Fix minor problem in stack probing
[official-gcc.git] / gcc / function.cc
blob336af28fb2281a20b82e3dfa0a6281253cdab43a
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "opts.h"
50 #include "regs.h"
51 #include "emit-rtl.h"
52 #include "recog.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
58 #include "varasm.h"
59 #include "except.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "calls.h"
63 #include "expr.h"
64 #include "optabs-tree.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
76 #include "toplev.h"
77 #include "rtl-iter.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82 #include "gimple.h"
83 #include "options.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
88 /* So we can assign to cfun in this file. */
89 #undef cfun
91 #ifndef STACK_ALIGNMENT_NEEDED
92 #define STACK_ALIGNMENT_NEEDED 1
93 #endif
95 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
97 /* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
102 /* Similar, but round to the next highest integer that meets the
103 alignment. */
104 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.cc:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These hashes record the prologue and epilogue insns. */
124 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
126 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
127 static bool equal (rtx a, rtx b) { return a == b; }
130 static GTY((cache))
131 hash_table<insn_cache_hasher> *prologue_insn_hash;
132 static GTY((cache))
133 hash_table<insn_cache_hasher> *epilogue_insn_hash;
136 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
137 vec<tree, va_gc> *types_used_by_cur_var_decl;
139 /* Forward declarations. */
141 static class temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, machine_mode, tree);
144 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
151 ATTRIBUTE_UNUSED;
152 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 static vec<function *> function_context_stack;
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
166 void
167 push_function_context (void)
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
172 function_context_stack.safe_push (cfun);
173 set_cfun (NULL);
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
179 void
180 pop_function_context (void)
182 struct function *p = function_context_stack.pop ();
183 set_cfun (p);
184 current_function_decl = p->decl;
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
195 void
196 free_after_parsing (struct function *f)
198 f->language = 0;
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
205 void
206 free_after_compilation (struct function *f)
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
211 free (crtl->emit.regno_pointer_align);
213 memset (crtl, 0, sizeof (struct rtl_data));
214 f->eh = NULL;
215 f->machine = NULL;
216 f->cfg = NULL;
217 f->curr_properties &= ~PROP_cfg;
219 regno_reg_rtx = NULL;
222 /* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
226 poly_int64
227 get_frame_size (void)
229 if (FRAME_GROWS_DOWNWARD)
230 return -frame_offset;
231 else
232 return frame_offset;
235 /* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
237 return FALSE. */
239 bool
240 frame_offset_overflow (poly_int64 offset, tree func)
242 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD);
248 if (!coeffs_in_range_p (size, 0U, limit))
250 unsigned HOST_WIDE_INT hwisize;
251 if (size.is_constant (&hwisize))
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects %wu exceeds maximum %wu",
254 hwisize, limit);
255 else
256 error_at (DECL_SOURCE_LOCATION (func),
257 "total size of local objects exceeds maximum %wu",
258 limit);
259 return true;
262 return false;
265 /* Return the minimum spill slot alignment for a register of mode MODE. */
267 unsigned int
268 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
270 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
273 /* Return stack slot alignment in bits for TYPE and MODE. */
275 static unsigned int
276 get_stack_local_alignment (tree type, machine_mode mode)
278 unsigned int alignment;
280 if (mode == BLKmode)
281 alignment = BIGGEST_ALIGNMENT;
282 else
283 alignment = GET_MODE_ALIGNMENT (mode);
285 /* Allow the frond-end to (possibly) increase the alignment of this
286 stack slot. */
287 if (! type)
288 type = lang_hooks.types.type_for_mode (mode, 0);
290 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
293 /* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
300 static bool
301 try_fit_stack_local (poly_int64 start, poly_int64 length,
302 poly_int64 size, unsigned int alignment,
303 poly_int64 *poffset)
305 poly_int64 this_frame_offset;
306 int frame_off, frame_alignment, frame_phase;
308 /* Calculate how many bytes the start of local variables is off from
309 stack alignment. */
310 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
311 frame_off = targetm.starting_frame_offset () % frame_alignment;
312 frame_phase = frame_off ? frame_alignment - frame_off : 0;
314 /* Round the frame offset to the specified alignment. */
316 if (FRAME_GROWS_DOWNWARD)
317 this_frame_offset
318 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (this_frame_offset, start))
329 if (known_eq (frame_offset, start))
330 frame_offset = this_frame_offset;
331 else
332 return false;
334 else if (maybe_gt (this_frame_offset + size, start + length))
336 if (known_eq (frame_offset, start + length))
337 frame_offset = this_frame_offset + size;
338 else
339 return false;
342 *poffset = this_frame_offset;
343 return true;
346 /* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
350 static void
351 add_frame_space (poly_int64 start, poly_int64 end)
353 class frame_space *space = ggc_alloc<frame_space> ();
354 space->next = crtl->frame_space_list;
355 crtl->frame_space_list = space;
356 space->start = start;
357 space->length = end - start;
360 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
375 We do not round to stack_boundary here. */
378 assign_stack_local_1 (machine_mode mode, poly_int64 size,
379 int align, int kind)
381 rtx x, addr;
382 poly_int64 bigend_correction = 0;
383 poly_int64 slot_offset = 0, old_frame_offset;
384 unsigned int alignment, alignment_in_bits;
386 if (align == 0)
388 alignment = get_stack_local_alignment (NULL, mode);
389 alignment /= BITS_PER_UNIT;
391 else if (align == -1)
393 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
394 size = aligned_upper_bound (size, alignment);
396 else if (align == -2)
397 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
398 else
399 alignment = align / BITS_PER_UNIT;
401 alignment_in_bits = alignment * BITS_PER_UNIT;
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
406 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
407 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
410 if (SUPPORTS_STACK_ALIGNMENT)
412 if (crtl->stack_alignment_estimated < alignment_in_bits)
414 if (!crtl->stack_realign_processed)
415 crtl->stack_alignment_estimated = alignment_in_bits;
416 else
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
422 below. */
423 gcc_assert (!crtl->stack_realign_finalized);
424 if (!crtl->stack_realign_needed)
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
430 || known_eq (size, 0)
431 || (crtl->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode)));
433 alignment_in_bits = crtl->stack_alignment_estimated;
434 alignment = alignment_in_bits / BITS_PER_UNIT;
440 if (crtl->stack_alignment_needed < alignment_in_bits)
441 crtl->stack_alignment_needed = alignment_in_bits;
442 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
443 crtl->max_used_stack_slot_alignment = alignment_in_bits;
445 if (mode != BLKmode || maybe_ne (size, 0))
447 if (kind & ASLK_RECORD_PAD)
449 class frame_space **psp;
451 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
453 class frame_space *space = *psp;
454 if (!try_fit_stack_local (space->start, space->length, size,
455 alignment, &slot_offset))
456 continue;
457 *psp = space->next;
458 if (known_gt (slot_offset, space->start))
459 add_frame_space (space->start, slot_offset);
460 if (known_lt (slot_offset + size, space->start + space->length))
461 add_frame_space (slot_offset + size,
462 space->start + space->length);
463 goto found_space;
467 else if (!STACK_ALIGNMENT_NEEDED)
469 slot_offset = frame_offset;
470 goto found_space;
473 old_frame_offset = frame_offset;
475 if (FRAME_GROWS_DOWNWARD)
477 frame_offset -= size;
478 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
480 if (kind & ASLK_RECORD_PAD)
482 if (known_gt (slot_offset, frame_offset))
483 add_frame_space (frame_offset, slot_offset);
484 if (known_lt (slot_offset + size, old_frame_offset))
485 add_frame_space (slot_offset + size, old_frame_offset);
488 else
490 frame_offset += size;
491 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
493 if (kind & ASLK_RECORD_PAD)
495 if (known_gt (slot_offset, old_frame_offset))
496 add_frame_space (old_frame_offset, slot_offset);
497 if (known_lt (slot_offset + size, frame_offset))
498 add_frame_space (slot_offset + size, frame_offset);
502 found_space:
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
505 if (mode != BLKmode)
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
513 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
514 bigend_correction = size - GET_MODE_SIZE (mode);
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated)
520 addr = plus_constant (Pmode, frame_pointer_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction
523 + targetm.starting_frame_offset (), Pmode));
524 else
525 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
526 trunc_int_for_mode
527 (slot_offset + bigend_correction,
528 Pmode));
530 x = gen_rtx_MEM (mode, addr);
531 set_mem_align (x, alignment_in_bits);
532 MEM_NOTRAP_P (x) = 1;
534 vec_safe_push (stack_slot_list, x);
536 if (frame_offset_overflow (frame_offset, current_function_decl))
537 frame_offset = 0;
539 return x;
542 /* Wrap up assign_stack_local_1 with last parameter as false. */
545 assign_stack_local (machine_mode mode, poly_int64 size, int align)
547 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
550 /* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
564 class GTY(()) temp_slot {
565 public:
566 /* Points to next temporary slot. */
567 class temp_slot *next;
568 /* Points to previous temporary slot. */
569 class temp_slot *prev;
570 /* The rtx to used to reference the slot. */
571 rtx slot;
572 /* The size, in units, of the slot. */
573 poly_int64 size;
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
578 tree type;
579 /* The alignment (in bits) of the slot. */
580 unsigned int align;
581 /* True if this temporary is currently in use. */
582 bool in_use;
583 /* Nesting level at which this slot is being used. */
584 int level;
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size;
593 /* Entry for the below hash table. */
594 struct GTY((for_user)) temp_slot_address_entry {
595 hashval_t hash;
596 rtx address;
597 class temp_slot *temp_slot;
600 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
602 static hashval_t hash (temp_slot_address_entry *);
603 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
606 /* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
609 static size_t n_temp_slots_in_use;
611 /* Removes temporary slot TEMP from LIST. */
613 static void
614 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
616 if (temp->next)
617 temp->next->prev = temp->prev;
618 if (temp->prev)
619 temp->prev->next = temp->next;
620 else
621 *list = temp->next;
623 temp->prev = temp->next = NULL;
626 /* Inserts temporary slot TEMP to LIST. */
628 static void
629 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
631 temp->next = *list;
632 if (*list)
633 (*list)->prev = temp;
634 temp->prev = NULL;
635 *list = temp;
638 /* Returns the list of used temp slots at LEVEL. */
640 static class temp_slot **
641 temp_slots_at_level (int level)
643 if (level >= (int) vec_safe_length (used_temp_slots))
644 vec_safe_grow_cleared (used_temp_slots, level + 1, true);
646 return &(*used_temp_slots)[level];
649 /* Returns the maximal temporary slot level. */
651 static int
652 max_slot_level (void)
654 if (!used_temp_slots)
655 return -1;
657 return used_temp_slots->length () - 1;
660 /* Moves temporary slot TEMP to LEVEL. */
662 static void
663 move_slot_to_level (class temp_slot *temp, int level)
665 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
666 insert_slot_to_list (temp, temp_slots_at_level (level));
667 temp->level = level;
670 /* Make temporary slot TEMP available. */
672 static void
673 make_slot_available (class temp_slot *temp)
675 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
676 insert_slot_to_list (temp, &avail_temp_slots);
677 temp->in_use = false;
678 temp->level = -1;
679 n_temp_slots_in_use--;
682 /* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
684 static hashval_t
685 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
687 int do_not_record = 0;
688 return hash_rtx (t->address, GET_MODE (t->address),
689 &do_not_record, NULL, false);
692 /* Return the hash value for an address -> temp slot mapping. */
693 hashval_t
694 temp_address_hasher::hash (temp_slot_address_entry *t)
696 return t->hash;
699 /* Compare two address -> temp slot mapping entries. */
700 bool
701 temp_address_hasher::equal (temp_slot_address_entry *t1,
702 temp_slot_address_entry *t2)
704 return exp_equiv_p (t1->address, t2->address, 0, true);
707 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
708 static void
709 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
711 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
712 t->address = copy_rtx (address);
713 t->temp_slot = temp_slot;
714 t->hash = temp_slot_address_compute_hash (t);
715 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
718 /* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
721 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
723 const struct temp_slot_address_entry *t = *slot;
724 if (! t->temp_slot->in_use)
725 temp_slot_address_table->clear_slot (slot);
726 return 1;
729 /* Remove all mappings of addresses to unused temp slots. */
730 static void
731 remove_unused_temp_slot_addresses (void)
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use)
735 temp_slot_address_table->traverse
736 <void *, remove_unused_temp_slot_addresses_1> (NULL);
737 else
738 temp_slot_address_table->empty ();
741 /* Find the temp slot corresponding to the object at address X. */
743 static class temp_slot *
744 find_temp_slot_from_address (rtx x)
746 class temp_slot *p;
747 struct temp_slot_address_entry tmp, *t;
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
751 tmp.address = x;
752 tmp.temp_slot = NULL;
753 tmp.hash = temp_slot_address_compute_hash (&tmp);
754 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
755 if (t)
756 return t->temp_slot;
758 /* If we have a sum involving a register, see if it points to a temp
759 slot. */
760 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
761 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
762 return p;
763 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
764 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
765 return p;
767 /* Last resort: Address is a virtual stack var address. */
768 poly_int64 offset;
769 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
771 int i;
772 for (i = max_slot_level (); i >= 0; i--)
773 for (p = *temp_slots_at_level (i); p; p = p->next)
774 if (known_in_range_p (offset, p->base_offset, p->full_size))
775 return p;
778 return NULL;
781 /* Allocate a temporary stack slot and record it for possible later
782 reuse.
784 MODE is the machine mode to be given to the returned rtx.
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
789 TYPE is the type that will be used for the stack slot. */
792 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
794 unsigned int align;
795 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
796 rtx slot;
798 gcc_assert (known_size_p (size));
800 align = get_stack_local_alignment (type, mode);
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated)
811 for (p = avail_temp_slots; p; p = p->next)
813 if (p->align >= align
814 && known_ge (p->size, size)
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0
818 || (known_eq (best_p->size, p->size)
819 ? best_p->align > p->align
820 : known_ge (best_p->size, p->size))))
822 if (p->align == align && known_eq (p->size, size))
824 selected = p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826 best_p = 0;
827 break;
829 best_p = p;
834 /* Make our best, if any, the one to use. */
835 if (best_p)
837 selected = best_p;
838 cut_slot_from_list (selected, &avail_temp_slots);
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
845 int alignment = best_p->align / BITS_PER_UNIT;
846 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
848 if (known_ge (best_p->size - rounded_size, alignment))
850 p = ggc_alloc<temp_slot> ();
851 p->in_use = false;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (p, &avail_temp_slots);
860 vec_safe_push (stack_slot_list, p->slot);
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
871 poly_int64 frame_offset_old = frame_offset;
873 p = ggc_alloc<temp_slot> ();
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 (mode == BLKmode
885 ? aligned_upper_bound (size,
886 (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, 0);
891 p->align = align;
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
911 else
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
917 selected = p;
920 p = selected;
921 p->in_use = true;
922 p->type = type;
923 p->level = temp_slot_level;
924 n_temp_slots_in_use++;
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 vec_safe_push (stack_slot_list, slot);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
942 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943 MEM_NOTRAP_P (slot) = 1;
945 return slot;
948 /* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
952 assign_stack_temp (machine_mode mode, poly_int64 size)
954 return assign_stack_temp_for_type (mode, size, NULL_TREE);
957 /* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
964 to wider modes. */
967 assign_temp (tree type_or_decl, int memory_required,
968 int dont_promote ATTRIBUTE_UNUSED)
970 tree type, decl;
971 machine_mode mode;
972 #ifdef PROMOTE_MODE
973 int unsignedp;
974 #endif
976 if (DECL_P (type_or_decl))
977 decl = type_or_decl, type = TREE_TYPE (decl);
978 else
979 decl = NULL, type = type_or_decl;
981 mode = TYPE_MODE (type);
982 #ifdef PROMOTE_MODE
983 unsignedp = TYPE_UNSIGNED (type);
984 #endif
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
990 if (mode == BLKmode || memory_required)
992 poly_int64 size;
993 rtx tmp;
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
999 size = max_int_size_in_bytes (type);
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size, 0))
1004 size = 1;
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1010 if (decl
1011 && !known_size_p (size)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1014 error ("size of variable %q+D is too large", decl);
1015 size = 1;
1018 tmp = assign_stack_temp_for_type (mode, size, type);
1019 return tmp;
1022 #ifdef PROMOTE_MODE
1023 if (! dont_promote)
1024 mode = promote_mode (type, mode, &unsignedp);
1025 #endif
1027 return gen_reg_rtx (mode);
1030 /* Combine temporary stack slots which are adjacent on the stack.
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1036 static void
1037 combine_temp_slots (void)
1039 class temp_slot *p, *q, *next, *next_q;
1040 int num_slots;
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing)
1045 return;
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations)
1050 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1051 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1052 return;
1054 for (p = avail_temp_slots; p; p = next)
1056 int delete_p = 0;
1058 next = p->next;
1060 if (GET_MODE (p->slot) != BLKmode)
1061 continue;
1063 for (q = p->next; q; q = next_q)
1065 int delete_q = 0;
1067 next_q = q->next;
1069 if (GET_MODE (q->slot) != BLKmode)
1070 continue;
1072 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1074 /* Q comes after P; combine Q into P. */
1075 p->size += q->size;
1076 p->full_size += q->full_size;
1077 delete_q = 1;
1079 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1081 /* P comes after Q; combine P into Q. */
1082 q->size += p->size;
1083 q->full_size += p->full_size;
1084 delete_p = 1;
1085 break;
1087 if (delete_q)
1088 cut_slot_from_list (q, &avail_temp_slots);
1091 /* Either delete P or advance past it. */
1092 if (delete_p)
1093 cut_slot_from_list (p, &avail_temp_slots);
1097 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1100 void
1101 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1103 class temp_slot *p;
1105 if (rtx_equal_p (old_rtx, new_rtx))
1106 return;
1108 p = find_temp_slot_from_address (old_rtx);
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1115 values. */
1116 if (p == 0)
1118 if (GET_CODE (old_rtx) != PLUS)
1119 return;
1121 if (REG_P (new_rtx))
1123 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1124 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1125 return;
1127 else if (GET_CODE (new_rtx) != PLUS)
1128 return;
1130 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1139 return;
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (new_rtx, p);
1146 /* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1154 void
1155 preserve_temp_slots (rtx x)
1157 class temp_slot *p = 0, *next;
1159 if (x == 0)
1160 return;
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x) && REG_POINTER (x))
1165 p = find_temp_slot_from_address (x);
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1170 return;
1172 /* First see if we can find a match. */
1173 if (p == 0)
1174 p = find_temp_slot_from_address (XEXP (x, 0));
1176 if (p != 0)
1178 if (p->level == temp_slot_level)
1179 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1186 next = p->next;
1187 move_slot_to_level (p, temp_slot_level - 1);
1191 /* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1194 void
1195 free_temp_slots (void)
1197 class temp_slot *p, *next;
1198 bool some_available = false;
1200 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1202 next = p->next;
1203 make_slot_available (p);
1204 some_available = true;
1207 if (some_available)
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1214 /* Push deeper into the nesting level for stack temporaries. */
1216 void
1217 push_temp_slots (void)
1219 temp_slot_level++;
1222 /* Pop a temporary nesting level. All slots in use in the current level
1223 are freed. */
1225 void
1226 pop_temp_slots (void)
1228 free_temp_slots ();
1229 temp_slot_level--;
1232 /* Initialize temporary slots. */
1234 void
1235 init_temp_slots (void)
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots = 0;
1239 vec_alloc (used_temp_slots, 0);
1240 temp_slot_level = 0;
1241 n_temp_slots_in_use = 0;
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table)
1245 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1246 else
1247 temp_slot_address_table->empty ();
1250 /* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1253 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255 struct GTY(()) initial_value_pair {
1256 rtx hard_reg;
1257 rtx pseudo;
1259 /* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262 struct GTY(()) initial_value_struct {
1263 int num_entries;
1264 int max_entries;
1265 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1268 /* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1272 get_hard_reg_initial_reg (rtx reg)
1274 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1275 int i;
1277 if (ivs == 0)
1278 return NULL_RTX;
1280 for (i = 0; i < ivs->num_entries; i++)
1281 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1282 return ivs->entries[i].hard_reg;
1284 return NULL_RTX;
1287 /* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1291 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1293 struct initial_value_struct *ivs;
1294 rtx rv;
1296 rv = has_hard_reg_initial_val (mode, regno);
1297 if (rv)
1298 return rv;
1300 ivs = crtl->hard_reg_initial_vals;
1301 if (ivs == 0)
1303 ivs = ggc_alloc<initial_value_struct> ();
1304 ivs->num_entries = 0;
1305 ivs->max_entries = 5;
1306 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1307 crtl->hard_reg_initial_vals = ivs;
1310 if (ivs->num_entries >= ivs->max_entries)
1312 ivs->max_entries += 5;
1313 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1314 ivs->max_entries);
1317 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1318 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1320 return ivs->entries[ivs->num_entries++].pseudo;
1323 /* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1328 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1330 struct initial_value_struct *ivs;
1331 int i;
1333 ivs = crtl->hard_reg_initial_vals;
1334 if (ivs != 0)
1335 for (i = 0; i < ivs->num_entries; i++)
1336 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1337 && REGNO (ivs->entries[i].hard_reg) == regno)
1338 return ivs->entries[i].pseudo;
1340 return NULL_RTX;
1343 void
1344 emit_initial_value_sets (void)
1346 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1347 int i;
1348 rtx_insn *seq;
1350 if (ivs == 0)
1351 return;
1353 start_sequence ();
1354 for (i = 0; i < ivs->num_entries; i++)
1355 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1356 seq = get_insns ();
1357 end_sequence ();
1359 emit_insn_at_entry (seq);
1362 /* Return the hardreg-pseudoreg initial values pair entry I and
1363 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1364 bool
1365 initial_value_entry (int i, rtx *hreg, rtx *preg)
1367 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1368 if (!ivs || i >= ivs->num_entries)
1369 return false;
1371 *hreg = ivs->entries[i].hard_reg;
1372 *preg = ivs->entries[i].pseudo;
1373 return true;
1376 /* These routines are responsible for converting virtual register references
1377 to the actual hard register references once RTL generation is complete.
