2001-07-07 Toon Moene <toon@moene.indiv.nluug.nl>
[official-gcc.git] / gcc / optabs.c
bloba3e2682a65856f2a123f7dcfefdc44fa12fca230
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "except.h"
36 #include "expr.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "ggc.h"
40 #include "real.h"
42 /* Each optab contains info on how this target machine
43 can perform a particular operation
44 for all sizes and kinds of operands.
46 The operation to be performed is often specified
47 by passing one of these optabs as an argument.
49 See expr.h for documentation of these optabs. */
51 optab optab_table[OTI_MAX];
53 rtx libfunc_table[LTI_MAX];
55 /* Tables of patterns for extending one integer mode to another. */
56 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
58 /* Tables of patterns for converting between fixed and floating point. */
59 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
60 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
61 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
63 /* Contains the optab used for each rtx code. */
64 optab code_to_optab[NUM_RTX_CODE + 1];
66 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
67 gives the gen_function to make a branch to test that condition. */
69 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
71 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
72 gives the insn code to make a store-condition insn
73 to test that condition. */
75 enum insn_code setcc_gen_code[NUM_RTX_CODE];
77 #ifdef HAVE_conditional_move
78 /* Indexed by the machine mode, gives the insn code to make a conditional
79 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
80 setcc_gen_code to cut down on the number of named patterns. Consider a day
81 when a lot more rtx codes are conditional (eg: for the ARM). */
83 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
84 #endif
86 static int add_equal_note PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
87 static rtx widen_operand PARAMS ((rtx, enum machine_mode,
88 enum machine_mode, int, int));
89 static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
90 rtx, rtx, enum machine_mode,
91 int, enum optab_methods,
92 enum mode_class, optab));
93 static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
94 rtx, rtx, enum machine_mode,
95 int, enum optab_methods,
96 enum mode_class, optab));
97 static enum insn_code can_fix_p PARAMS ((enum machine_mode, enum machine_mode,
98 int, int *));
99 static enum insn_code can_float_p PARAMS ((enum machine_mode, enum machine_mode,
100 int));
101 static rtx ftruncify PARAMS ((rtx));
102 static optab init_optab PARAMS ((enum rtx_code));
103 static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
104 static void init_integral_libfuncs PARAMS ((optab, const char *, int));
105 static void init_floating_libfuncs PARAMS ((optab, const char *, int));
106 #ifdef HAVE_conditional_trap
107 static void init_traps PARAMS ((void));
108 #endif
109 static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
110 enum rtx_code, int, rtx));
111 static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
112 enum machine_mode *, int *));
114 /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
115 the result of operation CODE applied to OP0 (and OP1 if it is a binary
116 operation).
118 If the last insn does not set TARGET, don't do anything, but return 1.
120 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
121 don't add the REG_EQUAL note but return 0. Our caller can then try
122 again, ensuring that TARGET is not one of the operands. */
124 static int
125 add_equal_note (seq, target, code, op0, op1)
126 rtx seq;
127 rtx target;
128 enum rtx_code code;
129 rtx op0, op1;
131 rtx set;
132 int i;
133 rtx note;
135 if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
136 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
137 || GET_CODE (seq) != SEQUENCE
138 || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
139 || GET_CODE (target) == ZERO_EXTRACT
140 || (! rtx_equal_p (SET_DEST (set), target)
141 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
142 SUBREG. */
143 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
144 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
145 target))))
146 return 1;
148 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
149 besides the last insn. */
150 if (reg_overlap_mentioned_p (target, op0)
151 || (op1 && reg_overlap_mentioned_p (target, op1)))
152 for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
153 if (reg_set_p (target, XVECEXP (seq, 0, i)))
154 return 0;
156 if (GET_RTX_CLASS (code) == '1')
157 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
158 else
159 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
161 set_unique_reg_note (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1), REG_EQUAL, note);
163 return 1;
166 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
167 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
168 not actually do a sign-extend or zero-extend, but can leave the
169 higher-order bits of the result rtx undefined, for example, in the case
170 of logical operations, but not right shifts. */
172 static rtx
173 widen_operand (op, mode, oldmode, unsignedp, no_extend)
174 rtx op;
175 enum machine_mode mode, oldmode;
176 int unsignedp;
177 int no_extend;
179 rtx result;
181 /* If we must extend do so. If OP is either a constant or a SUBREG
182 for a promoted object, also extend since it will be more efficient to
183 do so. */
184 if (! no_extend
185 || GET_MODE (op) == VOIDmode
186 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
187 return convert_modes (mode, oldmode, op, unsignedp);
189 /* If MODE is no wider than a single word, we return a paradoxical
190 SUBREG. */
191 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
192 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
194 /* Otherwise, get an object of MODE, clobber it, and set the low-order
195 part to OP. */
197 result = gen_reg_rtx (mode);
198 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
199 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
200 return result;
203 /* Generate code to perform a straightforward complex divide. */
205 static int
206 expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
207 unsignedp, methods, class, binoptab)
208 rtx real0, real1, imag0, imag1, realr, imagr;
209 enum machine_mode submode;
210 int unsignedp;
211 enum optab_methods methods;
212 enum mode_class class;
213 optab binoptab;
215 rtx divisor;
216 rtx real_t, imag_t;
217 rtx temp1, temp2;
218 rtx res;
219 optab this_add_optab = add_optab;
220 optab this_sub_optab = sub_optab;
221 optab this_neg_optab = neg_optab;
222 optab this_mul_optab = smul_optab;
224 if (binoptab == sdivv_optab)
226 this_add_optab = addv_optab;
227 this_sub_optab = subv_optab;
228 this_neg_optab = negv_optab;
229 this_mul_optab = smulv_optab;
232 /* Don't fetch these from memory more than once. */
233 real0 = force_reg (submode, real0);
234 real1 = force_reg (submode, real1);
236 if (imag0 != 0)
237 imag0 = force_reg (submode, imag0);
239 imag1 = force_reg (submode, imag1);
241 /* Divisor: c*c + d*d. */
242 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
243 NULL_RTX, unsignedp, methods);
245 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
246 NULL_RTX, unsignedp, methods);
248 if (temp1 == 0 || temp2 == 0)
249 return 0;
251 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
252 NULL_RTX, unsignedp, methods);
253 if (divisor == 0)
254 return 0;
256 if (imag0 == 0)
258 /* Mathematically, ((a)(c-id))/divisor. */
259 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
261 /* Calculate the dividend. */
262 real_t = expand_binop (submode, this_mul_optab, real0, real1,
263 NULL_RTX, unsignedp, methods);
265 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
266 NULL_RTX, unsignedp, methods);
268 if (real_t == 0 || imag_t == 0)
269 return 0;
271 imag_t = expand_unop (submode, this_neg_optab, imag_t,
272 NULL_RTX, unsignedp);
274 else
276 /* Mathematically, ((a+ib)(c-id))/divider. */
277 /* Calculate the dividend. */
278 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
279 NULL_RTX, unsignedp, methods);
281 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
282 NULL_RTX, unsignedp, methods);
284 if (temp1 == 0 || temp2 == 0)
285 return 0;
287 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
288 NULL_RTX, unsignedp, methods);
290 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
291 NULL_RTX, unsignedp, methods);
293 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
294 NULL_RTX, unsignedp, methods);
296 if (temp1 == 0 || temp2 == 0)
297 return 0;
299 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
300 NULL_RTX, unsignedp, methods);
302 if (real_t == 0 || imag_t == 0)
303 return 0;
306 if (class == MODE_COMPLEX_FLOAT)
307 res = expand_binop (submode, binoptab, real_t, divisor,
308 realr, unsignedp, methods);
309 else
310 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
311 real_t, divisor, realr, unsignedp);
313 if (res == 0)
314 return 0;
316 if (res != realr)
317 emit_move_insn (realr, res);
319 if (class == MODE_COMPLEX_FLOAT)
320 res = expand_binop (submode, binoptab, imag_t, divisor,
321 imagr, unsignedp, methods);
322 else
323 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
324 imag_t, divisor, imagr, unsignedp);
326 if (res == 0)
327 return 0;
329 if (res != imagr)
330 emit_move_insn (imagr, res);
332 return 1;
335 /* Generate code to perform a wide-input-range-acceptable complex divide. */
337 static int
338 expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
339 unsignedp, methods, class, binoptab)
340 rtx real0, real1, imag0, imag1, realr, imagr;
341 enum machine_mode submode;
342 int unsignedp;
343 enum optab_methods methods;
344 enum mode_class class;
345 optab binoptab;
347 rtx ratio, divisor;
348 rtx real_t, imag_t;
349 rtx temp1, temp2, lab1, lab2;
350 enum machine_mode mode;
351 int align;
352 rtx res;
353 optab this_add_optab = add_optab;
354 optab this_sub_optab = sub_optab;
355 optab this_neg_optab = neg_optab;
356 optab this_mul_optab = smul_optab;
358 if (binoptab == sdivv_optab)
360 this_add_optab = addv_optab;
361 this_sub_optab = subv_optab;
362 this_neg_optab = negv_optab;
363 this_mul_optab = smulv_optab;
366 /* Don't fetch these from memory more than once. */
367 real0 = force_reg (submode, real0);
368 real1 = force_reg (submode, real1);
370 if (imag0 != 0)
371 imag0 = force_reg (submode, imag0);
373 imag1 = force_reg (submode, imag1);
375 /* XXX What's an "unsigned" complex number? */
376 if (unsignedp)
378 temp1 = real1;
379 temp2 = imag1;
381 else
383 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
384 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
387 if (temp1 == 0 || temp2 == 0)
388 return 0;
390 mode = GET_MODE (temp1);
391 align = GET_MODE_ALIGNMENT (mode);
392 lab1 = gen_label_rtx ();
393 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
394 mode, unsignedp, align, lab1);
396 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
398 if (class == MODE_COMPLEX_FLOAT)
399 ratio = expand_binop (submode, binoptab, imag1, real1,
400 NULL_RTX, unsignedp, methods);
401 else
402 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
403 imag1, real1, NULL_RTX, unsignedp);
405 if (ratio == 0)
406 return 0;
408 /* Calculate divisor. */
410 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
411 NULL_RTX, unsignedp, methods);
413 if (temp1 == 0)
414 return 0;
416 divisor = expand_binop (submode, this_add_optab, temp1, real1,
417 NULL_RTX, unsignedp, methods);
419 if (divisor == 0)
420 return 0;
422 /* Calculate dividend. */
424 if (imag0 == 0)
426 real_t = real0;
428 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
430 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
431 NULL_RTX, unsignedp, methods);
433 if (imag_t == 0)
434 return 0;
436 imag_t = expand_unop (submode, this_neg_optab, imag_t,
437 NULL_RTX, unsignedp);
439 if (real_t == 0 || imag_t == 0)
440 return 0;
442 else
444 /* Compute (a+ib)/(c+id) as
445 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
447 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
448 NULL_RTX, unsignedp, methods);
450 if (temp1 == 0)
451 return 0;
453 real_t = expand_binop (submode, this_add_optab, temp1, real0,
454 NULL_RTX, unsignedp, methods);
456 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
457 NULL_RTX, unsignedp, methods);
459 if (temp1 == 0)
460 return 0;
462 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
463 NULL_RTX, unsignedp, methods);
465 if (real_t == 0 || imag_t == 0)
466 return 0;
469 if (class == MODE_COMPLEX_FLOAT)
470 res = expand_binop (submode, binoptab, real_t, divisor,
471 realr, unsignedp, methods);
472 else
473 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
474 real_t, divisor, realr, unsignedp);
476 if (res == 0)
477 return 0;
479 if (res != realr)
480 emit_move_insn (realr, res);
482 if (class == MODE_COMPLEX_FLOAT)
483 res = expand_binop (submode, binoptab, imag_t, divisor,
484 imagr, unsignedp, methods);
485 else
486 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
487 imag_t, divisor, imagr, unsignedp);
489 if (res == 0)
490 return 0;
492 if (res != imagr)
493 emit_move_insn (imagr, res);
495 lab2 = gen_label_rtx ();
496 emit_jump_insn (gen_jump (lab2));
497 emit_barrier ();
499 emit_label (lab1);
501 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
503 if (class == MODE_COMPLEX_FLOAT)
504 ratio = expand_binop (submode, binoptab, real1, imag1,
505 NULL_RTX, unsignedp, methods);
506 else
507 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
508 real1, imag1, NULL_RTX, unsignedp);
510 if (ratio == 0)
511 return 0;
513 /* Calculate divisor. */
515 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
516 NULL_RTX, unsignedp, methods);
518 if (temp1 == 0)
519 return 0;
521 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
522 NULL_RTX, unsignedp, methods);
524 if (divisor == 0)
525 return 0;
527 /* Calculate dividend. */
529 if (imag0 == 0)
531 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
533 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
534 NULL_RTX, unsignedp, methods);
536 imag_t = expand_unop (submode, this_neg_optab, real0,
537 NULL_RTX, unsignedp);
539 if (real_t == 0 || imag_t == 0)
540 return 0;
542 else
544 /* Compute (a+ib)/(c+id) as
545 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
547 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
548 NULL_RTX, unsignedp, methods);
550 if (temp1 == 0)
551 return 0;
553 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
554 NULL_RTX, unsignedp, methods);
556 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
557 NULL_RTX, unsignedp, methods);
559 if (temp1 == 0)
560 return 0;
562 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
563 NULL_RTX, unsignedp, methods);
565 if (real_t == 0 || imag_t == 0)
566 return 0;
569 if (class == MODE_COMPLEX_FLOAT)
570 res = expand_binop (submode, binoptab, real_t, divisor,
571 realr, unsignedp, methods);
572 else
573 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
574 real_t, divisor, realr, unsignedp);
576 if (res == 0)
577 return 0;
579 if (res != realr)
580 emit_move_insn (realr, res);
582 if (class == MODE_COMPLEX_FLOAT)
583 res = expand_binop (submode, binoptab, imag_t, divisor,
584 imagr, unsignedp, methods);
585 else
586 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
587 imag_t, divisor, imagr, unsignedp);
589 if (res == 0)
590 return 0;
592 if (res != imagr)
593 emit_move_insn (imagr, res);
595 emit_label (lab2);
597 return 1;
600 /* Generate code to perform an operation specified by BINOPTAB
601 on operands OP0 and OP1, with result having machine-mode MODE.
603 UNSIGNEDP is for the case where we have to widen the operands
604 to perform the operation. It says to use zero-extension.
606 If TARGET is nonzero, the value
607 is generated there, if it is convenient to do so.
608 In all cases an rtx is returned for the locus of the value;
609 this may or may not be TARGET. */
612 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
613 enum machine_mode mode;
614 optab binoptab;
615 rtx op0, op1;
616 rtx target;
617 int unsignedp;
618 enum optab_methods methods;
620 enum optab_methods next_methods
621 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
622 ? OPTAB_WIDEN : methods);
623 enum mode_class class;
624 enum machine_mode wider_mode;
625 register rtx temp;
626 int commutative_op = 0;
627 int shift_op = (binoptab->code == ASHIFT
628 || binoptab->code == ASHIFTRT
629 || binoptab->code == LSHIFTRT
630 || binoptab->code == ROTATE
631 || binoptab->code == ROTATERT);
632 rtx entry_last = get_last_insn ();
633 rtx last;
635 class = GET_MODE_CLASS (mode);
637 op0 = protect_from_queue (op0, 0);
638 op1 = protect_from_queue (op1, 0);
639 if (target)
640 target = protect_from_queue (target, 1);
642 if (flag_force_mem)
644 op0 = force_not_mem (op0);
645 op1 = force_not_mem (op1);
648 /* If subtracting an integer constant, convert this into an addition of
649 the negated constant. */
651 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
653 op1 = negate_rtx (mode, op1);
654 binoptab = add_optab;
657 /* If we are inside an appropriately-short loop and one operand is an
658 expensive constant, force it into a register. */
659 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
660 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
661 op0 = force_reg (mode, op0);
663 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
664 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
665 op1 = force_reg (mode, op1);
667 /* Record where to delete back to if we backtrack. */
668 last = get_last_insn ();
670 /* If operation is commutative,
671 try to make the first operand a register.
