PR tree-optimization/82726
[official-gcc.git] / gcc / tree-predcom.c
blob6dccbc17bf5e05c47dbd7083e5956673a97c6f08
1 /* Predictive commoning.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
159 Apart from predictive commoning on Load-Load and Store-Load chains, we
160 also support Store-Store chains -- stores killed by other store can be
161 eliminated. Given below example:
163 for (i = 0; i < n; i++)
165 a[i] = 1;
166 a[i+2] = 2;
169 It can be replaced with:
171 t0 = a[0];
172 t1 = a[1];
173 for (i = 0; i < n; i++)
175 a[i] = 1;
176 t2 = 2;
177 t0 = t1;
178 t1 = t2;
180 a[n] = t0;
181 a[n+1] = t1;
183 If the loop runs more than 1 iterations, it can be further simplified into:
185 for (i = 0; i < n; i++)
187 a[i] = 1;
189 a[n] = 2;
190 a[n+1] = 2;
192 The interesting part is this can be viewed either as general store motion
193 or general dead store elimination in either intra/inter-iterations way.
195 TODO: For now, we don't support store-store chains in multi-exit loops. We
196 force to not unroll in case of store-store chain even if other chains might
197 ask for unroll.
199 Predictive commoning can be generalized for arbitrary computations (not
200 just memory loads), and also nontrivial transfer functions (e.g., replacing
201 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
203 #include "config.h"
204 #include "system.h"
205 #include "coretypes.h"
206 #include "backend.h"
207 #include "rtl.h"
208 #include "tree.h"
209 #include "gimple.h"
210 #include "predict.h"
211 #include "tree-pass.h"
212 #include "ssa.h"
213 #include "gimple-pretty-print.h"
214 #include "alias.h"
215 #include "fold-const.h"
216 #include "cfgloop.h"
217 #include "tree-eh.h"
218 #include "gimplify.h"
219 #include "gimple-iterator.h"
220 #include "gimplify-me.h"
221 #include "tree-ssa-loop-ivopts.h"
222 #include "tree-ssa-loop-manip.h"
223 #include "tree-ssa-loop-niter.h"
224 #include "tree-ssa-loop.h"
225 #include "tree-into-ssa.h"
226 #include "tree-dfa.h"
227 #include "tree-ssa.h"
228 #include "tree-data-ref.h"
229 #include "tree-scalar-evolution.h"
230 #include "params.h"
231 #include "tree-affine.h"
232 #include "builtins.h"
234 /* The maximum number of iterations between the considered memory
235 references. */
237 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
239 /* Data references (or phi nodes that carry data reference values across
240 loop iterations). */
242 typedef struct dref_d
244 /* The reference itself. */
245 struct data_reference *ref;
247 /* The statement in that the reference appears. */
248 gimple *stmt;
250 /* In case that STMT is a phi node, this field is set to the SSA name
251 defined by it in replace_phis_by_defined_names (in order to avoid
252 pointing to phi node that got reallocated in the meantime). */
253 tree name_defined_by_phi;
255 /* Distance of the reference from the root of the chain (in number of
256 iterations of the loop). */
257 unsigned distance;
259 /* Number of iterations offset from the first reference in the component. */
260 widest_int offset;
262 /* Number of the reference in a component, in dominance ordering. */
263 unsigned pos;
265 /* True if the memory reference is always accessed when the loop is
266 entered. */
267 unsigned always_accessed : 1;
268 } *dref;
271 /* Type of the chain of the references. */
273 enum chain_type
275 /* The addresses of the references in the chain are constant. */
276 CT_INVARIANT,
278 /* There are only loads in the chain. */
279 CT_LOAD,
281 /* Root of the chain is store, the rest are loads. */
282 CT_STORE_LOAD,
284 /* There are only stores in the chain. */
285 CT_STORE_STORE,
287 /* A combination of two chains. */
288 CT_COMBINATION
291 /* Chains of data references. */
293 typedef struct chain
295 /* Type of the chain. */
296 enum chain_type type;
298 /* For combination chains, the operator and the two chains that are
299 combined, and the type of the result. */
300 enum tree_code op;
301 tree rslt_type;
302 struct chain *ch1, *ch2;
304 /* The references in the chain. */
305 vec<dref> refs;
307 /* The maximum distance of the reference in the chain from the root. */
308 unsigned length;
310 /* The variables used to copy the value throughout iterations. */
311 vec<tree> vars;
313 /* Initializers for the variables. */
314 vec<tree> inits;
316 /* Finalizers for the eliminated stores. */
317 vec<tree> finis;
319 /* gimple stmts intializing the initial variables of the chain. */
320 gimple_seq init_seq;
322 /* gimple stmts finalizing the eliminated stores of the chain. */
323 gimple_seq fini_seq;
325 /* True if there is a use of a variable with the maximal distance
326 that comes after the root in the loop. */
327 unsigned has_max_use_after : 1;
329 /* True if all the memory references in the chain are always accessed. */
330 unsigned all_always_accessed : 1;
332 /* True if this chain was combined together with some other chain. */
333 unsigned combined : 1;
335 /* True if this is store elimination chain and eliminated stores store
336 loop invariant value into memory. */
337 unsigned inv_store_elimination : 1;
338 } *chain_p;
341 /* Describes the knowledge about the step of the memory references in
342 the component. */
344 enum ref_step_type
346 /* The step is zero. */
347 RS_INVARIANT,
349 /* The step is nonzero. */
350 RS_NONZERO,
352 /* The step may or may not be nonzero. */
353 RS_ANY
356 /* Components of the data dependence graph. */
358 struct component
360 /* The references in the component. */
361 vec<dref> refs;
363 /* What we know about the step of the references in the component. */
364 enum ref_step_type comp_step;
366 /* True if all references in component are stores and we try to do
367 intra/inter loop iteration dead store elimination. */
368 bool eliminate_store_p;
370 /* Next component in the list. */
371 struct component *next;
374 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
376 static bitmap looparound_phis;
378 /* Cache used by tree_to_aff_combination_expand. */
380 static hash_map<tree, name_expansion *> *name_expansions;
382 /* Dumps data reference REF to FILE. */
384 extern void dump_dref (FILE *, dref);
385 void
386 dump_dref (FILE *file, dref ref)
388 if (ref->ref)
390 fprintf (file, " ");
391 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
392 fprintf (file, " (id %u%s)\n", ref->pos,
393 DR_IS_READ (ref->ref) ? "" : ", write");
395 fprintf (file, " offset ");
396 print_decs (ref->offset, file);
397 fprintf (file, "\n");
399 fprintf (file, " distance %u\n", ref->distance);
401 else
403 if (gimple_code (ref->stmt) == GIMPLE_PHI)
404 fprintf (file, " looparound ref\n");
405 else
406 fprintf (file, " combination ref\n");
407 fprintf (file, " in statement ");
408 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
409 fprintf (file, "\n");
410 fprintf (file, " distance %u\n", ref->distance);
415 /* Dumps CHAIN to FILE. */
417 extern void dump_chain (FILE *, chain_p);
418 void
419 dump_chain (FILE *file, chain_p chain)
421 dref a;
422 const char *chain_type;
423 unsigned i;
424 tree var;
426 switch (chain->type)
428 case CT_INVARIANT:
429 chain_type = "Load motion";
430 break;
432 case CT_LOAD:
433 chain_type = "Loads-only";
434 break;
436 case CT_STORE_LOAD:
437 chain_type = "Store-loads";
438 break;
440 case CT_STORE_STORE:
441 chain_type = "Store-stores";
442 break;
444 case CT_COMBINATION:
445 chain_type = "Combination";
446 break;
448 default:
449 gcc_unreachable ();
452 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
453 chain->combined ? " (combined)" : "");
454 if (chain->type != CT_INVARIANT)
455 fprintf (file, " max distance %u%s\n", chain->length,
456 chain->has_max_use_after ? "" : ", may reuse first");
458 if (chain->type == CT_COMBINATION)
460 fprintf (file, " equal to %p %s %p in type ",
461 (void *) chain->ch1, op_symbol_code (chain->op),
462 (void *) chain->ch2);
463 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
464 fprintf (file, "\n");
467 if (chain->vars.exists ())
469 fprintf (file, " vars");
470 FOR_EACH_VEC_ELT (chain->vars, i, var)
472 fprintf (file, " ");
473 print_generic_expr (file, var, TDF_SLIM);
475 fprintf (file, "\n");
478 if (chain->inits.exists ())
480 fprintf (file, " inits");
481 FOR_EACH_VEC_ELT (chain->inits, i, var)
483 fprintf (file, " ");
484 print_generic_expr (file, var, TDF_SLIM);
486 fprintf (file, "\n");
489 fprintf (file, " references:\n");
490 FOR_EACH_VEC_ELT (chain->refs, i, a)
491 dump_dref (file, a);
493 fprintf (file, "\n");
496 /* Dumps CHAINS to FILE. */
498 extern void dump_chains (FILE *, vec<chain_p> );
499 void
500 dump_chains (FILE *file, vec<chain_p> chains)
502 chain_p chain;
503 unsigned i;
505 FOR_EACH_VEC_ELT (chains, i, chain)
506 dump_chain (file, chain);
509 /* Dumps COMP to FILE. */
511 extern void dump_component (FILE *, struct component *);
512 void
513 dump_component (FILE *file, struct component *comp)
515 dref a;
516 unsigned i;
518 fprintf (file, "Component%s:\n",
519 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
520 FOR_EACH_VEC_ELT (comp->refs, i, a)
521 dump_dref (file, a);
522 fprintf (file, "\n");
525 /* Dumps COMPS to FILE. */
527 extern void dump_components (FILE *, struct component *);
528 void
529 dump_components (FILE *file, struct component *comps)
531 struct component *comp;
533 for (comp = comps; comp; comp = comp->next)
534 dump_component (file, comp);
537 /* Frees a chain CHAIN. */
539 static void
540 release_chain (chain_p chain)
542 dref ref;
543 unsigned i;
545 if (chain == NULL)
546 return;
548 FOR_EACH_VEC_ELT (chain->refs, i, ref)
549 free (ref);
551 chain->refs.release ();