1379 The following four variables are used for communication between the
1380 routines. They contain the offsets of the virtual registers from their
1381 respective hard registers. */
1383 static poly_int64 in_arg_offset;
1384 static poly_int64 var_offset;
1385 static poly_int64 dynamic_offset;
1386 static poly_int64 out_arg_offset;
1387 static poly_int64 cfa_offset;
1389 /* In most machines, the stack pointer register is equivalent to the bottom
1390 of the stack. */
1392 #ifndef STACK_POINTER_OFFSET
1393 #define STACK_POINTER_OFFSET 0
1394 #endif
1396 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1397 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1398 #endif
1400 /* If not defined, pick an appropriate default for the offset of dynamically
1401 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1402 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1404 #ifndef STACK_DYNAMIC_OFFSET
1406 /* The bottom of the stack points to the actual arguments. If
1407 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1408 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1409 stack space for register parameters is not pushed by the caller, but
1410 rather part of the fixed stack areas and hence not included in
1411 `crtl->outgoing_args_size'. Nevertheless, we must allow
1412 for it when allocating stack dynamic objects. */
1414 #ifdef INCOMING_REG_PARM_STACK_SPACE
1415 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1416 ((ACCUMULATE_OUTGOING_ARGS \
1417 ? (crtl->outgoing_args_size \
1418 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1419 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1420 : 0) + (STACK_POINTER_OFFSET))
1421 #else
1422 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1423 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1424 + (STACK_POINTER_OFFSET))
1425 #endif
1426 #endif
1429 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1430 is a virtual register, return the equivalent hard register and set the
1431 offset indirectly through the pointer. Otherwise, return 0. */
1433 static rtx
1434 instantiate_new_reg (rtx x, poly_int64 *poffset)
1436 rtx new_rtx;
1437 poly_int64 offset;
1439 if (x == virtual_incoming_args_rtx)
1441 if (stack_realign_drap)
1443 /* Replace virtual_incoming_args_rtx with internal arg
1444 pointer if DRAP is used to realign stack. */
1445 new_rtx = crtl->args.internal_arg_pointer;
1446 offset = 0;
1448 else
1449 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1451 else if (x == virtual_stack_vars_rtx)
1452 new_rtx = frame_pointer_rtx, offset = var_offset;
1453 else if (x == virtual_stack_dynamic_rtx)
1454 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1455 else if (x == virtual_outgoing_args_rtx)
1456 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1457 else if (x == virtual_cfa_rtx)
1459 #ifdef FRAME_POINTER_CFA_OFFSET
1460 new_rtx = frame_pointer_rtx;
1461 #else
1462 new_rtx = arg_pointer_rtx;
1463 #endif
1464 offset = cfa_offset;
1466 else if (x == virtual_preferred_stack_boundary_rtx)
1468 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1469 offset = 0;
1471 else
1472 return NULL_RTX;
1474 *poffset = offset;
1475 return new_rtx;
1478 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1479 registers present inside of *LOC. The expression is simplified,
1480 as much as possible, but is not to be considered "valid" in any sense
1481 implied by the target. Return true if any change is made. */
1483 static bool
1484 instantiate_virtual_regs_in_rtx (rtx *loc)
1486 if (!*loc)
1487 return false;
1488 bool changed = false;
1489 subrtx_ptr_iterator::array_type array;
1490 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1492 rtx *loc = *iter;
1493 if (rtx x = *loc)
1495 rtx new_rtx;
1496 poly_int64 offset;
1497 switch (GET_CODE (x))
1499 case REG:
1500 new_rtx = instantiate_new_reg (x, &offset);
1501 if (new_rtx)
1503 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1504 changed = true;
1506 iter.skip_subrtxes ();
1507 break;
1509 case PLUS:
1510 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1511 if (new_rtx)
1513 XEXP (x, 0) = new_rtx;
1514 *loc = plus_constant (GET_MODE (x), x, offset, true);
1515 changed = true;
1516 iter.skip_subrtxes ();
1517 break;
1520 /* FIXME -- from old code */
1521 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1522 we can commute the PLUS and SUBREG because pointers into the
1523 frame are well-behaved. */
1524 break;
1526 default:
1527 break;
1531 return changed;
1534 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1535 matches the predicate for insn CODE operand OPERAND. */
1537 static bool
1538 safe_insn_predicate (int code, int operand, rtx x)
1540 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1543 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1544 registers present inside of insn. The result will be a valid insn. */
1546 static void
1547 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1549 poly_int64 offset;
1550 int insn_code, i;
1551 bool any_change = false;
1552 rtx set, new_rtx, x;
1553 rtx_insn *seq;
1555 /* There are some special cases to be handled first. */
1556 set = single_set (insn);
1557 if (set)
1559 /* We're allowed to assign to a virtual register. This is interpreted
1560 to mean that the underlying register gets assigned the inverse
1561 transformation. This is used, for example, in the handling of
1562 non-local gotos. */
1563 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1564 if (new_rtx)
1566 start_sequence ();
1568 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1569 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1570 gen_int_mode (-offset, GET_MODE (new_rtx)));
1571 x = force_operand (x, new_rtx);
1572 if (x != new_rtx)
1573 emit_move_insn (new_rtx, x);
1575 seq = get_insns ();
1576 end_sequence ();
1578 emit_insn_before (seq, insn);
1579 delete_insn (insn);
1580 return;
1583 /* Handle a straight copy from a virtual register by generating a
1584 new add insn. The difference between this and falling through
1585 to the generic case is avoiding a new pseudo and eliminating a
1586 move insn in the initial rtl stream. */
1587 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1588 if (new_rtx
1589 && maybe_ne (offset, 0)
1590 && REG_P (SET_DEST (set))
1591 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1593 start_sequence ();
1595 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1596 gen_int_mode (offset,
1597 GET_MODE (SET_DEST (set))),
1598 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1599 if (x != SET_DEST (set))
1600 emit_move_insn (SET_DEST (set), x);
1602 seq = get_insns ();
1603 end_sequence ();
1605 emit_insn_before (seq, insn);
1606 delete_insn (insn);
1607 return;
1610 extract_insn (insn);
1611 insn_code = INSN_CODE (insn);
1613 /* Handle a plus involving a virtual register by determining if the
1614 operands remain valid if they're modified in place. */
1615 poly_int64 delta;
1616 if (GET_CODE (SET_SRC (set)) == PLUS
1617 && recog_data.n_operands >= 3
1618 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1619 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1620 && poly_int_rtx_p (recog_data.operand[2], &delta)
1621 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1623 offset += delta;
1625 /* If the sum is zero, then replace with a plain move. */
1626 if (known_eq (offset, 0)
1627 && REG_P (SET_DEST (set))
1628 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1630 start_sequence ();
1631 emit_move_insn (SET_DEST (set), new_rtx);
1632 seq = get_insns ();
1633 end_sequence ();
1635 emit_insn_before (seq, insn);
1636 delete_insn (insn);
1637 return;
1640 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1642 /* Using validate_change and apply_change_group here leaves
1643 recog_data in an invalid state. Since we know exactly what
1644 we want to check, do those two by hand. */
1645 if (safe_insn_predicate (insn_code, 1, new_rtx)
1646 && safe_insn_predicate (insn_code, 2, x))
1648 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1649 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1650 any_change = true;
1652 /* Fall through into the regular operand fixup loop in
1653 order to take care of operands other than 1 and 2. */
1657 else
1659 extract_insn (insn);
1660 insn_code = INSN_CODE (insn);
1663 /* In the general case, we expect virtual registers to appear only in
1664 operands, and then only as either bare registers or inside memories. */
1665 for (i = 0; i < recog_data.n_operands; ++i)
1667 x = recog_data.operand[i];
1668 switch (GET_CODE (x))
1670 case MEM:
1672 rtx addr = XEXP (x, 0);
1674 if (!instantiate_virtual_regs_in_rtx (&addr))
1675 continue;
1677 start_sequence ();
1678 x = replace_equiv_address (x, addr, true);
1679 /* It may happen that the address with the virtual reg
1680 was valid (e.g. based on the virtual stack reg, which might
1681 be acceptable to the predicates with all offsets), whereas
1682 the address now isn't anymore, for instance when the address
1683 is still offsetted, but the base reg isn't virtual-stack-reg
1684 anymore. Below we would do a force_reg on the whole operand,
1685 but this insn might actually only accept memory. Hence,
1686 before doing that last resort, try to reload the address into
1687 a register, so this operand stays a MEM. */
1688 if (!safe_insn_predicate (insn_code, i, x))
1690 addr = force_reg (GET_MODE (addr), addr);
1691 x = replace_equiv_address (x, addr, true);
1693 seq = get_insns ();
1694 end_sequence ();
1695 if (seq)
1696 emit_insn_before (seq, insn);
1698 break;
1700 case REG:
1701 new_rtx = instantiate_new_reg (x, &offset);
1702 if (new_rtx == NULL)
1703 continue;
1704 if (known_eq (offset, 0))
1705 x = new_rtx;
1706 else
1708 start_sequence ();
1710 /* Careful, special mode predicates may have stuff in
1711 insn_data[insn_code].operand[i].mode that isn't useful
1712 to us for computing a new value. */
1713 /* ??? Recognize address_operand and/or "p" constraints
1714 to see if (plus new offset) is a valid before we put
1715 this through expand_simple_binop. */
1716 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1717 gen_int_mode (offset, GET_MODE (x)),
1718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1719 seq = get_insns ();
1720 end_sequence ();
1721 emit_insn_before (seq, insn);
1723 break;
1725 case SUBREG:
1726 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1727 if (new_rtx == NULL)
1728 continue;
1729 if (maybe_ne (offset, 0))
1731 start_sequence ();
1732 new_rtx = expand_simple_binop
1733 (GET_MODE (new_rtx), PLUS, new_rtx,
1734 gen_int_mode (offset, GET_MODE (new_rtx)),
1735 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1736 seq = get_insns ();
1737 end_sequence ();
1738 emit_insn_before (seq, insn);
1740 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1741 GET_MODE (new_rtx), SUBREG_BYTE (x));
1742 gcc_assert (x);
1743 break;
1745 default:
1746 continue;
1749 /* At this point, X contains the new value for the operand.
1750 Validate the new value vs the insn predicate. Note that
1751 asm insns will have insn_code -1 here. */
1752 if (!safe_insn_predicate (insn_code, i, x))
1754 start_sequence ();
1755 if (REG_P (x))
1757 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1758 x = copy_to_reg (x);
1760 else
1761 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1762 seq = get_insns ();
1763 end_sequence ();
1764 if (seq)
1765 emit_insn_before (seq, insn);
1768 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1769 any_change = true;
1772 if (any_change)
1774 /* Propagate operand changes into the duplicates. */
1775 for (i = 0; i < recog_data.n_dups; ++i)
1776 *recog_data.dup_loc[i]
1777 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1779 /* Force re-recognition of the instruction for validation. */
1780 INSN_CODE (insn) = -1;
1783 if (asm_noperands (PATTERN (insn)) >= 0)
1785 if (!check_asm_operands (PATTERN (insn)))
1787 error_for_asm (insn, "impossible constraint in %<asm%>");
1788 /* For asm goto, instead of fixing up all the edges
1789 just clear the template and clear input and output operands
1790 and strip away clobbers. */
1791 if (JUMP_P (insn))
1793 rtx asm_op = extract_asm_operands (PATTERN (insn));
1794 PATTERN (insn) = asm_op;
1795 PUT_MODE (asm_op, VOIDmode);
1796 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1797 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1798 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1799 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1800 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1802 else
1803 delete_insn (insn);
1806 else
1808 if (recog_memoized (insn) < 0)
1809 fatal_insn_not_found (insn);
1813 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1814 do any instantiation required. */
1816 void
1817 instantiate_decl_rtl (rtx x)
1819 rtx addr;
1821 if (x == 0)
1822 return;
1824 /* If this is a CONCAT, recurse for the pieces. */
1825 if (GET_CODE (x) == CONCAT)
1827 instantiate_decl_rtl (XEXP (x, 0));
1828 instantiate_decl_rtl (XEXP (x, 1));
1829 return;
1832 /* If this is not a MEM, no need to do anything. Similarly if the
1833 address is a constant or a register that is not a virtual register. */
1834 if (!MEM_P (x))
1835 return;
1837 addr = XEXP (x, 0);
1838 if (CONSTANT_P (addr)
1839 || (REG_P (addr)
1840 && !VIRTUAL_REGISTER_P (addr)))
1841 return;
1843 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1846 /* Helper for instantiate_decls called via walk_tree: Process all decls
1847 in the given DECL_VALUE_EXPR. */
1849 static tree
1850 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1852 tree t = *tp;
1853 if (! EXPR_P (t))
1855 *walk_subtrees = 0;
1856 if (DECL_P (t))
1858 if (DECL_RTL_SET_P (t))
1859 instantiate_decl_rtl (DECL_RTL (t));
1860 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1861 && DECL_INCOMING_RTL (t))
1862 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1863 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1864 && DECL_HAS_VALUE_EXPR_P (t))
1866 tree v = DECL_VALUE_EXPR (t);
1867 walk_tree (&v, instantiate_expr, NULL, NULL);
1871 return NULL;
1874 /* Subroutine of instantiate_decls: Process all decls in the given
1875 BLOCK node and all its subblocks. */
1877 static void
1878 instantiate_decls_1 (tree let)
1880 tree t;
1882 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1884 if (DECL_RTL_SET_P (t))
1885 instantiate_decl_rtl (DECL_RTL (t));
1886 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1888 tree v = DECL_VALUE_EXPR (t);
1889 walk_tree (&v, instantiate_expr, NULL, NULL);
1893 /* Process all subblocks. */
1894 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1895 instantiate_decls_1 (t);
1898 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1899 all virtual registers in their DECL_RTL's. */
1901 static void
1902 instantiate_decls (tree fndecl)
1904 tree decl;
1905 unsigned ix;
1907 /* Process all parameters of the function. */
1908 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1910 instantiate_decl_rtl (DECL_RTL (decl));
1911 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1912 if (DECL_HAS_VALUE_EXPR_P (decl))
1914 tree v = DECL_VALUE_EXPR (decl);
1915 walk_tree (&v, instantiate_expr, NULL, NULL);
1919 if ((decl = DECL_RESULT (fndecl))
1920 && TREE_CODE (decl) == RESULT_DECL)
1922 if (DECL_RTL_SET_P (decl))
1923 instantiate_decl_rtl (DECL_RTL (decl));
1924 if (DECL_HAS_VALUE_EXPR_P (decl))
1926 tree v = DECL_VALUE_EXPR (decl);
1927 walk_tree (&v, instantiate_expr, NULL, NULL);
1931 /* Process the saved static chain if it exists. */
1932 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1933 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1934 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1936 /* Now process all variables defined in the function or its subblocks. */
1937 if (DECL_INITIAL (fndecl))
1938 instantiate_decls_1 (DECL_INITIAL (fndecl));
1940 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1941 if (DECL_RTL_SET_P (decl))
1942 instantiate_decl_rtl (DECL_RTL (decl));
1943 vec_free (cfun->local_decls);
1946 /* Pass through the INSNS of function FNDECL and convert virtual register
1947 references to hard register references. */
1949 static void
1950 instantiate_virtual_regs (void)
1952 rtx_insn *insn;
1954 /* Compute the offsets to use for this function. */
1955 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1956 var_offset = targetm.starting_frame_offset ();
1957 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1958 out_arg_offset = STACK_POINTER_OFFSET;
1959 #ifdef FRAME_POINTER_CFA_OFFSET
1960 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1961 #else
1962 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1963 #endif
1965 /* Initialize recognition, indicating that volatile is OK. */
1966 init_recog ();
1968 /* Scan through all the insns, instantiating every virtual register still
1969 present. */
1970 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1971 if (INSN_P (insn))
1973 /* These patterns in the instruction stream can never be recognized.
1974 Fortunately, they shouldn't contain virtual registers either. */
1975 if (GET_CODE (PATTERN (insn)) == USE
1976 || GET_CODE (PATTERN (insn)) == CLOBBER
1977 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1978 || DEBUG_MARKER_INSN_P (insn))
1979 continue;
1980 else if (DEBUG_BIND_INSN_P (insn))
1981 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1982 else
1983 instantiate_virtual_regs_in_insn (insn);
1985 if (insn->deleted ())
1986 continue;
1988 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1990 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1991 if (CALL_P (insn))
1992 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1995 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1996 instantiate_decls (current_function_decl);
1998 targetm.instantiate_decls ();
2000 /* Indicate that, from now on, assign_stack_local should use
2001 frame_pointer_rtx. */
2002 virtuals_instantiated = 1;
2005 namespace {
2007 const pass_data pass_data_instantiate_virtual_regs =
2009 RTL_PASS, /* type */
2010 "vregs", /* name */
2011 OPTGROUP_NONE, /* optinfo_flags */
2012 TV_NONE, /* tv_id */
2013 0, /* properties_required */
2014 0, /* properties_provided */
2015 0, /* properties_destroyed */
2016 0, /* todo_flags_start */
2017 0, /* todo_flags_finish */
2020 class pass_instantiate_virtual_regs : public rtl_opt_pass
2022 public:
2023 pass_instantiate_virtual_regs (gcc::context *ctxt)
2024 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2027 /* opt_pass methods: */
2028 unsigned int execute (function *) final override
2030 instantiate_virtual_regs ();
2031 return 0;
2034 }; // class pass_instantiate_virtual_regs
2036 } // anon namespace
2038 rtl_opt_pass *
2039 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2041 return new pass_instantiate_virtual_regs (ctxt);
2045 /* Return true if EXP is an aggregate type (or a value with aggregate type).
2046 This means a type for which function calls must pass an address to the
2047 function or get an address back from the function.
2048 EXP may be a type node or an expression (whose type is tested). */
2050 bool
2051 aggregate_value_p (const_tree exp, const_tree fntype)
2053 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2054 int i, regno, nregs;
2055 rtx reg;
2057 if (fntype)
2058 switch (TREE_CODE (fntype))
2060 case CALL_EXPR:
2062 tree fndecl = get_callee_fndecl (fntype);
2063 if (fndecl)
2064 fntype = TREE_TYPE (fndecl);
2065 else if (CALL_EXPR_FN (fntype))
2066 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2067 else
2068 /* For internal functions, assume nothing needs to be
2069 returned in memory. */
2070 return false;
2072 break;
2073 case FUNCTION_DECL:
2074 fntype = TREE_TYPE (fntype);
2075 break;
2076 case FUNCTION_TYPE:
2077 case METHOD_TYPE:
2078 break;
2079 case IDENTIFIER_NODE:
2080 fntype = NULL_TREE;
2081 break;
2082 default:
2083 /* We don't expect other tree types here. */
2084 gcc_unreachable ();
2087 if (VOID_TYPE_P (type))
2088 return false;
2090 if (error_operand_p (fntype))
2091 return false;
2093 /* If a record should be passed the same as its first (and only) member
2094 don't pass it as an aggregate. */
2095 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2096 return aggregate_value_p (first_field (type), fntype);
2098 /* If the front end has decided that this needs to be passed by
2099 reference, do so. */
2100 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2101 && DECL_BY_REFERENCE (exp))
2102 return true;
2104 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2105 if (fntype && TREE_ADDRESSABLE (fntype))
2106 return true;
2108 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2109 and thus can't be returned in registers. */
2110 if (TREE_ADDRESSABLE (type))
2111 return true;
2113 if (TYPE_EMPTY_P (type))
2114 return false;
2116 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2117 return true;
2119 if (targetm.calls.return_in_memory (type, fntype))
2120 return true;
2122 /* Make sure we have suitable call-clobbered regs to return
2123 the value in; if not, we must return it in memory. */
2124 reg = hard_function_value (type, 0, fntype, 0);
2126 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2127 it is OK. */
2128 if (!REG_P (reg))
2129 return false;
2131 /* Use the default ABI if the type of the function isn't known.
2132 The scheme for handling interoperability between different ABIs
2133 requires us to be able to tell when we're calling a function with
2134 a nondefault ABI. */
2135 const predefined_function_abi &abi = (fntype
2136 ? fntype_abi (fntype)
2137 : default_function_abi);
2138 regno = REGNO (reg);
2139 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2140 for (i = 0; i < nregs; i++)
2141 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2142 return true;
2144 return false;
2147 /* Return true if we should assign DECL a pseudo register; false if it
2148 should live on the local stack. */
2150 bool
2151 use_register_for_decl (const_tree decl)
2153 if (TREE_CODE (decl) == SSA_NAME)
2155 /* We often try to use the SSA_NAME, instead of its underlying
2156 decl, to get type information and guide decisions, to avoid
2157 differences of behavior between anonymous and named
2158 variables, but in this one case we have to go for the actual
2159 variable if there is one. The main reason is that, at least
2160 at -O0, we want to place user variables on the stack, but we
2161 don't mind using pseudos for anonymous or ignored temps.
