[ARM] Turning off 64bits ops in Neon
[official-gcc.git] / gcc / config / arm / arm.h
blob04bff13368eda2a6f8ba582838f11c75e12fa868
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2013 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 #ifndef GCC_ARM_H
25 #define GCC_ARM_H
27 /* We can't use enum machine_mode inside a generator file because it
28 hasn't been created yet; we shouldn't be using any code that
29 needs the real definition though, so this ought to be safe. */
30 #ifdef GENERATOR_FILE
31 #define MACHMODE int
32 #else
33 #include "insn-modes.h"
34 #define MACHMODE enum machine_mode
35 #endif
37 #include "config/vxworks-dummy.h"
39 /* The architecture define. */
40 extern char arm_arch_name[];
42 /* Target CPU builtins. */
43 #define TARGET_CPU_CPP_BUILTINS() \
44 do \
45 { \
46 if (TARGET_DSP_MULTIPLY) \
47 builtin_define ("__ARM_FEATURE_DSP"); \
48 if (TARGET_ARM_QBIT) \
49 builtin_define ("__ARM_FEATURE_QBIT"); \
50 if (TARGET_ARM_SAT) \
51 builtin_define ("__ARM_FEATURE_SAT"); \
52 if (unaligned_access) \
53 builtin_define ("__ARM_FEATURE_UNALIGNED"); \
54 if (TARGET_ARM_FEATURE_LDREX) \
55 builtin_define_with_int_value ( \
56 "__ARM_FEATURE_LDREX", TARGET_ARM_FEATURE_LDREX); \
57 if ((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB) \
58 || TARGET_ARM_ARCH_ISA_THUMB >=2) \
59 builtin_define ("__ARM_FEATURE_CLZ"); \
60 if (TARGET_INT_SIMD) \
61 builtin_define ("__ARM_FEATURE_SIMD32"); \
63 builtin_define_with_int_value ( \
64 "__ARM_SIZEOF_MINIMAL_ENUM", \
65 flag_short_enums ? 1 : 4); \
66 builtin_define_with_int_value ( \
67 "__ARM_SIZEOF_WCHAR_T", WCHAR_TYPE_SIZE); \
68 if (TARGET_ARM_ARCH_PROFILE) \
69 builtin_define_with_int_value ( \
70 "__ARM_ARCH_PROFILE", TARGET_ARM_ARCH_PROFILE); \
72 /* Define __arm__ even when in thumb mode, for \
73 consistency with armcc. */ \
74 builtin_define ("__arm__"); \
75 if (TARGET_ARM_ARCH) \
76 builtin_define_with_int_value ( \
77 "__ARM_ARCH", TARGET_ARM_ARCH); \
78 if (arm_arch_notm) \
79 builtin_define ("__ARM_ARCH_ISA_ARM"); \
80 builtin_define ("__APCS_32__"); \
81 if (TARGET_THUMB) \
82 builtin_define ("__thumb__"); \
83 if (TARGET_THUMB2) \
84 builtin_define ("__thumb2__"); \
85 if (TARGET_ARM_ARCH_ISA_THUMB) \
86 builtin_define_with_int_value ( \
87 "__ARM_ARCH_ISA_THUMB", \
88 TARGET_ARM_ARCH_ISA_THUMB); \
90 if (TARGET_BIG_END) \
91 { \
92 builtin_define ("__ARMEB__"); \
93 builtin_define ("__ARM_BIG_ENDIAN"); \
94 if (TARGET_THUMB) \
95 builtin_define ("__THUMBEB__"); \
96 if (TARGET_LITTLE_WORDS) \
97 builtin_define ("__ARMWEL__"); \
98 } \
99 else \
101 builtin_define ("__ARMEL__"); \
102 if (TARGET_THUMB) \
103 builtin_define ("__THUMBEL__"); \
106 if (TARGET_SOFT_FLOAT) \
107 builtin_define ("__SOFTFP__"); \
109 if (TARGET_VFP) \
110 builtin_define ("__VFP_FP__"); \
112 if (TARGET_ARM_FP) \
113 builtin_define_with_int_value ( \
114 "__ARM_FP", TARGET_ARM_FP); \
115 if (arm_fp16_format == ARM_FP16_FORMAT_IEEE) \
116 builtin_define ("__ARM_FP16_FORMAT_IEEE"); \
117 if (arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE) \
118 builtin_define ("__ARM_FP16_FORMAT_ALTERNATIVE"); \
119 if (TARGET_FMA) \
120 builtin_define ("__ARM_FEATURE_FMA"); \
122 if (TARGET_NEON) \
124 builtin_define ("__ARM_NEON__"); \
125 builtin_define ("__ARM_NEON"); \
127 if (TARGET_NEON_FP) \
128 builtin_define_with_int_value ( \
129 "__ARM_NEON_FP", TARGET_NEON_FP); \
131 /* Add a define for interworking. \
132 Needed when building libgcc.a. */ \
133 if (arm_cpp_interwork) \
134 builtin_define ("__THUMB_INTERWORK__"); \
136 builtin_assert ("cpu=arm"); \
137 builtin_assert ("machine=arm"); \
139 builtin_define (arm_arch_name); \
140 if (arm_arch_xscale) \
141 builtin_define ("__XSCALE__"); \
142 if (arm_arch_iwmmxt) \
144 builtin_define ("__IWMMXT__"); \
145 builtin_define ("__ARM_WMMX"); \
147 if (arm_arch_iwmmxt2) \
148 builtin_define ("__IWMMXT2__"); \
149 if (TARGET_AAPCS_BASED) \
151 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
152 builtin_define ("__ARM_PCS_VFP"); \
153 else if (arm_pcs_default == ARM_PCS_AAPCS) \
154 builtin_define ("__ARM_PCS"); \
155 builtin_define ("__ARM_EABI__"); \
157 if (TARGET_IDIV) \
158 builtin_define ("__ARM_ARCH_EXT_IDIV__"); \
159 } while (0)
161 #include "config/arm/arm-opts.h"
163 enum target_cpus
165 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
166 TARGET_CPU_##IDENT,
167 #include "arm-cores.def"
168 #undef ARM_CORE
169 TARGET_CPU_generic
172 /* The processor for which instructions should be scheduled. */
173 extern enum processor_type arm_tune;
175 typedef enum arm_cond_code
177 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
178 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
180 arm_cc;
182 extern arm_cc arm_current_cc;
184 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
186 extern int arm_target_label;
187 extern int arm_ccfsm_state;
188 extern GTY(()) rtx arm_target_insn;
189 /* The label of the current constant pool. */
190 extern rtx pool_vector_label;
191 /* Set to 1 when a return insn is output, this means that the epilogue
192 is not needed. */
193 extern int return_used_this_function;
194 /* Callback to output language specific object attributes. */
195 extern void (*arm_lang_output_object_attributes_hook)(void);
197 /* Just in case configure has failed to define anything. */
198 #ifndef TARGET_CPU_DEFAULT
199 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
200 #endif
203 #undef CPP_SPEC
204 #define CPP_SPEC "%(subtarget_cpp_spec) \
205 %{mfloat-abi=soft:%{mfloat-abi=hard: \
206 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
207 %{mbig-endian:%{mlittle-endian: \
208 %e-mbig-endian and -mlittle-endian may not be used together}}"
210 #ifndef CC1_SPEC
211 #define CC1_SPEC ""
212 #endif
214 /* This macro defines names of additional specifications to put in the specs
215 that can be used in various specifications like CC1_SPEC. Its definition
216 is an initializer with a subgrouping for each command option.
218 Each subgrouping contains a string constant, that defines the
219 specification name, and a string constant that used by the GCC driver
220 program.
