1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
31 #include "hard-reg-set.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
42 #include "typeclass.h"
44 #include "langhooks.h"
47 #include "tree-iterator.h"
48 #include "tree-flow.h"
50 #include "common/common-target.h"
53 #include "diagnostic.h"
54 #include "ssaexpand.h"
55 #include "target-globals.h"
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
78 #define STACK_PUSH_CODE PRE_INC
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
91 /* This structure is used by move_by_pieces to describe the move to
93 struct move_by_pieces_d
102 int explicit_inc_from
;
103 unsigned HOST_WIDE_INT len
;
104 HOST_WIDE_INT offset
;
108 /* This structure is used by store_by_pieces to describe the clear to
111 struct store_by_pieces_d
117 unsigned HOST_WIDE_INT len
;
118 HOST_WIDE_INT offset
;
119 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
124 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
125 struct move_by_pieces_d
*);
126 static bool block_move_libcall_safe_for_call_parm (void);
127 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
);
128 static tree
emit_block_move_libcall_fn (int);
129 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
130 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
131 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
132 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
133 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
134 struct store_by_pieces_d
*);
135 static tree
clear_storage_libcall_fn (int);
136 static rtx
compress_float_constant (rtx
, rtx
);
137 static rtx
get_subtarget (rtx
);
138 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
139 HOST_WIDE_INT
, enum machine_mode
,
140 tree
, tree
, int, alias_set_type
);
141 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
142 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
143 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
145 tree
, tree
, alias_set_type
, bool);
147 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
149 static int is_aligning_offset (const_tree
, const_tree
);
150 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
151 enum expand_modifier
);
152 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
153 static rtx
do_store_flag (sepops
, rtx
, enum machine_mode
);
155 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
157 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
158 static rtx
const_vector_from_tree (tree
);
159 static void write_complex_part (rtx
, rtx
, bool);
161 /* This macro is used to determine whether move_by_pieces should be called
162 to perform a structure copy. */
163 #ifndef MOVE_BY_PIECES_P
164 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
165 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
166 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
169 /* This macro is used to determine whether clear_by_pieces should be
170 called to clear storage. */
171 #ifndef CLEAR_BY_PIECES_P
172 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
173 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
174 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
177 /* This macro is used to determine whether store_by_pieces should be
178 called to "memset" storage with byte values other than zero. */
179 #ifndef SET_BY_PIECES_P
180 #define SET_BY_PIECES_P(SIZE, ALIGN) \
181 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
182 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
185 /* This macro is used to determine whether store_by_pieces should be
186 called to "memcpy" storage when the source is a constant string. */
187 #ifndef STORE_BY_PIECES_P
188 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
189 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
190 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
193 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
195 #ifndef SLOW_UNALIGNED_ACCESS
196 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
199 /* This is run to set up which modes can be used
200 directly in memory and to initialize the block move optab. It is run
201 at the beginning of compilation and when the target is reinitialized. */
204 init_expr_target (void)
207 enum machine_mode mode
;
212 /* Try indexing by frame ptr and try by stack ptr.
213 It is known that on the Convex the stack ptr isn't a valid index.
214 With luck, one or the other is valid on any machine. */
215 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
216 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
218 /* A scratch register we can modify in-place below to avoid
219 useless RTL allocations. */
220 reg
= gen_rtx_REG (VOIDmode
, -1);
222 insn
= rtx_alloc (INSN
);
223 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
224 PATTERN (insn
) = pat
;
226 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
227 mode
= (enum machine_mode
) ((int) mode
+ 1))
231 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
232 PUT_MODE (mem
, mode
);
233 PUT_MODE (mem1
, mode
);
234 PUT_MODE (reg
, mode
);
236 /* See if there is some register that can be used in this mode and
237 directly loaded or stored from memory. */
239 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
240 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
241 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
244 if (! HARD_REGNO_MODE_OK (regno
, mode
))
247 SET_REGNO (reg
, regno
);
250 SET_DEST (pat
) = reg
;
251 if (recog (pat
, insn
, &num_clobbers
) >= 0)
252 direct_load
[(int) mode
] = 1;
254 SET_SRC (pat
) = mem1
;
255 SET_DEST (pat
) = reg
;
256 if (recog (pat
, insn
, &num_clobbers
) >= 0)
257 direct_load
[(int) mode
] = 1;
260 SET_DEST (pat
) = mem
;
261 if (recog (pat
, insn
, &num_clobbers
) >= 0)
262 direct_store
[(int) mode
] = 1;
265 SET_DEST (pat
) = mem1
;
266 if (recog (pat
, insn
, &num_clobbers
) >= 0)
267 direct_store
[(int) mode
] = 1;
271 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
273 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
274 mode
= GET_MODE_WIDER_MODE (mode
))
276 enum machine_mode srcmode
;
277 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
278 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
282 ic
= can_extend_p (mode
, srcmode
, 0);
283 if (ic
== CODE_FOR_nothing
)
286 PUT_MODE (mem
, srcmode
);
288 if (insn_operand_matches (ic
, 1, mem
))
289 float_extend_from_mem
[mode
][srcmode
] = true;
294 /* This is run at the start of compiling a function. */
299 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
302 /* Copy data from FROM to TO, where the machine modes are not the same.
303 Both modes may be integer, or both may be floating, or both may be
305 UNSIGNEDP should be nonzero if FROM is an unsigned type.
306 This causes zero-extension instead of sign-extension. */
309 convert_move (rtx to
, rtx from
, int unsignedp
)
311 enum machine_mode to_mode
= GET_MODE (to
);
312 enum machine_mode from_mode
= GET_MODE (from
);
313 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
314 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
318 /* rtx code for making an equivalent value. */
319 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
320 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
323 gcc_assert (to_real
== from_real
);
324 gcc_assert (to_mode
!= BLKmode
);
325 gcc_assert (from_mode
!= BLKmode
);
327 /* If the source and destination are already the same, then there's
332 /* If FROM is a SUBREG that indicates that we have already done at least
333 the required extension, strip it. We don't handle such SUBREGs as
336 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
337 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
338 >= GET_MODE_PRECISION (to_mode
))
339 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
340 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
342 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
344 if (to_mode
== from_mode
345 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
347 emit_move_insn (to
, from
);
351 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
353 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
355 if (VECTOR_MODE_P (to_mode
))
356 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
358 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
360 emit_move_insn (to
, from
);
364 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
366 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
367 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
376 gcc_assert ((GET_MODE_PRECISION (from_mode
)
377 != GET_MODE_PRECISION (to_mode
))
378 || (DECIMAL_FLOAT_MODE_P (from_mode
)
379 != DECIMAL_FLOAT_MODE_P (to_mode
)));
381 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
382 /* Conversion between decimal float and binary float, same size. */
383 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
384 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
389 /* Try converting directly if the insn is supported. */
391 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
392 if (code
!= CODE_FOR_nothing
)
394 emit_unop_insn (code
, to
, from
,
395 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
399 /* Otherwise use a libcall. */
400 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
402 /* Is this conversion implemented yet? */
403 gcc_assert (libcall
);
406 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
408 insns
= get_insns ();
410 emit_libcall_block (insns
, to
, value
,
411 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
413 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
417 /* Handle pointer conversion. */ /* SPEE 900220. */
418 /* Targets are expected to provide conversion insns between PxImode and
419 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
420 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
422 enum machine_mode full_mode
423 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
425 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
426 != CODE_FOR_nothing
);
428 if (full_mode
!= from_mode
)
429 from
= convert_to_mode (full_mode
, from
, unsignedp
);
430 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
434 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
437 enum machine_mode full_mode
438 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
439 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
440 enum insn_code icode
;
442 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
443 gcc_assert (icode
!= CODE_FOR_nothing
);
445 if (to_mode
== full_mode
)
447 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
451 new_from
= gen_reg_rtx (full_mode
);
452 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
454 /* else proceed to integer conversions below. */
455 from_mode
= full_mode
;
459 /* Make sure both are fixed-point modes or both are not. */
460 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
461 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
462 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
464 /* If we widen from_mode to to_mode and they are in the same class,
465 we won't saturate the result.
466 Otherwise, always saturate the result to play safe. */
467 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
468 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
469 expand_fixed_convert (to
, from
, 0, 0);
471 expand_fixed_convert (to
, from
, 0, 1);
475 /* Now both modes are integers. */
477 /* Handle expanding beyond a word. */
478 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
479 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
486 enum machine_mode lowpart_mode
;
487 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
489 /* Try converting directly if the insn is supported. */
490 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
493 /* If FROM is a SUBREG, put it into a register. Do this
494 so that we always generate the same set of insns for
495 better cse'ing; if an intermediate assignment occurred,
496 we won't be doing the operation directly on the SUBREG. */
497 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
498 from
= force_reg (from_mode
, from
);
499 emit_unop_insn (code
, to
, from
, equiv_code
);
502 /* Next, try converting via full word. */
503 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
504 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
505 != CODE_FOR_nothing
))
507 rtx word_to
= gen_reg_rtx (word_mode
);
510 if (reg_overlap_mentioned_p (to
, from
))
511 from
= force_reg (from_mode
, from
);
514 convert_move (word_to
, from
, unsignedp
);
515 emit_unop_insn (code
, to
, word_to
, equiv_code
);
519 /* No special multiword conversion insn; do it by hand. */
522 /* Since we will turn this into a no conflict block, we must ensure the
523 the source does not overlap the target so force it into an isolated
524 register when maybe so. Likewise for any MEM input, since the
525 conversion sequence might require several references to it and we
526 must ensure we're getting the same value every time. */
528 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
529 from
= force_reg (from_mode
, from
);
531 /* Get a copy of FROM widened to a word, if necessary. */
532 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
533 lowpart_mode
= word_mode
;
535 lowpart_mode
= from_mode
;
537 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
539 lowpart
= gen_lowpart (lowpart_mode
, to
);
540 emit_move_insn (lowpart
, lowfrom
);
542 /* Compute the value to put in each remaining word. */
544 fill_value
= const0_rtx
;
546 fill_value
= emit_store_flag (gen_reg_rtx (word_mode
),
547 LT
, lowfrom
, const0_rtx
,
550 /* Fill the remaining words. */
551 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
553 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
554 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
556 gcc_assert (subword
);
558 if (fill_value
!= subword
)
559 emit_move_insn (subword
, fill_value
);
562 insns
= get_insns ();
569 /* Truncating multi-word to a word or less. */
570 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
571 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
574 && ! MEM_VOLATILE_P (from
)
575 && direct_load
[(int) to_mode
]
576 && ! mode_dependent_address_p (XEXP (from
, 0)))
578 || GET_CODE (from
) == SUBREG
))
579 from
= force_reg (from_mode
, from
);
580 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
584 /* Now follow all the conversions between integers
585 no more than a word long. */
587 /* For truncation, usually we can just refer to FROM in a narrower mode. */
588 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
589 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
592 && ! MEM_VOLATILE_P (from
)
593 && direct_load
[(int) to_mode
]
594 && ! mode_dependent_address_p (XEXP (from
, 0)))
596 || GET_CODE (from
) == SUBREG
))
597 from
= force_reg (from_mode
, from
);
598 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
600 from
= copy_to_reg (from
);
601 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
605 /* Handle extension. */
606 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
608 /* Convert directly if that works. */
609 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
612 emit_unop_insn (code
, to
, from
, equiv_code
);
617 enum machine_mode intermediate
;
621 /* Search for a mode to convert via. */
622 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
623 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
624 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
626 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
627 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
628 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
629 != CODE_FOR_nothing
))
631 convert_move (to
, convert_to_mode (intermediate
, from
,
632 unsignedp
), unsignedp
);
636 /* No suitable intermediate mode.
