need to make all completely
1213 overlapping web parts non-live here. */
1214 /* If by luck now the whole web isn't live anymore, no
1215 reloads for it are needed. */
1216 if (!is_partly_live (ri
.live
, supweb
)
1217 && bitmap_bit_p (ri
.need_reload
, supweb
->id
))
1220 bitmap_clear_bit (ri
.need_reload
, supweb
->id
);
1226 /* If the whole web is defined here, no parts of it are
1227 live anymore and no reloads are needed for them. */
1228 for (sweb
= supweb
->subreg_next
; sweb
;
1229 sweb
= sweb
->subreg_next
)
1231 RESET_BIT (ri
.live
, sweb
->id
);
1232 if (bitmap_bit_p (ri
.need_reload
, sweb
->id
))
1235 bitmap_clear_bit (ri
.need_reload
, sweb
->id
);
1239 if (alias (supweb
)->type
!= SPILLED
)
1240 update_spill_colors (&(ri
.colors_in_use
), web
, 0);
1243 nl_first_reload
= ri
.nl_size
;
1245 /* CALL_INSNs are not really deaths, but still more registers
1246 are free after a call, than before.
1247 XXX Note, that sometimes reload barfs when we emit insns between
1248 a call and the insn which copies the return register into a
1252 else if (INSN_P (insn
))
1253 for (n
= 0; n
< info
.num_uses
; n
++)
1255 struct web
*web
= use2web
[DF_REF_ID (info
.uses
[n
])];
1256 struct web
*supweb
= find_web_for_subweb (web
);
1258 if (supweb
->type
== PRECOLORED
1259 && TEST_HARD_REG_BIT (never_use_colors
, supweb
->color
))
1261 is_death
= !TEST_BIT (ri
.live
, supweb
->id
);
1262 is_death
&= !TEST_BIT (ri
.live
, web
->id
);
1266 bitmap_set_bit (new_deaths
, INSN_UID (insn
));
1271 if (INSN_P (insn
) && ri
.num_reloads
)
1273 int old_num_reloads
= ri
.num_reloads
;
1274 reloads_to_loads (&ri
, info
.uses
, info
.num_uses
, use2web
);
1276 /* If this insn sets a pseudo, which isn't used later
1277 (i.e. wasn't live before) it is a dead store. We need
1278 to emit all reloads which have the same color as this def.
1279 We don't need to check for non-liveness here to detect
1280 the deadness (it anyway is too late, as we already cleared
1281 the liveness in the first loop over the defs), because if it
1282 _would_ be live here, no reload could have that color, as
1283 they would already have been converted to a load. */
1285 reloads_to_loads (&ri
, info
.defs
, info
.num_defs
, def2web
);
1286 if (ri
.num_reloads
!= old_num_reloads
&& !ri
.need_load
)
1290 if (ri
.nl_size
&& (ri
.need_load
|| ri
.any_spilltemps_spilled
))
1291 emit_loads (&ri
, nl_first_reload
, last_block_insn
);
1293 if (INSN_P (insn
) && flag_ra_ir_spilling
)
1294 for (n
= 0; n
< info
.num_uses
; n
++)
1296 struct web
*web
= use2web
[DF_REF_ID (info
.uses
[n
])];
1297 struct web
*aweb
= alias (find_web_for_subweb (web
));
1298 if (aweb
->type
!= SPILLED
)
1299 update_spill_colors (&(ri
.colors_in_use
), web
, 1);
1302 ri
.any_spilltemps_spilled
= 0;
1304 for (n
= 0; n
< info
.num_uses
; n
++)
1306 struct web
*web
= use2web
[DF_REF_ID (info
.uses
[n
])];
1307 struct web
*supweb
= find_web_for_subweb (web
);
1308 struct web
*aweb
= alias (supweb
);
1309 SET_BIT (ri
.live
, web
->id
);
1310 if (aweb
->type
!= SPILLED
)
1312 if (supweb
->spill_temp
)
1313 ri
.any_spilltemps_spilled
= 1;
1314 web
->last_use_insn
= insn
;
1317 if (spill_is_free (&(ri
.colors_in_use
), aweb
) <= 0
1318 || !flag_ra_ir_spilling
)
1320 ri
.needed_loads
[ri
.nl_size
++] = web