222 Do not define this macro if it does not need to do anything. */
223 #define EXTRA_SPECS \
224 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
225 { "asm_cpu_spec", ASM_CPU_SPEC }, \
226 SUBTARGET_EXTRA_SPECS
228 #ifndef SUBTARGET_EXTRA_SPECS
229 #define SUBTARGET_EXTRA_SPECS
230 #endif
232 #ifndef SUBTARGET_CPP_SPEC
233 #define SUBTARGET_CPP_SPEC ""
234 #endif
236 /* Run-time Target Specification. */
237 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
238 /* Use hardware floating point instructions. */
239 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
240 /* Use hardware floating point calling convention. */
241 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
242 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
243 #define TARGET_IWMMXT (arm_arch_iwmmxt)
244 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
245 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
246 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
247 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
248 #define TARGET_ARM (! TARGET_THUMB)
249 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
250 #define TARGET_BACKTRACE (leaf_function_p () \
251 ? TARGET_TPCS_LEAF_FRAME \
252 : TARGET_TPCS_FRAME)
253 #define TARGET_AAPCS_BASED \
254 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
256 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
257 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
258 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
260 /* Only 16-bit thumb code. */
261 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
262 /* Arm or Thumb-2 32-bit code. */
263 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
264 /* 32-bit Thumb-2 code. */
265 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
266 /* Thumb-1 only. */
267 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
269 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \
270 && !TARGET_THUMB1)
272 /* The following two macros concern the ability to execute coprocessor
273 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
274 only ever tested when we know we are generating for VFP hardware; we need
275 to be more careful with TARGET_NEON as noted below. */
277 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
278 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
280 /* FPU supports VFPv3 instructions. */
281 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
283 /* FPU only supports VFP single-precision instructions. */
284 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
286 /* FPU supports VFP double-precision instructions. */
287 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
289 /* FPU supports half-precision floating-point with NEON element load/store. */
290 #define TARGET_NEON_FP16 \
291 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
293 /* FPU supports VFP half-precision floating-point. */
294 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
296 /* FPU supports fused-multiply-add operations. */
297 #define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4)
299 /* FPU is ARMv8 compatible. */
300 #define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8)
302 /* FPU supports Crypto extensions. */
303 #define TARGET_CRYPTO (TARGET_VFP && arm_fpu_desc->crypto)
305 /* FPU supports Neon instructions. The setting of this macro gets
306 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
307 and TARGET_HARD_FLOAT to ensure that NEON instructions are
308 available. */
309 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
310 && TARGET_VFP && arm_fpu_desc->neon)
312 /* Q-bit is present. */
313 #define TARGET_ARM_QBIT \
314 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
315 /* Saturation operation, e.g. SSAT. */
316 #define TARGET_ARM_SAT \
317 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
318 /* "DSP" multiply instructions, eg. SMULxy. */
319 #define TARGET_DSP_MULTIPLY \
320 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
321 /* Integer SIMD instructions, and extend-accumulate instructions. */
322 #define TARGET_INT_SIMD \
323 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
325 /* Should MOVW/MOVT be used in preference to a constant pool. */
326 #define TARGET_USE_MOVT \
327 (arm_arch_thumb2 && !optimize_size && !current_tune->prefer_constant_pool)
329 /* We could use unified syntax for arm mode, but for now we just use it
330 for Thumb-2. */
331 #define TARGET_UNIFIED_ASM TARGET_THUMB2
333 /* Nonzero if this chip provides the DMB instruction. */
334 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
336 /* Nonzero if this chip implements a memory barrier via CP15. */
337 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
338 && ! TARGET_THUMB1)
340 /* Nonzero if this chip implements a memory barrier instruction. */
341 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
343 /* Nonzero if this chip supports ldrex and strex */
344 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
346 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
347 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) || arm_arch7)
349 /* Nonzero if this chip supports ldrexd and strexd. */
350 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) || arm_arch7) \
351 && arm_arch_notm)
353 /* Nonzero if integer division instructions supported. */
354 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
355 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
357 /* Should NEON be used for 64-bits bitops. */
358 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
360 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
361 then TARGET_AAPCS_BASED must be true -- but the converse does not
362 hold. TARGET_BPABI implies the use of the BPABI runtime library,
363 etc., in addition to just the AAPCS calling conventions. */
364 #ifndef TARGET_BPABI
365 #define TARGET_BPABI false
366 #endif
368 /* Support for a compile-time default CPU, et cetera. The rules are:
369 --with-arch is ignored if -march or -mcpu are specified.
370 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
371 by --with-arch.
372 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
373 by -march).
374 --with-float is ignored if -mfloat-abi is specified.
375 --with-fpu is ignored if -mfpu is specified.
376 --with-abi is ignored if -mabi is specified.
377 --with-tls is ignored if -mtls-dialect is specified. */
378 #define OPTION_DEFAULT_SPECS \
379 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
380 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
381 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
382 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
383 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
384 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
385 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
386 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
388 /* Which floating point model to use. */
389 enum arm_fp_model
391 ARM_FP_MODEL_UNKNOWN,
392 /* VFP floating point model. */
393 ARM_FP_MODEL_VFP
396 enum vfp_reg_type
398 VFP_NONE = 0,
399 VFP_REG_D16,
400 VFP_REG_D32,
401 VFP_REG_SINGLE
404 extern const struct arm_fpu_desc
406 const char *name;
407 enum arm_fp_model model;
408 int rev;
409 enum vfp_reg_type regs;
410 int neon;
411 int fp16;
412 int crypto;
413 } *arm_fpu_desc;
415 /* Which floating point hardware to schedule for. */
416 extern int arm_fpu_attr;
418 #ifndef TARGET_DEFAULT_FLOAT_ABI
419 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
420 #endif
422 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
423 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
425 #ifndef ARM_DEFAULT_ABI
426 #define ARM_DEFAULT_ABI ARM_ABI_APCS
427 #endif
429 /* Map each of the micro-architecture variants to their corresponding
430 major architecture revision. */
432 enum base_architecture
434 BASE_ARCH_0 = 0,
435 BASE_ARCH_2 = 2,
436 BASE_ARCH_3 = 3,
437 BASE_ARCH_3M = 3,
438 BASE_ARCH_4 = 4,
439 BASE_ARCH_4T = 4,
440 BASE_ARCH_5 = 5,
441 BASE_ARCH_5E = 5,
442 BASE_ARCH_5T = 5,
443 BASE_ARCH_5TE = 5,
444 BASE_ARCH_5TEJ = 5,
445 BASE_ARCH_6 = 6,
446 BASE_ARCH_6J = 6,
447 BASE_ARCH_6ZK = 6,
448 BASE_ARCH_6K = 6,
449 BASE_ARCH_6T2 = 6,
450 BASE_ARCH_6M = 6,
451 BASE_ARCH_6Z = 6,
452 BASE_ARCH_7 = 7,
453 BASE_ARCH_7A = 7,
454 BASE_ARCH_7R = 7,
455 BASE_ARCH_7M = 7,
456 BASE_ARCH_7EM = 7,
457 BASE_ARCH_8A = 8
460 /* The major revision number of the ARM Architecture implemented by the target. */
461 extern enum base_architecture arm_base_arch;
463 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
464 extern int arm_arch3m;
466 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
467 extern int arm_arch4;
469 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
470 extern int arm_arch4t;
472 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
473 extern int arm_arch5;
475 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
476 extern int arm_arch5e;
478 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
479 extern int arm_arch6;
481 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
482 extern int arm_arch6k;
484 /* Nonzero if instructions present in ARMv6-M can be used. */
485 extern int arm_arch6m;
487 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
488 extern int arm_arch7;
490 /* Nonzero if instructions not present in the 'M' profile can be used. */
491 extern int arm_arch_notm;
493 /* Nonzero if instructions present in ARMv7E-M can be used. */
494 extern int arm_arch7em;
496 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
497 extern int arm_arch8;
499 /* Nonzero if this chip can benefit from load scheduling. */
500 extern int arm_ld_sched;
502 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
503 extern int thumb_code;
505 /* Nonzero if generating Thumb-1 code. */
506 extern int thumb1_code;
508 /* Nonzero if this chip is a StrongARM. */
509 extern int arm_tune_strongarm;
511 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
512 extern int arm_arch_iwmmxt;
514 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
515 extern int arm_arch_iwmmxt2;
517 /* Nonzero if this chip is an XScale. */
518 extern int arm_arch_xscale;
520 /* Nonzero if tuning for XScale. */
521 extern int arm_tune_xscale;
523 /* Nonzero if tuning for stores via the write buffer. */
524 extern int arm_tune_wbuf;
526 /* Nonzero if tuning for Cortex-A9. */
527 extern int arm_tune_cortex_a9;
529 /* Nonzero if we should define __THUMB_INTERWORK__ in the
530 preprocessor.
531 XXX This is a bit of a hack, it's intended to help work around
532 problems in GLD which doesn't understand that armv5t code is
533 interworking clean. */
534 extern int arm_cpp_interwork;
536 /* Nonzero if chip supports Thumb 2. */
537 extern int arm_arch_thumb2;
539 /* Nonzero if chip supports integer division instruction in ARM mode. */
540 extern int arm_arch_arm_hwdiv;
542 /* Nonzero if chip supports integer division instruction in Thumb mode. */
543 extern int arm_arch_thumb_hwdiv;
545 /* Nonzero if we should use Neon to handle 64-bits operations rather
546 than core registers. */
547 extern int prefer_neon_for_64bits;
549 #ifndef TARGET_DEFAULT
550 #define TARGET_DEFAULT (MASK_APCS_FRAME)
551 #endif
553 /* Nonzero if PIC code requires explicit qualifiers to generate
554 PLT and GOT relocs rather than the assembler doing so implicitly.
555 Subtargets can override these if required. */
556 #ifndef NEED_GOT_RELOC
557 #define NEED_GOT_RELOC 0
558 #endif
559 #ifndef NEED_PLT_RELOC
560 #define NEED_PLT_RELOC 0
561 #endif
563 /* Nonzero if we need to refer to the GOT with a PC-relative
564 offset. In other words, generate
566 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
568 rather than
570 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
572 The default is true, which matches NetBSD. Subtargets can
573 override this if required. */
574 #ifndef GOT_PCREL
575 #define GOT_PCREL 1
576 #endif
578 /* Target machine storage Layout. */
581 /* Define this macro if it is advisable to hold scalars in registers
582 in a wider mode than that declared by the program. In such cases,
583 the value is constrained to be within the bounds of the declared
584 type, but kept valid in the wider mode. The signedness of the
585 extension may differ from that of the type. */
587 /* It is far faster to zero extend chars than to sign extend them */
589 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
590 if (GET_MODE_CLASS (MODE) == MODE_INT \
591 && GET_MODE_SIZE (MODE) < 4) \
593 if (MODE == QImode) \
594 UNSIGNEDP = 1; \
595 else if (MODE == HImode) \
596 UNSIGNEDP = 1; \
597 (MODE) = SImode; \
600 /* Define this if most significant bit is lowest numbered
601 in instructions that operate on numbered bit-fields. */
602 #define BITS_BIG_ENDIAN 0
604 /* Define this if most significant byte of a word is the lowest numbered.