2162 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2163 should go in pseudos, whereas their corresponding variables
2164 might have to go on the stack. So, disregarding the decl
2165 here would negatively impact debug info at -O0, enable
2166 coalescing between SSA_NAMEs that ought to get different
2167 stack/pseudo assignments, and get the incoming argument
2168 processing thoroughly confused by PARM_DECLs expected to live
2169 in stack slots but assigned to pseudos. */
2170 if (!SSA_NAME_VAR (decl))
2171 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2172 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2174 decl = SSA_NAME_VAR (decl);
2177 /* Honor volatile. */
2178 if (TREE_SIDE_EFFECTS (decl))
2179 return false;
2181 /* Honor addressability. */
2182 if (TREE_ADDRESSABLE (decl))
2183 return false;
2185 /* RESULT_DECLs are a bit special in that they're assigned without
2186 regard to use_register_for_decl, but we generally only store in
2187 them. If we coalesce their SSA NAMEs, we'd better return a
2188 result that matches the assignment in expand_function_start. */
2189 if (TREE_CODE (decl) == RESULT_DECL)
2191 /* If it's not an aggregate, we're going to use a REG or a
2192 PARALLEL containing a REG. */
2193 if (!aggregate_value_p (decl, current_function_decl))
2194 return true;
2196 /* If expand_function_start determines the return value, we'll
2197 use MEM if it's not by reference. */
2198 if (cfun->returns_pcc_struct
2199 || (targetm.calls.struct_value_rtx
2200 (TREE_TYPE (current_function_decl), 1)))
2201 return DECL_BY_REFERENCE (decl);
2203 /* Otherwise, we're taking an extra all.function_result_decl
2204 argument. It's set up in assign_parms_augmented_arg_list,
2205 under the (negated) conditions above, and then it's used to
2206 set up the RESULT_DECL rtl in assign_params, after looping
2207 over all parameters. Now, if the RESULT_DECL is not by
2208 reference, we'll use a MEM either way. */
2209 if (!DECL_BY_REFERENCE (decl))
2210 return false;
2212 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2213 the function_result_decl's assignment. Since it's a pointer,
2214 we can short-circuit a number of the tests below, and we must
2215 duplicate them because we don't have the function_result_decl
2216 to test. */
2217 if (!targetm.calls.allocate_stack_slots_for_args ())
2218 return true;
2219 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2220 if (optimize)
2221 return true;
2222 if (cfun->tail_call_marked)
2223 return true;
2224 /* We don't set DECL_REGISTER for the function_result_decl. */
2225 return false;
2228 /* Only register-like things go in registers. */
2229 if (DECL_MODE (decl) == BLKmode)
2230 return false;
2232 /* If -ffloat-store specified, don't put explicit float variables
2233 into registers. */
2234 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2235 propagates values across these stores, and it probably shouldn't. */
2236 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2237 return false;
2239 if (!targetm.calls.allocate_stack_slots_for_args ())
2240 return true;
2242 /* If we're not interested in tracking debugging information for
2243 this decl, then we can certainly put it in a register. */
2244 if (DECL_IGNORED_P (decl))
2245 return true;
2247 if (optimize)
2248 return true;
2250 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2251 dangling reference in case the parameter is passed by reference. */
2252 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2253 return true;
2255 if (!DECL_REGISTER (decl))
2256 return false;
2258 /* When not optimizing, disregard register keyword for types that
2259 could have methods, otherwise the methods won't be callable from
2260 the debugger. */
2261 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2262 return false;
2264 return true;
2267 /* Structures to communicate between the subroutines of assign_parms.
2268 The first holds data persistent across all parameters, the second
2269 is cleared out for each parameter. */
2271 struct assign_parm_data_all
2273 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2274 should become a job of the target or otherwise encapsulated. */
2275 CUMULATIVE_ARGS args_so_far_v;
2276 cumulative_args_t args_so_far;
2277 struct args_size stack_args_size;
2278 tree function_result_decl;
2279 tree orig_fnargs;
2280 rtx_insn *first_conversion_insn;
2281 rtx_insn *last_conversion_insn;
2282 HOST_WIDE_INT pretend_args_size;
2283 HOST_WIDE_INT extra_pretend_bytes;
2284 int reg_parm_stack_space;
2287 struct assign_parm_data_one
2289 tree nominal_type;
2290 function_arg_info arg;
2291 rtx entry_parm;
2292 rtx stack_parm;
2293 machine_mode nominal_mode;
2294 machine_mode passed_mode;
2295 struct locate_and_pad_arg_data locate;
2296 int partial;
2299 /* A subroutine of assign_parms. Initialize ALL. */
2301 static void
2302 assign_parms_initialize_all (struct assign_parm_data_all *all)
2304 tree fntype ATTRIBUTE_UNUSED;
2306 memset (all, 0, sizeof (*all));
2308 fntype = TREE_TYPE (current_function_decl);
2310 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2311 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2312 #else
2313 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2314 current_function_decl, -1);
2315 #endif
2316 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2318 #ifdef INCOMING_REG_PARM_STACK_SPACE
2319 all->reg_parm_stack_space
2320 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2321 #endif
2324 /* If ARGS contains entries with complex types, split the entry into two
2325 entries of the component type. Return a new list of substitutions are
2326 needed, else the old list. */
2328 static void
2329 split_complex_args (vec<tree> *args)
2331 unsigned i;
2332 tree p;
2334 FOR_EACH_VEC_ELT (*args, i, p)
2336 tree type = TREE_TYPE (p);
2337 if (TREE_CODE (type) == COMPLEX_TYPE
2338 && targetm.calls.split_complex_arg (type))
2340 tree decl;
2341 tree subtype = TREE_TYPE (type);
2342 bool addressable = TREE_ADDRESSABLE (p);
2344 /* Rewrite the PARM_DECL's type with its component. */
2345 p = copy_node (p);
2346 TREE_TYPE (p) = subtype;
2347 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2348 SET_DECL_MODE (p, VOIDmode);
2349 DECL_SIZE (p) = NULL;
2350 DECL_SIZE_UNIT (p) = NULL;
2351 /* If this arg must go in memory, put it in a pseudo here.
2352 We can't allow it to go in memory as per normal parms,
2353 because the usual place might not have the imag part
2354 adjacent to the real part. */
2355 DECL_ARTIFICIAL (p) = addressable;
2356 DECL_IGNORED_P (p) = addressable;
2357 TREE_ADDRESSABLE (p) = 0;
2358 layout_decl (p, 0);
2359 (*args)[i] = p;
2361 /* Build a second synthetic decl. */
2362 decl = build_decl (EXPR_LOCATION (p),
2363 PARM_DECL, NULL_TREE, subtype);
2364 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2365 DECL_ARTIFICIAL (decl) = addressable;
2366 DECL_IGNORED_P (decl) = addressable;
2367 layout_decl (decl, 0);
2368 args->safe_insert (++i, decl);
2373 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2374 the hidden struct return argument, and (abi willing) complex args.
2375 Return the new parameter list. */
2377 static vec<tree>
2378 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2380 tree fndecl = current_function_decl;
2381 tree fntype = TREE_TYPE (fndecl);
2382 vec<tree> fnargs = vNULL;
2383 tree arg;
2385 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2386 fnargs.safe_push (arg);
2388 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2390 /* If struct value address is treated as the first argument, make it so. */
2391 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2392 && ! cfun->returns_pcc_struct
2393 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2395 tree type = build_pointer_type (TREE_TYPE (fntype));
2396 tree decl;
2398 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2399 PARM_DECL, get_identifier (".result_ptr"), type);
2400 DECL_ARG_TYPE (decl) = type;
2401 DECL_ARTIFICIAL (decl) = 1;
2402 DECL_NAMELESS (decl) = 1;
2403 TREE_CONSTANT (decl) = 1;
2404 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2405 changes, the end of the RESULT_DECL handling block in
2406 use_register_for_decl must be adjusted to match. */
2408 DECL_CHAIN (decl) = all->orig_fnargs;
2409 all->orig_fnargs = decl;
2410 fnargs.safe_insert (0, decl);
2412 all->function_result_decl = decl;
2415 /* If the target wants to split complex arguments into scalars, do so. */
2416 if (targetm.calls.split_complex_arg)
2417 split_complex_args (&fnargs);
2419 return fnargs;
2422 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2423 data for the parameter. Incorporate ABI specifics such as pass-by-
2424 reference and type promotion. */
2426 static void
2427 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2428 struct assign_parm_data_one *data)
2430 int unsignedp;
2432 *data = assign_parm_data_one ();
2434 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2435 if (!cfun->stdarg)
2436 data->arg.named = 1; /* No variadic parms. */
2437 else if (DECL_CHAIN (parm))
2438 data->arg.named = 1; /* Not the last non-variadic parm. */
2439 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2440 data->arg.named = 1; /* Only variadic ones are unnamed. */
2441 else
2442 data->arg.named = 0; /* Treat as variadic. */
2444 data->nominal_type = TREE_TYPE (parm);
2445 data->arg.type = DECL_ARG_TYPE (parm);
2447 /* Look out for errors propagating this far. Also, if the parameter's
2448 type is void then its value doesn't matter. */
2449 if (TREE_TYPE (parm) == error_mark_node
2450 /* This can happen after weird syntax errors
2451 or if an enum type is defined among the parms. */
2452 || TREE_CODE (parm) != PARM_DECL
2453 || data->arg.type == NULL
2454 || VOID_TYPE_P (data->nominal_type))
2456 data->nominal_type = data->arg.type = void_type_node;
2457 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2458 return;
2461 /* Find mode of arg as it is passed, and mode of arg as it should be
2462 during execution of this function. */
2463 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2464 data->nominal_mode = TYPE_MODE (data->nominal_type);
2466 /* If the parm is to be passed as a transparent union or record, use the
2467 type of the first field for the tests below. We have already verified
2468 that the modes are the same. */
2469 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2470 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2471 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2473 /* See if this arg was passed by invisible reference. */
2474 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2476 data->nominal_type = data->arg.type;
2477 data->passed_mode = data->nominal_mode = data->arg.mode;
2480 /* Find mode as it is passed by the ABI. */
2481 unsignedp = TYPE_UNSIGNED (data->arg.type);
2482 data->arg.mode
2483 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2484 TREE_TYPE (current_function_decl), 0);
2487 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2489 static void
2490 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2491 struct assign_parm_data_one *data, bool no_rtl)
2493 int varargs_pretend_bytes = 0;
2495 function_arg_info last_named_arg = data->arg;
2496 last_named_arg.named = true;
2497 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2498 &varargs_pretend_bytes, no_rtl);
2500 /* If the back-end has requested extra stack space, record how much is
2501 needed. Do not change pretend_args_size otherwise since it may be
2502 nonzero from an earlier partial argument. */
2503 if (varargs_pretend_bytes > 0)
2504 all->pretend_args_size = varargs_pretend_bytes;
2507 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2508 the incoming location of the current parameter. */
2510 static void
2511 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2512 struct assign_parm_data_one *data)
2514 HOST_WIDE_INT pretend_bytes = 0;
2515 rtx entry_parm;
2516 bool in_regs;
2518 if (data->arg.mode == VOIDmode)
2520 data->entry_parm = data->stack_parm = const0_rtx;
2521 return;
2524 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2525 data->arg.type);
2527 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2528 data->arg);
2529 if (entry_parm == 0)
2530 data->arg.mode = data->passed_mode;
2532 /* Determine parm's home in the stack, in case it arrives in the stack
2533 or we should pretend it did. Compute the stack position and rtx where
2534 the argument arrives and its size.
2536 There is one complexity here: If this was a parameter that would
2537 have been passed in registers, but wasn't only because it is
2538 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2539 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2540 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2541 as it was the previous time. */
2542 in_regs = (entry_parm != 0);
2543 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2544 in_regs = true;
2545 #endif
2546 if (!in_regs && !data->arg.named)
2548 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2550 rtx tem;
2551 function_arg_info named_arg = data->arg;
2552 named_arg.named = true;
2553 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2554 named_arg);
2555 in_regs = tem != NULL;
2559 /* If this parameter was passed both in registers and in the stack, use
2560 the copy on the stack. */
2561 if (targetm.calls.must_pass_in_stack (data->arg))
2562 entry_parm = 0;
2564 if (entry_parm)
2566 int partial;
2568 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2569 data->partial = partial;
2571 /* The caller might already have allocated stack space for the
2572 register parameters. */
2573 if (partial != 0 && all->reg_parm_stack_space == 0)
2575 /* Part of this argument is passed in registers and part
2576 is passed on the stack. Ask the prologue code to extend
2577 the stack part so that we can recreate the full value.
2579 PRETEND_BYTES is the size of the registers we need to store.
2580 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2581 stack space that the prologue should allocate.
2583 Internally, gcc assumes that the argument pointer is aligned
2584 to STACK_BOUNDARY bits. This is used both for alignment
2585 optimizations (see init_emit) and to locate arguments that are
2586 aligned to more than PARM_BOUNDARY bits. We must preserve this
2587 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2588 a stack boundary. */
2590 /* We assume at most one partial arg, and it must be the first
2591 argument on the stack. */
2592 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2594 pretend_bytes = partial;
2595 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2597 /* We want to align relative to the actual stack pointer, so
2598 don't include this in the stack size until later. */
2599 all->extra_pretend_bytes = all->pretend_args_size;
2603 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2604 all->reg_parm_stack_space,
2605 entry_parm ? data->partial : 0, current_function_decl,
2606 &all->stack_args_size, &data->locate);
2608 /* Update parm_stack_boundary if this parameter is passed in the
2609 stack. */
2610 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2611 crtl->parm_stack_boundary = data->locate.boundary;
2613 /* Adjust offsets to include the pretend args. */
2614 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2615 data->locate.slot_offset.constant += pretend_bytes;
2616 data->locate.offset.constant += pretend_bytes;
2618 data->entry_parm = entry_parm;
2621 /* A subroutine of assign_parms. If there is actually space on the stack
2622 for this parm, count it in stack_args_size and return true. */
2624 static bool
2625 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2626 struct assign_parm_data_one *data)
2628 /* Trivially true if we've no incoming register. */
2629 if (data->entry_parm == NULL)
2631 /* Also true if we're partially in registers and partially not,
2632 since we've arranged to drop the entire argument on the stack. */
2633 else if (data->partial != 0)
2635 /* Also true if the target says that it's passed in both registers
2636 and on the stack. */
2637 else if (GET_CODE (data->entry_parm) == PARALLEL
2638 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2640 /* Also true if the target says that there's stack allocated for
2641 all register parameters. */
2642 else if (all->reg_parm_stack_space > 0)
2644 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2645 else
2646 return false;
2648 all->stack_args_size.constant += data->locate.size.constant;
2649 if (data->locate.size.var)
2650 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2652 return true;
2655 /* A subroutine of assign_parms. Given that this parameter is allocated
2656 stack space by the ABI, find it. */
2658 static void
2659 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2661 rtx offset_rtx, stack_parm;
2662 unsigned int align, boundary;
2664 /* If we're passing this arg using a reg, make its stack home the
2665 aligned stack slot. */
2666 if (data->entry_parm)
2667 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2668 else
2669 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2671 stack_parm = crtl->args.internal_arg_pointer;
2672 if (offset_rtx != const0_rtx)
2673 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2674 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2676 if (!data->arg.pass_by_reference)
2678 set_mem_attributes (stack_parm, parm, 1);
2679 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2680 while promoted mode's size is needed. */
2681 if (data->arg.mode != BLKmode
2682 && data->arg.mode != DECL_MODE (parm))
2684 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2685 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2687 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2688 data->arg.mode);
2689 if (maybe_ne (offset, 0))
2690 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2695 boundary = data->locate.boundary;
2696 align = BITS_PER_UNIT;
2698 /* If we're padding upward, we know that the alignment of the slot
2699 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2700 intentionally forcing upward padding. Otherwise we have to come
2701 up with a guess at the alignment based on OFFSET_RTX. */
2702 poly_int64 offset;
2703 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2704 align = boundary;
2705 else if (data->locate.where_pad == PAD_UPWARD)
2707 align = boundary;
2708 /* If the argument offset is actually more aligned than the nominal
2709 stack slot boundary, take advantage of that excess alignment.
2710 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2711 if (poly_int_rtx_p (offset_rtx, &offset)
2712 && known_eq (STACK_POINTER_OFFSET, 0))
2714 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2715 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2716 offset_align = STACK_BOUNDARY;
2717 align = MAX (align, offset_align);
2720 else if (poly_int_rtx_p (offset_rtx, &offset))
2722 align = least_bit_hwi (boundary);
2723 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2724 if (offset_align != 0)
2725 align = MIN (align, offset_align);
2727 set_mem_align (stack_parm, align);
2729 if (data->entry_parm)
2730 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2732 data->stack_parm = stack_parm;
2735 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2736 always valid and contiguous. */
2738 static void
2739 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2741 rtx entry_parm = data->entry_parm;
2742 rtx stack_parm = data->stack_parm;
2744 /* If this parm was passed part in regs and part in memory, pretend it
2745 arrived entirely in memory by pushing the register-part onto the stack.
2746 In the special case of a DImode or DFmode that is split, we could put
2747 it together in a pseudoreg directly, but for now that's not worth
2748 bothering with. */
2749 if (data->partial != 0)
2751 /* Handle calls that pass values in multiple non-contiguous
2752 locations. The Irix 6 ABI has examples of this. */
2753 if (GET_CODE (entry_parm) == PARALLEL)
2754 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2755 data->arg.type, int_size_in_bytes (data->arg.type));
2756 else
2758 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2759 move_block_from_reg (REGNO (entry_parm),
2760 validize_mem (copy_rtx (stack_parm)),
2761 data->partial / UNITS_PER_WORD);
2764 entry_parm = stack_parm;
2767 /* If we didn't decide this parm came in a register, by default it came
2768 on the stack. */
2769 else if (entry_parm == NULL)
2770 entry_parm = stack_parm;
2772 /* When an argument is passed in multiple locations, we can't make use
2773 of this information, but we can save some copying if the whole argument
2774 is passed in a single register. */
2775 else if (GET_CODE (entry_parm) == PARALLEL
2776 && data->nominal_mode != BLKmode
2777 && data->passed_mode != BLKmode)
2779 size_t i, len = XVECLEN (entry_parm, 0);
2781 for (i = 0; i < len; i++)
2782 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2783 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2784 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2785 == data->passed_mode)
2786 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2788 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2789 break;
2793 data->entry_parm = entry_parm;
2796 /* A subroutine of assign_parms. Reconstitute any values which were
2797 passed in multiple registers and would fit in a single register. */
2799 static void
2800 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2802 rtx entry_parm = data->entry_parm;
2804 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2805 This can be done with register operations rather than on the
2806 stack, even if we will store the reconstituted parameter on the
2807 stack later. */
2808 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2810 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2811 emit_group_store (parmreg, entry_parm, data->arg.type,
2812 GET_MODE_SIZE (GET_MODE (entry_parm)));
2813 entry_parm = parmreg;
2816 data->entry_parm = entry_parm;
2819 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2820 always valid and properly aligned. */
2822 static void
2823 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2825 rtx stack_parm = data->stack_parm;
2827 /* If we can't trust the parm stack slot to be aligned enough for its
2828 ultimate type, don't use that slot after entry. We'll make another
2829 stack slot, if we need one. */
2830 if (stack_parm
2831 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2832 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2833 != CODE_FOR_nothing)
2834 || targetm.slow_unaligned_access (data->nominal_mode,
2835 MEM_ALIGN (stack_parm))))
2836 || (data->nominal_type
2837 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2838 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2839 stack_parm = NULL;
2841 /* If parm was passed in memory, and we need to convert it on entry,
2842 don't store it back in that same slot. */
2843 else if (data->entry_parm == stack_parm
2844 && data->nominal_mode != BLKmode
2845 && data->nominal_mode != data->passed_mode)
2846 stack_parm = NULL;
2848 /* If stack protection is in effect for this function, don't leave any
2849 pointers in their passed stack slots. */
2850 else if (crtl->stack_protect_guard
2851 && (flag_stack_protect == SPCT_FLAG_ALL
2852 || data->arg.pass_by_reference
2853 || POINTER_TYPE_P (data->nominal_type)))
2854 stack_parm = NULL;
2856 data->stack_parm = stack_parm;
2859 /* A subroutine of assign_parms. Return true if the current parameter
2860 should be stored as a BLKmode in the current frame. */
2862 static bool
2863 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2865 if (data->nominal_mode == BLKmode)
2866 return true;
2867 if (GET_MODE (data->entry_parm) == BLKmode)
2868 return true;
2870 #ifdef BLOCK_REG_PADDING
2871 /* Only assign_parm_setup_block knows how to deal with register arguments
2872 that are padded at the least significant end. */
2873 if (REG_P (data->entry_parm)
2874 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2875 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2876 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2877 return true;
2878 #endif
2880 return false;
2883 /* A subroutine of assign_parms. Arrange for the parameter to be
2884 present and valid in DATA->STACK_RTL. */
2886 static void
2887 assign_parm_setup_block (struct assign_parm_data_all *all,
2888 tree parm, struct assign_parm_data_one *data)
2890 rtx entry_parm = data->entry_parm;
2891 rtx stack_parm = data->stack_parm;
2892 rtx target_reg = NULL_RTX;
2893 bool in_conversion_seq = false;
2894 HOST_WIDE_INT size;
2895 HOST_WIDE_INT size_stored;
2897 if (GET_CODE (entry_parm) == PARALLEL)
2898 entry_parm = emit_group_move_into_temps (entry_parm);
2900 /* If we want the parameter in a pseudo, don't use a stack slot. */
2901 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2903 tree def = ssa_default_def (cfun, parm);
2904 gcc_assert (def);
2905 machine_mode mode = promote_ssa_mode (def, NULL);
2906 rtx reg = gen_reg_rtx (mode);
2907 if (GET_CODE (reg) != CONCAT)
2908 stack_parm = reg;
2909 else
2911 target_reg = reg;
2912 /* Avoid allocating a stack slot, if there isn't one
2913 preallocated by the ABI. It might seem like we should
2914 always prefer a pseudo, but converting between
2915 floating-point and integer modes goes through the stack
2916 on various machines, so it's better to use the reserved
2917 stack slot than to risk wasting it and allocating more
2918 for the conversion. */
2919 if (stack_parm == NULL_RTX)
2921 int save = generating_concat_p;
2922 generating_concat_p = 0;
2923 stack_parm = gen_reg_rtx (mode);
2924 generating_concat_p = save;
2927 data->stack_parm = NULL;
2930 size = int_size_in_bytes (data->arg.type);
2931 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2932 if (stack_parm == 0)
2934 HOST_WIDE_INT parm_align
2935 = (STRICT_ALIGNMENT
2936 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2938 SET_DECL_ALIGN (parm, parm_align);
2939 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2941 rtx allocsize = gen_int_mode (size_stored, Pmode);
2942 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2943 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2944 MAX_SUPPORTED_STACK_ALIGNMENT);
2945 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2946 DECL_ALIGN (parm));
2947 mark_reg_pointer (addr, DECL_ALIGN (parm));
2948 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2949 MEM_NOTRAP_P (stack_parm) = 1;
2951 else
2952 stack_parm = assign_stack_local (BLKmode, size_stored,
2953 DECL_ALIGN (parm));
2954 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2955 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2956 set_mem_attributes (stack_parm, parm, 1);
2959 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2960 calls that pass values in multiple non-contiguous locations. */
2961 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2963 rtx mem;
2965 /* Note that we will be storing an integral number of words.