552 chain->vars.release ();
553 chain->inits.release ();
554 if (chain->init_seq)
555 gimple_seq_discard (chain->init_seq);
557 chain->finis.release ();
558 if (chain->fini_seq)
559 gimple_seq_discard (chain->fini_seq);
561 free (chain);
564 /* Frees CHAINS. */
566 static void
567 release_chains (vec<chain_p> chains)
569 unsigned i;
570 chain_p chain;
572 FOR_EACH_VEC_ELT (chains, i, chain)
573 release_chain (chain);
574 chains.release ();
577 /* Frees a component COMP. */
579 static void
580 release_component (struct component *comp)
582 comp->refs.release ();
583 free (comp);
586 /* Frees list of components COMPS. */
588 static void
589 release_components (struct component *comps)
591 struct component *act, *next;
593 for (act = comps; act; act = next)
595 next = act->next;
596 release_component (act);
600 /* Finds a root of tree given by FATHERS containing A, and performs path
601 shortening. */
603 static unsigned
604 component_of (unsigned fathers[], unsigned a)
606 unsigned root, n;
608 for (root = a; root != fathers[root]; root = fathers[root])
609 continue;
611 for (; a != root; a = n)
613 n = fathers[a];
614 fathers[a] = root;
617 return root;
620 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
621 components, A and B are components to merge. */
623 static void
624 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
626 unsigned ca = component_of (fathers, a);
627 unsigned cb = component_of (fathers, b);
629 if (ca == cb)
630 return;
632 if (sizes[ca] < sizes[cb])
634 sizes[cb] += sizes[ca];
635 fathers[ca] = cb;
637 else
639 sizes[ca] += sizes[cb];
640 fathers[cb] = ca;
644 /* Returns true if A is a reference that is suitable for predictive commoning
645 in the innermost loop that contains it. REF_STEP is set according to the
646 step of the reference A. */
648 static bool
649 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
651 tree ref = DR_REF (a), step = DR_STEP (a);
653 if (!step
654 || TREE_THIS_VOLATILE (ref)
655 || !is_gimple_reg_type (TREE_TYPE (ref))
656 || tree_could_throw_p (ref))
657 return false;
659 if (integer_zerop (step))
660 *ref_step = RS_INVARIANT;
661 else if (integer_nonzerop (step))
662 *ref_step = RS_NONZERO;
663 else
664 *ref_step = RS_ANY;
666 return true;
669 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
671 static void
672 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
674 tree type = TREE_TYPE (DR_OFFSET (dr));
675 aff_tree delta;
677 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
678 &name_expansions);
679 aff_combination_const (&delta, type, wi::to_widest (DR_INIT (dr)));
680 aff_combination_add (offset, &delta);
683 /* Determines number of iterations of the innermost enclosing loop before B
684 refers to exactly the same location as A and stores it to OFF. If A and
685 B do not have the same step, they never meet, or anything else fails,
686 returns false, otherwise returns true. Both A and B are assumed to
687 satisfy suitable_reference_p. */
689 static bool
690 determine_offset (struct data_reference *a, struct data_reference *b,
691 widest_int *off)
693 aff_tree diff, baseb, step;
694 tree typea, typeb;
696 /* Check that both the references access the location in the same type. */
697 typea = TREE_TYPE (DR_REF (a));
698 typeb = TREE_TYPE (DR_REF (b));
699 if (!useless_type_conversion_p (typeb, typea))
700 return false;
702 /* Check whether the base address and the step of both references is the
703 same. */
704 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
705 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
706 return false;
708 if (integer_zerop (DR_STEP (a)))
710 /* If the references have loop invariant address, check that they access
711 exactly the same location. */
712 *off = 0;
713 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
714 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
717 /* Compare the offsets of the addresses, and check whether the difference
718 is a multiple of step. */
719 aff_combination_dr_offset (a, &diff);
720 aff_combination_dr_offset (b, &baseb);
721 aff_combination_scale (&baseb, -1);
722 aff_combination_add (&diff, &baseb);
724 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
725 &step, &name_expansions);
726 return aff_combination_constant_multiple_p (&diff, &step, off);
729 /* Returns the last basic block in LOOP for that we are sure that
730 it is executed whenever the loop is entered. */
732 static basic_block
733 last_always_executed_block (struct loop *loop)
735 unsigned i;
736 vec<edge> exits = get_loop_exit_edges (loop);
737 edge ex;
738 basic_block last = loop->latch;
740 FOR_EACH_VEC_ELT (exits, i, ex)
741 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
742 exits.release ();
744 return last;
747 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
749 static struct component *
750 split_data_refs_to_components (struct loop *loop,
751 vec<data_reference_p> datarefs,
752 vec<ddr_p> depends)
754 unsigned i, n = datarefs.length ();
755 unsigned ca, ia, ib, bad;
756 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
757 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
758 struct component **comps;
759 struct data_reference *dr, *dra, *drb;
760 struct data_dependence_relation *ddr;
761 struct component *comp_list = NULL, *comp;
762 dref dataref;
763 /* Don't do store elimination if loop has multiple exit edges. */
764 bool eliminate_store_p = single_exit (loop) != NULL;
765 basic_block last_always_executed = last_always_executed_block (loop);
767 FOR_EACH_VEC_ELT (datarefs, i, dr)
769 if (!DR_REF (dr))
771 /* A fake reference for call or asm_expr that may clobber memory;
772 just fail. */
773 goto end;
775 /* predcom pass isn't prepared to handle calls with data references. */
776 if (is_gimple_call (DR_STMT (dr)))
777 goto end;
778 dr->aux = (void *) (size_t) i;
779 comp_father[i] = i;
780 comp_size[i] = 1;
783 /* A component reserved for the "bad" data references. */
784 comp_father[n] = n;
785 comp_size[n] = 1;
787 FOR_EACH_VEC_ELT (datarefs, i, dr)
789 enum ref_step_type dummy;
791 if (!suitable_reference_p (dr, &dummy))
793 ia = (unsigned) (size_t) dr->aux;
794 merge_comps (comp_father, comp_size, n, ia);
798 FOR_EACH_VEC_ELT (depends, i, ddr)
800 widest_int dummy_off;
802 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
803 continue;
805 dra = DDR_A (ddr);
806 drb = DDR_B (ddr);
808 /* Don't do store elimination if there is any unknown dependence for
809 any store data reference. */
810 if ((DR_IS_WRITE (dra) || DR_IS_WRITE (drb))
811 && (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
812 || DDR_NUM_DIST_VECTS (ddr) == 0))
813 eliminate_store_p = false;
815 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
816 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
817 if (ia == ib)
818 continue;
820 bad = component_of (comp_father, n);
822 /* If both A and B are reads, we may ignore unsuitable dependences. */
823 if (DR_IS_READ (dra) && DR_IS_READ (drb))
825 if (ia == bad || ib == bad
826 || !determine_offset (dra, drb, &dummy_off))
827 continue;
829 /* If A is read and B write or vice versa and there is unsuitable
830 dependence, instead of merging both components into a component
831 that will certainly not pass suitable_component_p, just put the
832 read into bad component, perhaps at least the write together with
833 all the other data refs in it's component will be optimizable. */
834 else if (DR_IS_READ (dra) && ib != bad)
836 if (ia == bad)
837 continue;
838 else if (!determine_offset (dra, drb, &dummy_off))
840 merge_comps (comp_father, comp_size, bad, ia);
841 continue;
844 else if (DR_IS_READ (drb) && ia != bad)
846 if (ib == bad)
847 continue;
848 else if (!determine_offset (dra, drb, &dummy_off))
850 merge_comps (comp_father, comp_size, bad, ib);
851 continue;
854 else if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb)
855 && ia != bad && ib != bad
856 && !determine_offset (dra, drb, &dummy_off))
858 merge_comps (comp_father, comp_size, bad, ia);
859 merge_comps (comp_father, comp_size, bad, ib);
860 continue;
863 merge_comps (comp_father, comp_size, ia, ib);
866 if (eliminate_store_p)
868 tree niters = number_of_latch_executions (loop);
870 /* Don't do store elimination if niters info is unknown because stores
871 in the last iteration can't be eliminated and we need to recover it
872 after loop. */
873 eliminate_store_p = (niters != NULL_TREE && niters != chrec_dont_know);
876 comps = XCNEWVEC (struct component *, n);
877 bad = component_of (comp_father, n);
878 FOR_EACH_VEC_ELT (datarefs, i, dr)
880 ia = (unsigned) (size_t) dr->aux;
881 ca = component_of (comp_father, ia);
882 if (ca == bad)
883 continue;
885 comp = comps[ca];
886 if (!comp)
888 comp = XCNEW (struct component);
889 comp->refs.create (comp_size[ca]);
890 comp->eliminate_store_p = eliminate_store_p;
891 comps[ca] = comp;
894 dataref = XCNEW (struct dref_d);
895 dataref->ref = dr;
896 dataref->stmt = DR_STMT (dr);
897 dataref->offset = 0;
898 dataref->distance = 0;
900 dataref->always_accessed
901 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
902 gimple_bb (dataref->stmt));
903 dataref->pos = comp->refs.length ();
904 comp->refs.quick_push (dataref);
905 if (DR_IS_READ (dr))
906 comp->eliminate_store_p = false;
909 for (i = 0; i < n; i++)
911 comp = comps[i];
912 if (comp)
914 comp->next = comp_list;
915 comp_list = comp;
918 free (comps);
920 end:
921 free (comp_father);
922 free (comp_size);
923 return comp_list;
926 /* Returns true if the component COMP satisfies the conditions
927 described in 2) at the beginning of this file. LOOP is the current