605 Most ARM processors are run in little endian mode, so that is the default.
606 If you want to have it run-time selectable, change the definition in a
607 cover file to be TARGET_BIG_ENDIAN. */
608 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
610 /* Define this if most significant word of a multiword number is the lowest
611 numbered.
612 This is always false, even when in big-endian mode. */
613 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
615 #define UNITS_PER_WORD 4
617 /* True if natural alignment is used for doubleword types. */
618 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
620 #define DOUBLEWORD_ALIGNMENT 64
622 #define PARM_BOUNDARY 32
624 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
626 #define PREFERRED_STACK_BOUNDARY \
627 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
629 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
631 /* The lowest bit is used to indicate Thumb-mode functions, so the
632 vbit must go into the delta field of pointers to member
633 functions. */
634 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
636 #define EMPTY_FIELD_BOUNDARY 32
638 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
640 /* XXX Blah -- this macro is used directly by libobjc. Since it
641 supports no vector modes, cut out the complexity and fall back
642 on BIGGEST_FIELD_ALIGNMENT. */
643 #ifdef IN_TARGET_LIBS
644 #define BIGGEST_FIELD_ALIGNMENT 64
645 #endif
647 /* Make strings word-aligned so strcpy from constants will be faster. */
648 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
650 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
651 ((TREE_CODE (EXP) == STRING_CST \
652 && !optimize_size \
653 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
654 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
656 /* Align definitions of arrays, unions and structures so that
657 initializations and copies can be made more efficient. This is not
658 ABI-changing, so it only affects places where we can see the
659 definition. Increasing the alignment tends to introduce padding,
660 so don't do this when optimizing for size/conserving stack space. */
661 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
662 (((COND) && ((ALIGN) < BITS_PER_WORD) \
663 && (TREE_CODE (EXP) == ARRAY_TYPE \
664 || TREE_CODE (EXP) == UNION_TYPE \
665 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
667 /* Align global data. */
668 #define DATA_ALIGNMENT(EXP, ALIGN) \
669 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
671 /* Similarly, make sure that objects on the stack are sensibly aligned. */
672 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
673 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
675 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
676 value set in previous versions of this toolchain was 8, which produces more
677 compact structures. The command line option -mstructure_size_boundary=<n>
678 can be used to change this value. For compatibility with the ARM SDK
679 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
680 0020D) page 2-20 says "Structures are aligned on word boundaries".
681 The AAPCS specifies a value of 8. */
682 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
684 /* This is the value used to initialize arm_structure_size_boundary. If a
685 particular arm target wants to change the default value it should change
686 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
687 for an example of this. */
688 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
689 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
690 #endif
692 /* Nonzero if move instructions will actually fail to work
693 when given unaligned data. */
694 #define STRICT_ALIGNMENT 1
696 /* wchar_t is unsigned under the AAPCS. */
697 #ifndef WCHAR_TYPE
698 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
700 #define WCHAR_TYPE_SIZE BITS_PER_WORD
701 #endif
703 /* Sized for fixed-point types. */
705 #define SHORT_FRACT_TYPE_SIZE 8
706 #define FRACT_TYPE_SIZE 16
707 #define LONG_FRACT_TYPE_SIZE 32
708 #define LONG_LONG_FRACT_TYPE_SIZE 64
710 #define SHORT_ACCUM_TYPE_SIZE 16
711 #define ACCUM_TYPE_SIZE 32
712 #define LONG_ACCUM_TYPE_SIZE 64
713 #define LONG_LONG_ACCUM_TYPE_SIZE 64
715 #define MAX_FIXED_MODE_SIZE 64
717 #ifndef SIZE_TYPE
718 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
719 #endif
721 #ifndef PTRDIFF_TYPE
722 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
723 #endif
725 /* AAPCS requires that structure alignment is affected by bitfields. */
726 #ifndef PCC_BITFIELD_TYPE_MATTERS
727 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
728 #endif
731 /* Standard register usage. */
733 /* Register allocation in ARM Procedure Call Standard
734 (S - saved over call).
736 r0 * argument word/integer result
737 r1-r3 argument word
739 r4-r8 S register variable
740 r9 S (rfp) register variable (real frame pointer)
742 r10 F S (sl) stack limit (used by -mapcs-stack-check)
743 r11 F S (fp) argument pointer
744 r12 (ip) temp workspace
745 r13 F S (sp) lower end of current stack frame
746 r14 (lr) link address/workspace
747 r15 F (pc) program counter
749 cc This is NOT a real register, but is used internally
750 to represent things that use or set the condition
751 codes.
752 sfp This isn't either. It is used during rtl generation
753 since the offset between the frame pointer and the
754 auto's isn't known until after register allocation.
755 afp Nor this, we only need this because of non-local
756 goto. Without it fp appears to be used and the
757 elimination code won't get rid of sfp. It tracks
758 fp exactly at all times.
760 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
762 /* s0-s15 VFP scratch (aka d0-d7).
763 s16-s31 S VFP variable (aka d8-d15).
764 vfpcc Not a real register. Represents the VFP condition
765 code flags. */
767 /* The stack backtrace structure is as follows:
768 fp points to here: | save code pointer | [fp]
769 | return link value | [fp, #-4]
770 | return sp value | [fp, #-8]
771 | return fp value | [fp, #-12]
772 [| saved r10 value |]
773 [| saved r9 value |]
774 [| saved r8 value |]
775 [| saved r7 value |]
776 [| saved r6 value |]
777 [| saved r5 value |]
778 [| saved r4 value |]
779 [| saved r3 value |]
780 [| saved r2 value |]
781 [| saved r1 value |]
782 [| saved r0 value |]
783 r0-r3 are not normally saved in a C function. */
785 /* 1 for registers that have pervasive standard uses
786 and are not available for the register allocator. */
787 #define FIXED_REGISTERS \
789 /* Core regs. */ \
790 0,0,0,0,0,0,0,0, \
791 0,0,0,0,0,1,0,1, \
792 /* VFP regs. */ \
793 1,1,1,1,1,1,1,1, \
794 1,1,1,1,1,1,1,1, \
795 1,1,1,1,1,1,1,1, \
796 1,1,1,1,1,1,1,1, \
797 1,1,1,1,1,1,1,1, \
798 1,1,1,1,1,1,1,1, \
799 1,1,1,1,1,1,1,1, \
800 1,1,1,1,1,1,1,1, \
801 /* IWMMXT regs. */ \
802 1,1,1,1,1,1,1,1, \
803 1,1,1,1,1,1,1,1, \
804 1,1,1,1, \
805 /* Specials. */ \
806 1,1,1,1 \
809 /* 1 for registers not available across function calls.
810 These must include the FIXED_REGISTERS and also any
811 registers that can be used without being saved.
812 The latter must include the registers where values are returned
813 and the register where structure-value addresses are passed.
814 Aside from that, you can include as many other registers as you like.
815 The CC is not preserved over function calls on the ARM 6, so it is
816 easier to assume this for all. SFP is preserved, since FP is. */
817 #define CALL_USED_REGISTERS \
819 /* Core regs. */ \
820 1,1,1,1,0,0,0,0, \
821 0,0,0,0,1,1,1,1, \
822 /* VFP Regs. */ \
823 1,1,1,1,1,1,1,1, \
824 1,1,1,1,1,1,1,1, \
825 1,1,1,1,1,1,1,1, \
826 1,1,1,1,1,1,1,1, \
827 1,1,1,1,1,1,1,1, \
828 1,1,1,1,1,1,1,1, \
829 1,1,1,1,1,1,1,1, \
830 1,1,1,1,1,1,1,1, \
831 /* IWMMXT regs. */ \
832 1,1,1,1,1,1,1,1, \
833 1,1,1,1,1,1,1,1, \
834 1,1,1,1, \
835 /* Specials. */ \
836 1,1,1,1 \
839 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
840 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
841 #endif
843 /* These are a couple of extensions to the formats accepted
844 by asm_fprintf:
845 %@ prints out ASM_COMMENT_START
846 %r prints out REGISTER_PREFIX reg_names[arg] */
847 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
848 case '@': \
849 fputs (ASM_COMMENT_START, FILE); \
850 break; \
852 case 'r': \
853 fputs (REGISTER_PREFIX, FILE); \
854 fputs (reg_names [va_arg (ARGS, int)], FILE); \
855 break;
857 /* Round X up to the nearest word. */
858 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
860 /* Convert fron bytes to ints. */
861 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
863 /* The number of (integer) registers required to hold a quantity of type MODE.
864 Also used for VFP registers. */
865 #define ARM_NUM_REGS(MODE) \
866 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
868 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
869 #define ARM_NUM_REGS2(MODE, TYPE) \
870 ARM_NUM_INTS ((MODE) == BLKmode ? \
871 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
873 /* The number of (integer) argument register available. */
874 #define NUM_ARG_REGS 4
876 /* And similarly for the VFP. */
877 #define NUM_VFP_ARG_REGS 16
879 /* Return the register number of the N'th (integer) argument. */
880 #define ARG_REGISTER(N) (N - 1)
882 /* Specify the registers used for certain standard purposes.