;
1324 else if (!bitmap_bit_p (ri
.need_reload
, web
->id
))
1326 bitmap_set_bit (ri
.need_reload
, web
->id
);
1341 nl_first_reload
= ri
.nl_size
;
1347 HARD_REG_SET cum_colors
, colors
;
1348 CLEAR_HARD_REG_SET (cum_colors
);
1349 for (e
= bb
->pred
; e
&& num
< 5; e
= e
->pred_next
, num
++)
1352 CLEAR_HARD_REG_SET (colors
);
1353 EXECUTE_IF_SET_IN_BITMAP (live_at_end
[e
->src
->index
], 0, j
,
1355 struct web
*web
= use2web
[j
];
1356 struct web
*aweb
= alias (find_web_for_subweb (web
));
1357 if (aweb
->type
!= SPILLED
)
1358 update_spill_colors (&colors
, web
, 1);
1360 IOR_HARD_REG_SET (cum_colors
, colors
);
1365 bitmap_clear (ri
.scratch
);
1366 EXECUTE_IF_SET_IN_BITMAP (ri
.need_reload
, 0, j
,
1368 struct web
*web2
= ID2WEB (j
);
1369 struct web
*supweb2
= find_web_for_subweb (web2
);
1370 struct web
*aweb2
= alias (supweb2
);
1371 /* block entry is IR boundary for aweb2?
1372 Currently more some tries for good conditions. */
1373 if (((ra_pass
> 0 || supweb2
->target_of_spilled_move
)
1374 && (1 || in_ir
|| spill_is_free (&cum_colors
, aweb2
) <= 0))
1377 || spill_is_free (&cum_colors
, aweb2
) <= 0)))
1381 ri
.needed_loads
[ri
.nl_size
++] = web2
;
1384 bitmap_set_bit (ri
.scratch
, j
);
1388 bitmap_operation (ri
.need_reload
, ri
.need_reload
, ri
.scratch
,
1393 emit_loads (&ri
, nl_first_reload
, last_block_insn
);
1394 gcc_assert (ri
.nl_size
== 0);
1398 free (ri
.needed_loads
);
1399 sbitmap_free (ri
.live
);
1400 BITMAP_XFREE (ri
.scratch
);
1401 BITMAP_XFREE (ri
.need_reload
);
1404 /* WEBS is a web conflicting with a spilled one. Prepare it
1405 to be able to rescan it in the next pass. Mark all it's uses
1406 for checking, and clear the some members of their web parts
1407 (of defs and uses). Notably don't clear the uplink. We don't
1408 change the layout of this web, just it's conflicts.
1409 Also remember all IDs of its uses in USES_AS_BITMAP. */
1412 mark_refs_for_checking (struct web
*web
, bitmap uses_as_bitmap
)
1415 for (i
= 0; i
< web
->num_uses
; i
++)
1417 unsigned int id
= DF_REF_ID (web
->uses
[i
]);
1418 SET_BIT (last_check_uses
, id
);
1419 bitmap_set_bit (uses_as_bitmap
, id
);
1420 web_parts
[df
->def_id
+ id
].spanned_deaths
= 0;
1421 web_parts
[df
->def_id
+ id
].crosses_call
= 0;
1423 for (i
= 0; i
< web
->num_defs
; i
++)
1425 unsigned int id
= DF_REF_ID (web
->defs
[i
]);
1426 web_parts
[id
].spanned_deaths
= 0;
1427 web_parts
[id
].crosses_call
= 0;
1431 /* The last step of the spill phase is to set up the structures for
1432 incrementally rebuilding the interference graph. We break up
1433 the web part structure of all spilled webs, mark their uses for
1434 rechecking, look at their neighbors, and clean up some global
1435 information, we will rebuild. */
1438 detect_web_parts_to_rebuild (void)
1440 bitmap uses_as_bitmap
;
1441 unsigned int i
, pass
;
1443 sbitmap already_webs
= sbitmap_alloc (num_webs
);
1445 uses_as_bitmap
= BITMAP_XMALLOC ();
1446 if (last_check_uses
)
1447 sbitmap_free (last_check_uses
);
1448 last_check_uses
= sbitmap_alloc (df
->use_id
);
1449 sbitmap_zero (last_check_uses
);
1450 sbitmap_zero (already_webs
);
1451 /* We need to recheck all uses of all webs involved in spilling (and the
1452 uses added by spill insns, but those are not analyzed yet).
