[AArch64] Fix vqtb[lx][234] on big-endian
[official-gcc.git] / gcc / lra-spills.c
blobe469a84ba5b00331ef2d181620c86cc9569a354e
1 /* Change pseudos by memory.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for a pass to change spilled pseudos into
23 memory.
25 The pass creates necessary stack slots and assigns spilled pseudos
26 to the stack slots in following way:
28 for all spilled pseudos P most frequently used first do
29 for all stack slots S do
30 if P doesn't conflict with pseudos assigned to S then
31 assign S to P and goto to the next pseudo process
32 end
33 end
34 create new stack slot S and assign P to S
35 end
37 The actual algorithm is bit more complicated because of different
38 pseudo sizes.
40 After that the code changes spilled pseudos (except ones created
41 from scratches) by corresponding stack slot memory in RTL.
43 If at least one stack slot was created, we need to run more passes
44 because we have new addresses which should be checked and because
45 the old address displacements might change and address constraints
46 (or insn memory constraints) might not be satisfied any more.
48 For some targets, the pass can spill some pseudos into hard
49 registers of different class (usually into vector registers)
50 instead of spilling them into memory if it is possible and
51 profitable. Spilling GENERAL_REGS pseudo into SSE registers for
52 Intel Corei7 is an example of such optimization. And this is
53 actually recommended by Intel optimization guide.
55 The file also contains code for final change of pseudos on hard
56 regs correspondingly assigned to them. */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "backend.h"
62 #include "target.h"
63 #include "rtl.h"
64 #include "df.h"
65 #include "insn-config.h"
66 #include "regs.h"
67 #include "ira.h"
68 #include "recog.h"
69 #include "output.h"
70 #include "cfgrtl.h"
71 #include "lra.h"
72 #include "lra-int.h"
75 /* Max regno at the start of the pass. */
76 static int regs_num;
78 /* Map spilled regno -> hard regno used instead of memory for
79 spilling. */
80 static rtx *spill_hard_reg;
82 /* The structure describes stack slot of a spilled pseudo. */
83 struct pseudo_slot
85 /* Number (0, 1, ...) of the stack slot to which given pseudo
86 belongs. */
87 int slot_num;
88 /* First or next slot with the same slot number. */
89 struct pseudo_slot *next, *first;
90 /* Memory representing the spilled pseudo. */
91 rtx mem;
94 /* The stack slots for each spilled pseudo. Indexed by regnos. */
95 static struct pseudo_slot *pseudo_slots;
97 /* The structure describes a register or a stack slot which can be
98 used for several spilled pseudos. */
99 struct slot
101 /* First pseudo with given stack slot. */
102 int regno;
103 /* Hard reg into which the slot pseudos are spilled. The value is
104 negative for pseudos spilled into memory. */
105 int hard_regno;
106 /* Memory representing the all stack slot. It can be different from
107 memory representing a pseudo belonging to give stack slot because
108 pseudo can be placed in a part of the corresponding stack slot.
109 The value is NULL for pseudos spilled into a hard reg. */
110 rtx mem;
111 /* Combined live ranges of all pseudos belonging to given slot. It
112 is used to figure out that a new spilled pseudo can use given
113 stack slot. */
114 lra_live_range_t live_ranges;
117 /* Array containing info about the stack slots. The array element is
118 indexed by the stack slot number in the range [0..slots_num). */
119 static struct slot *slots;
120 /* The number of the stack slots currently existing. */
121 static int slots_num;
123 /* Set up memory of the spilled pseudo I. The function can allocate
124 the corresponding stack slot if it is not done yet. */
125 static void
126 assign_mem_slot (int i)
128 rtx x = NULL_RTX;
129 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
130 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
131 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
132 unsigned int max_ref_width = GET_MODE_SIZE (lra_reg_info[i].biggest_mode);
133 unsigned int total_size = MAX (inherent_size, max_ref_width);
134 unsigned int min_align = max_ref_width * BITS_PER_UNIT;
135 int adjust = 0;
137 lra_assert (regno_reg_rtx[i] != NULL_RTX && REG_P (regno_reg_rtx[i])
138 && lra_reg_info[i].nrefs != 0 && reg_renumber[i] < 0);
140 x = slots[pseudo_slots[i].slot_num].mem;
142 /* We can use a slot already allocated because it is guaranteed the
143 slot provides both enough inherent space and enough total
144 space. */
145 if (x)
147 /* Each pseudo has an inherent size which comes from its own mode,
148 and a total size which provides room for paradoxical subregs
149 which refer to the pseudo reg in wider modes. We allocate a new
150 slot, making sure that it has enough inherent space and total
151 space. */
152 else
154 rtx stack_slot;
156 /* No known place to spill from => no slot to reuse. */
157 x = assign_stack_local (mode, total_size,
158 min_align > inherent_align
159 || total_size > inherent_size ? -1 : 0);
160 stack_slot = x;
161 /* Cancel the big-endian correction done in assign_stack_local.