928 loop. */
930 static bool
931 suitable_component_p (struct loop *loop, struct component *comp)
933 unsigned i;
934 dref a, first;
935 basic_block ba, bp = loop->header;
936 bool ok, has_write = false;
938 FOR_EACH_VEC_ELT (comp->refs, i, a)
940 ba = gimple_bb (a->stmt);
942 if (!just_once_each_iteration_p (loop, ba))
943 return false;
945 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
946 bp = ba;
948 if (DR_IS_WRITE (a->ref))
949 has_write = true;
952 first = comp->refs[0];
953 ok = suitable_reference_p (first->ref, &comp->comp_step);
954 gcc_assert (ok);
955 first->offset = 0;
957 for (i = 1; comp->refs.iterate (i, &a); i++)
959 if (!determine_offset (first->ref, a->ref, &a->offset))
960 return false;
962 enum ref_step_type a_step;
963 gcc_checking_assert (suitable_reference_p (a->ref, &a_step)
964 && a_step == comp->comp_step);
967 /* If there is a write inside the component, we must know whether the
968 step is nonzero or not -- we would not otherwise be able to recognize
969 whether the value accessed by reads comes from the OFFSET-th iteration
970 or the previous one. */
971 if (has_write && comp->comp_step == RS_ANY)
972 return false;
974 return true;
977 /* Check the conditions on references inside each of components COMPS,
978 and remove the unsuitable components from the list. The new list
979 of components is returned. The conditions are described in 2) at
980 the beginning of this file. LOOP is the current loop. */
982 static struct component *
983 filter_suitable_components (struct loop *loop, struct component *comps)
985 struct component **comp, *act;
987 for (comp = &comps; *comp; )
989 act = *comp;
990 if (suitable_component_p (loop, act))
991 comp = &act->next;
992 else
994 dref ref;
995 unsigned i;
997 *comp = act->next;
998 FOR_EACH_VEC_ELT (act->refs, i, ref)
999 free (ref);
1000 release_component (act);
1004 return comps;
1007 /* Compares two drefs A and B by their offset and position. Callback for
1008 qsort. */
1010 static int
1011 order_drefs (const void *a, const void *b)
1013 const dref *const da = (const dref *) a;
1014 const dref *const db = (const dref *) b;
1015 int offcmp = wi::cmps ((*da)->offset, (*db)->offset);
1017 if (offcmp != 0)
1018 return offcmp;
1020 return (*da)->pos - (*db)->pos;
1023 /* Returns root of the CHAIN. */
1025 static inline dref
1026 get_chain_root (chain_p chain)
1028 return chain->refs[0];
1031 /* Given CHAIN, returns the last ref at DISTANCE, or NULL if it doesn't
1032 exist. */
1034 static inline dref
1035 get_chain_last_ref_at (chain_p chain, unsigned distance)
1037 unsigned i;
1039 for (i = chain->refs.length (); i > 0; i--)
1040 if (distance == chain->refs[i - 1]->distance)
1041 break;
1043 return (i > 0) ? chain->refs[i - 1] : NULL;
1046 /* Adds REF to the chain CHAIN. */
1048 static void
1049 add_ref_to_chain (chain_p chain, dref ref)
1051 dref root = get_chain_root (chain);
1053 gcc_assert (wi::les_p (root->offset, ref->offset));
1054 widest_int dist = ref->offset - root->offset;
1055 if (wi::leu_p (MAX_DISTANCE, dist))
1057 free (ref);
1058 return;
1060 gcc_assert (wi::fits_uhwi_p (dist));
1062 chain->refs.safe_push (ref);
1064 ref->distance = dist.to_uhwi ();
1066 if (ref->distance >= chain->length)
1068 chain->length = ref->distance;
1069 chain->has_max_use_after = false;
1072 /* Don't set the flag for store-store chain since there is no use. */
1073 if (chain->type != CT_STORE_STORE
1074 && ref->distance == chain->length
1075 && ref->pos > root->pos)
1076 chain->has_max_use_after = true;
1078 chain->all_always_accessed &= ref->always_accessed;
1081 /* Returns the chain for invariant component COMP. */
1083 static chain_p
1084 make_invariant_chain (struct component *comp)
1086 chain_p chain = XCNEW (struct chain);
1087 unsigned i;
1088 dref ref;
1090 chain->type = CT_INVARIANT;
1092 chain->all_always_accessed = true;
1094 FOR_EACH_VEC_ELT (comp->refs, i, ref)
1096 chain->refs.safe_push (ref);
1097 chain->all_always_accessed &= ref->always_accessed;
1100 chain->inits = vNULL;
1101 chain->finis = vNULL;
1103 return chain;
1106 /* Make a new chain of type TYPE rooted at REF. */
1108 static chain_p
1109 make_rooted_chain (dref ref, enum chain_type type)
1111 chain_p chain = XCNEW (struct chain);
1113 chain->type = type;
1114 chain->refs.safe_push (ref);
1115 chain->all_always_accessed = ref->always_accessed;
1116 ref->distance = 0;
1118 chain->inits = vNULL;
1119 chain->finis = vNULL;
1121 return chain;
1124 /* Returns true if CHAIN is not trivial. */
1126 static bool
1127 nontrivial_chain_p (chain_p chain)
1129 return chain != NULL && chain->refs.length () > 1;
1132 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1133 is no such name. */
1135 static tree
1136 name_for_ref (dref ref)
1138 tree name;
1140 if (is_gimple_assign (ref->stmt))
1142 if (!ref->ref || DR_IS_READ (ref->ref))
1143 name = gimple_assign_lhs (ref->stmt);
1144 else
1145 name = gimple_assign_rhs1 (ref->stmt);
1147 else
1148 name = PHI_RESULT (ref->stmt);
1150 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1153 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1154 iterations of the innermost enclosing loop). */
1156 static bool
1157 valid_initializer_p (struct data_reference *ref,
1158 unsigned distance, struct data_reference *root)
1160 aff_tree diff, base, step;
1161 widest_int off;
1163 /* Both REF and ROOT must be accessing the same object. */
1164 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1165 return false;
1167 /* The initializer is defined outside of loop, hence its address must be
1168 invariant inside the loop. */
1169 gcc_assert (integer_zerop (DR_STEP (ref)));
1171 /* If the address of the reference is invariant, initializer must access
1172 exactly the same location. */
1173 if (integer_zerop (DR_STEP (root)))
1174 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1175 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1177 /* Verify that this index of REF is equal to the root's index at
1178 -DISTANCE-th iteration. */
1179 aff_combination_dr_offset (root, &diff);
1180 aff_combination_dr_offset (ref, &base);
1181 aff_combination_scale (&base, -1);
1182 aff_combination_add (&diff, &base);
1184 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1185 &step, &name_expansions);
1186 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1187 return false;
1189 if (off != distance)
1190 return false;
1192 return true;
1195 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1196 initial value is correct (equal to initial value of REF shifted by one
1197 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1198 is the root of the current chain. */
1200 static gphi *
1201 find_looparound_phi (struct loop *loop, dref ref, dref root)
1203 tree name, init, init_ref;
1204 gphi *phi = NULL;
1205 gimple *init_stmt;
1206 edge latch = loop_latch_edge (loop);
1207 struct data_reference init_dr;
1208 gphi_iterator psi;
1210 if (is_gimple_assign (ref->stmt))
1212 if (DR_IS_READ (ref->ref))
1213 name = gimple_assign_lhs (ref->stmt);
1214 else
1215 name = gimple_assign_rhs1 (ref->stmt);
1217 else
1218 name = PHI_RESULT (ref->stmt);
1219 if (!name)
1220 return NULL;
1222 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1224 phi = psi.phi ();
1225 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1226 break;
1229 if (gsi_end_p (psi))
1230 return NULL;
1232 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1233 if (TREE_CODE (init) != SSA_NAME)
1234 return NULL;
1235 init_stmt = SSA_NAME_DEF_STMT (init);
1236 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1237 return NULL;
1238 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1240 init_ref = gimple_assign_rhs1 (init_stmt);
1241 if (!REFERENCE_CLASS_P (init_ref)
1242 && !DECL_P (init_ref))
1243 return NULL;
1245 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1246 loop enclosing PHI). */
1247 memset (&init_dr, 0, sizeof (struct data_reference));
1248 DR_REF (&init_dr) = init_ref;
1249 DR_STMT (&init_dr) = phi;
1250 if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr), init_ref, loop))
1251 return NULL;
1253 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1254 return NULL;
1256 return phi;
1259 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1261 static void
1262 insert_looparound_copy (chain_p chain, dref ref, gphi *phi)
1264 dref nw = XCNEW (struct dref_d), aref;
1265 unsigned i;
1267 nw->stmt = phi;
1268 nw->distance = ref->distance + 1;
1269 nw->always_accessed = 1;
1271 FOR_EACH_VEC_ELT (chain->refs, i, aref)
1272 if (aref->distance >= nw->distance)
1273 break;
1274 chain->refs.safe_insert (i, nw);
1276 if (nw->distance > chain->length)
1278 chain->length = nw->distance;
1279 chain->has_max_use_after = false;
1283 /* For references in CHAIN that are copied around the LOOP (created previously
1284 by PRE, or by user), add the results of such copies to the chain. This
1285 enables us to remove the copies by unrolling, and may need less registers
1286 (also, it may allow us to combine chains together). */
1288 static void
1289 add_looparound_copies (struct loop *loop, chain_p chain)
1291 unsigned i;
1292 dref ref, root = get_chain_root (chain);
1293 gphi *phi;
1295 if (chain->type == CT_STORE_STORE)
1296 return;
1298 FOR_EACH_VEC_ELT (chain->refs, i, ref)
1300 phi = find_looparound_phi (loop, ref, root);
1301 if (!phi)
1302 continue;
1304 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1305 insert_looparound_copy (chain, ref, phi);
1309 /* Find roots of the values and determine distances in the component COMP.