1453 Those are the spilled webs themselves, webs coalesced to spilled ones,
1454 and webs conflicting with any of them. */
1455 for (pass
= 0; pass
< 2; pass
++)
1456 for (d
= (pass
== 0) ? WEBS(SPILLED
) : WEBS(COALESCED
); d
; d
= d
->next
)
1458 struct web
*web
= DLIST_WEB (d
);
1459 struct conflict_link
*wl
;
1461 /* This check is only needed for coalesced nodes, but hey. */
1462 if (alias (web
)->type
!= SPILLED
)
1465 /* For the spilled web itself we also need to clear it's
1466 uplink, to be able to rebuild smaller webs. After all
1467 spilling has split the web. */
1468 for (i
= 0; i
< web
->num_uses
; i
++)
1470 unsigned int id
= DF_REF_ID (web
->uses
[i
]);
1471 SET_BIT (last_check_uses
, id
);
1472 bitmap_set_bit (uses_as_bitmap
, id
);
1473 web_parts
[df
->def_id
+ id
].uplink
= NULL
;
1474 web_parts
[df
->def_id
+ id
].spanned_deaths
= 0;
1475 web_parts
[df
->def_id
+ id
].crosses_call
= 0;
1477 for (i
= 0; i
< web
->num_defs
; i
++)
1479 unsigned int id
= DF_REF_ID (web
->defs
[i
]);
1480 web_parts
[id
].uplink
= NULL
;
1481 web_parts
[id
].spanned_deaths
= 0;
1482 web_parts
[id
].crosses_call
= 0;
1485 /* Now look at all neighbors of this spilled web. */
1486 if (web
->have_orig_conflicts
)
1487 wl
= web
->orig_conflict_list
;
1489 wl
= web
->conflict_list
;
1490 for (; wl
; wl
= wl
->next
)
1492 if (TEST_BIT (already_webs
, wl
->t
->id
))
1494 SET_BIT (already_webs
, wl
->t
->id
);
1495 mark_refs_for_checking (wl
->t
, uses_as_bitmap
);
1497 EXECUTE_IF_SET_IN_BITMAP (web
->useless_conflicts
, 0, j
,
1499 struct web
*web2
= ID2WEB (j
);
1500 if (TEST_BIT (already_webs
, web2
->id
))
1502 SET_BIT (already_webs
, web2
->id
);
1503 mark_refs_for_checking (web2
, uses_as_bitmap
);
1507 /* We also recheck unconditionally all uses of any hardregs. This means
1508 we _can_ delete all these uses from the live_at_end[] bitmaps.