672 Even better, try to make it the same as the target.
673 Also try to make the last operand a constant. */
674 if (GET_RTX_CLASS (binoptab->code) == 'c'
675 || binoptab == smul_widen_optab
676 || binoptab == umul_widen_optab
677 || binoptab == smul_highpart_optab
678 || binoptab == umul_highpart_optab)
680 commutative_op = 1;
682 if (((target == 0 || GET_CODE (target) == REG)
683 ? ((GET_CODE (op1) == REG
684 && GET_CODE (op0) != REG)
685 || target == op1)
686 : rtx_equal_p (op1, target))
687 || GET_CODE (op0) == CONST_INT)
689 temp = op1;
690 op1 = op0;
691 op0 = temp;
695 /* If we can do it with a three-operand insn, do so. */
697 if (methods != OPTAB_MUST_WIDEN
698 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
700 int icode = (int) binoptab->handlers[(int) mode].insn_code;
701 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
702 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
703 rtx pat;
704 rtx xop0 = op0, xop1 = op1;
706 if (target)
707 temp = target;
708 else
709 temp = gen_reg_rtx (mode);
711 /* If it is a commutative operator and the modes would match
712 if we would swap the operands, we can save the conversions. */
713 if (commutative_op)
715 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
716 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
718 register rtx tmp;
720 tmp = op0; op0 = op1; op1 = tmp;
721 tmp = xop0; xop0 = xop1; xop1 = tmp;
725 /* In case the insn wants input operands in modes different from
726 the result, convert the operands. It would seem that we
727 don't need to convert CONST_INTs, but we do, so that they're
728 a properly sign-extended for their modes; we choose the
729 widest mode between mode and mode[01], so that, in a widening
730 operation, we call convert_modes with different FROM and TO
731 modes, which ensures the value is sign-extended. Shift
732 operations are an exception, because the second operand needs
733 not be extended to the mode of the result. */
735 if (GET_MODE (op0) != mode0
736 && mode0 != VOIDmode)
737 xop0 = convert_modes (mode0,
738 GET_MODE (op0) != VOIDmode
739 ? GET_MODE (op0)
740 : GET_MODE_SIZE (mode) > GET_MODE_SIZE (mode0)
741 ? mode
742 : mode0,
743 xop0, unsignedp);
745 if (GET_MODE (xop1) != mode1
746 && mode1 != VOIDmode)
747 xop1 = convert_modes (mode1,
748 GET_MODE (op1) != VOIDmode
749 ? GET_MODE (op1)
750 : (GET_MODE_SIZE (mode) > GET_MODE_SIZE (mode1)
751 && ! shift_op)
752 ? mode
753 : mode1,
754 xop1, unsignedp);
756 /* Now, if insn's predicates don't allow our operands, put them into
757 pseudo regs. */
759 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
760 && mode0 != VOIDmode)
761 xop0 = copy_to_mode_reg (mode0, xop0);
763 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
764 && mode1 != VOIDmode)
765 xop1 = copy_to_mode_reg (mode1, xop1);
767 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
768 temp = gen_reg_rtx (mode);
770 pat = GEN_FCN (icode) (temp, xop0, xop1);
771 if (pat)
773 /* If PAT is a multi-insn sequence, try to add an appropriate
774 REG_EQUAL note to it. If we can't because TEMP conflicts with an
775 operand, call ourselves again, this time without a target. */
776 if (GET_CODE (pat) == SEQUENCE
777 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
779 delete_insns_since (last);
780 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
781 unsignedp, methods);
784 emit_insn (pat);
785 return temp;
787 else
788 delete_insns_since (last);
791 /* If this is a multiply, see if we can do a widening operation that
792 takes operands of this mode and makes a wider mode. */
794 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
795 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
796 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
797 != CODE_FOR_nothing))
799 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
800 unsignedp ? umul_widen_optab : smul_widen_optab,
801 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
803 if (temp != 0)
805 if (GET_MODE_CLASS (mode) == MODE_INT)
806 return gen_lowpart (mode, temp);
807 else
808 return convert_to_mode (mode, temp, unsignedp);
812 /* Look for a wider mode of the same class for which we think we
813 can open-code the operation. Check for a widening multiply at the
814 wider mode as well. */
816 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
817 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
818 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
819 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
821 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
822 || (binoptab == smul_optab
823 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
824 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
825 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
826 != CODE_FOR_nothing)))
828 rtx xop0 = op0, xop1 = op1;
829 int no_extend = 0;
831 /* For certain integer operations, we need not actually extend
832 the narrow operands, as long as we will truncate
833 the results to the same narrowness. */
835 if ((binoptab == ior_optab || binoptab == and_optab
836 || binoptab == xor_optab
837 || binoptab == add_optab || binoptab == sub_optab
838 || binoptab == smul_optab || binoptab == ashl_optab)
839 && class == MODE_INT)
840 no_extend = 1;
842 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
844 /* The second operand of a shift must always be extended. */
845 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
846 no_extend && binoptab != ashl_optab);
848 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
849 unsignedp, OPTAB_DIRECT);
850 if (temp)
852 if (class != MODE_INT)
854 if (target == 0)
855 target = gen_reg_rtx (mode);
856 convert_move (target, temp, 0);
857 return target;
859 else
860 return gen_lowpart (mode, temp);
862 else
863 delete_insns_since (last);
867 /* These can be done a word at a time. */
868 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
869 && class == MODE_INT
870 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
871 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
873 unsigned int i;
874 rtx insns;
875 rtx equiv_value;
877 /* If TARGET is the same as one of the operands, the REG_EQUAL note
878 won't be accurate, so use a new target. */
879 if (target == 0 || target == op0 || target == op1)
880 target = gen_reg_rtx (mode);
882 start_sequence ();
884 /* Do the actual arithmetic. */
885 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
887 rtx target_piece = operand_subword (target, i, 1, mode);
888 rtx x = expand_binop (word_mode, binoptab,
889 operand_subword_force (op0, i, mode),
890 operand_subword_force (op1, i, mode),
891 target_piece, unsignedp, next_methods);
893 if (x == 0)
894 break;
896 if (target_piece != x)
897 emit_move_insn (target_piece, x);
900 insns = get_insns ();
901 end_sequence ();
903 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
905 if (binoptab->code != UNKNOWN)
906 equiv_value
907 = gen_rtx_fmt_ee (binoptab->code, mode,
908 copy_rtx (op0), copy_rtx (op1));
909 else
910 equiv_value = 0;
912 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
913 return target;
917 /* Synthesize double word shifts from single word shifts. */
918 if ((binoptab == lshr_optab || binoptab == ashl_optab
919 || binoptab == ashr_optab)
920 && class == MODE_INT
921 && GET_CODE (op1) == CONST_INT
922 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
923 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
924 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
925 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
927 rtx insns, inter, equiv_value;
928 rtx into_target, outof_target;
929 rtx into_input, outof_input;
930 int shift_count, left_shift, outof_word;
932 /* If TARGET is the same as one of the operands, the REG_EQUAL note
933 won't be accurate, so use a new target. */
934 if (target == 0 || target == op0 || target == op1)
935 target = gen_reg_rtx (mode);
937 start_sequence ();
939 shift_count = INTVAL (op1);
941 /* OUTOF_* is the word we are shifting bits away from, and
942 INTO_* is the word that we are shifting bits towards, thus
943 they differ depending on the direction of the shift and
944 WORDS_BIG_ENDIAN. */
946 left_shift = binoptab == ashl_optab;
947 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
949 outof_target = operand_subword (target, outof_word, 1, mode);
950 into_target = operand_subword (target, 1 - outof_word, 1, mode);
952 outof_input = operand_subword_force (op0, outof_word, mode);
953 into_input = operand_subword_force (op0, 1 - outof_word, mode);
955 if (shift_count >= BITS_PER_WORD)
957 inter = expand_binop (word_mode, binoptab,
958 outof_input,
959 GEN_INT (shift_count - BITS_PER_WORD),
960 into_target, unsignedp, next_methods);
962 if (inter != 0 && inter != into_target)
963 emit_move_insn (into_target, inter);
965 /* For a signed right shift, we must fill the word we are shifting
966 out of with copies of the sign bit. Otherwise it is zeroed. */
967 if (inter != 0 && binoptab != ashr_optab)
968 inter = CONST0_RTX (word_mode);
969 else if (inter != 0)
970 inter = expand_binop (word_mode, binoptab,
971 outof_input,
972 GEN_INT (BITS_PER_WORD - 1),
973 outof_target, unsignedp, next_methods);
975 if (inter != 0 && inter != outof_target)
976 emit_move_insn (outof_target, inter);
978 else
980 rtx carries;
981 optab reverse_unsigned_shift, unsigned_shift;
983 /* For a shift of less then BITS_PER_WORD, to compute the carry,
984 we must do a logical shift in the opposite direction of the
985 desired shift. */
987 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
989 /* For a shift of less than BITS_PER_WORD, to compute the word
990 shifted towards, we need to unsigned shift the orig value of
991 that word. */
993 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
995 carries = expand_binop (word_mode, reverse_unsigned_shift,
996 outof_input,
997 GEN_INT (BITS_PER_WORD - shift_count),
998 0, unsignedp, next_methods);
1000 if (carries == 0)
1001 inter = 0;
1002 else
1003 inter = expand_binop (word_mode, unsigned_shift, into_input,
1004 op1, 0, unsignedp, next_methods);
1006 if (inter != 0)
1007 inter = expand_binop (word_mode, ior_optab, carries, inter,
1008 into_target, unsignedp, next_methods);
1010 if (inter != 0 && inter != into_target)
1011 emit_move_insn (into_target, inter);
1013 if (inter != 0)
1014 inter = expand_binop (word_mode, binoptab, outof_input,
1015 op1, outof_target, unsignedp, next_methods);
1017 if (inter != 0 && inter != outof_target)
1018 emit_move_insn (outof_target, inter);
1021 insns = get_insns ();
1022 end_sequence ();
1024 if (inter != 0)
1026 if (binoptab->code != UNKNOWN)
1027 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1028 else
1029 equiv_value = 0;
1031 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1032 return target;
1036 /* Synthesize double word rotates from single word shifts. */
1037 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1038 && class == MODE_INT
1039 && GET_CODE (op1) == CONST_INT
1040 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1041 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1042 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1044 rtx insns, equiv_value;
1045 rtx into_target, outof_target;
1046 rtx into_input, outof_input;
1047 rtx inter;
1048 int shift_count, left_shift, outof_word;
1050 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1051 won't be accurate, so use a new target. */
1052 if (target == 0 || target == op0 || target == op1)
1053 target = gen_reg_rtx (mode);
1055 start_sequence ();
1057 shift_count = INTVAL (op1);
1059 /* OUTOF_* is the word we are shifting bits away from, and
1060 INTO_* is the word that we are shifting bits towards, thus
1061 they differ depending on the direction of the shift and
1062 WORDS_BIG_ENDIAN. */
1064 left_shift = (binoptab == rotl_optab);
1065 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1067 outof_target = operand_subword (target, outof_word, 1, mode);
1068 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1070 outof_input = operand_subword_force (op0, outof_word, mode);
1071 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1073 if (shift_count == BITS_PER_WORD)
1075 /* This is just a word swap. */
1076 emit_move_insn (outof_target, into_input);
1077 emit_move_insn (into_target, outof_input);
1078 inter = const0_rtx;
1080 else
1082 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1083 rtx first_shift_count, second_shift_count;
1084 optab reverse_unsigned_shift, unsigned_shift;
1086 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1087 ? lshr_optab : ashl_optab);
1089 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1090 ? ashl_optab : lshr_optab);
1092 if (shift_count > BITS_PER_WORD)
1094 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1095 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
1097 else
1099 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1100 second_shift_count = GEN_INT (shift_count);
1103 into_temp1 = expand_binop (word_mode, unsigned_shift,
1104 outof_input, first_shift_count,
1105 NULL_RTX, unsignedp, next_methods);
1106 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1107 into_input, second_shift_count,
1108 into_target, unsignedp, next_methods);
1110 if (into_temp1 != 0 && into_temp2 != 0)
1111 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1112 into_target, unsignedp, next_methods);
1113 else
1114 inter = 0;
1116 if (inter != 0 && inter != into_target)
1117 emit_move_insn (into_target, inter);
1119 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1120 into_input, first_shift_count,
1121 NULL_RTX, unsignedp, next_methods);
1122 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1123 outof_input, second_shift_count,
1124 outof_target, unsignedp, next_methods);
1126 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1127 inter = expand_binop (word_mode, ior_optab,
1128 outof_temp1, outof_temp2,
1129 outof_target, unsignedp, next_methods);
1131 if (inter != 0 && inter != outof_target)
1132 emit_move_insn (outof_target, inter);
1135 insns = get_insns ();
1136 end_sequence ();
1138 if (inter != 0)
1140 if (binoptab->code != UNKNOWN)
1141 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1142 else
1143 equiv_value = 0;
1145 /* We can't make this a no conflict block if this is a word swap,
1146 because the word swap case fails if the input and output values
1147 are in the same register. */
1148 if (shift_count != BITS_PER_WORD)
1149 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1150 else
1151 emit_insns (insns);
1154 return target;
1158 /* These can be done a word at a time by propagating carries. */
1159 if ((binoptab == add_optab || binoptab == sub_optab)
1160 && class == MODE_INT
1161 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1162 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1164 unsigned int i;
1165 rtx carry_tmp = gen_reg_rtx (word_mode);
1166 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1167 unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1168 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1169 rtx xop0, xop1;
1171 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1172 value is one of those, use it. Otherwise, use 1 since it is the
1173 one easiest to get. */
1174 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1175 int normalizep = STORE_FLAG_VALUE;
1176 #else
1177 int normalizep = 1;
1178 #endif
1180 /* Prepare the operands. */
1181 xop0 = force_reg (mode, op0);
1182 xop1 = force_reg (mode, op1);
1184 if (target == 0 || GET_CODE (target) != REG
1185 || target == xop0 || target == xop1)
1186 target = gen_reg_rtx (mode);
1188 /* Indicate for flow that the entire target reg is being set. */
1189 if (GET_CODE (target) == REG)
1190 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1192 /* Do the actual arithmetic. */
1193 for (i = 0; i < nwords; i++)
1195 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1196 rtx target_piece = operand_subword (target, index, 1, mode);
1197 rtx op0_piece = operand_subword_force (xop0, index, mode);
1198 rtx op1_piece = operand_subword_force (xop1, index, mode);
1199 rtx x;
1201 /* Main add/subtract of the input operands. */
1202 x = expand_binop (word_mode, binoptab,
1203 op0_piece, op1_piece,
1204 target_piece, unsignedp, next_methods);
1205 if (x == 0)
1206 break;
1208 if (i + 1 < nwords)
1210 /* Store carry from main add/subtract. */
1211 carry_out = gen_reg_rtx (word_mode);
1212 carry_out = emit_store_flag_force (carry_out,
1213 (binoptab == add_optab
1214 ? LT : GT),
1215 x, op0_piece,
1216 word_mode, 1, normalizep);
1219 if (i > 0)
1221 /* Add/subtract previous carry to main result. */
1222 x = expand_binop (word_mode,
1223 normalizep == 1 ? binoptab : otheroptab,
1224 x, carry_in,
1225 target_piece, 1, next_methods);
1226 if (x == 0)
1227 break;
1228 else if (target_piece != x)
1229 emit_move_insn (target_piece, x);
1231 if (i + 1 < nwords)
1233 /* THIS CODE HAS NOT BEEN TESTED. */
1234 /* Get out carry from adding/subtracting carry in. */
1235 carry_tmp = emit_store_flag_force (carry_tmp,
1236 binoptab == add_optab
1237 ? LT : GT,
1238 x, carry_in,
1239 word_mode, 1, normalizep);
1241 /* Logical-ior the two poss. carry together. */
1242 carry_out = expand_binop (word_mode, ior_optab,
1243 carry_out, carry_tmp,
1244 carry_out, 0, next_methods);
1245 if (carry_out == 0)
1246 break;
1250 carry_in = carry_out;
1253 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1255 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1257 rtx temp = emit_move_insn (target, target);
1259 set_unique_reg_note (temp,
1260 REG_EQUAL,
1261 gen_rtx_fmt_ee (binoptab->code, mode,
1262 copy_rtx (xop0),
1263 copy_rtx (xop1)));
1266 return target;
1269 else
1270 delete_insns_since (last);
1273 /* If we want to multiply two two-word values and have normal and widening
1274 multiplies of single-word values, we can do this with three smaller
1275 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1276 because we are not operating on one word at a time.
1278 The multiplication proceeds as follows:
1279 _______________________
1280 [__op0_high_|__op0_low__]
1281 _______________________
1282 * [__op1_high_|__op1_low__]
1283 _______________________________________________
1284 _______________________
1285 (1) [__op0_low__*__op1_low__]
1286 _______________________
1287 (2a) [__op0_low__*__op1_high_]
1288 _______________________
1289 (2b) [__op0_high_*__op1_low__]
1290 _______________________
1291 (3) [__op0_high_*__op1_high_]
1294 This gives a 4-word result. Since we are only interested in the
1295 lower 2 words, partial result (3) and the upper words of (2a) and
1296 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1297 calculated using non-widening multiplication.
1299 (1), however, needs to be calculated with an unsigned widening
1300 multiplication. If this operation is not directly supported we
1301 try using a signed widening multiplication and adjust the result.