1310 The references are redistributed into CHAINS. LOOP is the current
1311 loop. */
1313 static void
1314 determine_roots_comp (struct loop *loop,
1315 struct component *comp,
1316 vec<chain_p> *chains)
1318 unsigned i;
1319 dref a;
1320 chain_p chain = NULL;
1321 widest_int last_ofs = 0;
1322 enum chain_type type;
1324 /* Invariants are handled specially. */
1325 if (comp->comp_step == RS_INVARIANT)
1327 chain = make_invariant_chain (comp);
1328 chains->safe_push (chain);
1329 return;
1332 /* Trivial component. */
1333 if (comp->refs.length () <= 1)
1335 if (comp->refs.length () == 1)
1337 free (comp->refs[0]);
1338 comp->refs.truncate (0);
1340 return;
1343 comp->refs.qsort (order_drefs);
1344 FOR_EACH_VEC_ELT (comp->refs, i, a)
1346 if (!chain
1347 || (!comp->eliminate_store_p && DR_IS_WRITE (a->ref))
1348 || wi::leu_p (MAX_DISTANCE, a->offset - last_ofs))
1350 if (nontrivial_chain_p (chain))
1352 add_looparound_copies (loop, chain);
1353 chains->safe_push (chain);
1355 else
1356 release_chain (chain);
1358 if (DR_IS_READ (a->ref))
1359 type = CT_LOAD;
1360 else
1361 type = comp->eliminate_store_p ? CT_STORE_STORE : CT_STORE_LOAD;
1363 chain = make_rooted_chain (a, type);
1364 last_ofs = a->offset;
1365 continue;
1368 add_ref_to_chain (chain, a);
1371 if (nontrivial_chain_p (chain))
1373 add_looparound_copies (loop, chain);
1374 chains->safe_push (chain);
1376 else
1377 release_chain (chain);
1380 /* Find roots of the values and determine distances in components COMPS, and
1381 separates the references to CHAINS. LOOP is the current loop. */
1383 static void
1384 determine_roots (struct loop *loop,
1385 struct component *comps, vec<chain_p> *chains)
1387 struct component *comp;
1389 for (comp = comps; comp; comp = comp->next)
1390 determine_roots_comp (loop, comp, chains);
1393 /* Replace the reference in statement STMT with temporary variable
1394 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1395 the reference in the statement. IN_LHS is true if the reference
1396 is in the lhs of STMT, false if it is in rhs. */
1398 static void
1399 replace_ref_with (gimple *stmt, tree new_tree, bool set, bool in_lhs)
1401 tree val;
1402 gassign *new_stmt;
1403 gimple_stmt_iterator bsi, psi;
1405 if (gimple_code (stmt) == GIMPLE_PHI)
1407 gcc_assert (!in_lhs && !set);
1409 val = PHI_RESULT (stmt);
1410 bsi = gsi_after_labels (gimple_bb (stmt));
1411 psi = gsi_for_stmt (stmt);
1412 remove_phi_node (&psi, false);
1414 /* Turn the phi node into GIMPLE_ASSIGN. */
1415 new_stmt = gimple_build_assign (val, new_tree);
1416 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1417 return;
1420 /* Since the reference is of gimple_reg type, it should only
1421 appear as lhs or rhs of modify statement. */
1422 gcc_assert (is_gimple_assign (stmt));
1424 bsi = gsi_for_stmt (stmt);
1426 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1427 if (!set)
1429 gcc_assert (!in_lhs);
1430 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1431 stmt = gsi_stmt (bsi);
1432 update_stmt (stmt);
1433 return;
1436 if (in_lhs)
1438 /* We have statement
1440 OLD = VAL
1442 If OLD is a memory reference, then VAL is gimple_val, and we transform
1443 this to
1445 OLD = VAL
1446 NEW = VAL
1448 Otherwise, we are replacing a combination chain,
1449 VAL is the expression that performs the combination, and OLD is an
1450 SSA name. In this case, we transform the assignment to
1452 OLD = VAL
1453 NEW = OLD
1457 val = gimple_assign_lhs (stmt);
1458 if (TREE_CODE (val) != SSA_NAME)
1460 val = gimple_assign_rhs1 (stmt);
1461 gcc_assert (gimple_assign_single_p (stmt));
1462 if (TREE_CLOBBER_P (val))
1463 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1464 else
1465 gcc_assert (gimple_assign_copy_p (stmt));
1468 else
1470 /* VAL = OLD
1472 is transformed to
1474 VAL = OLD
1475 NEW = VAL */
1477 val = gimple_assign_lhs (stmt);
1480 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1481 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1484 /* Returns a memory reference to DR in the (NITERS + ITER)-th iteration
1485 of the loop it was analyzed in. Append init stmts to STMTS. */
1487 static tree
1488 ref_at_iteration (data_reference_p dr, int iter,
1489 gimple_seq *stmts, tree niters = NULL_TREE)
1491 tree off = DR_OFFSET (dr);
1492 tree coff = DR_INIT (dr);
1493 tree ref = DR_REF (dr);
1494 enum tree_code ref_code = ERROR_MARK;
1495 tree ref_type = NULL_TREE;
1496 tree ref_op1 = NULL_TREE;
1497 tree ref_op2 = NULL_TREE;
1498 tree new_offset;
1500 if (iter != 0)
1502 new_offset = size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter));
1503 if (TREE_CODE (new_offset) == INTEGER_CST)
1504 coff = size_binop (PLUS_EXPR, coff, new_offset);
1505 else
1506 off = size_binop (PLUS_EXPR, off, new_offset);
1509 if (niters != NULL_TREE)
1511 niters = fold_convert (ssizetype, niters);
1512 new_offset = size_binop (MULT_EXPR, DR_STEP (dr), niters);
1513 if (TREE_CODE (niters) == INTEGER_CST)
1514 coff = size_binop (PLUS_EXPR, coff, new_offset);
1515 else
1516 off = size_binop (PLUS_EXPR, off, new_offset);
1519 /* While data-ref analysis punts on bit offsets it still handles
1520 bitfield accesses at byte boundaries. Cope with that. Note that
1521 if the bitfield object also starts at a byte-boundary we can simply
1522 replicate the COMPONENT_REF, but we have to subtract the component's
1523 byte-offset from the MEM_REF address first.
1524 Otherwise we simply build a BIT_FIELD_REF knowing that the bits
1525 start at offset zero. */
1526 if (TREE_CODE (ref) == COMPONENT_REF
1527 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
1529 unsigned HOST_WIDE_INT boff;
1530 tree field = TREE_OPERAND (ref, 1);
1531 tree offset = component_ref_field_offset (ref);
1532 ref_type = TREE_TYPE (ref);
1533 boff = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
1534 /* This can occur in Ada. See the comment in get_bit_range. */
1535 if (boff % BITS_PER_UNIT != 0
1536 || !tree_fits_uhwi_p (offset))
1538 ref_code = BIT_FIELD_REF;
1539 ref_op1 = DECL_SIZE (field);
1540 ref_op2 = bitsize_zero_node;
1542 else
1544 boff >>= LOG2_BITS_PER_UNIT;
1545 boff += tree_to_uhwi (offset);
1546 coff = size_binop (MINUS_EXPR, coff, ssize_int (boff));
1547 ref_code = COMPONENT_REF;
1548 ref_op1 = field;
1549 ref_op2 = TREE_OPERAND (ref, 2);
1550 ref = TREE_OPERAND (ref, 0);
1553 tree addr = fold_build_pointer_plus (DR_BASE_ADDRESS (dr), off);
1554 addr = force_gimple_operand_1 (unshare_expr (addr), stmts,
1555 is_gimple_mem_ref_addr, NULL_TREE);
1556 tree alias_ptr = fold_convert (reference_alias_ptr_type (ref), coff);
1557 tree type = build_aligned_type (TREE_TYPE (ref),
1558 get_object_alignment (ref));
1559 ref = build2 (MEM_REF, type, addr, alias_ptr);
1560 if (ref_type)
1561 ref = build3 (ref_code, ref_type, ref, ref_op1, ref_op2);
1562 return ref;
1565 /* Get the initialization expression for the INDEX-th temporary variable
1566 of CHAIN. */
1568 static tree
1569 get_init_expr (chain_p chain, unsigned index)
1571 if (chain->type == CT_COMBINATION)
1573 tree e1 = get_init_expr (chain->ch1, index);
1574 tree e2 = get_init_expr (chain->ch2, index);
1576 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1578 else
1579 return chain->inits[index];
1582 /* Returns a new temporary variable used for the I-th variable carrying
1583 value of REF. The variable's uid is marked in TMP_VARS. */
1585 static tree
1586 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1588 tree type = TREE_TYPE (ref);
1589 /* We never access the components of the temporary variable in predictive
1590 commoning. */
1591 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1592 bitmap_set_bit (tmp_vars, DECL_UID (var));
1593 return var;
1596 /* Creates the variables for CHAIN, as well as phi nodes for them and
1597 initialization on entry to LOOP. Uids of the newly created
1598 temporary variables are marked in TMP_VARS. */
1600 static void
1601 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1603 unsigned i;
1604 unsigned n = chain->length;
1605 dref root = get_chain_root (chain);
1606 bool reuse_first = !chain->has_max_use_after;
1607 tree ref, init, var, next;
1608 gphi *phi;
1609 gimple_seq stmts;
1610 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1612 /* If N == 0, then all the references are within the single iteration. And
1613 since this is an nonempty chain, reuse_first cannot be true. */
1614 gcc_assert (n > 0 || !reuse_first);
1616 chain->vars.create (n + 1);
1618 if (chain->type == CT_COMBINATION)
1619 ref = gimple_assign_lhs (root->stmt);
1620 else
1621 ref = DR_REF (root->ref);
1623 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1625 var = predcom_tmp_var (ref, i, tmp_vars);
1626 chain->vars.quick_push (var);
1628 if (reuse_first)
1629 chain->vars.quick_push (chain->vars[0]);
1631 FOR_EACH_VEC_ELT (chain->vars, i, var)
1632 chain->vars[i] = make_ssa_name (var);
1634 for (i = 0; i < n; i++)
1636 var = chain->vars[i];
1637 next = chain->vars[i + 1];
1638 init = get_init_expr (chain, i);
1640 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1641 if (stmts)
1642 gsi_insert_seq_on_edge_immediate (entry, stmts);
1644 phi = create_phi_node (var, loop->header);
1645 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1646 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1650 /* For inter-iteration store elimination CHAIN in LOOP, returns true if
1651 all stores to be eliminated store loop invariant values into memory.