883 The values of these macros are register numbers. */
885 /* The number of the last argument register. */
886 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
888 /* The numbers of the Thumb register ranges. */
889 #define FIRST_LO_REGNUM 0
890 #define LAST_LO_REGNUM 7
891 #define FIRST_HI_REGNUM 8
892 #define LAST_HI_REGNUM 11
894 /* Overridden by config/arm/bpabi.h. */
895 #ifndef ARM_UNWIND_INFO
896 #define ARM_UNWIND_INFO 0
897 #endif
899 /* Use r0 and r1 to pass exception handling information. */
900 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
902 /* The register that holds the return address in exception handlers. */
903 #define ARM_EH_STACKADJ_REGNUM 2
904 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
906 #ifndef ARM_TARGET2_DWARF_FORMAT
907 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
909 /* ttype entries (the only interesting data references used)
910 use TARGET2 relocations. */
911 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
912 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
913 : DW_EH_PE_absptr)
914 #endif
916 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
917 as an invisible last argument (possible since varargs don't exist in
918 Pascal), so the following is not true. */
919 #define STATIC_CHAIN_REGNUM 12
921 /* Define this to be where the real frame pointer is if it is not possible to
922 work out the offset between the frame pointer and the automatic variables
923 until after register allocation has taken place. FRAME_POINTER_REGNUM
924 should point to a special register that we will make sure is eliminated.
926 For the Thumb we have another problem. The TPCS defines the frame pointer
927 as r11, and GCC believes that it is always possible to use the frame pointer
928 as base register for addressing purposes. (See comments in
929 find_reloads_address()). But - the Thumb does not allow high registers,
930 including r11, to be used as base address registers. Hence our problem.
932 The solution used here, and in the old thumb port is to use r7 instead of
933 r11 as the hard frame pointer and to have special code to generate
934 backtrace structures on the stack (if required to do so via a command line
935 option) using r11. This is the only 'user visible' use of r11 as a frame
936 pointer. */
937 #define ARM_HARD_FRAME_POINTER_REGNUM 11
938 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
940 #define HARD_FRAME_POINTER_REGNUM \
941 (TARGET_ARM \
942 ? ARM_HARD_FRAME_POINTER_REGNUM \
943 : THUMB_HARD_FRAME_POINTER_REGNUM)
945 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
946 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
948 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
950 /* Register to use for pushing function arguments. */
951 #define STACK_POINTER_REGNUM SP_REGNUM
953 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
954 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
955 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
956 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
958 #define IS_IWMMXT_REGNUM(REGNUM) \
959 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
960 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
961 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
963 /* Base register for access to local variables of the function. */
964 #define FRAME_POINTER_REGNUM 102
966 /* Base register for access to arguments of the function. */
967 #define ARG_POINTER_REGNUM 103
969 #define FIRST_VFP_REGNUM 16
970 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
971 #define LAST_VFP_REGNUM \
972 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
974 #define IS_VFP_REGNUM(REGNUM) \
975 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
977 /* VFP registers are split into two types: those defined by VFP versions < 3
978 have D registers overlaid on consecutive pairs of S registers. VFP version 3
979 defines 16 new D registers (d16-d31) which, for simplicity and correctness
980 in various parts of the backend, we implement as "fake" single-precision
981 registers (which would be S32-S63, but cannot be used in that way). The
982 following macros define these ranges of registers. */
983 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
984 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
985 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
987 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
988 ((REGNUM) <= LAST_LO_VFP_REGNUM)
990 /* DFmode values are only valid in even register pairs. */
991 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
992 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
994 /* Neon Quad values must start at a multiple of four registers. */
995 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
996 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
998 /* Neon structures of vectors must be in even register pairs and there
999 must be enough registers available. Because of various patterns
1000 requiring quad registers, we require them to start at a multiple of
1001 four. */
1002 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1003 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1004 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1006 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
1007 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
1008 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
1009 #define FIRST_PSEUDO_REGISTER 104
1011 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1013 /* Value should be nonzero if functions must have frame pointers.
1014 Zero means the frame pointer need not be set up (and parms may be accessed
1015 via the stack pointer) in functions that seem suitable.
1016 If we have to have a frame pointer we might as well make use of it.
1017 APCS says that the frame pointer does not need to be pushed in leaf
1018 functions, or simple tail call functions. */
1020 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1021 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1022 #endif
1024 /* Return number of consecutive hard regs needed starting at reg REGNO
1025 to hold something of mode MODE.
1026 This is ordinarily the length in words of a value of mode MODE
1027 but can be less for certain modes in special long registers.
1029 On the ARM core regs are UNITS_PER_WORD bits wide. */
1030 #define HARD_REGNO_NREGS(REGNO, MODE) \
1031 ((TARGET_32BIT \
1032 && REGNO > PC_REGNUM \
1033 && REGNO != FRAME_POINTER_REGNUM \
1034 && REGNO != ARG_POINTER_REGNUM) \
1035 && !IS_VFP_REGNUM (REGNO) \
1036 ? 1 : ARM_NUM_REGS (MODE))
1038 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
1039 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1040 arm_hard_regno_mode_ok ((REGNO), (MODE))
1042 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1044 #define VALID_IWMMXT_REG_MODE(MODE) \
1045 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1047 /* Modes valid for Neon D registers. */
1048 #define VALID_NEON_DREG_MODE(MODE) \
1049 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1050 || (MODE) == V2SFmode || (MODE) == DImode)
1052 /* Modes valid for Neon Q registers. */
1053 #define VALID_NEON_QREG_MODE(MODE) \
1054 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1055 || (MODE) == V4SFmode || (MODE) == V2DImode)
1057 /* Structure modes valid for Neon registers. */
1058 #define VALID_NEON_STRUCT_MODE(MODE) \
1059 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1060 || (MODE) == CImode || (MODE) == XImode)
1062 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1063 extern int arm_regs_in_sequence[];
1065 /* The order in which register should be allocated. It is good to use ip
1066 since no saving is required (though calls clobber it) and it never contains
1067 function parameters. It is quite good to use lr since other calls may
1068 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1069 least likely to contain a function parameter; in addition results are
1070 returned in r0.
1071 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1072 then D8-D15. The reason for doing this is to attempt to reduce register
1073 pressure when both single- and double-precision registers are used in a
1074 function. */
1076 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1077 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1078 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1080 #define REG_ALLOC_ORDER \
1082 /* General registers. */ \
1083 3, 2, 1, 0, 12, 14, 4, 5, \
1084 6, 7, 8, 9, 10, 11, \
1085 /* High VFP registers. */ \
1086 VREG(32), VREG(33), VREG(34), VREG(35), \
1087 VREG(36), VREG(37), VREG(38), VREG(39), \
1088 VREG(40), VREG(41), VREG(42), VREG(43), \
1089 VREG(44), VREG(45), VREG(46), VREG(47), \
1090 VREG(48), VREG(49), VREG(50), VREG(51), \
1091 VREG(52), VREG(53), VREG(54), VREG(55), \
1092 VREG(56), VREG(57), VREG(58), VREG(59), \
1093 VREG(60), VREG(61), VREG(62), VREG(63), \
1094 /* VFP argument registers. */ \
1095 VREG(15), VREG(14), VREG(13), VREG(12), \
1096 VREG(11), VREG(10), VREG(9), VREG(8), \
1097 VREG(7), VREG(6), VREG(5), VREG(4), \
1098 VREG(3), VREG(2), VREG(1), VREG(0), \
1099 /* VFP call-saved registers. */ \
1100 VREG(16), VREG(17), VREG(18), VREG(19), \
1101 VREG(20), VREG(21), VREG(22), VREG(23), \
1102 VREG(24), VREG(25), VREG(26), VREG(27), \
1103 VREG(28), VREG(29), VREG(30), VREG(31), \
1104 /* IWMMX registers. */ \
1105 WREG(0), WREG(1), WREG(2), WREG(3), \
1106 WREG(4), WREG(5), WREG(6), WREG(7), \
1107 WREG(8), WREG(9), WREG(10), WREG(11), \
1108 WREG(12), WREG(13), WREG(14), WREG(15), \
1109 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1110 /* Registers not for general use. */ \
1111 CC_REGNUM, VFPCC_REGNUM, \
1112 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1113 SP_REGNUM, PC_REGNUM \
1116 /* Use different register alloc ordering for Thumb. */
1117 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1119 /* Tell IRA to use the order we define rather than messing it up with its
1120 own cost calculations. */
1121 #define HONOR_REG_ALLOC_ORDER
1123 /* Interrupt functions can only use registers that have already been
1124 saved by the prologue, even if they would normally be
1125 call-clobbered. */
1126 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1127 (! IS_INTERRUPT (cfun->machine->func_type) || \
1128 df_regs_ever_live_p (DST))
1130 /* Register and constant classes. */
1132 /* Register classes. */
1133 enum reg_class
1135 NO_REGS,
1136 LO_REGS,
1137 STACK_REG,
1138 BASE_REGS,
1139 HI_REGS,
1140 GENERAL_REGS,
1141 CORE_REGS,
1142 VFP_D0_D7_REGS,
1143 VFP_LO_REGS,
1144 VFP_HI_REGS,
1145 VFP_REGS,
1146 IWMMXT_REGS,
1147 IWMMXT_GR_REGS,
1148 CC_REG,
1149 VFPCC_REG,
1150 SFP_REG,
1151 AFP_REG,
1152 ALL_REGS,
1153 LIM_REG_CLASSES
1156 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1158 /* Give names of register classes as strings for dump file. */
1159 #define REG_CLASS_NAMES \
1161 "NO_REGS", \
1162 "LO_REGS", \
1163 "STACK_REG", \
1164 "BASE_REGS", \
1165 "HI_REGS", \
1166 "GENERAL_REGS", \
1167 "CORE_REGS", \
1168 "VFP_D0_D7_REGS", \
1169 "VFP_LO_REGS", \
1170 "VFP_HI_REGS", \
1171 "VFP_REGS", \
1172 "IWMMXT_REGS", \
1173 "IWMMXT_GR_REGS", \
1174 "CC_REG", \
1175 "VFPCC_REG", \
1176 "SFP_REG", \
1177 "AFP_REG", \
1178 "ALL_REGS" \
1181 /* Define which registers fit in which classes.