1302 This adjustment works as follows:
1304 If both operands are positive then no adjustment is needed.
1306 If the operands have different signs, for example op0_low < 0 and
1307 op1_low >= 0, the instruction treats the most significant bit of
1308 op0_low as a sign bit instead of a bit with significance
1309 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1310 with 2**BITS_PER_WORD - op0_low, and two's complements the
1311 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1312 the result.
1314 Similarly, if both operands are negative, we need to add
1315 (op0_low + op1_low) * 2**BITS_PER_WORD.
1317 We use a trick to adjust quickly. We logically shift op0_low right
1318 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1319 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1320 logical shift exists, we do an arithmetic right shift and subtract
1321 the 0 or -1. */
1323 if (binoptab == smul_optab
1324 && class == MODE_INT
1325 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1326 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1327 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1328 && ((umul_widen_optab->handlers[(int) mode].insn_code
1329 != CODE_FOR_nothing)
1330 || (smul_widen_optab->handlers[(int) mode].insn_code
1331 != CODE_FOR_nothing)))
1333 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1334 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1335 rtx op0_high = operand_subword_force (op0, high, mode);
1336 rtx op0_low = operand_subword_force (op0, low, mode);
1337 rtx op1_high = operand_subword_force (op1, high, mode);
1338 rtx op1_low = operand_subword_force (op1, low, mode);
1339 rtx product = 0;
1340 rtx op0_xhigh = NULL_RTX;
1341 rtx op1_xhigh = NULL_RTX;
1343 /* If the target is the same as one of the inputs, don't use it. This
1344 prevents problems with the REG_EQUAL note. */
1345 if (target == op0 || target == op1
1346 || (target != 0 && GET_CODE (target) != REG))
1347 target = 0;
1349 /* Multiply the two lower words to get a double-word product.
1350 If unsigned widening multiplication is available, use that;
1351 otherwise use the signed form and compensate. */
1353 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1355 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1356 target, 1, OPTAB_DIRECT);
1358 /* If we didn't succeed, delete everything we did so far. */
1359 if (product == 0)
1360 delete_insns_since (last);
1361 else
1362 op0_xhigh = op0_high, op1_xhigh = op1_high;
1365 if (product == 0
1366 && smul_widen_optab->handlers[(int) mode].insn_code
1367 != CODE_FOR_nothing)
1369 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1370 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1371 target, 1, OPTAB_DIRECT);
1372 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1373 NULL_RTX, 1, next_methods);
1374 if (op0_xhigh)
1375 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1376 op0_xhigh, op0_xhigh, 0, next_methods);
1377 else
1379 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1380 NULL_RTX, 0, next_methods);
1381 if (op0_xhigh)
1382 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1383 op0_xhigh, op0_xhigh, 0,
1384 next_methods);
1387 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1388 NULL_RTX, 1, next_methods);
1389 if (op1_xhigh)
1390 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1391 op1_xhigh, op1_xhigh, 0, next_methods);
1392 else
1394 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1395 NULL_RTX, 0, next_methods);
1396 if (op1_xhigh)
1397 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1398 op1_xhigh, op1_xhigh, 0,
1399 next_methods);
1403 /* If we have been able to directly compute the product of the
1404 low-order words of the operands and perform any required adjustments
1405 of the operands, we proceed by trying two more multiplications
1406 and then computing the appropriate sum.
1408 We have checked above that the required addition is provided.
1409 Full-word addition will normally always succeed, especially if
1410 it is provided at all, so we don't worry about its failure. The
1411 multiplication may well fail, however, so we do handle that. */
1413 if (product && op0_xhigh && op1_xhigh)
1415 rtx product_high = operand_subword (product, high, 1, mode);
1416 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1417 NULL_RTX, 0, OPTAB_DIRECT);
1419 if (temp != 0)
1420 temp = expand_binop (word_mode, add_optab, temp, product_high,
1421 product_high, 0, next_methods);
1423 if (temp != 0 && temp != product_high)
1424 emit_move_insn (product_high, temp);
1426 if (temp != 0)
1427 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1428 NULL_RTX, 0, OPTAB_DIRECT);
1430 if (temp != 0)
1431 temp = expand_binop (word_mode, add_optab, temp,
1432 product_high, product_high,
1433 0, next_methods);
1435 if (temp != 0 && temp != product_high)
1436 emit_move_insn (product_high, temp);
1438 if (temp != 0)
1440 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1442 temp = emit_move_insn (product, product);
1443 set_unique_reg_note (temp,
1444 REG_EQUAL,
1445 gen_rtx_fmt_ee (MULT, mode,
1446 copy_rtx (op0),
1447 copy_rtx (op1)));
1450 return product;
1454 /* If we get here, we couldn't do it for some reason even though we
1455 originally thought we could. Delete anything we've emitted in
1456 trying to do it. */
1458 delete_insns_since (last);
1461 /* We need to open-code the complex type operations: '+, -, * and /' */
1463 /* At this point we allow operations between two similar complex
1464 numbers, and also if one of the operands is not a complex number
1465 but rather of MODE_FLOAT or MODE_INT. However, the caller
1466 must make sure that the MODE of the non-complex operand matches
1467 the SUBMODE of the complex operand. */
1469 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1471 rtx real0 = 0, imag0 = 0;
1472 rtx real1 = 0, imag1 = 0;
1473 rtx realr, imagr, res;
1474 rtx seq;
1475 rtx equiv_value;
1476 int ok = 0;
1478 /* Find the correct mode for the real and imaginary parts */
1479 enum machine_mode submode
1480 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1481 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1484 if (submode == BLKmode)
1485 abort ();
1487 if (! target)
1488 target = gen_reg_rtx (mode);
1490 start_sequence ();
1492 realr = gen_realpart (submode, target);
1493 imagr = gen_imagpart (submode, target);
1495 if (GET_MODE (op0) == mode)
1497 real0 = gen_realpart (submode, op0);
1498 imag0 = gen_imagpart (submode, op0);
1500 else
1501 real0 = op0;
1503 if (GET_MODE (op1) == mode)
1505 real1 = gen_realpart (submode, op1);
1506 imag1 = gen_imagpart (submode, op1);
1508 else
1509 real1 = op1;
1511 if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
1512 abort ();
1514 switch (binoptab->code)
1516 case PLUS:
1517 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1518 case MINUS:
1519 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1520 res = expand_binop (submode, binoptab, real0, real1,
1521 realr, unsignedp, methods);
1523 if (res == 0)
1524 break;
1525 else if (res != realr)
1526 emit_move_insn (realr, res);
1528 if (imag0 && imag1)
1529 res = expand_binop (submode, binoptab, imag0, imag1,
1530 imagr, unsignedp, methods);
1531 else if (imag0)
1532 res = imag0;
1533 else if (binoptab->code == MINUS)
1534 res = expand_unop (submode,
1535 binoptab == subv_optab ? negv_optab : neg_optab,
1536 imag1, imagr, unsignedp);
1537 else
1538 res = imag1;
1540 if (res == 0)
1541 break;
1542 else if (res != imagr)
1543 emit_move_insn (imagr, res);
1545 ok = 1;
1546 break;
1548 case MULT:
1549 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1551 if (imag0 && imag1)
1553 rtx temp1, temp2;
1555 /* Don't fetch these from memory more than once. */
1556 real0 = force_reg (submode, real0);
1557 real1 = force_reg (submode, real1);
1558 imag0 = force_reg (submode, imag0);
1559 imag1 = force_reg (submode, imag1);
1561 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1562 unsignedp, methods);
1564 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1565 unsignedp, methods);
1567 if (temp1 == 0 || temp2 == 0)
1568 break;
1570 res = (expand_binop
1571 (submode,
1572 binoptab == smulv_optab ? subv_optab : sub_optab,
1573 temp1, temp2, realr, unsignedp, methods));
1575 if (res == 0)
1576 break;
1577 else if (res != realr)
1578 emit_move_insn (realr, res);
1580 temp1 = expand_binop (submode, binoptab, real0, imag1,
1581 NULL_RTX, unsignedp, methods);
1583 temp2 = expand_binop (submode, binoptab, real1, imag0,
1584 NULL_RTX, unsignedp, methods);
1586 if (temp1 == 0 || temp2 == 0)
1587 break;
1589 res = (expand_binop
1590 (submode,
1591 binoptab == smulv_optab ? addv_optab : add_optab,
1592 temp1, temp2, imagr, unsignedp, methods));
1594 if (res == 0)
1595 break;
1596 else if (res != imagr)
1597 emit_move_insn (imagr, res);
1599 ok = 1;
1601 else
1603 /* Don't fetch these from memory more than once. */
1604 real0 = force_reg (submode, real0);
1605 real1 = force_reg (submode, real1);
1607 res = expand_binop (submode, binoptab, real0, real1,
1608 realr, unsignedp, methods);
1609 if (res == 0)
1610 break;
1611 else if (res != realr)
1612 emit_move_insn (realr, res);
1614 if (imag0 != 0)
1615 res = expand_binop (submode, binoptab,
1616 real1, imag0, imagr, unsignedp, methods);
1617 else
1618 res = expand_binop (submode, binoptab,
1619 real0, imag1, imagr, unsignedp, methods);
1621 if (res == 0)
1622 break;
1623 else if (res != imagr)
1624 emit_move_insn (imagr, res);
1626 ok = 1;
1628 break;
1630 case DIV:
1631 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1633 if (imag1 == 0)
1635 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1637 /* Don't fetch these from memory more than once. */
1638 real1 = force_reg (submode, real1);
1640 /* Simply divide the real and imaginary parts by `c' */
1641 if (class == MODE_COMPLEX_FLOAT)
1642 res = expand_binop (submode, binoptab, real0, real1,
1643 realr, unsignedp, methods);
1644 else
1645 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1646 real0, real1, realr, unsignedp);
1648 if (res == 0)
1649 break;
1650 else if (res != realr)
1651 emit_move_insn (realr, res);
1653 if (class == MODE_COMPLEX_FLOAT)
1654 res = expand_binop (submode, binoptab, imag0, real1,
1655 imagr, unsignedp, methods);
1656 else
1657 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1658 imag0, real1, imagr, unsignedp);
1660 if (res == 0)
1661 break;
1662 else if (res != imagr)
1663 emit_move_insn (imagr, res);
1665 ok = 1;
1667 else
1669 switch (flag_complex_divide_method)
1671 case 0:
1672 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1673 realr, imagr, submode,
1674 unsignedp, methods,
1675 class, binoptab);
1676 break;
1678 case 1:
1679 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1680 realr, imagr, submode,
1681 unsignedp, methods,
1682 class, binoptab);
1683 break;
1685 default:
1686 abort ();
1689 break;
1691 default:
1692 abort ();
1695 seq = get_insns ();
1696 end_sequence ();
1698 if (ok)
1700 if (binoptab->code != UNKNOWN)
1701 equiv_value
1702 = gen_rtx_fmt_ee (binoptab->code, mode,
1703 copy_rtx (op0), copy_rtx (op1));
1704 else
1705 equiv_value = 0;
1707 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1709 return target;
1713 /* It can't be open-coded in this mode.
1714 Use a library call if one is available and caller says that's ok. */
1716 if (binoptab->handlers[(int) mode].libfunc
1717 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1719 rtx insns;
1720 rtx op1x = op1;
1721 enum machine_mode op1_mode = mode;
1722 rtx value;
1724 start_sequence ();
1726 if (shift_op)
1728 op1_mode = word_mode;
1729 /* Specify unsigned here,
1730 since negative shift counts are meaningless. */
1731 op1x = convert_to_mode (word_mode, op1, 1);
1734 if (GET_MODE (op0) != VOIDmode
1735 && GET_MODE (op0) != mode)
1736 op0 = convert_to_mode (mode, op0, unsignedp);
1738 /* Pass 1 for NO_QUEUE so we don't lose any increments
1739 if the libcall is cse'd or moved. */
1740 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1741 NULL_RTX, LCT_CONST, mode, 2,
1742 op0, mode, op1x, op1_mode);
1744 insns = get_insns ();
1745 end_sequence ();
1747 target = gen_reg_rtx (mode);
1748 emit_libcall_block (insns, target, value,
1749 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1751 return target;
1754 delete_insns_since (last);
1756 /* It can't be done in this mode. Can we do it in a wider mode? */
1758 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1759 || methods == OPTAB_MUST_WIDEN))
1761 /* Caller says, don't even try. */
1762 delete_insns_since (entry_last);
1763 return 0;
1766 /* Compute the value of METHODS to pass to recursive calls.
1767 Don't allow widening to be tried recursively. */
1769 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1771 /* Look for a wider mode of the same class for which it appears we can do
1772 the operation. */
1774 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1776 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1777 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1779 if ((binoptab->handlers[(int) wider_mode].insn_code
1780 != CODE_FOR_nothing)
1781 || (methods == OPTAB_LIB
1782 && binoptab->handlers[(int) wider_mode].libfunc))
1784 rtx xop0 = op0, xop1 = op1;
1785 int no_extend = 0;
1787 /* For certain integer operations, we need not actually extend
1788 the narrow operands, as long as we will truncate
1789 the results to the same narrowness. */
1791 if ((binoptab == ior_optab || binoptab == and_optab
1792 || binoptab == xor_optab
1793 || binoptab == add_optab || binoptab == sub_optab
1794 || binoptab == smul_optab || binoptab == ashl_optab)
1795 && class == MODE_INT)
1796 no_extend = 1;
1798 xop0 = widen_operand (xop0, wider_mode, mode,
1799 unsignedp, no_extend);
1801 /* The second operand of a shift must always be extended. */
1802 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1803 no_extend && binoptab != ashl_optab);
1805 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1806 unsignedp, methods);
1807 if (temp)
1809 if (class != MODE_INT)
1811 if (target == 0)
1812 target = gen_reg_rtx (mode);
1813 convert_move (target, temp, 0);
1814 return target;
1816 else
1817 return gen_lowpart (mode, temp);
1819 else
1820 delete_insns_since (last);
1825 delete_insns_since (entry_last);
1826 return 0;
1829 /* Expand a binary operator which has both signed and unsigned forms.
1830 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1831 signed operations.
1833 If we widen unsigned operands, we may use a signed wider operation instead
1834 of an unsigned wider operation, since the result would be the same. */
1837 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
1838 enum machine_mode mode;
1839 optab uoptab, soptab;
1840 rtx op0, op1, target;
1841 int unsignedp;
1842 enum optab_methods methods;
1844 register rtx temp;
1845 optab direct_optab = unsignedp ? uoptab : soptab;
1846 struct optab wide_soptab;
1848 /* Do it without widening, if possible. */
1849 temp = expand_binop (mode, direct_optab, op0, op1, target,
1850 unsignedp, OPTAB_DIRECT);
1851 if (temp || methods == OPTAB_DIRECT)
1852 return temp;
1854 /* Try widening to a signed int. Make a fake signed optab that
1855 hides any signed insn for direct use. */
1856 wide_soptab = *soptab;
1857 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
1858 wide_soptab.handlers[(int) mode].libfunc = 0;
1860 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1861 unsignedp, OPTAB_WIDEN);
1863 /* For unsigned operands, try widening to an unsigned int. */
1864 if (temp == 0 && unsignedp)
1865 temp = expand_binop (mode, uoptab, op0, op1, target,
1866 unsignedp, OPTAB_WIDEN);
1867 if (temp || methods == OPTAB_WIDEN)
1868 return temp;
1870 /* Use the right width lib call if that exists. */
1871 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
1872 if (temp || methods == OPTAB_LIB)
1873 return temp;
1875 /* Must widen and use a lib call, use either signed or unsigned. */
1876 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1877 unsignedp, methods);
1878 if (temp != 0)
1879 return temp;
1880 if (unsignedp)
1881 return expand_binop (mode, uoptab, op0, op1, target,
1882 unsignedp, methods);
1883 return 0;
1886 /* Generate code to perform an operation specified by BINOPTAB
1887 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1888 We assume that the order of the operands for the instruction
1889 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1890 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1892 Either TARG0 or TARG1 may be zero, but what that means is that
1893 the result is not actually wanted. We will generate it into
1894 a dummy pseudo-reg and discard it. They may not both be zero.