1509 And because we sometimes delete insn referring to hardregs (when
1510 they became useless because they setup a rematerializable pseudo, which
1511 then was rematerialized), some of those uses will go away with the next
1512 df_analyze(). This means we even _must_ delete those uses from
1513 the live_at_end[] bitmaps. For simplicity we simply delete
1515 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1518 struct df_link
*link
;
1519 for (link
= df
->regs
[i
].uses
; link
; link
= link
->next
)
1521 bitmap_set_bit (uses_as_bitmap
, DF_REF_ID (link
->ref
));
1524 /* The information in live_at_end[] will be rebuild for all uses
1525 we recheck, so clear it here (the uses of spilled webs, might
1526 indeed not become member of it again). */
1528 for (i
= 0; i
< (unsigned int) last_basic_block
+ 2; i
++)
1529 bitmap_operation (live_at_end
[i
], live_at_end
[i
], uses_as_bitmap
,
1533 if (dump_file
&& (debug_new_regalloc
& DUMP_REBUILD
) != 0)
1535 ra_debug_msg (DUMP_REBUILD
, "need to check these uses:\n");
1536 dump_sbitmap_file (dump_file
, last_check_uses
);
1538 sbitmap_free (already_webs
);
1539 BITMAP_XFREE (uses_as_bitmap
);
1542 /* Statistics about deleted insns, which are useless now. */
1543 static unsigned int deleted_def_insns
;
1544 static unsigned HOST_WIDE_INT deleted_def_cost
;
1546 /* In rewrite_program2() we noticed, when a certain insn set a pseudo
1547 which wasn't live. Try to delete all those insns. */
1550 delete_useless_defs (void)
1553 /* If the insn only sets the def without any sideeffect (besides
1554 clobbers or uses), we can delete it. single_set() also tests
1555 for INSN_P(insn). */
1556 EXECUTE_IF_SET_IN_BITMAP (useless_defs
, 0, i
,
1558 rtx insn
= DF_REF_INSN (df
->defs
[i
]);
1559 rtx set
= single_set (insn
);
1560 struct web
*web
= find_web_for_subweb (def2web
[i
]);
1561 if (set
&& web
->type
== SPILLED
&& web
->stack_slot
== NULL
)
1563 deleted_def_insns
++;
1564 deleted_def_cost
+= BLOCK_FOR_INSN (insn
)->frequency
+ 1;
1565 PUT_CODE (insn
, NOTE
);
1566 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1567 df_insn_modify (df
, BLOCK_FOR_INSN (insn
), insn
);
1572 /* Look for spilled webs, on whose behalf no insns were emitted.
1573 We inversify (sp?) the changed flag of the webs, so after this function
1574 a nonzero changed flag means, that this web was not spillable (at least
1578 detect_non_changed_webs (void)
1580 struct dlist
*d
, *d_next
;
1581 for (d
= WEBS(SPILLED
); d
; d
= d_next
)
1583 struct web
*web
= DLIST_WEB (d
);
1587 ra_debug_msg (DUMP_PROCESS
, "no insns emitted for spilled web %d\n",
1589 remove_web_from_list (web
);
1590 put_web (web
, COLORED
);
1595 /* From now on web->changed is used as the opposite flag.
1596 I.e. colored webs, which have changed set were formerly
1597 spilled webs for which no insns were emitted. */
1601 /* Before spilling we clear the changed flags for all spilled webs. */
1604 reset_changed_flag (void)
1607 for (d
= WEBS(SPILLED
); d
; d
= d
->next
)
1608 DLIST_WEB(d
)->changed
= 0;
1611 /* The toplevel function for this file. Given a colorized graph,
1612 and lists of spilled, coalesced and colored webs, we add some
1613 spill code. This also sets up the structures for incrementally
1614 building the interference graph in the next pass. */
1620 bitmap new_deaths
= BITMAP_XMALLOC ();
1621 reset_changed_flag ();
1623 choose_spill_colors ();
1624 useless_defs
= BITMAP_XMALLOC ();
1625 if (flag_ra_improved_spilling
)
1626 rewrite_program2 (new_deaths
);
1628 rewrite_program (new_deaths
);