162 Get the address of the beginning of the slot. This is so we
163 can do a big-endian correction unconditionally below. */
164 if (BYTES_BIG_ENDIAN)
166 adjust = inherent_size - total_size;
167 if (adjust)
168 stack_slot
169 = adjust_address_nv (x,
170 mode_for_size (total_size * BITS_PER_UNIT,
171 MODE_INT, 1),
172 adjust);
174 slots[pseudo_slots[i].slot_num].mem = stack_slot;
177 /* On a big endian machine, the "address" of the slot is the address
178 of the low part that fits its inherent mode. */
179 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
180 adjust += (total_size - inherent_size);
182 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
184 /* Set all of the memory attributes as appropriate for a spill. */
185 set_mem_attrs_for_spill (x);
186 pseudo_slots[i].mem = x;
189 /* Sort pseudos according their usage frequencies. */
190 static int
191 regno_freq_compare (const void *v1p, const void *v2p)
193 const int regno1 = *(const int *) v1p;
194 const int regno2 = *(const int *) v2p;
195 int diff;
197 if ((diff = lra_reg_info[regno2].freq - lra_reg_info[regno1].freq) != 0)
198 return diff;
199 return regno1 - regno2;
202 /* Sort pseudos according to their slots, putting the slots in the order
203 that they should be allocated. Slots with lower numbers have the highest
204 priority and should get the smallest displacement from the stack or
205 frame pointer (whichever is being used).
207 The first allocated slot is always closest to the frame pointer,
208 so prefer lower slot numbers when frame_pointer_needed. If the stack
209 and frame grow in the same direction, then the first allocated slot is
210 always closest to the initial stack pointer and furthest away from the
211 final stack pointer, so allocate higher numbers first when using the
212 stack pointer in that case. The reverse is true if the stack and
213 frame grow in opposite directions. */
214 static int
215 pseudo_reg_slot_compare (const void *v1p, const void *v2p)
217 const int regno1 = *(const int *) v1p;
218 const int regno2 = *(const int *) v2p;
219 int diff, slot_num1, slot_num2;
220 int total_size1, total_size2;
222 slot_num1 = pseudo_slots[regno1].slot_num;
223 slot_num2 = pseudo_slots[regno2].slot_num;
224 if ((diff = slot_num1 - slot_num2) != 0)
225 return (frame_pointer_needed
226 || (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
227 total_size1 = GET_MODE_SIZE (lra_reg_info[regno1].biggest_mode);
228 total_size2 = GET_MODE_SIZE (lra_reg_info[regno2].biggest_mode);
229 if ((diff = total_size2 - total_size1) != 0)
230 return diff;
231 return regno1 - regno2;
234 /* Assign spill hard registers to N pseudos in PSEUDO_REGNOS which is
235 sorted in order of highest frequency first. Put the pseudos which
236 did not get a spill hard register at the beginning of array
237 PSEUDO_REGNOS. Return the number of such pseudos. */
238 static int
239 assign_spill_hard_regs (int *pseudo_regnos, int n)
241 int i, k, p, regno, res, spill_class_size, hard_regno, nr;
242 enum reg_class rclass, spill_class;
243 machine_mode mode;
244 lra_live_range_t r;
245 rtx_insn *insn;
246 rtx set;
247 basic_block bb;
248 HARD_REG_SET conflict_hard_regs;
249 bitmap_head ok_insn_bitmap;
250 bitmap setjump_crosses = regstat_get_setjmp_crosses ();
251 /* Hard registers which can not be used for any purpose at given
252 program point because they are unallocatable or already allocated
253 for other pseudos. */
254 HARD_REG_SET *reserved_hard_regs;
256 if (! lra_reg_spill_p)
257 return n;
258 /* Set up reserved hard regs for every program point. */
259 reserved_hard_regs = XNEWVEC (HARD_REG_SET, lra_live_max_point);
260 for (p = 0; p < lra_live_max_point; p++)
261 COPY_HARD_REG_SET (reserved_hard_regs[p], lra_no_alloc_regs);