1896 Returns 1 if this operation can be performed; 0 if not. */
1899 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
1900 optab binoptab;
1901 rtx op0, op1;
1902 rtx targ0, targ1;
1903 int unsignedp;
1905 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1906 enum mode_class class;
1907 enum machine_mode wider_mode;
1908 rtx entry_last = get_last_insn ();
1909 rtx last;
1911 class = GET_MODE_CLASS (mode);
1913 op0 = protect_from_queue (op0, 0);
1914 op1 = protect_from_queue (op1, 0);
1916 if (flag_force_mem)
1918 op0 = force_not_mem (op0);
1919 op1 = force_not_mem (op1);
1922 /* If we are inside an appropriately-short loop and one operand is an
1923 expensive constant, force it into a register. */
1924 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
1925 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
1926 op0 = force_reg (mode, op0);
1928 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
1929 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
1930 op1 = force_reg (mode, op1);
1932 if (targ0)
1933 targ0 = protect_from_queue (targ0, 1);
1934 else
1935 targ0 = gen_reg_rtx (mode);
1936 if (targ1)
1937 targ1 = protect_from_queue (targ1, 1);
1938 else
1939 targ1 = gen_reg_rtx (mode);
1941 /* Record where to go back to if we fail. */
1942 last = get_last_insn ();
1944 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1946 int icode = (int) binoptab->handlers[(int) mode].insn_code;
1947 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1948 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1949 rtx pat;
1950 rtx xop0 = op0, xop1 = op1;
1952 /* In case this insn wants input operands in modes different from the
1953 result, convert the operands. */
1954 if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
1955 xop0 = convert_to_mode (mode0, xop0, unsignedp);
1957 if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
1958 xop1 = convert_to_mode (mode1, xop1, unsignedp);
1960 /* Now, if insn doesn't accept these operands, put them into pseudos. */
1961 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
1962 xop0 = copy_to_mode_reg (mode0, xop0);
1964 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
1965 xop1 = copy_to_mode_reg (mode1, xop1);
1967 /* We could handle this, but we should always be called with a pseudo
1968 for our targets and all insns should take them as outputs. */
1969 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
1970 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
1971 abort ();
1973 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
1974 if (pat)
1976 emit_insn (pat);
1977 return 1;
1979 else
1980 delete_insns_since (last);
1983 /* It can't be done in this mode. Can we do it in a wider mode? */
1985 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1987 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1988 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1990 if (binoptab->handlers[(int) wider_mode].insn_code
1991 != CODE_FOR_nothing)
1993 register rtx t0 = gen_reg_rtx (wider_mode);
1994 register rtx t1 = gen_reg_rtx (wider_mode);
1995 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
1996 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
1998 if (expand_twoval_binop (binoptab, cop0, cop1,
1999 t0, t1, unsignedp))
2001 convert_move (targ0, t0, unsignedp);
2002 convert_move (targ1, t1, unsignedp);
2003 return 1;
2005 else
2006 delete_insns_since (last);
2011 delete_insns_since (entry_last);
2012 return 0;
2015 /* Generate code to perform an operation specified by UNOPTAB
2016 on operand OP0, with result having machine-mode MODE.
2018 UNSIGNEDP is for the case where we have to widen the operands
2019 to perform the operation. It says to use zero-extension.
2021 If TARGET is nonzero, the value
2022 is generated there, if it is convenient to do so.
2023 In all cases an rtx is returned for the locus of the value;
2024 this may or may not be TARGET. */
2027 expand_unop (mode, unoptab, op0, target, unsignedp)
2028 enum machine_mode mode;
2029 optab unoptab;
2030 rtx op0;
2031 rtx target;
2032 int unsignedp;
2034 enum mode_class class;
2035 enum machine_mode wider_mode;
2036 register rtx temp;
2037 rtx last = get_last_insn ();
2038 rtx pat;
2040 class = GET_MODE_CLASS (mode);
2042 op0 = protect_from_queue (op0, 0);
2044 if (flag_force_mem)
2046 op0 = force_not_mem (op0);
2049 if (target)
2050 target = protect_from_queue (target, 1);
2052 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2054 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2055 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2056 rtx xop0 = op0;
2058 if (target)
2059 temp = target;
2060 else
2061 temp = gen_reg_rtx (mode);
2063 if (GET_MODE (xop0) != VOIDmode
2064 && GET_MODE (xop0) != mode0)
2065 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2067 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2069 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2070 xop0 = copy_to_mode_reg (mode0, xop0);
2072 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2073 temp = gen_reg_rtx (mode);
2075 pat = GEN_FCN (icode) (temp, xop0);
2076 if (pat)
2078 if (GET_CODE (pat) == SEQUENCE
2079 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2081 delete_insns_since (last);
2082 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2085 emit_insn (pat);
2087 return temp;
2089 else
2090 delete_insns_since (last);
2093 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2095 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2096 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2097 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2099 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2101 rtx xop0 = op0;
2103 /* For certain operations, we need not actually extend
2104 the narrow operand, as long as we will truncate the
2105 results to the same narrowness. */
2107 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2108 (unoptab == neg_optab
2109 || unoptab == one_cmpl_optab)
2110 && class == MODE_INT);
2112 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2113 unsignedp);
2115 if (temp)
2117 if (class != MODE_INT)
2119 if (target == 0)
2120 target = gen_reg_rtx (mode);
2121 convert_move (target, temp, 0);
2122 return target;
2124 else
2125 return gen_lowpart (mode, temp);
2127 else
2128 delete_insns_since (last);
2132 /* These can be done a word at a time. */
2133 if (unoptab == one_cmpl_optab
2134 && class == MODE_INT
2135 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2136 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2138 unsigned int i;
2139 rtx insns;
2141 if (target == 0 || target == op0)
2142 target = gen_reg_rtx (mode);
2144 start_sequence ();
2146 /* Do the actual arithmetic. */
2147 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2149 rtx target_piece = operand_subword (target, i, 1, mode);
2150 rtx x = expand_unop (word_mode, unoptab,
2151 operand_subword_force (op0, i, mode),
2152 target_piece, unsignedp);
2153 if (target_piece != x)
2154 emit_move_insn (target_piece, x);
2157 insns = get_insns ();
2158 end_sequence ();
2160 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2161 gen_rtx_fmt_e (unoptab->code, mode,
2162 copy_rtx (op0)));
2163 return target;
2166 /* Open-code the complex negation operation. */
2167 else if (unoptab->code == NEG
2168 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2170 rtx target_piece;
2171 rtx x;
2172 rtx seq;
2174 /* Find the correct mode for the real and imaginary parts */
2175 enum machine_mode submode
2176 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2177 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2180 if (submode == BLKmode)
2181 abort ();
2183 if (target == 0)
2184 target = gen_reg_rtx (mode);
2186 start_sequence ();
2188 target_piece = gen_imagpart (submode, target);
2189 x = expand_unop (submode, unoptab,
2190 gen_imagpart (submode, op0),
2191 target_piece, unsignedp);
2192 if (target_piece != x)
2193 emit_move_insn (target_piece, x);
2195 target_piece = gen_realpart (submode, target);
2196 x = expand_unop (submode, unoptab,
2197 gen_realpart (submode, op0),
2198 target_piece, unsignedp);
2199 if (target_piece != x)
2200 emit_move_insn (target_piece, x);
2202 seq = get_insns ();
2203 end_sequence ();
2205 emit_no_conflict_block (seq, target, op0, 0,
2206 gen_rtx_fmt_e (unoptab->code, mode,
2207 copy_rtx (op0)));
2208 return target;
2211 /* Now try a library call in this mode. */
2212 if (unoptab->handlers[(int) mode].libfunc)
2214 rtx insns;
2215 rtx value;
2217 start_sequence ();
2219 /* Pass 1 for NO_QUEUE so we don't lose any increments
2220 if the libcall is cse'd or moved. */
2221 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2222 NULL_RTX, LCT_CONST, mode, 1, op0, mode);
2223 insns = get_insns ();
2224 end_sequence ();
2226 target = gen_reg_rtx (mode);
2227 emit_libcall_block (insns, target, value,
2228 gen_rtx_fmt_e (unoptab->code, mode, op0));
2230 return target;
2233 /* It can't be done in this mode. Can we do it in a wider mode? */
2235 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2237 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2238 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2240 if ((unoptab->handlers[(int) wider_mode].insn_code
2241 != CODE_FOR_nothing)
2242 || unoptab->handlers[(int) wider_mode].libfunc)
2244 rtx xop0 = op0;
2246 /* For certain operations, we need not actually extend
2247 the narrow operand, as long as we will truncate the
2248 results to the same narrowness. */
2250 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2251 (unoptab == neg_optab
2252 || unoptab == one_cmpl_optab)
2253 && class == MODE_INT);
2255 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2256 unsignedp);
2258 if (temp)
2260 if (class != MODE_INT)
2262 if (target == 0)
2263 target = gen_reg_rtx (mode);
2264 convert_move (target, temp, 0);
2265 return target;
2267 else
2268 return gen_lowpart (mode, temp);
2270 else
2271 delete_insns_since (last);
2276 /* If there is no negate operation, try doing a subtract from zero.
2277 The US Software GOFAST library needs this. */
2278 if (unoptab->code == NEG)
2280 rtx temp;
2281 temp = expand_binop (mode,
2282 unoptab == negv_optab ? subv_optab : sub_optab,
2283 CONST0_RTX (mode), op0,
2284 target, unsignedp, OPTAB_LIB_WIDEN);
2285 if (temp)
2286 return temp;
2289 return 0;
2292 /* Emit code to compute the absolute value of OP0, with result to
2293 TARGET if convenient. (TARGET may be 0.) The return value says
2294 where the result actually is to be found.
2296 MODE is the mode of the operand; the mode of the result is
2297 different but can be deduced from MODE.
2302 expand_abs (mode, op0, target, result_unsignedp, safe)
2303 enum machine_mode mode;
2304 rtx op0;
2305 rtx target;
2306 int result_unsignedp;
2307 int safe;
2309 rtx temp, op1;
2311 if (! flag_trapv)
2312 result_unsignedp = 1;
2314 /* First try to do it with a special abs instruction. */
2315 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2316 op0, target, 0);
2317 if (temp != 0)
2318 return temp;
2320 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2321 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2323 rtx last = get_last_insn ();
2325 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2326 if (temp != 0)
2327 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2328 OPTAB_WIDEN);
2330 if (temp != 0)
2331 return temp;
2333 delete_insns_since (last);
2336 /* If this machine has expensive jumps, we can do integer absolute
2337 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2338 where W is the width of MODE. */
2340 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2342 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2343 size_int (GET_MODE_BITSIZE (mode) - 1),
2344 NULL_RTX, 0);
2346 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2347 OPTAB_LIB_WIDEN);
2348 if (temp != 0)
2349 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2350 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2352 if (temp != 0)
2353 return temp;
2356 /* If that does not win, use conditional jump and negate. */
2358 /* It is safe to use the target if it is the same
2359 as the source if this is also a pseudo register */
2360 if (op0 == target && GET_CODE (op0) == REG
2361 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2362 safe = 1;
2364 op1 = gen_label_rtx ();
2365 if (target == 0 || ! safe
2366 || GET_MODE (target) != mode
2367 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2368 || (GET_CODE (target) == REG
2369 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2370 target = gen_reg_rtx (mode);
2372 emit_move_insn (target, op0);
2373 NO_DEFER_POP;
2375 /* If this mode is an integer too wide to compare properly,
2376 compare word by word. Rely on CSE to optimize constant cases. */
2377 if (GET_MODE_CLASS (mode) == MODE_INT
2378 && ! can_compare_p (GE, mode, ccp_jump))
2379 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2380 NULL_RTX, op1);
2381 else
2382 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2383 NULL_RTX, 0, NULL_RTX, op1);
2385 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2386 target, target, 0);
2387 if (op0 != target)
2388 emit_move_insn (target, op0);
2389 emit_label (op1);
2390 OK_DEFER_POP;
2391 return target;
2394 /* Emit code to compute the absolute value of OP0, with result to
2395 TARGET if convenient. (TARGET may be 0.) The return value says
2396 where the result actually is to be found.
2398 MODE is the mode of the operand; the mode of the result is
2399 different but can be deduced from MODE.
2401 UNSIGNEDP is relevant for complex integer modes. */
2404 expand_complex_abs (mode, op0, target, unsignedp)
2405 enum machine_mode mode;
2406 rtx op0;
2407 rtx target;
2408 int unsignedp;
2410 enum mode_class class = GET_MODE_CLASS (mode);
2411 enum machine_mode wider_mode;
2412 register rtx temp;
2413 rtx entry_last = get_last_insn ();
2414 rtx last;
2415 rtx pat;
2416 optab this_abs_optab;
2418 /* Find the correct mode for the real and imaginary parts. */
2419 enum machine_mode submode
2420 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2421 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2424 if (submode == BLKmode)
2425 abort ();
2427 op0 = protect_from_queue (op0, 0);
2429 if (flag_force_mem)
2431 op0 = force_not_mem (op0);
2434 last = get_last_insn ();
2436 if (target)
2437 target = protect_from_queue (target, 1);
2439 this_abs_optab = ! unsignedp && flag_trapv
2440 && (GET_MODE_CLASS(mode) == MODE_INT)
2441 ? absv_optab : abs_optab;
2443 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2445 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
2446 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2447 rtx xop0 = op0;
2449 if (target)
2450 temp = target;
2451 else
2452 temp = gen_reg_rtx (submode);
2454 if (GET_MODE (xop0) != VOIDmode
2455 && GET_MODE (xop0) != mode0)
2456 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2458 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2460 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2461 xop0 = copy_to_mode_reg (mode0, xop0);
2463 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2464 temp = gen_reg_rtx (submode);
2466 pat = GEN_FCN (icode) (temp, xop0);
2467 if (pat)
2469 if (GET_CODE (pat) == SEQUENCE
2470 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2471 NULL_RTX))
2473 delete_insns_since (last);
2474 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2475 unsignedp);
2478 emit_insn (pat);
2480 return temp;
2482 else
2483 delete_insns_since (last);
2486 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2488 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2489 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2491 if (this_abs_optab->handlers[(int) wider_mode].insn_code
2492 != CODE_FOR_nothing)
2494 rtx xop0 = op0;
2496 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2497 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2499 if (temp)
2501 if (class != MODE_COMPLEX_INT)
2503 if (target == 0)
2504 target = gen_reg_rtx (submode);
2505 convert_move (target, temp, 0);
2506 return target;
2508 else
2509 return gen_lowpart (submode, temp);
2511 else
2512 delete_insns_since (last);
2516 /* Open-code the complex absolute-value operation
2517 if we can open-code sqrt. Otherwise it's not worth while. */
2518 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
2519 && ! flag_trapv)
2521 rtx real, imag, total;
2523 real = gen_realpart (submode, op0);
2524 imag = gen_imagpart (submode, op0);
2526 /* Square both parts. */
2527 real = expand_mult (submode, real, real, NULL_RTX, 0);
2528 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2530 /* Sum the parts. */
2531 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2532 0, OPTAB_LIB_WIDEN);
2534 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2535 target = expand_unop (submode, sqrt_optab, total, target, 0);
2536 if (target == 0)
2537 delete_insns_since (last);
2538 else
2539 return target;
2542 /* Now try a library call in this mode. */
2543 if (this_abs_optab->handlers[(int) mode].libfunc)
2545 rtx insns;
2546 rtx value;
2548 start_sequence ();
2550 /* Pass 1 for NO_QUEUE so we don't lose any increments
2551 if the libcall is cse'd or moved. */
2552 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2553 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
2554 insns = get_insns ();
2555 end_sequence ();
2557 target = gen_reg_rtx (submode);
2558 emit_libcall_block (insns, target, value,
2559 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
2561 return target;
2564 /* It can't be done in this mode. Can we do it in a wider mode? */
2566 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2567 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2569 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
2570 != CODE_FOR_nothing)
2571 || this_abs_optab->handlers[(int) wider_mode].libfunc)
2573 rtx xop0 = op0;
2575 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2577 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2579 if (temp)
2581 if (class != MODE_COMPLEX_INT)
2583 if (target == 0)
2584 target = gen_reg_rtx (submode);
2585 convert_move (target, temp, 0);
2586 return target;
2588 else
2589 return gen_lowpart (submode, temp);
2591 else
2592 delete_insns_since (last);
2596 delete_insns_since (entry_last);
2597 return 0;
2600 /* Generate an instruction whose insn-code is INSN_CODE,
2601 with two operands: an output TARGET and an input OP0.
2602 TARGET *must* be nonzero, and the output is always stored there.
2603 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2604 the value that is stored into TARGET. */
2606 void
2607 emit_unop_insn (icode, target, op0, code)
2608 int icode;
2609 rtx target;
2610 rtx op0;
2611 enum rtx_code code;
2613 register rtx temp;
2614 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2615 rtx pat;
2617 temp = target = protect_from_queue (target, 1);
2619 op0 = protect_from_queue (op0, 0);
2621 /* Sign and zero extension from memory is often done specially on
2622 RISC machines, so forcing into a register here can pessimize
2623 code. */
2624 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
2625 op0 = force_not_mem (op0);
2627 /* Now, if insn does not accept our operands, put them into pseudos. */
2629 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
2630 op0 = copy_to_mode_reg (mode0, op0);
2632 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
2633 || (flag_force_mem && GET_CODE (temp) == MEM))
2634 temp = gen_reg_rtx (GET_MODE (temp));
2636 pat = GEN_FCN (icode) (temp, op0);
2638 if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
2639 add_equal_note (pat, temp, code, op0, NULL_RTX);
2641 emit_insn (pat);
2643 if (temp != target)
2644 emit_move_insn (target, temp);
2647 /* Emit code to perform a series of operations on a multi-word quantity, one
2648 word at a time.