1629 insert_stores (new_deaths
);
1630 delete_useless_defs ();
1631 BITMAP_XFREE (useless_defs
);
1632 sbitmap_free (insns_with_deaths
);
1633 insns_with_deaths
= sbitmap_alloc (get_max_uid ());
1634 death_insns_max_uid
= get_max_uid ();
1635 sbitmap_zero (insns_with_deaths
);
1636 EXECUTE_IF_SET_IN_BITMAP (new_deaths
, 0, i
,
1637 { SET_BIT (insns_with_deaths
, i
);});
1638 detect_non_changed_webs ();
1639 detect_web_parts_to_rebuild ();
1640 BITMAP_XFREE (new_deaths
);
1643 /* A bitmap of pseudo reg numbers which are coalesced directly
1644 to a hardreg. Set in emit_colors(), used and freed in
1645 remove_suspicious_death_notes(). */
1646 static bitmap regnos_coalesced_to_hardregs
;
1648 /* Create new pseudos for each web we colored, change insns to
1649 use those pseudos and set up ra_reg_renumber. */
1652 emit_colors (struct df
*df
)
1657 int old_max_regno
= max_reg_num ();
1661 /* This bitmap is freed in remove_suspicious_death_notes(),
1662 which is also the user of it. */
1663 regnos_coalesced_to_hardregs
= BITMAP_XMALLOC ();
1664 /* First create the (REG xx) rtx's for all webs, as we need to know
1665 the number, to make sure, flow has enough memory for them in the
1667 for (i
= 0; i
< num_webs
- num_subwebs
; i
++)
1670 if (web
->type
!= COLORED
&& web
->type
!= COALESCED
)
1672 if (web
->type
== COALESCED
&& alias (web
)->type
== COLORED
)
1674 gcc_assert (!web
->reg_rtx
);
1675 gcc_assert (web
->regno
>= FIRST_PSEUDO_REGISTER
);
1677 if (web
->regno
>= max_normal_pseudo
)
1680 if (web
->color
== an_unusable_color
)
1682 unsigned int inherent_size
= PSEUDO_REGNO_BYTES (web
->regno
);
1683 unsigned int total_size
= MAX (inherent_size
, 0);
1684 place
= assign_stack_local (PSEUDO_REGNO_MODE (web
->regno
),
1686 inherent_size
== total_size
? 0 : -1);
1687 set_mem_alias_set (place
, new_alias_set ());
1691 place
= gen_reg_rtx (PSEUDO_REGNO_MODE (web
->regno
));
1693 web
->reg_rtx
= place
;
1697 /* Special case for i386 'fix_truncdi_nomemory' insn.
1698 We must choose mode from insns not from PSEUDO_REGNO_MODE.
1699 Actual only for clobbered register. */
1700 if (web
->num_uses
== 0 && web
->num_defs
== 1)
1701 web
->reg_rtx
= gen_reg_rtx (GET_MODE (DF_REF_REAL_REG (web
->defs
[0])));
1703 web
->reg_rtx
= gen_reg_rtx (PSEUDO_REGNO_MODE (web
->regno
));
1704 /* Remember the different parts directly coalesced to a hardreg. */
1705 if (web
->type
== COALESCED
)
1706 bitmap_set_bit (regnos_coalesced_to_hardregs
, REGNO (web
->reg_rtx
));
1709 ra_max_regno
= max_regno
= max_reg_num ();
1710 allocate_reg_info (max_regno
, FALSE
, FALSE
);
1711 ra_reg_renumber
= xmalloc (max_regno
* sizeof (short));
1712 for (si
= 0; si
< max_regno
; si
++)
1713 ra_reg_renumber
[si
] = -1;
1715 /* Then go through all references, and replace them by a new
1716 pseudoreg for each web. All uses. */
1718 Beware: The order of replacements (first uses, then defs) matters only
1719 for read-mod-write insns, where the RTL expression for the REG is
1720 shared between def and use. For normal rmw insns we connected all such
1721 webs, i.e. both the use and the def (which are the same memory)
1722 there get the same new pseudo-reg, so order would not matter.
1723 _However_ we did not connect webs, were the read cycle was an
1724 uninitialized read. If we now would first replace the def reference
1725 and then the use ref, we would initialize it with a REG rtx, which
1726 gets never initialized, and yet more wrong, which would overwrite
1727 the definition of the other REG rtx. So we must replace the defs last.