1182 This is an initializer for a vector of HARD_REG_SET
1183 of length N_REG_CLASSES. */
1184 #define REG_CLASS_CONTENTS \
1186 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1187 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1188 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1189 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1190 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1191 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1192 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1193 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1194 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1195 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1196 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1197 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1198 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1199 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1200 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1201 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1202 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1203 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 } /* ALL_REGS */ \
1206 /* Any of the VFP register classes. */
1207 #define IS_VFP_CLASS(X) \
1208 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1209 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1211 /* The same information, inverted:
1212 Return the class number of the smallest class containing
1213 reg number REGNO. This could be a conditional expression
1214 or could index an array. */
1215 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1217 /* In VFPv1, VFP registers could only be accessed in the mode they
1218 were set, so subregs would be invalid there. However, we don't
1219 support VFPv1 at the moment, and the restriction was lifted in
1220 VFPv2.
1221 In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1222 VFP registers in little-endian order. We can't describe that accurately to
1223 GCC, so avoid taking subregs of such values. */
1224 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1225 (TARGET_VFP && TARGET_BIG_END \
1226 && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD \
1227 || GET_MODE_SIZE (TO) > UNITS_PER_WORD) \
1228 && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1230 /* The class value for index registers, and the one for base regs. */
1231 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1232 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1234 /* For the Thumb the high registers cannot be used as base registers
1235 when addressing quantities in QI or HI mode; if we don't know the
1236 mode, then we must be conservative. */
1237 #define MODE_BASE_REG_CLASS(MODE) \
1238 (TARGET_ARM || (TARGET_THUMB2 && !optimize_size) ? CORE_REGS : \
1239 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1241 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1242 instead of BASE_REGS. */
1243 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1245 /* When this hook returns true for MODE, the compiler allows
1246 registers explicitly used in the rtl to be used as spill registers
1247 but prevents the compiler from extending the lifetime of these
1248 registers. */
1249 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1250 arm_small_register_classes_for_mode_p
1252 /* Must leave BASE_REGS reloads alone */
1253 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1254 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1255 ? ((true_regnum (X) == -1 ? LO_REGS \
1256 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1257 : NO_REGS)) \
1258 : NO_REGS)
1260 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1261 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1262 ? ((true_regnum (X) == -1 ? LO_REGS \
1263 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1264 : NO_REGS)) \
1265 : NO_REGS)
1267 /* Return the register class of a scratch register needed to copy IN into
1268 or out of a register in CLASS in MODE. If it can be done directly,
1269 NO_REGS is returned. */
1270 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1271 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1272 ((TARGET_VFP && TARGET_HARD_FLOAT \
1273 && IS_VFP_CLASS (CLASS)) \
1274 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1275 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1276 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1277 : TARGET_32BIT \
1278 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1279 ? GENERAL_REGS : NO_REGS) \
1280 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1282 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1283 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1284 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1285 ((TARGET_VFP && TARGET_HARD_FLOAT \
1286 && IS_VFP_CLASS (CLASS)) \
1287 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1288 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1289 coproc_secondary_reload_class (MODE, X, TRUE) : \
1290 (TARGET_32BIT ? \
1291 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1292 && CONSTANT_P (X)) \
1293 ? GENERAL_REGS : \
1294 (((MODE) == HImode && ! arm_arch4 \
1295 && (MEM_P (X) \
1296 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1297 && true_regnum (X) == -1))) \
1298 ? GENERAL_REGS : NO_REGS) \
1299 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1301 /* Try a machine-dependent way of reloading an illegitimate address
1302 operand. If we find one, push the reload and jump to WIN. This
1303 macro is used in only one place: `find_reloads_address' in reload.c.
1305 For the ARM, we wish to handle large displacements off a base
1306 register by splitting the addend across a MOV and the mem insn.
1307 This can cut the number of reloads needed. */
1308 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1309 do \
1311 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1312 goto WIN; \
1314 while (0)
1316 /* XXX If an HImode FP+large_offset address is converted to an HImode
1317 SP+large_offset address, then reload won't know how to fix it. It sees
1318 only that SP isn't valid for HImode, and so reloads the SP into an index
1319 register, but the resulting address is still invalid because the offset
1320 is too big. We fix it here instead by reloading the entire address. */
1321 /* We could probably achieve better results by defining PROMOTE_MODE to help
1322 cope with the variances between the Thumb's signed and unsigned byte and
1323 halfword load instructions. */
1324 /* ??? This should be safe for thumb2, but we may be able to do better. */
1325 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1326 do { \
1327 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1328 if (new_x) \
1330 X = new_x; \
1331 goto WIN; \
1333 } while (0)
1335 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1336 if (TARGET_ARM) \
1337 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1338 else \
1339 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1341 /* Return the maximum number of consecutive registers
1342 needed to represent mode MODE in a register of class CLASS.
1343 ARM regs are UNITS_PER_WORD bits.
1344 FIXME: Is this true for iWMMX? */
1345 #define CLASS_MAX_NREGS(CLASS, MODE) \
1346 (ARM_NUM_REGS (MODE))
1348 /* If defined, gives a class of registers that cannot be used as the
1349 operand of a SUBREG that changes the mode of the object illegally. */
1351 /* Stack layout; function entry, exit and calling. */
1353 /* Define this if pushing a word on the stack
1354 makes the stack pointer a smaller address. */
1355 #define STACK_GROWS_DOWNWARD 1
1357 /* Define this to nonzero if the nominal address of the stack frame
1358 is at the high-address end of the local variables;
1359 that is, each additional local variable allocated
1360 goes at a more negative offset in the frame. */
1361 #define FRAME_GROWS_DOWNWARD 1
1363 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1364 When present, it is one word in size, and sits at the top of the frame,
1365 between the soft frame pointer and either r7 or r11.
1367 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1368 and only then if some outgoing arguments are passed on the stack. It would
1369 be tempting to also check whether the stack arguments are passed by indirect
1370 calls, but there seems to be no reason in principle why a post-reload pass
1371 couldn't convert a direct call into an indirect one. */
1372 #define CALLER_INTERWORKING_SLOT_SIZE \
1373 (TARGET_CALLER_INTERWORKING \
1374 && crtl->outgoing_args_size != 0 \
1375 ? UNITS_PER_WORD : 0)
1377 /* Offset within stack frame to start allocating local variables at.
1378 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1379 first local allocated. Otherwise, it is the offset to the BEGINNING
1380 of the first local allocated. */
1381 #define STARTING_FRAME_OFFSET 0
1383 /* If we generate an insn to push BYTES bytes,
1384 this says how many the stack pointer really advances by. */
1385 /* The push insns do not do this rounding implicitly.
1386 So don't define this. */
1387 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1389 /* Define this if the maximum size of all the outgoing args is to be
1390 accumulated and pushed during the prologue. The amount can be
1391 found in the variable crtl->outgoing_args_size. */
1392 #define ACCUMULATE_OUTGOING_ARGS 1
1394 /* Offset of first parameter from the argument pointer register value. */
1395 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1397 /* Amount of memory needed for an untyped call to save all possible return
1398 registers. */
1399 #define APPLY_RESULT_SIZE arm_apply_result_size()
1401 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1402 values must be in memory. On the ARM, they need only do so if larger
1403 than a word, or if they contain elements offset from zero in the struct. */
1404 #define DEFAULT_PCC_STRUCT_RETURN 0
1406 /* These bits describe the different types of function supported
1407 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1408 normal function and an interworked function, for example. Knowing the
1409 type of a function is important for determining its prologue and
1410 epilogue sequences.
1411 Note value 7 is currently unassigned. Also note that the interrupt
1412 function types all have bit 2 set, so that they can be tested for easily.
1413 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1414 machine_function structure is initialized (to zero) func_type will
1415 default to unknown. This will force the first use of arm_current_func_type
1416 to call arm_compute_func_type. */
1417 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1418 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1419 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1420 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1421 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1422 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1424 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1426 /* In addition functions can have several type modifiers,
1427 outlined by these bit masks: */
1428 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1429 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1430 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1431 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1432 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1434 /* Some macros to test these flags. */
1435 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1436 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1437 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1438 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1439 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1440 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1443 /* Structure used to hold the function stack frame layout. Offsets are
1444 relative to the stack pointer on function entry. Positive offsets are
1445 in the direction of stack growth.
1446 Only soft_frame is used in thumb mode. */
1448 typedef struct GTY(()) arm_stack_offsets
1450 int saved_args; /* ARG_POINTER_REGNUM. */
1451 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1452 int saved_regs;
1453 int soft_frame; /* FRAME_POINTER_REGNUM. */
1454 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1455 int outgoing_args; /* STACK_POINTER_REGNUM. */
1456 unsigned int saved_regs_mask;
1458 arm_stack_offsets;
1460 #ifndef GENERATOR_FILE
1461 /* A C structure for machine-specific, per-function data.