637 Generate what we need with shifts. */
638 shift_amount
= (GET_MODE_PRECISION (to_mode
)
639 - GET_MODE_PRECISION (from_mode
));
640 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
641 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
643 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
646 emit_move_insn (to
, tmp
);
651 /* Support special truncate insns for certain modes. */
652 if (convert_optab_handler (trunc_optab
, to_mode
,
653 from_mode
) != CODE_FOR_nothing
)
655 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
660 /* Handle truncation of volatile memrefs, and so on;
661 the things that couldn't be truncated directly,
662 and for which there was no special instruction.
664 ??? Code above formerly short-circuited this, for most integer
665 mode pairs, with a force_reg in from_mode followed by a recursive
666 call to this routine. Appears always to have been wrong. */
667 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
669 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
670 emit_move_insn (to
, temp
);
674 /* Mode combination is not recognized. */
678 /* Return an rtx for a value that would result
679 from converting X to mode MODE.
680 Both X and MODE may be floating, or both integer.
681 UNSIGNEDP is nonzero if X is an unsigned value.
682 This can be done by referring to a part of X in place
683 or by copying to a new temporary with conversion. */
686 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
688 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
691 /* Return an rtx for a value that would result
692 from converting X from mode OLDMODE to mode MODE.
693 Both modes may be floating, or both integer.
694 UNSIGNEDP is nonzero if X is an unsigned value.
696 This can be done by referring to a part of X in place
697 or by copying to a new temporary with conversion.
699 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
702 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
706 /* If FROM is a SUBREG that indicates that we have already done at least
707 the required extension, strip it. */
709 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
710 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
711 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
712 x
= gen_lowpart (mode
, x
);
714 if (GET_MODE (x
) != VOIDmode
)
715 oldmode
= GET_MODE (x
);
720 /* There is one case that we must handle specially: If we are converting
721 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
722 we are to interpret the constant as unsigned, gen_lowpart will do
723 the wrong if the constant appears negative. What we want to do is
724 make the high-order word of the constant zero, not all ones. */
726 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
727 && GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_DOUBLE_INT
728 && CONST_INT_P (x
) && INTVAL (x
) < 0)
730 double_int val
= double_int::from_uhwi (INTVAL (x
));
732 /* We need to zero extend VAL. */
733 if (oldmode
!= VOIDmode
)
734 val
= val
.zext (GET_MODE_BITSIZE (oldmode
));
736 return immed_double_int_const (val
, mode
);
739 /* We can do this with a gen_lowpart if both desired and current modes
740 are integer, and this is either a constant integer, a register, or a
741 non-volatile MEM. Except for the constant case where MODE is no
742 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
745 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
)
746 || (GET_MODE_CLASS (mode
) == MODE_INT
747 && GET_MODE_CLASS (oldmode
) == MODE_INT
748 && (CONST_DOUBLE_AS_INT_P (x
)
749 || (GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
750 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
751 && direct_load
[(int) mode
])
753 && (! HARD_REGISTER_P (x
)
754 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
755 && TRULY_NOOP_TRUNCATION_MODES_P (mode
,
758 /* ?? If we don't know OLDMODE, we have to assume here that
759 X does not need sign- or zero-extension. This may not be
760 the case, but it's the best we can do. */
761 if (CONST_INT_P (x
) && oldmode
!= VOIDmode
762 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (oldmode
))
764 HOST_WIDE_INT val
= INTVAL (x
);
766 /* We must sign or zero-extend in this case. Start by
767 zero-extending, then sign extend if we need to. */
768 val
&= GET_MODE_MASK (oldmode
);
770 && val_signbit_known_set_p (oldmode
, val
))
771 val
|= ~GET_MODE_MASK (oldmode
);
773 return gen_int_mode (val
, mode
);
776 return gen_lowpart (mode
, x
);
779 /* Converting from integer constant into mode is always equivalent to an
781 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
783 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
784 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
787 temp
= gen_reg_rtx (mode
);
788 convert_move (temp
, x
, unsignedp
);
792 /* Return the largest alignment we can use for doing a move (or store)
793 of MAX_PIECES. ALIGN is the largest alignment we could use. */
796 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
798 enum machine_mode tmode
;
800 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
801 if (align
>= GET_MODE_ALIGNMENT (tmode
))
802 align
= GET_MODE_ALIGNMENT (tmode
);
805 enum machine_mode tmode
, xmode
;
807 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
809 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
810 if (GET_MODE_SIZE (tmode
) > max_pieces
811 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
814 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
820 /* Return the widest integer mode no wider than SIZE. If no such mode
821 can be found, return VOIDmode. */
823 static enum machine_mode
824 widest_int_mode_for_size (unsigned int size
)
826 enum machine_mode tmode
, mode
= VOIDmode
;
828 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
829 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
830 if (GET_MODE_SIZE (tmode
) < size
)
836 /* STORE_MAX_PIECES is the number of bytes at a time that we can
837 store efficiently. Due to internal GCC limitations, this is
838 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
839 for an immediate constant. */
841 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
843 /* Determine whether the LEN bytes can be moved by using several move
844 instructions. Return nonzero if a call to move_by_pieces should
848 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
849 unsigned int align ATTRIBUTE_UNUSED
)
851 return MOVE_BY_PIECES_P (len
, align
);
854 /* Generate several move instructions to copy LEN bytes from block FROM to
855 block TO. (These are MEM rtx's with BLKmode).
857 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
858 used to push FROM to the stack.
860 ALIGN is maximum stack alignment we can assume.
862 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
863 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
867 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
868 unsigned int align
, int endp
)
870 struct move_by_pieces_d data
;
871 enum machine_mode to_addr_mode
;
872 enum machine_mode from_addr_mode
= get_address_mode (from
);
873 rtx to_addr
, from_addr
= XEXP (from
, 0);
874 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
875 enum insn_code icode
;
877 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
880 data
.from_addr
= from_addr
;
883 to_addr_mode
= get_address_mode (to
);
884 to_addr
= XEXP (to
, 0);
887 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
888 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
890 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
894 to_addr_mode
= VOIDmode
;
898 #ifdef STACK_GROWS_DOWNWARD
904 data
.to_addr
= to_addr
;
907 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
908 || GET_CODE (from_addr
) == POST_INC
909 || GET_CODE (from_addr
) == POST_DEC
);
911 data
.explicit_inc_from
= 0;
912 data
.explicit_inc_to
= 0;
913 if (data
.reverse
) data
.offset
= len
;
916 /* If copying requires more than two move insns,
917 copy addresses to registers (to make displacements shorter)
918 and use post-increment if available. */
919 if (!(data
.autinc_from
&& data
.autinc_to
)
920 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
922 /* Find the mode of the largest move...
923 MODE might not be used depending on the definitions of the
924 USE_* macros below. */
925 enum machine_mode mode ATTRIBUTE_UNUSED
926 = widest_int_mode_for_size (max_size
);
928 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
930 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
931 plus_constant (from_addr_mode
,
933 data
.autinc_from
= 1;
934 data
.explicit_inc_from
= -1;
936 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
938 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
939 data
.autinc_from
= 1;
940 data
.explicit_inc_from
= 1;
942 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
943 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
944 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
946 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
947 plus_constant (to_addr_mode
,
950 data
.explicit_inc_to
= -1;
952 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
954 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
956 data
.explicit_inc_to
= 1;
958 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
959 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
962 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
964 /* First move what we can in the largest integer mode, then go to
965 successively smaller modes. */
969 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
971 if (mode
== VOIDmode
)
974 icode
= optab_handler (mov_optab
, mode
);
975 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
976 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
978 max_size
= GET_MODE_SIZE (mode
);
981 /* The code above should have handled everything. */
982 gcc_assert (!data
.len
);
988 gcc_assert (!data
.reverse
);
993 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
994 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
996 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
997 plus_constant (to_addr_mode
,
1001 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1008 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1016 /* Return number of insns required to move L bytes by pieces.