1729 for (i
= 0; i
< df
->use_id
; i
++)
1732 regset rs
= DF_REF_BB (df
->uses
[i
])->global_live_at_start
;
1735 web
= find_web_for_subweb (web
);
1736 if (web
->type
!= COLORED
&& web
->type
!= COALESCED
)
1738 regrtx
= alias (web
)->reg_rtx
;
1740 regrtx
= web
->reg_rtx
;
1741 *DF_REF_REAL_LOC (df
->uses
[i
]) = regrtx
;
1742 if (REGNO_REG_SET_P (rs
, web
->regno
) && REG_P (regrtx
))
1744 /*CLEAR_REGNO_REG_SET (rs, web->regno);*/
1745 SET_REGNO_REG_SET (rs
, REGNO (regrtx
));
1750 for (i
= 0; i
< df
->def_id
; i
++)
1756 rs
= DF_REF_BB (df
->defs
[i
])->global_live_at_start
;
1758 web
= find_web_for_subweb (web
);
1759 if (web
->type
!= COLORED
&& web
->type
!= COALESCED
)
1761 regrtx
= alias (web
)->reg_rtx
;
1763 regrtx
= web
->reg_rtx
;
1764 *DF_REF_REAL_LOC (df
->defs
[i
]) = regrtx
;
1765 if (REGNO_REG_SET_P (rs
, web
->regno
) && REG_P (regrtx
))
1767 /* Don't simply clear the current regno, as it might be
1768 replaced by two webs. */
1769 /*CLEAR_REGNO_REG_SET (rs, web->regno);*/
1770 SET_REGNO_REG_SET (rs
, REGNO (regrtx
));
1774 /* And now set up the ra_reg_renumber array for reload with all the new
1776 for (i
= 0; i
< num_webs
- num_subwebs
; i
++)
1779 if (web
->reg_rtx
&& REG_P (web
->reg_rtx
))
1781 int r
= REGNO (web
->reg_rtx
);
1782 ra_reg_renumber
[r
] = web
->color
;
1783 ra_debug_msg (DUMP_COLORIZE
, "Renumber pseudo %d (== web %d) to %d\n",
1784 r
, web
->id
, ra_reg_renumber
[r
]);
1788 old_regs
= BITMAP_XMALLOC ();
1789 for (si
= FIRST_PSEUDO_REGISTER
; si
< old_max_regno
; si
++)
1790 SET_REGNO_REG_SET (old_regs
, si
);
1793 AND_COMPL_REG_SET (bb
->global_live_at_start
, old_regs
);
1794 AND_COMPL_REG_SET (bb
->global_live_at_end
, old_regs
);
1796 BITMAP_XFREE (old_regs
);
1799 /* Delete some coalesced moves from the insn stream. */
1804 struct move_list
*ml
;
1806 /* XXX Beware: We normally would test here each copy insn, if
1807 source and target got the same color (either by coalescing or by pure
1808 luck), and then delete it.
1809 This will currently not work. One problem is, that we don't color
1810 the regs ourself, but instead defer to reload. So the colorization
1811 is only a kind of suggestion, which reload doesn't have to follow.
1812 For webs which are coalesced to a normal colored web, we only have one
1813 new pseudo, so in this case we indeed can delete copy insns involving
1814 those (because even if reload colors them different from our suggestion,
1815 it still has to color them the same, as only one pseudo exists). But for
1816 webs coalesced to precolored ones, we have not a single pseudo, but
1817 instead one for each coalesced web. This means, that we can't delete
1818 copy insns, where source and target are webs coalesced to precolored
1819 ones, because then the connection between both webs is destroyed. Note
1820 that this not only means copy insns, where one side is the precolored one
1821 itself, but also those between webs which are coalesced to one color.
1822 Also because reload we can't delete copy insns which involve any
1823 precolored web at all. These often have also special meaning (e.g.
1824 copying a return value of a call to a pseudo, or copying pseudo to the
1825 return register), and the deletion would confuse reload in thinking the
1826 pseudo isn't needed. One of those days reload will get away and we can
1827 do everything we want.
1828 In effect because of the later reload, we can't base our deletion on the
1829 colors itself, but instead need to base them on the newly created
1831 for (ml
= wl_moves
; ml
; ml
= ml
->next
)
1832 /* The real condition we would ideally use is: s->color == t->color.