1462 This is added to the cfun structure. */
1463 typedef struct GTY(()) machine_function
1465 /* Additional stack adjustment in __builtin_eh_throw. */
1466 rtx eh_epilogue_sp_ofs;
1467 /* Records if LR has to be saved for far jumps. */
1468 int far_jump_used;
1469 /* Records if ARG_POINTER was ever live. */
1470 int arg_pointer_live;
1471 /* Records if the save of LR has been eliminated. */
1472 int lr_save_eliminated;
1473 /* The size of the stack frame. Only valid after reload. */
1474 arm_stack_offsets stack_offsets;
1475 /* Records the type of the current function. */
1476 unsigned long func_type;
1477 /* Record if the function has a variable argument list. */
1478 int uses_anonymous_args;
1479 /* Records if sibcalls are blocked because an argument
1480 register is needed to preserve stack alignment. */
1481 int sibcall_blocked;
1482 /* The PIC register for this function. This might be a pseudo. */
1483 rtx pic_reg;
1484 /* Labels for per-function Thumb call-via stubs. One per potential calling
1485 register. We can never call via LR or PC. We can call via SP if a
1486 trampoline happens to be on the top of the stack. */
1487 rtx call_via[14];
1488 /* Set to 1 when a return insn is output, this means that the epilogue
1489 is not needed. */
1490 int return_used_this_function;
1491 /* When outputting Thumb-1 code, record the last insn that provides
1492 information about condition codes, and the comparison operands. */
1493 rtx thumb1_cc_insn;
1494 rtx thumb1_cc_op0;
1495 rtx thumb1_cc_op1;
1496 /* Also record the CC mode that is supported. */
1497 enum machine_mode thumb1_cc_mode;
1499 machine_function;
1500 #endif
1502 /* As in the machine_function, a global set of call-via labels, for code
1503 that is in text_section. */
1504 extern GTY(()) rtx thumb_call_via_label[14];
1506 /* The number of potential ways of assigning to a co-processor. */
1507 #define ARM_NUM_COPROC_SLOTS 1
1509 /* Enumeration of procedure calling standard variants. We don't really
1510 support all of these yet. */
1511 enum arm_pcs
1513 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1514 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1515 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1516 /* This must be the last AAPCS variant. */
1517 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1518 ARM_PCS_ATPCS, /* ATPCS. */
1519 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1520 ARM_PCS_UNKNOWN
1523 /* Default procedure calling standard of current compilation unit. */
1524 extern enum arm_pcs arm_pcs_default;
1526 /* A C type for declaring a variable that is used as the first argument of
1527 `FUNCTION_ARG' and other related values. */
1528 typedef struct
1530 /* This is the number of registers of arguments scanned so far. */
1531 int nregs;
1532 /* This is the number of iWMMXt register arguments scanned so far. */
1533 int iwmmxt_nregs;
1534 int named_count;
1535 int nargs;
1536 /* Which procedure call variant to use for this call. */
1537 enum arm_pcs pcs_variant;
1539 /* AAPCS related state tracking. */
1540 int aapcs_arg_processed; /* No need to lay out this argument again. */
1541 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1542 this argument, or -1 if using core
1543 registers. */
1544 int aapcs_ncrn;
1545 int aapcs_next_ncrn;
1546 rtx aapcs_reg; /* Register assigned to this argument. */
1547 int aapcs_partial; /* How many bytes are passed in regs (if
1548 split between core regs and stack.
1549 Zero otherwise. */
1550 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1551 int can_split; /* Argument can be split between core regs
1552 and the stack. */
1553 /* Private data for tracking VFP register allocation */
1554 unsigned aapcs_vfp_regs_free;
1555 unsigned aapcs_vfp_reg_alloc;
1556 int aapcs_vfp_rcount;
1557 MACHMODE aapcs_vfp_rmode;
1558 } CUMULATIVE_ARGS;
1560 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1561 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1563 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1564 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1566 /* For AAPCS, padding should never be below the argument. For other ABIs,
1567 * mimic the default. */
1568 #define PAD_VARARGS_DOWN \
1569 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1571 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1572 for a call to a function whose data type is FNTYPE.
1573 For a library call, FNTYPE is 0.
1574 On the ARM, the offset starts at 0. */
1575 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1576 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1578 /* 1 if N is a possible register number for function argument passing.
1579 On the ARM, r0-r3 are used to pass args. */
1580 #define FUNCTION_ARG_REGNO_P(REGNO) \
1581 (IN_RANGE ((REGNO), 0, 3) \
1582 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1583 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1584 || (TARGET_IWMMXT_ABI \
1585 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1588 /* If your target environment doesn't prefix user functions with an
1589 underscore, you may wish to re-define this to prevent any conflicts. */
1590 #ifndef ARM_MCOUNT_NAME
1591 #define ARM_MCOUNT_NAME "*mcount"
1592 #endif
1594 /* Call the function profiler with a given profile label. The Acorn
1595 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1596 On the ARM the full profile code will look like:
1597 .data
1599 .word 0
1600 .text
1601 mov ip, lr
1602 bl mcount
1603 .word LP1
1605 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1606 will output the .text section.
1608 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1609 ``prof'' doesn't seem to mind about this!
1611 Note - this version of the code is designed to work in both ARM and
1612 Thumb modes. */
1613 #ifndef ARM_FUNCTION_PROFILER
1614 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1616 char temp[20]; \
1617 rtx sym; \
1619 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1620 IP_REGNUM, LR_REGNUM); \
1621 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1622 fputc ('\n', STREAM); \
1623 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1624 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1625 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1627 #endif
1629 #ifdef THUMB_FUNCTION_PROFILER
1630 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1631 if (TARGET_ARM) \
1632 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1633 else \
1634 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1635 #else
1636 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1637 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1638 #endif
1640 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1641 the stack pointer does not matter. The value is tested only in
1642 functions that have frame pointers.
1643 No definition is equivalent to always zero.
1645 On the ARM, the function epilogue recovers the stack pointer from the
1646 frame. */
1647 #define EXIT_IGNORE_STACK 1
1649 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1651 /* Determine if the epilogue should be output as RTL.
1652 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1653 #define USE_RETURN_INSN(ISCOND) \
1654 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1656 /* Definitions for register eliminations.
1658 This is an array of structures. Each structure initializes one pair
1659 of eliminable registers. The "from" register number is given first,
1660 followed by "to". Eliminations of the same "from" register are listed
1661 in order of preference.
1663 We have two registers that can be eliminated on the ARM. First, the
1664 arg pointer register can often be eliminated in favor of the stack
1665 pointer register. Secondly, the pseudo frame pointer register can always
1666 be eliminated; it is replaced with either the stack or the real frame
1667 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1668 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1670 #define ELIMINABLE_REGS \
1671 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1672 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1673 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1674 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1675 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1676 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1677 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1679 /* Define the offset between two registers, one to be eliminated, and the
1680 other its replacement, at the start of a routine. */
1681 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1682 if (TARGET_ARM) \
1683 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1684 else \
1685 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1687 /* Special case handling of the location of arguments passed on the stack. */
1688 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1690 /* Initialize data used by insn expanders. This is called from insn_emit,
1691 once for every function before code is generated. */
1692 #define INIT_EXPANDERS arm_init_expanders ()
1694 /* Length in units of the trampoline for entering a nested function. */
1695 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1697 /* Alignment required for a trampoline in bits. */
1698 #define TRAMPOLINE_ALIGNMENT 32
1700 /* Addressing modes, and classification of registers for them. */
1701 #define HAVE_POST_INCREMENT 1
1702 #define HAVE_PRE_INCREMENT TARGET_32BIT
1703 #define HAVE_POST_DECREMENT TARGET_32BIT
1704 #define HAVE_PRE_DECREMENT TARGET_32BIT
1705 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1706 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1707 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1708 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1710 enum arm_auto_incmodes
1712 ARM_POST_INC,
1713 ARM_PRE_INC,
1714 ARM_POST_DEC,
1715 ARM_PRE_DEC
1718 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1719 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1720 #define USE_LOAD_POST_INCREMENT(mode) \
1721 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1722 #define USE_LOAD_PRE_INCREMENT(mode) \
1723 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1724 #define USE_LOAD_POST_DECREMENT(mode) \
1725 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1726 #define USE_LOAD_PRE_DECREMENT(mode) \
1727 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1729 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1730 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1731 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1732 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1734 /* Macros to check register numbers against specific register classes. */
1736 /* These assume that REGNO is a hard or pseudo reg number.
1737 They give nonzero only if REGNO is a hard reg of the suitable class
1738 or a pseudo reg currently allocated to a suitable hard reg.
1739 Since they use reg_renumber, they are safe only once reg_renumber
1740 has been allocated, which happens in reginfo.c during register
1741 allocation. */
1742 #define TEST_REGNO(R, TEST, VALUE) \
1743 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1745 /* Don't allow the pc to be used. */
1746 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1747 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1748 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1749 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1751 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1752 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1753 || (GET_MODE_SIZE (MODE) >= 4 \
1754 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1756 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1757 (TARGET_THUMB1 \
1758 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1759 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1761 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1762 For Thumb, we can not use SP + reg, so reject SP. */
1763 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1764 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1766 /* For ARM code, we don't care about the mode, but for Thumb, the index
1767 must be suitable for use in a QImode load. */
1768 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1769 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1770 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1772 /* Maximum number of registers that can appear in a valid memory address.