1652 In this case, we can use these invariant values directly after LOOP. */
1654 static bool
1655 is_inv_store_elimination_chain (struct loop *loop, chain_p chain)
1657 if (chain->length == 0 || chain->type != CT_STORE_STORE)
1658 return false;
1660 gcc_assert (!chain->has_max_use_after);
1662 /* If loop iterates for unknown times or fewer times than chain->lenght,
1663 we still need to setup root variable and propagate it with PHI node. */
1664 tree niters = number_of_latch_executions (loop);
1665 if (TREE_CODE (niters) != INTEGER_CST
1666 || wi::leu_p (wi::to_wide (niters), chain->length))
1667 return false;
1669 /* Check stores in chain for elimination if they only store loop invariant
1670 values. */
1671 for (unsigned i = 0; i < chain->length; i++)
1673 dref a = get_chain_last_ref_at (chain, i);
1674 if (a == NULL)
1675 continue;
1677 gimple *def_stmt, *stmt = a->stmt;
1678 if (!gimple_assign_single_p (stmt))
1679 return false;
1681 tree val = gimple_assign_rhs1 (stmt);
1682 if (TREE_CLOBBER_P (val))
1683 return false;
1685 if (CONSTANT_CLASS_P (val))
1686 continue;
1688 if (TREE_CODE (val) != SSA_NAME)
1689 return false;
1691 def_stmt = SSA_NAME_DEF_STMT (val);
1692 if (gimple_nop_p (def_stmt))
1693 continue;
1695 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
1696 return false;
1698 return true;
1701 /* Creates root variables for store elimination CHAIN in which stores for
1702 elimination only store loop invariant values. In this case, we neither
1703 need to load root variables before loop nor propagate it with PHI nodes. */
1705 static void
1706 initialize_root_vars_store_elim_1 (chain_p chain)
1708 tree var;
1709 unsigned i, n = chain->length;
1711 chain->vars.create (n);
1712 chain->vars.safe_grow_cleared (n);
1714 /* Initialize root value for eliminated stores at each distance. */
1715 for (i = 0; i < n; i++)
1717 dref a = get_chain_last_ref_at (chain, i);
1718 if (a == NULL)
1719 continue;
1721 var = gimple_assign_rhs1 (a->stmt);
1722 chain->vars[a->distance] = var;
1725 /* We don't propagate values with PHI nodes, so manually propagate value
1726 to bubble positions. */
1727 var = chain->vars[0];
1728 for (i = 1; i < n; i++)
1730 if (chain->vars[i] != NULL_TREE)
1732 var = chain->vars[i];
1733 continue;
1735 chain->vars[i] = var;
1738 /* Revert the vector. */
1739 for (i = 0; i < n / 2; i++)
1740 std::swap (chain->vars[i], chain->vars[n - i - 1]);
1743 /* Creates root variables for store elimination CHAIN in which stores for
1744 elimination store loop variant values. In this case, we may need to
1745 load root variables before LOOP and propagate it with PHI nodes. Uids
1746 of the newly created root variables are marked in TMP_VARS. */
1748 static void
1749 initialize_root_vars_store_elim_2 (struct loop *loop,
1750 chain_p chain, bitmap tmp_vars)
1752 unsigned i, n = chain->length;
1753 tree ref, init, var, next, val, phi_result;
1754 gimple *stmt;
1755 gimple_seq stmts;
1757 chain->vars.create (n);
1759 ref = DR_REF (get_chain_root (chain)->ref);
1760 for (i = 0; i < n; i++)
1762 var = predcom_tmp_var (ref, i, tmp_vars);
1763 chain->vars.quick_push (var);
1766 FOR_EACH_VEC_ELT (chain->vars, i, var)
1767 chain->vars[i] = make_ssa_name (var);
1769 /* Root values are either rhs operand of stores to be eliminated, or
1770 loaded from memory before loop. */
1771 auto_vec<tree> vtemps;
1772 vtemps.safe_grow_cleared (n);
1773 for (i = 0; i < n; i++)
1775 init = get_init_expr (chain, i);
1776 if (init == NULL_TREE)
1778 /* Root value is rhs operand of the store to be eliminated if
1779 it isn't loaded from memory before loop. */
1780 dref a = get_chain_last_ref_at (chain, i);
1781 val = gimple_assign_rhs1 (a->stmt);
1782 if (TREE_CLOBBER_P (val))
1783 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (var));
1785 vtemps[n - i - 1] = val;
1787 else
1789 edge latch = loop_latch_edge (loop);
1790 edge entry = loop_preheader_edge (loop);
1792 /* Root value is loaded from memory before loop, we also need
1793 to add PHI nodes to propagate the value across iterations. */
1794 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1795 if (stmts)
1796 gsi_insert_seq_on_edge_immediate (entry, stmts);
1798 next = chain->vars[n - i];
1799 phi_result = copy_ssa_name (next);
1800 gphi *phi = create_phi_node (phi_result, loop->header);
1801 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1802 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1803 vtemps[n - i - 1] = phi_result;
1807 /* Find the insertion position. */
1808 dref last = get_chain_root (chain);
1809 for (i = 0; i < chain->refs.length (); i++)
1811 if (chain->refs[i]->pos > last->pos)
1812 last = chain->refs[i];
1815 gimple_stmt_iterator gsi = gsi_for_stmt (last->stmt);
1817 /* Insert statements copying root value to root variable. */
1818 for (i = 0; i < n; i++)
1820 var = chain->vars[i];
1821 val = vtemps[i];
1822 stmt = gimple_build_assign (var, val);
1823 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1827 /* Generates stores for CHAIN's eliminated stores in LOOP's last
1828 (CHAIN->length - 1) iterations. */
1830 static void
1831 finalize_eliminated_stores (struct loop *loop, chain_p chain)
1833 unsigned i, n = chain->length;
1835 for (i = 0; i < n; i++)
1837 tree var = chain->vars[i];
1838 tree fini = chain->finis[n - i - 1];
1839 gimple *stmt = gimple_build_assign (fini, var);
1841 gimple_seq_add_stmt_without_update (&chain->fini_seq, stmt);
1844 if (chain->fini_seq)
1846 gsi_insert_seq_on_edge_immediate (single_exit (loop), chain->fini_seq);
1847 chain->fini_seq = NULL;
1851 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1852 initialization on entry to LOOP if necessary. The ssa name for the variable
1853 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1854 around the loop is created. Uid of the newly created temporary variable
1855 is marked in TMP_VARS. INITS is the list containing the (single)
1856 initializer. */
1858 static void
1859 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1860 vec<tree> *vars, vec<tree> inits,
1861 bitmap tmp_vars)
1863 unsigned i;
1864 tree ref = DR_REF (root->ref), init, var, next;
1865 gimple_seq stmts;
1866 gphi *phi;
1867 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1869 /* Find the initializer for the variable, and check that it cannot
1870 trap. */
1871 init = inits[0];
1873 vars->create (written ? 2 : 1);
1874 var = predcom_tmp_var (ref, 0, tmp_vars);
1875 vars->quick_push (var);
1876 if (written)
1877 vars->quick_push ((*vars)[0]);
1879 FOR_EACH_VEC_ELT (*vars, i, var)
1880 (*vars)[i] = make_ssa_name (var);
1882 var = (*vars)[0];
1884 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1885 if (stmts)
1886 gsi_insert_seq_on_edge_immediate (entry, stmts);
1888 if (written)
1890 next = (*vars)[1];
1891 phi = create_phi_node (var, loop->header);
1892 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1893 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1895 else
1897 gassign *init_stmt = gimple_build_assign (var, init);
1898 gsi_insert_on_edge_immediate (entry, init_stmt);
1903 /* Execute load motion for references in chain CHAIN. Uids of the newly
1904 created temporary variables are marked in TMP_VARS. */
1906 static void
1907 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1909 auto_vec<tree> vars;
1910 dref a;
1911 unsigned n_writes = 0, ridx, i;
1912 tree var;
1914 gcc_assert (chain->type == CT_INVARIANT);
1915 gcc_assert (!chain->combined);
1916 FOR_EACH_VEC_ELT (chain->refs, i, a)
1917 if (DR_IS_WRITE (a->ref))
1918 n_writes++;
1920 /* If there are no reads in the loop, there is nothing to do. */
1921 if (n_writes == chain->refs.length ())
1922 return;
1924 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1925 &vars, chain->inits, tmp_vars);
1927 ridx = 0;
1928 FOR_EACH_VEC_ELT (chain->refs, i, a)
1930 bool is_read = DR_IS_READ (a->ref);
1932 if (DR_IS_WRITE (a->ref))
1934 n_writes--;
1935 if (n_writes)
1937 var = vars[0];
1938 var = make_ssa_name (SSA_NAME_VAR (var));
1939 vars[0] = var;
1941 else
1942 ridx = 1;
1945 replace_ref_with (a->stmt, vars[ridx],
1946 !is_read, !is_read);
1950 /* Returns the single statement in that NAME is used, excepting
1951 the looparound phi nodes contained in one of the chains. If there is no
1952 such statement, or more statements, NULL is returned. */
1954 static gimple *
1955 single_nonlooparound_use (tree name)
1957 use_operand_p use;
1958 imm_use_iterator it;
1959 gimple *stmt, *ret = NULL;
1961 FOR_EACH_IMM_USE_FAST (use, it, name)
1963 stmt = USE_STMT (use);
1965 if (gimple_code (stmt) == GIMPLE_PHI)
1967 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1968 could not be processed anyway, so just fail for them. */
1969 if (bitmap_bit_p (looparound_phis,
1970 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1971 continue;
1973 return NULL;
1975 else if (is_gimple_debug (stmt))
1976 continue;
1977 else if (ret != NULL)
1978 return NULL;
1979 else
1980 ret = stmt;
1983 return ret;
1986 /* Remove statement STMT, as well as the chain of assignments in that it is
1987 used. */
1989 static void
1990 remove_stmt (gimple *stmt)
1992 tree name;
1993 gimple *next;
1994 gimple_stmt_iterator psi;
1996 if (gimple_code (stmt) == GIMPLE_PHI)
1998 name = PHI_RESULT (stmt);
1999 next = single_nonlooparound_use (name);
2000 reset_debug_uses (stmt);
2001 psi = gsi_for_stmt (stmt);
2002 remove_phi_node (&psi, true);
2004 if (!next
2005 || !gimple_assign_ssa_name_copy_p (next)
2006 || gimple_assign_rhs1 (next) != name)
2007 return;
2009 stmt = next;
2012 while (1)
2014 gimple_stmt_iterator bsi;
2016 bsi = gsi_for_stmt (stmt);
2018 name = gimple_assign_lhs (stmt);
2019 if (TREE_CODE (name) == SSA_NAME)
2021 next = single_nonlooparound_use (name);
2022 reset_debug_uses (stmt);
2024 else
2026 /* This is a store to be eliminated. */
2027 gcc_assert (gimple_vdef (stmt) != NULL);
2028 next = NULL;
2031 unlink_stmt_vdef (stmt);
2032 gsi_remove (&bsi, true);
2033 release_defs (stmt);
2035 if (!next
2036 || !gimple_assign_ssa_name_copy_p (next)
2037 || gimple_assign_rhs1 (next) != name)
2038 return;
2040 stmt = next;
2044 /* Perform the predictive commoning optimization for a chain CHAIN.
2045 Uids of the newly created temporary variables are marked in TMP_VARS.*/
2047 static void
2048 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
2049 bitmap tmp_vars)
2051 unsigned i, n;
2052 dref a;
2053 tree var;
2054 bool in_lhs;
2056 if (chain->combined)
2058 /* For combined chains, just remove the statements that are used to
2059 compute the values of the expression (except for the root one).
2060 We delay this until after all chains are processed. */
2062 else if (chain->type == CT_STORE_STORE)
2064 if (chain->length > 0)
2066 if (chain->inv_store_elimination)
2068 /* If dead stores in this chain only store loop invariant
2069 values, we can simply record the invariant value and use
2070 it directly after loop. */
2071 initialize_root_vars_store_elim_1 (chain);
2073 else
2075 /* If dead stores in this chain store loop variant values,
2076 we need to set up the variables by loading from memory
2077 before loop and propagating it with PHI nodes. */
2078 initialize_root_vars_store_elim_2 (loop, chain, tmp_vars);
2081 /* For inter-iteration store elimination chain, stores at each
2082 distance in loop's last (chain->length - 1) iterations can't
2083 be eliminated, because there is no following killing store.