2650 Such a block is preceded by a CLOBBER of the output, consists of multiple
2651 insns, each setting one word of the output, and followed by a SET copying
2652 the output to itself.
2654 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2655 note indicating that it doesn't conflict with the (also multi-word)
2656 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2657 notes.
2659 INSNS is a block of code generated to perform the operation, not including
2660 the CLOBBER and final copy. All insns that compute intermediate values
2661 are first emitted, followed by the block as described above.
2663 TARGET, OP0, and OP1 are the output and inputs of the operations,
2664 respectively. OP1 may be zero for a unary operation.
2666 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2667 on the last insn.
2669 If TARGET is not a register, INSNS is simply emitted with no special
2670 processing. Likewise if anything in INSNS is not an INSN or if
2671 there is a libcall block inside INSNS.
2673 The final insn emitted is returned. */
2676 emit_no_conflict_block (insns, target, op0, op1, equiv)
2677 rtx insns;
2678 rtx target;
2679 rtx op0, op1;
2680 rtx equiv;
2682 rtx prev, next, first, last, insn;
2684 if (GET_CODE (target) != REG || reload_in_progress)
2685 return emit_insns (insns);
2686 else
2687 for (insn = insns; insn; insn = NEXT_INSN (insn))
2688 if (GET_CODE (insn) != INSN
2689 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2690 return emit_insns (insns);
2692 /* First emit all insns that do not store into words of the output and remove
2693 these from the list. */
2694 for (insn = insns; insn; insn = next)
2696 rtx set = 0;
2697 int i;
2699 next = NEXT_INSN (insn);
2701 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
2702 || GET_CODE (PATTERN (insn)) == CLOBBER)
2703 set = PATTERN (insn);
2704 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2706 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2707 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
2709 set = XVECEXP (PATTERN (insn), 0, i);
2710 break;
2714 if (set == 0)
2715 abort ();
2717 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
2719 if (PREV_INSN (insn))
2720 NEXT_INSN (PREV_INSN (insn)) = next;
2721 else
2722 insns = next;
2724 if (next)
2725 PREV_INSN (next) = PREV_INSN (insn);
2727 add_insn (insn);
2731 prev = get_last_insn ();
2733 /* Now write the CLOBBER of the output, followed by the setting of each
2734 of the words, followed by the final copy. */
2735 if (target != op0 && target != op1)
2736 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
2738 for (insn = insns; insn; insn = next)
2740 next = NEXT_INSN (insn);
2741 add_insn (insn);
2743 if (op1 && GET_CODE (op1) == REG)
2744 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
2745 REG_NOTES (insn));
2747 if (op0 && GET_CODE (op0) == REG)
2748 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
2749 REG_NOTES (insn));
2752 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2753 != CODE_FOR_nothing)
2755 last = emit_move_insn (target, target);
2756 if (equiv)
2757 set_unique_reg_note (last, REG_EQUAL, equiv);
2759 else
2761 last = get_last_insn ();
2763 /* Remove any existing REG_EQUAL note from "last", or else it will
2764 be mistaken for a note referring to the full contents of the
2765 alleged libcall value when found together with the REG_RETVAL
2766 note added below. An existing note can come from an insn
2767 expansion at "last". */
2768 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2771 if (prev == 0)
2772 first = get_insns ();
2773 else
2774 first = NEXT_INSN (prev);
2776 /* Encapsulate the block so it gets manipulated as a unit. */
2777 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2778 REG_NOTES (first));
2779 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2781 return last;
2784 /* Emit code to make a call to a constant function or a library call.
2786 INSNS is a list containing all insns emitted in the call.
2787 These insns leave the result in RESULT. Our block is to copy RESULT
2788 to TARGET, which is logically equivalent to EQUIV.
2790 We first emit any insns that set a pseudo on the assumption that these are
2791 loading constants into registers; doing so allows them to be safely cse'ed
2792 between blocks. Then we emit all the other insns in the block, followed by
2793 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
2794 note with an operand of EQUIV.
2796 Moving assignments to pseudos outside of the block is done to improve
2797 the generated code, but is not required to generate correct code,
2798 hence being unable to move an assignment is not grounds for not making
2799 a libcall block. There are two reasons why it is safe to leave these
2800 insns inside the block: First, we know that these pseudos cannot be
2801 used in generated RTL outside the block since they are created for
2802 temporary purposes within the block. Second, CSE will not record the
2803 values of anything set inside a libcall block, so we know they must
2804 be dead at the end of the block.
2806 Except for the first group of insns (the ones setting pseudos), the
2807 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
2809 void
2810 emit_libcall_block (insns, target, result, equiv)
2811 rtx insns;
2812 rtx target;
2813 rtx result;
2814 rtx equiv;
2816 rtx final_dest = target;
2817 rtx prev, next, first, last, insn;
2819 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
2820 into a MEM later. Protect the libcall block from this change. */
2821 if (! REG_P (target) || REG_USERVAR_P (target))
2822 target = gen_reg_rtx (GET_MODE (target));
2824 /* If we're using non-call exceptions, a libcall corresponding to an
2825 operation that may trap may also trap. */
2826 if (flag_non_call_exceptions && may_trap_p (equiv))
2828 for (insn = insns; insn; insn = NEXT_INSN (insn))
2829 if (GET_CODE (insn) == CALL_INSN)
2831 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2833 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
2834 remove_note (insn, note);
2837 else
2838 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
2839 reg note to indicate that this call cannot throw or execute a nonlocal
2840 goto (unless there is already a REG_EH_REGION note, in which case
2841 we update it). */
2842 for (insn = insns; insn; insn = NEXT_INSN (insn))
2843 if (GET_CODE (insn) == CALL_INSN)
2845 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2847 if (note != 0)
2848 XEXP (note, 0) = GEN_INT (-1);
2849 else
2850 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
2851 REG_NOTES (insn));
2854 /* First emit all insns that set pseudos. Remove them from the list as
2855 we go. Avoid insns that set pseudos which were referenced in previous
2856 insns. These can be generated by move_by_pieces, for example,
2857 to update an address. Similarly, avoid insns that reference things
2858 set in previous insns. */
2860 for (insn = insns; insn; insn = next)
2862 rtx set = single_set (insn);
2864 next = NEXT_INSN (insn);
2866 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
2867 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2868 && (insn == insns
2869 || ((! INSN_P(insns)
2870 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
2871 && ! reg_used_between_p (SET_DEST (set), insns, insn)
2872 && ! modified_in_p (SET_SRC (set), insns)
2873 && ! modified_between_p (SET_SRC (set), insns, insn))))
2875 if (PREV_INSN (insn))
2876 NEXT_INSN (PREV_INSN (insn)) = next;
2877 else
2878 insns = next;
2880 if (next)
2881 PREV_INSN (next) = PREV_INSN (insn);
2883 add_insn (insn);
2887 prev = get_last_insn ();
2889 /* Write the remaining insns followed by the final copy. */
2891 for (insn = insns; insn; insn = next)
2893 next = NEXT_INSN (insn);
2895 add_insn (insn);
2898 last = emit_move_insn (target, result);
2899 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2900 != CODE_FOR_nothing)
2901 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
2902 else
2904 /* Remove any existing REG_EQUAL note from "last", or else it will
2905 be mistaken for a note referring to the full contents of the
2906 libcall value when found together with the REG_RETVAL note added
2907 below. An existing note can come from an insn expansion at
2908 "last". */
2909 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2912 if (final_dest != target)
2913 emit_move_insn (final_dest, target);
2915 if (prev == 0)
2916 first = get_insns ();
2917 else
2918 first = NEXT_INSN (prev);
2920 /* Encapsulate the block so it gets manipulated as a unit. */
2921 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2922 REG_NOTES (first));
2923 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2926 /* Generate code to store zero in X. */
2928 void
2929 emit_clr_insn (x)
2930 rtx x;
2932 emit_move_insn (x, const0_rtx);
2935 /* Generate code to store 1 in X
2936 assuming it contains zero beforehand. */
2938 void
2939 emit_0_to_1_insn (x)
2940 rtx x;
2942 emit_move_insn (x, const1_rtx);
2945 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
2946 PURPOSE describes how this comparison will be used. CODE is the rtx
2947 comparison code we will be using.
2949 ??? Actually, CODE is slightly weaker than that. A target is still
2950 required to implement all of the normal bcc operations, but not
2951 required to implement all (or any) of the unordered bcc operations. */
2954 can_compare_p (code, mode, purpose)
2955 enum rtx_code code;
2956 enum machine_mode mode;
2957 enum can_compare_purpose purpose;
2961 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2963 if (purpose == ccp_jump)
2964 return bcc_gen_fctn[(int)code] != NULL;
2965 else if (purpose == ccp_store_flag)
2966 return setcc_gen_code[(int)code] != CODE_FOR_nothing;
2967 else
2968 /* There's only one cmov entry point, and it's allowed to fail. */
2969 return 1;
2971 if (purpose == ccp_jump
2972 && cbranch_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2973 return 1;
2974 if (purpose == ccp_cmov
2975 && cmov_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2976 return 1;
2977 if (purpose == ccp_store_flag
2978 && cstore_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2979 return 1;
2981 mode = GET_MODE_WIDER_MODE (mode);
2983 while (mode != VOIDmode);
2985 return 0;
2988 /* This function is called when we are going to emit a compare instruction that
2989 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
2991 *PMODE is the mode of the inputs (in case they are const_int).
2992 *PUNSIGNEDP nonzero says that the operands are unsigned;
2993 this matters if they need to be widened.
2995 If they have mode BLKmode, then SIZE specifies the size of both operands,
2996 and ALIGN specifies the known shared alignment of the operands.
2998 This function performs all the setup necessary so that the caller only has
2999 to emit a single comparison insn. This setup can involve doing a BLKmode
3000 comparison or emitting a library call to perform the comparison if no insn
3001 is available to handle it.
3002 The values which are passed in through pointers can be modified; the caller
3003 should perform the comparison on the modified values. */
3005 void
3006 prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, align,
3007 purpose)
3008 rtx *px, *py;
3009 enum rtx_code *pcomparison;
3010 rtx size;
3011 enum machine_mode *pmode;
3012 int *punsignedp;
3013 int align ATTRIBUTE_UNUSED;
3014 enum can_compare_purpose purpose;
3016 enum machine_mode mode = *pmode;
3017 rtx x = *px, y = *py;
3018 int unsignedp = *punsignedp;
3019 enum mode_class class;
3020 rtx opalign ATTRIBUTE_UNUSED = GEN_INT (align / BITS_PER_UNIT);;
3022 class = GET_MODE_CLASS (mode);
3024 /* They could both be VOIDmode if both args are immediate constants,
3025 but we should fold that at an earlier stage.
3026 With no special code here, this will call abort,
3027 reminding the programmer to implement such folding. */
3029 if (mode != BLKmode && flag_force_mem)
3031 x = force_not_mem (x);
3032 y = force_not_mem (y);
3035 /* If we are inside an appropriately-short loop and one operand is an
3036 expensive constant, force it into a register. */
3037 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3038 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3039 x = force_reg (mode, x);
3041 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3042 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3043 y = force_reg (mode, y);
3045 #ifdef HAVE_cc0
3046 /* Abort if we have a non-canonical comparison. The RTL documentation
3047 states that canonical comparisons are required only for targets which
3048 have cc0. */
3049 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3050 abort();
3051 #endif
3053 /* Don't let both operands fail to indicate the mode. */
3054 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3055 x = force_reg (mode, x);
3057 /* Handle all BLKmode compares. */
3059 if (mode == BLKmode)
3061 rtx result;
3062 enum machine_mode result_mode;
3064 emit_queue ();
3065 x = protect_from_queue (x, 0);
3066 y = protect_from_queue (y, 0);
3068 if (size == 0)
3069 abort ();
3070 #ifdef HAVE_cmpstrqi
3071 if (HAVE_cmpstrqi
3072 && GET_CODE (size) == CONST_INT
3073 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3075 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
3076 result = gen_reg_rtx (result_mode);
3077 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
3079 else
3080 #endif
3081 #ifdef HAVE_cmpstrhi
3082 if (HAVE_cmpstrhi
3083 && GET_CODE (size) == CONST_INT
3084 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3086 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
3087 result = gen_reg_rtx (result_mode);
3088 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
3090 else
3091 #endif
3092 #ifdef HAVE_cmpstrsi
3093 if (HAVE_cmpstrsi)
3095 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
3096 result = gen_reg_rtx (result_mode);
3097 size = protect_from_queue (size, 0);
3098 emit_insn (gen_cmpstrsi (result, x, y,
3099 convert_to_mode (SImode, size, 1),
3100 opalign));
3102 else
3103 #endif
3105 #ifdef TARGET_MEM_FUNCTIONS
3106 emit_library_call (memcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3107 TYPE_MODE (integer_type_node), 3,
3108 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3109 convert_to_mode (TYPE_MODE (sizetype), size,
3110 TREE_UNSIGNED (sizetype)),
3111 TYPE_MODE (sizetype));
3112 #else
3113 emit_library_call (bcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3114 TYPE_MODE (integer_type_node), 3,
3115 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3116 convert_to_mode (TYPE_MODE (integer_type_node),
3117 size,
3118 TREE_UNSIGNED (integer_type_node)),
3119 TYPE_MODE (integer_type_node));
3120 #endif
3122 /* Immediately move the result of the libcall into a pseudo
3123 register so reload doesn't clobber the value if it needs
3124 the return register for a spill reg. */
3125 result = gen_reg_rtx (TYPE_MODE (integer_type_node));
3126 result_mode = TYPE_MODE (integer_type_node);
3127 emit_move_insn (result,
3128 hard_libcall_value (result_mode));
3130 *px = result;
3131 *py = const0_rtx;
3132 *pmode = result_mode;
3133 return;
3136 *px = x;
3137 *py = y;
3138 if (can_compare_p (*pcomparison, mode, purpose))
3139 return;
3141 /* Handle a lib call just for the mode we are using. */
3143 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3145 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3146 rtx result;
3148 /* If we want unsigned, and this mode has a distinct unsigned
3149 comparison routine, use that. */
3150 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3151 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3153 emit_library_call (libfunc, 1,
3154 word_mode, 2, x, mode, y, mode);
3156 /* Immediately move the result of the libcall into a pseudo
3157 register so reload doesn't clobber the value if it needs
3158 the return register for a spill reg. */
3159 result = gen_reg_rtx (word_mode);
3160 emit_move_insn (result, hard_libcall_value (word_mode));
3162 /* Integer comparison returns a result that must be compared against 1,
3163 so that even if we do an unsigned compare afterward,
3164 there is still a value that can represent the result "less than". */
3165 *px = result;
3166 *py = const1_rtx;
3167 *pmode = word_mode;
3168 return;
3171 if (class == MODE_FLOAT)
3172 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3174 else
3175 abort ();
3178 /* Before emitting an insn with code ICODE, make sure that X, which is going
3179 to be used for operand OPNUM of the insn, is converted from mode MODE to
3180 WIDER_MODE (UNSIGNEDP determines whether it is a unsigned conversion), and
3181 that it is accepted by the operand predicate. Return the new value. */
3184 prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3185 int icode;
3186 rtx x;
3187 int opnum;
3188 enum machine_mode mode, wider_mode;
3189 int unsignedp;
3191 x = protect_from_queue (x, 0);
3193 if (mode != wider_mode)
3194 x = convert_modes (wider_mode, mode, x, unsignedp);
3196 if (! (*insn_data[icode].operand[opnum].predicate)
3197 (x, insn_data[icode].operand[opnum].mode))
3198 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3199 return x;
3202 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3203 we can do the comparison.
3204 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3205 be NULL_RTX which indicates that only a comparison is to be generated. */
3207 static void
3208 emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3209 rtx x, y;
3210 enum machine_mode mode;
3211 enum rtx_code comparison;
3212 int unsignedp;
3213 rtx label;
3215 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3216 enum mode_class class = GET_MODE_CLASS (mode);
3217 enum machine_mode wider_mode = mode;
3219 /* Try combined insns first. */
3222 enum insn_code icode;
3223 PUT_MODE (test, wider_mode);
3225 if (label)
3227 icode = cbranch_optab->handlers[(int)wider_mode].insn_code;
3229 if (icode != CODE_FOR_nothing
3230 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3232 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3233 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3234 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3235 return;
3239 /* Handle some compares against zero. */
3240 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3241 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3243 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3244 emit_insn (GEN_FCN (icode) (x));
3245 if (label)
3246 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3247 return;
3250 /* Handle compares for which there is a directly suitable insn. */
3252 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3253 if (icode != CODE_FOR_nothing)
3255 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3256 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3257 emit_insn (GEN_FCN (icode) (x, y));
3258 if (label)
3259 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3260 return;
3263 if (class != MODE_INT && class != MODE_FLOAT
3264 && class != MODE_COMPLEX_FLOAT)
3265 break;
3267 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3268 } while (wider_mode != VOIDmode);
3270 abort ();
3273 /* Generate code to compare X with Y so that the condition codes are
3274 set and to jump to LABEL if the condition is true. If X is a
3275 constant and Y is not a constant, then the comparison is swapped to
3276 ensure that the comparison RTL has the canonical form.