1773 Shifts in addresses can't be by a register. */
1774 #define MAX_REGS_PER_ADDRESS 2
1776 /* Recognize any constant value that is a valid address. */
1777 /* XXX We can address any constant, eventually... */
1778 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1779 #define CONSTANT_ADDRESS_P(X) \
1780 (GET_CODE (X) == SYMBOL_REF \
1781 && (CONSTANT_POOL_ADDRESS_P (X) \
1782 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1784 /* True if SYMBOL + OFFSET constants must refer to something within
1785 SYMBOL's section. */
1786 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1788 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1789 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1790 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1791 #endif
1793 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1794 #define SUBTARGET_NAME_ENCODING_LENGTHS
1795 #endif
1797 /* This is a C fragment for the inside of a switch statement.
1798 Each case label should return the number of characters to
1799 be stripped from the start of a function's name, if that
1800 name starts with the indicated character. */
1801 #define ARM_NAME_ENCODING_LENGTHS \
1802 case '*': return 1; \
1803 SUBTARGET_NAME_ENCODING_LENGTHS
1805 /* This is how to output a reference to a user-level label named NAME.
1806 `assemble_name' uses this. */
1807 #undef ASM_OUTPUT_LABELREF
1808 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1809 arm_asm_output_labelref (FILE, NAME)
1811 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1812 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1813 if (TARGET_THUMB2) \
1814 thumb2_asm_output_opcode (STREAM);
1816 /* The EABI specifies that constructors should go in .init_array.
1817 Other targets use .ctors for compatibility. */
1818 #ifndef ARM_EABI_CTORS_SECTION_OP
1819 #define ARM_EABI_CTORS_SECTION_OP \
1820 "\t.section\t.init_array,\"aw\",%init_array"
1821 #endif
1822 #ifndef ARM_EABI_DTORS_SECTION_OP
1823 #define ARM_EABI_DTORS_SECTION_OP \
1824 "\t.section\t.fini_array,\"aw\",%fini_array"
1825 #endif
1826 #define ARM_CTORS_SECTION_OP \
1827 "\t.section\t.ctors,\"aw\",%progbits"
1828 #define ARM_DTORS_SECTION_OP \
1829 "\t.section\t.dtors,\"aw\",%progbits"
1831 /* Define CTORS_SECTION_ASM_OP. */
1832 #undef CTORS_SECTION_ASM_OP
1833 #undef DTORS_SECTION_ASM_OP
1834 #ifndef IN_LIBGCC2
1835 # define CTORS_SECTION_ASM_OP \
1836 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1837 # define DTORS_SECTION_ASM_OP \
1838 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1839 #else /* !defined (IN_LIBGCC2) */
1840 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1841 so we cannot use the definition above. */
1842 # ifdef __ARM_EABI__
1843 /* The .ctors section is not part of the EABI, so we do not define
1844 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1845 from trying to use it. We do define it when doing normal
1846 compilation, as .init_array can be used instead of .ctors. */
1847 /* There is no need to emit begin or end markers when using
1848 init_array; the dynamic linker will compute the size of the
1849 array itself based on special symbols created by the static
1850 linker. However, we do need to arrange to set up
1851 exception-handling here. */
1852 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1853 # define CTOR_LIST_END /* empty */
1854 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1855 # define DTOR_LIST_END /* empty */
1856 # else /* !defined (__ARM_EABI__) */
1857 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1858 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1859 # endif /* !defined (__ARM_EABI__) */
1860 #endif /* !defined (IN_LIBCC2) */
1862 /* True if the operating system can merge entities with vague linkage
1863 (e.g., symbols in COMDAT group) during dynamic linking. */
1864 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1865 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1866 #endif
1868 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1870 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1871 and check its validity for a certain class.
1872 We have two alternate definitions for each of them.
1873 The usual definition accepts all pseudo regs; the other rejects
1874 them unless they have been allocated suitable hard regs.
1875 The symbol REG_OK_STRICT causes the latter definition to be used.
1876 Thumb-2 has the same restrictions as arm. */
1877 #ifndef REG_OK_STRICT
1879 #define ARM_REG_OK_FOR_BASE_P(X) \
1880 (REGNO (X) <= LAST_ARM_REGNUM \
1881 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1882 || REGNO (X) == FRAME_POINTER_REGNUM \
1883 || REGNO (X) == ARG_POINTER_REGNUM)
1885 #define ARM_REG_OK_FOR_INDEX_P(X) \
1886 ((REGNO (X) <= LAST_ARM_REGNUM \
1887 && REGNO (X) != STACK_POINTER_REGNUM) \
1888 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1889 || REGNO (X) == FRAME_POINTER_REGNUM \
1890 || REGNO (X) == ARG_POINTER_REGNUM)
1892 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1893 (REGNO (X) <= LAST_LO_REGNUM \
1894 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1895 || (GET_MODE_SIZE (MODE) >= 4 \
1896 && (REGNO (X) == STACK_POINTER_REGNUM \
1897 || (X) == hard_frame_pointer_rtx \
1898 || (X) == arg_pointer_rtx)))
1900 #define REG_STRICT_P 0
1902 #else /* REG_OK_STRICT */
1904 #define ARM_REG_OK_FOR_BASE_P(X) \
1905 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1907 #define ARM_REG_OK_FOR_INDEX_P(X) \
1908 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1910 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1911 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1913 #define REG_STRICT_P 1
1915 #endif /* REG_OK_STRICT */
1917 /* Now define some helpers in terms of the above. */
1919 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1920 (TARGET_THUMB1 \
1921 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1922 : ARM_REG_OK_FOR_BASE_P (X))
1924 /* For 16-bit Thumb, a valid index register is anything that can be used in
1925 a byte load instruction. */
1926 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1927 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1929 /* Nonzero if X is a hard reg that can be used as an index
1930 or if it is a pseudo reg. On the Thumb, the stack pointer
1931 is not suitable. */
1932 #define REG_OK_FOR_INDEX_P(X) \
1933 (TARGET_THUMB1 \
1934 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1935 : ARM_REG_OK_FOR_INDEX_P (X))
1937 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1938 For Thumb, we can not use SP + reg, so reject SP. */
1939 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1940 REG_OK_FOR_INDEX_P (X)
1942 #define ARM_BASE_REGISTER_RTX_P(X) \
1943 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1945 #define ARM_INDEX_REGISTER_RTX_P(X) \
1946 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1948 /* Specify the machine mode that this machine uses
1949 for the index in the tablejump instruction. */
1950 #define CASE_VECTOR_MODE Pmode
1952 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1953 || (TARGET_THUMB1 \
1954 && (optimize_size || flag_pic)))
1956 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1957 (TARGET_THUMB1 \
1958 ? (min >= 0 && max < 512 \
1959 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1960 : min >= -256 && max < 256 \
1961 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1962 : min >= 0 && max < 8192 \
1963 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1964 : min >= -4096 && max < 4096 \
1965 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1966 : SImode) \
1967 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
1968 : (max >= 0x200) ? HImode \
1969 : QImode))
1971 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1972 unsigned is probably best, but may break some code. */
1973 #ifndef DEFAULT_SIGNED_CHAR
1974 #define DEFAULT_SIGNED_CHAR 0
1975 #endif
1977 /* Max number of bytes we can move from memory to memory
1978 in one reasonably fast instruction. */
1979 #define MOVE_MAX 4
1981 #undef MOVE_RATIO
1982 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1984 /* Define if operations between registers always perform the operation
1985 on the full register even if a narrower mode is specified. */
1986 #define WORD_REGISTER_OPERATIONS
1988 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1989 will either zero-extend or sign-extend. The value of this macro should
1990 be the code that says which one of the two operations is implicitly
1991 done, UNKNOWN if none. */
1992 #define LOAD_EXTEND_OP(MODE) \
1993 (TARGET_THUMB ? ZERO_EXTEND : \
1994 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1995 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1997 /* Nonzero if access to memory by bytes is slow and undesirable. */
1998 #define SLOW_BYTE_ACCESS 0
2000 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2002 /* Immediate shift counts are truncated by the output routines (or was it
2003 the assembler?). Shift counts in a register are truncated by ARM. Note
2004 that the native compiler puts too large (> 32) immediate shift counts
2005 into a register and shifts by the register, letting the ARM decide what
2006 to do instead of doing that itself. */
2007 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
2008 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2009 On the arm, Y in a register is used modulo 256 for the shift. Only for
2010 rotates is modulo 32 used. */
2011 /* #define SHIFT_COUNT_TRUNCATED 1 */
2013 /* All integers have the same format so truncation is easy. */
2014 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2016 /* Calling from registers is a massive pain. */
2017 #define NO_FUNCTION_CSE 1
2019 /* The machine modes of pointers and functions */
2020 #define Pmode SImode
2021 #define FUNCTION_MODE Pmode
2023 #define ARM_FRAME_RTX(X) \
2024 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2025 || (X) == arg_pointer_rtx)
2027 /* Try to generate sequences that don't involve branches, we can then use
2028 conditional instructions. */
2029 #define BRANCH_COST(speed_p, predictable_p) \
2030 (current_tune->branch_cost (speed_p, predictable_p))
2032 /* False if short circuit operation is preferred. */
2033 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
2034 ((optimize_size) \
2035 ? (TARGET_THUMB ? false : true) \
2036 : (current_tune->logical_op_non_short_circuit[TARGET_ARM]))
2039 /* Position Independent Code. */
2040 /* We decide which register to use based on the compilation options and
2041 the assembler in use; this is more general than the APCS restriction of
2042 using sb (r9) all the time. */
2043 extern unsigned arm_pic_register;
2045 /* The register number of the register used to address a table of static
2046 data addresses in memory. */
2047 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2049 /* We can't directly access anything that contains a symbol,
2050 nor can we indirect via the constant pool. One exception is
2051 UNSPEC_TLS, which is always PIC. */
2052 #define LEGITIMATE_PIC_OPERAND_P(X) \
2053 (!(symbol_mentioned_p (X) \
2054 || label_mentioned_p (X) \
2055 || (GET_CODE (X) == SYMBOL_REF \
2056 && CONSTANT_POOL_ADDRESS_P (X) \
2057 && (symbol_mentioned_p (get_pool_constant (X)) \
2058 || label_mentioned_p (get_pool_constant (X))))) \
2059 || tls_mentioned_p (X))
2061 /* We need to know when we are making a constant pool; this determines
2062 whether data needs to be in the GOT or can be referenced via a GOT
2063 offset. */
2064 extern int making_const_table;
2066 /* Handle pragmas for compatibility with Intel's compilers. */
2067 /* Also abuse this to register additional C specific EABI attributes. */
2068 #define REGISTER_TARGET_PRAGMAS() do { \
2069 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2070 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2071 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2072 arm_lang_object_attributes_init(); \
2073 } while (0)
2075 /* Condition code information. */
2076 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2077 return the mode to be used for the comparison. */
2079 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2081 #define REVERSIBLE_CC_MODE(MODE) 1
2083 #define REVERSE_CONDITION(CODE,MODE) \
2084 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2085 ? reverse_condition_maybe_unordered (code) \
2086 : reverse_condition (code))
2088 /* The arm5 clz instruction returns 32. */
2089 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2090 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2092 #define CC_STATUS_INIT \
2093 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2095 #undef ASM_APP_OFF
2096 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2097 TARGET_THUMB2 ? "\t.thumb\n" : "")
2099 /* Output a push or a pop instruction (only used when profiling).