262 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
263 if (lra_reg_info[i].nrefs != 0
264 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
265 for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
266 for (p = r->start; p <= r->finish; p++)
267 add_to_hard_reg_set (&reserved_hard_regs[p],
268 lra_reg_info[i].biggest_mode, hard_regno);
269 bitmap_initialize (&ok_insn_bitmap, &reg_obstack);
270 FOR_EACH_BB_FN (bb, cfun)
271 FOR_BB_INSNS (bb, insn)
272 if (DEBUG_INSN_P (insn)
273 || ((set = single_set (insn)) != NULL_RTX
274 && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))))
275 bitmap_set_bit (&ok_insn_bitmap, INSN_UID (insn));
276 for (res = i = 0; i < n; i++)
278 regno = pseudo_regnos[i];
279 rclass = lra_get_allocno_class (regno);
280 if (bitmap_bit_p (setjump_crosses, regno)
281 || (spill_class
282 = ((enum reg_class)
283 targetm.spill_class ((reg_class_t) rclass,
284 PSEUDO_REGNO_MODE (regno)))) == NO_REGS
285 || bitmap_intersect_compl_p (&lra_reg_info[regno].insn_bitmap,
286 &ok_insn_bitmap))
288 pseudo_regnos[res++] = regno;
289 continue;
291 lra_assert (spill_class != NO_REGS);
292 COPY_HARD_REG_SET (conflict_hard_regs,
293 lra_reg_info[regno].conflict_hard_regs);
294 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
295 for (p = r->start; p <= r->finish; p++)
296 IOR_HARD_REG_SET (conflict_hard_regs, reserved_hard_regs[p]);
297 spill_class_size = ira_class_hard_regs_num[spill_class];
298 mode = lra_reg_info[regno].biggest_mode;
299 for (k = 0; k < spill_class_size; k++)
301 hard_regno = ira_class_hard_regs[spill_class][k];
302 if (! overlaps_hard_reg_set_p (conflict_hard_regs, mode, hard_regno))
303 break;
305 if (k >= spill_class_size)
307 /* There is no available regs -- assign memory later. */
308 pseudo_regnos[res++] = regno;
309 continue;
311 if (lra_dump_file != NULL)
312 fprintf (lra_dump_file, " Spill r%d into hr%d\n", regno, hard_regno);
313 /* Update reserved_hard_regs. */
314 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
315 for (p = r->start; p <= r->finish; p++)
316 add_to_hard_reg_set (&reserved_hard_regs[p],
317 lra_reg_info[regno].biggest_mode, hard_regno);
318 spill_hard_reg[regno]
319 = gen_raw_REG (PSEUDO_REGNO_MODE (regno), hard_regno);
320 for (nr = 0;
321 nr < hard_regno_nregs[hard_regno][lra_reg_info[regno].biggest_mode];
322 nr++)
323 /* Just loop. */
324 df_set_regs_ever_live (hard_regno + nr, true);
326 bitmap_clear (&ok_insn_bitmap);
327 free (reserved_hard_regs);
328 return res;
331 /* Add pseudo REGNO to slot SLOT_NUM. */
332 static void
333 add_pseudo_to_slot (int regno, int slot_num)
335 struct pseudo_slot *first;
337 if (slots[slot_num].regno < 0)
339 /* It is the first pseudo in the slot. */
340 slots[slot_num].regno = regno;
341 pseudo_slots[regno].first = &pseudo_slots[regno];
342 pseudo_slots[regno].next = NULL;
344 else
346 first = pseudo_slots[regno].first = &pseudo_slots[slots[slot_num].regno];
347 pseudo_slots[regno].next = first->next;
348 first->next = &pseudo_slots[regno];
350 pseudo_slots[regno].mem = NULL_RTX;
351 pseudo_slots[regno].slot_num = slot_num;
352 slots[slot_num].live_ranges
353 = lra_merge_live_ranges (slots[slot_num].live_ranges,
354 lra_copy_live_range_list
355 (lra_reg_info[regno].live_ranges));
358 /* Assign stack slot numbers to pseudos in array PSEUDO_REGNOS of
359 length N. Sort pseudos in PSEUDO_REGNOS for subsequent assigning
360 memory stack slots. */
361 static void
362 assign_stack_slot_num_and_sort_pseudos (int *pseudo_regnos, int n)
364 int i, j, regno;
366 slots_num = 0;
367 /* Assign stack slot numbers to spilled pseudos, use smaller numbers
368 for most frequently used pseudos. */
369 for (i = 0; i < n; i++)