1017 ALIGN (in bits) is maximum alignment we can assume. */
1019 unsigned HOST_WIDE_INT
1020 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1021 unsigned int max_size
)
1023 unsigned HOST_WIDE_INT n_insns
= 0;
1025 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1027 while (max_size
> 1)
1029 enum machine_mode mode
;
1030 enum insn_code icode
;
1032 mode
= widest_int_mode_for_size (max_size
);
1034 if (mode
== VOIDmode
)
1037 icode
= optab_handler (mov_optab
, mode
);
1038 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1039 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1041 max_size
= GET_MODE_SIZE (mode
);
1048 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1049 with move instructions for mode MODE. GENFUN is the gen_... function
1050 to make a move insn for that mode. DATA has all the other info. */
1053 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1054 struct move_by_pieces_d
*data
)
1056 unsigned int size
= GET_MODE_SIZE (mode
);
1057 rtx to1
= NULL_RTX
, from1
;
1059 while (data
->len
>= size
)
1062 data
->offset
-= size
;
1066 if (data
->autinc_to
)
1067 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1070 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1073 if (data
->autinc_from
)
1074 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1077 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1079 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1080 emit_insn (gen_add2_insn (data
->to_addr
,
1081 GEN_INT (-(HOST_WIDE_INT
)size
)));
1082 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1083 emit_insn (gen_add2_insn (data
->from_addr
,
1084 GEN_INT (-(HOST_WIDE_INT
)size
)));
1087 emit_insn ((*genfun
) (to1
, from1
));
1090 #ifdef PUSH_ROUNDING
1091 emit_single_push_insn (mode
, from1
, NULL
);
1097 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1098 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1099 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1100 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1102 if (! data
->reverse
)
1103 data
->offset
+= size
;
1109 /* Emit code to move a block Y to a block X. This may be done with
1110 string-move instructions, with multiple scalar move instructions,
1111 or with a library call.
1113 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1114 SIZE is an rtx that says how long they are.
1115 ALIGN is the maximum alignment we can assume they have.
1116 METHOD describes what kind of copy this is, and what mechanisms may be used.
1118 Return the address of the new block, if memcpy is called and returns it,
1122 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1123 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1130 if (CONST_INT_P (size
)
1131 && INTVAL (size
) == 0)
1136 case BLOCK_OP_NORMAL
:
1137 case BLOCK_OP_TAILCALL
:
1138 may_use_call
= true;
1141 case BLOCK_OP_CALL_PARM
:
1142 may_use_call
= block_move_libcall_safe_for_call_parm ();
1144 /* Make inhibit_defer_pop nonzero around the library call
1145 to force it to pop the arguments right away. */
1149 case BLOCK_OP_NO_LIBCALL
:
1150 may_use_call
= false;
1157 gcc_assert (MEM_P (x
) && MEM_P (y
));
1158 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1159 gcc_assert (align
>= BITS_PER_UNIT
);
1161 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1162 block copy is more efficient for other large modes, e.g. DCmode. */
1163 x
= adjust_address (x
, BLKmode
, 0);
1164 y
= adjust_address (y
, BLKmode
, 0);
1166 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1167 can be incorrect is coming from __builtin_memcpy. */
1168 if (CONST_INT_P (size
))
1170 x
= shallow_copy_rtx (x
);
1171 y
= shallow_copy_rtx (y
);
1172 set_mem_size (x
, INTVAL (size
));
1173 set_mem_size (y
, INTVAL (size
));
1176 if (CONST_INT_P (size
) && MOVE_BY_PIECES_P (INTVAL (size
), align
))
1177 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1178 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1179 expected_align
, expected_size
))
1181 else if (may_use_call
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1185 /* Since x and y are passed to a libcall, mark the corresponding
1186 tree EXPR as addressable. */
1187 tree y_expr
= MEM_EXPR (y
);
1188 tree x_expr
= MEM_EXPR (x
);
1190 mark_addressable (y_expr
);
1192 mark_addressable (x_expr
);
1193 retval
= emit_block_move_via_libcall (x
, y
, size
,
1194 method
== BLOCK_OP_TAILCALL
);
1198 emit_block_move_via_loop (x
, y
, size
, align
);
1200 if (method
== BLOCK_OP_CALL_PARM
)
1207 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1209 return emit_block_move_hints (x
, y
, size
, method
, 0, -1);
1212 /* A subroutine of emit_block_move. Returns true if calling the
1213 block move libcall will not clobber any parameters which may have
1214 already been placed on the stack. */
1217 block_move_libcall_safe_for_call_parm (void)
1219 #if defined (REG_PARM_STACK_SPACE)
1223 /* If arguments are pushed on the stack, then they're safe. */
1227 /* If registers go on the stack anyway, any argument is sure to clobber
1228 an outgoing argument. */
1229 #if defined (REG_PARM_STACK_SPACE)
1230 fn
= emit_block_move_libcall_fn (false);
1231 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1232 depend on its argument. */
1234 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1235 && REG_PARM_STACK_SPACE (fn
) != 0)
1239 /* If any argument goes in memory, then it might clobber an outgoing
1242 CUMULATIVE_ARGS args_so_far_v
;
1243 cumulative_args_t args_so_far
;
1246 fn
= emit_block_move_libcall_fn (false);
1247 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1248 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1250 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1251 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1253 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1254 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1256 if (!tmp
|| !REG_P (tmp
))
1258 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1260 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1271 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1272 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1274 int save_volatile_ok
= volatile_ok
;
1275 enum machine_mode mode
;
1277 if (expected_align
< align
)
1278 expected_align
= align
;
1280 /* Since this is a move insn, we don't care about volatility. */
1283 /* Try the most limited insn first, because there's no point
1284 including more than one in the machine description unless
1285 the more limited one has some advantage. */
1287 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1288 mode
= GET_MODE_WIDER_MODE (mode
))
1290 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1292 if (code
!= CODE_FOR_nothing
1293 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1294 here because if SIZE is less than the mode mask, as it is
1295 returned by the macro, it will definitely be less than the
1296 actual mode mask. */
1297 && ((CONST_INT_P (size
)
1298 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1299 <= (GET_MODE_MASK (mode
) >> 1)))
1300 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
1302 struct expand_operand ops
[6];
1305 /* ??? When called via emit_block_move_for_call, it'd be
1306 nice if there were some way to inform the backend, so
1307 that it doesn't fail the expansion because it thinks
1308 emitting the libcall would be more efficient. */
1309 nops
= insn_data
[(int) code
].n_generator_args
;
1310 gcc_assert (nops
== 4 || nops
== 6);
1312 create_fixed_operand (&ops
[0], x
);
1313 create_fixed_operand (&ops
[1], y
);
1314 /* The check above guarantees that this size conversion is valid. */
1315 create_convert_operand_to (&ops
[2], size
, mode
, true);
1316 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1319 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1320 create_integer_operand (&ops
[5], expected_size
);
1322 if (maybe_expand_insn (code
, nops
, ops
))
1324 volatile_ok
= save_volatile_ok
;
1330 volatile_ok
= save_volatile_ok
;
1334 /* A subroutine of emit_block_move. Expand a call to memcpy.
1335 Return the return value from memcpy, 0 otherwise. */
1338 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1340 rtx dst_addr
, src_addr
;
1341 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1342 enum machine_mode size_mode
;
1345 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1346 pseudos. We can then place those new pseudos into a VAR_DECL and
1349 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1350 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1352 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1353 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1355 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1356 src_tree
= make_tree (ptr_type_node
, src_addr
);
1358 size_mode
= TYPE_MODE (sizetype
);
1360 size
= convert_to_mode (size_mode
, size
, 1);
1361 size
= copy_to_mode_reg (size_mode
, size
);
1363 /* It is incorrect to use the libcall calling conventions to call
1364 memcpy in this context. This could be a user call to memcpy and
1365 the user may wish to examine the return value from memcpy. For
1366 targets where libcalls and normal calls have different conventions
1367 for returning pointers, we could end up generating incorrect code. */
1369 size_tree
= make_tree (sizetype
, size
);
1371 fn
= emit_block_move_libcall_fn (true);
1372 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1373 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1375 retval
= expand_normal (call_expr
);
1380 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1381 for the function we use for block copies. */
1383 static GTY(()) tree block_move_fn
;
1386 init_block_move_fn (const char *asmspec
)
1390 tree args
, fn
, attrs
, attr_args
;
1392 fn
= get_identifier ("memcpy");
1393 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1394 const_ptr_type_node
, sizetype
,
1397 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1398 DECL_EXTERNAL (fn
) = 1;
1399 TREE_PUBLIC (fn
) = 1;
1400 DECL_ARTIFICIAL (fn
) = 1;
1401 TREE_NOTHROW (fn
) = 1;
1402 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1403 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1405 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1406 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1408 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1414 set_user_assembler_name (block_move_fn
, asmspec
);
1418 emit_block_move_libcall_fn (int for_call
)
1420 static bool emitted_extern
;
1423 init_block_move_fn (NULL
);
1425 if (for_call
&& !emitted_extern
)
1427 emitted_extern
= true;
1428 make_decl_rtl (block_move_fn
);
1431 return block_move_fn
;
1434 /* A subroutine of emit_block_move. Copy the data via an explicit
1435 loop. This is used only when libcalls are forbidden. */
1436 /* ??? It'd be nice to copy in hunks larger than QImode. */
1439 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1440 unsigned int align ATTRIBUTE_UNUSED
)
1442 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1443 enum machine_mode x_addr_mode
= get_address_mode (x
);
1444 enum machine_mode y_addr_mode
= get_address_mode (y
);
1445 enum machine_mode iter_mode
;
1447 iter_mode
= GET_MODE (size
);
1448 if (iter_mode
== VOIDmode
)
1449 iter_mode
= word_mode
;
1451 top_label
= gen_label_rtx ();
1452 cmp_label
= gen_label_rtx ();
1453 iter
= gen_reg_rtx (iter_mode
);
1455 emit_move_insn (iter
, const0_rtx
);
1457 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1458 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1459 do_pending_stack_adjust ();
1461 emit_jump (cmp_label
);
1462 emit_label (top_label
);
1464 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1465 x_addr
= gen_rtx_PLUS (x_addr_mode
, x_addr
, tmp
);
1467 if (x_addr_mode
!= y_addr_mode
)
1468 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1469 y_addr
= gen_rtx_PLUS (y_addr_mode
, y_addr
, tmp
);
1471 x
= change_address (x
, QImode
, x_addr
);
1472 y
= change_address (y
, QImode
, y_addr
);
1474 emit_move_insn (x
, y
);
1476 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1477 true, OPTAB_LIB_WIDEN
);
1479 emit_move_insn (iter
, tmp
);
1481 emit_label (cmp_label
);
1483 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1487 /* Copy all or part of a value X into registers starting at REGNO.