1833 Additionally: s->type != PRECOLORED && t->type != PRECOLORED, in case
1834 we want to prevent deletion of "special" copies. */
1836 && (s
= alias (ml
->move
->source_web
))->reg_rtx
1837 == (t
= alias (ml
->move
->target_web
))->reg_rtx
1838 && s
->type
!= PRECOLORED
&& t
->type
!= PRECOLORED
)
1840 basic_block bb
= BLOCK_FOR_INSN (ml
->move
->insn
);
1841 df_insn_delete (df
, bb
, ml
->move
->insn
);
1842 deleted_move_insns
++;
1843 deleted_move_cost
+= bb
->frequency
+ 1;
1847 /* Due to reasons documented elsewhere we create different pseudos
1848 for all webs coalesced to hardregs. For these parts life_analysis()
1849 might have added REG_DEAD notes without considering, that only this part
1850 but not the whole coalesced web dies. The RTL is correct, there is no
1851 coalescing yet. But if later reload's alter_reg() substitutes the
1852 hardreg into the REG rtx it looks like that particular hardreg dies here,
1853 although (due to coalescing) it still is live. This might make different
1854 places of reload think, it can use that hardreg for reload regs,
1855 accidentally overwriting it. So we need to remove those REG_DEAD notes.
1856 (Or better teach life_analysis() and reload about our coalescing, but
1857 that comes later) Bah. */
1860 remove_suspicious_death_notes (void)
1863 for (insn
= get_insns(); insn
; insn
= NEXT_INSN (insn
))
1866 rtx
*pnote
= ®_NOTES (insn
);
1870 if ((REG_NOTE_KIND (note
) == REG_DEAD
1871 || REG_NOTE_KIND (note
) == REG_UNUSED
)
1872 && (REG_P (XEXP (note
, 0))
1873 && bitmap_bit_p (regnos_coalesced_to_hardregs
,
1874 REGNO (XEXP (note
, 0)))))
1875 *pnote
= XEXP (note
, 1);
1877 pnote
= &XEXP (*pnote
, 1);
1880 BITMAP_XFREE (regnos_coalesced_to_hardregs
);
1881 regnos_coalesced_to_hardregs
= NULL
;
1884 /* Allocate space for max_reg_num() pseudo registers, and
1885 fill reg_renumber[] from ra_reg_renumber[]. If FREE_IT
1886 is nonzero, also free ra_reg_renumber and reset ra_max_regno. */
1889 setup_renumber (int free_it
)
1892 max_regno
= max_reg_num ();
1893 allocate_reg_info (max_regno
, FALSE
, TRUE
);
1894 for (i
= 0; i
< max_regno
; i
++)
1896 reg_renumber
[i
] = (i
< ra_max_regno
) ? ra_reg_renumber
[i
] : -1;
1900 free (ra_reg_renumber
);
1901 ra_reg_renumber
= NULL
;
1906 /* Dump the costs and savings due to spilling, i.e. of added spill insns
1907 and removed moves or useless defs. */
1910 dump_cost (unsigned int level
)
1912 ra_debug_msg (level
, "Instructions for spilling\n added:\n");
1913 ra_debug_msg (level
, " loads =%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED
"\n",
1914 emitted_spill_loads
, spill_load_cost
);
1915 ra_debug_msg (level
, " stores=%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED
"\n",
1916 emitted_spill_stores
, spill_store_cost
);
1917 ra_debug_msg (level
, " remat =%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED
"\n",
1918 emitted_remat
, spill_remat_cost
);
1919 ra_debug_msg (level
, " removed:\n moves =%d cost="
1920 HOST_WIDE_INT_PRINT_UNSIGNED
"\n",
1921 deleted_move_insns
, deleted_move_cost
);
1922 ra_debug_msg (level
, " others=%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED
"\n",
1923 deleted_def_insns
, deleted_def_cost
);
1926 /* Initialization of the rewrite phase. */
1929 ra_rewrite_init (void)
1931 emitted_spill_loads
= 0;
1932 emitted_spill_stores
= 0;
1934 spill_load_cost
= 0;
1935 spill_store_cost
= 0;
1936 spill_remat_cost
= 0;
1937 deleted_move_insns
= 0;
1938 deleted_move_cost
= 0;
1939 deleted_def_insns
= 0;
1940 deleted_def_cost
= 0;
1944 vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4: