1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2019 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
42 #include "langhooks.h"
43 #include "tree-vector-builder.h"
45 struct target_expmed default_target_expmed
;
47 struct target_expmed
*this_target_expmed
= &default_target_expmed
;
50 static bool store_integral_bit_field (rtx
, opt_scalar_int_mode
,
51 unsigned HOST_WIDE_INT
,
52 unsigned HOST_WIDE_INT
,
53 poly_uint64
, poly_uint64
,
54 machine_mode
, rtx
, bool, bool);
55 static void store_fixed_bit_field (rtx
, opt_scalar_int_mode
,
56 unsigned HOST_WIDE_INT
,
57 unsigned HOST_WIDE_INT
,
58 poly_uint64
, poly_uint64
,
59 rtx
, scalar_int_mode
, bool);
60 static void store_fixed_bit_field_1 (rtx
, scalar_int_mode
,
61 unsigned HOST_WIDE_INT
,
62 unsigned HOST_WIDE_INT
,
63 rtx
, scalar_int_mode
, bool);
64 static void store_split_bit_field (rtx
, opt_scalar_int_mode
,
65 unsigned HOST_WIDE_INT
,
66 unsigned HOST_WIDE_INT
,
67 poly_uint64
, poly_uint64
,
68 rtx
, scalar_int_mode
, bool);
69 static rtx
extract_integral_bit_field (rtx
, opt_scalar_int_mode
,
70 unsigned HOST_WIDE_INT
,
71 unsigned HOST_WIDE_INT
, int, rtx
,
72 machine_mode
, machine_mode
, bool, bool);
73 static rtx
extract_fixed_bit_field (machine_mode
, rtx
, opt_scalar_int_mode
,
74 unsigned HOST_WIDE_INT
,
75 unsigned HOST_WIDE_INT
, rtx
, int, bool);
76 static rtx
extract_fixed_bit_field_1 (machine_mode
, rtx
, scalar_int_mode
,
77 unsigned HOST_WIDE_INT
,
78 unsigned HOST_WIDE_INT
, rtx
, int, bool);
79 static rtx
lshift_value (machine_mode
, unsigned HOST_WIDE_INT
, int);
80 static rtx
extract_split_bit_field (rtx
, opt_scalar_int_mode
,
81 unsigned HOST_WIDE_INT
,
82 unsigned HOST_WIDE_INT
, int, bool);
83 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, machine_mode
, rtx_code_label
*);
84 static rtx
expand_smod_pow2 (scalar_int_mode
, rtx
, HOST_WIDE_INT
);
85 static rtx
expand_sdiv_pow2 (scalar_int_mode
, rtx
, HOST_WIDE_INT
);
87 /* Return a constant integer mask value of mode MODE with BITSIZE ones
88 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
89 The mask is truncated if necessary to the width of mode MODE. The
90 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
93 mask_rtx (scalar_int_mode mode
, int bitpos
, int bitsize
, bool complement
)
95 return immed_wide_int_const
96 (wi::shifted_mask (bitpos
, bitsize
, complement
,
97 GET_MODE_PRECISION (mode
)), mode
);
100 /* Test whether a value is zero of a power of two. */
101 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
102 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
104 struct init_expmed_rtl
125 rtx pow2
[MAX_BITS_PER_WORD
];
126 rtx cint
[MAX_BITS_PER_WORD
];
130 init_expmed_one_conv (struct init_expmed_rtl
*all
, scalar_int_mode to_mode
,
131 scalar_int_mode from_mode
, bool speed
)
133 int to_size
, from_size
;
136 to_size
= GET_MODE_PRECISION (to_mode
);
137 from_size
= GET_MODE_PRECISION (from_mode
);
139 /* Most partial integers have a precision less than the "full"
140 integer it requires for storage. In case one doesn't, for
141 comparison purposes here, reduce the bit size by one in that
143 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
144 && pow2p_hwi (to_size
))
146 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
147 && pow2p_hwi (from_size
))
150 /* Assume cost of zero-extend and sign-extend is the same. */
151 which
= (to_size
< from_size
? all
->trunc
: all
->zext
);
153 PUT_MODE (all
->reg
, from_mode
);
154 set_convert_cost (to_mode
, from_mode
, speed
,
155 set_src_cost (which
, to_mode
, speed
));
159 init_expmed_one_mode (struct init_expmed_rtl
*all
,
160 machine_mode mode
, int speed
)
162 int m
, n
, mode_bitsize
;
163 machine_mode mode_from
;
165 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
167 PUT_MODE (all
->reg
, mode
);
168 PUT_MODE (all
->plus
, mode
);
169 PUT_MODE (all
->neg
, mode
);
170 PUT_MODE (all
->mult
, mode
);
171 PUT_MODE (all
->sdiv
, mode
);
172 PUT_MODE (all
->udiv
, mode
);
173 PUT_MODE (all
->sdiv_32
, mode
);
174 PUT_MODE (all
->smod_32
, mode
);
175 PUT_MODE (all
->wide_trunc
, mode
);
176 PUT_MODE (all
->shift
, mode
);
177 PUT_MODE (all
->shift_mult
, mode
);
178 PUT_MODE (all
->shift_add
, mode
);
179 PUT_MODE (all
->shift_sub0
, mode
);
180 PUT_MODE (all
->shift_sub1
, mode
);
181 PUT_MODE (all
->zext
, mode
);
182 PUT_MODE (all
->trunc
, mode
);
184 set_add_cost (speed
, mode
, set_src_cost (all
->plus
, mode
, speed
));
185 set_neg_cost (speed
, mode
, set_src_cost (all
->neg
, mode
, speed
));
186 set_mul_cost (speed
, mode
, set_src_cost (all
->mult
, mode
, speed
));
187 set_sdiv_cost (speed
, mode
, set_src_cost (all
->sdiv
, mode
, speed
));
188 set_udiv_cost (speed
, mode
, set_src_cost (all
->udiv
, mode
, speed
));
190 set_sdiv_pow2_cheap (speed
, mode
, (set_src_cost (all
->sdiv_32
, mode
, speed
)
191 <= 2 * add_cost (speed
, mode
)));
192 set_smod_pow2_cheap (speed
, mode
, (set_src_cost (all
->smod_32
, mode
, speed
)
193 <= 4 * add_cost (speed
, mode
)));
195 set_shift_cost (speed
, mode
, 0, 0);
197 int cost
= add_cost (speed
, mode
);
198 set_shiftadd_cost (speed
, mode
, 0, cost
);
199 set_shiftsub0_cost (speed
, mode
, 0, cost
);
200 set_shiftsub1_cost (speed
, mode
, 0, cost
);
203 n
= MIN (MAX_BITS_PER_WORD
, mode_bitsize
);
204 for (m
= 1; m
< n
; m
++)
206 XEXP (all
->shift
, 1) = all
->cint
[m
];
207 XEXP (all
->shift_mult
, 1) = all
->pow2
[m
];
209 set_shift_cost (speed
, mode
, m
, set_src_cost (all
->shift
, mode
, speed
));
210 set_shiftadd_cost (speed
, mode
, m
, set_src_cost (all
->shift_add
, mode
,
212 set_shiftsub0_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub0
, mode
,
214 set_shiftsub1_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub1
, mode
,
218 scalar_int_mode int_mode_to
;
219 if (is_a
<scalar_int_mode
> (mode
, &int_mode_to
))
221 for (mode_from
= MIN_MODE_INT
; mode_from
<= MAX_MODE_INT
;
222 mode_from
= (machine_mode
)(mode_from
+ 1))
223 init_expmed_one_conv (all
, int_mode_to
,
224 as_a
<scalar_int_mode
> (mode_from
), speed
);
226 scalar_int_mode wider_mode
;
227 if (GET_MODE_CLASS (int_mode_to
) == MODE_INT
228 && GET_MODE_WIDER_MODE (int_mode_to
).exists (&wider_mode
))
230 PUT_MODE (all
->zext
, wider_mode
);
231 PUT_MODE (all
->wide_mult
, wider_mode
);
232 PUT_MODE (all
->wide_lshr
, wider_mode
);
233 XEXP (all
->wide_lshr
, 1)
234 = gen_int_shift_amount (wider_mode
, mode_bitsize
);
236 set_mul_widen_cost (speed
, wider_mode
,
237 set_src_cost (all
->wide_mult
, wider_mode
, speed
));
238 set_mul_highpart_cost (speed
, int_mode_to
,
239 set_src_cost (all
->wide_trunc
,
240 int_mode_to
, speed
));
248 struct init_expmed_rtl all
;
249 machine_mode mode
= QImode
;
252 memset (&all
, 0, sizeof all
);
253 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
255 all
.pow2
[m
] = GEN_INT (HOST_WIDE_INT_1
<< m
);
256 all
.cint
[m
] = GEN_INT (m
);
259 /* Avoid using hard regs in ways which may be unsupported. */
260 all
.reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
261 all
.plus
= gen_rtx_PLUS (mode
, all
.reg
, all
.reg
);
262 all
.neg
= gen_rtx_NEG (mode
, all
.reg
);
263 all
.mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
264 all
.sdiv
= gen_rtx_DIV (mode
, all
.reg
, all
.reg
);
265 all
.udiv
= gen_rtx_UDIV (mode
, all
.reg
, all
.reg
);
266 all
.sdiv_32
= gen_rtx_DIV (mode
, all
.reg
, all
.pow2
[5]);
267 all
.smod_32
= gen_rtx_MOD (mode
, all
.reg
, all
.pow2
[5]);
268 all
.zext
= gen_rtx_ZERO_EXTEND (mode
, all
.reg
);
269 all
.wide_mult
= gen_rtx_MULT (mode
, all
.zext
, all
.zext
);
270 all
.wide_lshr
= gen_rtx_LSHIFTRT (mode
, all
.wide_mult
, all
.reg
);
271 all
.wide_trunc
= gen_rtx_TRUNCATE (mode
, all
.wide_lshr
);
272 all
.shift
= gen_rtx_ASHIFT (mode
, all
.reg
, all
.reg
);
273 all
.shift_mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
274 all
.shift_add
= gen_rtx_PLUS (mode
, all
.shift_mult
, all
.reg
);
275 all
.shift_sub0
= gen_rtx_MINUS (mode
, all
.shift_mult
, all
.reg
);
276 all
.shift_sub1
= gen_rtx_MINUS (mode
, all
.reg
, all
.shift_mult
);
277 all
.trunc
= gen_rtx_TRUNCATE (mode
, all
.reg
);
279 for (speed
= 0; speed
< 2; speed
++)
281 crtl
->maybe_hot_insn_p
= speed
;
282 set_zero_cost (speed
, set_src_cost (const0_rtx
, mode
, speed
));
284 for (mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
;
285 mode
= (machine_mode
)(mode
+ 1))
286 init_expmed_one_mode (&all
, mode
, speed
);
288 if (MIN_MODE_PARTIAL_INT
!= VOIDmode
)
289 for (mode
= MIN_MODE_PARTIAL_INT
; mode
<= MAX_MODE_PARTIAL_INT
;
290 mode
= (machine_mode
)(mode
+ 1))
291 init_expmed_one_mode (&all
, mode
, speed
);
293 if (MIN_MODE_VECTOR_INT
!= VOIDmode
)
294 for (mode
= MIN_MODE_VECTOR_INT
; mode
<= MAX_MODE_VECTOR_INT
;
295 mode
= (machine_mode
)(mode
+ 1))
296 init_expmed_one_mode (&all
, mode
, speed
);
299 if (alg_hash_used_p ())
301 struct alg_hash_entry
*p
= alg_hash_entry_ptr (0);
302 memset (p
, 0, sizeof (*p
) * NUM_ALG_HASH_ENTRIES
);
305 set_alg_hash_used_p (true);
306 default_rtl_profile ();
308 ggc_free (all
.trunc
);
309 ggc_free (all
.shift_sub1
);
310 ggc_free (all
.shift_sub0
);
311 ggc_free (all
.shift_add
);
312 ggc_free (all
.shift_mult
);
313 ggc_free (all
.shift
);
314 ggc_free (all
.wide_trunc
);
315 ggc_free (all
.wide_lshr
);
316 ggc_free (all
.wide_mult
);
318 ggc_free (all
.smod_32
);
319 ggc_free (all
.sdiv_32
);
328 /* Return an rtx representing minus the value of X.
329 MODE is the intended mode of the result,
330 useful if X is a CONST_INT. */
333 negate_rtx (machine_mode mode
, rtx x
)
335 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
338 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
343 /* Whether reverse storage order is supported on the target. */
344 static int reverse_storage_order_supported
= -1;
346 /* Check whether reverse storage order is supported on the target. */
349 check_reverse_storage_order_support (void)
351 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
353 reverse_storage_order_supported
= 0;
354 sorry ("reverse scalar storage order");
357 reverse_storage_order_supported
= 1;
360 /* Whether reverse FP storage order is supported on the target. */
361 static int reverse_float_storage_order_supported
= -1;
363 /* Check whether reverse FP storage order is supported on the target. */
366 check_reverse_float_storage_order_support (void)
368 if (FLOAT_WORDS_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
370 reverse_float_storage_order_supported
= 0;
371 sorry ("reverse floating-point scalar storage order");
374 reverse_float_storage_order_supported
= 1;
377 /* Return an rtx representing value of X with reverse storage order.
378 MODE is the intended mode of the result,
379 useful if X is a CONST_INT. */
382 flip_storage_order (machine_mode mode
, rtx x
)
384 scalar_int_mode int_mode
;
390 if (COMPLEX_MODE_P (mode
))
392 rtx real
= read_complex_part (x
, false);
393 rtx imag
= read_complex_part (x
, true);
395 real
= flip_storage_order (GET_MODE_INNER (mode
), real
);
396 imag
= flip_storage_order (GET_MODE_INNER (mode
), imag
);
398 return gen_rtx_CONCAT (mode
, real
, imag
);
401 if (__builtin_expect (reverse_storage_order_supported
< 0, 0))
402 check_reverse_storage_order_support ();
404 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
406 if (FLOAT_MODE_P (mode
)
407 && __builtin_expect (reverse_float_storage_order_supported
< 0, 0))
408 check_reverse_float_storage_order_support ();
410 if (!int_mode_for_size (GET_MODE_PRECISION (mode
), 0).exists (&int_mode
))
412 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode
));
415 x
= gen_lowpart (int_mode
, x
);
418 result
= simplify_unary_operation (BSWAP
, int_mode
, x
, int_mode
);
420 result
= expand_unop (int_mode
, bswap_optab
, x
, NULL_RTX
, 1);
422 if (int_mode
!= mode
)
423 result
= gen_lowpart (mode
, result
);
428 /* If MODE is set, adjust bitfield memory MEM so that it points to the
429 first unit of mode MODE that contains a bitfield of size BITSIZE at
430 bit position BITNUM. If MODE is not set, return a BLKmode reference
431 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
432 of the field within the new memory. */
435 narrow_bit_field_mem (rtx mem
, opt_scalar_int_mode mode
,
436 unsigned HOST_WIDE_INT bitsize
,
437 unsigned HOST_WIDE_INT bitnum
,
438 unsigned HOST_WIDE_INT
*new_bitnum
)
440 scalar_int_mode imode
;
441 if (mode
.exists (&imode
))
443 unsigned int unit
= GET_MODE_BITSIZE (imode
);
444 *new_bitnum
= bitnum
% unit
;
445 HOST_WIDE_INT offset
= (bitnum
- *new_bitnum
) / BITS_PER_UNIT
;
446 return adjust_bitfield_address (mem
, imode
, offset
);
450 *new_bitnum
= bitnum
% BITS_PER_UNIT
;
451 HOST_WIDE_INT offset
= bitnum
/ BITS_PER_UNIT
;
452 HOST_WIDE_INT size
= ((*new_bitnum
+ bitsize
+ BITS_PER_UNIT
- 1)
454 return adjust_bitfield_address_size (mem
, BLKmode
, offset
, size
);
458 /* The caller wants to perform insertion or extraction PATTERN on a
459 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
460 BITREGION_START and BITREGION_END are as for store_bit_field
461 and FIELDMODE is the natural mode of the field.
463 Search for a mode that is compatible with the memory access
464 restrictions and (where applicable) with a register insertion or
465 extraction. Return the new memory on success, storing the adjusted
466 bit position in *NEW_BITNUM. Return null otherwise. */
469 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern
,
470 rtx op0
, HOST_WIDE_INT bitsize
,
471 HOST_WIDE_INT bitnum
,
472 poly_uint64 bitregion_start
,
473 poly_uint64 bitregion_end
,
474 machine_mode fieldmode
,
475 unsigned HOST_WIDE_INT
*new_bitnum
)
477 bit_field_mode_iterator
iter (bitsize
, bitnum
, bitregion_start
,
478 bitregion_end
, MEM_ALIGN (op0
),
479 MEM_VOLATILE_P (op0
));
480 scalar_int_mode best_mode
;
481 if (iter
.next_mode (&best_mode
))
483 /* We can use a memory in BEST_MODE. See whether this is true for
484 any wider modes. All other things being equal, we prefer to
485 use the widest mode possible because it tends to expose more
486 CSE opportunities. */
487 if (!iter
.prefer_smaller_modes ())
489 /* Limit the search to the mode required by the corresponding
490 register insertion or extraction instruction, if any. */
491 scalar_int_mode limit_mode
= word_mode
;
492 extraction_insn insn
;
493 if (get_best_reg_extraction_insn (&insn
, pattern
,
494 GET_MODE_BITSIZE (best_mode
),
496 limit_mode
= insn
.field_mode
;
498 scalar_int_mode wider_mode
;
499 while (iter
.next_mode (&wider_mode
)
500 && GET_MODE_SIZE (wider_mode
) <= GET_MODE_SIZE (limit_mode
))
501 best_mode
= wider_mode
;
503 return narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
,
509 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
510 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
511 offset is then BITNUM / BITS_PER_UNIT. */
514 lowpart_bit_field_p (poly_uint64 bitnum
, poly_uint64 bitsize
,
515 machine_mode struct_mode
)
517 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (struct_mode
);
518 if (BYTES_BIG_ENDIAN
)
519 return (multiple_p (bitnum
, BITS_PER_UNIT
)
520 && (known_eq (bitnum
+ bitsize
, GET_MODE_BITSIZE (struct_mode
))
521 || multiple_p (bitnum
+ bitsize
,
522 regsize
* BITS_PER_UNIT
)));
524 return multiple_p (bitnum
, regsize
* BITS_PER_UNIT
);
527 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
528 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
529 Return false if the access would touch memory outside the range
530 BITREGION_START to BITREGION_END for conformance to the C++ memory
534 strict_volatile_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
535 unsigned HOST_WIDE_INT bitnum
,
536 scalar_int_mode fieldmode
,
537 poly_uint64 bitregion_start
,
538 poly_uint64 bitregion_end
)
540 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (fieldmode
);
542 /* -fstrict-volatile-bitfields must be enabled and we must have a
545 || !MEM_VOLATILE_P (op0
)
546 || flag_strict_volatile_bitfields
<= 0)
549 /* The bit size must not be larger than the field mode, and
550 the field mode must not be larger than a word. */
551 if (bitsize
> modesize
|| modesize
> BITS_PER_WORD
)
554 /* Check for cases of unaligned fields that must be split. */
555 if (bitnum
% modesize
+ bitsize
> modesize
)
558 /* The memory must be sufficiently aligned for a MODESIZE access.
559 This condition guarantees, that the memory access will not
560 touch anything after the end of the structure. */
561 if (MEM_ALIGN (op0
) < modesize
)
564 /* Check for cases where the C++ memory model applies. */
565 if (maybe_ne (bitregion_end
, 0U)
566 && (maybe_lt (bitnum
- bitnum
% modesize
, bitregion_start
)
567 || maybe_gt (bitnum
- bitnum
% modesize
+ modesize
- 1,
574 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
575 bit number BITNUM can be treated as a simple value of mode MODE.
576 Store the byte offset in *BYTENUM if so. */
579 simple_mem_bitfield_p (rtx op0
, poly_uint64 bitsize
, poly_uint64 bitnum
,
580 machine_mode mode
, poly_uint64
*bytenum
)
583 && multiple_p (bitnum
, BITS_PER_UNIT
, bytenum
)
584 && known_eq (bitsize
, GET_MODE_BITSIZE (mode
))
585 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (op0
))
586 || (multiple_p (bitnum
, GET_MODE_ALIGNMENT (mode
))
587 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode
))));
590 /* Try to use instruction INSV to store VALUE into a field of OP0.
591 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
592 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
593 are as for store_bit_field. */
596 store_bit_field_using_insv (const extraction_insn
*insv
, rtx op0
,
597 opt_scalar_int_mode op0_mode
,
598 unsigned HOST_WIDE_INT bitsize
,
599 unsigned HOST_WIDE_INT bitnum
,
600 rtx value
, scalar_int_mode value_mode
)
602 class expand_operand ops
[4];
605 rtx_insn
*last
= get_last_insn ();
606 bool copy_back
= false;
608 scalar_int_mode op_mode
= insv
->field_mode
;
609 unsigned int unit
= GET_MODE_BITSIZE (op_mode
);
610 if (bitsize
== 0 || bitsize
> unit
)
614 /* Get a reference to the first byte of the field. */
615 xop0
= narrow_bit_field_mem (xop0
, insv
->struct_mode
, bitsize
, bitnum
,
619 /* Convert from counting within OP0 to counting in OP_MODE. */
620 if (BYTES_BIG_ENDIAN
)
621 bitnum
+= unit
- GET_MODE_BITSIZE (op0_mode
.require ());
623 /* If xop0 is a register, we need it in OP_MODE
624 to make it acceptable to the format of insv. */
625 if (GET_CODE (xop0
) == SUBREG
)
626 /* We can't just change the mode, because this might clobber op0,
627 and we will need the original value of op0 if insv fails. */
628 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
629 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
630 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
633 /* If the destination is a paradoxical subreg such that we need a
634 truncate to the inner mode, perform the insertion on a temporary and
635 truncate the result to the original destination. Note that we can't
636 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
637 X) 0)) is (reg:N X). */
638 if (GET_CODE (xop0
) == SUBREG
639 && REG_P (SUBREG_REG (xop0
))
640 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0
)),
643 rtx tem
= gen_reg_rtx (op_mode
);
644 emit_move_insn (tem
, xop0
);
649 /* There are similar overflow check at the start of store_bit_field_1,
650 but that only check the situation where the field lies completely
651 outside the register, while there do have situation where the field
652 lies partialy in the register, we need to adjust bitsize for this
653 partial overflow situation. Without this fix, pr48335-2.c on big-endian
654 will broken on those arch support bit insert instruction, like arm, aarch64
656 if (bitsize
+ bitnum
> unit
&& bitnum
< unit
)
658 warning (OPT_Wextra
, "write of %wu-bit data outside the bound of "
659 "destination object, data truncated into %wu-bit",
660 bitsize
, unit
- bitnum
);
661 bitsize
= unit
- bitnum
;
664 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
665 "backwards" from the size of the unit we are inserting into.
666 Otherwise, we count bits from the most significant on a
667 BYTES/BITS_BIG_ENDIAN machine. */
669 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
670 bitnum
= unit
- bitsize
- bitnum
;
672 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
674 if (value_mode
!= op_mode
)
676 if (GET_MODE_BITSIZE (value_mode
) >= bitsize
)
679 /* Optimization: Don't bother really extending VALUE
680 if it has all the bits we will actually use. However,
681 if we must narrow it, be sure we do it correctly. */
683 if (GET_MODE_SIZE (value_mode
) < GET_MODE_SIZE (op_mode
))
685 tmp
= simplify_subreg (op_mode
, value1
, value_mode
, 0);
687 tmp
= simplify_gen_subreg (op_mode
,
688 force_reg (value_mode
, value1
),
693 tmp
= gen_lowpart_if_possible (op_mode
, value1
);
695 tmp
= gen_lowpart (op_mode
, force_reg (value_mode
, value1
));
699 else if (CONST_INT_P (value
))
700 value1
= gen_int_mode (INTVAL (value
), op_mode
);
702 /* Parse phase is supposed to make VALUE's data type
703 match that of the component reference, which is a type
704 at least as wide as the field; so VALUE should have
705 a mode that corresponds to that type. */
706 gcc_assert (CONSTANT_P (value
));
709 create_fixed_operand (&ops
[0], xop0
);
710 create_integer_operand (&ops
[1], bitsize
);
711 create_integer_operand (&ops
[2], bitnum
);
712 create_input_operand (&ops
[3], value1
, op_mode
);
713 if (maybe_expand_insn (insv
->icode
, 4, ops
))
716 convert_move (op0
, xop0
, true);
719 delete_insns_since (last
);
723 /* A subroutine of store_bit_field, with the same arguments. Return true
724 if the operation could be implemented.
726 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
727 no other way of implementing the operation. If FALLBACK_P is false,
728 return false instead. */
731 store_bit_field_1 (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
732 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
733 machine_mode fieldmode
,
734 rtx value
, bool reverse
, bool fallback_p
)
738 while (GET_CODE (op0
) == SUBREG
)
740 bitnum
+= subreg_memory_offset (op0
) * BITS_PER_UNIT
;
741 op0
= SUBREG_REG (op0
);
744 /* No action is needed if the target is a register and if the field
745 lies completely outside that register. This can occur if the source
746 code contains an out-of-bounds access to a small array. */
747 if (REG_P (op0
) && known_ge (bitnum
, GET_MODE_BITSIZE (GET_MODE (op0
))))
750 /* Use vec_set patterns for inserting parts of vectors whenever
752 machine_mode outermode
= GET_MODE (op0
);
753 scalar_mode innermode
= GET_MODE_INNER (outermode
);
755 if (VECTOR_MODE_P (outermode
)
757 && optab_handler (vec_set_optab
, outermode
) != CODE_FOR_nothing
758 && fieldmode
== innermode
759 && known_eq (bitsize
, GET_MODE_BITSIZE (innermode
))
760 && multiple_p (bitnum
, GET_MODE_BITSIZE (innermode
), &pos
))
762 class expand_operand ops
[3];
763 enum insn_code icode
= optab_handler (vec_set_optab
, outermode
);
765 create_fixed_operand (&ops
[0], op0
);
766 create_input_operand (&ops
[1], value
, innermode
);
767 create_integer_operand (&ops
[2], pos
);
768 if (maybe_expand_insn (icode
, 3, ops
))
772 /* If the target is a register, overwriting the entire object, or storing
773 a full-word or multi-word field can be done with just a SUBREG. */
775 && known_eq (bitsize
, GET_MODE_BITSIZE (fieldmode
)))
777 /* Use the subreg machinery either to narrow OP0 to the required
778 words or to cope with mode punning between equal-sized modes.
779 In the latter case, use subreg on the rhs side, not lhs. */
781 HOST_WIDE_INT regnum
;
782 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (GET_MODE (op0
));
783 if (known_eq (bitnum
, 0U)
784 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
))))
786 sub
= simplify_gen_subreg (GET_MODE (op0
), value
, fieldmode
, 0);
790 sub
= flip_storage_order (GET_MODE (op0
), sub
);
791 emit_move_insn (op0
, sub
);
795 else if (constant_multiple_p (bitnum
, regsize
* BITS_PER_UNIT
, ®num
)
796 && multiple_p (bitsize
, regsize
* BITS_PER_UNIT
))
798 sub
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
803 value
= flip_storage_order (fieldmode
, value
);
804 emit_move_insn (sub
, value
);
810 /* If the target is memory, storing any naturally aligned field can be
811 done with a simple store. For targets that support fast unaligned
812 memory, any naturally sized, unit aligned field can be done directly. */
814 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, fieldmode
, &bytenum
))
816 op0
= adjust_bitfield_address (op0
, fieldmode
, bytenum
);
818 value
= flip_storage_order (fieldmode
, value
);
819 emit_move_insn (op0
, value
);
823 /* It's possible we'll need to handle other cases here for
824 polynomial bitnum and bitsize. */
826 /* From here on we need to be looking at a fixed-size insertion. */
827 unsigned HOST_WIDE_INT ibitsize
= bitsize
.to_constant ();
828 unsigned HOST_WIDE_INT ibitnum
= bitnum
.to_constant ();
830 /* Make sure we are playing with integral modes. Pun with subregs
831 if we aren't. This must come after the entire register case above,
832 since that case is valid for any mode. The following cases are only
833 valid for integral modes. */
834 opt_scalar_int_mode op0_mode
= int_mode_for_mode (GET_MODE (op0
));
835 scalar_int_mode imode
;
836 if (!op0_mode
.exists (&imode
) || imode
!= GET_MODE (op0
))
839 op0
= adjust_bitfield_address_size (op0
, op0_mode
.else_blk (),
842 op0
= gen_lowpart (op0_mode
.require (), op0
);
845 return store_integral_bit_field (op0
, op0_mode
, ibitsize
, ibitnum
,
846 bitregion_start
, bitregion_end
,
847 fieldmode
, value
, reverse
, fallback_p
);
850 /* Subroutine of store_bit_field_1, with the same arguments, except
851 that BITSIZE and BITNUM are constant. Handle cases specific to
852 integral modes. If OP0_MODE is defined, it is the mode of OP0,
853 otherwise OP0 is a BLKmode MEM. */
856 store_integral_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
857 unsigned HOST_WIDE_INT bitsize
,
858 unsigned HOST_WIDE_INT bitnum
,
859 poly_uint64 bitregion_start
,
860 poly_uint64 bitregion_end
,
861 machine_mode fieldmode
,
862 rtx value
, bool reverse
, bool fallback_p
)
864 /* Storing an lsb-aligned field in a register
865 can be done with a movstrict instruction. */
869 && lowpart_bit_field_p (bitnum
, bitsize
, op0_mode
.require ())
870 && known_eq (bitsize
, GET_MODE_BITSIZE (fieldmode
))
871 && optab_handler (movstrict_optab
, fieldmode
) != CODE_FOR_nothing
)
873 class expand_operand ops
[2];
874 enum insn_code icode
= optab_handler (movstrict_optab
, fieldmode
);
876 unsigned HOST_WIDE_INT subreg_off
;
878 if (GET_CODE (arg0
) == SUBREG
)
880 /* Else we've got some float mode source being extracted into
881 a different float mode destination -- this combination of
882 subregs results in Severe Tire Damage. */
883 gcc_assert (GET_MODE (SUBREG_REG (arg0
)) == fieldmode
884 || GET_MODE_CLASS (fieldmode
) == MODE_INT
885 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
886 arg0
= SUBREG_REG (arg0
);
889 subreg_off
= bitnum
/ BITS_PER_UNIT
;
890 if (validate_subreg (fieldmode
, GET_MODE (arg0
), arg0
, subreg_off
))
892 arg0
= gen_rtx_SUBREG (fieldmode
, arg0
, subreg_off
);
894 create_fixed_operand (&ops
[0], arg0
);
895 /* Shrink the source operand to FIELDMODE. */
896 create_convert_operand_to (&ops
[1], value
, fieldmode
, false);
897 if (maybe_expand_insn (icode
, 2, ops
))
902 /* Handle fields bigger than a word. */
904 if (bitsize
> BITS_PER_WORD
)
906 /* Here we transfer the words of the field
907 in the order least significant first.
908 This is because the most significant word is the one which may
910 However, only do that if the value is not BLKmode. */
912 const bool backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
913 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
917 /* This is the mode we must force value to, so that there will be enough
918 subwords to extract. Note that fieldmode will often (always?) be
919 VOIDmode, because that is what store_field uses to indicate that this
920 is a bit field, but passing VOIDmode to operand_subword_force
923 The mode must be fixed-size, since insertions into variable-sized
924 objects are meant to be handled before calling this function. */
925 fixed_size_mode value_mode
= as_a
<fixed_size_mode
> (GET_MODE (value
));
926 if (value_mode
== VOIDmode
)
927 value_mode
= smallest_int_mode_for_size (nwords
* BITS_PER_WORD
);
929 last
= get_last_insn ();
930 for (i
= 0; i
< nwords
; i
++)
932 /* If I is 0, use the low-order word in both field and target;
933 if I is 1, use the next to lowest word; and so on. */
934 unsigned int wordnum
= (backwards
935 ? GET_MODE_SIZE (value_mode
) / UNITS_PER_WORD
938 unsigned int bit_offset
= (backwards
^ reverse
939 ? MAX ((int) bitsize
- ((int) i
+ 1)
942 : (int) i
* BITS_PER_WORD
);
943 rtx value_word
= operand_subword_force (value
, wordnum
, value_mode
);
944 unsigned HOST_WIDE_INT new_bitsize
=
945 MIN (BITS_PER_WORD
, bitsize
- i
* BITS_PER_WORD
);
947 /* If the remaining chunk doesn't have full wordsize we have
948 to make sure that for big-endian machines the higher order
950 if (new_bitsize
< BITS_PER_WORD
&& BYTES_BIG_ENDIAN
&& !backwards
)
952 int shift
= BITS_PER_WORD
- new_bitsize
;
953 rtx shift_rtx
= gen_int_shift_amount (word_mode
, shift
);
954 value_word
= simplify_expand_binop (word_mode
, lshr_optab
,
955 value_word
, shift_rtx
,
960 if (!store_bit_field_1 (op0
, new_bitsize
,
962 bitregion_start
, bitregion_end
,
964 value_word
, reverse
, fallback_p
))
966 delete_insns_since (last
);
973 /* If VALUE has a floating-point or complex mode, access it as an
974 integer of the corresponding size. This can occur on a machine
975 with 64 bit registers that uses SFmode for float. It can also
976 occur for unaligned float or complex fields. */
977 rtx orig_value
= value
;
978 scalar_int_mode value_mode
;
979 if (GET_MODE (value
) == VOIDmode
)
980 /* By this point we've dealt with values that are bigger than a word,
981 so word_mode is a conservatively correct choice. */
982 value_mode
= word_mode
;
983 else if (!is_a
<scalar_int_mode
> (GET_MODE (value
), &value_mode
))
985 value_mode
= int_mode_for_mode (GET_MODE (value
)).require ();
986 value
= gen_reg_rtx (value_mode
);
987 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
990 /* If OP0 is a multi-word register, narrow it to the affected word.
991 If the region spans two words, defer to store_split_bit_field.
992 Don't do this if op0 is a single hard register wider than word
993 such as a float or vector register. */
995 && GET_MODE_SIZE (op0_mode
.require ()) > UNITS_PER_WORD
997 || !HARD_REGISTER_P (op0
)
998 || hard_regno_nregs (REGNO (op0
), op0_mode
.require ()) != 1))
1000 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
1005 store_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1006 bitregion_start
, bitregion_end
,
1007 value
, value_mode
, reverse
);
1010 op0
= simplify_gen_subreg (word_mode
, op0
, op0_mode
.require (),
1011 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1013 op0_mode
= word_mode
;
1014 bitnum
%= BITS_PER_WORD
;
1017 /* From here on we can assume that the field to be stored in fits
1018 within a word. If the destination is a register, it too fits
1021 extraction_insn insv
;
1024 && get_best_reg_extraction_insn (&insv
, EP_insv
,
1025 GET_MODE_BITSIZE (op0_mode
.require ()),
1027 && store_bit_field_using_insv (&insv
, op0
, op0_mode
,
1028 bitsize
, bitnum
, value
, value_mode
))
1031 /* If OP0 is a memory, try copying it to a register and seeing if a
1032 cheap register alternative is available. */
1033 if (MEM_P (op0
) && !reverse
)
1035 if (get_best_mem_extraction_insn (&insv
, EP_insv
, bitsize
, bitnum
,
1037 && store_bit_field_using_insv (&insv
, op0
, op0_mode
,
1038 bitsize
, bitnum
, value
, value_mode
))
1041 rtx_insn
*last
= get_last_insn ();
1043 /* Try loading part of OP0 into a register, inserting the bitfield
1044 into that, and then copying the result back to OP0. */
1045 unsigned HOST_WIDE_INT bitpos
;
1046 rtx xop0
= adjust_bit_field_mem_for_reg (EP_insv
, op0
, bitsize
, bitnum
,
1047 bitregion_start
, bitregion_end
,
1048 fieldmode
, &bitpos
);
1051 rtx tempreg
= copy_to_reg (xop0
);
1052 if (store_bit_field_1 (tempreg
, bitsize
, bitpos
,
1053 bitregion_start
, bitregion_end
,
1054 fieldmode
, orig_value
, reverse
, false))
1056 emit_move_insn (xop0
, tempreg
);
1059 delete_insns_since (last
);
1066 store_fixed_bit_field (op0
, op0_mode
, bitsize
, bitnum
, bitregion_start
,
1067 bitregion_end
, value
, value_mode
, reverse
);
1071 /* Generate code to store value from rtx VALUE
1072 into a bit-field within structure STR_RTX
1073 containing BITSIZE bits starting at bit BITNUM.
1075 BITREGION_START is bitpos of the first bitfield in this region.
1076 BITREGION_END is the bitpos of the ending bitfield in this region.
1077 These two fields are 0, if the C++ memory model does not apply,
1078 or we are not interested in keeping track of bitfield regions.
1080 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1082 If REVERSE is true, the store is to be done in reverse order. */
1085 store_bit_field (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
1086 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
1087 machine_mode fieldmode
,
1088 rtx value
, bool reverse
)
1090 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1091 unsigned HOST_WIDE_INT ibitsize
= 0, ibitnum
= 0;
1092 scalar_int_mode int_mode
;
1093 if (bitsize
.is_constant (&ibitsize
)
1094 && bitnum
.is_constant (&ibitnum
)
1095 && is_a
<scalar_int_mode
> (fieldmode
, &int_mode
)
1096 && strict_volatile_bitfield_p (str_rtx
, ibitsize
, ibitnum
, int_mode
,
1097 bitregion_start
, bitregion_end
))
1099 /* Storing of a full word can be done with a simple store.
1100 We know here that the field can be accessed with one single
1101 instruction. For targets that support unaligned memory,
1102 an unaligned access may be necessary. */
1103 if (ibitsize
== GET_MODE_BITSIZE (int_mode
))
1105 str_rtx
= adjust_bitfield_address (str_rtx
, int_mode
,
1106 ibitnum
/ BITS_PER_UNIT
);
1108 value
= flip_storage_order (int_mode
, value
);
1109 gcc_assert (ibitnum
% BITS_PER_UNIT
== 0);
1110 emit_move_insn (str_rtx
, value
);
1116 str_rtx
= narrow_bit_field_mem (str_rtx
, int_mode
, ibitsize
,
1118 gcc_assert (ibitnum
+ ibitsize
<= GET_MODE_BITSIZE (int_mode
));
1119 temp
= copy_to_reg (str_rtx
);
1120 if (!store_bit_field_1 (temp
, ibitsize
, ibitnum
, 0, 0,
1121 int_mode
, value
, reverse
, true))
1124 emit_move_insn (str_rtx
, temp
);
1130 /* Under the C++0x memory model, we must not touch bits outside the
1131 bit region. Adjust the address to start at the beginning of the
1133 if (MEM_P (str_rtx
) && maybe_ne (bitregion_start
, 0U))
1135 scalar_int_mode best_mode
;
1136 machine_mode addr_mode
= VOIDmode
;
1138 poly_uint64 offset
= exact_div (bitregion_start
, BITS_PER_UNIT
);
1139 bitnum
-= bitregion_start
;
1140 poly_int64 size
= bits_to_bytes_round_up (bitnum
+ bitsize
);
1141 bitregion_end
-= bitregion_start
;
1142 bitregion_start
= 0;
1143 if (bitsize
.is_constant (&ibitsize
)
1144 && bitnum
.is_constant (&ibitnum
)
1145 && get_best_mode (ibitsize
, ibitnum
,
1146 bitregion_start
, bitregion_end
,
1147 MEM_ALIGN (str_rtx
), INT_MAX
,
1148 MEM_VOLATILE_P (str_rtx
), &best_mode
))
1149 addr_mode
= best_mode
;
1150 str_rtx
= adjust_bitfield_address_size (str_rtx
, addr_mode
,
1154 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
,
1155 bitregion_start
, bitregion_end
,
1156 fieldmode
, value
, reverse
, true))
1160 /* Use shifts and boolean operations to store VALUE into a bit field of
1161 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1162 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1165 If REVERSE is true, the store is to be done in reverse order. */
1168 store_fixed_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1169 unsigned HOST_WIDE_INT bitsize
,
1170 unsigned HOST_WIDE_INT bitnum
,
1171 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
1172 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1174 /* There is a case not handled here:
1175 a structure with a known alignment of just a halfword
1176 and a field split across two aligned halfwords within the structure.
1177 Or likewise a structure with a known alignment of just a byte
1178 and a field split across two bytes.
1179 Such cases are not supposed to be able to occur. */
1181 scalar_int_mode best_mode
;
1184 unsigned int max_bitsize
= BITS_PER_WORD
;
1185 scalar_int_mode imode
;
1186 if (op0_mode
.exists (&imode
) && GET_MODE_BITSIZE (imode
) < max_bitsize
)
1187 max_bitsize
= GET_MODE_BITSIZE (imode
);
1189 if (!get_best_mode (bitsize
, bitnum
, bitregion_start
, bitregion_end
,
1190 MEM_ALIGN (op0
), max_bitsize
, MEM_VOLATILE_P (op0
),
1193 /* The only way this should occur is if the field spans word
1195 store_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1196 bitregion_start
, bitregion_end
,
1197 value
, value_mode
, reverse
);
1201 op0
= narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
, &bitnum
);
1204 best_mode
= op0_mode
.require ();
1206 store_fixed_bit_field_1 (op0
, best_mode
, bitsize
, bitnum
,
1207 value
, value_mode
, reverse
);
1210 /* Helper function for store_fixed_bit_field, stores
1211 the bit field always using MODE, which is the mode of OP0. The other
1212 arguments are as for store_fixed_bit_field. */
1215 store_fixed_bit_field_1 (rtx op0
, scalar_int_mode mode
,
1216 unsigned HOST_WIDE_INT bitsize
,
1217 unsigned HOST_WIDE_INT bitnum
,
1218 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1224 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1225 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1227 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1228 /* BITNUM is the distance between our msb
1229 and that of the containing datum.
1230 Convert it to the distance from the lsb. */
1231 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1233 /* Now BITNUM is always the distance between our lsb
1236 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1237 we must first convert its mode to MODE. */
1239 if (CONST_INT_P (value
))
1241 unsigned HOST_WIDE_INT v
= UINTVAL (value
);
1243 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1244 v
&= (HOST_WIDE_INT_1U
<< bitsize
) - 1;
1248 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
1249 && v
== (HOST_WIDE_INT_1U
<< bitsize
) - 1)
1250 || (bitsize
== HOST_BITS_PER_WIDE_INT
1251 && v
== HOST_WIDE_INT_M1U
))
1254 value
= lshift_value (mode
, v
, bitnum
);
1258 int must_and
= (GET_MODE_BITSIZE (value_mode
) != bitsize
1259 && bitnum
+ bitsize
!= GET_MODE_BITSIZE (mode
));
1261 if (value_mode
!= mode
)
1262 value
= convert_to_mode (mode
, value
, 1);
1265 value
= expand_binop (mode
, and_optab
, value
,
1266 mask_rtx (mode
, 0, bitsize
, 0),
1267 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1269 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
1270 bitnum
, NULL_RTX
, 1);
1274 value
= flip_storage_order (mode
, value
);
1276 /* Now clear the chosen bits in OP0,
1277 except that if VALUE is -1 we need not bother. */
1278 /* We keep the intermediates in registers to allow CSE to combine
1279 consecutive bitfield assignments. */
1281 temp
= force_reg (mode
, op0
);
1285 rtx mask
= mask_rtx (mode
, bitnum
, bitsize
, 1);
1287 mask
= flip_storage_order (mode
, mask
);
1288 temp
= expand_binop (mode
, and_optab
, temp
, mask
,
1289 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1290 temp
= force_reg (mode
, temp
);
1293 /* Now logical-or VALUE into OP0, unless it is zero. */
1297 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1298 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1299 temp
= force_reg (mode
, temp
);
1304 op0
= copy_rtx (op0
);
1305 emit_move_insn (op0
, temp
);
1309 /* Store a bit field that is split across multiple accessible memory objects.
1311 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1312 BITSIZE is the field width; BITPOS the position of its first bit
1314 VALUE is the value to store, which has mode VALUE_MODE.
1315 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1318 If REVERSE is true, the store is to be done in reverse order.
1320 This does not yet handle fields wider than BITS_PER_WORD. */
1323 store_split_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1324 unsigned HOST_WIDE_INT bitsize
,
1325 unsigned HOST_WIDE_INT bitpos
,
1326 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
1327 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1329 unsigned int unit
, total_bits
, bitsdone
= 0;
1331 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1333 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1334 unit
= BITS_PER_WORD
;
1336 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1338 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1339 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1340 again, and we will mutually recurse forever. */
1341 if (MEM_P (op0
) && op0_mode
.exists ())
1342 unit
= MIN (unit
, GET_MODE_BITSIZE (op0_mode
.require ()));
1344 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1345 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1346 that VALUE might be a floating-point constant. */
1347 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1349 rtx word
= gen_lowpart_common (word_mode
, value
);
1351 if (word
&& (value
!= word
))
1354 value
= gen_lowpart_common (word_mode
, force_reg (value_mode
, value
));
1355 value_mode
= word_mode
;
1358 total_bits
= GET_MODE_BITSIZE (value_mode
);
1360 while (bitsdone
< bitsize
)
1362 unsigned HOST_WIDE_INT thissize
;
1363 unsigned HOST_WIDE_INT thispos
;
1364 unsigned HOST_WIDE_INT offset
;
1367 offset
= (bitpos
+ bitsdone
) / unit
;
1368 thispos
= (bitpos
+ bitsdone
) % unit
;
1370 /* When region of bytes we can touch is restricted, decrease
1371 UNIT close to the end of the region as needed. If op0 is a REG
1372 or SUBREG of REG, don't do this, as there can't be data races
1373 on a register and we can expand shorter code in some cases. */
1374 if (maybe_ne (bitregion_end
, 0U)
1375 && unit
> BITS_PER_UNIT
1376 && maybe_gt (bitpos
+ bitsdone
- thispos
+ unit
, bitregion_end
+ 1)
1378 && (GET_CODE (op0
) != SUBREG
|| !REG_P (SUBREG_REG (op0
))))
1384 /* THISSIZE must not overrun a word boundary. Otherwise,
1385 store_fixed_bit_field will call us again, and we will mutually
1387 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1388 thissize
= MIN (thissize
, unit
- thispos
);
1390 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1392 /* Fetch successively less significant portions. */
1393 if (CONST_INT_P (value
))
1394 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1395 >> (bitsize
- bitsdone
- thissize
))
1396 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1397 /* Likewise, but the source is little-endian. */
1399 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1401 bitsize
- bitsdone
- thissize
,
1402 NULL_RTX
, 1, false);
1404 /* The args are chosen so that the last part includes the
1405 lsb. Give extract_bit_field the value it needs (with
1406 endianness compensation) to fetch the piece we want. */
1407 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1409 total_bits
- bitsize
+ bitsdone
,
1410 NULL_RTX
, 1, false);
1414 /* Fetch successively more significant portions. */
1415 if (CONST_INT_P (value
))
1416 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1418 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1419 /* Likewise, but the source is big-endian. */
1421 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1423 total_bits
- bitsdone
- thissize
,
1424 NULL_RTX
, 1, false);
1426 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1427 thissize
, bitsdone
, NULL_RTX
,
1431 /* If OP0 is a register, then handle OFFSET here. */
1432 rtx op0_piece
= op0
;
1433 opt_scalar_int_mode op0_piece_mode
= op0_mode
;
1434 if (SUBREG_P (op0
) || REG_P (op0
))
1436 scalar_int_mode imode
;
1437 if (op0_mode
.exists (&imode
)
1438 && GET_MODE_SIZE (imode
) < UNITS_PER_WORD
)
1441 op0_piece
= const0_rtx
;
1445 op0_piece
= operand_subword_force (op0
,
1446 offset
* unit
/ BITS_PER_WORD
,
1448 op0_piece_mode
= word_mode
;
1450 offset
&= BITS_PER_WORD
/ unit
- 1;
1453 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1454 it is just an out-of-bounds access. Ignore it. */
1455 if (op0_piece
!= const0_rtx
)
1456 store_fixed_bit_field (op0_piece
, op0_piece_mode
, thissize
,
1457 offset
* unit
+ thispos
, bitregion_start
,
1458 bitregion_end
, part
, word_mode
, reverse
);
1459 bitsdone
+= thissize
;
1463 /* A subroutine of extract_bit_field_1 that converts return value X
1464 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1465 to extract_bit_field. */
1468 convert_extracted_bit_field (rtx x
, machine_mode mode
,
1469 machine_mode tmode
, bool unsignedp
)
1471 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1474 /* If the x mode is not a scalar integral, first convert to the
1475 integer mode of that size and then access it as a floating-point
1476 value via a SUBREG. */
1477 if (!SCALAR_INT_MODE_P (tmode
))
1479 scalar_int_mode int_mode
= int_mode_for_mode (tmode
).require ();
1480 x
= convert_to_mode (int_mode
, x
, unsignedp
);
1481 x
= force_reg (int_mode
, x
);
1482 return gen_lowpart (tmode
, x
);
1485 return convert_to_mode (tmode
, x
, unsignedp
);
1488 /* Try to use an ext(z)v pattern to extract a field from OP0.
1489 Return the extracted value on success, otherwise return null.
1490 EXTV describes the extraction instruction to use. If OP0_MODE
1491 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1492 The other arguments are as for extract_bit_field. */
1495 extract_bit_field_using_extv (const extraction_insn
*extv
, rtx op0
,
1496 opt_scalar_int_mode op0_mode
,
1497 unsigned HOST_WIDE_INT bitsize
,
1498 unsigned HOST_WIDE_INT bitnum
,
1499 int unsignedp
, rtx target
,
1500 machine_mode mode
, machine_mode tmode
)
1502 class expand_operand ops
[4];
1503 rtx spec_target
= target
;
1504 rtx spec_target_subreg
= 0;
1505 scalar_int_mode ext_mode
= extv
->field_mode
;
1506 unsigned unit
= GET_MODE_BITSIZE (ext_mode
);
1508 if (bitsize
== 0 || unit
< bitsize
)
1512 /* Get a reference to the first byte of the field. */
1513 op0
= narrow_bit_field_mem (op0
, extv
->struct_mode
, bitsize
, bitnum
,
1517 /* Convert from counting within OP0 to counting in EXT_MODE. */
1518 if (BYTES_BIG_ENDIAN
)
1519 bitnum
+= unit
- GET_MODE_BITSIZE (op0_mode
.require ());
1521 /* If op0 is a register, we need it in EXT_MODE to make it
1522 acceptable to the format of ext(z)v. */
1523 if (GET_CODE (op0
) == SUBREG
&& op0_mode
.require () != ext_mode
)
1525 if (REG_P (op0
) && op0_mode
.require () != ext_mode
)
1526 op0
= gen_lowpart_SUBREG (ext_mode
, op0
);
1529 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1530 "backwards" from the size of the unit we are extracting from.
1531 Otherwise, we count bits from the most significant on a
1532 BYTES/BITS_BIG_ENDIAN machine. */
1534 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1535 bitnum
= unit
- bitsize
- bitnum
;
1538 target
= spec_target
= gen_reg_rtx (tmode
);
1540 if (GET_MODE (target
) != ext_mode
)
1542 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1543 between the mode of the extraction (word_mode) and the target
1544 mode. Instead, create a temporary and use convert_move to set
1547 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target
), ext_mode
))
1549 target
= gen_lowpart (ext_mode
, target
);
1550 if (partial_subreg_p (GET_MODE (spec_target
), ext_mode
))
1551 spec_target_subreg
= target
;
1554 target
= gen_reg_rtx (ext_mode
);
1557 create_output_operand (&ops
[0], target
, ext_mode
);
1558 create_fixed_operand (&ops
[1], op0
);
1559 create_integer_operand (&ops
[2], bitsize
);
1560 create_integer_operand (&ops
[3], bitnum
);
1561 if (maybe_expand_insn (extv
->icode
, 4, ops
))
1563 target
= ops
[0].value
;
1564 if (target
== spec_target
)
1566 if (target
== spec_target_subreg
)
1568 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1573 /* See whether it would be valid to extract the part of OP0 described
1574 by BITNUM and BITSIZE into a value of mode MODE using a subreg
1575 operation. Return the subreg if so, otherwise return null. */
1578 extract_bit_field_as_subreg (machine_mode mode
, rtx op0
,
1579 poly_uint64 bitsize
, poly_uint64 bitnum
)
1581 poly_uint64 bytenum
;
1582 if (multiple_p (bitnum
, BITS_PER_UNIT
, &bytenum
)
1583 && known_eq (bitsize
, GET_MODE_BITSIZE (mode
))
1584 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
1585 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (op0
)))
1586 return simplify_gen_subreg (mode
, op0
, GET_MODE (op0
), bytenum
);
1590 /* A subroutine of extract_bit_field, with the same arguments.
1591 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1592 if we can find no other means of implementing the operation.
1593 if FALLBACK_P is false, return NULL instead. */
1596 extract_bit_field_1 (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
1597 int unsignedp
, rtx target
, machine_mode mode
,
1598 machine_mode tmode
, bool reverse
, bool fallback_p
,
1604 if (tmode
== VOIDmode
)
1607 while (GET_CODE (op0
) == SUBREG
)
1609 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1610 op0
= SUBREG_REG (op0
);
1613 /* If we have an out-of-bounds access to a register, just return an
1614 uninitialized register of the required mode. This can occur if the
1615 source code contains an out-of-bounds access to a small array. */
1616 if (REG_P (op0
) && known_ge (bitnum
, GET_MODE_BITSIZE (GET_MODE (op0
))))
1617 return gen_reg_rtx (tmode
);
1620 && mode
== GET_MODE (op0
)
1621 && known_eq (bitnum
, 0U)
1622 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
))))
1625 op0
= flip_storage_order (mode
, op0
);
1626 /* We're trying to extract a full register from itself. */
1630 /* First try to check for vector from vector extractions. */
1631 if (VECTOR_MODE_P (GET_MODE (op0
))
1633 && VECTOR_MODE_P (tmode
)
1634 && known_eq (bitsize
, GET_MODE_BITSIZE (tmode
))
1635 && maybe_gt (GET_MODE_SIZE (GET_MODE (op0
)), GET_MODE_SIZE (tmode
)))
1637 machine_mode new_mode
= GET_MODE (op0
);
1638 if (GET_MODE_INNER (new_mode
) != GET_MODE_INNER (tmode
))
1640 scalar_mode inner_mode
= GET_MODE_INNER (tmode
);
1642 if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0
)),
1643 GET_MODE_UNIT_BITSIZE (tmode
), &nunits
)
1644 || !mode_for_vector (inner_mode
, nunits
).exists (&new_mode
)
1645 || !VECTOR_MODE_P (new_mode
)
1646 || maybe_ne (GET_MODE_SIZE (new_mode
),
1647 GET_MODE_SIZE (GET_MODE (op0
)))
1648 || GET_MODE_INNER (new_mode
) != GET_MODE_INNER (tmode
)
1649 || !targetm
.vector_mode_supported_p (new_mode
))
1650 new_mode
= VOIDmode
;
1653 if (new_mode
!= VOIDmode
1654 && (convert_optab_handler (vec_extract_optab
, new_mode
, tmode
)
1655 != CODE_FOR_nothing
)
1656 && multiple_p (bitnum
, GET_MODE_BITSIZE (tmode
), &pos
))
1658 class expand_operand ops
[3];
1659 machine_mode outermode
= new_mode
;
1660 machine_mode innermode
= tmode
;
1661 enum insn_code icode
1662 = convert_optab_handler (vec_extract_optab
, outermode
, innermode
);
1664 if (new_mode
!= GET_MODE (op0
))
1665 op0
= gen_lowpart (new_mode
, op0
);
1666 create_output_operand (&ops
[0], target
, innermode
);
1668 create_input_operand (&ops
[1], op0
, outermode
);
1669 create_integer_operand (&ops
[2], pos
);
1670 if (maybe_expand_insn (icode
, 3, ops
))
1672 if (alt_rtl
&& ops
[0].target
)
1674 target
= ops
[0].value
;
1675 if (GET_MODE (target
) != mode
)
1676 return gen_lowpart (tmode
, target
);
1682 /* See if we can get a better vector mode before extracting. */
1683 if (VECTOR_MODE_P (GET_MODE (op0
))
1685 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1687 machine_mode new_mode
;
1689 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1690 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1691 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1692 new_mode
= MIN_MODE_VECTOR_FRACT
;
1693 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1694 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1695 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1696 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1697 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1698 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1700 new_mode
= MIN_MODE_VECTOR_INT
;
1702 FOR_EACH_MODE_FROM (new_mode
, new_mode
)
1703 if (known_eq (GET_MODE_SIZE (new_mode
), GET_MODE_SIZE (GET_MODE (op0
)))
1704 && known_eq (GET_MODE_UNIT_SIZE (new_mode
), GET_MODE_SIZE (tmode
))
1705 && targetm
.vector_mode_supported_p (new_mode
))
1707 if (new_mode
!= VOIDmode
)
1708 op0
= gen_lowpart (new_mode
, op0
);
1711 /* Use vec_extract patterns for extracting parts of vectors whenever
1712 available. If that fails, see whether the current modes and bitregion
1713 give a natural subreg. */
1714 machine_mode outermode
= GET_MODE (op0
);
1715 if (VECTOR_MODE_P (outermode
) && !MEM_P (op0
))
1717 scalar_mode innermode
= GET_MODE_INNER (outermode
);
1718 enum insn_code icode
1719 = convert_optab_handler (vec_extract_optab
, outermode
, innermode
);
1721 if (icode
!= CODE_FOR_nothing
1722 && known_eq (bitsize
, GET_MODE_BITSIZE (innermode
))
1723 && multiple_p (bitnum
, GET_MODE_BITSIZE (innermode
), &pos
))
1725 class expand_operand ops
[3];
1727 create_output_operand (&ops
[0], target
, innermode
);
1729 create_input_operand (&ops
[1], op0
, outermode
);
1730 create_integer_operand (&ops
[2], pos
);
1731 if (maybe_expand_insn (icode
, 3, ops
))
1733 if (alt_rtl
&& ops
[0].target
)
1735 target
= ops
[0].value
;
1736 if (GET_MODE (target
) != mode
)
1737 return gen_lowpart (tmode
, target
);
1741 /* Using subregs is useful if we're extracting one register vector
1742 from a multi-register vector. extract_bit_field_as_subreg checks
1743 for valid bitsize and bitnum, so we don't need to do that here. */
1744 if (VECTOR_MODE_P (mode
))
1746 rtx sub
= extract_bit_field_as_subreg (mode
, op0
, bitsize
, bitnum
);
1752 /* Make sure we are playing with integral modes. Pun with subregs
1754 opt_scalar_int_mode op0_mode
= int_mode_for_mode (GET_MODE (op0
));
1755 scalar_int_mode imode
;
1756 if (!op0_mode
.exists (&imode
) || imode
!= GET_MODE (op0
))
1759 op0
= adjust_bitfield_address_size (op0
, op0_mode
.else_blk (),
1761 else if (op0_mode
.exists (&imode
))
1763 op0
= gen_lowpart (imode
, op0
);
1765 /* If we got a SUBREG, force it into a register since we
1766 aren't going to be able to do another SUBREG on it. */
1767 if (GET_CODE (op0
) == SUBREG
)
1768 op0
= force_reg (imode
, op0
);
1772 poly_int64 size
= GET_MODE_SIZE (GET_MODE (op0
));
1773 rtx mem
= assign_stack_temp (GET_MODE (op0
), size
);
1774 emit_move_insn (mem
, op0
);
1775 op0
= adjust_bitfield_address_size (mem
, BLKmode
, 0, size
);
1779 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1780 If that's wrong, the solution is to test for it and set TARGET to 0
1783 /* Get the mode of the field to use for atomic access or subreg
1785 if (!SCALAR_INT_MODE_P (tmode
)
1786 || !mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0).exists (&mode1
))
1788 gcc_assert (mode1
!= BLKmode
);
1790 /* Extraction of a full MODE1 value can be done with a subreg as long
1791 as the least significant bit of the value is the least significant
1792 bit of either OP0 or a word of OP0. */
1793 if (!MEM_P (op0
) && !reverse
)
1795 rtx sub
= extract_bit_field_as_subreg (mode1
, op0
, bitsize
, bitnum
);
1797 return convert_extracted_bit_field (sub
, mode
, tmode
, unsignedp
);
1800 /* Extraction of a full MODE1 value can be done with a load as long as
1801 the field is on a byte boundary and is sufficiently aligned. */
1802 poly_uint64 bytenum
;
1803 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, mode1
, &bytenum
))
1805 op0
= adjust_bitfield_address (op0
, mode1
, bytenum
);
1807 op0
= flip_storage_order (mode1
, op0
);
1808 return convert_extracted_bit_field (op0
, mode
, tmode
, unsignedp
);
1811 /* If we have a memory source and a non-constant bit offset, restrict
1812 the memory to the referenced bytes. This is a worst-case fallback
1813 but is useful for things like vector booleans. */
1814 if (MEM_P (op0
) && !bitnum
.is_constant ())
1816 bytenum
= bits_to_bytes_round_down (bitnum
);
1817 bitnum
= num_trailing_bits (bitnum
);
1818 poly_uint64 bytesize
= bits_to_bytes_round_up (bitnum
+ bitsize
);
1819 op0
= adjust_bitfield_address_size (op0
, BLKmode
, bytenum
, bytesize
);
1820 op0_mode
= opt_scalar_int_mode ();
1823 /* It's possible we'll need to handle other cases here for
1824 polynomial bitnum and bitsize. */
1826 /* From here on we need to be looking at a fixed-size insertion. */
1827 return extract_integral_bit_field (op0
, op0_mode
, bitsize
.to_constant (),
1828 bitnum
.to_constant (), unsignedp
,
1829 target
, mode
, tmode
, reverse
, fallback_p
);
1832 /* Subroutine of extract_bit_field_1, with the same arguments, except
1833 that BITSIZE and BITNUM are constant. Handle cases specific to
1834 integral modes. If OP0_MODE is defined, it is the mode of OP0,
1835 otherwise OP0 is a BLKmode MEM. */
1838 extract_integral_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1839 unsigned HOST_WIDE_INT bitsize
,
1840 unsigned HOST_WIDE_INT bitnum
, int unsignedp
,
1841 rtx target
, machine_mode mode
, machine_mode tmode
,
1842 bool reverse
, bool fallback_p
)
1844 /* Handle fields bigger than a word. */
1846 if (bitsize
> BITS_PER_WORD
)
1848 /* Here we transfer the words of the field
1849 in the order least significant first.
1850 This is because the most significant word is the one which may
1851 be less than full. */
1853 const bool backwards
= WORDS_BIG_ENDIAN
;
1854 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1858 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1859 target
= gen_reg_rtx (mode
);
1861 /* In case we're about to clobber a base register or something
1862 (see gcc.c-torture/execute/20040625-1.c). */
1863 if (reg_mentioned_p (target
, op0
))
1864 target
= gen_reg_rtx (mode
);
1866 /* Indicate for flow that the entire target reg is being set. */
1867 emit_clobber (target
);
1869 /* The mode must be fixed-size, since extract_bit_field_1 handles
1870 extractions from variable-sized objects before calling this
1872 unsigned int target_size
1873 = GET_MODE_SIZE (GET_MODE (target
)).to_constant ();
1874 last
= get_last_insn ();
1875 for (i
= 0; i
< nwords
; i
++)
1877 /* If I is 0, use the low-order word in both field and target;
1878 if I is 1, use the next to lowest word; and so on. */
1879 /* Word number in TARGET to use. */
1880 unsigned int wordnum
1881 = (backwards
? target_size
/ UNITS_PER_WORD
- i
- 1 : i
);
1882 /* Offset from start of field in OP0. */
1883 unsigned int bit_offset
= (backwards
^ reverse
1884 ? MAX ((int) bitsize
- ((int) i
+ 1)
1887 : (int) i
* BITS_PER_WORD
);
1888 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1890 = extract_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
1891 bitsize
- i
* BITS_PER_WORD
),
1892 bitnum
+ bit_offset
, 1, target_part
,
1893 mode
, word_mode
, reverse
, fallback_p
, NULL
);
1895 gcc_assert (target_part
);
1898 delete_insns_since (last
);
1902 if (result_part
!= target_part
)
1903 emit_move_insn (target_part
, result_part
);
1908 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1909 need to be zero'd out. */
1910 if (target_size
> nwords
* UNITS_PER_WORD
)
1912 unsigned int i
, total_words
;
1914 total_words
= target_size
/ UNITS_PER_WORD
;
1915 for (i
= nwords
; i
< total_words
; i
++)
1917 (operand_subword (target
,
1918 backwards
? total_words
- i
- 1 : i
,
1925 /* Signed bit field: sign-extend with two arithmetic shifts. */
1926 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1927 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1928 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1929 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1932 /* If OP0 is a multi-word register, narrow it to the affected word.
1933 If the region spans two words, defer to extract_split_bit_field. */
1934 if (!MEM_P (op0
) && GET_MODE_SIZE (op0_mode
.require ()) > UNITS_PER_WORD
)
1936 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
1940 target
= extract_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1941 unsignedp
, reverse
);
1942 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1944 op0
= simplify_gen_subreg (word_mode
, op0
, op0_mode
.require (),
1945 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1946 op0_mode
= word_mode
;
1947 bitnum
%= BITS_PER_WORD
;
1950 /* From here on we know the desired field is smaller than a word.
1951 If OP0 is a register, it too fits within a word. */
1952 enum extraction_pattern pattern
= unsignedp
? EP_extzv
: EP_extv
;
1953 extraction_insn extv
;
1956 /* ??? We could limit the structure size to the part of OP0 that
1957 contains the field, with appropriate checks for endianness
1958 and TARGET_TRULY_NOOP_TRUNCATION. */
1959 && get_best_reg_extraction_insn (&extv
, pattern
,
1960 GET_MODE_BITSIZE (op0_mode
.require ()),
1963 rtx result
= extract_bit_field_using_extv (&extv
, op0
, op0_mode
,
1965 unsignedp
, target
, mode
,
1971 /* If OP0 is a memory, try copying it to a register and seeing if a
1972 cheap register alternative is available. */
1973 if (MEM_P (op0
) & !reverse
)
1975 if (get_best_mem_extraction_insn (&extv
, pattern
, bitsize
, bitnum
,
1978 rtx result
= extract_bit_field_using_extv (&extv
, op0
, op0_mode
,
1980 unsignedp
, target
, mode
,
1986 rtx_insn
*last
= get_last_insn ();
1988 /* Try loading part of OP0 into a register and extracting the
1989 bitfield from that. */
1990 unsigned HOST_WIDE_INT bitpos
;
1991 rtx xop0
= adjust_bit_field_mem_for_reg (pattern
, op0
, bitsize
, bitnum
,
1992 0, 0, tmode
, &bitpos
);
1995 xop0
= copy_to_reg (xop0
);
1996 rtx result
= extract_bit_field_1 (xop0
, bitsize
, bitpos
,
1998 mode
, tmode
, reverse
, false, NULL
);
2001 delete_insns_since (last
);
2008 /* Find a correspondingly-sized integer field, so we can apply
2009 shifts and masks to it. */
2010 scalar_int_mode int_mode
;
2011 if (!int_mode_for_mode (tmode
).exists (&int_mode
))
2012 /* If this fails, we should probably push op0 out to memory and then
2014 int_mode
= int_mode_for_mode (mode
).require ();
2016 target
= extract_fixed_bit_field (int_mode
, op0
, op0_mode
, bitsize
,
2017 bitnum
, target
, unsignedp
, reverse
);
2019 /* Complex values must be reversed piecewise, so we need to undo the global
2020 reversal, convert to the complex mode and reverse again. */
2021 if (reverse
&& COMPLEX_MODE_P (tmode
))
2023 target
= flip_storage_order (int_mode
, target
);
2024 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
2025 target
= flip_storage_order (tmode
, target
);
2028 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
2033 /* Generate code to extract a byte-field from STR_RTX
2034 containing BITSIZE bits, starting at BITNUM,
2035 and put it in TARGET if possible (if TARGET is nonzero).
2036 Regardless of TARGET, we return the rtx for where the value is placed.
2038 STR_RTX is the structure containing the byte (a REG or MEM).
2039 UNSIGNEDP is nonzero if this is an unsigned bit field.
2040 MODE is the natural mode of the field value once extracted.
2041 TMODE is the mode the caller would like the value to have;
2042 but the value may be returned with type MODE instead.
2044 If REVERSE is true, the extraction is to be done in reverse order.
2046 If a TARGET is specified and we can store in it at no extra cost,
2047 we do so, and return TARGET.
2048 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
2049 if they are equally easy. */
2052 extract_bit_field (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
2053 int unsignedp
, rtx target
, machine_mode mode
,
2054 machine_mode tmode
, bool reverse
, rtx
*alt_rtl
)
2058 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
2059 if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx
)), 0))
2060 mode1
= GET_MODE (str_rtx
);
2061 else if (target
&& maybe_ne (GET_MODE_BITSIZE (GET_MODE (target
)), 0))
2062 mode1
= GET_MODE (target
);
2066 unsigned HOST_WIDE_INT ibitsize
, ibitnum
;
2067 scalar_int_mode int_mode
;
2068 if (bitsize
.is_constant (&ibitsize
)
2069 && bitnum
.is_constant (&ibitnum
)
2070 && is_a
<scalar_int_mode
> (mode1
, &int_mode
)
2071 && strict_volatile_bitfield_p (str_rtx
, ibitsize
, ibitnum
,
2074 /* Extraction of a full INT_MODE value can be done with a simple load.
2075 We know here that the field can be accessed with one single
2076 instruction. For targets that support unaligned memory,
2077 an unaligned access may be necessary. */
2078 if (ibitsize
== GET_MODE_BITSIZE (int_mode
))
2080 rtx result
= adjust_bitfield_address (str_rtx
, int_mode
,
2081 ibitnum
/ BITS_PER_UNIT
);
2083 result
= flip_storage_order (int_mode
, result
);
2084 gcc_assert (ibitnum
% BITS_PER_UNIT
== 0);
2085 return convert_extracted_bit_field (result
, mode
, tmode
, unsignedp
);
2088 str_rtx
= narrow_bit_field_mem (str_rtx
, int_mode
, ibitsize
, ibitnum
,
2090 gcc_assert (ibitnum
+ ibitsize
<= GET_MODE_BITSIZE (int_mode
));
2091 str_rtx
= copy_to_reg (str_rtx
);
2092 return extract_bit_field_1 (str_rtx
, ibitsize
, ibitnum
, unsignedp
,
2093 target
, mode
, tmode
, reverse
, true, alt_rtl
);
2096 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
2097 target
, mode
, tmode
, reverse
, true, alt_rtl
);
2100 /* Use shifts and boolean operations to extract a field of BITSIZE bits
2101 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2102 otherwise OP0 is a BLKmode MEM.
2104 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2105 If REVERSE is true, the extraction is to be done in reverse order.
2107 If TARGET is nonzero, attempts to store the value there
2108 and return TARGET, but this is not guaranteed.
2109 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2112 extract_fixed_bit_field (machine_mode tmode
, rtx op0
,
2113 opt_scalar_int_mode op0_mode
,
2114 unsigned HOST_WIDE_INT bitsize
,
2115 unsigned HOST_WIDE_INT bitnum
, rtx target
,
2116 int unsignedp
, bool reverse
)
2118 scalar_int_mode mode
;
2121 if (!get_best_mode (bitsize
, bitnum
, 0, 0, MEM_ALIGN (op0
),
2122 BITS_PER_WORD
, MEM_VOLATILE_P (op0
), &mode
))
2123 /* The only way this should occur is if the field spans word
2125 return extract_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
2126 unsignedp
, reverse
);
2128 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
2131 mode
= op0_mode
.require ();
2133 return extract_fixed_bit_field_1 (tmode
, op0
, mode
, bitsize
, bitnum
,
2134 target
, unsignedp
, reverse
);
2137 /* Helper function for extract_fixed_bit_field, extracts
2138 the bit field always using MODE, which is the mode of OP0.
2139 The other arguments are as for extract_fixed_bit_field. */
2142 extract_fixed_bit_field_1 (machine_mode tmode
, rtx op0
, scalar_int_mode mode
,
2143 unsigned HOST_WIDE_INT bitsize
,
2144 unsigned HOST_WIDE_INT bitnum
, rtx target
,
2145 int unsignedp
, bool reverse
)
2147 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2148 for invalid input, such as extract equivalent of f5 from
2149 gcc.dg/pr48335-2.c. */
2151 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
2152 /* BITNUM is the distance between our msb and that of OP0.
2153 Convert it to the distance from the lsb. */
2154 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
2156 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2157 We have reduced the big-endian case to the little-endian case. */
2159 op0
= flip_storage_order (mode
, op0
);
2165 /* If the field does not already start at the lsb,
2166 shift it so it does. */
2167 /* Maybe propagate the target for the shift. */
2168 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2171 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, bitnum
, subtarget
, 1);
2173 /* Convert the value to the desired mode. TMODE must also be a
2174 scalar integer for this conversion to make sense, since we
2175 shouldn't reinterpret the bits. */
2176 scalar_int_mode new_mode
= as_a
<scalar_int_mode
> (tmode
);
2177 if (mode
!= new_mode
)
2178 op0
= convert_to_mode (new_mode
, op0
, 1);
2180 /* Unless the msb of the field used to be the msb when we shifted,
2181 mask out the upper bits. */
2183 if (GET_MODE_BITSIZE (mode
) != bitnum
+ bitsize
)
2184 return expand_binop (new_mode
, and_optab
, op0
,
2185 mask_rtx (new_mode
, 0, bitsize
, 0),
2186 target
, 1, OPTAB_LIB_WIDEN
);
2190 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2191 then arithmetic-shift its lsb to the lsb of the word. */
2192 op0
= force_reg (mode
, op0
);
2194 /* Find the narrowest integer mode that contains the field. */
2196 opt_scalar_int_mode mode_iter
;
2197 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2198 if (GET_MODE_BITSIZE (mode_iter
.require ()) >= bitsize
+ bitnum
)
2201 mode
= mode_iter
.require ();
2202 op0
= convert_to_mode (mode
, op0
, 0);
2207 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitnum
))
2209 int amount
= GET_MODE_BITSIZE (mode
) - (bitsize
+ bitnum
);
2210 /* Maybe propagate the target for the shift. */
2211 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2212 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
2215 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
2216 GET_MODE_BITSIZE (mode
) - bitsize
, target
, 0);
2219 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2223 lshift_value (machine_mode mode
, unsigned HOST_WIDE_INT value
,
2226 return immed_wide_int_const (wi::lshift (value
, bitpos
), mode
);
2229 /* Extract a bit field that is split across two words
2230 and return an RTX for the result.
2232 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2233 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2234 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2235 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2238 If REVERSE is true, the extraction is to be done in reverse order. */
2241 extract_split_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
2242 unsigned HOST_WIDE_INT bitsize
,
2243 unsigned HOST_WIDE_INT bitpos
, int unsignedp
,
2247 unsigned int bitsdone
= 0;
2248 rtx result
= NULL_RTX
;
2251 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2253 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
2254 unit
= BITS_PER_WORD
;
2256 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
2258 while (bitsdone
< bitsize
)
2260 unsigned HOST_WIDE_INT thissize
;
2262 unsigned HOST_WIDE_INT thispos
;
2263 unsigned HOST_WIDE_INT offset
;
2265 offset
= (bitpos
+ bitsdone
) / unit
;
2266 thispos
= (bitpos
+ bitsdone
) % unit
;
2268 /* THISSIZE must not overrun a word boundary. Otherwise,
2269 extract_fixed_bit_field will call us again, and we will mutually
2271 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
2272 thissize
= MIN (thissize
, unit
- thispos
);
2274 /* If OP0 is a register, then handle OFFSET here. */
2275 rtx op0_piece
= op0
;
2276 opt_scalar_int_mode op0_piece_mode
= op0_mode
;
2277 if (SUBREG_P (op0
) || REG_P (op0
))
2279 op0_piece
= operand_subword_force (op0
, offset
, op0_mode
.require ());
2280 op0_piece_mode
= word_mode
;
2284 /* Extract the parts in bit-counting order,
2285 whose meaning is determined by BYTES_PER_UNIT.
2286 OFFSET is in UNITs, and UNIT is in bits. */
2287 part
= extract_fixed_bit_field (word_mode
, op0_piece
, op0_piece_mode
,
2288 thissize
, offset
* unit
+ thispos
,
2290 bitsdone
+= thissize
;
2292 /* Shift this part into place for the result. */
2293 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
2295 if (bitsize
!= bitsdone
)
2296 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2297 bitsize
- bitsdone
, 0, 1);
2301 if (bitsdone
!= thissize
)
2302 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2303 bitsdone
- thissize
, 0, 1);
2309 /* Combine the parts with bitwise or. This works
2310 because we extracted each part as an unsigned bit field. */
2311 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2317 /* Unsigned bit field: we are done. */
2320 /* Signed bit field: sign-extend with two arithmetic shifts. */
2321 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2322 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2323 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2324 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2327 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2328 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2329 MODE, fill the upper bits with zeros. Fail if the layout of either
2330 mode is unknown (as for CC modes) or if the extraction would involve
2331 unprofitable mode punning. Return the value on success, otherwise
2334 This is different from gen_lowpart* in these respects:
2336 - the returned value must always be considered an rvalue
2338 - when MODE is wider than SRC_MODE, the extraction involves
2341 - when MODE is smaller than SRC_MODE, the extraction involves
2342 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2344 In other words, this routine performs a computation, whereas the
2345 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2349 extract_low_bits (machine_mode mode
, machine_mode src_mode
, rtx src
)
2351 scalar_int_mode int_mode
, src_int_mode
;
2353 if (mode
== src_mode
)
2356 if (CONSTANT_P (src
))
2358 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2359 fails, it will happily create (subreg (symbol_ref)) or similar
2361 poly_uint64 byte
= subreg_lowpart_offset (mode
, src_mode
);
2362 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2366 if (GET_MODE (src
) == VOIDmode
2367 || !validate_subreg (mode
, src_mode
, src
, byte
))
2370 src
= force_reg (GET_MODE (src
), src
);
2371 return gen_rtx_SUBREG (mode
, src
, byte
);
2374 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2377 if (known_eq (GET_MODE_BITSIZE (mode
), GET_MODE_BITSIZE (src_mode
))
2378 && targetm
.modes_tieable_p (mode
, src_mode
))
2380 rtx x
= gen_lowpart_common (mode
, src
);
2385 if (!int_mode_for_mode (src_mode
).exists (&src_int_mode
)
2386 || !int_mode_for_mode (mode
).exists (&int_mode
))
2389 if (!targetm
.modes_tieable_p (src_int_mode
, src_mode
))
2391 if (!targetm
.modes_tieable_p (int_mode
, mode
))
2394 src
= gen_lowpart (src_int_mode
, src
);
2395 if (!validate_subreg (int_mode
, src_int_mode
, src
,
2396 subreg_lowpart_offset (int_mode
, src_int_mode
)))
2399 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2400 src
= gen_lowpart (mode
, src
);
2404 /* Add INC into TARGET. */
2407 expand_inc (rtx target
, rtx inc
)
2409 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2411 target
, 0, OPTAB_LIB_WIDEN
);
2412 if (value
!= target
)
2413 emit_move_insn (target
, value
);
2416 /* Subtract DEC from TARGET. */
2419 expand_dec (rtx target
, rtx dec
)
2421 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2423 target
, 0, OPTAB_LIB_WIDEN
);
2424 if (value
!= target
)
2425 emit_move_insn (target
, value
);
2428 /* Output a shift instruction for expression code CODE,
2429 with SHIFTED being the rtx for the value to shift,
2430 and AMOUNT the rtx for the amount to shift by.
2431 Store the result in the rtx TARGET, if that is convenient.
2432 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2433 Return the rtx for where the value is.
2434 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2435 in which case 0 is returned. */
2438 expand_shift_1 (enum tree_code code
, machine_mode mode
, rtx shifted
,
2439 rtx amount
, rtx target
, int unsignedp
, bool may_fail
= false)
2442 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2443 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2444 optab lshift_optab
= ashl_optab
;
2445 optab rshift_arith_optab
= ashr_optab
;
2446 optab rshift_uns_optab
= lshr_optab
;
2447 optab lrotate_optab
= rotl_optab
;
2448 optab rrotate_optab
= rotr_optab
;
2449 machine_mode op1_mode
;
2450 scalar_mode scalar_mode
= GET_MODE_INNER (mode
);
2452 bool speed
= optimize_insn_for_speed_p ();
2455 op1_mode
= GET_MODE (op1
);
2457 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2458 shift amount is a vector, use the vector/vector shift patterns. */
2459 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2461 lshift_optab
= vashl_optab
;
2462 rshift_arith_optab
= vashr_optab
;
2463 rshift_uns_optab
= vlshr_optab
;
2464 lrotate_optab
= vrotl_optab
;
2465 rrotate_optab
= vrotr_optab
;
2468 /* Previously detected shift-counts computed by NEGATE_EXPR
2469 and shifted in the other direction; but that does not work
2472 if (SHIFT_COUNT_TRUNCATED
)
2474 if (CONST_INT_P (op1
)
2475 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2476 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (scalar_mode
)))
2477 op1
= gen_int_shift_amount (mode
,
2478 (unsigned HOST_WIDE_INT
) INTVAL (op1
)
2479 % GET_MODE_BITSIZE (scalar_mode
));
2480 else if (GET_CODE (op1
) == SUBREG
2481 && subreg_lowpart_p (op1
)
2482 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1
)))
2483 && SCALAR_INT_MODE_P (GET_MODE (op1
)))
2484 op1
= SUBREG_REG (op1
);
2487 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2488 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2489 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2492 && CONST_INT_P (op1
)
2493 && IN_RANGE (INTVAL (op1
), GET_MODE_BITSIZE (scalar_mode
) / 2 + left
,
2494 GET_MODE_BITSIZE (scalar_mode
) - 1))
2496 op1
= gen_int_shift_amount (mode
, (GET_MODE_BITSIZE (scalar_mode
)
2499 code
= left
? LROTATE_EXPR
: RROTATE_EXPR
;
2502 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2503 Note that this is not the case for bigger values. For instance a rotation
2504 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2505 0x04030201 (bswapsi). */
2507 && CONST_INT_P (op1
)
2508 && INTVAL (op1
) == BITS_PER_UNIT
2509 && GET_MODE_SIZE (scalar_mode
) == 2
2510 && optab_handler (bswap_optab
, mode
) != CODE_FOR_nothing
)
2511 return expand_unop (mode
, bswap_optab
, shifted
, NULL_RTX
, unsignedp
);
2513 if (op1
== const0_rtx
)
2516 /* Check whether its cheaper to implement a left shift by a constant
2517 bit count by a sequence of additions. */
2518 if (code
== LSHIFT_EXPR
2519 && CONST_INT_P (op1
)
2521 && INTVAL (op1
) < GET_MODE_PRECISION (scalar_mode
)
2522 && INTVAL (op1
) < MAX_BITS_PER_WORD
2523 && (shift_cost (speed
, mode
, INTVAL (op1
))
2524 > INTVAL (op1
) * add_cost (speed
, mode
))
2525 && shift_cost (speed
, mode
, INTVAL (op1
)) != MAX_COST
)
2528 for (i
= 0; i
< INTVAL (op1
); i
++)
2530 temp
= force_reg (mode
, shifted
);
2531 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2532 unsignedp
, OPTAB_LIB_WIDEN
);
2537 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2539 enum optab_methods methods
;
2542 methods
= OPTAB_DIRECT
;
2543 else if (attempt
== 1)
2544 methods
= OPTAB_WIDEN
;
2546 methods
= OPTAB_LIB_WIDEN
;
2550 /* Widening does not work for rotation. */
2551 if (methods
== OPTAB_WIDEN
)
2553 else if (methods
== OPTAB_LIB_WIDEN
)
2555 /* If we have been unable to open-code this by a rotation,
2556 do it as the IOR of two shifts. I.e., to rotate A
2558 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2559 where C is the bitsize of A.
2561 It is theoretically possible that the target machine might
2562 not be able to perform either shift and hence we would
2563 be making two libcalls rather than just the one for the
2564 shift (similarly if IOR could not be done). We will allow
2565 this extremely unlikely lossage to avoid complicating the
2568 rtx subtarget
= target
== shifted
? 0 : target
;
2569 rtx new_amount
, other_amount
;
2573 if (op1
== const0_rtx
)
2575 else if (CONST_INT_P (op1
))
2576 other_amount
= gen_int_shift_amount
2577 (mode
, GET_MODE_BITSIZE (scalar_mode
) - INTVAL (op1
));
2581 = simplify_gen_unary (NEG
, GET_MODE (op1
),
2582 op1
, GET_MODE (op1
));
2583 HOST_WIDE_INT mask
= GET_MODE_PRECISION (scalar_mode
) - 1;
2585 = simplify_gen_binary (AND
, GET_MODE (op1
), other_amount
,
2586 gen_int_mode (mask
, GET_MODE (op1
)));
2589 shifted
= force_reg (mode
, shifted
);
2591 temp
= expand_shift_1 (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2592 mode
, shifted
, new_amount
, 0, 1);
2593 temp1
= expand_shift_1 (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2594 mode
, shifted
, other_amount
,
2596 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2597 unsignedp
, methods
);
2600 temp
= expand_binop (mode
,
2601 left
? lrotate_optab
: rrotate_optab
,
2602 shifted
, op1
, target
, unsignedp
, methods
);
2605 temp
= expand_binop (mode
,
2606 left
? lshift_optab
: rshift_uns_optab
,
2607 shifted
, op1
, target
, unsignedp
, methods
);
2609 /* Do arithmetic shifts.
2610 Also, if we are going to widen the operand, we can just as well
2611 use an arithmetic right-shift instead of a logical one. */
2612 if (temp
== 0 && ! rotate
2613 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2615 enum optab_methods methods1
= methods
;
2617 /* If trying to widen a log shift to an arithmetic shift,
2618 don't accept an arithmetic shift of the same size. */
2620 methods1
= OPTAB_MUST_WIDEN
;
2622 /* Arithmetic shift */
2624 temp
= expand_binop (mode
,
2625 left
? lshift_optab
: rshift_arith_optab
,
2626 shifted
, op1
, target
, unsignedp
, methods1
);
2629 /* We used to try extzv here for logical right shifts, but that was
2630 only useful for one machine, the VAX, and caused poor code
2631 generation there for lshrdi3, so the code was deleted and a
2632 define_expand for lshrsi3 was added to vax.md. */
2635 gcc_assert (temp
!= NULL_RTX
|| may_fail
);
2639 /* Output a shift instruction for expression code CODE,
2640 with SHIFTED being the rtx for the value to shift,
2641 and AMOUNT the amount to shift by.
2642 Store the result in the rtx TARGET, if that is convenient.
2643 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2644 Return the rtx for where the value is. */
2647 expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2648 poly_int64 amount
, rtx target
, int unsignedp
)
2650 return expand_shift_1 (code
, mode
, shifted
,
2651 gen_int_shift_amount (mode
, amount
),
2655 /* Likewise, but return 0 if that cannot be done. */
2658 maybe_expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2659 int amount
, rtx target
, int unsignedp
)
2661 return expand_shift_1 (code
, mode
,
2662 shifted
, GEN_INT (amount
), target
, unsignedp
, true);
2665 /* Output a shift instruction for expression code CODE,
2666 with SHIFTED being the rtx for the value to shift,
2667 and AMOUNT the tree for the amount to shift by.
2668 Store the result in the rtx TARGET, if that is convenient.
2669 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2670 Return the rtx for where the value is. */
2673 expand_variable_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2674 tree amount
, rtx target
, int unsignedp
)
2676 return expand_shift_1 (code
, mode
,
2677 shifted
, expand_normal (amount
), target
, unsignedp
);
2681 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2682 const struct mult_cost
*, machine_mode mode
);
2683 static rtx
expand_mult_const (machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2684 const struct algorithm
*, enum mult_variant
);
2685 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2686 static rtx
extract_high_half (scalar_int_mode
, rtx
);
2687 static rtx
expmed_mult_highpart (scalar_int_mode
, rtx
, rtx
, rtx
, int, int);
2688 static rtx
expmed_mult_highpart_optab (scalar_int_mode
, rtx
, rtx
, rtx
,
2690 /* Compute and return the best algorithm for multiplying by T.
2691 The algorithm must cost less than cost_limit
2692 If retval.cost >= COST_LIMIT, no algorithm was found and all
2693 other field of the returned struct are undefined.
2694 MODE is the machine mode of the multiplication. */
2697 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2698 const struct mult_cost
*cost_limit
, machine_mode mode
)
2701 struct algorithm
*alg_in
, *best_alg
;
2702 struct mult_cost best_cost
;
2703 struct mult_cost new_limit
;
2704 int op_cost
, op_latency
;
2705 unsigned HOST_WIDE_INT orig_t
= t
;
2706 unsigned HOST_WIDE_INT q
;
2707 int maxm
, hash_index
;
2708 bool cache_hit
= false;
2709 enum alg_code cache_alg
= alg_zero
;
2710 bool speed
= optimize_insn_for_speed_p ();
2711 scalar_int_mode imode
;
2712 struct alg_hash_entry
*entry_ptr
;
2714 /* Indicate that no algorithm is yet found. If no algorithm
2715 is found, this value will be returned and indicate failure. */
2716 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2717 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2719 if (cost_limit
->cost
< 0
2720 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2723 /* Be prepared for vector modes. */
2724 imode
= as_a
<scalar_int_mode
> (GET_MODE_INNER (mode
));
2726 maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (imode
));
2728 /* Restrict the bits of "t" to the multiplication's mode. */
2729 t
&= GET_MODE_MASK (imode
);
2731 /* t == 1 can be done in zero cost. */
2735 alg_out
->cost
.cost
= 0;
2736 alg_out
->cost
.latency
= 0;
2737 alg_out
->op
[0] = alg_m
;
2741 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2745 if (MULT_COST_LESS (cost_limit
, zero_cost (speed
)))
2750 alg_out
->cost
.cost
= zero_cost (speed
);
2751 alg_out
->cost
.latency
= zero_cost (speed
);
2752 alg_out
->op
[0] = alg_zero
;
2757 /* We'll be needing a couple extra algorithm structures now. */
2759 alg_in
= XALLOCA (struct algorithm
);
2760 best_alg
= XALLOCA (struct algorithm
);
2761 best_cost
= *cost_limit
;
2763 /* Compute the hash index. */
2764 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2766 /* See if we already know what to do for T. */
2767 entry_ptr
= alg_hash_entry_ptr (hash_index
);
2768 if (entry_ptr
->t
== t
2769 && entry_ptr
->mode
== mode
2770 && entry_ptr
->speed
== speed
2771 && entry_ptr
->alg
!= alg_unknown
)
2773 cache_alg
= entry_ptr
->alg
;
2775 if (cache_alg
== alg_impossible
)
2777 /* The cache tells us that it's impossible to synthesize
2778 multiplication by T within entry_ptr->cost. */
2779 if (!CHEAPER_MULT_COST (&entry_ptr
->cost
, cost_limit
))
2780 /* COST_LIMIT is at least as restrictive as the one
2781 recorded in the hash table, in which case we have no
2782 hope of synthesizing a multiplication. Just
2786 /* If we get here, COST_LIMIT is less restrictive than the
2787 one recorded in the hash table, so we may be able to
2788 synthesize a multiplication. Proceed as if we didn't
2789 have the cache entry. */
2793 if (CHEAPER_MULT_COST (cost_limit
, &entry_ptr
->cost
))
2794 /* The cached algorithm shows that this multiplication
2795 requires more cost than COST_LIMIT. Just return. This
2796 way, we don't clobber this cache entry with
2797 alg_impossible but retain useful information. */
2809 goto do_alg_addsub_t_m2
;
2811 case alg_add_factor
:
2812 case alg_sub_factor
:
2813 goto do_alg_addsub_factor
;
2816 goto do_alg_add_t2_m
;
2819 goto do_alg_sub_t2_m
;
2827 /* If we have a group of zero bits at the low-order part of T, try
2828 multiplying by the remaining bits and then doing a shift. */
2833 m
= ctz_or_zero (t
); /* m = number of low zero bits */
2837 /* The function expand_shift will choose between a shift and
2838 a sequence of additions, so the observed cost is given as
2839 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2840 op_cost
= m
* add_cost (speed
, mode
);
2841 if (shift_cost (speed
, mode
, m
) < op_cost
)
2842 op_cost
= shift_cost (speed
, mode
, m
);
2843 new_limit
.cost
= best_cost
.cost
- op_cost
;
2844 new_limit
.latency
= best_cost
.latency
- op_cost
;
2845 synth_mult (alg_in
, q
, &new_limit
, mode
);
2847 alg_in
->cost
.cost
+= op_cost
;
2848 alg_in
->cost
.latency
+= op_cost
;
2849 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2851 best_cost
= alg_in
->cost
;
2852 std::swap (alg_in
, best_alg
);
2853 best_alg
->log
[best_alg
->ops
] = m
;
2854 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2857 /* See if treating ORIG_T as a signed number yields a better
2858 sequence. Try this sequence only for a negative ORIG_T
2859 as it would be useless for a non-negative ORIG_T. */
2860 if ((HOST_WIDE_INT
) orig_t
< 0)
2862 /* Shift ORIG_T as follows because a right shift of a
2863 negative-valued signed type is implementation
2865 q
= ~(~orig_t
>> m
);
2866 /* The function expand_shift will choose between a shift
2867 and a sequence of additions, so the observed cost is
2868 given as MIN (m * add_cost(speed, mode),
2869 shift_cost(speed, mode, m)). */
2870 op_cost
= m
* add_cost (speed
, mode
);
2871 if (shift_cost (speed
, mode
, m
) < op_cost
)
2872 op_cost
= shift_cost (speed
, mode
, m
);
2873 new_limit
.cost
= best_cost
.cost
- op_cost
;
2874 new_limit
.latency
= best_cost
.latency
- op_cost
;
2875 synth_mult (alg_in
, q
, &new_limit
, mode
);
2877 alg_in
->cost
.cost
+= op_cost
;
2878 alg_in
->cost
.latency
+= op_cost
;
2879 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2881 best_cost
= alg_in
->cost
;
2882 std::swap (alg_in
, best_alg
);
2883 best_alg
->log
[best_alg
->ops
] = m
;
2884 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2892 /* If we have an odd number, add or subtract one. */
2895 unsigned HOST_WIDE_INT w
;
2898 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2900 /* If T was -1, then W will be zero after the loop. This is another
2901 case where T ends with ...111. Handling this with (T + 1) and
2902 subtract 1 produces slightly better code and results in algorithm
2903 selection much faster than treating it like the ...0111 case
2907 /* Reject the case where t is 3.
2908 Thus we prefer addition in that case. */
2911 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2913 op_cost
= add_cost (speed
, mode
);
2914 new_limit
.cost
= best_cost
.cost
- op_cost
;
2915 new_limit
.latency
= best_cost
.latency
- op_cost
;
2916 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2918 alg_in
->cost
.cost
+= op_cost
;
2919 alg_in
->cost
.latency
+= op_cost
;
2920 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2922 best_cost
= alg_in
->cost
;
2923 std::swap (alg_in
, best_alg
);
2924 best_alg
->log
[best_alg
->ops
] = 0;
2925 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2930 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2932 op_cost
= add_cost (speed
, mode
);
2933 new_limit
.cost
= best_cost
.cost
- op_cost
;
2934 new_limit
.latency
= best_cost
.latency
- op_cost
;
2935 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2937 alg_in
->cost
.cost
+= op_cost
;
2938 alg_in
->cost
.latency
+= op_cost
;
2939 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2941 best_cost
= alg_in
->cost
;
2942 std::swap (alg_in
, best_alg
);
2943 best_alg
->log
[best_alg
->ops
] = 0;
2944 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2948 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2949 quickly with a - a * n for some appropriate constant n. */
2950 m
= exact_log2 (-orig_t
+ 1);
2951 if (m
>= 0 && m
< maxm
)
2953 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2954 /* If the target has a cheap shift-and-subtract insn use
2955 that in preference to a shift insn followed by a sub insn.
2956 Assume that the shift-and-sub is "atomic" with a latency
2957 equal to it's cost, otherwise assume that on superscalar
2958 hardware the shift may be executed concurrently with the
2959 earlier steps in the algorithm. */
2960 if (shiftsub1_cost (speed
, mode
, m
) <= op_cost
)
2962 op_cost
= shiftsub1_cost (speed
, mode
, m
);
2963 op_latency
= op_cost
;
2966 op_latency
= add_cost (speed
, mode
);
2968 new_limit
.cost
= best_cost
.cost
- op_cost
;
2969 new_limit
.latency
= best_cost
.latency
- op_latency
;
2970 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
,
2973 alg_in
->cost
.cost
+= op_cost
;
2974 alg_in
->cost
.latency
+= op_latency
;
2975 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2977 best_cost
= alg_in
->cost
;
2978 std::swap (alg_in
, best_alg
);
2979 best_alg
->log
[best_alg
->ops
] = m
;
2980 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2988 /* Look for factors of t of the form
2989 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2990 If we find such a factor, we can multiply by t using an algorithm that
2991 multiplies by q, shift the result by m and add/subtract it to itself.
2993 We search for large factors first and loop down, even if large factors
2994 are less probable than small; if we find a large factor we will find a
2995 good sequence quickly, and therefore be able to prune (by decreasing
2996 COST_LIMIT) the search. */
2998 do_alg_addsub_factor
:
2999 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
3001 unsigned HOST_WIDE_INT d
;
3003 d
= (HOST_WIDE_INT_1U
<< m
) + 1;
3004 if (t
% d
== 0 && t
> d
&& m
< maxm
3005 && (!cache_hit
|| cache_alg
== alg_add_factor
))
3007 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
3008 if (shiftadd_cost (speed
, mode
, m
) <= op_cost
)
3009 op_cost
= shiftadd_cost (speed
, mode
, m
);
3011 op_latency
= op_cost
;
3014 new_limit
.cost
= best_cost
.cost
- op_cost
;
3015 new_limit
.latency
= best_cost
.latency
- op_latency
;
3016 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
3018 alg_in
->cost
.cost
+= op_cost
;
3019 alg_in
->cost
.latency
+= op_latency
;
3020 if (alg_in
->cost
.latency
< op_cost
)
3021 alg_in
->cost
.latency
= op_cost
;
3022 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3024 best_cost
= alg_in
->cost
;
3025 std::swap (alg_in
, best_alg
);
3026 best_alg
->log
[best_alg
->ops
] = m
;
3027 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
3029 /* Other factors will have been taken care of in the recursion. */
3033 d
= (HOST_WIDE_INT_1U
<< m
) - 1;
3034 if (t
% d
== 0 && t
> d
&& m
< maxm
3035 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
3037 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
3038 if (shiftsub0_cost (speed
, mode
, m
) <= op_cost
)
3039 op_cost
= shiftsub0_cost (speed
, mode
, m
);
3041 op_latency
= op_cost
;
3043 new_limit
.cost
= best_cost
.cost
- op_cost
;
3044 new_limit
.latency
= best_cost
.latency
- op_latency
;
3045 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
3047 alg_in
->cost
.cost
+= op_cost
;
3048 alg_in
->cost
.latency
+= op_latency
;
3049 if (alg_in
->cost
.latency
< op_cost
)
3050 alg_in
->cost
.latency
= op_cost
;
3051 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3053 best_cost
= alg_in
->cost
;
3054 std::swap (alg_in
, best_alg
);
3055 best_alg
->log
[best_alg
->ops
] = m
;
3056 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
3064 /* Try shift-and-add (load effective address) instructions,
3065 i.e. do a*3, a*5, a*9. */
3073 op_cost
= shiftadd_cost (speed
, mode
, m
);
3074 new_limit
.cost
= best_cost
.cost
- op_cost
;
3075 new_limit
.latency
= best_cost
.latency
- op_cost
;
3076 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
3078 alg_in
->cost
.cost
+= op_cost
;
3079 alg_in
->cost
.latency
+= op_cost
;
3080 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3082 best_cost
= alg_in
->cost
;
3083 std::swap (alg_in
, best_alg
);
3084 best_alg
->log
[best_alg
->ops
] = m
;
3085 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
3096 op_cost
= shiftsub0_cost (speed
, mode
, m
);
3097 new_limit
.cost
= best_cost
.cost
- op_cost
;
3098 new_limit
.latency
= best_cost
.latency
- op_cost
;
3099 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
3101 alg_in
->cost
.cost
+= op_cost
;
3102 alg_in
->cost
.latency
+= op_cost
;
3103 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3105 best_cost
= alg_in
->cost
;
3106 std::swap (alg_in
, best_alg
);
3107 best_alg
->log
[best_alg
->ops
] = m
;
3108 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
3116 /* If best_cost has not decreased, we have not found any algorithm. */
3117 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
3119 /* We failed to find an algorithm. Record alg_impossible for
3120 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3121 we are asked to find an algorithm for T within the same or
3122 lower COST_LIMIT, we can immediately return to the
3125 entry_ptr
->mode
= mode
;
3126 entry_ptr
->speed
= speed
;
3127 entry_ptr
->alg
= alg_impossible
;
3128 entry_ptr
->cost
= *cost_limit
;
3132 /* Cache the result. */
3136 entry_ptr
->mode
= mode
;
3137 entry_ptr
->speed
= speed
;
3138 entry_ptr
->alg
= best_alg
->op
[best_alg
->ops
];
3139 entry_ptr
->cost
.cost
= best_cost
.cost
;
3140 entry_ptr
->cost
.latency
= best_cost
.latency
;
3143 /* If we are getting a too long sequence for `struct algorithm'
3144 to record, make this search fail. */
3145 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
3148 /* Copy the algorithm from temporary space to the space at alg_out.
3149 We avoid using structure assignment because the majority of
3150 best_alg is normally undefined, and this is a critical function. */
3151 alg_out
->ops
= best_alg
->ops
+ 1;
3152 alg_out
->cost
= best_cost
;
3153 memcpy (alg_out
->op
, best_alg
->op
,
3154 alg_out
->ops
* sizeof *alg_out
->op
);
3155 memcpy (alg_out
->log
, best_alg
->log
,
3156 alg_out
->ops
* sizeof *alg_out
->log
);
3159 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3160 Try three variations:
3162 - a shift/add sequence based on VAL itself
3163 - a shift/add sequence based on -VAL, followed by a negation
3164 - a shift/add sequence based on VAL - 1, followed by an addition.
3166 Return true if the cheapest of these cost less than MULT_COST,
3167 describing the algorithm in *ALG and final fixup in *VARIANT. */
3170 choose_mult_variant (machine_mode mode
, HOST_WIDE_INT val
,
3171 struct algorithm
*alg
, enum mult_variant
*variant
,
3174 struct algorithm alg2
;
3175 struct mult_cost limit
;
3177 bool speed
= optimize_insn_for_speed_p ();
3179 /* Fail quickly for impossible bounds. */
3183 /* Ensure that mult_cost provides a reasonable upper bound.
3184 Any constant multiplication can be performed with less
3185 than 2 * bits additions. */
3186 op_cost
= 2 * GET_MODE_UNIT_BITSIZE (mode
) * add_cost (speed
, mode
);
3187 if (mult_cost
> op_cost
)
3188 mult_cost
= op_cost
;
3190 *variant
= basic_variant
;
3191 limit
.cost
= mult_cost
;
3192 limit
.latency
= mult_cost
;
3193 synth_mult (alg
, val
, &limit
, mode
);
3195 /* This works only if the inverted value actually fits in an
3197 if (HOST_BITS_PER_INT
>= GET_MODE_UNIT_BITSIZE (mode
))
3199 op_cost
= neg_cost (speed
, mode
);
3200 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3202 limit
.cost
= alg
->cost
.cost
- op_cost
;
3203 limit
.latency
= alg
->cost
.latency
- op_cost
;
3207 limit
.cost
= mult_cost
- op_cost
;
3208 limit
.latency
= mult_cost
- op_cost
;
3211 synth_mult (&alg2
, -val
, &limit
, mode
);
3212 alg2
.cost
.cost
+= op_cost
;
3213 alg2
.cost
.latency
+= op_cost
;
3214 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3215 *alg
= alg2
, *variant
= negate_variant
;
3218 /* This proves very useful for division-by-constant. */
3219 op_cost
= add_cost (speed
, mode
);
3220 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3222 limit
.cost
= alg
->cost
.cost
- op_cost
;
3223 limit
.latency
= alg
->cost
.latency
- op_cost
;
3227 limit
.cost
= mult_cost
- op_cost
;
3228 limit
.latency
= mult_cost
- op_cost
;
3231 synth_mult (&alg2
, val
- 1, &limit
, mode
);
3232 alg2
.cost
.cost
+= op_cost
;
3233 alg2
.cost
.latency
+= op_cost
;
3234 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3235 *alg
= alg2
, *variant
= add_variant
;
3237 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
3240 /* A subroutine of expand_mult, used for constant multiplications.
3241 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3242 convenient. Use the shift/add sequence described by ALG and apply
3243 the final fixup specified by VARIANT. */
3246 expand_mult_const (machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
3247 rtx target
, const struct algorithm
*alg
,
3248 enum mult_variant variant
)
3250 unsigned HOST_WIDE_INT val_so_far
;
3256 /* Avoid referencing memory over and over and invalid sharing
3258 op0
= force_reg (mode
, op0
);
3260 /* ACCUM starts out either as OP0 or as a zero, depending on
3261 the first operation. */
3263 if (alg
->op
[0] == alg_zero
)
3265 accum
= copy_to_mode_reg (mode
, CONST0_RTX (mode
));
3268 else if (alg
->op
[0] == alg_m
)
3270 accum
= copy_to_mode_reg (mode
, op0
);
3276 for (opno
= 1; opno
< alg
->ops
; opno
++)
3278 int log
= alg
->log
[opno
];
3279 rtx shift_subtarget
= optimize
? 0 : accum
;
3281 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
3284 rtx accum_target
= optimize
? 0 : accum
;
3287 switch (alg
->op
[opno
])
3290 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3291 /* REG_EQUAL note will be attached to the following insn. */
3292 emit_move_insn (accum
, tem
);
3297 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3298 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3299 add_target
? add_target
: accum_target
);
3300 val_so_far
+= HOST_WIDE_INT_1U
<< log
;
3304 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3305 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
3306 add_target
? add_target
: accum_target
);
3307 val_so_far
-= HOST_WIDE_INT_1U
<< log
;
3311 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3312 log
, shift_subtarget
, 0);
3313 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3314 add_target
? add_target
: accum_target
);
3315 val_so_far
= (val_so_far
<< log
) + 1;
3319 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3320 log
, shift_subtarget
, 0);
3321 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3322 add_target
? add_target
: accum_target
);
3323 val_so_far
= (val_so_far
<< log
) - 1;
3326 case alg_add_factor
:
3327 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3328 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3329 add_target
? add_target
: accum_target
);
3330 val_so_far
+= val_so_far
<< log
;
3333 case alg_sub_factor
:
3334 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3335 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3337 ? add_target
: (optimize
? 0 : tem
)));
3338 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3345 if (SCALAR_INT_MODE_P (mode
))
3347 /* Write a REG_EQUAL note on the last insn so that we can cse
3348 multiplication sequences. Note that if ACCUM is a SUBREG,
3349 we've set the inner register and must properly indicate that. */
3350 tem
= op0
, nmode
= mode
;
3351 accum_inner
= accum
;
3352 if (GET_CODE (accum
) == SUBREG
)
3354 accum_inner
= SUBREG_REG (accum
);
3355 nmode
= GET_MODE (accum_inner
);
3356 tem
= gen_lowpart (nmode
, op0
);
3359 /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG.
3360 In that case, only the low bits of accum would be guaranteed to
3361 be equal to the content of the REG_EQUAL note, the upper bits
3363 if (!paradoxical_subreg_p (tem
))
3365 insn
= get_last_insn ();
3366 wide_int wval_so_far
3367 = wi::uhwi (val_so_far
,
3368 GET_MODE_PRECISION (as_a
<scalar_mode
> (nmode
)));
3369 rtx c
= immed_wide_int_const (wval_so_far
, nmode
);
3370 set_dst_reg_note (insn
, REG_EQUAL
, gen_rtx_MULT (nmode
, tem
, c
),
3376 if (variant
== negate_variant
)
3378 val_so_far
= -val_so_far
;
3379 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3381 else if (variant
== add_variant
)
3383 val_so_far
= val_so_far
+ 1;
3384 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3387 /* Compare only the bits of val and val_so_far that are significant
3388 in the result mode, to avoid sign-/zero-extension confusion. */
3389 nmode
= GET_MODE_INNER (mode
);
3390 val
&= GET_MODE_MASK (nmode
);
3391 val_so_far
&= GET_MODE_MASK (nmode
);
3392 gcc_assert (val
== (HOST_WIDE_INT
) val_so_far
);
3397 /* Perform a multiplication and return an rtx for the result.
3398 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3399 TARGET is a suggestion for where to store the result (an rtx).
3401 We check specially for a constant integer as OP1.
3402 If you want this check for OP0 as well, then before calling
3403 you should swap the two operands if OP0 would be constant. */
3406 expand_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3407 int unsignedp
, bool no_libcall
)
3409 enum mult_variant variant
;
3410 struct algorithm algorithm
;
3413 bool speed
= optimize_insn_for_speed_p ();
3414 bool do_trapv
= flag_trapv
&& SCALAR_INT_MODE_P (mode
) && !unsignedp
;
3416 if (CONSTANT_P (op0
))
3417 std::swap (op0
, op1
);
3419 /* For vectors, there are several simplifications that can be made if
3420 all elements of the vector constant are identical. */
3421 scalar_op1
= unwrap_const_vec_duplicate (op1
);
3423 if (INTEGRAL_MODE_P (mode
))
3426 HOST_WIDE_INT coeff
;
3430 if (op1
== CONST0_RTX (mode
))
3432 if (op1
== CONST1_RTX (mode
))
3434 if (op1
== CONSTM1_RTX (mode
))
3435 return expand_unop (mode
, do_trapv
? negv_optab
: neg_optab
,
3441 /* If mode is integer vector mode, check if the backend supports
3442 vector lshift (by scalar or vector) at all. If not, we can't use
3443 synthetized multiply. */
3444 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
3445 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
3446 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
)
3449 /* These are the operations that are potentially turned into
3450 a sequence of shifts and additions. */
3451 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
3453 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3454 less than or equal in size to `unsigned int' this doesn't matter.
3455 If the mode is larger than `unsigned int', then synth_mult works
3456 only if the constant value exactly fits in an `unsigned int' without
3457 any truncation. This means that multiplying by negative values does
3458 not work; results are off by 2^32 on a 32 bit machine. */
3459 if (CONST_INT_P (scalar_op1
))
3461 coeff
= INTVAL (scalar_op1
);
3464 #if TARGET_SUPPORTS_WIDE_INT
3465 else if (CONST_WIDE_INT_P (scalar_op1
))
3467 else if (CONST_DOUBLE_AS_INT_P (scalar_op1
))
3470 int shift
= wi::exact_log2 (rtx_mode_t (scalar_op1
, mode
));
3471 /* Perfect power of 2 (other than 1, which is handled above). */
3473 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3474 shift
, target
, unsignedp
);
3481 /* We used to test optimize here, on the grounds that it's better to
3482 produce a smaller program when -O is not used. But this causes
3483 such a terrible slowdown sometimes that it seems better to always
3486 /* Special case powers of two. */
3487 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
)
3488 && !(is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
))
3489 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3490 floor_log2 (coeff
), target
, unsignedp
);
3492 fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3494 /* Attempt to handle multiplication of DImode values by negative
3495 coefficients, by performing the multiplication by a positive
3496 multiplier and then inverting the result. */
3497 if (is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
)
3499 /* Its safe to use -coeff even for INT_MIN, as the
3500 result is interpreted as an unsigned coefficient.
3501 Exclude cost of op0 from max_cost to match the cost
3502 calculation of the synth_mult. */
3503 coeff
= -(unsigned HOST_WIDE_INT
) coeff
;
3504 max_cost
= (set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
),
3506 - neg_cost (speed
, mode
));
3510 /* Special case powers of two. */
3511 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3513 rtx temp
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3514 floor_log2 (coeff
), target
, unsignedp
);
3515 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3518 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3521 rtx temp
= expand_mult_const (mode
, op0
, coeff
, NULL_RTX
,
3522 &algorithm
, variant
);
3523 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3528 /* Exclude cost of op0 from max_cost to match the cost
3529 calculation of the synth_mult. */
3530 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), mode
, speed
);
3531 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3532 return expand_mult_const (mode
, op0
, coeff
, target
,
3533 &algorithm
, variant
);
3537 /* Expand x*2.0 as x+x. */
3538 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1
)
3539 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1
), &dconst2
))
3541 op0
= force_reg (GET_MODE (op0
), op0
);
3542 return expand_binop (mode
, add_optab
, op0
, op0
,
3544 no_libcall
? OPTAB_WIDEN
: OPTAB_LIB_WIDEN
);
3547 /* This used to use umul_optab if unsigned, but for non-widening multiply
3548 there is no difference between signed and unsigned. */
3549 op0
= expand_binop (mode
, do_trapv
? smulv_optab
: smul_optab
,
3550 op0
, op1
, target
, unsignedp
,
3551 no_libcall
? OPTAB_WIDEN
: OPTAB_LIB_WIDEN
);
3552 gcc_assert (op0
|| no_libcall
);
3556 /* Return a cost estimate for multiplying a register by the given
3557 COEFFicient in the given MODE and SPEED. */
3560 mult_by_coeff_cost (HOST_WIDE_INT coeff
, machine_mode mode
, bool speed
)
3563 struct algorithm algorithm
;
3564 enum mult_variant variant
;
3566 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3567 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, fake_reg
),
3569 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3570 return algorithm
.cost
.cost
;
3575 /* Perform a widening multiplication and return an rtx for the result.
3576 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3577 TARGET is a suggestion for where to store the result (an rtx).
3578 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3579 or smul_widen_optab.
3581 We check specially for a constant integer as OP1, comparing the
3582 cost of a widening multiply against the cost of a sequence of shifts
3586 expand_widening_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3587 int unsignedp
, optab this_optab
)
3589 bool speed
= optimize_insn_for_speed_p ();
3592 if (CONST_INT_P (op1
)
3593 && GET_MODE (op0
) != VOIDmode
3594 && (cop1
= convert_modes (mode
, GET_MODE (op0
), op1
,
3595 this_optab
== umul_widen_optab
))
3596 && CONST_INT_P (cop1
)
3597 && (INTVAL (cop1
) >= 0
3598 || HWI_COMPUTABLE_MODE_P (mode
)))
3600 HOST_WIDE_INT coeff
= INTVAL (cop1
);
3602 enum mult_variant variant
;
3603 struct algorithm algorithm
;
3606 return CONST0_RTX (mode
);
3608 /* Special case powers of two. */
3609 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3611 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3612 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3613 floor_log2 (coeff
), target
, unsignedp
);
3616 /* Exclude cost of op0 from max_cost to match the cost
3617 calculation of the synth_mult. */
3618 max_cost
= mul_widen_cost (speed
, mode
);
3619 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3622 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3623 return expand_mult_const (mode
, op0
, coeff
, target
,
3624 &algorithm
, variant
);
3627 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3628 unsignedp
, OPTAB_LIB_WIDEN
);
3631 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3632 replace division by D, and put the least significant N bits of the result
3633 in *MULTIPLIER_PTR and return the most significant bit.
3635 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3636 needed precision is in PRECISION (should be <= N).
3638 PRECISION should be as small as possible so this function can choose
3639 multiplier more freely.
3641 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3642 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3644 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3645 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3647 unsigned HOST_WIDE_INT
3648 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3649 unsigned HOST_WIDE_INT
*multiplier_ptr
,
3650 int *post_shift_ptr
, int *lgup_ptr
)
3652 int lgup
, post_shift
;
3655 /* lgup = ceil(log2(divisor)); */
3656 lgup
= ceil_log2 (d
);
3658 gcc_assert (lgup
<= n
);
3661 pow2
= n
+ lgup
- precision
;
3663 /* mlow = 2^(N + lgup)/d */
3664 wide_int val
= wi::set_bit_in_zero (pow
, HOST_BITS_PER_DOUBLE_INT
);
3665 wide_int mlow
= wi::udiv_trunc (val
, d
);
3667 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3668 val
|= wi::set_bit_in_zero (pow2
, HOST_BITS_PER_DOUBLE_INT
);
3669 wide_int mhigh
= wi::udiv_trunc (val
, d
);
3671 /* If precision == N, then mlow, mhigh exceed 2^N
3672 (but they do not exceed 2^(N+1)). */
3674 /* Reduce to lowest terms. */
3675 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3677 unsigned HOST_WIDE_INT ml_lo
= wi::extract_uhwi (mlow
, 1,
3678 HOST_BITS_PER_WIDE_INT
);
3679 unsigned HOST_WIDE_INT mh_lo
= wi::extract_uhwi (mhigh
, 1,
3680 HOST_BITS_PER_WIDE_INT
);
3684 mlow
= wi::uhwi (ml_lo
, HOST_BITS_PER_DOUBLE_INT
);
3685 mhigh
= wi::uhwi (mh_lo
, HOST_BITS_PER_DOUBLE_INT
);
3688 *post_shift_ptr
= post_shift
;
3690 if (n
< HOST_BITS_PER_WIDE_INT
)
3692 unsigned HOST_WIDE_INT mask
= (HOST_WIDE_INT_1U
<< n
) - 1;
3693 *multiplier_ptr
= mhigh
.to_uhwi () & mask
;
3694 return mhigh
.to_uhwi () > mask
;
3698 *multiplier_ptr
= mhigh
.to_uhwi ();
3699 return wi::extract_uhwi (mhigh
, HOST_BITS_PER_WIDE_INT
, 1);
3703 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3704 congruent to 1 (mod 2**N). */
3706 static unsigned HOST_WIDE_INT
3707 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3709 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3711 /* The algorithm notes that the choice y = x satisfies
3712 x*y == 1 mod 2^3, since x is assumed odd.
3713 Each iteration doubles the number of bits of significance in y. */
3715 unsigned HOST_WIDE_INT mask
;
3716 unsigned HOST_WIDE_INT y
= x
;
3719 mask
= (n
== HOST_BITS_PER_WIDE_INT
3721 : (HOST_WIDE_INT_1U
<< n
) - 1);
3725 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3731 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3732 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3733 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3734 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3737 The result is put in TARGET if that is convenient.
3739 MODE is the mode of operation. */
3742 expand_mult_highpart_adjust (scalar_int_mode mode
, rtx adj_operand
, rtx op0
,
3743 rtx op1
, rtx target
, int unsignedp
)
3746 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3748 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3749 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3750 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3752 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3755 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3756 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3757 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3758 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3764 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3767 extract_high_half (scalar_int_mode mode
, rtx op
)
3769 if (mode
== word_mode
)
3770 return gen_highpart (mode
, op
);
3772 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3774 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3775 GET_MODE_BITSIZE (mode
), 0, 1);
3776 return convert_modes (mode
, wider_mode
, op
, 0);
3779 /* Like expmed_mult_highpart, but only consider using a multiplication
3780 optab. OP1 is an rtx for the constant operand. */
3783 expmed_mult_highpart_optab (scalar_int_mode mode
, rtx op0
, rtx op1
,
3784 rtx target
, int unsignedp
, int max_cost
)
3786 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3790 bool speed
= optimize_insn_for_speed_p ();
3792 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3794 size
= GET_MODE_BITSIZE (mode
);
3796 /* Firstly, try using a multiplication insn that only generates the needed
3797 high part of the product, and in the sign flavor of unsignedp. */
3798 if (mul_highpart_cost (speed
, mode
) < max_cost
)
3800 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3801 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3802 unsignedp
, OPTAB_DIRECT
);
3807 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3808 Need to adjust the result after the multiplication. */
3809 if (size
- 1 < BITS_PER_WORD
3810 && (mul_highpart_cost (speed
, mode
)
3811 + 2 * shift_cost (speed
, mode
, size
-1)
3812 + 4 * add_cost (speed
, mode
) < max_cost
))
3814 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3815 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3816 unsignedp
, OPTAB_DIRECT
);
3818 /* We used the wrong signedness. Adjust the result. */
3819 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3823 /* Try widening multiplication. */
3824 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3825 if (convert_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3826 && mul_widen_cost (speed
, wider_mode
) < max_cost
)
3828 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3829 unsignedp
, OPTAB_WIDEN
);
3831 return extract_high_half (mode
, tem
);
3834 /* Try widening the mode and perform a non-widening multiplication. */
3835 if (optab_handler (smul_optab
, wider_mode
) != CODE_FOR_nothing
3836 && size
- 1 < BITS_PER_WORD
3837 && (mul_cost (speed
, wider_mode
) + shift_cost (speed
, mode
, size
-1)
3843 /* We need to widen the operands, for example to ensure the
3844 constant multiplier is correctly sign or zero extended.
3845 Use a sequence to clean-up any instructions emitted by
3846 the conversions if things don't work out. */
3848 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3849 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3850 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3851 unsignedp
, OPTAB_WIDEN
);
3852 insns
= get_insns ();
3858 return extract_high_half (mode
, tem
);
3862 /* Try widening multiplication of opposite signedness, and adjust. */
3863 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3864 if (convert_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3865 && size
- 1 < BITS_PER_WORD
3866 && (mul_widen_cost (speed
, wider_mode
)
3867 + 2 * shift_cost (speed
, mode
, size
-1)
3868 + 4 * add_cost (speed
, mode
) < max_cost
))
3870 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3871 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3874 tem
= extract_high_half (mode
, tem
);
3875 /* We used the wrong signedness. Adjust the result. */
3876 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3884 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3885 putting the high half of the result in TARGET if that is convenient,
3886 and return where the result is. If the operation cannot be performed,
3889 MODE is the mode of operation and result.
3891 UNSIGNEDP nonzero means unsigned multiply.
3893 MAX_COST is the total allowed cost for the expanded RTL. */
3896 expmed_mult_highpart (scalar_int_mode mode
, rtx op0
, rtx op1
,
3897 rtx target
, int unsignedp
, int max_cost
)
3899 unsigned HOST_WIDE_INT cnst1
;
3901 bool sign_adjust
= false;
3902 enum mult_variant variant
;
3903 struct algorithm alg
;
3905 bool speed
= optimize_insn_for_speed_p ();
3907 /* We can't support modes wider than HOST_BITS_PER_INT. */
3908 gcc_assert (HWI_COMPUTABLE_MODE_P (mode
));
3910 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3912 /* We can't optimize modes wider than BITS_PER_WORD.
3913 ??? We might be able to perform double-word arithmetic if
3914 mode == word_mode, however all the cost calculations in
3915 synth_mult etc. assume single-word operations. */
3916 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3917 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3918 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3919 unsignedp
, max_cost
);
3921 extra_cost
= shift_cost (speed
, mode
, GET_MODE_BITSIZE (mode
) - 1);
3923 /* Check whether we try to multiply by a negative constant. */
3924 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3927 extra_cost
+= add_cost (speed
, mode
);
3930 /* See whether shift/add multiplication is cheap enough. */
3931 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3932 max_cost
- extra_cost
))
3934 /* See whether the specialized multiplication optabs are
3935 cheaper than the shift/add version. */
3936 tem
= expmed_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3937 alg
.cost
.cost
+ extra_cost
);
3941 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3942 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3943 tem
= extract_high_half (mode
, tem
);
3945 /* Adjust result for signedness. */
3947 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3951 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3952 unsignedp
, max_cost
);
3956 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3959 expand_smod_pow2 (scalar_int_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3961 rtx result
, temp
, shift
;
3962 rtx_code_label
*label
;
3964 int prec
= GET_MODE_PRECISION (mode
);
3966 logd
= floor_log2 (d
);
3967 result
= gen_reg_rtx (mode
);
3969 /* Avoid conditional branches when they're expensive. */
3970 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3971 && optimize_insn_for_speed_p ())
3973 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3977 HOST_WIDE_INT masklow
= (HOST_WIDE_INT_1
<< logd
) - 1;
3978 signmask
= force_reg (mode
, signmask
);
3979 shift
= gen_int_shift_amount (mode
, GET_MODE_BITSIZE (mode
) - logd
);
3981 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3982 which instruction sequence to use. If logical right shifts
3983 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3984 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3986 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3987 if (optab_handler (lshr_optab
, mode
) == CODE_FOR_nothing
3988 || (set_src_cost (temp
, mode
, optimize_insn_for_speed_p ())
3989 > COSTS_N_INSNS (2)))
3991 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3992 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3993 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3994 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3995 temp
= expand_binop (mode
, and_optab
, temp
,
3996 gen_int_mode (masklow
, mode
),
3997 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3998 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3999 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4000 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
4001 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4005 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
4006 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4007 signmask
= force_reg (mode
, signmask
);
4009 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
4010 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4011 temp
= expand_binop (mode
, and_optab
, temp
,
4012 gen_int_mode (masklow
, mode
),
4013 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4014 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
4015 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4021 /* Mask contains the mode's signbit and the significant bits of the
4022 modulus. By including the signbit in the operation, many targets
4023 can avoid an explicit compare operation in the following comparison
4025 wide_int mask
= wi::mask (logd
, false, prec
);
4026 mask
= wi::set_bit (mask
, prec
- 1);
4028 temp
= expand_binop (mode
, and_optab
, op0
,
4029 immed_wide_int_const (mask
, mode
),
4030 result
, 1, OPTAB_LIB_WIDEN
);
4032 emit_move_insn (result
, temp
);
4034 label
= gen_label_rtx ();
4035 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
4037 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
4038 0, OPTAB_LIB_WIDEN
);
4040 mask
= wi::mask (logd
, true, prec
);
4041 temp
= expand_binop (mode
, ior_optab
, temp
,
4042 immed_wide_int_const (mask
, mode
),
4043 result
, 1, OPTAB_LIB_WIDEN
);
4044 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
4045 0, OPTAB_LIB_WIDEN
);
4047 emit_move_insn (result
, temp
);
4052 /* Expand signed division of OP0 by a power of two D in mode MODE.
4053 This routine is only called for positive values of D. */
4056 expand_sdiv_pow2 (scalar_int_mode mode
, rtx op0
, HOST_WIDE_INT d
)
4059 rtx_code_label
*label
;
4062 logd
= floor_log2 (d
);
4065 && BRANCH_COST (optimize_insn_for_speed_p (),
4068 temp
= gen_reg_rtx (mode
);
4069 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
4070 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
4071 0, OPTAB_LIB_WIDEN
);
4072 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4075 if (HAVE_conditional_move
4076 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
4081 temp2
= copy_to_mode_reg (mode
, op0
);
4082 temp
= expand_binop (mode
, add_optab
, temp2
, gen_int_mode (d
- 1, mode
),
4083 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4084 temp
= force_reg (mode
, temp
);
4086 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
4087 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
4088 mode
, temp
, temp2
, mode
, 0);
4091 rtx_insn
*seq
= get_insns ();
4094 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, logd
, NULL_RTX
, 0);
4099 if (BRANCH_COST (optimize_insn_for_speed_p (),
4102 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
4104 temp
= gen_reg_rtx (mode
);
4105 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
4106 if (GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
4107 || shift_cost (optimize_insn_for_speed_p (), mode
, ushift
)
4108 > COSTS_N_INSNS (1))
4109 temp
= expand_binop (mode
, and_optab
, temp
, gen_int_mode (d
- 1, mode
),
4110 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4112 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
4113 ushift
, NULL_RTX
, 1);
4114 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
4115 0, OPTAB_LIB_WIDEN
);
4116 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4119 label
= gen_label_rtx ();
4120 temp
= copy_to_mode_reg (mode
, op0
);
4121 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
4122 expand_inc (temp
, gen_int_mode (d
- 1, mode
));
4124 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4127 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4128 if that is convenient, and returning where the result is.
4129 You may request either the quotient or the remainder as the result;
4130 specify REM_FLAG nonzero to get the remainder.
4132 CODE is the expression code for which kind of division this is;
4133 it controls how rounding is done. MODE is the machine mode to use.
4134 UNSIGNEDP nonzero means do unsigned division. */
4136 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4137 and then correct it by or'ing in missing high bits
4138 if result of ANDI is nonzero.
4139 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4140 This could optimize to a bfexts instruction.
4141 But C doesn't use these operations, so their optimizations are
4143 /* ??? For modulo, we don't actually need the highpart of the first product,
4144 the low part will do nicely. And for small divisors, the second multiply
4145 can also be a low-part only multiply or even be completely left out.
4146 E.g. to calculate the remainder of a division by 3 with a 32 bit
4147 multiply, multiply with 0x55555556 and extract the upper two bits;
4148 the result is exact for inputs up to 0x1fffffff.
4149 The input range can be reduced by using cross-sum rules.
4150 For odd divisors >= 3, the following table gives right shift counts
4151 so that if a number is shifted by an integer multiple of the given
4152 amount, the remainder stays the same:
4153 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4154 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4155 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4156 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4157 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4159 Cross-sum rules for even numbers can be derived by leaving as many bits
4160 to the right alone as the divisor has zeros to the right.
4161 E.g. if x is an unsigned 32 bit number:
4162 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4166 expand_divmod (int rem_flag
, enum tree_code code
, machine_mode mode
,
4167 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
4169 machine_mode compute_mode
;
4171 rtx quotient
= 0, remainder
= 0;
4174 optab optab1
, optab2
;
4175 int op1_is_constant
, op1_is_pow2
= 0;
4176 int max_cost
, extra_cost
;
4177 static HOST_WIDE_INT last_div_const
= 0;
4178 bool speed
= optimize_insn_for_speed_p ();
4180 op1_is_constant
= CONST_INT_P (op1
);
4181 if (op1_is_constant
)
4183 wide_int ext_op1
= rtx_mode_t (op1
, mode
);
4184 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4186 && wi::popcount (wi::neg (ext_op1
)) == 1));
4190 This is the structure of expand_divmod:
4192 First comes code to fix up the operands so we can perform the operations
4193 correctly and efficiently.
4195 Second comes a switch statement with code specific for each rounding mode.
4196 For some special operands this code emits all RTL for the desired
4197 operation, for other cases, it generates only a quotient and stores it in
4198 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4199 to indicate that it has not done anything.
4201 Last comes code that finishes the operation. If QUOTIENT is set and
4202 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4203 QUOTIENT is not set, it is computed using trunc rounding.
4205 We try to generate special code for division and remainder when OP1 is a
4206 constant. If |OP1| = 2**n we can use shifts and some other fast
4207 operations. For other values of OP1, we compute a carefully selected
4208 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4211 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4212 half of the product. Different strategies for generating the product are
4213 implemented in expmed_mult_highpart.
4215 If what we actually want is the remainder, we generate that by another
4216 by-constant multiplication and a subtraction. */
4218 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4219 code below will malfunction if we are, so check here and handle
4220 the special case if so. */
4221 if (op1
== const1_rtx
)
4222 return rem_flag
? const0_rtx
: op0
;
4224 /* When dividing by -1, we could get an overflow.
4225 negv_optab can handle overflows. */
4226 if (! unsignedp
&& op1
== constm1_rtx
)
4230 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS (mode
) == MODE_INT
4231 ? negv_optab
: neg_optab
, op0
, target
, 0);
4235 /* Don't use the function value register as a target
4236 since we have to read it as well as write it,
4237 and function-inlining gets confused by this. */
4238 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
4239 /* Don't clobber an operand while doing a multi-step calculation. */
4240 || ((rem_flag
|| op1_is_constant
)
4241 && (reg_mentioned_p (target
, op0
)
4242 || (MEM_P (op0
) && MEM_P (target
))))
4243 || reg_mentioned_p (target
, op1
)
4244 || (MEM_P (op1
) && MEM_P (target
))))
4247 /* Get the mode in which to perform this computation. Normally it will
4248 be MODE, but sometimes we can't do the desired operation in MODE.
4249 If so, pick a wider mode in which we can do the operation. Convert
4250 to that mode at the start to avoid repeated conversions.
4252 First see what operations we need. These depend on the expression
4253 we are evaluating. (We assume that divxx3 insns exist under the
4254 same conditions that modxx3 insns and that these insns don't normally
4255 fail. If these assumptions are not correct, we may generate less
4256 efficient code in some cases.)
4258 Then see if we find a mode in which we can open-code that operation
4259 (either a division, modulus, or shift). Finally, check for the smallest
4260 mode for which we can do the operation with a library call. */
4262 /* We might want to refine this now that we have division-by-constant
4263 optimization. Since expmed_mult_highpart tries so many variants, it is
4264 not straightforward to generalize this. Maybe we should make an array
4265 of possible modes in init_expmed? Save this for GCC 2.7. */
4267 optab1
= (op1_is_pow2
4268 ? (unsignedp
? lshr_optab
: ashr_optab
)
4269 : (unsignedp
? udiv_optab
: sdiv_optab
));
4270 optab2
= (op1_is_pow2
? optab1
4271 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
4273 FOR_EACH_MODE_FROM (compute_mode
, mode
)
4274 if (optab_handler (optab1
, compute_mode
) != CODE_FOR_nothing
4275 || optab_handler (optab2
, compute_mode
) != CODE_FOR_nothing
)
4278 if (compute_mode
== VOIDmode
)
4279 FOR_EACH_MODE_FROM (compute_mode
, mode
)
4280 if (optab_libfunc (optab1
, compute_mode
)
4281 || optab_libfunc (optab2
, compute_mode
))
4284 /* If we still couldn't find a mode, use MODE, but expand_binop will
4286 if (compute_mode
== VOIDmode
)
4287 compute_mode
= mode
;
4289 if (target
&& GET_MODE (target
) == compute_mode
)
4292 tquotient
= gen_reg_rtx (compute_mode
);
4295 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4296 (mode), and thereby get better code when OP1 is a constant. Do that
4297 later. It will require going over all usages of SIZE below. */
4298 size
= GET_MODE_BITSIZE (mode
);
4301 /* Only deduct something for a REM if the last divide done was
4302 for a different constant. Then set the constant of the last
4304 max_cost
= (unsignedp
4305 ? udiv_cost (speed
, compute_mode
)
4306 : sdiv_cost (speed
, compute_mode
));
4307 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
4308 && INTVAL (op1
) == last_div_const
))
4309 max_cost
-= (mul_cost (speed
, compute_mode
)
4310 + add_cost (speed
, compute_mode
));
4312 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
4314 /* Now convert to the best mode to use. */
4315 if (compute_mode
!= mode
)
4317 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
4318 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
4320 /* convert_modes may have placed op1 into a register, so we
4321 must recompute the following. */
4322 op1_is_constant
= CONST_INT_P (op1
);
4323 if (op1_is_constant
)
4325 wide_int ext_op1
= rtx_mode_t (op1
, compute_mode
);
4326 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4328 && wi::popcount (wi::neg (ext_op1
)) == 1));
4334 /* If one of the operands is a volatile MEM, copy it into a register. */
4336 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4337 op0
= force_reg (compute_mode
, op0
);
4338 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4339 op1
= force_reg (compute_mode
, op1
);
4341 /* If we need the remainder or if OP1 is constant, we need to
4342 put OP0 in a register in case it has any queued subexpressions. */
4343 if (rem_flag
|| op1_is_constant
)
4344 op0
= force_reg (compute_mode
, op0
);
4346 last
= get_last_insn ();
4348 /* Promote floor rounding to trunc rounding for unsigned operations. */
4351 if (code
== FLOOR_DIV_EXPR
)
4352 code
= TRUNC_DIV_EXPR
;
4353 if (code
== FLOOR_MOD_EXPR
)
4354 code
= TRUNC_MOD_EXPR
;
4355 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4356 code
= TRUNC_DIV_EXPR
;
4359 if (op1
!= const0_rtx
)
4362 case TRUNC_MOD_EXPR
:
4363 case TRUNC_DIV_EXPR
:
4364 if (op1_is_constant
)
4366 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4367 int size
= GET_MODE_BITSIZE (int_mode
);
4370 unsigned HOST_WIDE_INT mh
, ml
;
4371 int pre_shift
, post_shift
;
4373 wide_int wd
= rtx_mode_t (op1
, int_mode
);
4374 unsigned HOST_WIDE_INT d
= wd
.to_uhwi ();
4376 if (wi::popcount (wd
) == 1)
4378 pre_shift
= floor_log2 (d
);
4381 unsigned HOST_WIDE_INT mask
4382 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4384 = expand_binop (int_mode
, and_optab
, op0
,
4385 gen_int_mode (mask
, int_mode
),
4389 return gen_lowpart (mode
, remainder
);
4391 quotient
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
4392 pre_shift
, tquotient
, 1);
4394 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4396 if (d
>= (HOST_WIDE_INT_1U
<< (size
- 1)))
4398 /* Most significant bit of divisor is set; emit an scc
4400 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4405 /* Find a suitable multiplier and right shift count
4406 instead of multiplying with D. */
4408 mh
= choose_multiplier (d
, size
, size
,
4409 &ml
, &post_shift
, &dummy
);
4411 /* If the suggested multiplier is more than SIZE bits,
4412 we can do better for even divisors, using an
4413 initial right shift. */
4414 if (mh
!= 0 && (d
& 1) == 0)
4416 pre_shift
= ctz_or_zero (d
);
4417 mh
= choose_multiplier (d
>> pre_shift
, size
,
4419 &ml
, &post_shift
, &dummy
);
4429 if (post_shift
- 1 >= BITS_PER_WORD
)
4433 = (shift_cost (speed
, int_mode
, post_shift
- 1)
4434 + shift_cost (speed
, int_mode
, 1)
4435 + 2 * add_cost (speed
, int_mode
));
4436 t1
= expmed_mult_highpart
4437 (int_mode
, op0
, gen_int_mode (ml
, int_mode
),
4438 NULL_RTX
, 1, max_cost
- extra_cost
);
4441 t2
= force_operand (gen_rtx_MINUS (int_mode
,
4444 t3
= expand_shift (RSHIFT_EXPR
, int_mode
,
4445 t2
, 1, NULL_RTX
, 1);
4446 t4
= force_operand (gen_rtx_PLUS (int_mode
,
4449 quotient
= expand_shift
4450 (RSHIFT_EXPR
, int_mode
, t4
,
4451 post_shift
- 1, tquotient
, 1);
4457 if (pre_shift
>= BITS_PER_WORD
4458 || post_shift
>= BITS_PER_WORD
)
4462 (RSHIFT_EXPR
, int_mode
, op0
,
4463 pre_shift
, NULL_RTX
, 1);
4465 = (shift_cost (speed
, int_mode
, pre_shift
)
4466 + shift_cost (speed
, int_mode
, post_shift
));
4467 t2
= expmed_mult_highpart
4469 gen_int_mode (ml
, int_mode
),
4470 NULL_RTX
, 1, max_cost
- extra_cost
);
4473 quotient
= expand_shift
4474 (RSHIFT_EXPR
, int_mode
, t2
,
4475 post_shift
, tquotient
, 1);
4479 else /* Too wide mode to use tricky code */
4482 insn
= get_last_insn ();
4484 set_dst_reg_note (insn
, REG_EQUAL
,
4485 gen_rtx_UDIV (int_mode
, op0
, op1
),
4488 else /* TRUNC_DIV, signed */
4490 unsigned HOST_WIDE_INT ml
;
4491 int lgup
, post_shift
;
4493 HOST_WIDE_INT d
= INTVAL (op1
);
4494 unsigned HOST_WIDE_INT abs_d
;
4496 /* Not prepared to handle division/remainder by
4497 0xffffffffffffffff8000000000000000 etc. */
4498 if (d
== HOST_WIDE_INT_MIN
&& size
> HOST_BITS_PER_WIDE_INT
)
4501 /* Since d might be INT_MIN, we have to cast to
4502 unsigned HOST_WIDE_INT before negating to avoid
4503 undefined signed overflow. */
4505 ? (unsigned HOST_WIDE_INT
) d
4506 : - (unsigned HOST_WIDE_INT
) d
);
4508 /* n rem d = n rem -d */
4509 if (rem_flag
&& d
< 0)
4512 op1
= gen_int_mode (abs_d
, int_mode
);
4518 quotient
= expand_unop (int_mode
, neg_optab
, op0
,
4520 else if (size
<= HOST_BITS_PER_WIDE_INT
4521 && abs_d
== HOST_WIDE_INT_1U
<< (size
- 1))
4523 /* This case is not handled correctly below. */
4524 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4529 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4530 && (size
<= HOST_BITS_PER_WIDE_INT
|| d
>= 0)
4532 ? smod_pow2_cheap (speed
, int_mode
)
4533 : sdiv_pow2_cheap (speed
, int_mode
))
4534 /* We assume that cheap metric is true if the
4535 optab has an expander for this mode. */
4536 && ((optab_handler ((rem_flag
? smod_optab
4539 != CODE_FOR_nothing
)
4540 || (optab_handler (sdivmod_optab
, int_mode
)
4541 != CODE_FOR_nothing
)))
4543 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4547 remainder
= expand_smod_pow2 (int_mode
, op0
, d
);
4549 return gen_lowpart (mode
, remainder
);
4552 if (sdiv_pow2_cheap (speed
, int_mode
)
4553 && ((optab_handler (sdiv_optab
, int_mode
)
4554 != CODE_FOR_nothing
)
4555 || (optab_handler (sdivmod_optab
, int_mode
)
4556 != CODE_FOR_nothing
)))
4557 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4559 gen_int_mode (abs_d
,
4563 quotient
= expand_sdiv_pow2 (int_mode
, op0
, abs_d
);
4565 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4566 negate the quotient. */
4569 insn
= get_last_insn ();
4571 && abs_d
< (HOST_WIDE_INT_1U
4572 << (HOST_BITS_PER_WIDE_INT
- 1)))
4573 set_dst_reg_note (insn
, REG_EQUAL
,
4574 gen_rtx_DIV (int_mode
, op0
,
4580 quotient
= expand_unop (int_mode
, neg_optab
,
4581 quotient
, quotient
, 0);
4584 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4586 choose_multiplier (abs_d
, size
, size
- 1,
4587 &ml
, &post_shift
, &lgup
);
4588 if (ml
< HOST_WIDE_INT_1U
<< (size
- 1))
4592 if (post_shift
>= BITS_PER_WORD
4593 || size
- 1 >= BITS_PER_WORD
)
4596 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4597 + shift_cost (speed
, int_mode
, size
- 1)
4598 + add_cost (speed
, int_mode
));
4599 t1
= expmed_mult_highpart
4600 (int_mode
, op0
, gen_int_mode (ml
, int_mode
),
4601 NULL_RTX
, 0, max_cost
- extra_cost
);
4605 (RSHIFT_EXPR
, int_mode
, t1
,
4606 post_shift
, NULL_RTX
, 0);
4608 (RSHIFT_EXPR
, int_mode
, op0
,
4609 size
- 1, NULL_RTX
, 0);
4612 = force_operand (gen_rtx_MINUS (int_mode
, t3
, t2
),
4616 = force_operand (gen_rtx_MINUS (int_mode
, t2
, t3
),
4623 if (post_shift
>= BITS_PER_WORD
4624 || size
- 1 >= BITS_PER_WORD
)
4627 ml
|= HOST_WIDE_INT_M1U
<< (size
- 1);
4628 mlr
= gen_int_mode (ml
, int_mode
);
4629 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4630 + shift_cost (speed
, int_mode
, size
- 1)
4631 + 2 * add_cost (speed
, int_mode
));
4632 t1
= expmed_mult_highpart (int_mode
, op0
, mlr
,
4634 max_cost
- extra_cost
);
4637 t2
= force_operand (gen_rtx_PLUS (int_mode
, t1
, op0
),
4640 (RSHIFT_EXPR
, int_mode
, t2
,
4641 post_shift
, NULL_RTX
, 0);
4643 (RSHIFT_EXPR
, int_mode
, op0
,
4644 size
- 1, NULL_RTX
, 0);
4647 = force_operand (gen_rtx_MINUS (int_mode
, t4
, t3
),
4651 = force_operand (gen_rtx_MINUS (int_mode
, t3
, t4
),
4655 else /* Too wide mode to use tricky code */
4658 insn
= get_last_insn ();
4660 set_dst_reg_note (insn
, REG_EQUAL
,
4661 gen_rtx_DIV (int_mode
, op0
, op1
),
4667 delete_insns_since (last
);
4670 case FLOOR_DIV_EXPR
:
4671 case FLOOR_MOD_EXPR
:
4672 /* We will come here only for signed operations. */
4673 if (op1_is_constant
&& HWI_COMPUTABLE_MODE_P (compute_mode
))
4675 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4676 int size
= GET_MODE_BITSIZE (int_mode
);
4677 unsigned HOST_WIDE_INT mh
, ml
;
4678 int pre_shift
, lgup
, post_shift
;
4679 HOST_WIDE_INT d
= INTVAL (op1
);
4683 /* We could just as easily deal with negative constants here,
4684 but it does not seem worth the trouble for GCC 2.6. */
4685 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4687 pre_shift
= floor_log2 (d
);
4690 unsigned HOST_WIDE_INT mask
4691 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4692 remainder
= expand_binop
4693 (int_mode
, and_optab
, op0
,
4694 gen_int_mode (mask
, int_mode
),
4695 remainder
, 0, OPTAB_LIB_WIDEN
);
4697 return gen_lowpart (mode
, remainder
);
4699 quotient
= expand_shift
4700 (RSHIFT_EXPR
, int_mode
, op0
,
4701 pre_shift
, tquotient
, 0);
4707 mh
= choose_multiplier (d
, size
, size
- 1,
4708 &ml
, &post_shift
, &lgup
);
4711 if (post_shift
< BITS_PER_WORD
4712 && size
- 1 < BITS_PER_WORD
)
4715 (RSHIFT_EXPR
, int_mode
, op0
,
4716 size
- 1, NULL_RTX
, 0);
4717 t2
= expand_binop (int_mode
, xor_optab
, op0
, t1
,
4718 NULL_RTX
, 0, OPTAB_WIDEN
);
4719 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4720 + shift_cost (speed
, int_mode
, size
- 1)
4721 + 2 * add_cost (speed
, int_mode
));
4722 t3
= expmed_mult_highpart
4723 (int_mode
, t2
, gen_int_mode (ml
, int_mode
),
4724 NULL_RTX
, 1, max_cost
- extra_cost
);
4728 (RSHIFT_EXPR
, int_mode
, t3
,
4729 post_shift
, NULL_RTX
, 1);
4730 quotient
= expand_binop (int_mode
, xor_optab
,
4731 t4
, t1
, tquotient
, 0,
4739 rtx nsign
, t1
, t2
, t3
, t4
;
4740 t1
= force_operand (gen_rtx_PLUS (int_mode
,
4741 op0
, constm1_rtx
), NULL_RTX
);
4742 t2
= expand_binop (int_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4744 nsign
= expand_shift (RSHIFT_EXPR
, int_mode
, t2
,
4745 size
- 1, NULL_RTX
, 0);
4746 t3
= force_operand (gen_rtx_MINUS (int_mode
, t1
, nsign
),
4748 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, int_mode
, t3
, op1
,
4753 t5
= expand_unop (int_mode
, one_cmpl_optab
, nsign
,
4755 quotient
= force_operand (gen_rtx_PLUS (int_mode
, t4
, t5
),
4763 delete_insns_since (last
);
4765 /* Try using an instruction that produces both the quotient and
4766 remainder, using truncation. We can easily compensate the quotient
4767 or remainder to get floor rounding, once we have the remainder.
4768 Notice that we compute also the final remainder value here,
4769 and return the result right away. */
4770 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4771 target
= gen_reg_rtx (compute_mode
);
4776 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4777 quotient
= gen_reg_rtx (compute_mode
);
4782 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4783 remainder
= gen_reg_rtx (compute_mode
);
4786 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4787 quotient
, remainder
, 0))
4789 /* This could be computed with a branch-less sequence.
4790 Save that for later. */
4792 rtx_code_label
*label
= gen_label_rtx ();
4793 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4794 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4795 NULL_RTX
, 0, OPTAB_WIDEN
);
4796 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4797 expand_dec (quotient
, const1_rtx
);
4798 expand_inc (remainder
, op1
);
4800 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4803 /* No luck with division elimination or divmod. Have to do it
4804 by conditionally adjusting op0 *and* the result. */
4806 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4810 quotient
= gen_reg_rtx (compute_mode
);
4811 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4812 label1
= gen_label_rtx ();
4813 label2
= gen_label_rtx ();
4814 label3
= gen_label_rtx ();
4815 label4
= gen_label_rtx ();
4816 label5
= gen_label_rtx ();
4817 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4818 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4819 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4820 quotient
, 0, OPTAB_LIB_WIDEN
);
4821 if (tem
!= quotient
)
4822 emit_move_insn (quotient
, tem
);
4823 emit_jump_insn (targetm
.gen_jump (label5
));
4825 emit_label (label1
);
4826 expand_inc (adjusted_op0
, const1_rtx
);
4827 emit_jump_insn (targetm
.gen_jump (label4
));
4829 emit_label (label2
);
4830 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4831 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4832 quotient
, 0, OPTAB_LIB_WIDEN
);
4833 if (tem
!= quotient
)
4834 emit_move_insn (quotient
, tem
);
4835 emit_jump_insn (targetm
.gen_jump (label5
));
4837 emit_label (label3
);
4838 expand_dec (adjusted_op0
, const1_rtx
);
4839 emit_label (label4
);
4840 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4841 quotient
, 0, OPTAB_LIB_WIDEN
);
4842 if (tem
!= quotient
)
4843 emit_move_insn (quotient
, tem
);
4844 expand_dec (quotient
, const1_rtx
);
4845 emit_label (label5
);
4854 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4855 && (HWI_COMPUTABLE_MODE_P (compute_mode
)
4856 || INTVAL (op1
) >= 0))
4858 scalar_int_mode int_mode
4859 = as_a
<scalar_int_mode
> (compute_mode
);
4861 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4862 t1
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
4863 floor_log2 (d
), tquotient
, 1);
4864 t2
= expand_binop (int_mode
, and_optab
, op0
,
4865 gen_int_mode (d
- 1, int_mode
),
4866 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4867 t3
= gen_reg_rtx (int_mode
);
4868 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
, int_mode
, 1, 1);
4871 rtx_code_label
*lab
;
4872 lab
= gen_label_rtx ();
4873 do_cmp_and_jump (t2
, const0_rtx
, EQ
, int_mode
, lab
);
4874 expand_inc (t1
, const1_rtx
);
4879 quotient
= force_operand (gen_rtx_PLUS (int_mode
, t1
, t3
),
4884 /* Try using an instruction that produces both the quotient and
4885 remainder, using truncation. We can easily compensate the
4886 quotient or remainder to get ceiling rounding, once we have the
4887 remainder. Notice that we compute also the final remainder
4888 value here, and return the result right away. */
4889 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4890 target
= gen_reg_rtx (compute_mode
);
4894 remainder
= (REG_P (target
)
4895 ? target
: gen_reg_rtx (compute_mode
));
4896 quotient
= gen_reg_rtx (compute_mode
);
4900 quotient
= (REG_P (target
)
4901 ? target
: gen_reg_rtx (compute_mode
));
4902 remainder
= gen_reg_rtx (compute_mode
);
4905 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4908 /* This could be computed with a branch-less sequence.
4909 Save that for later. */
4910 rtx_code_label
*label
= gen_label_rtx ();
4911 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4912 compute_mode
, label
);
4913 expand_inc (quotient
, const1_rtx
);
4914 expand_dec (remainder
, op1
);
4916 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4919 /* No luck with division elimination or divmod. Have to do it
4920 by conditionally adjusting op0 *and* the result. */
4922 rtx_code_label
*label1
, *label2
;
4923 rtx adjusted_op0
, tem
;
4925 quotient
= gen_reg_rtx (compute_mode
);
4926 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4927 label1
= gen_label_rtx ();
4928 label2
= gen_label_rtx ();
4929 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4930 compute_mode
, label1
);
4931 emit_move_insn (quotient
, const0_rtx
);
4932 emit_jump_insn (targetm
.gen_jump (label2
));
4934 emit_label (label1
);
4935 expand_dec (adjusted_op0
, const1_rtx
);
4936 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4937 quotient
, 1, OPTAB_LIB_WIDEN
);
4938 if (tem
!= quotient
)
4939 emit_move_insn (quotient
, tem
);
4940 expand_inc (quotient
, const1_rtx
);
4941 emit_label (label2
);
4946 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4947 && INTVAL (op1
) >= 0)
4949 /* This is extremely similar to the code for the unsigned case
4950 above. For 2.7 we should merge these variants, but for
4951 2.6.1 I don't want to touch the code for unsigned since that
4952 get used in C. The signed case will only be used by other
4956 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4957 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4958 floor_log2 (d
), tquotient
, 0);
4959 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4960 gen_int_mode (d
- 1, compute_mode
),
4961 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4962 t3
= gen_reg_rtx (compute_mode
);
4963 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4964 compute_mode
, 1, 1);
4967 rtx_code_label
*lab
;
4968 lab
= gen_label_rtx ();
4969 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4970 expand_inc (t1
, const1_rtx
);
4975 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4981 /* Try using an instruction that produces both the quotient and
4982 remainder, using truncation. We can easily compensate the
4983 quotient or remainder to get ceiling rounding, once we have the
4984 remainder. Notice that we compute also the final remainder
4985 value here, and return the result right away. */
4986 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4987 target
= gen_reg_rtx (compute_mode
);
4990 remainder
= (REG_P (target
)
4991 ? target
: gen_reg_rtx (compute_mode
));
4992 quotient
= gen_reg_rtx (compute_mode
);
4996 quotient
= (REG_P (target
)
4997 ? target
: gen_reg_rtx (compute_mode
));
4998 remainder
= gen_reg_rtx (compute_mode
);
5001 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
5004 /* This could be computed with a branch-less sequence.
5005 Save that for later. */
5007 rtx_code_label
*label
= gen_label_rtx ();
5008 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
5009 compute_mode
, label
);
5010 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
5011 NULL_RTX
, 0, OPTAB_WIDEN
);
5012 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
5013 expand_inc (quotient
, const1_rtx
);
5014 expand_dec (remainder
, op1
);
5016 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5019 /* No luck with division elimination or divmod. Have to do it
5020 by conditionally adjusting op0 *and* the result. */
5022 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
5026 quotient
= gen_reg_rtx (compute_mode
);
5027 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
5028 label1
= gen_label_rtx ();
5029 label2
= gen_label_rtx ();
5030 label3
= gen_label_rtx ();
5031 label4
= gen_label_rtx ();
5032 label5
= gen_label_rtx ();
5033 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
5034 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
5035 compute_mode
, label1
);
5036 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
5037 quotient
, 0, OPTAB_LIB_WIDEN
);
5038 if (tem
!= quotient
)
5039 emit_move_insn (quotient
, tem
);
5040 emit_jump_insn (targetm
.gen_jump (label5
));
5042 emit_label (label1
);
5043 expand_dec (adjusted_op0
, const1_rtx
);
5044 emit_jump_insn (targetm
.gen_jump (label4
));
5046 emit_label (label2
);
5047 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
5048 compute_mode
, label3
);
5049 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
5050 quotient
, 0, OPTAB_LIB_WIDEN
);
5051 if (tem
!= quotient
)
5052 emit_move_insn (quotient
, tem
);
5053 emit_jump_insn (targetm
.gen_jump (label5
));
5055 emit_label (label3
);
5056 expand_inc (adjusted_op0
, const1_rtx
);
5057 emit_label (label4
);
5058 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
5059 quotient
, 0, OPTAB_LIB_WIDEN
);
5060 if (tem
!= quotient
)
5061 emit_move_insn (quotient
, tem
);
5062 expand_inc (quotient
, const1_rtx
);
5063 emit_label (label5
);
5068 case EXACT_DIV_EXPR
:
5069 if (op1_is_constant
&& HWI_COMPUTABLE_MODE_P (compute_mode
))
5071 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5072 int size
= GET_MODE_BITSIZE (int_mode
);
5073 HOST_WIDE_INT d
= INTVAL (op1
);
5074 unsigned HOST_WIDE_INT ml
;
5078 pre_shift
= ctz_or_zero (d
);
5079 ml
= invert_mod2n (d
>> pre_shift
, size
);
5080 t1
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
5081 pre_shift
, NULL_RTX
, unsignedp
);
5082 quotient
= expand_mult (int_mode
, t1
, gen_int_mode (ml
, int_mode
),
5085 insn
= get_last_insn ();
5086 set_dst_reg_note (insn
, REG_EQUAL
,
5087 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
5088 int_mode
, op0
, op1
),
5093 case ROUND_DIV_EXPR
:
5094 case ROUND_MOD_EXPR
:
5097 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5099 rtx_code_label
*label
;
5100 label
= gen_label_rtx ();
5101 quotient
= gen_reg_rtx (int_mode
);
5102 remainder
= gen_reg_rtx (int_mode
);
5103 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
5106 quotient
= expand_binop (int_mode
, udiv_optab
, op0
, op1
,
5107 quotient
, 1, OPTAB_LIB_WIDEN
);
5108 tem
= expand_mult (int_mode
, quotient
, op1
, NULL_RTX
, 1);
5109 remainder
= expand_binop (int_mode
, sub_optab
, op0
, tem
,
5110 remainder
, 1, OPTAB_LIB_WIDEN
);
5112 tem
= plus_constant (int_mode
, op1
, -1);
5113 tem
= expand_shift (RSHIFT_EXPR
, int_mode
, tem
, 1, NULL_RTX
, 1);
5114 do_cmp_and_jump (remainder
, tem
, LEU
, int_mode
, label
);
5115 expand_inc (quotient
, const1_rtx
);
5116 expand_dec (remainder
, op1
);
5121 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5122 int size
= GET_MODE_BITSIZE (int_mode
);
5123 rtx abs_rem
, abs_op1
, tem
, mask
;
5124 rtx_code_label
*label
;
5125 label
= gen_label_rtx ();
5126 quotient
= gen_reg_rtx (int_mode
);
5127 remainder
= gen_reg_rtx (int_mode
);
5128 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
5131 quotient
= expand_binop (int_mode
, sdiv_optab
, op0
, op1
,
5132 quotient
, 0, OPTAB_LIB_WIDEN
);
5133 tem
= expand_mult (int_mode
, quotient
, op1
, NULL_RTX
, 0);
5134 remainder
= expand_binop (int_mode
, sub_optab
, op0
, tem
,
5135 remainder
, 0, OPTAB_LIB_WIDEN
);
5137 abs_rem
= expand_abs (int_mode
, remainder
, NULL_RTX
, 1, 0);
5138 abs_op1
= expand_abs (int_mode
, op1
, NULL_RTX
, 1, 0);
5139 tem
= expand_shift (LSHIFT_EXPR
, int_mode
, abs_rem
,
5141 do_cmp_and_jump (tem
, abs_op1
, LTU
, int_mode
, label
);
5142 tem
= expand_binop (int_mode
, xor_optab
, op0
, op1
,
5143 NULL_RTX
, 0, OPTAB_WIDEN
);
5144 mask
= expand_shift (RSHIFT_EXPR
, int_mode
, tem
,
5145 size
- 1, NULL_RTX
, 0);
5146 tem
= expand_binop (int_mode
, xor_optab
, mask
, const1_rtx
,
5147 NULL_RTX
, 0, OPTAB_WIDEN
);
5148 tem
= expand_binop (int_mode
, sub_optab
, tem
, mask
,
5149 NULL_RTX
, 0, OPTAB_WIDEN
);
5150 expand_inc (quotient
, tem
);
5151 tem
= expand_binop (int_mode
, xor_optab
, mask
, op1
,
5152 NULL_RTX
, 0, OPTAB_WIDEN
);
5153 tem
= expand_binop (int_mode
, sub_optab
, tem
, mask
,
5154 NULL_RTX
, 0, OPTAB_WIDEN
);
5155 expand_dec (remainder
, tem
);
5158 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5166 if (target
&& GET_MODE (target
) != compute_mode
)
5171 /* Try to produce the remainder without producing the quotient.
5172 If we seem to have a divmod pattern that does not require widening,
5173 don't try widening here. We should really have a WIDEN argument
5174 to expand_twoval_binop, since what we'd really like to do here is
5175 1) try a mod insn in compute_mode
5176 2) try a divmod insn in compute_mode
5177 3) try a div insn in compute_mode and multiply-subtract to get
5179 4) try the same things with widening allowed. */
5181 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5184 ((optab_handler (optab2
, compute_mode
)
5185 != CODE_FOR_nothing
)
5186 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5189 /* No luck there. Can we do remainder and divide at once
5190 without a library call? */
5191 remainder
= gen_reg_rtx (compute_mode
);
5192 if (! expand_twoval_binop ((unsignedp
5196 NULL_RTX
, remainder
, unsignedp
))
5201 return gen_lowpart (mode
, remainder
);
5204 /* Produce the quotient. Try a quotient insn, but not a library call.
5205 If we have a divmod in this mode, use it in preference to widening
5206 the div (for this test we assume it will not fail). Note that optab2
5207 is set to the one of the two optabs that the call below will use. */
5209 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
5210 op0
, op1
, rem_flag
? NULL_RTX
: target
,
5212 ((optab_handler (optab2
, compute_mode
)
5213 != CODE_FOR_nothing
)
5214 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5218 /* No luck there. Try a quotient-and-remainder insn,
5219 keeping the quotient alone. */
5220 quotient
= gen_reg_rtx (compute_mode
);
5221 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
5223 quotient
, NULL_RTX
, unsignedp
))
5227 /* Still no luck. If we are not computing the remainder,
5228 use a library call for the quotient. */
5229 quotient
= sign_expand_binop (compute_mode
,
5230 udiv_optab
, sdiv_optab
,
5232 unsignedp
, OPTAB_LIB_WIDEN
);
5239 if (target
&& GET_MODE (target
) != compute_mode
)
5244 /* No divide instruction either. Use library for remainder. */
5245 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5247 unsignedp
, OPTAB_LIB_WIDEN
);
5248 /* No remainder function. Try a quotient-and-remainder
5249 function, keeping the remainder. */
5252 remainder
= gen_reg_rtx (compute_mode
);
5253 if (!expand_twoval_binop_libfunc
5254 (unsignedp
? udivmod_optab
: sdivmod_optab
,
5256 NULL_RTX
, remainder
,
5257 unsignedp
? UMOD
: MOD
))
5258 remainder
= NULL_RTX
;
5263 /* We divided. Now finish doing X - Y * (X / Y). */
5264 remainder
= expand_mult (compute_mode
, quotient
, op1
,
5265 NULL_RTX
, unsignedp
);
5266 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
5267 remainder
, target
, unsignedp
,
5272 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5275 /* Return a tree node with data type TYPE, describing the value of X.
5276 Usually this is an VAR_DECL, if there is no obvious better choice.
5277 X may be an expression, however we only support those expressions
5278 generated by loop.c. */
5281 make_tree (tree type
, rtx x
)
5285 switch (GET_CODE (x
))
5288 case CONST_WIDE_INT
:
5289 t
= wide_int_to_tree (type
, rtx_mode_t (x
, TYPE_MODE (type
)));
5293 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT
* 2 <= MAX_BITSIZE_MODE_ANY_INT
);
5294 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
5295 t
= wide_int_to_tree (type
,
5296 wide_int::from_array (&CONST_DOUBLE_LOW (x
), 2,
5297 HOST_BITS_PER_WIDE_INT
* 2));
5299 t
= build_real (type
, *CONST_DOUBLE_REAL_VALUE (x
));
5305 unsigned int npatterns
= CONST_VECTOR_NPATTERNS (x
);
5306 unsigned int nelts_per_pattern
= CONST_VECTOR_NELTS_PER_PATTERN (x
);
5307 tree itype
= TREE_TYPE (type
);
5309 /* Build a tree with vector elements. */
5310 tree_vector_builder
elts (type
, npatterns
, nelts_per_pattern
);
5311 unsigned int count
= elts
.encoded_nelts ();
5312 for (unsigned int i
= 0; i
< count
; ++i
)
5314 rtx elt
= CONST_VECTOR_ELT (x
, i
);
5315 elts
.quick_push (make_tree (itype
, elt
));
5318 return elts
.build ();
5322 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5323 make_tree (type
, XEXP (x
, 1)));
5326 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5327 make_tree (type
, XEXP (x
, 1)));
5330 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5333 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5334 make_tree (type
, XEXP (x
, 1)));
5337 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5338 make_tree (type
, XEXP (x
, 1)));
5341 t
= unsigned_type_for (type
);
5342 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5343 make_tree (t
, XEXP (x
, 0)),
5344 make_tree (type
, XEXP (x
, 1))));
5347 t
= signed_type_for (type
);
5348 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5349 make_tree (t
, XEXP (x
, 0)),
5350 make_tree (type
, XEXP (x
, 1))));
5353 if (TREE_CODE (type
) != REAL_TYPE
)
5354 t
= signed_type_for (type
);
5358 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5359 make_tree (t
, XEXP (x
, 0)),
5360 make_tree (t
, XEXP (x
, 1))));
5362 t
= unsigned_type_for (type
);
5363 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5364 make_tree (t
, XEXP (x
, 0)),
5365 make_tree (t
, XEXP (x
, 1))));
5369 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5370 GET_CODE (x
) == ZERO_EXTEND
);
5371 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5374 return make_tree (type
, XEXP (x
, 0));
5377 t
= SYMBOL_REF_DECL (x
);
5379 return fold_convert (type
, build_fold_addr_expr (t
));
5383 if (CONST_POLY_INT_P (x
))
5384 return wide_int_to_tree (t
, const_poly_int_value (x
));
5386 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5388 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5389 address mode to pointer mode. */
5390 if (POINTER_TYPE_P (type
))
5391 x
= convert_memory_address_addr_space
5392 (SCALAR_INT_TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5394 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5395 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5396 t
->decl_with_rtl
.rtl
= x
;
5402 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5403 and returning TARGET.
5405 If TARGET is 0, a pseudo-register or constant is returned. */
5408 expand_and (machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5412 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5413 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5415 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5419 else if (tem
!= target
)
5420 emit_move_insn (target
, tem
);
5424 /* Helper function for emit_store_flag. */
5426 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5427 machine_mode mode
, machine_mode compare_mode
,
5428 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5429 machine_mode target_mode
)
5431 class expand_operand ops
[4];
5432 rtx op0
, comparison
, subtarget
;
5434 scalar_int_mode result_mode
= targetm
.cstore_mode (icode
);
5435 scalar_int_mode int_target_mode
;
5437 last
= get_last_insn ();
5438 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5439 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5442 delete_insns_since (last
);
5446 if (target_mode
== VOIDmode
)
5447 int_target_mode
= result_mode
;
5449 int_target_mode
= as_a
<scalar_int_mode
> (target_mode
);
5451 target
= gen_reg_rtx (int_target_mode
);
5453 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5455 create_output_operand (&ops
[0], optimize
? NULL_RTX
: target
, result_mode
);
5456 create_fixed_operand (&ops
[1], comparison
);
5457 create_fixed_operand (&ops
[2], x
);
5458 create_fixed_operand (&ops
[3], y
);
5459 if (!maybe_expand_insn (icode
, 4, ops
))
5461 delete_insns_since (last
);
5464 subtarget
= ops
[0].value
;
5466 /* If we are converting to a wider mode, first convert to
5467 INT_TARGET_MODE, then normalize. This produces better combining
5468 opportunities on machines that have a SIGN_EXTRACT when we are
5469 testing a single bit. This mostly benefits the 68k.
5471 If STORE_FLAG_VALUE does not have the sign bit set when
5472 interpreted in MODE, we can do this conversion as unsigned, which
5473 is usually more efficient. */
5474 if (GET_MODE_PRECISION (int_target_mode
) > GET_MODE_PRECISION (result_mode
))
5476 gcc_assert (GET_MODE_PRECISION (result_mode
) != 1
5477 || STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1);
5479 bool unsignedp
= (STORE_FLAG_VALUE
>= 0);
5480 convert_move (target
, subtarget
, unsignedp
);
5483 result_mode
= int_target_mode
;
5488 /* If we want to keep subexpressions around, don't reuse our last
5493 /* Now normalize to the proper value in MODE. Sometimes we don't
5494 have to do anything. */
5495 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5497 /* STORE_FLAG_VALUE might be the most negative number, so write
5498 the comparison this way to avoid a compiler-time warning. */
5499 else if (- normalizep
== STORE_FLAG_VALUE
)
5500 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5502 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5503 it hard to use a value of just the sign bit due to ANSI integer
5504 constant typing rules. */
5505 else if (val_signbit_known_set_p (result_mode
, STORE_FLAG_VALUE
))
5506 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5507 GET_MODE_BITSIZE (result_mode
) - 1, subtarget
,
5511 gcc_assert (STORE_FLAG_VALUE
& 1);
5513 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5514 if (normalizep
== -1)
5515 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5518 /* If we were converting to a smaller mode, do the conversion now. */
5519 if (int_target_mode
!= result_mode
)
5521 convert_move (target
, op0
, 0);
5529 /* A subroutine of emit_store_flag only including "tricks" that do not
5530 need a recursive call. These are kept separate to avoid infinite
5534 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5535 machine_mode mode
, int unsignedp
, int normalizep
,
5536 machine_mode target_mode
)
5539 enum insn_code icode
;
5540 machine_mode compare_mode
;
5541 enum mode_class mclass
;
5542 enum rtx_code scode
;
5545 code
= unsigned_condition (code
);
5546 scode
= swap_condition (code
);
5548 /* If one operand is constant, make it the second one. Only do this
5549 if the other operand is not constant as well. */
5551 if (swap_commutative_operands_p (op0
, op1
))
5553 std::swap (op0
, op1
);
5554 code
= swap_condition (code
);
5557 if (mode
== VOIDmode
)
5558 mode
= GET_MODE (op0
);
5560 if (CONST_SCALAR_INT_P (op1
))
5561 canonicalize_comparison (mode
, &code
, &op1
);
5563 /* For some comparisons with 1 and -1, we can convert this to
5564 comparisons with zero. This will often produce more opportunities for
5565 store-flag insns. */
5570 if (op1
== const1_rtx
)
5571 op1
= const0_rtx
, code
= LE
;
5574 if (op1
== constm1_rtx
)
5575 op1
= const0_rtx
, code
= LT
;
5578 if (op1
== const1_rtx
)
5579 op1
= const0_rtx
, code
= GT
;
5582 if (op1
== constm1_rtx
)
5583 op1
= const0_rtx
, code
= GE
;
5586 if (op1
== const1_rtx
)
5587 op1
= const0_rtx
, code
= NE
;
5590 if (op1
== const1_rtx
)
5591 op1
= const0_rtx
, code
= EQ
;
5597 /* If we are comparing a double-word integer with zero or -1, we can
5598 convert the comparison into one involving a single word. */
5599 scalar_int_mode int_mode
;
5600 if (is_int_mode (mode
, &int_mode
)
5601 && GET_MODE_BITSIZE (int_mode
) == BITS_PER_WORD
* 2
5602 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5605 if ((code
== EQ
|| code
== NE
)
5606 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5610 /* Do a logical OR or AND of the two words and compare the
5612 op00
= simplify_gen_subreg (word_mode
, op0
, int_mode
, 0);
5613 op01
= simplify_gen_subreg (word_mode
, op0
, int_mode
, UNITS_PER_WORD
);
5614 tem
= expand_binop (word_mode
,
5615 op1
== const0_rtx
? ior_optab
: and_optab
,
5616 op00
, op01
, NULL_RTX
, unsignedp
,
5620 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5621 unsignedp
, normalizep
);
5623 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5627 /* If testing the sign bit, can just test on high word. */
5628 op0h
= simplify_gen_subreg (word_mode
, op0
, int_mode
,
5629 subreg_highpart_offset (word_mode
,
5631 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5632 unsignedp
, normalizep
);
5639 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5642 target
= gen_reg_rtx (target_mode
);
5644 convert_move (target
, tem
,
5645 !val_signbit_known_set_p (word_mode
,
5646 (normalizep
? normalizep
5647 : STORE_FLAG_VALUE
)));
5652 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5653 complement of A (for GE) and shifting the sign bit to the low bit. */
5654 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5655 && is_int_mode (mode
, &int_mode
)
5656 && (normalizep
|| STORE_FLAG_VALUE
== 1
5657 || val_signbit_p (int_mode
, STORE_FLAG_VALUE
)))
5659 scalar_int_mode int_target_mode
;
5663 int_target_mode
= int_mode
;
5666 /* If the result is to be wider than OP0, it is best to convert it
5667 first. If it is to be narrower, it is *incorrect* to convert it
5669 int_target_mode
= as_a
<scalar_int_mode
> (target_mode
);
5670 if (GET_MODE_SIZE (int_target_mode
) > GET_MODE_SIZE (int_mode
))
5672 op0
= convert_modes (int_target_mode
, int_mode
, op0
, 0);
5673 int_mode
= int_target_mode
;
5677 if (int_target_mode
!= int_mode
)
5681 op0
= expand_unop (int_mode
, one_cmpl_optab
, op0
,
5682 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5683 ? 0 : subtarget
), 0);
5685 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5686 /* If we are supposed to produce a 0/1 value, we want to do
5687 a logical shift from the sign bit to the low-order bit; for
5688 a -1/0 value, we do an arithmetic shift. */
5689 op0
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
5690 GET_MODE_BITSIZE (int_mode
) - 1,
5691 subtarget
, normalizep
!= -1);
5693 if (int_mode
!= int_target_mode
)
5694 op0
= convert_modes (int_target_mode
, int_mode
, op0
, 0);
5699 mclass
= GET_MODE_CLASS (mode
);
5700 FOR_EACH_MODE_FROM (compare_mode
, mode
)
5702 machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5703 icode
= optab_handler (cstore_optab
, optab_mode
);
5704 if (icode
!= CODE_FOR_nothing
)
5706 do_pending_stack_adjust ();
5707 rtx tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5708 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5712 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5714 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5715 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5726 /* Subroutine of emit_store_flag that handles cases in which the operands
5727 are scalar integers. SUBTARGET is the target to use for temporary
5728 operations and TRUEVAL is the value to store when the condition is
5729 true. All other arguments are as for emit_store_flag. */
5732 emit_store_flag_int (rtx target
, rtx subtarget
, enum rtx_code code
, rtx op0
,
5733 rtx op1
, scalar_int_mode mode
, int unsignedp
,
5734 int normalizep
, rtx trueval
)
5736 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5737 rtx_insn
*last
= get_last_insn ();
5739 /* If this is an equality comparison of integers, we can try to exclusive-or
5740 (or subtract) the two operands and use a recursive call to try the
5741 comparison with zero. Don't do any of these cases if branches are
5744 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5746 rtx tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5750 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5753 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5754 mode
, unsignedp
, normalizep
);
5758 delete_insns_since (last
);
5761 /* For integer comparisons, try the reverse comparison. However, for
5762 small X and if we'd have anyway to extend, implementing "X != 0"
5763 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5764 rtx_code rcode
= reverse_condition (code
);
5765 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5766 && ! (optab_handler (cstore_optab
, mode
) == CODE_FOR_nothing
5768 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5769 && op1
== const0_rtx
))
5771 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5772 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5774 /* Again, for the reverse comparison, use either an addition or a XOR. */
5776 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
5777 optimize_insn_for_speed_p ()) == 0)
5779 rtx tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5780 STORE_FLAG_VALUE
, target_mode
);
5782 tem
= expand_binop (target_mode
, add_optab
, tem
,
5783 gen_int_mode (normalizep
, target_mode
),
5784 target
, 0, OPTAB_WIDEN
);
5789 && rtx_cost (trueval
, mode
, XOR
, 1,
5790 optimize_insn_for_speed_p ()) == 0)
5792 rtx tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5793 normalizep
, target_mode
);
5795 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5796 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5801 delete_insns_since (last
);
5804 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5805 the constant zero. Reject all other comparisons at this point. Only
5806 do LE and GT if branches are expensive since they are expensive on
5807 2-operand machines. */
5809 if (op1
!= const0_rtx
5810 || (code
!= EQ
&& code
!= NE
5811 && (BRANCH_COST (optimize_insn_for_speed_p (),
5812 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5815 /* Try to put the result of the comparison in the sign bit. Assume we can't
5816 do the necessary operation below. */
5820 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5821 the sign bit set. */
5825 /* This is destructive, so SUBTARGET can't be OP0. */
5826 if (rtx_equal_p (subtarget
, op0
))
5829 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5832 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5836 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5837 number of bits in the mode of OP0, minus one. */
5841 if (rtx_equal_p (subtarget
, op0
))
5844 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, op0
,
5845 GET_MODE_BITSIZE (mode
) - 1,
5848 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5852 if (code
== EQ
|| code
== NE
)
5854 /* For EQ or NE, one way to do the comparison is to apply an operation
5855 that converts the operand into a positive number if it is nonzero
5856 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5857 for NE we negate. This puts the result in the sign bit. Then we
5858 normalize with a shift, if needed.
5860 Two operations that can do the above actions are ABS and FFS, so try
5861 them. If that doesn't work, and MODE is smaller than a full word,
5862 we can use zero-extension to the wider mode (an unsigned conversion)
5863 as the operation. */
5865 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5866 that is compensated by the subsequent overflow when subtracting
5869 if (optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)
5870 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5871 else if (optab_handler (ffs_optab
, mode
) != CODE_FOR_nothing
)
5872 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5873 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5875 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5882 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5885 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5888 /* If we couldn't do it that way, for NE we can "or" the two's complement
5889 of the value with itself. For EQ, we take the one's complement of
5890 that "or", which is an extra insn, so we only handle EQ if branches
5895 || BRANCH_COST (optimize_insn_for_speed_p (),
5898 if (rtx_equal_p (subtarget
, op0
))
5901 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5902 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5905 if (tem
&& code
== EQ
)
5906 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5910 if (tem
&& normalizep
)
5911 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, tem
,
5912 GET_MODE_BITSIZE (mode
) - 1,
5913 subtarget
, normalizep
== 1);
5919 else if (GET_MODE (tem
) != target_mode
)
5921 convert_move (target
, tem
, 0);
5924 else if (!subtarget
)
5926 emit_move_insn (target
, tem
);
5931 delete_insns_since (last
);
5936 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5937 and storing in TARGET. Normally return TARGET.
5938 Return 0 if that cannot be done.
5940 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5941 it is VOIDmode, they cannot both be CONST_INT.
5943 UNSIGNEDP is for the case where we have to widen the operands
5944 to perform the operation. It says to use zero-extension.
5946 NORMALIZEP is 1 if we should convert the result to be either zero
5947 or one. Normalize is -1 if we should convert the result to be
5948 either zero or -1. If NORMALIZEP is zero, the result will be left
5949 "raw" out of the scc insn. */
5952 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5953 machine_mode mode
, int unsignedp
, int normalizep
)
5955 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5956 enum rtx_code rcode
;
5961 /* If we compare constants, we shouldn't use a store-flag operation,
5962 but a constant load. We can get there via the vanilla route that
5963 usually generates a compare-branch sequence, but will in this case
5964 fold the comparison to a constant, and thus elide the branch. */
5965 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
5968 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
5973 /* If we reached here, we can't do this with a scc insn, however there
5974 are some comparisons that can be done in other ways. Don't do any
5975 of these cases if branches are very cheap. */
5976 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5979 /* See what we need to return. We can only return a 1, -1, or the
5982 if (normalizep
== 0)
5984 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5985 normalizep
= STORE_FLAG_VALUE
;
5987 else if (val_signbit_p (mode
, STORE_FLAG_VALUE
))
5993 last
= get_last_insn ();
5995 /* If optimizing, use different pseudo registers for each insn, instead
5996 of reusing the same pseudo. This leads to better CSE, but slows
5997 down the compiler, since there are more pseudos. */
5998 subtarget
= (!optimize
5999 && (target_mode
== mode
)) ? target
: NULL_RTX
;
6000 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
6002 /* For floating-point comparisons, try the reverse comparison or try
6003 changing the "orderedness" of the comparison. */
6004 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
6006 enum rtx_code first_code
;
6009 rcode
= reverse_condition_maybe_unordered (code
);
6010 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
6011 && (code
== ORDERED
|| code
== UNORDERED
6012 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
6013 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
6015 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
6016 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
6018 /* For the reverse comparison, use either an addition or a XOR. */
6020 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
6021 optimize_insn_for_speed_p ()) == 0)
6023 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
6024 STORE_FLAG_VALUE
, target_mode
);
6026 return expand_binop (target_mode
, add_optab
, tem
,
6027 gen_int_mode (normalizep
, target_mode
),
6028 target
, 0, OPTAB_WIDEN
);
6031 && rtx_cost (trueval
, mode
, XOR
, 1,
6032 optimize_insn_for_speed_p ()) == 0)
6034 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
6035 normalizep
, target_mode
);
6037 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
6038 target
, INTVAL (trueval
) >= 0,
6043 delete_insns_since (last
);
6045 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
6046 if (code
== ORDERED
|| code
== UNORDERED
)
6049 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
6051 /* If there are no NaNs, the first comparison should always fall through.
6052 Effectively change the comparison to the other one. */
6053 if (!HONOR_NANS (mode
))
6055 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
6056 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
6060 if (!HAVE_conditional_move
)
6063 /* Do not turn a trapping comparison into a non-trapping one. */
6064 if ((code
!= EQ
&& code
!= NE
&& code
!= UNEQ
&& code
!= LTGT
)
6065 && flag_trapping_math
)
6068 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
6069 conditional move. */
6070 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
6071 normalizep
, target_mode
);
6076 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
6077 tem
, const0_rtx
, GET_MODE (tem
), 0);
6079 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
6080 trueval
, tem
, GET_MODE (tem
), 0);
6083 delete_insns_since (last
);
6087 /* The remaining tricks only apply to integer comparisons. */
6089 scalar_int_mode int_mode
;
6090 if (is_int_mode (mode
, &int_mode
))
6091 return emit_store_flag_int (target
, subtarget
, code
, op0
, op1
, int_mode
,
6092 unsignedp
, normalizep
, trueval
);
6097 /* Like emit_store_flag, but always succeeds. */
6100 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
6101 machine_mode mode
, int unsignedp
, int normalizep
)
6104 rtx_code_label
*label
;
6105 rtx trueval
, falseval
;
6107 /* First see if emit_store_flag can do the job. */
6108 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
6112 /* If one operand is constant, make it the second one. Only do this
6113 if the other operand is not constant as well. */
6114 if (swap_commutative_operands_p (op0
, op1
))
6116 std::swap (op0
, op1
);
6117 code
= swap_condition (code
);
6120 if (mode
== VOIDmode
)
6121 mode
= GET_MODE (op0
);
6124 target
= gen_reg_rtx (word_mode
);
6126 /* If this failed, we have to do this with set/compare/jump/set code.
6127 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6128 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
6130 && GET_MODE_CLASS (mode
) == MODE_INT
6133 && op1
== const0_rtx
)
6135 label
= gen_label_rtx ();
6136 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
, mode
,
6137 NULL_RTX
, NULL
, label
,
6138 profile_probability::uninitialized ());
6139 emit_move_insn (target
, trueval
);
6145 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
6146 target
= gen_reg_rtx (GET_MODE (target
));
6148 /* Jump in the right direction if the target cannot implement CODE
6149 but can jump on its reverse condition. */
6150 falseval
= const0_rtx
;
6151 if (! can_compare_p (code
, mode
, ccp_jump
)
6152 && (! FLOAT_MODE_P (mode
)
6153 || code
== ORDERED
|| code
== UNORDERED
6154 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
6155 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
6157 enum rtx_code rcode
;
6158 if (FLOAT_MODE_P (mode
))
6159 rcode
= reverse_condition_maybe_unordered (code
);
6161 rcode
= reverse_condition (code
);
6163 /* Canonicalize to UNORDERED for the libcall. */
6164 if (can_compare_p (rcode
, mode
, ccp_jump
)
6165 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
6168 trueval
= const0_rtx
;
6173 emit_move_insn (target
, trueval
);
6174 label
= gen_label_rtx ();
6175 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
, NULL
,
6176 label
, profile_probability::uninitialized ());
6178 emit_move_insn (target
, falseval
);
6184 /* Helper function for canonicalize_cmp_for_target. Swap between inclusive
6185 and exclusive ranges in order to create an equivalent comparison. See
6186 canonicalize_cmp_for_target for the possible cases. */
6188 static enum rtx_code
6189 equivalent_cmp_code (enum rtx_code code
)
6215 /* Choose the more appropiate immediate in scalar integer comparisons. The
6216 purpose of this is to end up with an immediate which can be loaded into a
6217 register in fewer moves, if possible.
6219 For each integer comparison there exists an equivalent choice:
6220 i) a > b or a >= b + 1
6221 ii) a <= b or a < b + 1
6222 iii) a >= b or a > b - 1
6223 iv) a < b or a <= b - 1
6225 MODE is the mode of the first operand.
6226 CODE points to the comparison code.
6227 IMM points to the rtx containing the immediate. *IMM must satisfy
6228 CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
6232 canonicalize_comparison (machine_mode mode
, enum rtx_code
*code
, rtx
*imm
)
6234 if (!SCALAR_INT_MODE_P (mode
))
6238 enum signop sgn
= unsigned_condition_p (*code
) ? UNSIGNED
: SIGNED
;
6240 /* Extract the immediate value from the rtx. */
6241 wide_int imm_val
= rtx_mode_t (*imm
, mode
);
6243 if (*code
== GT
|| *code
== GTU
|| *code
== LE
|| *code
== LEU
)
6245 else if (*code
== GE
|| *code
== GEU
|| *code
== LT
|| *code
== LTU
)
6250 /* Check for overflow/underflow in the case of signed values and
6251 wrapping around in the case of unsigned values. If any occur
6252 cancel the optimization. */
6253 wi::overflow_type overflow
= wi::OVF_NONE
;
6257 imm_modif
= wi::add (imm_val
, 1, sgn
, &overflow
);
6259 imm_modif
= wi::sub (imm_val
, 1, sgn
, &overflow
);
6264 /* The following creates a pseudo; if we cannot do that, bail out. */
6265 if (!can_create_pseudo_p ())
6268 rtx reg
= gen_rtx_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
6269 rtx new_imm
= immed_wide_int_const (imm_modif
, mode
);
6271 rtx_insn
*old_rtx
= gen_move_insn (reg
, *imm
);
6272 rtx_insn
*new_rtx
= gen_move_insn (reg
, new_imm
);
6274 /* Update the immediate and the code. */
6275 if (insn_cost (old_rtx
, true) > insn_cost (new_rtx
, true))
6277 *code
= equivalent_cmp_code (*code
);
6284 /* Perform possibly multi-word comparison and conditional jump to LABEL
6285 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6286 now a thin wrapper around do_compare_rtx_and_jump. */
6289 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, machine_mode mode
,
6290 rtx_code_label
*label
)
6292 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
6293 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
, NULL_RTX
,
6294 NULL
, label
, profile_probability::uninitialized ());