1488 The number of registers to be filled is NREGS. */
1491 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1494 #ifdef HAVE_load_multiple
1502 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1503 x
= validize_mem (force_const_mem (mode
, x
));
1505 /* See if the machine can do this with a load multiple insn. */
1506 #ifdef HAVE_load_multiple
1507 if (HAVE_load_multiple
)
1509 last
= get_last_insn ();
1510 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1518 delete_insns_since (last
);
1522 for (i
= 0; i
< nregs
; i
++)
1523 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1524 operand_subword_force (x
, i
, mode
));
1527 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1528 The number of registers to be filled is NREGS. */
1531 move_block_from_reg (int regno
, rtx x
, int nregs
)
1538 /* See if the machine can do this with a store multiple insn. */
1539 #ifdef HAVE_store_multiple
1540 if (HAVE_store_multiple
)
1542 rtx last
= get_last_insn ();
1543 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1551 delete_insns_since (last
);
1555 for (i
= 0; i
< nregs
; i
++)
1557 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1561 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1565 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1566 ORIG, where ORIG is a non-consecutive group of registers represented by
1567 a PARALLEL. The clone is identical to the original except in that the
1568 original set of registers is replaced by a new set of pseudo registers.
1569 The new set has the same modes as the original set. */
1572 gen_group_rtx (rtx orig
)
1577 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1579 length
= XVECLEN (orig
, 0);
1580 tmps
= XALLOCAVEC (rtx
, length
);
1582 /* Skip a NULL entry in first slot. */
1583 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1588 for (; i
< length
; i
++)
1590 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1591 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1593 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1596 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1599 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1600 except that values are placed in TMPS[i], and must later be moved
1601 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1604 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1608 enum machine_mode m
= GET_MODE (orig_src
);
1610 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1613 && !SCALAR_INT_MODE_P (m
)
1614 && !MEM_P (orig_src
)
1615 && GET_CODE (orig_src
) != CONCAT
)
1617 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1618 if (imode
== BLKmode
)
1619 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1621 src
= gen_reg_rtx (imode
);
1622 if (imode
!= BLKmode
)
1623 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1624 emit_move_insn (src
, orig_src
);
1625 /* ...and back again. */
1626 if (imode
!= BLKmode
)
1627 src
= gen_lowpart (imode
, src
);
1628 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1632 /* Check for a NULL entry, used to indicate that the parameter goes
1633 both on the stack and in registers. */
1634 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1639 /* Process the pieces. */
1640 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1642 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1643 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1644 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1647 /* Handle trailing fragments that run over the size of the struct. */
1648 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1650 /* Arrange to shift the fragment to where it belongs.
1651 extract_bit_field loads to the lsb of the reg. */
1653 #ifdef BLOCK_REG_PADDING
1654 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1655 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1660 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1661 bytelen
= ssize
- bytepos
;
1662 gcc_assert (bytelen
> 0);
1665 /* If we won't be loading directly from memory, protect the real source
1666 from strange tricks we might play; but make sure that the source can
1667 be loaded directly into the destination. */
1669 if (!MEM_P (orig_src
)
1670 && (!CONSTANT_P (orig_src
)
1671 || (GET_MODE (orig_src
) != mode
1672 && GET_MODE (orig_src
) != VOIDmode
)))
1674 if (GET_MODE (orig_src
) == VOIDmode
)
1675 src
= gen_reg_rtx (mode
);
1677 src
= gen_reg_rtx (GET_MODE (orig_src
));
1679 emit_move_insn (src
, orig_src
);
1682 /* Optimize the access just a bit. */
1684 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1685 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1686 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1687 && bytelen
== GET_MODE_SIZE (mode
))
1689 tmps
[i
] = gen_reg_rtx (mode
);
1690 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1692 else if (COMPLEX_MODE_P (mode
)
1693 && GET_MODE (src
) == mode
1694 && bytelen
== GET_MODE_SIZE (mode
))
1695 /* Let emit_move_complex do the bulk of the work. */
1697 else if (GET_CODE (src
) == CONCAT
)
1699 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1700 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1702 if ((bytepos
== 0 && bytelen
== slen0
)
1703 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1705 /* The following assumes that the concatenated objects all
1706 have the same size. In this case, a simple calculation
1707 can be used to determine the object and the bit field
1709 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1710 if (! CONSTANT_P (tmps
[i
])
1711 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1712 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1713 (bytepos
% slen0
) * BITS_PER_UNIT
,
1714 1, false, NULL_RTX
, mode
, mode
);
1720 gcc_assert (!bytepos
);
1721 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1722 emit_move_insn (mem
, src
);
1723 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1724 0, 1, false, NULL_RTX
, mode
, mode
);
1727 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1728 SIMD register, which is currently broken. While we get GCC
1729 to emit proper RTL for these cases, let's dump to memory. */
1730 else if (VECTOR_MODE_P (GET_MODE (dst
))
1733 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1736 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1737 emit_move_insn (mem
, src
);
1738 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1740 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1741 && XVECLEN (dst
, 0) > 1)
1742 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1743 else if (CONSTANT_P (src
))
1745 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1753 gcc_assert (2 * len
== ssize
);
1754 split_double (src
, &first
, &second
);
1761 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1764 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1765 bytepos
* BITS_PER_UNIT
, 1, false, NULL_RTX
,
1769 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1774 /* Emit code to move a block SRC of type TYPE to a block DST,
1775 where DST is non-consecutive registers represented by a PARALLEL.
1776 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1780 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1785 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1786 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1788 /* Copy the extracted pieces into the proper (probable) hard regs. */
1789 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1791 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1794 emit_move_insn (d
, tmps
[i
]);
1798 /* Similar, but load SRC into new pseudos in a format that looks like
1799 PARALLEL. This can later be fed to emit_group_move to get things
1800 in the right place. */
1803 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1808 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1809 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1811 /* Convert the vector to look just like the original PARALLEL, except
1812 with the computed values. */
1813 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1815 rtx e
= XVECEXP (parallel
, 0, i
);
1816 rtx d
= XEXP (e
, 0);
1820 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1821 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1823 RTVEC_ELT (vec
, i
) = e
;
1826 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1829 /* Emit code to move a block SRC to block DST, where SRC and DST are
1830 non-consecutive groups of registers, each represented by a PARALLEL. */
1833 emit_group_move (rtx dst
, rtx src
)
1837 gcc_assert (GET_CODE (src
) == PARALLEL
1838 && GET_CODE (dst
) == PARALLEL
1839 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1841 /* Skip first entry if NULL. */
1842 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1843 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1844 XEXP (XVECEXP (src
, 0, i
), 0));
1847 /* Move a group of registers represented by a PARALLEL into pseudos. */
1850 emit_group_move_into_temps (rtx src
)
1852 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1855 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1857 rtx e
= XVECEXP (src
, 0, i
);
1858 rtx d
= XEXP (e
, 0);
1861 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1862 RTVEC_ELT (vec
, i
) = e
;
1865 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1868 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1869 where SRC is non-consecutive registers represented by a PARALLEL.
1870 SSIZE represents the total size of block ORIG_DST, or -1 if not
1874 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1877 int start
, finish
, i
;
1878 enum machine_mode m
= GET_MODE (orig_dst
);
1880 gcc_assert (GET_CODE (src
) == PARALLEL
);
1882 if (!SCALAR_INT_MODE_P (m
)
1883 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1885 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1886 if (imode
== BLKmode
)
1887 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1889 dst
= gen_reg_rtx (imode
);
1890 emit_group_store (dst
, src
, type
, ssize
);
1891 if (imode
!= BLKmode
)
1892 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1893 emit_move_insn (orig_dst
, dst
);
1897 /* Check for a NULL entry, used to indicate that the parameter goes
1898 both on the stack and in registers. */
1899 if (XEXP (XVECEXP (src
, 0, 0), 0))
1903 finish
= XVECLEN (src
, 0);
1905 tmps
= XALLOCAVEC (rtx
, finish
);
1907 /* Copy the (probable) hard regs into pseudos. */
1908 for (i
= start
; i
< finish
; i
++)
1910 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1911 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1913 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1914 emit_move_insn (tmps
[i
], reg
);
1920 /* If we won't be storing directly into memory, protect the real destination
1921 from strange tricks we might play. */
1923 if (GET_CODE (dst
) == PARALLEL
)
1927 /* We can get a PARALLEL dst if there is a conditional expression in
1928 a return statement. In that case, the dst and src are the same,
1929 so no action is necessary. */
1930 if (rtx_equal_p (dst
, src
))
1933 /* It is unclear if we can ever reach here, but we may as well handle
1934 it. Allocate a temporary, and split this into a store/load to/from
1937 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1938 emit_group_store (temp
, src
, type
, ssize
);
1939 emit_group_load (dst
, temp
, type
, ssize
);
1942 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1944 enum machine_mode outer
= GET_MODE (dst
);
1945 enum machine_mode inner
;
1946 HOST_WIDE_INT bytepos
;
1950 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1951 dst
= gen_reg_rtx (outer
);
1953 /* Make life a bit easier for combine. */
1954 /* If the first element of the vector is the low part
1955 of the destination mode, use a paradoxical subreg to
1956 initialize the destination. */
1959 inner
= GET_MODE (tmps
[start
]);
1960 bytepos
= subreg_lowpart_offset (inner
, outer
);
1961 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1963 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1967 emit_move_insn (dst
, temp
);
1974 /* If the first element wasn't the low part, try the last. */
1976 && start
< finish
- 1)
1978 inner
= GET_MODE (tmps
[finish
- 1]);
1979 bytepos
= subreg_lowpart_offset (inner
, outer
);
1980 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1982 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
1986 emit_move_insn (dst
, temp
);
1993 /* Otherwise, simply initialize the result to zero. */
1995 emit_move_insn (dst
, CONST0_RTX (outer
));
1998 /* Process the pieces. */
1999 for (i
= start
; i
< finish
; i
++)
2001 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2002 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2003 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2004 unsigned int adj_bytelen
= bytelen
;
2007 /* Handle trailing fragments that run over the size of the struct. */
2008 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2009 adj_bytelen
= ssize
- bytepos
;
2011 if (GET_CODE (dst
) == CONCAT
)
2013 if (bytepos
+ adj_bytelen
2014 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2015 dest
= XEXP (dst
, 0);
2016 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2018 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2019 dest
= XEXP (dst
, 1);
2023 enum machine_mode dest_mode
= GET_MODE (dest
);
2024 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2026 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2028 if (GET_MODE_ALIGNMENT (dest_mode
)
2029 >= GET_MODE_ALIGNMENT (tmp_mode
))
2031 dest
= assign_stack_temp (dest_mode
,
2032 GET_MODE_SIZE (dest_mode
));
2033 emit_move_insn (adjust_address (dest
,
2041 dest
= assign_stack_temp (tmp_mode
,
2042 GET_MODE_SIZE (tmp_mode
));
2043 emit_move_insn (dest
, tmps
[i
]);
2044 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2050 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2052 /* store_bit_field always takes its value from the lsb.
2053 Move the fragment to the lsb if it's not already there. */
2055 #ifdef BLOCK_REG_PADDING
2056 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2057 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2063 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2064 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2067 bytelen
= adj_bytelen
;
2070 /* Optimize the access just a bit. */
2072 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2073 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2074 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2075 && bytelen
== GET_MODE_SIZE (mode
))
2076 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2078 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2079 0, 0, mode
, tmps
[i
]);
2082 /* Copy from the pseudo into the (probable) hard reg. */
2083 if (orig_dst
!= dst
)
2084 emit_move_insn (orig_dst
, dst
);
2087 /* Generate code to copy a BLKmode object of TYPE out of a
2088 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2089 is null, a stack temporary is created. TGTBLK is returned.
2091 The purpose of this routine is to handle functions that return
2092 BLKmode structures in registers. Some machines (the PA for example)
2093 want to return all small structures in registers regardless of the
2094 structure's alignment. */
2097 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
2099 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2100 rtx src
= NULL
, dst
= NULL
;
2101 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2102 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2103 enum machine_mode copy_mode
;
2107 tgtblk
= assign_temp (build_qualified_type (type
,
2109 | TYPE_QUAL_CONST
)),
2111 preserve_temp_slots (tgtblk
);
2114 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2115 into a new pseudo which is a full word. */
2117 if (GET_MODE (srcreg
) != BLKmode
2118 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2119 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2121 /* If the structure doesn't take up a whole number of words, see whether
2122 SRCREG is padded on the left or on the right. If it's on the left,
2123 set PADDING_CORRECTION to the number of bits to skip.
2125 In most ABIs, the structure will be returned at the least end of
2126 the register, which translates to right padding on little-endian
2127 targets and left padding on big-endian targets. The opposite
2128 holds if the structure is returned at the most significant
2129 end of the register. */
2130 if (bytes
% UNITS_PER_WORD
!= 0
2131 && (targetm
.calls
.return_in_msb (type
)
2133 : BYTES_BIG_ENDIAN
))
2135 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2137 /* Copy the structure BITSIZE bits at a time. If the target lives in
2138 memory, take care of not reading/writing past its end by selecting
2139 a copy mode suited to BITSIZE. This should always be possible given
2142 We could probably emit more efficient code for machines which do not use
2143 strict alignment, but it doesn't seem worth the effort at the current
2146 copy_mode
= word_mode
;
2149 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2150 if (mem_mode
!= BLKmode
)
2151 copy_mode
= mem_mode
;
2154 for (bitpos
= 0, xbitpos
= padding_correction
;
2155 bitpos
< bytes
* BITS_PER_UNIT
;
2156 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2158 /* We need a new source operand each time xbitpos is on a
2159 word boundary and when xbitpos == padding_correction
2160 (the first time through). */
2161 if (xbitpos
% BITS_PER_WORD
== 0
2162 || xbitpos
== padding_correction
)
2163 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2166 /* We need a new destination operand each time bitpos is on
2168 if (bitpos
% BITS_PER_WORD
== 0)
2169 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2171 /* Use xbitpos for the source extraction (right justified) and
2172 bitpos for the destination store (left justified). */
2173 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2174 extract_bit_field (src
, bitsize
,
2175 xbitpos
% BITS_PER_WORD
, 1, false,
2176 NULL_RTX
, copy_mode
, copy_mode
));
2182 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2183 register if it contains any data, otherwise return null.
2185 This is used on targets that return BLKmode values in registers. */
2188 copy_blkmode_to_reg (enum machine_mode mode
, tree src
)
2191 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2192 unsigned int bitsize
;
2193 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2194 enum machine_mode dst_mode
;
2196 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2198 x
= expand_normal (src
);
2200 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2204 /* If the structure doesn't take up a whole number of words, see
2205 whether the register value should be padded on the left or on
2206 the right. Set PADDING_CORRECTION to the number of padding
2207 bits needed on the left side.
2209 In most ABIs, the structure will be returned at the least end of
2210 the register, which translates to right padding on little-endian
2211 targets and left padding on big-endian targets. The opposite
2212 holds if the structure is returned at the most significant
2213 end of the register. */
2214 if (bytes
% UNITS_PER_WORD
!= 0
2215 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2217 : BYTES_BIG_ENDIAN
))
2218 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2221 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2222 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2223 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2225 /* Copy the structure BITSIZE bits at a time. */
2226 for (bitpos
= 0, xbitpos
= padding_correction
;
2227 bitpos
< bytes
* BITS_PER_UNIT
;
2228 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2230 /* We need a new destination pseudo each time xbitpos is
2231 on a word boundary and when xbitpos == padding_correction
2232 (the first time through). */
2233 if (xbitpos
% BITS_PER_WORD
== 0
2234 || xbitpos
== padding_correction
)
2236 /* Generate an appropriate register. */
2237 dst_word
= gen_reg_rtx (word_mode
);
2238 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2240 /* Clear the destination before we move anything into it. */
2241 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2244 /* We need a new source operand each time bitpos is on a word
2246 if (bitpos
% BITS_PER_WORD
== 0)
2247 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2249 /* Use bitpos for the source extraction (left justified) and
2250 xbitpos for the destination store (right justified). */
2251 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2253 extract_bit_field (src_word
, bitsize
,
2254 bitpos
% BITS_PER_WORD
, 1, false,
2255 NULL_RTX
, word_mode
, word_mode
));
2258 if (mode
== BLKmode
)
2260 /* Find the smallest integer mode large enough to hold the
2261 entire structure. */
2262 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2264 mode
= GET_MODE_WIDER_MODE (mode
))
2265 /* Have we found a large enough mode? */
2266 if (GET_MODE_SIZE (mode
) >= bytes
)
2269 /* A suitable mode should have been found. */
2270 gcc_assert (mode
!= VOIDmode
);
2273 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2274 dst_mode
= word_mode
;
2277 dst
= gen_reg_rtx (dst_mode
);
2279 for (i
= 0; i
< n_regs
; i
++)
2280 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2282 if (mode
!= dst_mode
)
2283 dst
= gen_lowpart (mode
, dst
);
2288 /* Add a USE expression for REG to the (possibly empty) list pointed
2289 to by CALL_FUSAGE. REG must denote a hard register. */
2292 use_reg_mode (rtx
*call_fusage
, rtx reg
, enum machine_mode mode
)
2294 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2297 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2300 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2301 starting at REGNO. All of these registers must be hard registers. */
2304 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2308 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2310 for (i
= 0; i
< nregs
; i
++)
2311 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2314 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2315 PARALLEL REGS. This is for calls that pass values in multiple
2316 non-contiguous locations. The Irix 6 ABI has examples of this. */
2319 use_group_regs (rtx
*call_fusage
, rtx regs
)
2323 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2325 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2327 /* A NULL entry means the parameter goes both on the stack and in
2328 registers. This can also be a MEM for targets that pass values
2329 partially on the stack and partially in registers. */
2330 if (reg
!= 0 && REG_P (reg
))
2331 use_reg (call_fusage
, reg
);
2335 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2336 assigment and the code of the expresion on the RHS is CODE. Return
2340 get_def_for_expr (tree name
, enum tree_code code
)
2344 if (TREE_CODE (name
) != SSA_NAME
)
2347 def_stmt
= get_gimple_for_ssa_name (name
);
2349 || gimple_assign_rhs_code (def_stmt
) != code
)
2355 #ifdef HAVE_conditional_move
2356 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2357 assigment and the class of the expresion on the RHS is CLASS. Return
2361 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2365 if (TREE_CODE (name
) != SSA_NAME
)
2368 def_stmt
= get_gimple_for_ssa_name (name
);
2370 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2378 /* Determine whether the LEN bytes generated by CONSTFUN can be
2379 stored to memory using several move instructions. CONSTFUNDATA is
2380 a pointer which will be passed as argument in every CONSTFUN call.
2381 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2382 a memset operation and false if it's a copy of a constant string.
2383 Return nonzero if a call to store_by_pieces should succeed. */
2386 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2387 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2388 void *constfundata
, unsigned int align
, bool memsetp
)
2390 unsigned HOST_WIDE_INT l
;
2391 unsigned int max_size
;
2392 HOST_WIDE_INT offset
= 0;
2393 enum machine_mode mode
;
2394 enum insn_code icode
;
2396 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2397 rtx cst ATTRIBUTE_UNUSED
;
2403 ? SET_BY_PIECES_P (len
, align
)
2404 : STORE_BY_PIECES_P (len
, align
)))
2407 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2409 /* We would first store what we can in the largest integer mode, then go to
2410 successively smaller modes. */
2413 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2417 max_size
= STORE_MAX_PIECES
+ 1;
2418 while (max_size
> 1)
2420 mode
= widest_int_mode_for_size (max_size
);
2422 if (mode
== VOIDmode
)
2425 icode
= optab_handler (mov_optab
, mode
);
2426 if (icode
!= CODE_FOR_nothing
2427 && align
>= GET_MODE_ALIGNMENT (mode
))
2429 unsigned int size
= GET_MODE_SIZE (mode
);
2436 cst
= (*constfun
) (constfundata
, offset
, mode
);
2437 if (!targetm
.legitimate_constant_p (mode
, cst
))
2447 max_size
= GET_MODE_SIZE (mode
);
2450 /* The code above should have handled everything. */
2457 /* Generate several move instructions to store LEN bytes generated by
2458 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2459 pointer which will be passed as argument in every CONSTFUN call.