2966 So we have to be careful to ensure that we allocate an
2967 integral number of words. We do this above when we call
2968 assign_stack_local if space was not allocated in the argument
2969 list. If it was, this will not work if PARM_BOUNDARY is not
2970 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2971 if it becomes a problem. Exception is when BLKmode arrives
2972 with arguments not conforming to word_mode. */
2974 if (data->stack_parm == 0)
2976 else if (GET_CODE (entry_parm) == PARALLEL)
2978 else
2979 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2981 mem = validize_mem (copy_rtx (stack_parm));
2983 /* Handle values in multiple non-contiguous locations. */
2984 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2985 emit_group_store (mem, entry_parm, data->arg.type, size);
2986 else if (GET_CODE (entry_parm) == PARALLEL)
2988 push_to_sequence2 (all->first_conversion_insn,
2989 all->last_conversion_insn);
2990 emit_group_store (mem, entry_parm, data->arg.type, size);
2991 all->first_conversion_insn = get_insns ();
2992 all->last_conversion_insn = get_last_insn ();
2993 end_sequence ();
2994 in_conversion_seq = true;
2997 else if (size == 0)
3000 /* If SIZE is that of a mode no bigger than a word, just use
3001 that mode's store operation. */
3002 else if (size <= UNITS_PER_WORD)
3004 unsigned int bits = size * BITS_PER_UNIT;
3005 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3007 if (mode != BLKmode
3008 #ifdef BLOCK_REG_PADDING
3009 && (size == UNITS_PER_WORD
3010 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3011 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3012 #endif
3015 rtx reg;
3017 /* We are really truncating a word_mode value containing
3018 SIZE bytes into a value of mode MODE. If such an
3019 operation requires no actual instructions, we can refer
3020 to the value directly in mode MODE, otherwise we must
3021 start with the register in word_mode and explicitly
3022 convert it. */
3023 if (mode == word_mode
3024 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3025 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3026 else
3028 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3029 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3032 /* We use adjust_address to get a new MEM with the mode
3033 changed. adjust_address is better than change_address
3034 for this purpose because adjust_address does not lose
3035 the MEM_EXPR associated with the MEM.
3037 If the MEM_EXPR is lost, then optimizations like DSE
3038 assume the MEM escapes and thus is not subject to DSE. */
3039 emit_move_insn (adjust_address (mem, mode, 0), reg);
3042 #ifdef BLOCK_REG_PADDING
3043 /* Storing the register in memory as a full word, as
3044 move_block_from_reg below would do, and then using the
3045 MEM in a smaller mode, has the effect of shifting right
3046 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3047 shifting must be explicit. */
3048 else if (!MEM_P (mem))
3050 rtx x;
3052 /* If the assert below fails, we should have taken the
3053 mode != BLKmode path above, unless we have downward
3054 padding of smaller-than-word arguments on a machine
3055 with little-endian bytes, which would likely require
3056 additional changes to work correctly. */
3057 gcc_checking_assert (BYTES_BIG_ENDIAN
3058 && (BLOCK_REG_PADDING (mode,
3059 data->arg.type, 1)
3060 == PAD_UPWARD));
3062 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3064 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3065 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3066 NULL_RTX, 1);
3067 x = force_reg (word_mode, x);
3068 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3070 emit_move_insn (mem, x);
3072 #endif
3074 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3075 machine must be aligned to the left before storing
3076 to memory. Note that the previous test doesn't
3077 handle all cases (e.g. SIZE == 3). */
3078 else if (size != UNITS_PER_WORD
3079 #ifdef BLOCK_REG_PADDING
3080 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3081 == PAD_DOWNWARD)
3082 #else
3083 && BYTES_BIG_ENDIAN
3084 #endif
3087 rtx tem, x;
3088 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3089 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3091 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3092 tem = change_address (mem, word_mode, 0);
3093 emit_move_insn (tem, x);
3095 else
3096 move_block_from_reg (REGNO (entry_parm), mem,
3097 size_stored / UNITS_PER_WORD);
3099 else if (!MEM_P (mem))
3101 gcc_checking_assert (size > UNITS_PER_WORD);
3102 #ifdef BLOCK_REG_PADDING
3103 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3104 data->arg.type, 0)
3105 == PAD_UPWARD);
3106 #endif
3107 emit_move_insn (mem, entry_parm);
3109 else
3110 move_block_from_reg (REGNO (entry_parm), mem,
3111 size_stored / UNITS_PER_WORD);
3113 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3115 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3116 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3117 BLOCK_OP_NORMAL);
3118 all->first_conversion_insn = get_insns ();
3119 all->last_conversion_insn = get_last_insn ();
3120 end_sequence ();
3121 in_conversion_seq = true;
3124 if (target_reg)
3126 if (!in_conversion_seq)
3127 emit_move_insn (target_reg, stack_parm);
3128 else
3130 push_to_sequence2 (all->first_conversion_insn,
3131 all->last_conversion_insn);
3132 emit_move_insn (target_reg, stack_parm);
3133 all->first_conversion_insn = get_insns ();
3134 all->last_conversion_insn = get_last_insn ();
3135 end_sequence ();
3137 stack_parm = target_reg;
3140 data->stack_parm = stack_parm;
3141 set_parm_rtl (parm, stack_parm);
3144 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3145 parameter. Get it there. Perform all ABI specified conversions. */
3147 static void
3148 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3149 struct assign_parm_data_one *data)
3151 rtx parmreg, validated_mem;
3152 rtx equiv_stack_parm;
3153 machine_mode promoted_nominal_mode;
3154 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3155 bool did_conversion = false;
3156 bool need_conversion, moved;
3157 enum insn_code icode;
3158 rtx rtl;
3160 /* Store the parm in a pseudoregister during the function, but we may
3161 need to do it in a wider mode. Using 2 here makes the result
3162 consistent with promote_decl_mode and thus expand_expr_real_1. */
3163 promoted_nominal_mode
3164 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3165 TREE_TYPE (current_function_decl), 2);
3167 parmreg = gen_reg_rtx (promoted_nominal_mode);
3168 if (!DECL_ARTIFICIAL (parm))
3169 mark_user_reg (parmreg);
3171 /* If this was an item that we received a pointer to,
3172 set rtl appropriately. */
3173 if (data->arg.pass_by_reference)
3175 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3176 set_mem_attributes (rtl, parm, 1);
3178 else
3179 rtl = parmreg;
3181 assign_parm_remove_parallels (data);
3183 /* Copy the value into the register, thus bridging between
3184 assign_parm_find_data_types and expand_expr_real_1. */
3186 equiv_stack_parm = data->stack_parm;
3187 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3189 need_conversion = (data->nominal_mode != data->passed_mode
3190 || promoted_nominal_mode != data->arg.mode);
3191 moved = false;
3193 if (need_conversion
3194 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3195 && data->nominal_mode == data->passed_mode
3196 && data->nominal_mode == GET_MODE (data->entry_parm))
3198 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3199 mode, by the caller. We now have to convert it to
3200 NOMINAL_MODE, if different. However, PARMREG may be in
3201 a different mode than NOMINAL_MODE if it is being stored
3202 promoted.
3204 If ENTRY_PARM is a hard register, it might be in a register
3205 not valid for operating in its mode (e.g., an odd-numbered
3206 register for a DFmode). In that case, moves are the only
3207 thing valid, so we can't do a convert from there. This
3208 occurs when the calling sequence allow such misaligned
3209 usages.
3211 In addition, the conversion may involve a call, which could
3212 clobber parameters which haven't been copied to pseudo
3213 registers yet.
3215 First, we try to emit an insn which performs the necessary
3216 conversion. We verify that this insn does not clobber any
3217 hard registers. */
3219 rtx op0, op1;
3221 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3222 unsignedp);
3224 op0 = parmreg;
3225 op1 = validated_mem;
3226 if (icode != CODE_FOR_nothing
3227 && insn_operand_matches (icode, 0, op0)
3228 && insn_operand_matches (icode, 1, op1))
3230 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3231 rtx_insn *insn, *insns;
3232 rtx t = op1;
3233 HARD_REG_SET hardregs;
3235 start_sequence ();
3236 /* If op1 is a hard register that is likely spilled, first
3237 force it into a pseudo, otherwise combiner might extend
3238 its lifetime too much. */
3239 if (GET_CODE (t) == SUBREG)
3240 t = SUBREG_REG (t);
3241 if (REG_P (t)
3242 && HARD_REGISTER_P (t)
3243 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3244 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3246 t = gen_reg_rtx (GET_MODE (op1));
3247 emit_move_insn (t, op1);
3249 else
3250 t = op1;
3251 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3252 data->passed_mode, unsignedp);
3253 emit_insn (pat);
3254 insns = get_insns ();
3256 moved = true;
3257 CLEAR_HARD_REG_SET (hardregs);
3258 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3260 if (INSN_P (insn))
3261 note_stores (insn, record_hard_reg_sets, &hardregs);
3262 if (!hard_reg_set_empty_p (hardregs))
3263 moved = false;
3266 end_sequence ();
3268 if (moved)
3270 emit_insn (insns);
3271 if (equiv_stack_parm != NULL_RTX)
3272 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3273 equiv_stack_parm);
3278 if (moved)
3279 /* Nothing to do. */
3281 else if (need_conversion)
3283 /* We did not have an insn to convert directly, or the sequence
3284 generated appeared unsafe. We must first copy the parm to a
3285 pseudo reg, and save the conversion until after all
3286 parameters have been moved. */
3288 int save_tree_used;
3289 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3291 emit_move_insn (tempreg, validated_mem);
3293 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3294 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3296 if (partial_subreg_p (tempreg)
3297 && GET_MODE (tempreg) == data->nominal_mode
3298 && REG_P (SUBREG_REG (tempreg))
3299 && data->nominal_mode == data->passed_mode
3300 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3302 /* The argument is already sign/zero extended, so note it
3303 into the subreg. */
3304 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3305 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3308 /* TREE_USED gets set erroneously during expand_assignment. */
3309 save_tree_used = TREE_USED (parm);
3310 SET_DECL_RTL (parm, rtl);
3311 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3312 SET_DECL_RTL (parm, NULL_RTX);
3313 TREE_USED (parm) = save_tree_used;
3314 all->first_conversion_insn = get_insns ();
3315 all->last_conversion_insn = get_last_insn ();
3316 end_sequence ();
3318 did_conversion = true;
3320 else if (MEM_P (data->entry_parm)
3321 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3322 > MEM_ALIGN (data->entry_parm)
3323 && (((icode = optab_handler (movmisalign_optab,
3324 promoted_nominal_mode))
3325 != CODE_FOR_nothing)
3326 || targetm.slow_unaligned_access (promoted_nominal_mode,
3327 MEM_ALIGN (data->entry_parm))))
3329 if (icode != CODE_FOR_nothing)
3330 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3331 else
3332 rtl = parmreg = extract_bit_field (validated_mem,
3333 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3334 unsignedp, parmreg,
3335 promoted_nominal_mode, VOIDmode, false, NULL);
3337 else
3338 emit_move_insn (parmreg, validated_mem);
3340 /* If we were passed a pointer but the actual value can live in a register,
3341 retrieve it and use it directly. Note that we cannot use nominal_mode,
3342 because it will have been set to Pmode above, we must use the actual mode
3343 of the parameter instead. */
3344 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3346 /* Use a stack slot for debugging purposes if possible. */
3347 if (use_register_for_decl (parm))
3349 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3350 mark_user_reg (parmreg);
3352 else
3354 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3355 TYPE_MODE (TREE_TYPE (parm)),
3356 TYPE_ALIGN (TREE_TYPE (parm)));
3357 parmreg
3358 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3359 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3360 align);
3361 set_mem_attributes (parmreg, parm, 1);
3364 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3365 the debug info in case it is not legitimate. */
3366 if (GET_MODE (parmreg) != GET_MODE (rtl))
3368 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3369 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3371 push_to_sequence2 (all->first_conversion_insn,
3372 all->last_conversion_insn);
3373 emit_move_insn (tempreg, rtl);
3374 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3375 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3376 tempreg);
3377 all->first_conversion_insn = get_insns ();
3378 all->last_conversion_insn = get_last_insn ();
3379 end_sequence ();
3381 did_conversion = true;
3383 else
3384 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3386 rtl = parmreg;
3388 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3389 now the parm. */
3390 data->stack_parm = NULL;
3393 set_parm_rtl (parm, rtl);
3395 /* Mark the register as eliminable if we did no conversion and it was
3396 copied from memory at a fixed offset, and the arg pointer was not
3397 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3398 offset formed an invalid address, such memory-equivalences as we
3399 make here would screw up life analysis for it. */
3400 if (data->nominal_mode == data->passed_mode
3401 && !did_conversion
3402 && data->stack_parm != 0
3403 && MEM_P (data->stack_parm)
3404 && data->locate.offset.var == 0
3405 && reg_mentioned_p (virtual_incoming_args_rtx,
3406 XEXP (data->stack_parm, 0)))
3408 rtx_insn *linsn = get_last_insn ();
3409 rtx_insn *sinsn;
3410 rtx set;
3412 /* Mark complex types separately. */
3413 if (GET_CODE (parmreg) == CONCAT)
3415 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3416 int regnor = REGNO (XEXP (parmreg, 0));
3417 int regnoi = REGNO (XEXP (parmreg, 1));
3418 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3419 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3420 GET_MODE_SIZE (submode));
3422 /* Scan backwards for the set of the real and
3423 imaginary parts. */
3424 for (sinsn = linsn; sinsn != 0;
3425 sinsn = prev_nonnote_insn (sinsn))
3427 set = single_set (sinsn);
3428 if (set == 0)
3429 continue;
3431 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3432 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3433 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3434 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3437 else
3438 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3441 /* For pointer data type, suggest pointer register. */
3442 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3443 mark_reg_pointer (parmreg,
3444 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3447 /* A subroutine of assign_parms. Allocate stack space to hold the current
3448 parameter. Get it there. Perform all ABI specified conversions. */
3450 static void
3451 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3452 struct assign_parm_data_one *data)
3454 /* Value must be stored in the stack slot STACK_PARM during function
3455 execution. */
3456 bool to_conversion = false;
3458 assign_parm_remove_parallels (data);
3460 if (data->arg.mode != data->nominal_mode)
3462 /* Conversion is required. */
3463 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3465 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3467 /* Some ABIs require scalar floating point modes to be passed
3468 in a wider scalar integer mode. We need to explicitly
3469 truncate to an integer mode of the correct precision before
3470 using a SUBREG to reinterpret as a floating point value. */
3471 if (SCALAR_FLOAT_MODE_P (data->nominal_mode)
3472 && SCALAR_INT_MODE_P (data->arg.mode)
3473 && known_lt (GET_MODE_SIZE (data->nominal_mode),
3474 GET_MODE_SIZE (data->arg.mode)))
3475 tempreg = convert_wider_int_to_float (data->nominal_mode,
3476 data->arg.mode, tempreg);
3478 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3479 to_conversion = true;
3481 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3482 TYPE_UNSIGNED (TREE_TYPE (parm)));
3484 if (data->stack_parm)
3486 poly_int64 offset
3487 = subreg_lowpart_offset (data->nominal_mode,
3488 GET_MODE (data->stack_parm));
3489 /* ??? This may need a big-endian conversion on sparc64. */
3490 data->stack_parm
3491 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3492 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3493 set_mem_offset (data->stack_parm,
3494 MEM_OFFSET (data->stack_parm) + offset);
3498 if (data->entry_parm != data->stack_parm)
3500 rtx src, dest;
3502 if (data->stack_parm == 0)
3504 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3505 GET_MODE (data->entry_parm),
3506 TYPE_ALIGN (data->arg.type));
3507 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3508 && ((optab_handler (movmisalign_optab,
3509 GET_MODE (data->entry_parm))
3510 != CODE_FOR_nothing)
3511 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3512 align)))
3513 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3514 data->stack_parm
3515 = assign_stack_local (GET_MODE (data->entry_parm),
3516 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3517 align);
3518 align = MEM_ALIGN (data->stack_parm);
3519 set_mem_attributes (data->stack_parm, parm, 1);
3520 set_mem_align (data->stack_parm, align);
3523 dest = validize_mem (copy_rtx (data->stack_parm));
3524 src = validize_mem (copy_rtx (data->entry_parm));
3526 if (TYPE_EMPTY_P (data->arg.type))
3527 /* Empty types don't really need to be copied. */;
3528 else if (MEM_P (src))
3530 /* Use a block move to handle potentially misaligned entry_parm. */
3531 if (!to_conversion)
3532 push_to_sequence2 (all->first_conversion_insn,
3533 all->last_conversion_insn);
3534 to_conversion = true;
3536 emit_block_move (dest, src,
3537 GEN_INT (int_size_in_bytes (data->arg.type)),
3538 BLOCK_OP_NORMAL);
3540 else
3542 if (!REG_P (src))
3543 src = force_reg (GET_MODE (src), src);
3544 emit_move_insn (dest, src);
3548 if (to_conversion)
3550 all->first_conversion_insn = get_insns ();
3551 all->last_conversion_insn = get_last_insn ();
3552 end_sequence ();
3555 set_parm_rtl (parm, data->stack_parm);
3558 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3559 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3561 static void
3562 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3563 vec<tree> fnargs)
3565 tree parm;
3566 tree orig_fnargs = all->orig_fnargs;
3567 unsigned i = 0;
3569 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3571 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3572 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3574 rtx tmp, real, imag;
3575 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3577 real = DECL_RTL (fnargs[i]);
3578 imag = DECL_RTL (fnargs[i + 1]);
3579 if (inner != GET_MODE (real))
3581 real = gen_lowpart_SUBREG (inner, real);
3582 imag = gen_lowpart_SUBREG (inner, imag);
3585 if (TREE_ADDRESSABLE (parm))
3587 rtx rmem, imem;
3588 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3589 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3590 DECL_MODE (parm),
3591 TYPE_ALIGN (TREE_TYPE (parm)));
3593 /* split_complex_arg put the real and imag parts in
3594 pseudos. Move them to memory. */
3595 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3596 set_mem_attributes (tmp, parm, 1);
3597 rmem = adjust_address_nv (tmp, inner, 0);
3598 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3599 push_to_sequence2 (all->first_conversion_insn,
3600 all->last_conversion_insn);
3601 emit_move_insn (rmem, real);
3602 emit_move_insn (imem, imag);
3603 all->first_conversion_insn = get_insns ();
3604 all->last_conversion_insn = get_last_insn ();
3605 end_sequence ();
3607 else
3608 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3609 set_parm_rtl (parm, tmp);
3611 real = DECL_INCOMING_RTL (fnargs[i]);
3612 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3613 if (inner != GET_MODE (real))
3615 real = gen_lowpart_SUBREG (inner, real);
3616 imag = gen_lowpart_SUBREG (inner, imag);
3618 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3619 set_decl_incoming_rtl (parm, tmp, false);
3620 i++;
3625 /* Assign RTL expressions to the function's parameters. This may involve
3626 copying them into registers and using those registers as the DECL_RTL. */
3628 static void
3629 assign_parms (tree fndecl)
3631 struct assign_parm_data_all all;
3632 tree parm;
3633 vec<tree> fnargs;
3634 unsigned i;
3636 crtl->args.internal_arg_pointer
3637 = targetm.calls.internal_arg_pointer ();
3639 assign_parms_initialize_all (&all);
3640 fnargs = assign_parms_augmented_arg_list (&all);
3642 if (TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (fndecl)))
3644 struct assign_parm_data_one data = {};
3645 assign_parms_setup_varargs (&all, &data, false);
3648 FOR_EACH_VEC_ELT (fnargs, i, parm)
3650 struct assign_parm_data_one data;
3652 /* Extract the type of PARM; adjust it according to ABI. */
3653 assign_parm_find_data_types (&all, parm, &data);
3655 /* Early out for errors and void parameters. */
3656 if (data.passed_mode == VOIDmode)
3658 SET_DECL_RTL (parm, const0_rtx);
3659 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3660 continue;
3663 /* Estimate stack alignment from parameter alignment. */
3664 if (SUPPORTS_STACK_ALIGNMENT)
3666 unsigned int align
3667 = targetm.calls.function_arg_boundary (data.arg.mode,
3668 data.arg.type);
3669 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3670 if (TYPE_ALIGN (data.nominal_type) > align)
3671 align = MINIMUM_ALIGNMENT (data.nominal_type,
3672 TYPE_MODE (data.nominal_type),
3673 TYPE_ALIGN (data.nominal_type));
3674 if (crtl->stack_alignment_estimated < align)
3676 gcc_assert (!crtl->stack_realign_processed);
3677 crtl->stack_alignment_estimated = align;
3681 /* Find out where the parameter arrives in this function. */
3682 assign_parm_find_entry_rtl (&all, &data);
3684 /* Find out where stack space for this parameter might be. */
3685 if (assign_parm_is_stack_parm (&all, &data))
3687 assign_parm_find_stack_rtl (parm, &data);
3688 assign_parm_adjust_entry_rtl (&data);
3689 /* For arguments that occupy no space in the parameter
3690 passing area, have non-zero size and have address taken,
3691 force creation of a stack slot so that they have distinct
3692 address from other parameters. */
3693 if (TYPE_EMPTY_P (data.arg.type)
3694 && TREE_ADDRESSABLE (parm)
3695 && data.entry_parm == data.stack_parm
3696 && MEM_P (data.entry_parm)
3697 && int_size_in_bytes (data.arg.type))
3698 data.stack_parm = NULL_RTX;
3700 /* Record permanently how this parm was passed. */
3701 if (data.arg.pass_by_reference)
3703 rtx incoming_rtl
3704 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3705 data.entry_parm);
3706 set_decl_incoming_rtl (parm, incoming_rtl, true);
3708 else
3709 set_decl_incoming_rtl (parm, data.entry_parm, false);
3711 assign_parm_adjust_stack_rtl (&data);
3713 if (assign_parm_setup_block_p (&data))
3714 assign_parm_setup_block (&all, parm, &data);
3715 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3716 assign_parm_setup_reg (&all, parm, &data);
3717 else
3718 assign_parm_setup_stack (&all, parm, &data);
3720 if (cfun->stdarg && !DECL_CHAIN (parm))
3721 assign_parms_setup_varargs (&all, &data, false);
3723 /* Update info on where next arg arrives in registers. */
3724 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3727 if (targetm.calls.split_complex_arg)
3728 assign_parms_unsplit_complex (&all, fnargs);
3730 fnargs.release ();
3732 /* Output all parameter conversion instructions (possibly including calls)
3733 now that all parameters have been copied out of hard registers. */
3734 emit_insn (all.first_conversion_insn);
3736 /* Estimate reload stack alignment from scalar return mode. */
3737 if (SUPPORTS_STACK_ALIGNMENT)
3739 if (DECL_RESULT (fndecl))
3741 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3742 machine_mode mode = TYPE_MODE (type);
3744 if (mode != BLKmode
3745 && mode != VOIDmode
3746 && !AGGREGATE_TYPE_P (type))
3748 unsigned int align = GET_MODE_ALIGNMENT (mode);
3749 if (crtl->stack_alignment_estimated < align)
3751 gcc_assert (!crtl->stack_realign_processed);
3752 crtl->stack_alignment_estimated = align;
3758 /* If we are receiving a struct value address as the first argument, set up
3759 the RTL for the function result. As this might require code to convert
3760 the transmitted address to Pmode, we do this here to ensure that possible
3761 preliminary conversions of the address have been emitted already. */
3762 if (all.function_result_decl)
3764 tree result = DECL_RESULT (current_function_decl);
3765 rtx addr = DECL_RTL (all.function_result_decl);
3766 rtx x;
3768 if (DECL_BY_REFERENCE (result))
3770 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3771 x = addr;
3773 else
3775 SET_DECL_VALUE_EXPR (result,
3776 build1 (INDIRECT_REF, TREE_TYPE (result),
3777 all.function_result_decl));
3778 addr = convert_memory_address (Pmode, addr);
3779 x = gen_rtx_MEM (DECL_MODE (result), addr);
3780 set_mem_attributes (x, result, 1);
3783 DECL_HAS_VALUE_EXPR_P (result) = 1;
3785 set_parm_rtl (result, x);
3788 /* We have aligned all the args, so add space for the pretend args. */
3789 crtl->args.pretend_args_size = all.pretend_args_size;
3790 all.stack_args_size.constant += all.extra_pretend_bytes;
3791 crtl->args.size = all.stack_args_size.constant;
3793 /* Adjust function incoming argument size for alignment and
3794 minimum length. */
3796 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3797 crtl->args.size = aligned_upper_bound (crtl->args.size,
3798 PARM_BOUNDARY / BITS_PER_UNIT);
3800 if (ARGS_GROW_DOWNWARD)
3802 crtl->args.arg_offset_rtx
3803 = (all.stack_args_size.var == 0
3804 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3805 : expand_expr (size_diffop (all.stack_args_size.var,
3806 size_int (-all.stack_args_size.constant)),
3807 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3809 else
3810 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3812 /* See how many bytes, if any, of its args a function should try to pop
3813 on return. */
3815 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3816 TREE_TYPE (fndecl),
3817 crtl->args.size);
3819 /* For stdarg.h function, save info about
3820 regs and stack space used by the named args. */
3822 crtl->args.info = all.args_so_far_v;
3824 /* Set the rtx used for the function return value. Put this in its
3825 own variable so any optimizers that need this information don't have
3826 to include tree.h. Do this here so it gets done when an inlined
3827 function gets output. */
3829 crtl->return_rtx
3830 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3831 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3833 /* If scalar return value was computed in a pseudo-reg, or was a named
3834 return value that got dumped to the stack, copy that to the hard
3835 return register. */
3836 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3838 tree decl_result = DECL_RESULT (fndecl);
3839 rtx decl_rtl = DECL_RTL (decl_result);
3841 if (REG_P (decl_rtl)
3842 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3843 : DECL_REGISTER (decl_result))
3845 rtx real_decl_rtl;
3847 /* Unless the psABI says not to. */
3848 if (TYPE_EMPTY_P (TREE_TYPE (decl_result)))
3849 real_decl_rtl = NULL_RTX;
3850 else
3852 real_decl_rtl
3853 = targetm.calls.function_value (TREE_TYPE (decl_result),
3854 fndecl, true);
3855 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3857 /* The delay slot scheduler assumes that crtl->return_rtx
3858 holds the hard register containing the return value, not a
3859 temporary pseudo. */
3860 crtl->return_rtx = real_decl_rtl;
3865 /* Gimplify the parameter list for current_function_decl. This involves
3866 evaluating SAVE_EXPRs of variable sized parameters and generating code
3867 to implement callee-copies reference parameters. Returns a sequence of
3868 statements to add to the beginning of the function. */
3870 gimple_seq
3871 gimplify_parameters (gimple_seq *cleanup)
3873 struct assign_parm_data_all all;
3874 tree parm;
3875 gimple_seq stmts = NULL;
3876 vec<tree> fnargs;
3877 unsigned i;
3879 assign_parms_initialize_all (&all);
3880 fnargs = assign_parms_augmented_arg_list (&all);
3882 FOR_EACH_VEC_ELT (fnargs, i, parm)
3884 struct assign_parm_data_one data;
3886 /* Extract the type of PARM; adjust it according to ABI. */
3887 assign_parm_find_data_types (&all, parm, &data);
3889 /* Early out for errors and void parameters. */
3890 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3891 continue;
3893 /* Update info on where next arg arrives in registers. */
3894 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3896 /* ??? Once upon a time variable_size stuffed parameter list
3897 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3898 turned out to be less than manageable in the gimple world.
3899 Now we have to hunt them down ourselves. */
3900 gimplify_type_sizes (TREE_TYPE (parm), &stmts);
3902 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3904 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3905 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3908 if (data.arg.pass_by_reference)
3910 tree type = TREE_TYPE (data.arg.type);
3911 function_arg_info orig_arg (type, data.arg.named);
3912 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3914 tree local, t;
3916 /* For constant-sized objects, this is trivial; for
3917 variable-sized objects, we have to play games. */
3918 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3919 && !(flag_stack_check == GENERIC_STACK_CHECK
3920 && compare_tree_int (DECL_SIZE_UNIT (parm),
3921 STACK_CHECK_MAX_VAR_SIZE) > 0))
3923 local = create_tmp_var (type, get_name (parm));
3924 DECL_IGNORED_P (local) = 0;
3925 /* If PARM was addressable, move that flag over
3926 to the local copy, as its address will be taken,
3927 not the PARMs. Keep the parms address taken
3928 as we'll query that flag during gimplification. */
3929 if (TREE_ADDRESSABLE (parm))
3930 TREE_ADDRESSABLE (local) = 1;
3931 if (DECL_NOT_GIMPLE_REG_P (parm))
3932 DECL_NOT_GIMPLE_REG_P (local) = 1;
3934 if (!is_gimple_reg (local)
3935 && flag_stack_reuse != SR_NONE)
3937 tree clobber = build_clobber (type);
3938 gimple *clobber_stmt;
3939 clobber_stmt = gimple_build_assign (local, clobber);
3940 gimple_seq_add_stmt (cleanup, clobber_stmt);
3943 else
3945 tree ptr_type, addr;
3947 ptr_type = build_pointer_type (type);
3948 addr = create_tmp_reg (ptr_type, get_name (parm));
3949 DECL_IGNORED_P (addr) = 0;
3950 local = build_fold_indirect_ref (addr);
3952 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3953 DECL_ALIGN (parm),
3954 max_int_size_in_bytes (type));
3955 /* The call has been built for a variable-sized object. */
3956 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3957 t = fold_convert (ptr_type, t);
3958 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3959 gimplify_and_add (t, &stmts);
3962 gimplify_assign (local, parm, &stmts);
3964 SET_DECL_VALUE_EXPR (parm, local);
3965 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3970 fnargs.release ();
3972 return stmts;
3975 /* Compute the size and offset from the start of the stacked arguments for a
3976 parm passed in mode PASSED_MODE and with type TYPE.
3978 INITIAL_OFFSET_PTR points to the current offset into the stacked
3979 arguments.
3981 The starting offset and size for this parm are returned in
3982 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3983 nonzero, the offset is that of stack slot, which is returned in
3984 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3985 padding required from the initial offset ptr to the stack slot.
3987 IN_REGS is nonzero if the argument will be passed in registers. It will
3988 never be set if REG_PARM_STACK_SPACE is not defined.
3990 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3991 for arguments which are passed in registers.
3993 FNDECL is the function in which the argument was defined.
3995 There are two types of rounding that are done. The first, controlled by
3996 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3997 argument list to be aligned to the specific boundary (in bits). This
3998 rounding affects the initial and starting offsets, but not the argument
3999 size.
4001 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4002 optionally rounds the size of the parm to PARM_BOUNDARY. The
4003 initial offset is not affected by this rounding, while the size always
4004 is and the starting offset may be. */
4006 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4007 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4008 callers pass in the total size of args so far as
4009 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4011 void
4012 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4013 int reg_parm_stack_space, int partial,
4014 tree fndecl ATTRIBUTE_UNUSED,
4015 struct args_size *initial_offset_ptr,
4016 struct locate_and_pad_arg_data *locate)
4018 tree sizetree;
4019 pad_direction where_pad;
4020 unsigned int boundary, round_boundary;
4021 int part_size_in_regs;
4023 /* If we have found a stack parm before we reach the end of the
4024 area reserved for registers, skip that area. */
4025 if (! in_regs)
4027 if (reg_parm_stack_space > 0)
4029 if (initial_offset_ptr->var
4030 || !ordered_p (initial_offset_ptr->constant,
4031 reg_parm_stack_space))
4033 initial_offset_ptr->var
4034 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4035 ssize_int (reg_parm_stack_space));
4036 initial_offset_ptr->constant = 0;
4038 else
4039 initial_offset_ptr->constant
4040 = ordered_max (initial_offset_ptr->constant,
4041 reg_parm_stack_space);
4045 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4047 sizetree = (type
4048 ? arg_size_in_bytes (type)
4049 : size_int (GET_MODE_SIZE (passed_mode)));
4050 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4051 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4052 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4053 type);
4054 locate->where_pad = where_pad;
4056 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4057 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4058 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4060 locate->boundary = boundary;
4062 if (SUPPORTS_STACK_ALIGNMENT)
4064 /* stack_alignment_estimated can't change after stack has been
4065 realigned. */
4066 if (crtl->stack_alignment_estimated < boundary)
4068 if (!crtl->stack_realign_processed)
4069 crtl->stack_alignment_estimated = boundary;
4070 else
4072 /* If stack is realigned and stack alignment value
4073 hasn't been finalized, it is OK not to increase
4074 stack_alignment_estimated. The bigger alignment
4075 requirement is recorded in stack_alignment_needed
4076 below. */
4077 gcc_assert (!crtl->stack_realign_finalized
4078 && crtl->stack_realign_needed);
4083 if (ARGS_GROW_DOWNWARD)
4085 locate->slot_offset.constant = -initial_offset_ptr->constant;
4086 if (initial_offset_ptr->var)
4087 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4088 initial_offset_ptr->var);
4091 tree s2 = sizetree;
4092 if (where_pad != PAD_NONE
4093 && (!tree_fits_uhwi_p (sizetree)
4094 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4095 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4096 SUB_PARM_SIZE (locate->slot_offset, s2);
4099 locate->slot_offset.constant += part_size_in_regs;
4101 if (!in_regs || reg_parm_stack_space > 0)
4102 pad_to_arg_alignment (&locate->slot_offset, boundary,
4103 &locate->alignment_pad);
4105 locate->size.constant = (-initial_offset_ptr->constant
4106 - locate->slot_offset.constant);
4107 if (initial_offset_ptr->var)
4108 locate->size.var = size_binop (MINUS_EXPR,
4109 size_binop (MINUS_EXPR,
4110 ssize_int (0),
4111 initial_offset_ptr->var),
4112 locate->slot_offset.var);
4114 /* Pad_below needs the pre-rounded size to know how much to pad
4115 below. */
4116 locate->offset = locate->slot_offset;
4117 if (where_pad == PAD_DOWNWARD)
4118 pad_below (&locate->offset, passed_mode, sizetree);
4121 else
4123 if (!in_regs || reg_parm_stack_space > 0)
4124 pad_to_arg_alignment (initial_offset_ptr, boundary,
4125 &locate->alignment_pad);
4126 locate->slot_offset = *initial_offset_ptr;
4128 #ifdef PUSH_ROUNDING
4129 if (passed_mode != BLKmode)
4130 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4131 #endif
4133 /* Pad_below needs the pre-rounded size to know how much to pad below
4134 so this must be done before rounding up. */
4135 locate->offset = locate->slot_offset;
4136 if (where_pad == PAD_DOWNWARD)
4137 pad_below (&locate->offset, passed_mode, sizetree);
4139 if (where_pad != PAD_NONE
4140 && (!tree_fits_uhwi_p (sizetree)
4141 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4142 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4144 ADD_PARM_SIZE (locate->size, sizetree);
4146 locate->size.constant -= part_size_in_regs;
4149 locate->offset.constant
4150 += targetm.calls.function_arg_offset (passed_mode, type);
4153 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4154 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4156 static void
4157 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4158 struct args_size *alignment_pad)
4160 tree save_var = NULL_TREE;
4161 poly_int64 save_constant = 0;
4162 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4163 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4165 #ifdef SPARC_STACK_BOUNDARY_HACK
4166 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4167 the real alignment of %sp. However, when it does this, the
4168 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4169 if (SPARC_STACK_BOUNDARY_HACK)
4170 sp_offset = 0;
4171 #endif
4173 if (boundary > PARM_BOUNDARY)
4175 save_var = offset_ptr->var;
4176 save_constant = offset_ptr->constant;
4179 alignment_pad->var = NULL_TREE;
4180 alignment_pad->constant = 0;
4182 if (boundary > BITS_PER_UNIT)
4184 int misalign;
4185 if (offset_ptr->var
4186 || !known_misalignment (offset_ptr->constant + sp_offset,
4187 boundary_in_bytes, &misalign))
4189 tree sp_offset_tree = ssize_int (sp_offset);
4190 tree offset = size_binop (PLUS_EXPR,
4191 ARGS_SIZE_TREE (*offset_ptr),
4192 sp_offset_tree);
4193 tree rounded;
4194 if (ARGS_GROW_DOWNWARD)
4195 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4196 else
4197 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4199 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4200 /* ARGS_SIZE_TREE includes constant term. */
4201 offset_ptr->constant = 0;
4202 if (boundary > PARM_BOUNDARY)
4203 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4204 save_var);
4206 else
4208 if (ARGS_GROW_DOWNWARD)
4209 offset_ptr->constant -= misalign;
4210 else
4211 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4213 if (boundary > PARM_BOUNDARY)
4214 alignment_pad->constant = offset_ptr->constant - save_constant;
4219 static void
4220 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4222 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4223 int misalign;
4224 if (passed_mode != BLKmode
4225 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4226 offset_ptr->constant += -misalign & (align - 1);
4227 else
4229 if (TREE_CODE (sizetree) != INTEGER_CST
4230 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4232 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4233 tree s2 = round_up (sizetree, align);
4234 /* Add it in. */
4235 ADD_PARM_SIZE (*offset_ptr, s2);
4236 SUB_PARM_SIZE (*offset_ptr, sizetree);
4242 /* True if register REGNO was alive at a place where `setjmp' was
4243 called and was set more than once or is an argument. Such regs may
4244 be clobbered by `longjmp'. */
4246 static bool
4247 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4249 /* There appear to be cases where some local vars never reach the
4250 backend but have bogus regnos. */
4251 if (regno >= max_reg_num ())
4252 return false;
4254 return ((REG_N_SETS (regno) > 1
4255 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4256 regno))
4257 && REGNO_REG_SET_P (setjmp_crosses, regno));
4260 /* Walk the tree of blocks describing the binding levels within a
4261 function and warn about variables the might be killed by setjmp or
4262 vfork. This is done after calling flow_analysis before register
4263 allocation since that will clobber the pseudo-regs to hard
4264 regs. */
4266 static void
4267 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4269 tree decl, sub;
4271 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4273 if (VAR_P (decl)
4274 && DECL_RTL_SET_P (decl)
4275 && REG_P (DECL_RTL (decl))
4276 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4277 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4278 " %<longjmp%> or %<vfork%>", decl);
4281 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4282 setjmp_vars_warning (setjmp_crosses, sub);
4285 /* Do the appropriate part of setjmp_vars_warning
4286 but for arguments instead of local variables. */
4288 static void
4289 setjmp_args_warning (bitmap setjmp_crosses)
4291 tree decl;
4292 for (decl = DECL_ARGUMENTS (current_function_decl);
4293 decl; decl = DECL_CHAIN (decl))
4294 if (DECL_RTL (decl) != 0
4295 && REG_P (DECL_RTL (decl))
4296 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4297 warning (OPT_Wclobbered,
4298 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4299 decl);
4302 /* Generate warning messages for variables live across setjmp. */
4304 void
4305 generate_setjmp_warnings (void)
4307 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4309 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4310 || bitmap_empty_p (setjmp_crosses))
4311 return;
4313 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4314 setjmp_args_warning (setjmp_crosses);
4318 /* Reverse the order of elements in the fragment chain T of blocks,
4319 and return the new head of the chain (old last element).
4320 In addition to that clear BLOCK_SAME_RANGE flags when needed
4321 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4322 its super fragment origin. */
4324 static tree
4325 block_fragments_nreverse (tree t)
4327 tree prev = 0, block, next, prev_super = 0;
4328 tree super = BLOCK_SUPERCONTEXT (t);
4329 if (BLOCK_FRAGMENT_ORIGIN (super))
4330 super = BLOCK_FRAGMENT_ORIGIN (super);
4331 for (block = t; block; block = next)
4333 next = BLOCK_FRAGMENT_CHAIN (block);
4334 BLOCK_FRAGMENT_CHAIN (block) = prev;
4335 if ((prev && !BLOCK_SAME_RANGE (prev))
4336 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4337 != prev_super))
4338 BLOCK_SAME_RANGE (block) = 0;
4339 prev_super = BLOCK_SUPERCONTEXT (block);
4340 BLOCK_SUPERCONTEXT (block) = super;
4341 prev = block;
4343 t = BLOCK_FRAGMENT_ORIGIN (t);
4344 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4345 != prev_super)
4346 BLOCK_SAME_RANGE (t) = 0;
4347 BLOCK_SUPERCONTEXT (t) = super;
4348 return prev;
4351 /* Reverse the order of elements in the chain T of blocks,
4352 and return the new head of the chain (old last element).