3278 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3279 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3280 the proper branch condition code.
3282 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y,
3283 and ALIGN specifies the known shared alignment of X and Y.
3285 MODE is the mode of the inputs (in case they are const_int).
3287 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3288 be passed unchanged to emit_cmp_insn, then potentially converted into an
3289 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3291 void
3292 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, align, label)
3293 rtx x, y;
3294 enum rtx_code comparison;
3295 rtx size;
3296 enum machine_mode mode;
3297 int unsignedp;
3298 unsigned int align;
3299 rtx label;
3301 rtx op0 = x, op1 = y;
3303 /* Swap operands and condition to ensure canonical RTL. */
3304 if (swap_commutative_operands_p (x, y))
3306 /* If we're not emitting a branch, this means some caller
3307 is out of sync. */
3308 if (! label)
3309 abort ();
3311 op0 = y, op1 = x;
3312 comparison = swap_condition (comparison);
3315 #ifdef HAVE_cc0
3316 /* If OP0 is still a constant, then both X and Y must be constants. Force
3317 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3318 RTL. */
3319 if (CONSTANT_P (op0))
3320 op0 = force_reg (mode, op0);
3321 #endif
3323 emit_queue ();
3324 if (unsignedp)
3325 comparison = unsigned_condition (comparison);
3326 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp, align,
3327 ccp_jump);
3328 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3331 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3333 void
3334 emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
3335 rtx x, y;
3336 enum rtx_code comparison;
3337 rtx size;
3338 enum machine_mode mode;
3339 int unsignedp;
3340 unsigned int align;
3342 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, align, 0);
3345 /* Emit a library call comparison between floating point X and Y.
3346 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3348 static void
3349 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
3350 rtx *px, *py;
3351 enum rtx_code *pcomparison;
3352 enum machine_mode *pmode;
3353 int *punsignedp;
3355 enum rtx_code comparison = *pcomparison;
3356 rtx x = *px = protect_from_queue (*px, 0);
3357 rtx y = *py = protect_from_queue (*py, 0);
3358 enum machine_mode mode = GET_MODE (x);
3359 rtx libfunc = 0;
3360 rtx result;
3362 if (mode == HFmode)
3363 switch (comparison)
3365 case EQ:
3366 libfunc = eqhf2_libfunc;
3367 break;
3369 case NE:
3370 libfunc = nehf2_libfunc;
3371 break;
3373 case GT:
3374 libfunc = gthf2_libfunc;
3375 break;
3377 case GE:
3378 libfunc = gehf2_libfunc;
3379 break;
3381 case LT:
3382 libfunc = lthf2_libfunc;
3383 break;
3385 case LE:
3386 libfunc = lehf2_libfunc;
3387 break;
3389 case UNORDERED:
3390 libfunc = unordhf2_libfunc;
3391 break;
3393 default:
3394 break;
3396 else if (mode == SFmode)
3397 switch (comparison)
3399 case EQ:
3400 libfunc = eqsf2_libfunc;
3401 break;
3403 case NE:
3404 libfunc = nesf2_libfunc;
3405 break;
3407 case GT:
3408 libfunc = gtsf2_libfunc;
3409 break;
3411 case GE:
3412 libfunc = gesf2_libfunc;
3413 break;
3415 case LT:
3416 libfunc = ltsf2_libfunc;
3417 break;
3419 case LE:
3420 libfunc = lesf2_libfunc;
3421 break;
3423 case UNORDERED:
3424 libfunc = unordsf2_libfunc;
3425 break;
3427 default:
3428 break;
3430 else if (mode == DFmode)
3431 switch (comparison)
3433 case EQ:
3434 libfunc = eqdf2_libfunc;
3435 break;
3437 case NE:
3438 libfunc = nedf2_libfunc;
3439 break;
3441 case GT:
3442 libfunc = gtdf2_libfunc;
3443 break;
3445 case GE:
3446 libfunc = gedf2_libfunc;
3447 break;
3449 case LT:
3450 libfunc = ltdf2_libfunc;
3451 break;
3453 case LE:
3454 libfunc = ledf2_libfunc;
3455 break;
3457 case UNORDERED:
3458 libfunc = unorddf2_libfunc;
3459 break;
3461 default:
3462 break;
3464 else if (mode == XFmode)
3465 switch (comparison)
3467 case EQ:
3468 libfunc = eqxf2_libfunc;
3469 break;
3471 case NE:
3472 libfunc = nexf2_libfunc;
3473 break;
3475 case GT:
3476 libfunc = gtxf2_libfunc;
3477 break;
3479 case GE:
3480 libfunc = gexf2_libfunc;
3481 break;
3483 case LT:
3484 libfunc = ltxf2_libfunc;
3485 break;
3487 case LE:
3488 libfunc = lexf2_libfunc;
3489 break;
3491 case UNORDERED:
3492 libfunc = unordxf2_libfunc;
3493 break;
3495 default:
3496 break;
3498 else if (mode == TFmode)
3499 switch (comparison)
3501 case EQ:
3502 libfunc = eqtf2_libfunc;
3503 break;
3505 case NE:
3506 libfunc = netf2_libfunc;
3507 break;
3509 case GT:
3510 libfunc = gttf2_libfunc;
3511 break;
3513 case GE:
3514 libfunc = getf2_libfunc;
3515 break;
3517 case LT:
3518 libfunc = lttf2_libfunc;
3519 break;
3521 case LE:
3522 libfunc = letf2_libfunc;
3523 break;
3525 case UNORDERED:
3526 libfunc = unordtf2_libfunc;
3527 break;
3529 default:
3530 break;
3532 else
3534 enum machine_mode wider_mode;
3536 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3537 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3539 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3540 != CODE_FOR_nothing)
3541 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3543 x = protect_from_queue (x, 0);
3544 y = protect_from_queue (y, 0);
3545 *px = convert_to_mode (wider_mode, x, 0);
3546 *py = convert_to_mode (wider_mode, y, 0);
3547 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3548 return;
3551 abort ();
3554 if (libfunc == 0)
3555 abort ();
3557 emit_library_call (libfunc, LCT_CONST_MAKE_BLOCK, word_mode, 2, x, mode, y,
3558 mode);
3560 /* Immediately move the result of the libcall into a pseudo
3561 register so reload doesn't clobber the value if it needs
3562 the return register for a spill reg. */
3563 result = gen_reg_rtx (word_mode);
3564 emit_move_insn (result, hard_libcall_value (word_mode));
3565 *px = result;
3566 *py = const0_rtx;
3567 *pmode = word_mode;
3568 if (comparison == UNORDERED)
3569 *pcomparison = NE;
3570 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
3571 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
3572 *pcomparison = NE;
3573 #endif
3574 *punsignedp = 0;
3577 /* Generate code to indirectly jump to a location given in the rtx LOC. */
3579 void
3580 emit_indirect_jump (loc)
3581 rtx loc;
3583 if (! ((*insn_data[(int)CODE_FOR_indirect_jump].operand[0].predicate)
3584 (loc, Pmode)))
3585 loc = copy_to_mode_reg (Pmode, loc);
3587 emit_jump_insn (gen_indirect_jump (loc));
3588 emit_barrier ();
3591 #ifdef HAVE_conditional_move
3593 /* Emit a conditional move instruction if the machine supports one for that
3594 condition and machine mode.
3596 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3597 the mode to use should they be constants. If it is VOIDmode, they cannot
3598 both be constants.
3600 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
3601 should be stored there. MODE is the mode to use should they be constants.
3602 If it is VOIDmode, they cannot both be constants.
3604 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
3605 is not supported. */
3608 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
3609 unsignedp)
3610 rtx target;
3611 enum rtx_code code;
3612 rtx op0, op1;
3613 enum machine_mode cmode;
3614 rtx op2, op3;
3615 enum machine_mode mode;
3616 int unsignedp;
3618 rtx tem, subtarget, comparison, insn;
3619 enum insn_code icode;
3620 enum rtx_code reversed;
3622 /* If one operand is constant, make it the second one. Only do this
3623 if the other operand is not constant as well. */
3625 if (swap_commutative_operands_p (op0, op1))
3627 tem = op0;
3628 op0 = op1;
3629 op1 = tem;
3630 code = swap_condition (code);
3633 /* get_condition will prefer to generate LT and GT even if the old
3634 comparison was against zero, so undo that canonicalization here since
3635 comparisons against zero are cheaper. */
3636 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
3637 code = LE, op1 = const0_rtx;
3638 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
3639 code = GE, op1 = const0_rtx;
3641 if (cmode == VOIDmode)
3642 cmode = GET_MODE (op0);
3644 if (swap_commutative_operands_p (op2, op3)
3645 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
3646 != UNKNOWN))
3648 tem = op2;
3649 op2 = op3;
3650 op3 = tem;
3651 code = reversed;
3654 if (mode == VOIDmode)
3655 mode = GET_MODE (op2);
3657 icode = movcc_gen_code[mode];
3659 if (icode == CODE_FOR_nothing)
3660 return 0;
3662 if (flag_force_mem)
3664 op2 = force_not_mem (op2);
3665 op3 = force_not_mem (op3);
3668 if (target)
3669 target = protect_from_queue (target, 1);
3670 else
3671 target = gen_reg_rtx (mode);
3673 subtarget = target;
3675 emit_queue ();
3677 op2 = protect_from_queue (op2, 0);
3678 op3 = protect_from_queue (op3, 0);
3680 /* If the insn doesn't accept these operands, put them in pseudos. */
3682 if (! (*insn_data[icode].operand[0].predicate)
3683 (subtarget, insn_data[icode].operand[0].mode))
3684 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
3686 if (! (*insn_data[icode].operand[2].predicate)
3687 (op2, insn_data[icode].operand[2].mode))
3688 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
3690 if (! (*insn_data[icode].operand[3].predicate)
3691 (op3, insn_data[icode].operand[3].mode))
3692 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
3694 /* Everything should now be in the suitable form, so emit the compare insn
3695 and then the conditional move. */
3697 comparison
3698 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX, 0);
3700 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
3701 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
3702 return NULL and let the caller figure out how best to deal with this
3703 situation. */
3704 if (GET_CODE (comparison) != code)
3705 return NULL_RTX;
3707 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
3709 /* If that failed, then give up. */
3710 if (insn == 0)
3711 return 0;
3713 emit_insn (insn);
3715 if (subtarget != target)
3716 convert_move (target, subtarget, 0);
3718 return target;
3721 /* Return non-zero if a conditional move of mode MODE is supported.
3723 This function is for combine so it can tell whether an insn that looks
3724 like a conditional move is actually supported by the hardware. If we
3725 guess wrong we lose a bit on optimization, but that's it. */
3726 /* ??? sparc64 supports conditionally moving integers values based on fp
3727 comparisons, and vice versa. How do we handle them? */
3730 can_conditionally_move_p (mode)
3731 enum machine_mode mode;
3733 if (movcc_gen_code[mode] != CODE_FOR_nothing)
3734 return 1;
3736 return 0;
3739 #endif /* HAVE_conditional_move */
3741 /* These three functions generate an insn body and return it
3742 rather than emitting the insn.
3744 They do not protect from queued increments,
3745 because they may be used 1) in protect_from_queue itself
3746 and 2) in other passes where there is no queue. */
3748 /* Generate and return an insn body to add Y to X. */
3751 gen_add2_insn (x, y)
3752 rtx x, y;
3754 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
3756 if (! ((*insn_data[icode].operand[0].predicate)
3757 (x, insn_data[icode].operand[0].mode))
3758 || ! ((*insn_data[icode].operand[1].predicate)
3759 (x, insn_data[icode].operand[1].mode))
3760 || ! ((*insn_data[icode].operand[2].predicate)
3761 (y, insn_data[icode].operand[2].mode)))
3762 abort ();
3764 return (GEN_FCN (icode) (x, x, y));
3768 have_add2_insn (mode)
3769 enum machine_mode mode;
3771 return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3774 /* Generate and return an insn body to subtract Y from X. */
3777 gen_sub2_insn (x, y)
3778 rtx x, y;
3780 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
3782 if (! ((*insn_data[icode].operand[0].predicate)
3783 (x, insn_data[icode].operand[0].mode))
3784 || ! ((*insn_data[icode].operand[1].predicate)
3785 (x, insn_data[icode].operand[1].mode))
3786 || ! ((*insn_data[icode].operand[2].predicate)
3787 (y, insn_data[icode].operand[2].mode)))
3788 abort ();
3790 return (GEN_FCN (icode) (x, x, y));
3794 have_sub2_insn (mode)
3795 enum machine_mode mode;
3797 return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3800 /* Generate the body of an instruction to copy Y into X.
3801 It may be a SEQUENCE, if one insn isn't enough. */
3804 gen_move_insn (x, y)
3805 rtx x, y;
3807 register enum machine_mode mode = GET_MODE (x);
3808 enum insn_code insn_code;
3809 rtx seq;
3811 if (mode == VOIDmode)
3812 mode = GET_MODE (y);
3814 insn_code = mov_optab->handlers[(int) mode].insn_code;
3816 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
3817 find a mode to do it in. If we have a movcc, use it. Otherwise,
3818 find the MODE_INT mode of the same width. */
3820 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
3822 enum machine_mode tmode = VOIDmode;
3823 rtx x1 = x, y1 = y;
3825 if (mode != CCmode
3826 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
3827 tmode = CCmode;
3828 else
3829 for (tmode = QImode; tmode != VOIDmode;
3830 tmode = GET_MODE_WIDER_MODE (tmode))
3831 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
3832 break;
3834 if (tmode == VOIDmode)
3835 abort ();
3837 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
3838 may call change_address which is not appropriate if we were
3839 called when a reload was in progress. We don't have to worry
3840 about changing the address since the size in bytes is supposed to
3841 be the same. Copy the MEM to change the mode and move any
3842 substitutions from the old MEM to the new one. */
3844 if (reload_in_progress)
3846 x = gen_lowpart_common (tmode, x1);
3847 if (x == 0 && GET_CODE (x1) == MEM)
3849 x = gen_rtx_MEM (tmode, XEXP (x1, 0));
3850 MEM_COPY_ATTRIBUTES (x, x1);
3851 copy_replacements (x1, x);
3854 y = gen_lowpart_common (tmode, y1);
3855 if (y == 0 && GET_CODE (y1) == MEM)
3857 y = gen_rtx_MEM (tmode, XEXP (y1, 0));
3858 MEM_COPY_ATTRIBUTES (y, y1);
3859 copy_replacements (y1, y);
3862 else
3864 x = gen_lowpart (tmode, x);
3865 y = gen_lowpart (tmode, y);
3868 insn_code = mov_optab->handlers[(int) tmode].insn_code;
3869 return (GEN_FCN (insn_code) (x, y));
3872 start_sequence ();
3873 emit_move_insn_1 (x, y);
3874 seq = gen_sequence ();
3875 end_sequence ();
3876 return seq;
3879 /* Return the insn code used to extend FROM_MODE to TO_MODE.
3880 UNSIGNEDP specifies zero-extension instead of sign-extension. If
3881 no such operation exists, CODE_FOR_nothing will be returned. */
3883 enum insn_code
3884 can_extend_p (to_mode, from_mode, unsignedp)
3885 enum machine_mode to_mode, from_mode;
3886 int unsignedp;
3888 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
3891 /* Generate the body of an insn to extend Y (with mode MFROM)
3892 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
3895 gen_extend_insn (x, y, mto, mfrom, unsignedp)
3896 rtx x, y;
3897 enum machine_mode mto, mfrom;
3898 int unsignedp;
3900 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
3903 /* can_fix_p and can_float_p say whether the target machine
3904 can directly convert a given fixed point type to
3905 a given floating point type, or vice versa.
3906 The returned value is the CODE_FOR_... value to use,
3907 or CODE_FOR_nothing if these modes cannot be directly converted.