2460 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2461 a memset operation and false if it's a copy of a constant string.
2462 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2463 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2467 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2468 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2469 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2471 enum machine_mode to_addr_mode
= get_address_mode (to
);
2472 struct store_by_pieces_d data
;
2476 gcc_assert (endp
!= 2);
2481 ? SET_BY_PIECES_P (len
, align
)
2482 : STORE_BY_PIECES_P (len
, align
));
2483 data
.constfun
= constfun
;
2484 data
.constfundata
= constfundata
;
2487 store_by_pieces_1 (&data
, align
);
2492 gcc_assert (!data
.reverse
);
2497 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2498 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2500 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2501 plus_constant (to_addr_mode
,
2505 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2512 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2520 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2521 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2524 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2526 struct store_by_pieces_d data
;
2531 data
.constfun
= clear_by_pieces_1
;
2532 data
.constfundata
= NULL
;
2535 store_by_pieces_1 (&data
, align
);
2538 /* Callback routine for clear_by_pieces.
2539 Return const0_rtx unconditionally. */
2542 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2543 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2544 enum machine_mode mode ATTRIBUTE_UNUSED
)
2549 /* Subroutine of clear_by_pieces and store_by_pieces.
2550 Generate several move instructions to store LEN bytes of block TO. (A MEM
2551 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2554 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2555 unsigned int align ATTRIBUTE_UNUSED
)
2557 enum machine_mode to_addr_mode
= get_address_mode (data
->to
);
2558 rtx to_addr
= XEXP (data
->to
, 0);
2559 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2560 enum insn_code icode
;
2563 data
->to_addr
= to_addr
;
2565 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2566 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2568 data
->explicit_inc_to
= 0;
2570 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2572 data
->offset
= data
->len
;
2574 /* If storing requires more than two move insns,
2575 copy addresses to registers (to make displacements shorter)
2576 and use post-increment if available. */
2577 if (!data
->autinc_to
2578 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2580 /* Determine the main mode we'll be using.
2581 MODE might not be used depending on the definitions of the
2582 USE_* macros below. */
2583 enum machine_mode mode ATTRIBUTE_UNUSED
2584 = widest_int_mode_for_size (max_size
);
2586 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2588 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2589 plus_constant (to_addr_mode
,
2592 data
->autinc_to
= 1;
2593 data
->explicit_inc_to
= -1;
2596 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2597 && ! data
->autinc_to
)
2599 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2600 data
->autinc_to
= 1;
2601 data
->explicit_inc_to
= 1;
2604 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2605 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2608 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2610 /* First store what we can in the largest integer mode, then go to
2611 successively smaller modes. */
2613 while (max_size
> 1)
2615 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
2617 if (mode
== VOIDmode
)
2620 icode
= optab_handler (mov_optab
, mode
);
2621 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2622 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2624 max_size
= GET_MODE_SIZE (mode
);
2627 /* The code above should have handled everything. */
2628 gcc_assert (!data
->len
);
2631 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2632 with move instructions for mode MODE. GENFUN is the gen_... function
2633 to make a move insn for that mode. DATA has all the other info. */
2636 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2637 struct store_by_pieces_d
*data
)
2639 unsigned int size
= GET_MODE_SIZE (mode
);
2642 while (data
->len
>= size
)
2645 data
->offset
-= size
;
2647 if (data
->autinc_to
)
2648 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2651 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2653 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2654 emit_insn (gen_add2_insn (data
->to_addr
,
2655 GEN_INT (-(HOST_WIDE_INT
) size
)));
2657 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2658 emit_insn ((*genfun
) (to1
, cst
));
2660 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2661 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2663 if (! data
->reverse
)
2664 data
->offset
+= size
;
2670 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2671 its length in bytes. */
2674 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2675 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2677 enum machine_mode mode
= GET_MODE (object
);
2680 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2682 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2683 just move a zero. Otherwise, do this a piece at a time. */
2685 && CONST_INT_P (size
)
2686 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2688 rtx zero
= CONST0_RTX (mode
);
2691 emit_move_insn (object
, zero
);
2695 if (COMPLEX_MODE_P (mode
))
2697 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2700 write_complex_part (object
, zero
, 0);
2701 write_complex_part (object
, zero
, 1);
2707 if (size
== const0_rtx
)
2710 align
= MEM_ALIGN (object
);
2712 if (CONST_INT_P (size
)
2713 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2714 clear_by_pieces (object
, INTVAL (size
), align
);
2715 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2716 expected_align
, expected_size
))
2718 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2719 return set_storage_via_libcall (object
, size
, const0_rtx
,
2720 method
== BLOCK_OP_TAILCALL
);
2728 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2730 return clear_storage_hints (object
, size
, method
, 0, -1);
2734 /* A subroutine of clear_storage. Expand a call to memset.
2735 Return the return value of memset, 0 otherwise. */
2738 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2740 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2741 enum machine_mode size_mode
;
2744 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2745 place those into new pseudos into a VAR_DECL and use them later. */
2747 object
= copy_addr_to_reg (XEXP (object
, 0));
2749 size_mode
= TYPE_MODE (sizetype
);
2750 size
= convert_to_mode (size_mode
, size
, 1);
2751 size
= copy_to_mode_reg (size_mode
, size
);
2753 /* It is incorrect to use the libcall calling conventions to call
2754 memset in this context. This could be a user call to memset and
2755 the user may wish to examine the return value from memset. For
2756 targets where libcalls and normal calls have different conventions
2757 for returning pointers, we could end up generating incorrect code. */
2759 object_tree
= make_tree (ptr_type_node
, object
);
2760 if (!CONST_INT_P (val
))
2761 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2762 size_tree
= make_tree (sizetype
, size
);
2763 val_tree
= make_tree (integer_type_node
, val
);
2765 fn
= clear_storage_libcall_fn (true);
2766 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2767 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2769 retval
= expand_normal (call_expr
);
2774 /* A subroutine of set_storage_via_libcall. Create the tree node
2775 for the function we use for block clears. */
2777 tree block_clear_fn
;
2780 init_block_clear_fn (const char *asmspec
)
2782 if (!block_clear_fn
)
2786 fn
= get_identifier ("memset");
2787 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2788 integer_type_node
, sizetype
,
2791 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2792 DECL_EXTERNAL (fn
) = 1;
2793 TREE_PUBLIC (fn
) = 1;
2794 DECL_ARTIFICIAL (fn
) = 1;
2795 TREE_NOTHROW (fn
) = 1;
2796 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2797 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2799 block_clear_fn
= fn
;
2803 set_user_assembler_name (block_clear_fn
, asmspec
);
2807 clear_storage_libcall_fn (int for_call
)
2809 static bool emitted_extern
;
2811 if (!block_clear_fn
)
2812 init_block_clear_fn (NULL
);
2814 if (for_call
&& !emitted_extern
)
2816 emitted_extern
= true;
2817 make_decl_rtl (block_clear_fn
);
2820 return block_clear_fn
;
2823 /* Expand a setmem pattern; return true if successful. */
2826 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2827 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2829 /* Try the most limited insn first, because there's no point
2830 including more than one in the machine description unless
2831 the more limited one has some advantage. */
2833 enum machine_mode mode
;
2835 if (expected_align
< align
)
2836 expected_align
= align
;
2838 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2839 mode
= GET_MODE_WIDER_MODE (mode
))
2841 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2843 if (code
!= CODE_FOR_nothing
2844 /* We don't need MODE to be narrower than
2845 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2846 the mode mask, as it is returned by the macro, it will
2847 definitely be less than the actual mode mask. */
2848 && ((CONST_INT_P (size
)
2849 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2850 <= (GET_MODE_MASK (mode
) >> 1)))
2851 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
2853 struct expand_operand ops
[6];
2856 nops
= insn_data
[(int) code
].n_generator_args
;
2857 gcc_assert (nops
== 4 || nops
== 6);
2859 create_fixed_operand (&ops
[0], object
);
2860 /* The check above guarantees that this size conversion is valid. */
2861 create_convert_operand_to (&ops
[1], size
, mode
, true);
2862 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2863 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2866 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2867 create_integer_operand (&ops
[5], expected_size
);
2869 if (maybe_expand_insn (code
, nops
, ops
))
2878 /* Write to one of the components of the complex value CPLX. Write VAL to
2879 the real part if IMAG_P is false, and the imaginary part if its true. */
2882 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2884 enum machine_mode cmode
;
2885 enum machine_mode imode
;
2888 if (GET_CODE (cplx
) == CONCAT
)
2890 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2894 cmode
= GET_MODE (cplx
);
2895 imode
= GET_MODE_INNER (cmode
);
2896 ibitsize
= GET_MODE_BITSIZE (imode
);
2898 /* For MEMs simplify_gen_subreg may generate an invalid new address
2899 because, e.g., the original address is considered mode-dependent
2900 by the target, which restricts simplify_subreg from invoking
2901 adjust_address_nv. Instead of preparing fallback support for an
2902 invalid address, we call adjust_address_nv directly. */
2905 emit_move_insn (adjust_address_nv (cplx
, imode
,
2906 imag_p
? GET_MODE_SIZE (imode
) : 0),
2911 /* If the sub-object is at least word sized, then we know that subregging
2912 will work. This special case is important, since store_bit_field
2913 wants to operate on integer modes, and there's rarely an OImode to
2914 correspond to TCmode. */
2915 if (ibitsize
>= BITS_PER_WORD
2916 /* For hard regs we have exact predicates. Assume we can split
2917 the original object if it spans an even number of hard regs.