2084 We need to generate these stores after loop. */
2085 finalize_eliminated_stores (loop, chain);
2088 /* Eliminate the stores killed by following store. */
2089 n = chain->refs.length ();
2090 for (i = 0; i < n - 1; i++)
2091 remove_stmt (chain->refs[i]->stmt);
2093 else
2095 /* For non-combined chains, set up the variables that hold its value. */
2096 initialize_root_vars (loop, chain, tmp_vars);
2097 a = get_chain_root (chain);
2098 in_lhs = (chain->type == CT_STORE_LOAD
2099 || chain->type == CT_COMBINATION);
2100 replace_ref_with (a->stmt, chain->vars[chain->length], true, in_lhs);
2102 /* Replace the uses of the original references by these variables. */
2103 for (i = 1; chain->refs.iterate (i, &a); i++)
2105 var = chain->vars[chain->length - a->distance];
2106 replace_ref_with (a->stmt, var, false, false);
2111 /* Determines the unroll factor necessary to remove as many temporary variable
2112 copies as possible. CHAINS is the list of chains that will be
2113 optimized. */
2115 static unsigned
2116 determine_unroll_factor (vec<chain_p> chains)
2118 chain_p chain;
2119 unsigned factor = 1, af, nfactor, i;
2120 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
2122 FOR_EACH_VEC_ELT (chains, i, chain)
2124 if (chain->type == CT_INVARIANT)
2125 continue;
2126 /* For now we can't handle unrolling when eliminating stores. */
2127 else if (chain->type == CT_STORE_STORE)
2128 return 1;
2130 if (chain->combined)
2132 /* For combined chains, we can't handle unrolling if we replace
2133 looparound PHIs. */
2134 dref a;
2135 unsigned j;
2136 for (j = 1; chain->refs.iterate (j, &a); j++)
2137 if (gimple_code (a->stmt) == GIMPLE_PHI)
2138 return 1;
2139 continue;
2142 /* The best unroll factor for this chain is equal to the number of
2143 temporary variables that we create for it. */
2144 af = chain->length;
2145 if (chain->has_max_use_after)
2146 af++;
2148 nfactor = factor * af / gcd (factor, af);
2149 if (nfactor <= max)
2150 factor = nfactor;
2153 return factor;
2156 /* Perform the predictive commoning optimization for CHAINS.
2157 Uids of the newly created temporary variables are marked in TMP_VARS. */
2159 static void
2160 execute_pred_commoning (struct loop *loop, vec<chain_p> chains,
2161 bitmap tmp_vars)
2163 chain_p chain;
2164 unsigned i;
2166 FOR_EACH_VEC_ELT (chains, i, chain)
2168 if (chain->type == CT_INVARIANT)
2169 execute_load_motion (loop, chain, tmp_vars);
2170 else
2171 execute_pred_commoning_chain (loop, chain, tmp_vars);
2174 FOR_EACH_VEC_ELT (chains, i, chain)
2176 if (chain->type == CT_INVARIANT)
2178 else if (chain->combined)
2180 /* For combined chains, just remove the statements that are used to
2181 compute the values of the expression (except for the root one). */
2182 dref a;
2183 unsigned j;
2184 for (j = 1; chain->refs.iterate (j, &a); j++)
2185 remove_stmt (a->stmt);
2189 update_ssa (TODO_update_ssa_only_virtuals);
2192 /* For each reference in CHAINS, if its defining statement is
2193 phi node, record the ssa name that is defined by it. */
2195 static void
2196 replace_phis_by_defined_names (vec<chain_p> chains)
2198 chain_p chain;
2199 dref a;
2200 unsigned i, j;
2202 FOR_EACH_VEC_ELT (chains, i, chain)
2203 FOR_EACH_VEC_ELT (chain->refs, j, a)
2205 if (gimple_code (a->stmt) == GIMPLE_PHI)
2207 a->name_defined_by_phi = PHI_RESULT (a->stmt);
2208 a->stmt = NULL;
2213 /* For each reference in CHAINS, if name_defined_by_phi is not
2214 NULL, use it to set the stmt field. */
2216 static void
2217 replace_names_by_phis (vec<chain_p> chains)
2219 chain_p chain;
2220 dref a;
2221 unsigned i, j;
2223 FOR_EACH_VEC_ELT (chains, i, chain)
2224 FOR_EACH_VEC_ELT (chain->refs, j, a)
2225 if (a->stmt == NULL)
2227 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
2228 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
2229 a->name_defined_by_phi = NULL_TREE;
2233 /* Wrapper over execute_pred_commoning, to pass it as a callback
2234 to tree_transform_and_unroll_loop. */
2236 struct epcc_data
2238 vec<chain_p> chains;
2239 bitmap tmp_vars;
2242 static void
2243 execute_pred_commoning_cbck (struct loop *loop, void *data)
2245 struct epcc_data *const dta = (struct epcc_data *) data;
2247 /* Restore phi nodes that were replaced by ssa names before
2248 tree_transform_and_unroll_loop (see detailed description in
2249 tree_predictive_commoning_loop). */
2250 replace_names_by_phis (dta->chains);
2251 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
2254 /* Base NAME and all the names in the chain of phi nodes that use it
2255 on variable VAR. The phi nodes are recognized by being in the copies of
2256 the header of the LOOP. */
2258 static void
2259 base_names_in_chain_on (struct loop *loop, tree name, tree var)
2261 gimple *stmt, *phi;
2262 imm_use_iterator iter;
2264 replace_ssa_name_symbol (name, var);
2266 while (1)
2268 phi = NULL;
2269 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2271 if (gimple_code (stmt) == GIMPLE_PHI
2272 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
2274 phi = stmt;
2275 BREAK_FROM_IMM_USE_STMT (iter);
2278 if (!phi)
2279 return;
2281 name = PHI_RESULT (phi);
2282 replace_ssa_name_symbol (name, var);
2286 /* Given an unrolled LOOP after predictive commoning, remove the
2287 register copies arising from phi nodes by changing the base
2288 variables of SSA names. TMP_VARS is the set of the temporary variables
2289 for those we want to perform this. */
2291 static void
2292 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
2294 edge e;
2295 gphi *phi;
2296 gimple *stmt;
2297 tree name, use, var;
2298 gphi_iterator psi;
2300 e = loop_latch_edge (loop);
2301 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
2303 phi = psi.phi ();
2304 name = PHI_RESULT (phi);
2305 var = SSA_NAME_VAR (name);
2306 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
2307 continue;
2308 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
2309 gcc_assert (TREE_CODE (use) == SSA_NAME);
2311 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
2312 stmt = SSA_NAME_DEF_STMT (use);
2313 while (gimple_code (stmt) == GIMPLE_PHI
2314 /* In case we could not unroll the loop enough to eliminate
2315 all copies, we may reach the loop header before the defining
2316 statement (in that case, some register copies will be present
2317 in loop latch in the final code, corresponding to the newly
2318 created looparound phi nodes). */
2319 && gimple_bb (stmt) != loop->header)
2321 gcc_assert (single_pred_p (gimple_bb (stmt)));
2322 use = PHI_ARG_DEF (stmt, 0);
2323 stmt = SSA_NAME_DEF_STMT (use);
2326 base_names_in_chain_on (loop, use, var);
2330 /* Returns true if CHAIN is suitable to be combined. */
2332 static bool
2333 chain_can_be_combined_p (chain_p chain)
2335 return (!chain->combined
2336 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
2339 /* Returns the modify statement that uses NAME. Skips over assignment
2340 statements, NAME is replaced with the actual name used in the returned
2341 statement. */
2343 static gimple *
2344 find_use_stmt (tree *name)
2346 gimple *stmt;
2347 tree rhs, lhs;
2349 /* Skip over assignments. */
2350 while (1)
2352 stmt = single_nonlooparound_use (*name);
2353 if (!stmt)
2354 return NULL;
2356 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2357 return NULL;
2359 lhs = gimple_assign_lhs (stmt);
2360 if (TREE_CODE (lhs) != SSA_NAME)
2361 return NULL;
2363 if (gimple_assign_copy_p (stmt))
2365 rhs = gimple_assign_rhs1 (stmt);
2366 if (rhs != *name)
2367 return NULL;
2369 *name = lhs;
2371 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2372 == GIMPLE_BINARY_RHS)
2373 return stmt;
2374 else
2375 return NULL;
2379 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2381 static bool
2382 may_reassociate_p (tree type, enum tree_code code)
2384 if (FLOAT_TYPE_P (type)
2385 && !flag_unsafe_math_optimizations)
2386 return false;
2388 return (commutative_tree_code (code)
2389 && associative_tree_code (code));
2392 /* If the operation used in STMT is associative and commutative, go through the
2393 tree of the same operations and returns its root. Distance to the root
2394 is stored in DISTANCE. */
2396 static gimple *
2397 find_associative_operation_root (gimple *stmt, unsigned *distance)
2399 tree lhs;
2400 gimple *next;
2401 enum tree_code code = gimple_assign_rhs_code (stmt);
2402 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2403 unsigned dist = 0;
2405 if (!may_reassociate_p (type, code))
2406 return NULL;
2408 while (1)
2410 lhs = gimple_assign_lhs (stmt);
2411 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2413 next = find_use_stmt (&lhs);
2414 if (!next
2415 || gimple_assign_rhs_code (next) != code)
2416 break;
2418 stmt = next;
2419 dist++;
2422 if (distance)
2423 *distance = dist;
2424 return stmt;
2427 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2428 is no such statement, returns NULL_TREE. In case the operation used on
2429 NAME1 and NAME2 is associative and commutative, returns the root of the