4353 Also do the same on subblocks and reverse the order of elements
4354 in BLOCK_FRAGMENT_CHAIN as well. */
4356 static tree
4357 blocks_nreverse_all (tree t)
4359 tree prev = 0, block, next;
4360 for (block = t; block; block = next)
4362 next = BLOCK_CHAIN (block);
4363 BLOCK_CHAIN (block) = prev;
4364 if (BLOCK_FRAGMENT_CHAIN (block)
4365 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4367 BLOCK_FRAGMENT_CHAIN (block)
4368 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4369 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4370 BLOCK_SAME_RANGE (block) = 0;
4372 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4373 prev = block;
4375 return prev;
4379 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4380 and create duplicate blocks. */
4381 /* ??? Need an option to either create block fragments or to create
4382 abstract origin duplicates of a source block. It really depends
4383 on what optimization has been performed. */
4385 void
4386 reorder_blocks (void)
4388 tree block = DECL_INITIAL (current_function_decl);
4390 if (block == NULL_TREE)
4391 return;
4393 auto_vec<tree, 10> block_stack;
4395 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4396 clear_block_marks (block);
4398 /* Prune the old trees away, so that they don't get in the way. */
4399 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4400 BLOCK_CHAIN (block) = NULL_TREE;
4402 /* Recreate the block tree from the note nesting. */
4403 reorder_blocks_1 (get_insns (), block, &block_stack);
4404 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4407 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4409 void
4410 clear_block_marks (tree block)
4412 while (block)
4414 TREE_ASM_WRITTEN (block) = 0;
4415 clear_block_marks (BLOCK_SUBBLOCKS (block));
4416 block = BLOCK_CHAIN (block);
4420 static void
4421 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4422 vec<tree> *p_block_stack)
4424 rtx_insn *insn;
4425 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4427 for (insn = insns; insn; insn = NEXT_INSN (insn))
4429 if (NOTE_P (insn))
4431 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4433 tree block = NOTE_BLOCK (insn);
4434 tree origin;
4436 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4437 origin = block;
4439 if (prev_end)
4440 BLOCK_SAME_RANGE (prev_end) = 0;
4441 prev_end = NULL_TREE;
4443 /* If we have seen this block before, that means it now
4444 spans multiple address regions. Create a new fragment. */
4445 if (TREE_ASM_WRITTEN (block))
4447 tree new_block = copy_node (block);
4449 BLOCK_SAME_RANGE (new_block) = 0;
4450 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4451 BLOCK_FRAGMENT_CHAIN (new_block)
4452 = BLOCK_FRAGMENT_CHAIN (origin);
4453 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4455 NOTE_BLOCK (insn) = new_block;
4456 block = new_block;
4459 if (prev_beg == current_block && prev_beg)
4460 BLOCK_SAME_RANGE (block) = 1;
4462 prev_beg = origin;
4464 BLOCK_SUBBLOCKS (block) = 0;
4465 TREE_ASM_WRITTEN (block) = 1;
4466 /* When there's only one block for the entire function,
4467 current_block == block and we mustn't do this, it
4468 will cause infinite recursion. */
4469 if (block != current_block)
4471 tree super;
4472 if (block != origin)
4473 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4474 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4475 (origin))
4476 == current_block);
4477 if (p_block_stack->is_empty ())
4478 super = current_block;
4479 else
4481 super = p_block_stack->last ();
4482 gcc_assert (super == current_block
4483 || BLOCK_FRAGMENT_ORIGIN (super)
4484 == current_block);
4486 BLOCK_SUPERCONTEXT (block) = super;
4487 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4488 BLOCK_SUBBLOCKS (current_block) = block;
4489 current_block = origin;
4491 p_block_stack->safe_push (block);
4493 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4495 NOTE_BLOCK (insn) = p_block_stack->pop ();
4496 current_block = BLOCK_SUPERCONTEXT (current_block);
4497 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4498 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4499 prev_beg = NULL_TREE;
4500 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4501 ? NOTE_BLOCK (insn) : NULL_TREE;
4504 else
4506 prev_beg = NULL_TREE;
4507 if (prev_end)
4508 BLOCK_SAME_RANGE (prev_end) = 0;
4509 prev_end = NULL_TREE;
4514 /* Reverse the order of elements in the chain T of blocks,
4515 and return the new head of the chain (old last element). */
4517 tree
4518 blocks_nreverse (tree t)
4520 tree prev = 0, block, next;
4521 for (block = t; block; block = next)
4523 next = BLOCK_CHAIN (block);
4524 BLOCK_CHAIN (block) = prev;
4525 prev = block;
4527 return prev;
4530 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4531 by modifying the last node in chain 1 to point to chain 2. */
4533 tree
4534 block_chainon (tree op1, tree op2)
4536 tree t1;
4538 if (!op1)
4539 return op2;
4540 if (!op2)
4541 return op1;
4543 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4544 continue;
4545 BLOCK_CHAIN (t1) = op2;
4547 #ifdef ENABLE_TREE_CHECKING
4549 tree t2;
4550 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4551 gcc_assert (t2 != t1);
4553 #endif
4555 return op1;
4558 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4559 non-NULL, list them all into VECTOR, in a depth-first preorder
4560 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4561 blocks. */
4563 static int
4564 all_blocks (tree block, tree *vector)
4566 int n_blocks = 0;
4568 while (block)
4570 TREE_ASM_WRITTEN (block) = 0;
4572 /* Record this block. */
4573 if (vector)
4574 vector[n_blocks] = block;
4576 ++n_blocks;
4578 /* Record the subblocks, and their subblocks... */
4579 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4580 vector ? vector + n_blocks : 0);
4581 block = BLOCK_CHAIN (block);
4584 return n_blocks;
4587 /* Return a vector containing all the blocks rooted at BLOCK. The
4588 number of elements in the vector is stored in N_BLOCKS_P. The
4589 vector is dynamically allocated; it is the caller's responsibility
4590 to call `free' on the pointer returned. */
4592 static tree *
4593 get_block_vector (tree block, int *n_blocks_p)
4595 tree *block_vector;
4597 *n_blocks_p = all_blocks (block, NULL);
4598 block_vector = XNEWVEC (tree, *n_blocks_p);
4599 all_blocks (block, block_vector);
4601 return block_vector;
4604 static GTY(()) int next_block_index = 2;
4606 /* Set BLOCK_NUMBER for all the blocks in FN. */
4608 void
4609 number_blocks (tree fn)
4611 int i;
4612 int n_blocks;
4613 tree *block_vector;
4615 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4617 /* The top-level BLOCK isn't numbered at all. */
4618 for (i = 1; i < n_blocks; ++i)
4619 /* We number the blocks from two. */
4620 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4622 free (block_vector);
4624 return;
4627 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4629 DEBUG_FUNCTION tree
4630 debug_find_var_in_block_tree (tree var, tree block)
4632 tree t;
4634 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4635 if (t == var)
4636 return block;
4638 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4640 tree ret = debug_find_var_in_block_tree (var, t);
4641 if (ret)
4642 return ret;
4645 return NULL_TREE;
4648 /* Keep track of whether we're in a dummy function context. If we are,
4649 we don't want to invoke the set_current_function hook, because we'll
4650 get into trouble if the hook calls target_reinit () recursively or
4651 when the initial initialization is not yet complete. */
4653 static bool in_dummy_function;
4655 /* Invoke the target hook when setting cfun. Update the optimization options
4656 if the function uses different options than the default. */
4658 static void
4659 invoke_set_current_function_hook (tree fndecl)
4661 if (!in_dummy_function)
4663 tree opts = ((fndecl)
4664 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4665 : optimization_default_node);
4667 if (!opts)
4668 opts = optimization_default_node;
4670 /* Change optimization options if needed. */
4671 if (optimization_current_node != opts)
4673 optimization_current_node = opts;
4674 cl_optimization_restore (&global_options, &global_options_set,
4675 TREE_OPTIMIZATION (opts));
4678 targetm.set_current_function (fndecl);
4679 this_fn_optabs = this_target_optabs;
4681 /* Initialize global alignment variables after op. */
4682 parse_alignment_opts ();
4684 if (opts != optimization_default_node)
4686 init_tree_optimization_optabs (opts);
4687 if (TREE_OPTIMIZATION_OPTABS (opts))
4688 this_fn_optabs = (struct target_optabs *)
4689 TREE_OPTIMIZATION_OPTABS (opts);
4694 /* cfun should never be set directly; use this function. */
4696 void
4697 set_cfun (struct function *new_cfun, bool force)
4699 if (cfun != new_cfun || force)
4701 cfun = new_cfun;
4702 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4703 redirect_edge_var_map_empty ();
4707 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4709 static vec<function *> cfun_stack;
4711 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4712 current_function_decl accordingly. */
4714 void
4715 push_cfun (struct function *new_cfun)
4717 gcc_assert ((!cfun && !current_function_decl)
4718 || (cfun && current_function_decl == cfun->decl));
4719 cfun_stack.safe_push (cfun);
4720 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4721 set_cfun (new_cfun);
4724 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4726 void
4727 pop_cfun (void)
4729 struct function *new_cfun = cfun_stack.pop ();
4730 /* When in_dummy_function, we do have a cfun but current_function_decl is
4731 NULL. We also allow pushing NULL cfun and subsequently changing
4732 current_function_decl to something else and have both restored by
4733 pop_cfun. */
4734 gcc_checking_assert (in_dummy_function
4735 || !cfun
4736 || current_function_decl == cfun->decl);
4737 set_cfun (new_cfun);
4738 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4741 /* Return value of funcdef and increase it. */
4743 get_next_funcdef_no (void)
4745 return funcdef_no++;
4748 /* Return value of funcdef. */
4750 get_last_funcdef_no (void)
4752 return funcdef_no;
4755 /* Allocate and initialize the stack usage info data structure for the
4756 current function. */
4757 static void
4758 allocate_stack_usage_info (void)
4760 gcc_assert (!cfun->su);
4761 cfun->su = ggc_cleared_alloc<stack_usage> ();
4762 cfun->su->static_stack_size = -1;
4765 /* Allocate a function structure for FNDECL and set its contents
4766 to the defaults. Set cfun to the newly-allocated object.
4767 Some of the helper functions invoked during initialization assume
4768 that cfun has already been set. Therefore, assign the new object
4769 directly into cfun and invoke the back end hook explicitly at the
4770 very end, rather than initializing a temporary and calling set_cfun
4771 on it.
4773 ABSTRACT_P is true if this is a function that will never be seen by
4774 the middle-end. Such functions are front-end concepts (like C++
4775 function templates) that do not correspond directly to functions
4776 placed in object files. */
4778 void
4779 allocate_struct_function (tree fndecl, bool abstract_p)
4781 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4783 cfun = ggc_cleared_alloc<function> ();
4785 init_eh_for_function ();
4787 if (init_machine_status)
4788 cfun->machine = (*init_machine_status) ();
4790 #ifdef OVERRIDE_ABI_FORMAT
4791 OVERRIDE_ABI_FORMAT (fndecl);
4792 #endif
4794 if (fndecl != NULL_TREE)
4796 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4797 cfun->decl = fndecl;
4798 current_function_funcdef_no = get_next_funcdef_no ();
4801 invoke_set_current_function_hook (fndecl);
4803 if (fndecl != NULL_TREE)
4805 tree result = DECL_RESULT (fndecl);
4807 if (!abstract_p)
4809 /* Now that we have activated any function-specific attributes
4810 that might affect layout, particularly vector modes, relayout
4811 each of the parameters and the result. */
4812 relayout_decl (result);
4813 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4814 parm = DECL_CHAIN (parm))
4815 relayout_decl (parm);
4817 /* Similarly relayout the function decl. */
4818 targetm.target_option.relayout_function (fndecl);
4821 if (!abstract_p && aggregate_value_p (result, fndecl))
4823 #ifdef PCC_STATIC_STRUCT_RETURN
4824 cfun->returns_pcc_struct = 1;
4825 #endif
4826 cfun->returns_struct = 1;
4829 cfun->stdarg = stdarg_p (fntype);
4831 /* Assume all registers in stdarg functions need to be saved. */
4832 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4833 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4835 /* ??? This could be set on a per-function basis by the front-end
4836 but is this worth the hassle? */
4837 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4838 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4840 if (!profile_flag && !flag_instrument_function_entry_exit)
4841 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4843 if (flag_callgraph_info)
4844 allocate_stack_usage_info ();
4847 /* Don't enable begin stmt markers if var-tracking at assignments is
4848 disabled. The markers make little sense without the variable
4849 binding annotations among them. */
4850 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4851 && MAY_HAVE_DEBUG_MARKER_STMTS;
4854 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4855 instead of just setting it. */
4857 void
4858 push_struct_function (tree fndecl, bool abstract_p)
4860 /* When in_dummy_function we might be in the middle of a pop_cfun and
4861 current_function_decl and cfun may not match. */
4862 gcc_assert (in_dummy_function
4863 || (!cfun && !current_function_decl)
4864 || (cfun && current_function_decl == cfun->decl));
4865 cfun_stack.safe_push (cfun);
4866 current_function_decl = fndecl;
4867 allocate_struct_function (fndecl, abstract_p);
4870 /* Reset crtl and other non-struct-function variables to defaults as
4871 appropriate for emitting rtl at the start of a function. */
4873 static void
4874 prepare_function_start (void)
4876 gcc_assert (!get_last_insn ());
4878 if (in_dummy_function)
4879 crtl->abi = &default_function_abi;
4880 else
4881 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4883 init_temp_slots ();
4884 init_emit ();
4885 init_varasm_status ();
4886 init_expr ();
4887 default_rtl_profile ();
4889 if (flag_stack_usage_info && !flag_callgraph_info)
4890 allocate_stack_usage_info ();
4892 cse_not_expected = ! optimize;
4894 /* Caller save not needed yet. */
4895 caller_save_needed = 0;
4897 /* We haven't done register allocation yet. */
4898 reg_renumber = 0;
4900 /* Indicate that we have not instantiated virtual registers yet. */
4901 virtuals_instantiated = 0;
4903 /* Indicate that we want CONCATs now. */
4904 generating_concat_p = 1;
4906 /* Indicate we have no need of a frame pointer yet. */
4907 frame_pointer_needed = 0;
4910 void
4911 push_dummy_function (bool with_decl)
4913 tree fn_decl, fn_type, fn_result_decl;
4915 gcc_assert (!in_dummy_function);
4916 in_dummy_function = true;
4918 if (with_decl)
4920 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4921 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4922 fn_type);
4923 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4924 NULL_TREE, void_type_node);
4925 DECL_RESULT (fn_decl) = fn_result_decl;
4926 DECL_ARTIFICIAL (fn_decl) = 1;
4927 tree fn_name = get_identifier (" ");
4928 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4930 else
4931 fn_decl = NULL_TREE;
4933 push_struct_function (fn_decl);
4936 /* Initialize the rtl expansion mechanism so that we can do simple things
4937 like generate sequences. This is used to provide a context during global
4938 initialization of some passes. You must call expand_dummy_function_end
4939 to exit this context. */
4941 void
4942 init_dummy_function_start (void)
4944 push_dummy_function (false);
4945 prepare_function_start ();
4948 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4949 and initialize static variables for generating RTL for the statements
4950 of the function. */
4952 void
4953 init_function_start (tree subr)
4955 /* Initialize backend, if needed. */
4956 initialize_rtl ();
4958 prepare_function_start ();
4959 decide_function_section (subr);
4961 /* Warn if this value is an aggregate type,
4962 regardless of which calling convention we are using for it. */
4963 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4964 warning_at (DECL_SOURCE_LOCATION (DECL_RESULT (subr)),
4965 OPT_Waggregate_return, "function returns an aggregate");
4968 /* Expand code to verify the stack_protect_guard. This is invoked at
4969 the end of a function to be protected. */
4971 void
4972 stack_protect_epilogue (void)
4974 tree guard_decl = crtl->stack_protect_guard_decl;
4975 rtx_code_label *label = gen_label_rtx ();
4976 rtx x, y;
4977 rtx_insn *seq = NULL;
4979 x = expand_normal (crtl->stack_protect_guard);
4981 if (targetm.have_stack_protect_combined_test () && guard_decl)
4983 gcc_assert (DECL_P (guard_decl));
4984 y = DECL_RTL (guard_decl);
4985 /* Allow the target to compute address of Y and compare it with X without
4986 leaking Y into a register. This combined address + compare pattern
4987 allows the target to prevent spilling of any intermediate results by
4988 splitting it after register allocator. */
4989 seq = targetm.gen_stack_protect_combined_test (x, y, label);
4991 else
4993 if (guard_decl)
4994 y = expand_normal (guard_decl);
4995 else
4996 y = const0_rtx;
4998 /* Allow the target to compare Y with X without leaking either into
4999 a register. */
5000 if (targetm.have_stack_protect_test ())
5001 seq = targetm.gen_stack_protect_test (x, y, label);
5004 if (seq)
5005 emit_insn (seq);
5006 else
5007 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5009 /* The noreturn predictor has been moved to the tree level. The rtl-level
5010 predictors estimate this branch about 20%, which isn't enough to get
5011 things moved out of line. Since this is the only extant case of adding
5012 a noreturn function at the rtl level, it doesn't seem worth doing ought
5013 except adding the prediction by hand. */
5014 rtx_insn *tmp = get_last_insn ();
5015 if (JUMP_P (tmp))
5016 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5018 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5019 free_temp_slots ();
5020 emit_label (label);
5023 /* Start the RTL for a new function, and set variables used for
5024 emitting RTL.
5025 SUBR is the FUNCTION_DECL node.
5026 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5027 the function's parameters, which must be run at any return statement. */
5029 bool currently_expanding_function_start;
5030 void
5031 expand_function_start (tree subr)
5033 currently_expanding_function_start = true;
5035 /* Make sure volatile mem refs aren't considered
5036 valid operands of arithmetic insns. */
5037 init_recog_no_volatile ();
5039 crtl->profile
5040 = (profile_flag
5041 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5043 crtl->limit_stack
5044 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5046 /* Make the label for return statements to jump to. Do not special
5047 case machines with special return instructions -- they will be
5048 handled later during jump, ifcvt, or epilogue creation. */
5049 return_label = gen_label_rtx ();
5051 /* Initialize rtx used to return the value. */
5052 /* Do this before assign_parms so that we copy the struct value address
5053 before any library calls that assign parms might generate. */
5055 /* Decide whether to return the value in memory or in a register. */
5056 tree res = DECL_RESULT (subr);
5057 if (aggregate_value_p (res, subr))
5059 /* Returning something that won't go in a register. */
5060 rtx value_address = 0;
5062 #ifdef PCC_STATIC_STRUCT_RETURN
5063 if (cfun->returns_pcc_struct)
5065 int size = int_size_in_bytes (TREE_TYPE (res));
5066 value_address = assemble_static_space (size);
5068 else
5069 #endif
5071 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5072 /* Expect to be passed the address of a place to store the value.
5073 If it is passed as an argument, assign_parms will take care of
5074 it. */
5075 if (sv)
5077 value_address = gen_reg_rtx (Pmode);
5078 emit_move_insn (value_address, sv);
5081 if (value_address)
5083 rtx x = value_address;
5084 if (!DECL_BY_REFERENCE (res))
5086 x = gen_rtx_MEM (DECL_MODE (res), x);
5087 set_mem_attributes (x, res, 1);
5089 set_parm_rtl (res, x);
5092 else if (DECL_MODE (res) == VOIDmode)
5093 /* If return mode is void, this decl rtl should not be used. */
5094 set_parm_rtl (res, NULL_RTX);
5095 else
5097 /* Compute the return values into a pseudo reg, which we will copy
5098 into the true return register after the cleanups are done. */
5099 tree return_type = TREE_TYPE (res);
5101 /* If we may coalesce this result, make sure it has the expected mode
5102 in case it was promoted. But we need not bother about BLKmode. */
5103 machine_mode promoted_mode
5104 = flag_tree_coalesce_vars && is_gimple_reg (res)
5105 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5106 : BLKmode;
5108 if (promoted_mode != BLKmode)
5109 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5110 else if (TYPE_MODE (return_type) != BLKmode
5111 && targetm.calls.return_in_msb (return_type))
5112 /* expand_function_end will insert the appropriate padding in
5113 this case. Use the return value's natural (unpadded) mode
5114 within the function proper. */
5115 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5116 else
5118 /* In order to figure out what mode to use for the pseudo, we
5119 figure out what the mode of the eventual return register will
5120 actually be, and use that. */
5121 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5123 /* Structures that are returned in registers are not
5124 aggregate_value_p, so we may see a PARALLEL or a REG. */
5125 if (REG_P (hard_reg))
5126 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5127 else
5129 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5130 set_parm_rtl (res, gen_group_rtx (hard_reg));
5134 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5135 result to the real return register(s). */
5136 DECL_REGISTER (res) = 1;
5139 /* Initialize rtx for parameters and local variables.
5140 In some cases this requires emitting insns. */
5141 assign_parms (subr);
5143 /* If function gets a static chain arg, store it. */
5144 if (cfun->static_chain_decl)
5146 tree parm = cfun->static_chain_decl;
5147 rtx local, chain;
5148 rtx_insn *insn;
5149 int unsignedp;
5151 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5152 chain = targetm.calls.static_chain (current_function_decl, true);
5154 set_decl_incoming_rtl (parm, chain, false);
5155 set_parm_rtl (parm, local);
5156 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5158 if (GET_MODE (local) != GET_MODE (chain))
5160 convert_move (local, chain, unsignedp);
5161 insn = get_last_insn ();
5163 else
5164 insn = emit_move_insn (local, chain);
5166 /* Mark the register as eliminable, similar to parameters. */
5167 if (MEM_P (chain)
5168 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5169 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5171 /* If we aren't optimizing, save the static chain onto the stack. */
5172 if (!optimize)
5174 tree saved_static_chain_decl
5175 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5176 DECL_NAME (parm), TREE_TYPE (parm));
5177 rtx saved_static_chain_rtx
5178 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5179 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5180 emit_move_insn (saved_static_chain_rtx, chain);
5181 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5182 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5186 /* The following was moved from init_function_start.
5187 The move was supposed to make sdb output more accurate. */
5188 /* Indicate the beginning of the function body,
5189 as opposed to parm setup. */
5190 emit_note (NOTE_INSN_FUNCTION_BEG);
5192 gcc_assert (NOTE_P (get_last_insn ()));
5194 parm_birth_insn = get_last_insn ();
5196 /* If the function receives a non-local goto, then store the
5197 bits we need to restore the frame pointer. */
5198 if (cfun->nonlocal_goto_save_area)
5200 tree t_save;
5201 rtx r_save;
5203 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5204 gcc_assert (DECL_RTL_SET_P (var));
5206 t_save = build4 (ARRAY_REF,
5207 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5208 cfun->nonlocal_goto_save_area,
5209 integer_zero_node, NULL_TREE, NULL_TREE);
5210 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5211 gcc_assert (GET_MODE (r_save) == Pmode);
5213 emit_move_insn (r_save, hard_frame_pointer_rtx);
5214 update_nonlocal_goto_save_area ();
5217 if (crtl->profile)
5219 #ifdef PROFILE_HOOK
5220 PROFILE_HOOK (current_function_funcdef_no);
5221 #endif
5224 /* If we are doing generic stack checking, the probe should go here. */
5225 if (flag_stack_check == GENERIC_STACK_CHECK)
5226 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5228 currently_expanding_function_start = false;
5231 void
5232 pop_dummy_function (void)
5234 pop_cfun ();
5235 in_dummy_function = false;
5238 /* Undo the effects of init_dummy_function_start. */
5239 void
5240 expand_dummy_function_end (void)
5242 gcc_assert (in_dummy_function);
5244 /* End any sequences that failed to be closed due to syntax errors. */
5245 while (in_sequence_p ())
5246 end_sequence ();
5248 /* Outside function body, can't compute type's actual size
5249 until next function's body starts. */
5251 free_after_parsing (cfun);
5252 free_after_compilation (cfun);
5253 pop_dummy_function ();
5256 /* Helper for diddle_return_value. */
5258 void
5259 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5261 if (! outgoing)
5262 return;
5264 if (REG_P (outgoing))
5265 (*doit) (outgoing, arg);
5266 else if (GET_CODE (outgoing) == PARALLEL)
5268 int i;
5270 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5272 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5274 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5275 (*doit) (x, arg);
5280 /* Call DOIT for each hard register used as a return value from
5281 the current function. */
5283 void
5284 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5286 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5289 static void
5290 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5292 emit_clobber (reg);
5295 void
5296 clobber_return_register (void)
5298 diddle_return_value (do_clobber_return_reg, NULL);
5300 /* In case we do use pseudo to return value, clobber it too. */
5301 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5303 tree decl_result = DECL_RESULT (current_function_decl);
5304 rtx decl_rtl = DECL_RTL (decl_result);
5305 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5307 do_clobber_return_reg (decl_rtl, NULL);
5312 static void
5313 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5315 emit_use (reg);
5318 static void
5319 use_return_register (void)
5321 diddle_return_value (do_use_return_reg, NULL);
5324 /* Generate RTL for the end of the current function. */
5326 void
5327 expand_function_end (void)
5329 /* If arg_pointer_save_area was referenced only from a nested
5330 function, we will not have initialized it yet. Do that now. */
5331 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5332 get_arg_pointer_save_area ();
5334 /* If we are doing generic stack checking and this function makes calls,
5335 do a stack probe at the start of the function to ensure we have enough
5336 space for another stack frame. */
5337 if (flag_stack_check == GENERIC_STACK_CHECK)
5339 rtx_insn *insn, *seq;
5341 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5342 if (CALL_P (insn))
5344 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5345 start_sequence ();
5346 if (STACK_CHECK_MOVING_SP)
5347 anti_adjust_stack_and_probe (max_frame_size, true);
5348 else
5349 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5350 seq = get_insns ();
5351 end_sequence ();
5352 set_insn_locations (seq, prologue_location);
5353 emit_insn_before (seq, stack_check_probe_note);
5354 break;
5358 /* End any sequences that failed to be closed due to syntax errors. */
5359 while (in_sequence_p ())
5360 end_sequence ();
5362 clear_pending_stack_adjust ();
5363 do_pending_stack_adjust ();
5365 /* Output a linenumber for the end of the function.
5366 SDB depended on this. */
5367 set_curr_insn_location (input_location);
5369 /* Before the return label (if any), clobber the return
5370 registers so that they are not propagated live to the rest of
5371 the function. This can only happen with functions that drop
5372 through; if there had been a return statement, there would
5373 have either been a return rtx, or a jump to the return label.