2100 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2101 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2102 that r7 isn't used by the function profiler, so we can use it as a
2103 scratch reg. WARNING: This isn't safe in the general case! It may be
2104 sensitive to future changes in final.c:profile_function. */
2105 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2106 do \
2108 if (TARGET_ARM) \
2109 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2110 STACK_POINTER_REGNUM, REGNO); \
2111 else if (TARGET_THUMB1 \
2112 && (REGNO) == STATIC_CHAIN_REGNUM) \
2114 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2115 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2116 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2118 else \
2119 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2120 } while (0)
2123 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2124 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2125 do \
2127 if (TARGET_ARM) \
2128 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2129 STACK_POINTER_REGNUM, REGNO); \
2130 else if (TARGET_THUMB1 \
2131 && (REGNO) == STATIC_CHAIN_REGNUM) \
2133 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2134 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2135 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2137 else \
2138 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2139 } while (0)
2141 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2142 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2144 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2145 default alignment from elfos.h. */
2146 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2147 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2149 /* Make sure subsequent insns are aligned after a TBB. */
2150 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2151 do \
2153 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2154 ASM_OUTPUT_ALIGN (FILE, 1); \
2156 while (0)
2158 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2159 do \
2161 if (TARGET_THUMB) \
2163 if (is_called_in_ARM_mode (DECL) \
2164 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2165 && cfun->is_thunk)) \
2166 fprintf (STREAM, "\t.code 32\n") ; \
2167 else if (TARGET_THUMB1) \
2168 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2169 else \
2170 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2172 if (TARGET_POKE_FUNCTION_NAME) \
2173 arm_poke_function_name (STREAM, (const char *) NAME); \
2175 while (0)
2177 /* For aliases of functions we use .thumb_set instead. */
2178 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2179 do \
2181 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2182 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2184 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2186 fprintf (FILE, "\t.thumb_set "); \
2187 assemble_name (FILE, LABEL1); \
2188 fprintf (FILE, ","); \
2189 assemble_name (FILE, LABEL2); \
2190 fprintf (FILE, "\n"); \
2192 else \
2193 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2195 while (0)
2197 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2198 /* To support -falign-* switches we need to use .p2align so
2199 that alignment directives in code sections will be padded
2200 with no-op instructions, rather than zeroes. */
2201 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2202 if ((LOG) != 0) \
2204 if ((MAX_SKIP) == 0) \
2205 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2206 else \
2207 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2208 (int) (LOG), (int) (MAX_SKIP)); \
2210 #endif
2212 /* Add two bytes to the length of conditionally executed Thumb-2
2213 instructions for the IT instruction. */
2214 #define ADJUST_INSN_LENGTH(insn, length) \
2215 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2216 length += 2;
2218 /* Only perform branch elimination (by making instructions conditional) if
2219 we're optimizing. For Thumb-2 check if any IT instructions need
2220 outputting. */
2221 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2222 if (TARGET_ARM && optimize) \
2223 arm_final_prescan_insn (INSN); \
2224 else if (TARGET_THUMB2) \
2225 thumb2_final_prescan_insn (INSN); \
2226 else if (TARGET_THUMB1) \
2227 thumb1_final_prescan_insn (INSN)
2229 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2230 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2231 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2232 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2233 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2234 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2235 : 0))))
2237 /* A C expression whose value is RTL representing the value of the return
2238 address for the frame COUNT steps up from the current frame. */
2240 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2241 arm_return_addr (COUNT, FRAME)
2243 /* Mask of the bits in the PC that contain the real return address
2244 when running in 26-bit mode. */
2245 #define RETURN_ADDR_MASK26 (0x03fffffc)
2247 /* Pick up the return address upon entry to a procedure. Used for
2248 dwarf2 unwind information. This also enables the table driven
2249 mechanism. */
2250 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2251 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2253 /* Used to mask out junk bits from the return address, such as
2254 processor state, interrupt status, condition codes and the like. */
2255 #define MASK_RETURN_ADDR \
2256 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2257 in 26 bit mode, the condition codes must be masked out of the \
2258 return address. This does not apply to ARM6 and later processors \
2259 when running in 32 bit mode. */ \
2260 ((arm_arch4 || TARGET_THUMB) \
2261 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2262 : arm_gen_return_addr_mask ())
2265 /* Do not emit .note.GNU-stack by default. */
2266 #ifndef NEED_INDICATE_EXEC_STACK
2267 #define NEED_INDICATE_EXEC_STACK 0
2268 #endif
2270 #define TARGET_ARM_ARCH \
2271 (arm_base_arch) \
2273 #define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2274 #define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2276 /* The highest Thumb instruction set version supported by the chip. */
2277 #define TARGET_ARM_ARCH_ISA_THUMB \
2278 (arm_arch_thumb2 ? 2 \
2279 : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2281 /* Expands to an upper-case char of the target's architectural
2282 profile. */
2283 #define TARGET_ARM_ARCH_PROFILE \
2284 (!arm_arch_notm \
2285 ? 'M' \
2286 : (arm_arch7 \
2287 ? (strlen (arm_arch_name) >=3 \
2288 ? (arm_arch_name[strlen (arm_arch_name) - 3]) \
2289 : 0) \
2290 : 0))
2292 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2293 Bit 0 for bytes, up to bit 3 for double-words. */
2294 #define TARGET_ARM_FEATURE_LDREX \
2295 ((TARGET_HAVE_LDREX ? 4 : 0) \
2296 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2297 | (TARGET_HAVE_LDREXD ? 8 : 0))
2299 /* Set as a bit mask indicating the available widths of hardware floating
2300 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2301 32-bit support, bit 3 indicates 64-bit support. */
2302 #define TARGET_ARM_FP \
2303 (TARGET_VFP_SINGLE ? 4 \
2304 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0))
2307 /* Set as a bit mask indicating the available widths of floating point
2308 types for hardware NEON floating point. This is the same as
2309 TARGET_ARM_FP without the 64-bit bit set. */
2310 #ifdef TARGET_NEON
2311 #define TARGET_NEON_FP \
2312 (TARGET_ARM_FP & (0xff ^ 0x08))
2313 #endif
2315 /* The maximum number of parallel loads or stores we support in an ldm/stm
2316 instruction. */
2317 #define MAX_LDM_STM_OPS 4
2319 #define ASM_CPU_SPEC \
2320 " %{mcpu=generic-*:-march=%*;" \
2321 " :%{mcpu=*:-mcpu=%*} %{march=*:-march=%*}}"
2323 /* -mcpu=native handling only makes sense with compiler running on
2324 an ARM chip. */
2325 #if defined(__arm__)
2326 extern const char *host_detect_local_cpu (int argc, const char **argv);
2327 # define EXTRA_SPEC_FUNCTIONS \
2328 { "local_cpu_detect", host_detect_local_cpu },
2330 # define MCPU_MTUNE_NATIVE_SPECS \
2331 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2332 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2333 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2334 #else
2335 # define MCPU_MTUNE_NATIVE_SPECS ""
2336 #endif
2338 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2340 #endif /* ! GCC_ARM_H */