371 regno = pseudo_regnos[i];
372 if (! flag_ira_share_spill_slots)
373 j = slots_num;
374 else
376 for (j = 0; j < slots_num; j++)
377 if (slots[j].hard_regno < 0
378 && ! (lra_intersected_live_ranges_p
379 (slots[j].live_ranges,
380 lra_reg_info[regno].live_ranges)))
381 break;
383 if (j >= slots_num)
385 /* New slot. */
386 slots[j].live_ranges = NULL;
387 slots[j].regno = slots[j].hard_regno = -1;
388 slots[j].mem = NULL_RTX;
389 slots_num++;
391 add_pseudo_to_slot (regno, j);
393 /* Sort regnos according to their slot numbers. */
394 qsort (pseudo_regnos, n, sizeof (int), pseudo_reg_slot_compare);
397 /* Recursively process LOC in INSN and change spilled pseudos to the
398 corresponding memory or spilled hard reg. Ignore spilled pseudos
399 created from the scratches. */
400 static void
401 remove_pseudos (rtx *loc, rtx_insn *insn)
403 int i;
404 rtx hard_reg;
405 const char *fmt;
406 enum rtx_code code;
408 if (*loc == NULL_RTX)
409 return;
410 code = GET_CODE (*loc);
411 if (code == REG && (i = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
412 && lra_get_regno_hard_regno (i) < 0
413 /* We do not want to assign memory for former scratches because
414 it might result in an address reload for some targets. In
415 any case we transform such pseudos not getting hard registers
416 into scratches back. */
417 && ! lra_former_scratch_p (i))
419 if ((hard_reg = spill_hard_reg[i]) != NULL_RTX)
420 *loc = copy_rtx (hard_reg);
421 else
423 rtx x = lra_eliminate_regs_1 (insn, pseudo_slots[i].mem,
424 GET_MODE (pseudo_slots[i].mem),
425 false, false, 0, true);
426 *loc = x != pseudo_slots[i].mem ? x : copy_rtx (x);
428 return;
431 fmt = GET_RTX_FORMAT (code);
432 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
434 if (fmt[i] == 'e')
435 remove_pseudos (&XEXP (*loc, i), insn);
436 else if (fmt[i] == 'E')
438 int j;
440 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
441 remove_pseudos (&XVECEXP (*loc, i, j), insn);
446 /* Convert spilled pseudos into their stack slots or spill hard regs,
447 put insns to process on the constraint stack (that is all insns in
448 which pseudos were changed to memory or spill hard regs). */
449 static void
450 spill_pseudos (void)
452 basic_block bb;
453 rtx_insn *insn;
454 int i;
455 bitmap_head spilled_pseudos, changed_insns;
457 bitmap_initialize (&spilled_pseudos, &reg_obstack);
458 bitmap_initialize (&changed_insns, &reg_obstack);
459 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
461 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
462 && ! lra_former_scratch_p (i))
464 bitmap_set_bit (&spilled_pseudos, i);
465 bitmap_ior_into (&changed_insns, &lra_reg_info[i].insn_bitmap);
468 FOR_EACH_BB_FN (bb, cfun)
470 FOR_BB_INSNS (bb, insn)
471 if (bitmap_bit_p (&changed_insns, INSN_UID (insn)))
473 rtx *link_loc, link;
474 remove_pseudos (&PATTERN (insn), insn);
475 if (CALL_P (insn))
476 remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn);
477 for (link_loc = &REG_NOTES (insn);
478 (link = *link_loc) != NULL_RTX;
479 link_loc = &XEXP (link, 1))
481 switch (REG_NOTE_KIND (link))
483 case REG_FRAME_RELATED_EXPR:
484 case REG_CFA_DEF_CFA:
485 case REG_CFA_ADJUST_CFA:
486 case REG_CFA_OFFSET:
487 case REG_CFA_REGISTER:
488 case REG_CFA_EXPRESSION:
489 case REG_CFA_RESTORE:
490 case REG_CFA_SET_VDRAP:
491 remove_pseudos (&XEXP (link, 0), insn);
492 break;
493 default:
494 break;
497 if (lra_dump_file != NULL)
498 fprintf (lra_dump_file,
499 "Changing spilled pseudos to memory in insn #%u\n",
500 INSN_UID (insn));
501 lra_push_insn (insn);
502 if (lra_reg_spill_p || targetm.different_addr_displacement_p ())
503 lra_set_used_insn_alternative (insn, -1);
505 else if (CALL_P (insn))