5375 We delay actual code generation after the current_function_value_rtx
5376 is computed. */
5377 rtx_insn *clobber_after = get_last_insn ();
5379 /* Output the label for the actual return from the function. */
5380 emit_label (return_label);
5382 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5384 /* Let except.cc know where it should emit the call to unregister
5385 the function context for sjlj exceptions. */
5386 if (flag_exceptions)
5387 sjlj_emit_function_exit_after (get_last_insn ());
5390 /* If this is an implementation of throw, do what's necessary to
5391 communicate between __builtin_eh_return and the epilogue. */
5392 expand_eh_return ();
5394 /* If stack protection is enabled for this function, check the guard. */
5395 if (crtl->stack_protect_guard
5396 && targetm.stack_protect_runtime_enabled_p ()
5397 && naked_return_label == NULL_RTX)
5398 stack_protect_epilogue ();
5400 /* If scalar return value was computed in a pseudo-reg, or was a named
5401 return value that got dumped to the stack, copy that to the hard
5402 return register. */
5403 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5405 tree decl_result = DECL_RESULT (current_function_decl);
5406 rtx decl_rtl = DECL_RTL (decl_result);
5408 if ((REG_P (decl_rtl)
5409 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5410 : DECL_REGISTER (decl_result))
5411 /* Unless the psABI says not to. */
5412 && !TYPE_EMPTY_P (TREE_TYPE (decl_result)))
5414 rtx real_decl_rtl = crtl->return_rtx;
5415 complex_mode cmode;
5417 /* This should be set in assign_parms. */
5418 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5420 /* If this is a BLKmode structure being returned in registers,
5421 then use the mode computed in expand_return. Note that if
5422 decl_rtl is memory, then its mode may have been changed,
5423 but that crtl->return_rtx has not. */
5424 if (GET_MODE (real_decl_rtl) == BLKmode)
5425 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5427 /* If a non-BLKmode return value should be padded at the least
5428 significant end of the register, shift it left by the appropriate
5429 amount. BLKmode results are handled using the group load/store
5430 machinery. */
5431 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5432 && REG_P (real_decl_rtl)
5433 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5435 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5436 REGNO (real_decl_rtl)),
5437 decl_rtl);
5438 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5440 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5442 /* If expand_function_start has created a PARALLEL for decl_rtl,
5443 move the result to the real return registers. Otherwise, do
5444 a group load from decl_rtl for a named return. */
5445 if (GET_CODE (decl_rtl) == PARALLEL)
5446 emit_group_move (real_decl_rtl, decl_rtl);
5447 else
5448 emit_group_load (real_decl_rtl, decl_rtl,
5449 TREE_TYPE (decl_result),
5450 int_size_in_bytes (TREE_TYPE (decl_result)));
5452 /* In the case of complex integer modes smaller than a word, we'll
5453 need to generate some non-trivial bitfield insertions. Do that
5454 on a pseudo and not the hard register. */
5455 else if (GET_CODE (decl_rtl) == CONCAT
5456 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5457 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5459 int old_generating_concat_p;
5460 rtx tmp;
5462 old_generating_concat_p = generating_concat_p;
5463 generating_concat_p = 0;
5464 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5465 generating_concat_p = old_generating_concat_p;
5467 emit_move_insn (tmp, decl_rtl);
5468 emit_move_insn (real_decl_rtl, tmp);
5470 /* If a named return value dumped decl_return to memory, then
5471 we may need to re-do the PROMOTE_MODE signed/unsigned
5472 extension. */
5473 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5475 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5476 promote_function_mode (TREE_TYPE (decl_result),
5477 GET_MODE (decl_rtl), &unsignedp,
5478 TREE_TYPE (current_function_decl), 1);
5480 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5482 else
5483 emit_move_insn (real_decl_rtl, decl_rtl);
5487 /* If returning a structure, arrange to return the address of the value
5488 in a place where debuggers expect to find it.
5490 If returning a structure PCC style,
5491 the caller also depends on this value.
5492 And cfun->returns_pcc_struct is not necessarily set. */
5493 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5494 && !targetm.calls.omit_struct_return_reg)
5496 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5497 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5498 rtx outgoing;
5500 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5501 type = TREE_TYPE (type);
5502 else
5503 value_address = XEXP (value_address, 0);
5505 outgoing = targetm.calls.function_value (build_pointer_type (type),
5506 current_function_decl, true);
5508 /* Mark this as a function return value so integrate will delete the
5509 assignment and USE below when inlining this function. */
5510 REG_FUNCTION_VALUE_P (outgoing) = 1;
5512 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5513 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5514 value_address = convert_memory_address (mode, value_address);
5516 emit_move_insn (outgoing, value_address);
5518 /* Show return register used to hold result (in this case the address
5519 of the result. */
5520 crtl->return_rtx = outgoing;
5523 /* Emit the actual code to clobber return register. Don't emit
5524 it if clobber_after is a barrier, then the previous basic block
5525 certainly doesn't fall thru into the exit block. */
5526 if (!BARRIER_P (clobber_after))
5528 start_sequence ();
5529 clobber_return_register ();
5530 rtx_insn *seq = get_insns ();
5531 end_sequence ();
5533 emit_insn_after (seq, clobber_after);
5536 /* Output the label for the naked return from the function. */
5537 if (naked_return_label)
5538 emit_label (naked_return_label);
5540 /* @@@ This is a kludge. We want to ensure that instructions that
5541 may trap are not moved into the epilogue by scheduling, because
5542 we don't always emit unwind information for the epilogue. */
5543 if (cfun->can_throw_non_call_exceptions
5544 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5545 emit_insn (gen_blockage ());
5547 /* If stack protection is enabled for this function, check the guard. */
5548 if (crtl->stack_protect_guard
5549 && targetm.stack_protect_runtime_enabled_p ()
5550 && naked_return_label)
5551 stack_protect_epilogue ();
5553 /* If we had calls to alloca, and this machine needs
5554 an accurate stack pointer to exit the function,
5555 insert some code to save and restore the stack pointer. */
5556 if (! EXIT_IGNORE_STACK
5557 && cfun->calls_alloca)
5559 rtx tem = 0;
5561 start_sequence ();
5562 emit_stack_save (SAVE_FUNCTION, &tem);
5563 rtx_insn *seq = get_insns ();
5564 end_sequence ();
5565 emit_insn_before (seq, parm_birth_insn);
5567 emit_stack_restore (SAVE_FUNCTION, tem);
5570 /* ??? This should no longer be necessary since stupid is no longer with
5571 us, but there are some parts of the compiler (eg reload_combine, and
5572 sh mach_dep_reorg) that still try and compute their own lifetime info
5573 instead of using the general framework. */
5574 use_return_register ();
5578 get_arg_pointer_save_area (void)
5580 rtx ret = arg_pointer_save_area;
5582 if (! ret)
5584 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5585 arg_pointer_save_area = ret;
5588 if (! crtl->arg_pointer_save_area_init)
5590 /* Save the arg pointer at the beginning of the function. The
5591 generated stack slot may not be a valid memory address, so we
5592 have to check it and fix it if necessary. */
5593 start_sequence ();
5594 emit_move_insn (validize_mem (copy_rtx (ret)),
5595 crtl->args.internal_arg_pointer);
5596 rtx_insn *seq = get_insns ();
5597 end_sequence ();
5599 push_topmost_sequence ();
5600 emit_insn_after (seq, entry_of_function ());
5601 pop_topmost_sequence ();
5603 crtl->arg_pointer_save_area_init = true;
5606 return ret;
5610 /* If debugging dumps are requested, dump information about how the
5611 target handled -fstack-check=clash for the prologue.
5613 PROBES describes what if any probes were emitted.
5615 RESIDUALS indicates if the prologue had any residual allocation
5616 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5618 void
5619 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5621 if (!dump_file)
5622 return;
5624 switch (probes)
5626 case NO_PROBE_NO_FRAME:
5627 fprintf (dump_file,
5628 "Stack clash no probe no stack adjustment in prologue.\n");
5629 break;
5630 case NO_PROBE_SMALL_FRAME:
5631 fprintf (dump_file,
5632 "Stack clash no probe small stack adjustment in prologue.\n");
5633 break;
5634 case PROBE_INLINE:
5635 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5636 break;
5637 case PROBE_LOOP:
5638 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5639 break;
5642 if (residuals)
5643 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5644 else
5645 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5647 if (frame_pointer_needed)
5648 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5649 else
5650 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5652 if (TREE_THIS_VOLATILE (cfun->decl))
5653 fprintf (dump_file,
5654 "Stack clash noreturn prologue, assuming no implicit"
5655 " probes in caller.\n");
5656 else
5657 fprintf (dump_file,
5658 "Stack clash not noreturn prologue.\n");
5661 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5662 for the first time. */
5664 static void
5665 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5667 rtx_insn *tmp;
5668 hash_table<insn_cache_hasher> *hash = *hashp;
5670 if (hash == NULL)
5671 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5673 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5675 rtx *slot = hash->find_slot (tmp, INSERT);
5676 gcc_assert (*slot == NULL);
5677 *slot = tmp;
5681 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5682 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5683 insn, then record COPY as well. */
5685 void
5686 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5688 hash_table<insn_cache_hasher> *hash;
5689 rtx *slot;
5691 hash = epilogue_insn_hash;
5692 if (!hash || !hash->find (insn))
5694 hash = prologue_insn_hash;
5695 if (!hash || !hash->find (insn))
5696 return;
5699 slot = hash->find_slot (copy, INSERT);
5700 gcc_assert (*slot == NULL);
5701 *slot = copy;
5704 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5705 we can be running after reorg, SEQUENCE rtl is possible. */
5707 static bool
5708 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5710 if (hash == NULL)
5711 return false;
5713 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5715 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5716 int i;
5717 for (i = seq->len () - 1; i >= 0; i--)
5718 if (hash->find (seq->element (i)))
5719 return true;
5720 return false;
5723 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5726 bool
5727 prologue_contains (const rtx_insn *insn)
5729 return contains (insn, prologue_insn_hash);
5732 bool
5733 epilogue_contains (const rtx_insn *insn)
5735 return contains (insn, epilogue_insn_hash);
5738 bool
5739 prologue_epilogue_contains (const rtx_insn *insn)
5741 if (contains (insn, prologue_insn_hash))
5742 return true;
5743 if (contains (insn, epilogue_insn_hash))
5744 return true;
5745 return false;
5748 void
5749 record_prologue_seq (rtx_insn *seq)
5751 record_insns (seq, NULL, &prologue_insn_hash);
5754 void
5755 record_epilogue_seq (rtx_insn *seq)
5757 record_insns (seq, NULL, &epilogue_insn_hash);
5760 /* Set JUMP_LABEL for a return insn. */
5762 void
5763 set_return_jump_label (rtx_insn *returnjump)
5765 rtx pat = PATTERN (returnjump);
5766 if (GET_CODE (pat) == PARALLEL)
5767 pat = XVECEXP (pat, 0, 0);
5768 if (ANY_RETURN_P (pat))
5769 JUMP_LABEL (returnjump) = pat;
5770 else
5771 JUMP_LABEL (returnjump) = ret_rtx;
5774 /* Return a sequence to be used as the split prologue for the current
5775 function, or NULL. */
5777 static rtx_insn *
5778 make_split_prologue_seq (void)
5780 if (!flag_split_stack
5781 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5782 return NULL;
5784 start_sequence ();
5785 emit_insn (targetm.gen_split_stack_prologue ());
5786 rtx_insn *seq = get_insns ();
5787 end_sequence ();
5789 record_insns (seq, NULL, &prologue_insn_hash);
5790 set_insn_locations (seq, prologue_location);
5792 return seq;
5795 /* Return a sequence to be used as the prologue for the current function,
5796 or NULL. */
5798 static rtx_insn *
5799 make_prologue_seq (void)
5801 if (!targetm.have_prologue ())
5802 return NULL;
5804 start_sequence ();
5805 rtx_insn *seq = targetm.gen_prologue ();
5806 emit_insn (seq);
5808 /* Insert an explicit USE for the frame pointer
5809 if the profiling is on and the frame pointer is required. */
5810 if (crtl->profile && frame_pointer_needed)
5811 emit_use (hard_frame_pointer_rtx);
5813 /* Retain a map of the prologue insns. */
5814 record_insns (seq, NULL, &prologue_insn_hash);
5815 emit_note (NOTE_INSN_PROLOGUE_END);
5817 /* Ensure that instructions are not moved into the prologue when
5818 profiling is on. The call to the profiling routine can be
5819 emitted within the live range of a call-clobbered register. */
5820 if (!targetm.profile_before_prologue () && crtl->profile)
5821 emit_insn (gen_blockage ());
5823 seq = get_insns ();
5824 end_sequence ();
5825 set_insn_locations (seq, prologue_location);
5827 return seq;
5830 /* Emit a sequence of insns to zero the call-used registers before RET
5831 according to ZERO_REGS_TYPE. */
5833 static void
5834 gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5836 bool only_gpr = true;
5837 bool only_used = true;
5838 bool only_arg = true;
5840 /* No need to zero call-used-regs in main (). */
5841 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5842 return;
5844 /* No need to zero call-used-regs if __builtin_eh_return is called
5845 since it isn't a normal function return. */
5846 if (crtl->calls_eh_return)
5847 return;
5849 /* If only_gpr is true, only zero call-used registers that are
5850 general-purpose registers; if only_used is true, only zero
5851 call-used registers that are used in the current function;
5852 if only_arg is true, only zero call-used registers that pass
5853 parameters defined by the flatform's calling conversion. */
5855 using namespace zero_regs_flags;
5857 only_gpr = zero_regs_type & ONLY_GPR;
5858 only_used = zero_regs_type & ONLY_USED;
5859 only_arg = zero_regs_type & ONLY_ARG;
5861 if ((zero_regs_type & LEAFY_MODE) && leaf_function_p ())
5862 only_used = true;
5864 /* For each of the hard registers, we should zero it if:
5865 1. it is a call-used register;
5866 and 2. it is not a fixed register;
5867 and 3. it is not live at the return of the routine;
5868 and 4. it is general registor if only_gpr is true;
5869 and 5. it is used in the routine if only_used is true;
5870 and 6. it is a register that passes parameter if only_arg is true. */
5872 /* First, prepare the data flow information. */
5873 basic_block bb = BLOCK_FOR_INSN (ret);
5874 auto_bitmap live_out;
5875 bitmap_copy (live_out, df_get_live_out (bb));
5876 df_simulate_initialize_backwards (bb, live_out);
5877 df_simulate_one_insn_backwards (bb, ret, live_out);
5879 HARD_REG_SET selected_hardregs;
5880 HARD_REG_SET all_call_used_regs;
5881 CLEAR_HARD_REG_SET (selected_hardregs);
5882 CLEAR_HARD_REG_SET (all_call_used_regs);
5883 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5885 if (!crtl->abi->clobbers_full_reg_p (regno))
5886 continue;
5887 if (fixed_regs[regno])
5888 continue;
5889 if (REGNO_REG_SET_P (live_out, regno))
5890 continue;
5891 #ifdef LEAF_REG_REMAP
5892 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5893 continue;
5894 #endif
5895 /* This is a call used register that is dead at return. */
5896 SET_HARD_REG_BIT (all_call_used_regs, regno);
5898 if (only_gpr
5899 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], regno))
5900 continue;
5901 if (only_used && !df_regs_ever_live_p (regno))
5902 continue;
5903 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5904 continue;
5906 /* Now this is a register that we might want to zero. */
5907 SET_HARD_REG_BIT (selected_hardregs, regno);
5910 if (hard_reg_set_empty_p (selected_hardregs))
5911 return;
5913 /* Now that we have a hard register set that needs to be zeroed, pass it to
5914 target to generate zeroing sequence. */
5915 HARD_REG_SET zeroed_hardregs;
5916 start_sequence ();
5917 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5919 /* For most targets, the returned set of registers is a subset of
5920 selected_hardregs, however, for some of the targets (for example MIPS),
5921 clearing some registers that are in selected_hardregs requires clearing
5922 other call used registers that are not in the selected_hardregs, under
5923 such situation, the returned set of registers must be a subset of
5924 all call used registers. */
5925 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs, all_call_used_regs));
5927 rtx_insn *seq = get_insns ();
5928 end_sequence ();
5929 if (seq)
5931 /* Emit the memory blockage and register clobber asm volatile before
5932 the whole sequence. */
5933 start_sequence ();
5934 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5935 rtx_insn *seq_barrier = get_insns ();
5936 end_sequence ();
5938 emit_insn_before (seq_barrier, ret);
5939 emit_insn_before (seq, ret);
5941 /* Update the data flow information. */
5942 crtl->must_be_zero_on_return |= zeroed_hardregs;
5943 df_update_exit_block_uses ();
5948 /* Return a sequence to be used as the epilogue for the current function,
5949 or NULL. */
5951 static rtx_insn *
5952 make_epilogue_seq (void)
5954 if (!targetm.have_epilogue ())
5955 return NULL;
5957 start_sequence ();
5958 emit_note (NOTE_INSN_EPILOGUE_BEG);
5959 rtx_insn *seq = targetm.gen_epilogue ();
5960 if (seq)
5961 emit_jump_insn (seq);
5963 /* Retain a map of the epilogue insns. */
5964 record_insns (seq, NULL, &epilogue_insn_hash);
5965 set_insn_locations (seq, epilogue_location);
5967 seq = get_insns ();
5968 rtx_insn *returnjump = get_last_insn ();
5969 end_sequence ();
5971 if (JUMP_P (returnjump))
5972 set_return_jump_label (returnjump);
5974 return seq;
5978 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5979 this into place with notes indicating where the prologue ends and where
5980 the epilogue begins. Update the basic block information when possible.
5982 Notes on epilogue placement:
5983 There are several kinds of edges to the exit block:
5984 * a single fallthru edge from LAST_BB
5985 * possibly, edges from blocks containing sibcalls
5986 * possibly, fake edges from infinite loops
5988 The epilogue is always emitted on the fallthru edge from the last basic
5989 block in the function, LAST_BB, into the exit block.
5991 If LAST_BB is empty except for a label, it is the target of every
5992 other basic block in the function that ends in a return. If a
5993 target has a return or simple_return pattern (possibly with
5994 conditional variants), these basic blocks can be changed so that a
5995 return insn is emitted into them, and their target is adjusted to
5996 the real exit block.
5998 Notes on shrink wrapping: We implement a fairly conservative
5999 version of shrink-wrapping rather than the textbook one. We only
6000 generate a single prologue and a single epilogue. This is
6001 sufficient to catch a number of interesting cases involving early
6002 exits.
6004 First, we identify the blocks that require the prologue to occur before
6005 them. These are the ones that modify a call-saved register, or reference
6006 any of the stack or frame pointer registers. To simplify things, we then
6007 mark everything reachable from these blocks as also requiring a prologue.
6008 This takes care of loops automatically, and avoids the need to examine
6009 whether MEMs reference the frame, since it is sufficient to check for
6010 occurrences of the stack or frame pointer.
6012 We then compute the set of blocks for which the need for a prologue
6013 is anticipatable (borrowing terminology from the shrink-wrapping
6014 description in Muchnick's book). These are the blocks which either
6015 require a prologue themselves, or those that have only successors
6016 where the prologue is anticipatable. The prologue needs to be
6017 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6018 is not. For the moment, we ensure that only one such edge exists.
6020 The epilogue is placed as described above, but we make a
6021 distinction between inserting return and simple_return patterns
6022 when modifying other blocks that end in a return. Blocks that end
6023 in a sibcall omit the sibcall_epilogue if the block is not in
6024 ANTIC. */
6026 void
6027 thread_prologue_and_epilogue_insns (void)
6029 df_analyze ();
6031 /* Can't deal with multiple successors of the entry block at the
6032 moment. Function should always have at least one entry
6033 point. */
6034 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6036 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6037 edge orig_entry_edge = entry_edge;
6039 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6040 rtx_insn *prologue_seq = make_prologue_seq ();
6041 rtx_insn *epilogue_seq = make_epilogue_seq ();
6043 /* Try to perform a kind of shrink-wrapping, making sure the
6044 prologue/epilogue is emitted only around those parts of the
6045 function that require it. */
6046 try_shrink_wrapping (&entry_edge, prologue_seq);
6048 /* If the target can handle splitting the prologue/epilogue into separate
6049 components, try to shrink-wrap these components separately. */
6050 try_shrink_wrapping_separate (entry_edge->dest);
6052 /* If that did anything for any component we now need the generate the
6053 "main" prologue again. Because some targets require some of these
6054 to be called in a specific order (i386 requires the split prologue
6055 to be first, for example), we create all three sequences again here.
6056 If this does not work for some target, that target should not enable
6057 separate shrink-wrapping. */
6058 if (crtl->shrink_wrapped_separate)
6060 split_prologue_seq = make_split_prologue_seq ();
6061 prologue_seq = make_prologue_seq ();
6062 epilogue_seq = make_epilogue_seq ();
6065 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6067 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6068 this marker for the splits of EH_RETURN patterns, and nothing else
6069 uses the flag in the meantime. */
6070 epilogue_completed = 1;
6072 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6073 some targets, these get split to a special version of the epilogue
6074 code. In order to be able to properly annotate these with unwind
6075 info, try to split them now. If we get a valid split, drop an
6076 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6077 edge e;
6078 edge_iterator ei;
6079 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6081 rtx_insn *prev, *last, *trial;
6083 if (e->flags & EDGE_FALLTHRU)
6084 continue;
6085 last = BB_END (e->src);
6086 if (!eh_returnjump_p (last))
6087 continue;
6089 prev = PREV_INSN (last);
6090 trial = try_split (PATTERN (last), last, 1);
6091 if (trial == last)
6092 continue;
6094 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6095 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6098 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6100 if (exit_fallthru_edge)
6102 if (epilogue_seq)
6104 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6105 commit_edge_insertions ();
6107 /* The epilogue insns we inserted may cause the exit edge to no longer
6108 be fallthru. */
6109 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6111 if (((e->flags & EDGE_FALLTHRU) != 0)
6112 && returnjump_p (BB_END (e->src)))
6113 e->flags &= ~EDGE_FALLTHRU;
6116 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6118 /* We have a fall-through edge to the exit block, the source is not
6119 at the end of the function, and there will be an assembler epilogue
6120 at the end of the function.