3909 *TRUNCP_PTR is set to 1 if it is necessary to output
3910 an explicit FTRUNC insn before the fix insn; otherwise 0. */
3912 static enum insn_code
3913 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
3914 enum machine_mode fltmode, fixmode;
3915 int unsignedp;
3916 int *truncp_ptr;
3918 *truncp_ptr = 0;
3919 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
3920 != CODE_FOR_nothing)
3921 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
3923 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
3925 *truncp_ptr = 1;
3926 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
3928 return CODE_FOR_nothing;
3931 static enum insn_code
3932 can_float_p (fltmode, fixmode, unsignedp)
3933 enum machine_mode fixmode, fltmode;
3934 int unsignedp;
3936 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
3939 /* Generate code to convert FROM to floating point
3940 and store in TO. FROM must be fixed point and not VOIDmode.
3941 UNSIGNEDP nonzero means regard FROM as unsigned.
3942 Normally this is done by correcting the final value
3943 if it is negative. */
3945 void
3946 expand_float (to, from, unsignedp)
3947 rtx to, from;
3948 int unsignedp;
3950 enum insn_code icode;
3951 register rtx target = to;
3952 enum machine_mode fmode, imode;
3954 /* Crash now, because we won't be able to decide which mode to use. */
3955 if (GET_MODE (from) == VOIDmode)
3956 abort ();
3958 /* Look for an insn to do the conversion. Do it in the specified
3959 modes if possible; otherwise convert either input, output or both to
3960 wider mode. If the integer mode is wider than the mode of FROM,
3961 we can do the conversion signed even if the input is unsigned. */
3963 for (imode = GET_MODE (from); imode != VOIDmode;
3964 imode = GET_MODE_WIDER_MODE (imode))
3965 for (fmode = GET_MODE (to); fmode != VOIDmode;
3966 fmode = GET_MODE_WIDER_MODE (fmode))
3968 int doing_unsigned = unsignedp;
3970 if (fmode != GET_MODE (to)
3971 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
3972 continue;
3974 icode = can_float_p (fmode, imode, unsignedp);
3975 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
3976 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
3978 if (icode != CODE_FOR_nothing)
3980 to = protect_from_queue (to, 1);
3981 from = protect_from_queue (from, 0);
3983 if (imode != GET_MODE (from))
3984 from = convert_to_mode (imode, from, unsignedp);
3986 if (fmode != GET_MODE (to))
3987 target = gen_reg_rtx (fmode);
3989 emit_unop_insn (icode, target, from,
3990 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
3992 if (target != to)
3993 convert_move (to, target, 0);
3994 return;
3998 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4000 /* Unsigned integer, and no way to convert directly.
4001 Convert as signed, then conditionally adjust the result. */
4002 if (unsignedp)
4004 rtx label = gen_label_rtx ();
4005 rtx temp;
4006 REAL_VALUE_TYPE offset;
4008 emit_queue ();
4010 to = protect_from_queue (to, 1);
4011 from = protect_from_queue (from, 0);
4013 if (flag_force_mem)
4014 from = force_not_mem (from);
4016 /* Look for a usable floating mode FMODE wider than the source and at
4017 least as wide as the target. Using FMODE will avoid rounding woes
4018 with unsigned values greater than the signed maximum value. */
4020 for (fmode = GET_MODE (to); fmode != VOIDmode;
4021 fmode = GET_MODE_WIDER_MODE (fmode))
4022 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4023 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4024 break;
4026 if (fmode == VOIDmode)
4028 /* There is no such mode. Pretend the target is wide enough. */
4029 fmode = GET_MODE (to);
4031 /* Avoid double-rounding when TO is narrower than FROM. */
4032 if ((significand_size (fmode) + 1)
4033 < GET_MODE_BITSIZE (GET_MODE (from)))
4035 rtx temp1;
4036 rtx neglabel = gen_label_rtx ();
4038 /* Don't use TARGET if it isn't a register, is a hard register,
4039 or is the wrong mode. */
4040 if (GET_CODE (target) != REG
4041 || REGNO (target) < FIRST_PSEUDO_REGISTER
4042 || GET_MODE (target) != fmode)
4043 target = gen_reg_rtx (fmode);
4045 imode = GET_MODE (from);
4046 do_pending_stack_adjust ();
4048 /* Test whether the sign bit is set. */
4049 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4050 0, 0, neglabel);
4052 /* The sign bit is not set. Convert as signed. */
4053 expand_float (target, from, 0);
4054 emit_jump_insn (gen_jump (label));
4055 emit_barrier ();
4057 /* The sign bit is set.
4058 Convert to a usable (positive signed) value by shifting right
4059 one bit, while remembering if a nonzero bit was shifted
4060 out; i.e., compute (from & 1) | (from >> 1). */
4062 emit_label (neglabel);
4063 temp = expand_binop (imode, and_optab, from, const1_rtx,
4064 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4065 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4066 NULL_RTX, 1);
4067 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4068 OPTAB_LIB_WIDEN);
4069 expand_float (target, temp, 0);
4071 /* Multiply by 2 to undo the shift above. */
4072 temp = expand_binop (fmode, add_optab, target, target,
4073 target, 0, OPTAB_LIB_WIDEN);
4074 if (temp != target)
4075 emit_move_insn (target, temp);
4077 do_pending_stack_adjust ();
4078 emit_label (label);
4079 goto done;
4083 /* If we are about to do some arithmetic to correct for an
4084 unsigned operand, do it in a pseudo-register. */
4086 if (GET_MODE (to) != fmode
4087 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
4088 target = gen_reg_rtx (fmode);
4090 /* Convert as signed integer to floating. */
4091 expand_float (target, from, 0);
4093 /* If FROM is negative (and therefore TO is negative),
4094 correct its value by 2**bitwidth. */
4096 do_pending_stack_adjust ();
4097 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4098 0, 0, label);
4100 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
4101 Rather than setting up a dconst_dot_5, let's hope SCO
4102 fixes the bug. */
4103 offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
4104 temp = expand_binop (fmode, add_optab, target,
4105 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4106 target, 0, OPTAB_LIB_WIDEN);
4107 if (temp != target)
4108 emit_move_insn (target, temp);
4110 do_pending_stack_adjust ();
4111 emit_label (label);
4112 goto done;
4114 #endif
4116 /* No hardware instruction available; call a library routine to convert from
4117 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
4119 rtx libfcn;
4120 rtx insns;
4121 rtx value;
4123 to = protect_from_queue (to, 1);
4124 from = protect_from_queue (from, 0);
4126 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4127 from = convert_to_mode (SImode, from, unsignedp);
4129 if (flag_force_mem)
4130 from = force_not_mem (from);
4132 if (GET_MODE (to) == SFmode)
4134 if (GET_MODE (from) == SImode)
4135 libfcn = floatsisf_libfunc;
4136 else if (GET_MODE (from) == DImode)
4137 libfcn = floatdisf_libfunc;
4138 else if (GET_MODE (from) == TImode)
4139 libfcn = floattisf_libfunc;
4140 else
4141 abort ();
4143 else if (GET_MODE (to) == DFmode)
4145 if (GET_MODE (from) == SImode)
4146 libfcn = floatsidf_libfunc;
4147 else if (GET_MODE (from) == DImode)
4148 libfcn = floatdidf_libfunc;
4149 else if (GET_MODE (from) == TImode)
4150 libfcn = floattidf_libfunc;
4151 else
4152 abort ();
4154 else if (GET_MODE (to) == XFmode)
4156 if (GET_MODE (from) == SImode)
4157 libfcn = floatsixf_libfunc;
4158 else if (GET_MODE (from) == DImode)
4159 libfcn = floatdixf_libfunc;
4160 else if (GET_MODE (from) == TImode)
4161 libfcn = floattixf_libfunc;
4162 else
4163 abort ();
4165 else if (GET_MODE (to) == TFmode)
4167 if (GET_MODE (from) == SImode)
4168 libfcn = floatsitf_libfunc;
4169 else if (GET_MODE (from) == DImode)
4170 libfcn = floatditf_libfunc;
4171 else if (GET_MODE (from) == TImode)
4172 libfcn = floattitf_libfunc;
4173 else
4174 abort ();
4176 else
4177 abort ();
4179 start_sequence ();
4181 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4182 GET_MODE (to), 1, from,
4183 GET_MODE (from));
4184 insns = get_insns ();
4185 end_sequence ();
4187 emit_libcall_block (insns, target, value,
4188 gen_rtx_FLOAT (GET_MODE (to), from));
4191 done:
4193 /* Copy result to requested destination
4194 if we have been computing in a temp location. */
4196 if (target != to)
4198 if (GET_MODE (target) == GET_MODE (to))
4199 emit_move_insn (to, target);
4200 else
4201 convert_move (to, target, 0);
4205 /* expand_fix: generate code to convert FROM to fixed point
4206 and store in TO. FROM must be floating point. */
4208 static rtx
4209 ftruncify (x)
4210 rtx x;
4212 rtx temp = gen_reg_rtx (GET_MODE (x));
4213 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4216 void
4217 expand_fix (to, from, unsignedp)
4218 register rtx to, from;
4219 int unsignedp;
4221 enum insn_code icode;
4222 register rtx target = to;
4223 enum machine_mode fmode, imode;
4224 int must_trunc = 0;
4225 rtx libfcn = 0;
4227 /* We first try to find a pair of modes, one real and one integer, at
4228 least as wide as FROM and TO, respectively, in which we can open-code
4229 this conversion. If the integer mode is wider than the mode of TO,
4230 we can do the conversion either signed or unsigned. */
4232 for (imode = GET_MODE (to); imode != VOIDmode;
4233 imode = GET_MODE_WIDER_MODE (imode))
4234 for (fmode = GET_MODE (from); fmode != VOIDmode;
4235 fmode = GET_MODE_WIDER_MODE (fmode))
4237 int doing_unsigned = unsignedp;
4239 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4240 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4241 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4243 if (icode != CODE_FOR_nothing)
4245 to = protect_from_queue (to, 1);
4246 from = protect_from_queue (from, 0);
4248 if (fmode != GET_MODE (from))
4249 from = convert_to_mode (fmode, from, 0);
4251 if (must_trunc)
4252 from = ftruncify (from);
4254 if (imode != GET_MODE (to))
4255 target = gen_reg_rtx (imode);
4257 emit_unop_insn (icode, target, from,
4258 doing_unsigned ? UNSIGNED_FIX : FIX);
4259 if (target != to)
4260 convert_move (to, target, unsignedp);
4261 return;
4265 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4266 /* For an unsigned conversion, there is one more way to do it.
4267 If we have a signed conversion, we generate code that compares
4268 the real value to the largest representable positive number. If if
4269 is smaller, the conversion is done normally. Otherwise, subtract
4270 one plus the highest signed number, convert, and add it back.
4272 We only need to check all real modes, since we know we didn't find
4273 anything with a wider integer mode. */
4275 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4276 for (fmode = GET_MODE (from); fmode != VOIDmode;
4277 fmode = GET_MODE_WIDER_MODE (fmode))
4278 /* Make sure we won't lose significant bits doing this. */
4279 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4280 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4281 &must_trunc))
4283 int bitsize;
4284 REAL_VALUE_TYPE offset;
4285 rtx limit, lab1, lab2, insn;
4287 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4288 offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
4289 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4290 lab1 = gen_label_rtx ();
4291 lab2 = gen_label_rtx ();
4293 emit_queue ();
4294 to = protect_from_queue (to, 1);
4295 from = protect_from_queue (from, 0);
4297 if (flag_force_mem)
4298 from = force_not_mem (from);
4300 if (fmode != GET_MODE (from))
4301 from = convert_to_mode (fmode, from, 0);
4303 /* See if we need to do the subtraction. */
4304 do_pending_stack_adjust ();
4305 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4306 0, 0, lab1);
4308 /* If not, do the signed "fix" and branch around fixup code. */
4309 expand_fix (to, from, 0);
4310 emit_jump_insn (gen_jump (lab2));
4311 emit_barrier ();
4313 /* Otherwise, subtract 2**(N-1), convert to signed number,
4314 then add 2**(N-1). Do the addition using XOR since this
4315 will often generate better code. */
4316 emit_label (lab1);
4317 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4318 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4319 expand_fix (to, target, 0);
4320 target = expand_binop (GET_MODE (to), xor_optab, to,
4321 GEN_INT (trunc_int_for_mode
4322 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4323 GET_MODE (to))),
4324 to, 1, OPTAB_LIB_WIDEN);
4326 if (target != to)
4327 emit_move_insn (to, target);
4329 emit_label (lab2);
4331 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4332 != CODE_FOR_nothing)
4334 /* Make a place for a REG_NOTE and add it. */
4335 insn = emit_move_insn (to, to);
4336 set_unique_reg_note (insn,
4337 REG_EQUAL,
4338 gen_rtx_fmt_e (UNSIGNED_FIX,
4339 GET_MODE (to),
4340 copy_rtx (from)));
4343 return;
4345 #endif
4347 /* We can't do it with an insn, so use a library call. But first ensure
4348 that the mode of TO is at least as wide as SImode, since those are the
4349 only library calls we know about. */
4351 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4353 target = gen_reg_rtx (SImode);
4355 expand_fix (target, from, unsignedp);
4357 else if (GET_MODE (from) == SFmode)
4359 if (GET_MODE (to) == SImode)
4360 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
4361 else if (GET_MODE (to) == DImode)
4362 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
4363 else if (GET_MODE (to) == TImode)
4364 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
4365 else
4366 abort ();
4368 else if (GET_MODE (from) == DFmode)
4370 if (GET_MODE (to) == SImode)
4371 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
4372 else if (GET_MODE (to) == DImode)
4373 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
4374 else if (GET_MODE (to) == TImode)
4375 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4376 else
4377 abort ();
4379 else if (GET_MODE (from) == XFmode)
4381 if (GET_MODE (to) == SImode)
4382 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4383 else if (GET_MODE (to) == DImode)
4384 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4385 else if (GET_MODE (to) == TImode)
4386 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4387 else
4388 abort ();
4390 else if (GET_MODE (from) == TFmode)
4392 if (GET_MODE (to) == SImode)
4393 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4394 else if (GET_MODE (to) == DImode)
4395 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4396 else if (GET_MODE (to) == TImode)
4397 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
4398 else
4399 abort ();
4401 else
4402 abort ();
4404 if (libfcn)
4406 rtx insns;
4407 rtx value;
4409 to = protect_from_queue (to, 1);
4410 from = protect_from_queue (from, 0);
4412 if (flag_force_mem)
4413 from = force_not_mem (from);
4415 start_sequence ();
4417 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4418 GET_MODE (to), 1, from,
4419 GET_MODE (from));
4420 insns = get_insns ();
4421 end_sequence ();
4423 emit_libcall_block (insns, target, value,
4424 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4425 GET_MODE (to), from));
4428 if (target != to)
4430 if (GET_MODE (to) == GET_MODE (target))
4431 emit_move_insn (to, target);
4432 else
4433 convert_move (to, target, 0);
4437 static optab
4438 init_optab (code)
4439 enum rtx_code code;
4441 int i;
4442 optab op = (optab) xmalloc (sizeof (struct optab));
4443 op->code = code;
4444 for (i = 0; i < NUM_MACHINE_MODES; i++)
4446 op->handlers[i].insn_code = CODE_FOR_nothing;
4447 op->handlers[i].libfunc = 0;
4450 if (code != UNKNOWN)
4451 code_to_optab[(int) code] = op;
4453 return op;
4456 /* Initialize the libfunc fields of an entire group of entries in some
4457 optab. Each entry is set equal to a string consisting of a leading
4458 pair of underscores followed by a generic operation name followed by
4459 a mode name (downshifted to lower case) followed by a single character
4460 representing the number of operands for the given operation (which is
4461 usually one of the characters '2', '3', or '4').
4463 OPTABLE is the table in which libfunc fields are to be initialized.
4464 FIRST_MODE is the first machine mode index in the given optab to
4465 initialize.
4466 LAST_MODE is the last machine mode index in the given optab to
4467 initialize.
4468 OPNAME is the generic (string) name of the operation.
4469 SUFFIX is the character which specifies the number of operands for
4470 the given generic operation.