506 /* Presence of any pseudo in CALL_INSN_FUNCTION_USAGE does
507 not affect value of insn_bitmap of the corresponding
508 lra_reg_info. That is because we don't need to reload
509 pseudos in CALL_INSN_FUNCTION_USAGEs. So if we process
510 only insns in the insn_bitmap of given pseudo here, we
511 can miss the pseudo in some
512 CALL_INSN_FUNCTION_USAGEs. */
513 remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn);
514 bitmap_and_compl_into (df_get_live_in (bb), &spilled_pseudos);
515 bitmap_and_compl_into (df_get_live_out (bb), &spilled_pseudos);
517 bitmap_clear (&spilled_pseudos);
518 bitmap_clear (&changed_insns);
521 /* Return true if we need to change some pseudos into memory. */
522 bool
523 lra_need_for_spills_p (void)
525 int i; max_regno = max_reg_num ();
527 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
528 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
529 && ! lra_former_scratch_p (i))
530 return true;
531 return false;
534 /* Change spilled pseudos into memory or spill hard regs. Put changed
535 insns on the constraint stack (these insns will be considered on
536 the next constraint pass). The changed insns are all insns in
537 which pseudos were changed. */
538 void
539 lra_spill (void)
541 int i, n, curr_regno;
542 int *pseudo_regnos;
544 regs_num = max_reg_num ();
545 spill_hard_reg = XNEWVEC (rtx, regs_num);
546 pseudo_regnos = XNEWVEC (int, regs_num);
547 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
548 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
549 /* We do not want to assign memory for former scratches. */
550 && ! lra_former_scratch_p (i))
552 spill_hard_reg[i] = NULL_RTX;
553 pseudo_regnos[n++] = i;
555 lra_assert (n > 0);
556 pseudo_slots = XNEWVEC (struct pseudo_slot, regs_num);
557 slots = XNEWVEC (struct slot, regs_num);
558 /* Sort regnos according their usage frequencies. */
559 qsort (pseudo_regnos, n, sizeof (int), regno_freq_compare);
560 n = assign_spill_hard_regs (pseudo_regnos, n);
561 assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n);
562 for (i = 0; i < n; i++)
563 if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
564 assign_mem_slot (pseudo_regnos[i]);
565 if (n > 0 && crtl->stack_alignment_needed)
566 /* If we have a stack frame, we must align it now. The stack size
567 may be a part of the offset computation for register
568 elimination. */
569 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
570 if (lra_dump_file != NULL)
572 for (i = 0; i < slots_num; i++)
574 fprintf (lra_dump_file, " Slot %d regnos (width = %d):", i,
575 GET_MODE_SIZE (GET_MODE (slots[i].mem)));
576 for (curr_regno = slots[i].regno;;
577 curr_regno = pseudo_slots[curr_regno].next - pseudo_slots)
579 fprintf (lra_dump_file, " %d", curr_regno);
580 if (pseudo_slots[curr_regno].next == NULL)
581 break;
583 fprintf (lra_dump_file, "\n");
586 spill_pseudos ();
587 free (slots);
588 free (pseudo_slots);
589 free (pseudo_regnos);
590 free (spill_hard_reg);
593 /* Apply alter_subreg for subregs of regs in *LOC. Use FINAL_P for
594 alter_subreg calls. Return true if any subreg of reg is
595 processed. */
596 static bool
597 alter_subregs (rtx *loc, bool final_p)
599 int i;
600 rtx x = *loc;
601 bool res;
602 const char *fmt;
603 enum rtx_code code;
605 if (x == NULL_RTX)
606 return false;
607 code = GET_CODE (x);
608 if (code == SUBREG && REG_P (SUBREG_REG (x)))
610 lra_assert (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER);
611 alter_subreg (loc, final_p);
612 return true;
614 fmt = GET_RTX_FORMAT (code);
615 res = false;
616 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
618 if (fmt[i] == 'e')
620 if (alter_subregs (&XEXP (x, i), final_p))
621 res = true;
623 else if (fmt[i] == 'E')
625 int j;