2430 tree formed by this operation instead of the statement that uses NAME1 or
2431 NAME2. */
2433 static gimple *
2434 find_common_use_stmt (tree *name1, tree *name2)
2436 gimple *stmt1, *stmt2;
2438 stmt1 = find_use_stmt (name1);
2439 if (!stmt1)
2440 return NULL;
2442 stmt2 = find_use_stmt (name2);
2443 if (!stmt2)
2444 return NULL;
2446 if (stmt1 == stmt2)
2447 return stmt1;
2449 stmt1 = find_associative_operation_root (stmt1, NULL);
2450 if (!stmt1)
2451 return NULL;
2452 stmt2 = find_associative_operation_root (stmt2, NULL);
2453 if (!stmt2)
2454 return NULL;
2456 return (stmt1 == stmt2 ? stmt1 : NULL);
2459 /* Checks whether R1 and R2 are combined together using CODE, with the result
2460 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2461 if it is true. If CODE is ERROR_MARK, set these values instead. */
2463 static bool
2464 combinable_refs_p (dref r1, dref r2,
2465 enum tree_code *code, bool *swap, tree *rslt_type)
2467 enum tree_code acode;
2468 bool aswap;
2469 tree atype;
2470 tree name1, name2;
2471 gimple *stmt;
2473 name1 = name_for_ref (r1);
2474 name2 = name_for_ref (r2);
2475 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2477 stmt = find_common_use_stmt (&name1, &name2);
2479 if (!stmt
2480 /* A simple post-dominance check - make sure the combination
2481 is executed under the same condition as the references. */
2482 || (gimple_bb (stmt) != gimple_bb (r1->stmt)
2483 && gimple_bb (stmt) != gimple_bb (r2->stmt)))
2484 return false;
2486 acode = gimple_assign_rhs_code (stmt);
2487 aswap = (!commutative_tree_code (acode)
2488 && gimple_assign_rhs1 (stmt) != name1);
2489 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2491 if (*code == ERROR_MARK)
2493 *code = acode;
2494 *swap = aswap;
2495 *rslt_type = atype;
2496 return true;
2499 return (*code == acode
2500 && *swap == aswap
2501 && *rslt_type == atype);
2504 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2505 an assignment of the remaining operand. */
2507 static void
2508 remove_name_from_operation (gimple *stmt, tree op)
2510 tree other_op;
2511 gimple_stmt_iterator si;
2513 gcc_assert (is_gimple_assign (stmt));
2515 if (gimple_assign_rhs1 (stmt) == op)
2516 other_op = gimple_assign_rhs2 (stmt);
2517 else
2518 other_op = gimple_assign_rhs1 (stmt);
2520 si = gsi_for_stmt (stmt);
2521 gimple_assign_set_rhs_from_tree (&si, other_op);
2523 /* We should not have reallocated STMT. */
2524 gcc_assert (gsi_stmt (si) == stmt);
2526 update_stmt (stmt);
2529 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2530 are combined in a single statement, and returns this statement. */
2532 static gimple *
2533 reassociate_to_the_same_stmt (tree name1, tree name2)
2535 gimple *stmt1, *stmt2, *root1, *root2, *s1, *s2;
2536 gassign *new_stmt, *tmp_stmt;
2537 tree new_name, tmp_name, var, r1, r2;
2538 unsigned dist1, dist2;
2539 enum tree_code code;
2540 tree type = TREE_TYPE (name1);
2541 gimple_stmt_iterator bsi;
2543 stmt1 = find_use_stmt (&name1);
2544 stmt2 = find_use_stmt (&name2);
2545 root1 = find_associative_operation_root (stmt1, &dist1);
2546 root2 = find_associative_operation_root (stmt2, &dist2);
2547 code = gimple_assign_rhs_code (stmt1);
2549 gcc_assert (root1 && root2 && root1 == root2
2550 && code == gimple_assign_rhs_code (stmt2));
2552 /* Find the root of the nearest expression in that both NAME1 and NAME2
2553 are used. */
2554 r1 = name1;
2555 s1 = stmt1;
2556 r2 = name2;
2557 s2 = stmt2;
2559 while (dist1 > dist2)
2561 s1 = find_use_stmt (&r1);
2562 r1 = gimple_assign_lhs (s1);
2563 dist1--;
2565 while (dist2 > dist1)
2567 s2 = find_use_stmt (&r2);
2568 r2 = gimple_assign_lhs (s2);
2569 dist2--;
2572 while (s1 != s2)
2574 s1 = find_use_stmt (&r1);
2575 r1 = gimple_assign_lhs (s1);
2576 s2 = find_use_stmt (&r2);
2577 r2 = gimple_assign_lhs (s2);
2580 /* Remove NAME1 and NAME2 from the statements in that they are used
2581 currently. */
2582 remove_name_from_operation (stmt1, name1);
2583 remove_name_from_operation (stmt2, name2);
2585 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2586 combine it with the rhs of S1. */
2587 var = create_tmp_reg (type, "predreastmp");
2588 new_name = make_ssa_name (var);
2589 new_stmt = gimple_build_assign (new_name, code, name1, name2);
2591 var = create_tmp_reg (type, "predreastmp");
2592 tmp_name = make_ssa_name (var);
2594 /* Rhs of S1 may now be either a binary expression with operation
2595 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2596 so that name1 or name2 was removed from it). */
2597 tmp_stmt = gimple_build_assign (tmp_name, gimple_assign_rhs_code (s1),
2598 gimple_assign_rhs1 (s1),
2599 gimple_assign_rhs2 (s1));
2601 bsi = gsi_for_stmt (s1);
2602 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2603 s1 = gsi_stmt (bsi);
2604 update_stmt (s1);
2606 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2607 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2609 return new_stmt;
2612 /* Returns the statement that combines references R1 and R2. In case R1
2613 and R2 are not used in the same statement, but they are used with an
2614 associative and commutative operation in the same expression, reassociate
2615 the expression so that they are used in the same statement. */
2617 static gimple *
2618 stmt_combining_refs (dref r1, dref r2)
2620 gimple *stmt1, *stmt2;
2621 tree name1 = name_for_ref (r1);
2622 tree name2 = name_for_ref (r2);
2624 stmt1 = find_use_stmt (&name1);
2625 stmt2 = find_use_stmt (&name2);
2626 if (stmt1 == stmt2)
2627 return stmt1;
2629 return reassociate_to_the_same_stmt (name1, name2);
2632 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2633 description of the new chain is returned, otherwise we return NULL. */
2635 static chain_p
2636 combine_chains (chain_p ch1, chain_p ch2)
2638 dref r1, r2, nw;
2639 enum tree_code op = ERROR_MARK;
2640 bool swap = false;
2641 chain_p new_chain;
2642 unsigned i;
2643 gimple *root_stmt;
2644 tree rslt_type = NULL_TREE;
2646 if (ch1 == ch2)
2647 return NULL;
2648 if (ch1->length != ch2->length)
2649 return NULL;
2651 if (ch1->refs.length () != ch2->refs.length ())
2652 return NULL;
2654 for (i = 0; (ch1->refs.iterate (i, &r1)
2655 && ch2->refs.iterate (i, &r2)); i++)
2657 if (r1->distance != r2->distance)
2658 return NULL;
2660 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2661 return NULL;
2664 if (swap)
2665 std::swap (ch1, ch2);
2667 new_chain = XCNEW (struct chain);
2668 new_chain->type = CT_COMBINATION;
2669 new_chain->op = op;
2670 new_chain->ch1 = ch1;
2671 new_chain->ch2 = ch2;
2672 new_chain->rslt_type = rslt_type;
2673 new_chain->length = ch1->length;
2675 for (i = 0; (ch1->refs.iterate (i, &r1)
2676 && ch2->refs.iterate (i, &r2)); i++)
2678 nw = XCNEW (struct dref_d);
2679 nw->stmt = stmt_combining_refs (r1, r2);
2680 nw->distance = r1->distance;
2682 new_chain->refs.safe_push (nw);
2685 new_chain->has_max_use_after = false;
2686 root_stmt = get_chain_root (new_chain)->stmt;
2687 for (i = 1; new_chain->refs.iterate (i, &nw); i++)
2689 if (nw->distance == new_chain->length
2690 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2692 new_chain->has_max_use_after = true;
2693 break;
2697 ch1->combined = true;
2698 ch2->combined = true;
2699 return new_chain;
2702 /* Try to combine the CHAINS. */
2704 static void
2705 try_combine_chains (vec<chain_p> *chains)
2707 unsigned i, j;
2708 chain_p ch1, ch2, cch;
2709 auto_vec<chain_p> worklist;
2711 FOR_EACH_VEC_ELT (*chains, i, ch1)
2712 if (chain_can_be_combined_p (ch1))
2713 worklist.safe_push (ch1);
2715 while (!worklist.is_empty ())
2717 ch1 = worklist.pop ();
2718 if (!chain_can_be_combined_p (ch1))
2719 continue;
2721 FOR_EACH_VEC_ELT (*chains, j, ch2)
2723 if (!chain_can_be_combined_p (ch2))
2724 continue;
2726 cch = combine_chains (ch1, ch2);
2727 if (cch)
2729 worklist.safe_push (cch);
2730 chains->safe_push (cch);
2731 break;
2737 /* Prepare initializers for store elimination CHAIN in LOOP. Returns false
2738 if this is impossible because one of these initializers may trap, true
2739 otherwise. */
2741 static bool
2742 prepare_initializers_chain_store_elim (struct loop *loop, chain_p chain)
2744 unsigned i, n = chain->length;
2746 /* For now we can't eliminate stores if some of them are conditional
2747 executed. */
2748 if (!chain->all_always_accessed)
2749 return false;
2751 /* Nothing to intialize for intra-iteration store elimination. */
2752 if (n == 0 && chain->type == CT_STORE_STORE)
2753 return true;
2755 /* For store elimination chain, there is nothing to initialize if stores
2756 to be eliminated only store loop invariant values into memory. */
2757 if (chain->type == CT_STORE_STORE
2758 && is_inv_store_elimination_chain (loop, chain))
2760 chain->inv_store_elimination = true;
2761 return true;
2764 chain->inits.create (n);
2765 chain->inits.safe_grow_cleared (n);
2767 /* For store eliminatin chain like below:
2769 for (i = 0; i < len; i++)
2771 a[i] = 1;
2772 // a[i + 1] = ...