2918 This special case is important for SCmode on 64-bit platforms
2919 where the natural size of floating-point regs is 32-bit. */
2921 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2922 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2924 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2925 imag_p
? GET_MODE_SIZE (imode
) : 0);
2928 emit_move_insn (part
, val
);
2932 /* simplify_gen_subreg may fail for sub-word MEMs. */
2933 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2936 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
2939 /* Extract one of the components of the complex value CPLX. Extract the
2940 real part if IMAG_P is false, and the imaginary part if it's true. */
2943 read_complex_part (rtx cplx
, bool imag_p
)
2945 enum machine_mode cmode
, imode
;
2948 if (GET_CODE (cplx
) == CONCAT
)
2949 return XEXP (cplx
, imag_p
);
2951 cmode
= GET_MODE (cplx
);
2952 imode
= GET_MODE_INNER (cmode
);
2953 ibitsize
= GET_MODE_BITSIZE (imode
);
2955 /* Special case reads from complex constants that got spilled to memory. */
2956 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2958 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2959 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2961 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2962 if (CONSTANT_CLASS_P (part
))
2963 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2967 /* For MEMs simplify_gen_subreg may generate an invalid new address
2968 because, e.g., the original address is considered mode-dependent
2969 by the target, which restricts simplify_subreg from invoking
2970 adjust_address_nv. Instead of preparing fallback support for an
2971 invalid address, we call adjust_address_nv directly. */
2973 return adjust_address_nv (cplx
, imode
,
2974 imag_p
? GET_MODE_SIZE (imode
) : 0);
2976 /* If the sub-object is at least word sized, then we know that subregging
2977 will work. This special case is important, since extract_bit_field
2978 wants to operate on integer modes, and there's rarely an OImode to
2979 correspond to TCmode. */
2980 if (ibitsize
>= BITS_PER_WORD
2981 /* For hard regs we have exact predicates. Assume we can split
2982 the original object if it spans an even number of hard regs.
2983 This special case is important for SCmode on 64-bit platforms
2984 where the natural size of floating-point regs is 32-bit. */
2986 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2987 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2989 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2990 imag_p
? GET_MODE_SIZE (imode
) : 0);
2994 /* simplify_gen_subreg may fail for sub-word MEMs. */
2995 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2998 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2999 true, false, NULL_RTX
, imode
, imode
);
3002 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3003 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3004 represented in NEW_MODE. If FORCE is true, this will never happen, as
3005 we'll force-create a SUBREG if needed. */
3008 emit_move_change_mode (enum machine_mode new_mode
,
3009 enum machine_mode old_mode
, rtx x
, bool force
)
3013 if (push_operand (x
, GET_MODE (x
)))
3015 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3016 MEM_COPY_ATTRIBUTES (ret
, x
);
3020 /* We don't have to worry about changing the address since the
3021 size in bytes is supposed to be the same. */
3022 if (reload_in_progress
)
3024 /* Copy the MEM to change the mode and move any
3025 substitutions from the old MEM to the new one. */
3026 ret
= adjust_address_nv (x
, new_mode
, 0);
3027 copy_replacements (x
, ret
);
3030 ret
= adjust_address (x
, new_mode
, 0);
3034 /* Note that we do want simplify_subreg's behavior of validating
3035 that the new mode is ok for a hard register. If we were to use
3036 simplify_gen_subreg, we would create the subreg, but would
3037 probably run into the target not being able to implement it. */
3038 /* Except, of course, when FORCE is true, when this is exactly what
3039 we want. Which is needed for CCmodes on some targets. */
3041 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3043 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3049 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3050 an integer mode of the same size as MODE. Returns the instruction
3051 emitted, or NULL if such a move could not be generated. */
3054 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
3056 enum machine_mode imode
;
3057 enum insn_code code
;
3059 /* There must exist a mode of the exact size we require. */
3060 imode
= int_mode_for_mode (mode
);
3061 if (imode
== BLKmode
)
3064 /* The target must support moves in this mode. */
3065 code
= optab_handler (mov_optab
, imode
);
3066 if (code
== CODE_FOR_nothing
)
3069 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3072 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3075 return emit_insn (GEN_FCN (code
) (x
, y
));
3078 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3079 Return an equivalent MEM that does not use an auto-increment. */
3082 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3084 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3085 HOST_WIDE_INT adjust
;
3088 adjust
= GET_MODE_SIZE (mode
);
3089 #ifdef PUSH_ROUNDING
3090 adjust
= PUSH_ROUNDING (adjust
);
3092 if (code
== PRE_DEC
|| code
== POST_DEC
)
3094 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3096 rtx expr
= XEXP (XEXP (x
, 0), 1);
3099 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3100 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3101 val
= INTVAL (XEXP (expr
, 1));
3102 if (GET_CODE (expr
) == MINUS
)
3104 gcc_assert (adjust
== val
|| adjust
== -val
);
3108 /* Do not use anti_adjust_stack, since we don't want to update
3109 stack_pointer_delta. */
3110 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3111 GEN_INT (adjust
), stack_pointer_rtx
,
3112 0, OPTAB_LIB_WIDEN
);
3113 if (temp
!= stack_pointer_rtx
)
3114 emit_move_insn (stack_pointer_rtx
, temp
);
3121 temp
= stack_pointer_rtx
;
3126 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3132 return replace_equiv_address (x
, temp
);
3135 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3136 X is known to satisfy push_operand, and MODE is known to be complex.
3137 Returns the last instruction emitted. */
3140 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3142 enum machine_mode submode
= GET_MODE_INNER (mode
);
3145 #ifdef PUSH_ROUNDING
3146 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3148 /* In case we output to the stack, but the size is smaller than the
3149 machine can push exactly, we need to use move instructions. */
3150 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3152 x
= emit_move_resolve_push (mode
, x
);
3153 return emit_move_insn (x
, y
);
3157 /* Note that the real part always precedes the imag part in memory
3158 regardless of machine's endianness. */
3159 switch (GET_CODE (XEXP (x
, 0)))
3173 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3174 read_complex_part (y
, imag_first
));
3175 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3176 read_complex_part (y
, !imag_first
));
3179 /* A subroutine of emit_move_complex. Perform the move from Y to X
3180 via two moves of the parts. Returns the last instruction emitted. */
3183 emit_move_complex_parts (rtx x
, rtx y
)
3185 /* Show the output dies here. This is necessary for SUBREGs
3186 of pseudos since we cannot track their lifetimes correctly;
3187 hard regs shouldn't appear here except as return values. */
3188 if (!reload_completed
&& !reload_in_progress
3189 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3192 write_complex_part (x
, read_complex_part (y
, false), false);
3193 write_complex_part (x
, read_complex_part (y
, true), true);
3195 return get_last_insn ();
3198 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3199 MODE is known to be complex. Returns the last instruction emitted. */
3202 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3206 /* Need to take special care for pushes, to maintain proper ordering
3207 of the data, and possibly extra padding. */
3208 if (push_operand (x
, mode
))
3209 return emit_move_complex_push (mode
, x
, y
);
3211 /* See if we can coerce the target into moving both values at once. */
3213 /* Move floating point as parts. */
3214 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3215 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
)
3217 /* Not possible if the values are inherently not adjacent. */
3218 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3220 /* Is possible if both are registers (or subregs of registers). */
3221 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3223 /* If one of the operands is a memory, and alignment constraints
3224 are friendly enough, we may be able to do combined memory operations.
3225 We do not attempt this if Y is a constant because that combination is
3226 usually better with the by-parts thing below. */
3227 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3228 && (!STRICT_ALIGNMENT
3229 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3238 /* For memory to memory moves, optimal behavior can be had with the
3239 existing block move logic. */
3240 if (MEM_P (x
) && MEM_P (y
))
3242 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3243 BLOCK_OP_NO_LIBCALL
);
3244 return get_last_insn ();
3247 ret
= emit_move_via_integer (mode
, x
, y
, true);
3252 return emit_move_complex_parts (x
, y
);
3255 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3256 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3259 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3263 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3266 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3267 if (code
!= CODE_FOR_nothing
)
3269 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3270 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3271 return emit_insn (GEN_FCN (code
) (x
, y
));
3275 /* Otherwise, find the MODE_INT mode of the same width. */
3276 ret
= emit_move_via_integer (mode
, x
, y
, false);
3277 gcc_assert (ret
!= NULL
);
3281 /* Return true if word I of OP lies entirely in the
3282 undefined bits of a paradoxical subreg. */
3285 undefined_operand_subword_p (const_rtx op
, int i
)
3287 enum machine_mode innermode
, innermostmode
;
3289 if (GET_CODE (op
) != SUBREG
)
3291 innermode
= GET_MODE (op
);
3292 innermostmode
= GET_MODE (SUBREG_REG (op
));
3293 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3294 /* The SUBREG_BYTE represents offset, as if the value were stored in
3295 memory, except for a paradoxical subreg where we define
3296 SUBREG_BYTE to be 0; undo this exception as in
3298 if (SUBREG_BYTE (op
) == 0
3299 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3301 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3302 if (WORDS_BIG_ENDIAN
)
3303 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3304 if (BYTES_BIG_ENDIAN
)
3305 offset
+= difference
% UNITS_PER_WORD
;
3307 if (offset
>= GET_MODE_SIZE (innermostmode
)
3308 || offset
<= -GET_MODE_SIZE (word_mode
))
3313 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3314 MODE is any multi-word or full-word mode that lacks a move_insn
3315 pattern. Note that you will get better code if you define such
3316 patterns, even if they must turn into multiple assembler instructions. */
3319 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3326 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3328 /* If X is a push on the stack, do the push now and replace
3329 X with a reference to the stack pointer. */
3330 if (push_operand (x
, mode
))
3331 x
= emit_move_resolve_push (mode
, x
);
3333 /* If we are in reload, see if either operand is a MEM whose address
3334 is scheduled for replacement. */
3335 if (reload_in_progress
&& MEM_P (x
)
3336 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3337 x
= replace_equiv_address_nv (x
, inner
);
3338 if (reload_in_progress
&& MEM_P (y
)
3339 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3340 y
= replace_equiv_address_nv (y
, inner
);
3344 need_clobber
= false;
3346 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3349 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3352 /* Do not generate code for a move if it would come entirely
3353 from the undefined bits of a paradoxical subreg. */
3354 if (undefined_operand_subword_p (y
, i
))
3357 ypart
= operand_subword (y
, i
, 1, mode
);
3359 /* If we can't get a part of Y, put Y into memory if it is a
3360 constant. Otherwise, force it into a register. Then we must
3361 be able to get a part of Y. */
3362 if (ypart
== 0 && CONSTANT_P (y
))
3364 y
= use_anchored_address (force_const_mem (mode
, y
));
3365 ypart
= operand_subword (y
, i
, 1, mode
);
3367 else if (ypart
== 0)
3368 ypart
= operand_subword_force (y
, i
, mode
);
3370 gcc_assert (xpart
&& ypart
);
3372 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3374 last_insn
= emit_move_insn (xpart
, ypart
);
3380 /* Show the output dies here. This is necessary for SUBREGs
3381 of pseudos since we cannot track their lifetimes correctly;
3382 hard regs shouldn't appear here except as return values.