627 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
628 if (alter_subregs (&XVECEXP (x, i, j), final_p))
629 res = true;
632 return res;
635 /* Return true if REGNO is used for return in the current
636 function. */
637 static bool
638 return_regno_p (unsigned int regno)
640 rtx outgoing = crtl->return_rtx;
642 if (! outgoing)
643 return false;
645 if (REG_P (outgoing))
646 return REGNO (outgoing) == regno;
647 else if (GET_CODE (outgoing) == PARALLEL)
649 int i;
651 for (i = 0; i < XVECLEN (outgoing, 0); i++)
653 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
655 if (REG_P (x) && REGNO (x) == regno)
656 return true;
659 return false;
662 /* Final change of pseudos got hard registers into the corresponding
663 hard registers and removing temporary clobbers. */
664 void
665 lra_final_code_change (void)
667 int i, hard_regno;
668 basic_block bb;
669 rtx_insn *insn, *curr;
670 int max_regno = max_reg_num ();
672 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
673 if (lra_reg_info[i].nrefs != 0
674 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
675 SET_REGNO (regno_reg_rtx[i], hard_regno);
676 FOR_EACH_BB_FN (bb, cfun)
677 FOR_BB_INSNS_SAFE (bb, insn, curr)
678 if (INSN_P (insn))
680 rtx pat = PATTERN (insn);
682 if (GET_CODE (pat) == CLOBBER && LRA_TEMP_CLOBBER_P (pat))
684 /* Remove clobbers temporarily created in LRA. We don't
685 need them anymore and don't want to waste compiler
686 time processing them in a few subsequent passes. */
687 lra_invalidate_insn_data (insn);
688 delete_insn (insn);
689 continue;
692 /* IRA can generate move insns involving pseudos. It is
693 better remove them earlier to speed up compiler a bit.
694 It is also better to do it here as they might not pass
695 final RTL check in LRA, (e.g. insn moving a control
696 register into itself). So remove an useless move insn
697 unless next insn is USE marking the return reg (we should
698 save this as some subsequent optimizations assume that
699 such original insns are saved). */
700 if (NONJUMP_INSN_P (insn) && GET_CODE (pat) == SET
701 && REG_P (SET_SRC (pat)) && REG_P (SET_DEST (pat))
702 && REGNO (SET_SRC (pat)) == REGNO (SET_DEST (pat))
703 && ! return_regno_p (REGNO (SET_SRC (pat))))
705 lra_invalidate_insn_data (insn);
706 delete_insn (insn);
707 continue;
710 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
711 struct lra_static_insn_data *static_id = id->insn_static_data;
712 bool insn_change_p = false;
714 for (i = id->insn_static_data->n_operands - 1; i >= 0; i--)
716 if (! DEBUG_INSN_P (insn) && static_id->operand[i].is_operator)
717 continue;
719 rtx op = *id->operand_loc[i];
721 if (static_id->operand[i].type == OP_OUT
722 && GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))
723 && ! LRA_SUBREG_P (op))
725 hard_regno = REGNO (SUBREG_REG (op));
726 /* We can not always remove sub-registers of
727 hard-registers as we may lose information that
728 only a part of registers is changed and
729 subsequent optimizations may do wrong
730 transformations (e.g. dead code eliminations).
731 We can not also keep all sub-registers as the
732 subsequent optimizations can not handle all such
733 cases. Here is a compromise which works. */
734 if ((GET_MODE_SIZE (GET_MODE (op))
735 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
736 && (hard_regno_nregs[hard_regno][GET_MODE (SUBREG_REG (op))]
737 == hard_regno_nregs[hard_regno][GET_MODE (op)])
738 #ifdef STACK_REGS
739 && (hard_regno < FIRST_STACK_REG
740 || hard_regno > LAST_STACK_REG)
741 #endif
743 continue;
745 if (alter_subregs (id->operand_loc[i], ! DEBUG_INSN_P (insn)))
747 lra_update_dup (id, i);
748 insn_change_p = true;
751 if (insn_change_p)
752 lra_update_operator_dups (id);