6121 We can't use force_nonfallthru here, because that would try to
6122 use return. Inserting a jump 'by hand' is extremely messy, so
6123 we take advantage of cfg_layout_finalize using
6124 fixup_fallthru_exit_predecessor. */
6125 cfg_layout_initialize (0);
6126 basic_block cur_bb;
6127 FOR_EACH_BB_FN (cur_bb, cfun)
6128 if (cur_bb->index >= NUM_FIXED_BLOCKS
6129 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6130 cur_bb->aux = cur_bb->next_bb;
6131 cfg_layout_finalize ();
6135 /* Insert the prologue. */
6137 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6139 if (split_prologue_seq || prologue_seq)
6141 rtx_insn *split_prologue_insn = split_prologue_seq;
6142 if (split_prologue_seq)
6144 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6145 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6146 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6149 rtx_insn *prologue_insn = prologue_seq;
6150 if (prologue_seq)
6152 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6153 prologue_insn = NEXT_INSN (prologue_insn);
6154 insert_insn_on_edge (prologue_seq, entry_edge);
6157 commit_edge_insertions ();
6159 /* Look for basic blocks within the prologue insns. */
6160 if (split_prologue_insn
6161 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6162 split_prologue_insn = NULL;
6163 if (prologue_insn
6164 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6165 prologue_insn = NULL;
6166 if (split_prologue_insn || prologue_insn)
6168 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6169 bitmap_clear (blocks);
6170 if (split_prologue_insn)
6171 bitmap_set_bit (blocks,
6172 BLOCK_FOR_INSN (split_prologue_insn)->index);
6173 if (prologue_insn)
6174 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6175 find_many_sub_basic_blocks (blocks);
6179 default_rtl_profile ();
6181 /* Emit sibling epilogues before any sibling call sites. */
6182 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6183 (e = ei_safe_edge (ei));
6184 ei_next (&ei))
6186 /* Skip those already handled, the ones that run without prologue. */
6187 if (e->flags & EDGE_IGNORE)
6189 e->flags &= ~EDGE_IGNORE;
6190 continue;
6193 rtx_insn *insn = BB_END (e->src);
6195 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6196 continue;
6198 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6200 start_sequence ();
6201 emit_note (NOTE_INSN_EPILOGUE_BEG);
6202 emit_insn (ep_seq);
6203 rtx_insn *seq = get_insns ();
6204 end_sequence ();
6206 /* Retain a map of the epilogue insns. Used in life analysis to
6207 avoid getting rid of sibcall epilogue insns. Do this before we
6208 actually emit the sequence. */
6209 record_insns (seq, NULL, &epilogue_insn_hash);
6210 set_insn_locations (seq, epilogue_location);
6212 emit_insn_before (seq, insn);
6216 if (epilogue_seq)
6218 rtx_insn *insn, *next;
6220 /* Similarly, move any line notes that appear after the epilogue.
6221 There is no need, however, to be quite so anal about the existence
6222 of such a note. Also possibly move
6223 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6224 info generation. */
6225 for (insn = epilogue_seq; insn; insn = next)
6227 next = NEXT_INSN (insn);
6228 if (NOTE_P (insn)
6229 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6230 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6234 /* Threading the prologue and epilogue changes the artificial refs in the
6235 entry and exit blocks, and may invalidate DF info for tail calls. */
6236 if (optimize
6237 || flag_optimize_sibling_calls
6238 || flag_ipa_icf_functions
6239 || in_lto_p)
6240 df_update_entry_exit_and_calls ();
6241 else
6243 df_update_entry_block_defs ();
6244 df_update_exit_block_uses ();
6248 /* Reposition the prologue-end and epilogue-begin notes after
6249 instruction scheduling. */
6251 void
6252 reposition_prologue_and_epilogue_notes (void)
6254 if (!targetm.have_prologue ()
6255 && !targetm.have_epilogue ()
6256 && !targetm.have_sibcall_epilogue ())
6257 return;
6259 /* Since the hash table is created on demand, the fact that it is
6260 non-null is a signal that it is non-empty. */
6261 if (prologue_insn_hash != NULL)
6263 size_t len = prologue_insn_hash->elements ();
6264 rtx_insn *insn, *last = NULL, *note = NULL;
6266 /* Scan from the beginning until we reach the last prologue insn. */
6267 /* ??? While we do have the CFG intact, there are two problems:
6268 (1) The prologue can contain loops (typically probing the stack),
6269 which means that the end of the prologue isn't in the first bb.
6270 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6271 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6273 if (NOTE_P (insn))
6275 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6276 note = insn;
6278 else if (contains (insn, prologue_insn_hash))
6280 last = insn;
6281 if (--len == 0)
6282 break;
6286 if (last)
6288 if (note == NULL)
6290 /* Scan forward looking for the PROLOGUE_END note. It should
6291 be right at the beginning of the block, possibly with other
6292 insn notes that got moved there. */
6293 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6295 if (NOTE_P (note)
6296 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6297 break;
6301 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6302 if (LABEL_P (last))
6303 last = NEXT_INSN (last);
6304 reorder_insns (note, note, last);
6308 if (epilogue_insn_hash != NULL)
6310 edge_iterator ei;
6311 edge e;
6313 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6315 rtx_insn *insn, *first = NULL, *note = NULL;
6316 basic_block bb = e->src;
6318 /* Scan from the beginning until we reach the first epilogue insn. */
6319 FOR_BB_INSNS (bb, insn)
6321 if (NOTE_P (insn))
6323 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6325 note = insn;
6326 if (first != NULL)
6327 break;
6330 else if (first == NULL && contains (insn, epilogue_insn_hash))
6332 first = insn;
6333 if (note != NULL)
6334 break;
6338 if (note)
6340 /* If the function has a single basic block, and no real
6341 epilogue insns (e.g. sibcall with no cleanup), the
6342 epilogue note can get scheduled before the prologue
6343 note. If we have frame related prologue insns, having
6344 them scanned during the epilogue will result in a crash.
6345 In this case re-order the epilogue note to just before
6346 the last insn in the block. */
6347 if (first == NULL)
6348 first = BB_END (bb);
6350 if (PREV_INSN (first) != note)
6351 reorder_insns (note, note, PREV_INSN (first));
6357 /* Returns the name of function declared by FNDECL. */
6358 const char *
6359 fndecl_name (tree fndecl)
6361 if (fndecl == NULL)
6362 return "(nofn)";
6363 return lang_hooks.decl_printable_name (fndecl, 1);
6366 /* Returns the name of function FN. */
6367 const char *
6368 function_name (struct function *fn)
6370 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6371 return fndecl_name (fndecl);
6374 /* Returns the name of the current function. */
6375 const char *
6376 current_function_name (void)
6378 return function_name (cfun);
6382 static void
6383 rest_of_handle_check_leaf_regs (void)
6385 #ifdef LEAF_REGISTERS
6386 crtl->uses_only_leaf_regs
6387 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6388 #endif
6391 /* Insert a TYPE into the used types hash table of CFUN. */
6393 static void
6394 used_types_insert_helper (tree type, struct function *func)
6396 if (type != NULL && func != NULL)
6398 if (func->used_types_hash == NULL)
6399 func->used_types_hash = hash_set<tree>::create_ggc (37);
6401 func->used_types_hash->add (type);
6405 /* Given a type, insert it into the used hash table in cfun. */
6406 void
6407 used_types_insert (tree t)
6409 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6410 if (TYPE_NAME (t))
6411 break;
6412 else
6413 t = TREE_TYPE (t);
6414 if (TREE_CODE (t) == ERROR_MARK)
6415 return;
6416 if (TYPE_NAME (t) == NULL_TREE
6417 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6418 t = TYPE_MAIN_VARIANT (t);
6419 if (debug_info_level > DINFO_LEVEL_NONE)
6421 if (cfun)
6422 used_types_insert_helper (t, cfun);
6423 else
6425 /* So this might be a type referenced by a global variable.
6426 Record that type so that we can later decide to emit its
6427 debug information. */
6428 vec_safe_push (types_used_by_cur_var_decl, t);
6433 /* Helper to Hash a struct types_used_by_vars_entry. */
6435 static hashval_t
6436 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6438 gcc_assert (entry && entry->var_decl && entry->type);
6440 return iterative_hash_object (entry->type,
6441 iterative_hash_object (entry->var_decl, 0));
6444 /* Hash function of the types_used_by_vars_entry hash table. */
6446 hashval_t
6447 used_type_hasher::hash (types_used_by_vars_entry *entry)
6449 return hash_types_used_by_vars_entry (entry);
6452 /*Equality function of the types_used_by_vars_entry hash table. */
6454 bool
6455 used_type_hasher::equal (types_used_by_vars_entry *e1,
6456 types_used_by_vars_entry *e2)
6458 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6461 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6463 void
6464 types_used_by_var_decl_insert (tree type, tree var_decl)
6466 if (type != NULL && var_decl != NULL)
6468 types_used_by_vars_entry **slot;
6469 struct types_used_by_vars_entry e;
6470 e.var_decl = var_decl;
6471 e.type = type;
6472 if (types_used_by_vars_hash == NULL)
6473 types_used_by_vars_hash
6474 = hash_table<used_type_hasher>::create_ggc (37);
6476 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6477 if (*slot == NULL)
6479 struct types_used_by_vars_entry *entry;
6480 entry = ggc_alloc<types_used_by_vars_entry> ();
6481 entry->type = type;
6482 entry->var_decl = var_decl;
6483 *slot = entry;
6488 namespace {
6490 const pass_data pass_data_leaf_regs =
6492 RTL_PASS, /* type */
6493 "*leaf_regs", /* name */
6494 OPTGROUP_NONE, /* optinfo_flags */
6495 TV_NONE, /* tv_id */
6496 0, /* properties_required */
6497 0, /* properties_provided */
6498 0, /* properties_destroyed */
6499 0, /* todo_flags_start */
6500 0, /* todo_flags_finish */
6503 class pass_leaf_regs : public rtl_opt_pass
6505 public:
6506 pass_leaf_regs (gcc::context *ctxt)
6507 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6510 /* opt_pass methods: */
6511 unsigned int execute (function *) final override
6513 rest_of_handle_check_leaf_regs ();
6514 return 0;
6517 }; // class pass_leaf_regs
6519 } // anon namespace
6521 rtl_opt_pass *
6522 make_pass_leaf_regs (gcc::context *ctxt)
6524 return new pass_leaf_regs (ctxt);
6527 static void
6528 rest_of_handle_thread_prologue_and_epilogue (function *fun)
6530 /* prepare_shrink_wrap is sensitive to the block structure of the control
6531 flow graph, so clean it up first. */
6532 if (optimize)
6533 cleanup_cfg (0);
6535 /* On some machines, the prologue and epilogue code, or parts thereof,
6536 can be represented as RTL. Doing so lets us schedule insns between
6537 it and the rest of the code and also allows delayed branch
6538 scheduling to operate in the epilogue. */
6539 thread_prologue_and_epilogue_insns ();
6541 /* Some non-cold blocks may now be only reachable from cold blocks.
6542 Fix that up. */
6543 fixup_partitions ();
6545 /* After prologue and epilogue generation, the judgement on whether
6546 one memory access onto stack frame may trap or not could change,
6547 since we get more exact stack information by now. So try to
6548 remove any EH edges here, see PR90259. */
6549 if (fun->can_throw_non_call_exceptions)
6550 purge_all_dead_edges ();
6552 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6553 see PR57320. */
6554 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6556 /* The stack usage info is finalized during prologue expansion. */
6557 if (flag_stack_usage_info || flag_callgraph_info)
6558 output_stack_usage ();
6561 /* Record a final call to CALLEE at LOCATION. */
6563 void
6564 record_final_call (tree callee, location_t location)
6566 struct callinfo_callee datum = { location, callee };
6567 vec_safe_push (cfun->su->callees, datum);
6570 /* Record a dynamic allocation made for DECL_OR_EXP. */
6572 void
6573 record_dynamic_alloc (tree decl_or_exp)
6575 struct callinfo_dalloc datum;
6577 if (DECL_P (decl_or_exp))
6579 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6580 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6581 const char *dot = strrchr (name, '.');
6582 if (dot)
6583 name = dot + 1;
6584 datum.name = ggc_strdup (name);
6586 else
6588 datum.location = EXPR_LOCATION (decl_or_exp);
6589 datum.name = NULL;
6592 vec_safe_push (cfun->su->dallocs, datum);
6595 namespace {
6597 const pass_data pass_data_thread_prologue_and_epilogue =
6599 RTL_PASS, /* type */
6600 "pro_and_epilogue", /* name */
6601 OPTGROUP_NONE, /* optinfo_flags */
6602 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6603 0, /* properties_required */
6604 0, /* properties_provided */
6605 0, /* properties_destroyed */
6606 0, /* todo_flags_start */
6607 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6610 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6612 public:
6613 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6614 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6617 /* opt_pass methods: */
6618 unsigned int execute (function * fun) final override
6620 rest_of_handle_thread_prologue_and_epilogue (fun);
6621 return 0;
6624 }; // class pass_thread_prologue_and_epilogue
6626 } // anon namespace
6628 rtl_opt_pass *
6629 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6631 return new pass_thread_prologue_and_epilogue (ctxt);
6634 namespace {
6636 const pass_data pass_data_zero_call_used_regs =
6638 RTL_PASS, /* type */
6639 "zero_call_used_regs", /* name */
6640 OPTGROUP_NONE, /* optinfo_flags */
6641 TV_NONE, /* tv_id */
6642 0, /* properties_required */
6643 0, /* properties_provided */
6644 0, /* properties_destroyed */
6645 0, /* todo_flags_start */
6646 0, /* todo_flags_finish */
6649 class pass_zero_call_used_regs: public rtl_opt_pass
6651 public:
6652 pass_zero_call_used_regs (gcc::context *ctxt)
6653 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6656 /* opt_pass methods: */
6657 unsigned int execute (function *) final override;
6659 }; // class pass_zero_call_used_regs
6661 unsigned int
6662 pass_zero_call_used_regs::execute (function *fun)
6664 using namespace zero_regs_flags;
6665 unsigned int zero_regs_type = UNSET;
6667 tree attr_zero_regs = lookup_attribute ("zero_call_used_regs",
6668 DECL_ATTRIBUTES (fun->decl));
6670 /* Get the type of zero_call_used_regs from function attribute.
6671 We have filtered out invalid attribute values already at this point. */
6672 if (attr_zero_regs)
6674 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6675 is the attribute argument's value. */
6676 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6677 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6678 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6679 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6681 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6682 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6683 zero_call_used_regs_opts[i].name) == 0)
6685 zero_regs_type = zero_call_used_regs_opts[i].flag;
6686 break;
6690 if (!zero_regs_type)
6691 zero_regs_type = flag_zero_call_used_regs;
6693 /* No need to zero call-used-regs when no user request is present. */
6694 if (!(zero_regs_type & ENABLED))
6695 return 0;
6697 edge_iterator ei;
6698 edge e;
6700 /* This pass needs data flow information. */
6701 df_analyze ();
6703 /* Iterate over the function's return instructions and insert any
6704 register zeroing required by the -fzero-call-used-regs command-line
6705 option or the "zero_call_used_regs" function attribute. */
6706 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6708 rtx_insn *insn = BB_END (e->src);
6709 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6710 gen_call_used_regs_seq (insn, zero_regs_type);
6713 return 0;
6716 } // anon namespace
6718 rtl_opt_pass *
6719 make_pass_zero_call_used_regs (gcc::context *ctxt)
6721 return new pass_zero_call_used_regs (ctxt);
6724 /* If CONSTRAINT is a matching constraint, then return its number.
6725 Otherwise, return -1. */
6727 static int
6728 matching_constraint_num (const char *constraint)
6730 if (*constraint == '%')
6731 constraint++;
6733 if (IN_RANGE (*constraint, '0', '9'))
6734 return strtoul (constraint, NULL, 10);
6736 return -1;
6739 /* This mini-pass fixes fall-out from SSA in asm statements that have
6740 in-out constraints. Say you start with
6742 orig = inout;
6743 asm ("": "+mr" (inout));
6744 use (orig);
6746 which is transformed very early to use explicit output and match operands:
6748 orig = inout;
6749 asm ("": "=mr" (inout) : "0" (inout));
6750 use (orig);
6752 Or, after SSA and copyprop,
6754 asm ("": "=mr" (inout_2) : "0" (inout_1));
6755 use (inout_1);
6757 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6758 they represent two separate values, so they will get different pseudo
6759 registers during expansion. Then, since the two operands need to match
6760 per the constraints, but use different pseudo registers, reload can
6761 only register a reload for these operands. But reloads can only be
6762 satisfied by hardregs, not by memory, so we need a register for this
6763 reload, just because we are presented with non-matching operands.
6764 So, even though we allow memory for this operand, no memory can be
6765 used for it, just because the two operands don't match. This can
6766 cause reload failures on register-starved targets.
6768 So it's a symptom of reload not being able to use memory for reloads
6769 or, alternatively it's also a symptom of both operands not coming into
6770 reload as matching (in which case the pseudo could go to memory just
6771 fine, as the alternative allows it, and no reload would be necessary).
6772 We fix the latter problem here, by transforming
6774 asm ("": "=mr" (inout_2) : "0" (inout_1));
6776 back to
6778 inout_2 = inout_1;
6779 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6781 static void
6782 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6784 int i;
6785 bool changed = false;
6786 rtx op = SET_SRC (p_sets[0]);
6787 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6788 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6789 bool *output_matched = XALLOCAVEC (bool, noutputs);
6791 memset (output_matched, 0, noutputs * sizeof (bool));
6792 for (i = 0; i < ninputs; i++)
6794 rtx input, output;
6795 rtx_insn *insns;
6796 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6797 int match, j;
6799 match = matching_constraint_num (constraint);
6800 if (match < 0)
6801 continue;
6803 gcc_assert (match < noutputs);
6804 output = SET_DEST (p_sets[match]);
6805 input = RTVEC_ELT (inputs, i);
6806 /* Only do the transformation for pseudos. */
6807 if (! REG_P (output)
6808 || rtx_equal_p (output, input)
6809 || !(REG_P (input) || SUBREG_P (input)
6810 || MEM_P (input) || CONSTANT_P (input))
6811 || !general_operand (input, GET_MODE (output)))
6812 continue;
6814 /* We can't do anything if the output is also used as input,
6815 as we're going to overwrite it. */
6816 for (j = 0; j < ninputs; j++)
6817 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6818 break;
6819 if (j != ninputs)
6820 continue;
6822 /* Avoid changing the same input several times. For
6823 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6824 only change it once (to out1), rather than changing it
6825 first to out1 and afterwards to out2. */
6826 if (i > 0)
6828 for (j = 0; j < noutputs; j++)
6829 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6830 break;
6831 if (j != noutputs)
6832 continue;
6834 output_matched[match] = true;
6836 start_sequence ();
6837 emit_move_insn (output, copy_rtx (input));
6838 insns = get_insns ();
6839 end_sequence ();
6840 emit_insn_before (insns, insn);
6842 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6843 bool early_clobber_p = strchr (constraint, '&') != NULL;
6845 /* Now replace all mentions of the input with output. We can't
6846 just replace the occurrence in inputs[i], as the register might
6847 also be used in some other input (or even in an address of an
6848 output), which would mean possibly increasing the number of
6849 inputs by one (namely 'output' in addition), which might pose
6850 a too complicated problem for reload to solve. E.g. this situation:
6852 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6854 Here 'input' is used in two occurrences as input (once for the
6855 input operand, once for the address in the second output operand).
6856 If we would replace only the occurrence of the input operand (to
6857 make the matching) we would be left with this:
6859 output = input
6860 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6862 Now we suddenly have two different input values (containing the same
6863 value, but different pseudos) where we formerly had only one.
6864 With more complicated asms this might lead to reload failures
6865 which wouldn't have happen without this pass. So, iterate over
6866 all operands and replace all occurrences of the register used.
6868 However, if one or more of the 'input' uses have a non-matching
6869 constraint and the matched output operand is an early clobber
6870 operand, then do not replace the input operand, since by definition
6871 it conflicts with the output operand and cannot share the same
6872 register. See PR89313 for details. */
6874 for (j = 0; j < noutputs; j++)
6875 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6876 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6877 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6878 input, output);
6879 for (j = 0; j < ninputs; j++)
6880 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6882 if (!early_clobber_p
6883 || match == matching_constraint_num
6884 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6885 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6886 input, output);
6889 changed = true;
6892 if (changed)
6893 df_insn_rescan (insn);
6896 /* Add the decl D to the local_decls list of FUN. */
6898 void
6899 add_local_decl (struct function *fun, tree d)
6901 gcc_assert (VAR_P (d));
6902 vec_safe_push (fun->local_decls, d);
6905 namespace {
6907 const pass_data pass_data_match_asm_constraints =
6909 RTL_PASS, /* type */
6910 "asmcons", /* name */
6911 OPTGROUP_NONE, /* optinfo_flags */
6912 TV_NONE, /* tv_id */
6913 0, /* properties_required */
6914 0, /* properties_provided */
6915 0, /* properties_destroyed */
6916 0, /* todo_flags_start */
6917 0, /* todo_flags_finish */
6920 class pass_match_asm_constraints : public rtl_opt_pass
6922 public:
6923 pass_match_asm_constraints (gcc::context *ctxt)
6924 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6927 /* opt_pass methods: */
6928 unsigned int execute (function *) final override;
6930 }; // class pass_match_asm_constraints
6932 unsigned
6933 pass_match_asm_constraints::execute (function *fun)
6935 basic_block bb;
6936 rtx_insn *insn;
6937 rtx pat, *p_sets;
6938 int noutputs;
6940 if (!crtl->has_asm_statement)
6941 return 0;
6943 df_set_flags (DF_DEFER_INSN_RESCAN);
6944 FOR_EACH_BB_FN (bb, fun)
6946 FOR_BB_INSNS (bb, insn)
6948 if (!INSN_P (insn))
6949 continue;
6951 pat = PATTERN (insn);
6952 if (GET_CODE (pat) == PARALLEL)
6953 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6954 else if (GET_CODE (pat) == SET)
6955 p_sets = &PATTERN (insn), noutputs = 1;
6956 else
6957 continue;
6959 if (GET_CODE (*p_sets) == SET
6960 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6961 match_asm_constraints_1 (insn, p_sets, noutputs);
6965 return TODO_df_finish;
6968 } // anon namespace
6970 rtl_opt_pass *
6971 make_pass_match_asm_constraints (gcc::context *ctxt)
6973 return new pass_match_asm_constraints (ctxt);
6977 #include "gt-function.h"