4473 static void
4474 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
4475 register optab optable;
4476 register int first_mode;
4477 register int last_mode;
4478 register const char *opname;
4479 register int suffix;
4481 register int mode;
4482 register unsigned opname_len = strlen (opname);
4484 for (mode = first_mode; (int) mode <= (int) last_mode;
4485 mode = (enum machine_mode) ((int) mode + 1))
4487 register const char *mname = GET_MODE_NAME(mode);
4488 register unsigned mname_len = strlen (mname);
4489 register char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
4490 register char *p;
4491 register const char *q;
4493 p = libfunc_name;
4494 *p++ = '_';
4495 *p++ = '_';
4496 for (q = opname; *q; )
4497 *p++ = *q++;
4498 for (q = mname; *q; q++)
4499 *p++ = TOLOWER (*q);
4500 *p++ = suffix;
4501 *p = '\0';
4503 optable->handlers[(int) mode].libfunc
4504 = gen_rtx_SYMBOL_REF (Pmode, ggc_alloc_string (libfunc_name,
4505 p - libfunc_name));
4509 /* Initialize the libfunc fields of an entire group of entries in some
4510 optab which correspond to all integer mode operations. The parameters
4511 have the same meaning as similarly named ones for the `init_libfuncs'
4512 routine. (See above). */
4514 static void
4515 init_integral_libfuncs (optable, opname, suffix)
4516 register optab optable;
4517 register const char *opname;
4518 register int suffix;
4520 init_libfuncs (optable, SImode, TImode, opname, suffix);
4523 /* Initialize the libfunc fields of an entire group of entries in some
4524 optab which correspond to all real mode operations. The parameters
4525 have the same meaning as similarly named ones for the `init_libfuncs'
4526 routine. (See above). */
4528 static void
4529 init_floating_libfuncs (optable, opname, suffix)
4530 register optab optable;
4531 register const char *opname;
4532 register int suffix;
4534 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
4538 init_one_libfunc (name)
4539 register const char *name;
4541 name = ggc_strdup (name);
4543 return gen_rtx_SYMBOL_REF (Pmode, name);
4546 /* Mark ARG (which is really an OPTAB *) for GC. */
4548 void
4549 mark_optab (arg)
4550 void *arg;
4552 optab o = *(optab *) arg;
4553 int i;
4555 for (i = 0; i < NUM_MACHINE_MODES; ++i)
4556 ggc_mark_rtx (o->handlers[i].libfunc);
4559 /* Call this once to initialize the contents of the optabs
4560 appropriately for the current target machine. */
4562 void
4563 init_optabs ()
4565 unsigned int i, j, k;
4567 /* Start by initializing all tables to contain CODE_FOR_nothing. */
4569 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
4570 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
4571 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
4572 fixtab[i][j][k] = CODE_FOR_nothing;
4574 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
4575 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
4576 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
4577 fixtrunctab[i][j][k] = CODE_FOR_nothing;
4579 for (i = 0; i < ARRAY_SIZE (floattab); i++)
4580 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
4581 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
4582 floattab[i][j][k] = CODE_FOR_nothing;
4584 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
4585 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
4586 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
4587 extendtab[i][j][k] = CODE_FOR_nothing;
4589 for (i = 0; i < NUM_RTX_CODE; i++)
4590 setcc_gen_code[i] = CODE_FOR_nothing;
4592 #ifdef HAVE_conditional_move
4593 for (i = 0; i < NUM_MACHINE_MODES; i++)
4594 movcc_gen_code[i] = CODE_FOR_nothing;
4595 #endif
4597 add_optab = init_optab (PLUS);
4598 addv_optab = init_optab (PLUS);
4599 sub_optab = init_optab (MINUS);
4600 subv_optab = init_optab (MINUS);
4601 smul_optab = init_optab (MULT);
4602 smulv_optab = init_optab (MULT);
4603 smul_highpart_optab = init_optab (UNKNOWN);
4604 umul_highpart_optab = init_optab (UNKNOWN);
4605 smul_widen_optab = init_optab (UNKNOWN);
4606 umul_widen_optab = init_optab (UNKNOWN);
4607 sdiv_optab = init_optab (DIV);
4608 sdivv_optab = init_optab (DIV);
4609 sdivmod_optab = init_optab (UNKNOWN);
4610 udiv_optab = init_optab (UDIV);
4611 udivmod_optab = init_optab (UNKNOWN);
4612 smod_optab = init_optab (MOD);
4613 umod_optab = init_optab (UMOD);
4614 flodiv_optab = init_optab (DIV);
4615 ftrunc_optab = init_optab (UNKNOWN);
4616 and_optab = init_optab (AND);
4617 ior_optab = init_optab (IOR);
4618 xor_optab = init_optab (XOR);
4619 ashl_optab = init_optab (ASHIFT);
4620 ashr_optab = init_optab (ASHIFTRT);
4621 lshr_optab = init_optab (LSHIFTRT);
4622 rotl_optab = init_optab (ROTATE);
4623 rotr_optab = init_optab (ROTATERT);
4624 smin_optab = init_optab (SMIN);
4625 smax_optab = init_optab (SMAX);
4626 umin_optab = init_optab (UMIN);
4627 umax_optab = init_optab (UMAX);
4628 mov_optab = init_optab (UNKNOWN);
4629 movstrict_optab = init_optab (UNKNOWN);
4630 cmp_optab = init_optab (UNKNOWN);
4631 ucmp_optab = init_optab (UNKNOWN);
4632 tst_optab = init_optab (UNKNOWN);
4633 neg_optab = init_optab (NEG);
4634 negv_optab = init_optab (NEG);
4635 abs_optab = init_optab (ABS);
4636 absv_optab = init_optab (ABS);
4637 one_cmpl_optab = init_optab (NOT);
4638 ffs_optab = init_optab (FFS);
4639 sqrt_optab = init_optab (SQRT);
4640 sin_optab = init_optab (UNKNOWN);
4641 cos_optab = init_optab (UNKNOWN);
4642 strlen_optab = init_optab (UNKNOWN);
4643 cbranch_optab = init_optab (UNKNOWN);
4644 cmov_optab = init_optab (UNKNOWN);
4645 cstore_optab = init_optab (UNKNOWN);
4647 for (i = 0; i < NUM_MACHINE_MODES; i++)
4649 movstr_optab[i] = CODE_FOR_nothing;
4650 clrstr_optab[i] = CODE_FOR_nothing;
4652 #ifdef HAVE_SECONDARY_RELOADS
4653 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
4654 #endif
4657 /* Fill in the optabs with the insns we support. */
4658 init_all_optabs ();
4660 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4661 /* This flag says the same insns that convert to a signed fixnum
4662 also convert validly to an unsigned one. */
4663 for (i = 0; i < NUM_MACHINE_MODES; i++)
4664 for (j = 0; j < NUM_MACHINE_MODES; j++)
4665 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
4666 #endif
4668 /* Initialize the optabs with the names of the library functions. */
4669 init_integral_libfuncs (add_optab, "add", '3');
4670 init_floating_libfuncs (add_optab, "add", '3');
4671 init_integral_libfuncs (addv_optab, "addv", '3');
4672 init_floating_libfuncs (addv_optab, "add", '3');
4673 init_integral_libfuncs (sub_optab, "sub", '3');
4674 init_floating_libfuncs (sub_optab, "sub", '3');
4675 init_integral_libfuncs (subv_optab, "subv", '3');
4676 init_floating_libfuncs (subv_optab, "sub", '3');
4677 init_integral_libfuncs (smul_optab, "mul", '3');
4678 init_floating_libfuncs (smul_optab, "mul", '3');
4679 init_integral_libfuncs (smulv_optab, "mulv", '3');
4680 init_floating_libfuncs (smulv_optab, "mul", '3');
4681 init_integral_libfuncs (sdiv_optab, "div", '3');
4682 init_integral_libfuncs (sdivv_optab, "divv", '3');
4683 init_integral_libfuncs (udiv_optab, "udiv", '3');
4684 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
4685 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
4686 init_integral_libfuncs (smod_optab, "mod", '3');
4687 init_integral_libfuncs (umod_optab, "umod", '3');
4688 init_floating_libfuncs (flodiv_optab, "div", '3');
4689 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
4690 init_integral_libfuncs (and_optab, "and", '3');
4691 init_integral_libfuncs (ior_optab, "ior", '3');
4692 init_integral_libfuncs (xor_optab, "xor", '3');
4693 init_integral_libfuncs (ashl_optab, "ashl", '3');
4694 init_integral_libfuncs (ashr_optab, "ashr", '3');
4695 init_integral_libfuncs (lshr_optab, "lshr", '3');
4696 init_integral_libfuncs (smin_optab, "min", '3');
4697 init_floating_libfuncs (smin_optab, "min", '3');
4698 init_integral_libfuncs (smax_optab, "max", '3');
4699 init_floating_libfuncs (smax_optab, "max", '3');
4700 init_integral_libfuncs (umin_optab, "umin", '3');
4701 init_integral_libfuncs (umax_optab, "umax", '3');
4702 init_integral_libfuncs (neg_optab, "neg", '2');
4703 init_floating_libfuncs (neg_optab, "neg", '2');
4704 init_integral_libfuncs (negv_optab, "negv", '2');
4705 init_floating_libfuncs (negv_optab, "neg", '2');
4706 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
4707 init_integral_libfuncs (ffs_optab, "ffs", '2');
4709 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
4710 init_integral_libfuncs (cmp_optab, "cmp", '2');
4711 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
4712 init_floating_libfuncs (cmp_optab, "cmp", '2');
4714 #ifdef MULSI3_LIBCALL
4715 smul_optab->handlers[(int) SImode].libfunc
4716 = init_one_libfunc (MULSI3_LIBCALL);
4717 #endif
4718 #ifdef MULDI3_LIBCALL
4719 smul_optab->handlers[(int) DImode].libfunc
4720 = init_one_libfunc (MULDI3_LIBCALL);
4721 #endif
4723 #ifdef DIVSI3_LIBCALL
4724 sdiv_optab->handlers[(int) SImode].libfunc
4725 = init_one_libfunc (DIVSI3_LIBCALL);
4726 #endif
4727 #ifdef DIVDI3_LIBCALL
4728 sdiv_optab->handlers[(int) DImode].libfunc
4729 = init_one_libfunc (DIVDI3_LIBCALL);
4730 #endif
4732 #ifdef UDIVSI3_LIBCALL
4733 udiv_optab->handlers[(int) SImode].libfunc
4734 = init_one_libfunc (UDIVSI3_LIBCALL);
4735 #endif
4736 #ifdef UDIVDI3_LIBCALL
4737 udiv_optab->handlers[(int) DImode].libfunc
4738 = init_one_libfunc (UDIVDI3_LIBCALL);
4739 #endif
4741 #ifdef MODSI3_LIBCALL
4742 smod_optab->handlers[(int) SImode].libfunc
4743 = init_one_libfunc (MODSI3_LIBCALL);
4744 #endif
4745 #ifdef MODDI3_LIBCALL
4746 smod_optab->handlers[(int) DImode].libfunc
4747 = init_one_libfunc (MODDI3_LIBCALL);
4748 #endif
4750 #ifdef UMODSI3_LIBCALL
4751 umod_optab->handlers[(int) SImode].libfunc
4752 = init_one_libfunc (UMODSI3_LIBCALL);
4753 #endif
4754 #ifdef UMODDI3_LIBCALL
4755 umod_optab->handlers[(int) DImode].libfunc
4756 = init_one_libfunc (UMODDI3_LIBCALL);
4757 #endif
4759 /* Use cabs for DC complex abs, since systems generally have cabs.
4760 Don't define any libcall for SCmode, so that cabs will be used. */
4761 abs_optab->handlers[(int) DCmode].libfunc
4762 = init_one_libfunc ("cabs");
4764 /* The ffs function operates on `int'. */
4765 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
4766 = init_one_libfunc ("ffs");
4768 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
4769 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
4770 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
4771 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
4772 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
4774 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
4775 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
4776 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
4777 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
4778 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
4780 memcpy_libfunc = init_one_libfunc ("memcpy");
4781 memmove_libfunc = init_one_libfunc ("memmove");
4782 bcopy_libfunc = init_one_libfunc ("bcopy");
4783 memcmp_libfunc = init_one_libfunc ("memcmp");
4784 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
4785 memset_libfunc = init_one_libfunc ("memset");
4786 bzero_libfunc = init_one_libfunc ("bzero");
4788 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
4789 ? "_Unwind_SjLj_Resume"
4790 : "_Unwind_Resume");
4791 #ifndef DONT_USE_BUILTIN_SETJMP
4792 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
4793 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
4794 #else
4795 setjmp_libfunc = init_one_libfunc ("setjmp");
4796 longjmp_libfunc = init_one_libfunc ("longjmp");
4797 #endif
4798 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
4799 unwind_sjlj_unregister_libfunc
4800 = init_one_libfunc ("_Unwind_SjLj_Unregister");
4802 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
4803 nehf2_libfunc = init_one_libfunc ("__nehf2");
4804 gthf2_libfunc = init_one_libfunc ("__gthf2");
4805 gehf2_libfunc = init_one_libfunc ("__gehf2");
4806 lthf2_libfunc = init_one_libfunc ("__lthf2");
4807 lehf2_libfunc = init_one_libfunc ("__lehf2");
4808 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
4810 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
4811 nesf2_libfunc = init_one_libfunc ("__nesf2");
4812 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
4813 gesf2_libfunc = init_one_libfunc ("__gesf2");
4814 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
4815 lesf2_libfunc = init_one_libfunc ("__lesf2");
4816 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
4818 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
4819 nedf2_libfunc = init_one_libfunc ("__nedf2");
4820 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
4821 gedf2_libfunc = init_one_libfunc ("__gedf2");
4822 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
4823 ledf2_libfunc = init_one_libfunc ("__ledf2");
4824 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
4826 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
4827 nexf2_libfunc = init_one_libfunc ("__nexf2");
4828 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
4829 gexf2_libfunc = init_one_libfunc ("__gexf2");
4830 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
4831 lexf2_libfunc = init_one_libfunc ("__lexf2");
4832 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
4834 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
4835 netf2_libfunc = init_one_libfunc ("__netf2");
4836 gttf2_libfunc = init_one_libfunc ("__gttf2");
4837 getf2_libfunc = init_one_libfunc ("__getf2");
4838 lttf2_libfunc = init_one_libfunc ("__lttf2");
4839 letf2_libfunc = init_one_libfunc ("__letf2");
4840 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
4842 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
4843 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
4844 floattisf_libfunc = init_one_libfunc ("__floattisf");
4846 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
4847 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
4848 floattidf_libfunc = init_one_libfunc ("__floattidf");
4850 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
4851 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
4852 floattixf_libfunc = init_one_libfunc ("__floattixf");
4854 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
4855 floatditf_libfunc = init_one_libfunc ("__floatditf");
4856 floattitf_libfunc = init_one_libfunc ("__floattitf");
4858 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
4859 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
4860 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
4862 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
4863 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
4864 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
4866 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
4867 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
4868 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
4870 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
4871 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
4872 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
4874 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
4875 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
4876 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
4878 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
4879 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
4880 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
4882 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
4883 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
4884 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
4886 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
4887 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
4888 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
4890 /* For check-memory-usage. */
4891 chkr_check_addr_libfunc = init_one_libfunc ("chkr_check_addr");
4892 chkr_set_right_libfunc = init_one_libfunc ("chkr_set_right");
4893 chkr_copy_bitmap_libfunc = init_one_libfunc ("chkr_copy_bitmap");
4894 chkr_check_exec_libfunc = init_one_libfunc ("chkr_check_exec");
4895 chkr_check_str_libfunc = init_one_libfunc ("chkr_check_str");
4897 /* For function entry/exit instrumentation. */
4898 profile_function_entry_libfunc
4899 = init_one_libfunc ("__cyg_profile_func_enter");
4900 profile_function_exit_libfunc
4901 = init_one_libfunc ("__cyg_profile_func_exit");
4903 #ifdef HAVE_conditional_trap
4904 init_traps ();
4905 #endif
4907 #ifdef INIT_TARGET_OPTABS
4908 /* Allow the target to add more libcalls or rename some, etc. */
4909 INIT_TARGET_OPTABS;
4910 #endif
4912 /* Add these GC roots. */
4913 ggc_add_root (optab_table, OTI_MAX, sizeof(optab), mark_optab);
4914 ggc_add_rtx_root (libfunc_table, LTI_MAX);
4917 #ifdef HAVE_conditional_trap
4918 /* The insn generating function can not take an rtx_code argument.
4919 TRAP_RTX is used as an rtx argument. Its code is replaced with
4920 the code to be used in the trap insn and all other fields are
4921 ignored. */
4922 static rtx trap_rtx;
4924 static void
4925 init_traps ()
4927 if (HAVE_conditional_trap)
4929 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
4930 ggc_add_rtx_root (&trap_rtx, 1);
4933 #endif
4935 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
4936 CODE. Return 0 on failure. */
4939 gen_cond_trap (code, op1, op2, tcode)
4940 enum rtx_code code ATTRIBUTE_UNUSED;
4941 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
4943 enum machine_mode mode = GET_MODE (op1);
4945 if (mode == VOIDmode)
4946 return 0;
4948 #ifdef HAVE_conditional_trap
4949 if (HAVE_conditional_trap
4950 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
4952 rtx insn;
4953 start_sequence();
4954 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
4955 PUT_CODE (trap_rtx, code);
4956 insn = gen_conditional_trap (trap_rtx, tcode);
4957 if (insn)
4959 emit_insn (insn);
4960 insn = gen_sequence ();
4962 end_sequence();
4963 return insn;
4965 #endif
4967 return 0;