2773 a[i + 2] = 3;
2776 store to a[i + 1] is missed in loop body, it acts like bubbles. The
2777 content of a[i + 1] remain the same if the loop iterates fewer times
2778 than chain->length. We need to set up root variables for such stores
2779 by loading from memory before loop. Note we only need to load bubble
2780 elements because loop body is guaranteed to be executed at least once
2781 after loop's preheader edge. */
2782 auto_vec<bool> bubbles;
2783 bubbles.safe_grow_cleared (n + 1);
2784 for (i = 0; i < chain->refs.length (); i++)
2785 bubbles[chain->refs[i]->distance] = true;
2787 struct data_reference *dr = get_chain_root (chain)->ref;
2788 for (i = 0; i < n; i++)
2790 if (bubbles[i])
2791 continue;
2793 gimple_seq stmts = NULL;
2795 tree init = ref_at_iteration (dr, (int) 0 - i, &stmts);
2796 if (stmts)
2797 gimple_seq_add_seq_without_update (&chain->init_seq, stmts);
2799 chain->inits[i] = init;
2802 return true;
2805 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2806 impossible because one of these initializers may trap, true otherwise. */
2808 static bool
2809 prepare_initializers_chain (struct loop *loop, chain_p chain)
2811 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2812 struct data_reference *dr = get_chain_root (chain)->ref;
2813 tree init;
2814 dref laref;
2815 edge entry = loop_preheader_edge (loop);
2817 if (chain->type == CT_STORE_STORE)
2818 return prepare_initializers_chain_store_elim (loop, chain);
2820 /* Find the initializers for the variables, and check that they cannot
2821 trap. */
2822 chain->inits.create (n);
2823 for (i = 0; i < n; i++)
2824 chain->inits.quick_push (NULL_TREE);
2826 /* If we have replaced some looparound phi nodes, use their initializers
2827 instead of creating our own. */
2828 FOR_EACH_VEC_ELT (chain->refs, i, laref)
2830 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2831 continue;
2833 gcc_assert (laref->distance > 0);
2834 chain->inits[n - laref->distance]
2835 = PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
2838 for (i = 0; i < n; i++)
2840 gimple_seq stmts = NULL;
2842 if (chain->inits[i] != NULL_TREE)
2843 continue;
2845 init = ref_at_iteration (dr, (int) i - n, &stmts);
2846 if (!chain->all_always_accessed && tree_could_trap_p (init))
2848 gimple_seq_discard (stmts);
2849 return false;
2852 if (stmts)
2853 gimple_seq_add_seq_without_update (&chain->init_seq, stmts);
2855 chain->inits[i] = init;
2858 return true;
2861 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2862 be used because the initializers might trap. */
2864 static void
2865 prepare_initializers (struct loop *loop, vec<chain_p> chains)
2867 chain_p chain;
2868 unsigned i;
2870 for (i = 0; i < chains.length (); )
2872 chain = chains[i];
2873 if (prepare_initializers_chain (loop, chain))
2874 i++;
2875 else
2877 release_chain (chain);
2878 chains.unordered_remove (i);
2883 /* Generates finalizer memory references for CHAIN in LOOP. Returns true
2884 if finalizer code for CHAIN can be generated, otherwise false. */
2886 static bool
2887 prepare_finalizers_chain (struct loop *loop, chain_p chain)
2889 unsigned i, n = chain->length;
2890 struct data_reference *dr = get_chain_root (chain)->ref;
2891 tree fini, niters = number_of_latch_executions (loop);
2893 /* For now we can't eliminate stores if some of them are conditional
2894 executed. */
2895 if (!chain->all_always_accessed)
2896 return false;
2898 chain->finis.create (n);
2899 for (i = 0; i < n; i++)
2900 chain->finis.quick_push (NULL_TREE);
2902 /* We never use looparound phi node for store elimination chains. */
2904 /* Find the finalizers for the variables, and check that they cannot
2905 trap. */
2906 for (i = 0; i < n; i++)
2908 gimple_seq stmts = NULL;
2909 gcc_assert (chain->finis[i] == NULL_TREE);
2911 if (TREE_CODE (niters) != INTEGER_CST && TREE_CODE (niters) != SSA_NAME)
2913 niters = unshare_expr (niters);
2914 niters = force_gimple_operand (niters, &stmts, true, NULL);
2915 if (stmts)
2917 gimple_seq_add_seq_without_update (&chain->fini_seq, stmts);
2918 stmts = NULL;
2921 fini = ref_at_iteration (dr, (int) 0 - i, &stmts, niters);
2922 if (stmts)
2923 gimple_seq_add_seq_without_update (&chain->fini_seq, stmts);
2925 chain->finis[i] = fini;
2928 return true;
2931 /* Generates finalizer memory reference for CHAINS in LOOP. Returns true
2932 if finalizer code generation for CHAINS breaks loop closed ssa form. */
2934 static bool
2935 prepare_finalizers (struct loop *loop, vec<chain_p> chains)
2937 chain_p chain;
2938 unsigned i;
2939 bool loop_closed_ssa = false;
2941 for (i = 0; i < chains.length ();)
2943 chain = chains[i];
2945 /* Finalizer is only necessary for inter-iteration store elimination
2946 chains. */
2947 if (chain->length == 0 || chain->type != CT_STORE_STORE)
2949 i++;
2950 continue;
2953 if (prepare_finalizers_chain (loop, chain))
2955 i++;
2956 /* Be conservative, assume loop closed ssa form is corrupted
2957 by store-store chain. Though it's not always the case if
2958 eliminated stores only store loop invariant values into
2959 memory. */
2960 loop_closed_ssa = true;
2962 else
2964 release_chain (chain);
2965 chains.unordered_remove (i);
2968 return loop_closed_ssa;
2971 /* Insert all initializing gimple stmts into loop's entry edge. */
2973 static void
2974 insert_init_seqs (struct loop *loop, vec<chain_p> chains)
2976 unsigned i;
2977 edge entry = loop_preheader_edge (loop);
2979 for (i = 0; i < chains.length (); ++i)
2980 if (chains[i]->init_seq)
2982 gsi_insert_seq_on_edge_immediate (entry, chains[i]->init_seq);
2983 chains[i]->init_seq = NULL;
2987 /* Performs predictive commoning for LOOP. Sets bit 1<<0 of return value
2988 if LOOP was unrolled; Sets bit 1<<1 of return value if loop closed ssa
2989 form was corrupted. */
2991 static unsigned
2992 tree_predictive_commoning_loop (struct loop *loop)
2994 vec<data_reference_p> datarefs;
2995 vec<ddr_p> dependences;
2996 struct component *components;
2997 vec<chain_p> chains = vNULL;
2998 unsigned unroll_factor;
2999 struct tree_niter_desc desc;
3000 bool unroll = false, loop_closed_ssa = false;
3001 edge exit;
3003 if (dump_file && (dump_flags & TDF_DETAILS))
3004 fprintf (dump_file, "Processing loop %d\n", loop->num);
3006 /* Nothing for predicitive commoning if loop only iterates 1 time. */
3007 if (get_max_loop_iterations_int (loop) == 0)
3009 if (dump_file && (dump_flags & TDF_DETAILS))
3010 fprintf (dump_file, "Loop iterates only 1 time, nothing to do.\n");
3012 return 0;
3015 /* Find the data references and split them into components according to their
3016 dependence relations. */
3017 auto_vec<loop_p, 3> loop_nest;
3018 dependences.create (10);
3019 datarefs.create (10);
3020 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
3021 &dependences))
3023 if (dump_file && (dump_flags & TDF_DETAILS))
3024 fprintf (dump_file, "Cannot analyze data dependencies\n");
3025 free_data_refs (datarefs);
3026 free_dependence_relations (dependences);
3027 return 0;
3030 if (dump_file && (dump_flags & TDF_DETAILS))
3031 dump_data_dependence_relations (dump_file, dependences);
3033 components = split_data_refs_to_components (loop, datarefs, dependences);
3034 loop_nest.release ();
3035 free_dependence_relations (dependences);
3036 if (!components)
3038 free_data_refs (datarefs);
3039 free_affine_expand_cache (&name_expansions);
3040 return 0;
3043 if (dump_file && (dump_flags & TDF_DETAILS))
3045 fprintf (dump_file, "Initial state:\n\n");
3046 dump_components (dump_file, components);
3049 /* Find the suitable components and split them into chains. */
3050 components = filter_suitable_components (loop, components);
3052 auto_bitmap tmp_vars;
3053 looparound_phis = BITMAP_ALLOC (NULL);
3054 determine_roots (loop, components, &chains);
3055 release_components (components);
3057 if (!chains.exists ())
3059 if (dump_file && (dump_flags & TDF_DETAILS))
3060 fprintf (dump_file,
3061 "Predictive commoning failed: no suitable chains\n");
3062 goto end;
3064 prepare_initializers (loop, chains);
3065 loop_closed_ssa = prepare_finalizers (loop, chains);
3067 /* Try to combine the chains that are always worked with together. */
3068 try_combine_chains (&chains);
3070 insert_init_seqs (loop, chains);
3072 if (dump_file && (dump_flags & TDF_DETAILS))
3074 fprintf (dump_file, "Before commoning:\n\n");
3075 dump_chains (dump_file, chains);
3078 /* Determine the unroll factor, and if the loop should be unrolled, ensure
3079 that its number of iterations is divisible by the factor. */
3080 unroll_factor = determine_unroll_factor (chains);
3081 scev_reset ();
3082 unroll = (unroll_factor > 1
3083 && can_unroll_loop_p (loop, unroll_factor, &desc));
3084 exit = single_dom_exit (loop);
3086 /* Execute the predictive commoning transformations, and possibly unroll the
3087 loop. */
3088 if (unroll)
3090 struct epcc_data dta;
3092 if (dump_file && (dump_flags & TDF_DETAILS))
3093 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
3095 dta.chains = chains;
3096 dta.tmp_vars = tmp_vars;
3098 update_ssa (TODO_update_ssa_only_virtuals);
3100 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
3101 execute_pred_commoning_cbck is called may cause phi nodes to be
3102 reallocated, which is a problem since CHAINS may point to these
3103 statements. To fix this, we store the ssa names defined by the
3104 phi nodes here instead of the phi nodes themselves, and restore
3105 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
3106 replace_phis_by_defined_names (chains);
3108 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
3109 execute_pred_commoning_cbck, &dta);
3110 eliminate_temp_copies (loop, tmp_vars);
3112 else
3114 if (dump_file && (dump_flags & TDF_DETAILS))
3115 fprintf (dump_file,
3116 "Executing predictive commoning without unrolling.\n");
3117 execute_pred_commoning (loop, chains, tmp_vars);
3120 end: ;
3121 release_chains (chains);
3122 free_data_refs (datarefs);
3123 BITMAP_FREE (looparound_phis);
3125 free_affine_expand_cache (&name_expansions);
3127 return (unroll ? 1 : 0) | (loop_closed_ssa ? 2 : 0);
3130 /* Runs predictive commoning. */
3132 unsigned
3133 tree_predictive_commoning (void)
3135 struct loop *loop;
3136 unsigned ret = 0, changed = 0;
3138 initialize_original_copy_tables ();
3139 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
3140 if (optimize_loop_for_speed_p (loop))
3142 changed |= tree_predictive_commoning_loop (loop);
3144 free_original_copy_tables ();
3146 if (changed > 0)
3148 scev_reset ();
3150 if (changed > 1)
3151 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3153 ret = TODO_cleanup_cfg;
3156 return ret;
3159 /* Predictive commoning Pass. */
3161 static unsigned
3162 run_tree_predictive_commoning (struct function *fun)
3164 if (number_of_loops (fun) <= 1)
3165 return 0;
3167 return tree_predictive_commoning ();
3170 namespace {
3172 const pass_data pass_data_predcom =
3174 GIMPLE_PASS, /* type */
3175 "pcom", /* name */
3176 OPTGROUP_LOOP, /* optinfo_flags */
3177 TV_PREDCOM, /* tv_id */
3178 PROP_cfg, /* properties_required */
3179 0, /* properties_provided */
3180 0, /* properties_destroyed */
3181 0, /* todo_flags_start */
3182 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
3185 class pass_predcom : public gimple_opt_pass
3187 public:
3188 pass_predcom (gcc::context *ctxt)
3189 : gimple_opt_pass (pass_data_predcom, ctxt)
3192 /* opt_pass methods: */
3193 virtual bool gate (function *) { return flag_predictive_commoning != 0; }
3194 virtual unsigned int execute (function *fun)
3196 return run_tree_predictive_commoning (fun);
3199 }; // class pass_predcom
3201 } // anon namespace
3203 gimple_opt_pass *
3204 make_pass_predcom (gcc::context *ctxt)
3206 return new pass_predcom (ctxt);