3383 We never want to emit such a clobber after reload. */
3385 && ! (reload_in_progress
|| reload_completed
)
3386 && need_clobber
!= 0)
3394 /* Low level part of emit_move_insn.
3395 Called just like emit_move_insn, but assumes X and Y
3396 are basically valid. */
3399 emit_move_insn_1 (rtx x
, rtx y
)
3401 enum machine_mode mode
= GET_MODE (x
);
3402 enum insn_code code
;
3404 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3406 code
= optab_handler (mov_optab
, mode
);
3407 if (code
!= CODE_FOR_nothing
)
3408 return emit_insn (GEN_FCN (code
) (x
, y
));
3410 /* Expand complex moves by moving real part and imag part. */
3411 if (COMPLEX_MODE_P (mode
))
3412 return emit_move_complex (mode
, x
, y
);
3414 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3415 || ALL_FIXED_POINT_MODE_P (mode
))
3417 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3419 /* If we can't find an integer mode, use multi words. */
3423 return emit_move_multi_word (mode
, x
, y
);
3426 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3427 return emit_move_ccmode (mode
, x
, y
);
3429 /* Try using a move pattern for the corresponding integer mode. This is
3430 only safe when simplify_subreg can convert MODE constants into integer
3431 constants. At present, it can only do this reliably if the value
3432 fits within a HOST_WIDE_INT. */
3433 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3435 rtx ret
= emit_move_via_integer (mode
, x
, y
, false);
3440 return emit_move_multi_word (mode
, x
, y
);
3443 /* Generate code to copy Y into X.
3444 Both Y and X must have the same mode, except that
3445 Y can be a constant with VOIDmode.
3446 This mode cannot be BLKmode; use emit_block_move for that.
3448 Return the last instruction emitted. */
3451 emit_move_insn (rtx x
, rtx y
)
3453 enum machine_mode mode
= GET_MODE (x
);
3454 rtx y_cst
= NULL_RTX
;
3457 gcc_assert (mode
!= BLKmode
3458 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3463 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3464 && (last_insn
= compress_float_constant (x
, y
)))
3469 if (!targetm
.legitimate_constant_p (mode
, y
))
3471 y
= force_const_mem (mode
, y
);
3473 /* If the target's cannot_force_const_mem prevented the spill,
3474 assume that the target's move expanders will also take care
3475 of the non-legitimate constant. */
3479 y
= use_anchored_address (y
);
3483 /* If X or Y are memory references, verify that their addresses are valid
3486 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3488 && ! push_operand (x
, GET_MODE (x
))))
3489 x
= validize_mem (x
);
3492 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3493 MEM_ADDR_SPACE (y
)))
3494 y
= validize_mem (y
);
3496 gcc_assert (mode
!= BLKmode
);
3498 last_insn
= emit_move_insn_1 (x
, y
);
3500 if (y_cst
&& REG_P (x
)
3501 && (set
= single_set (last_insn
)) != NULL_RTX
3502 && SET_DEST (set
) == x
3503 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3504 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3509 /* If Y is representable exactly in a narrower mode, and the target can
3510 perform the extension directly from constant or memory, then emit the
3511 move as an extension. */
3514 compress_float_constant (rtx x
, rtx y
)
3516 enum machine_mode dstmode
= GET_MODE (x
);
3517 enum machine_mode orig_srcmode
= GET_MODE (y
);
3518 enum machine_mode srcmode
;
3520 int oldcost
, newcost
;
3521 bool speed
= optimize_insn_for_speed_p ();
3523 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3525 if (targetm
.legitimate_constant_p (dstmode
, y
))
3526 oldcost
= set_src_cost (y
, speed
);
3528 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3530 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3531 srcmode
!= orig_srcmode
;
3532 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3535 rtx trunc_y
, last_insn
;
3537 /* Skip if the target can't extend this way. */
3538 ic
= can_extend_p (dstmode
, srcmode
, 0);
3539 if (ic
== CODE_FOR_nothing
)
3542 /* Skip if the narrowed value isn't exact. */
3543 if (! exact_real_truncate (srcmode
, &r
))
3546 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3548 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3550 /* Skip if the target needs extra instructions to perform
3552 if (!insn_operand_matches (ic
, 1, trunc_y
))
3554 /* This is valid, but may not be cheaper than the original. */
3555 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3557 if (oldcost
< newcost
)
3560 else if (float_extend_from_mem
[dstmode
][srcmode
])
3562 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3563 /* This is valid, but may not be cheaper than the original. */
3564 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3566 if (oldcost
< newcost
)
3568 trunc_y
= validize_mem (trunc_y
);
3573 /* For CSE's benefit, force the compressed constant pool entry
3574 into a new pseudo. This constant may be used in different modes,
3575 and if not, combine will put things back together for us. */
3576 trunc_y
= force_reg (srcmode
, trunc_y
);
3577 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3578 last_insn
= get_last_insn ();
3581 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3589 /* Pushing data onto the stack. */
3591 /* Push a block of length SIZE (perhaps variable)
3592 and return an rtx to address the beginning of the block.
3593 The value may be virtual_outgoing_args_rtx.
3595 EXTRA is the number of bytes of padding to push in addition to SIZE.
3596 BELOW nonzero means this padding comes at low addresses;
3597 otherwise, the padding comes at high addresses. */
3600 push_block (rtx size
, int extra
, int below
)
3604 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3605 if (CONSTANT_P (size
))
3606 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3607 else if (REG_P (size
) && extra
== 0)
3608 anti_adjust_stack (size
);
3611 temp
= copy_to_mode_reg (Pmode
, size
);
3613 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3614 temp
, 0, OPTAB_LIB_WIDEN
);
3615 anti_adjust_stack (temp
);
3618 #ifndef STACK_GROWS_DOWNWARD
3624 temp
= virtual_outgoing_args_rtx
;
3625 if (extra
!= 0 && below
)
3626 temp
= plus_constant (Pmode
, temp
, extra
);
3630 if (CONST_INT_P (size
))
3631 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3632 -INTVAL (size
) - (below
? 0 : extra
));
3633 else if (extra
!= 0 && !below
)
3634 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3635 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3638 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3639 negate_rtx (Pmode
, size
));
3642 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3645 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3648 mem_autoinc_base (rtx mem
)
3652 rtx addr
= XEXP (mem
, 0);
3653 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3654 return XEXP (addr
, 0);
3659 /* A utility routine used here, in reload, and in try_split. The insns
3660 after PREV up to and including LAST are known to adjust the stack,
3661 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3662 placing notes as appropriate. PREV may be NULL, indicating the
3663 entire insn sequence prior to LAST should be scanned.
3665 The set of allowed stack pointer modifications is small:
3666 (1) One or more auto-inc style memory references (aka pushes),
3667 (2) One or more addition/subtraction with the SP as destination,
3668 (3) A single move insn with the SP as destination,
3669 (4) A call_pop insn,
3670 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3672 Insns in the sequence that do not modify the SP are ignored,
3673 except for noreturn calls.
3675 The return value is the amount of adjustment that can be trivially
3676 verified, via immediate operand or auto-inc. If the adjustment
3677 cannot be trivially extracted, the return value is INT_MIN. */
3680 find_args_size_adjust (rtx insn
)
3685 pat
= PATTERN (insn
);
3688 /* Look for a call_pop pattern. */
3691 /* We have to allow non-call_pop patterns for the case
3692 of emit_single_push_insn of a TLS address. */
3693 if (GET_CODE (pat
) != PARALLEL
)
3696 /* All call_pop have a stack pointer adjust in the parallel.
3697 The call itself is always first, and the stack adjust is
3698 usually last, so search from the end. */
3699 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3701 set
= XVECEXP (pat
, 0, i
);
3702 if (GET_CODE (set
) != SET
)
3704 dest
= SET_DEST (set
);
3705 if (dest
== stack_pointer_rtx
)
3708 /* We'd better have found the stack pointer adjust. */
3711 /* Fall through to process the extracted SET and DEST
3712 as if it was a standalone insn. */
3714 else if (GET_CODE (pat
) == SET
)
3716 else if ((set
= single_set (insn
)) != NULL
)
3718 else if (GET_CODE (pat
) == PARALLEL
)
3720 /* ??? Some older ports use a parallel with a stack adjust
3721 and a store for a PUSH_ROUNDING pattern, rather than a
3722 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3723 /* ??? See h8300 and m68k, pushqi1. */
3724 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3726 set
= XVECEXP (pat
, 0, i
);
3727 if (GET_CODE (set
) != SET
)
3729 dest
= SET_DEST (set
);
3730 if (dest
== stack_pointer_rtx
)
3733 /* We do not expect an auto-inc of the sp in the parallel. */
3734 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3735 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3736 != stack_pointer_rtx
);
3744 dest
= SET_DEST (set
);
3746 /* Look for direct modifications of the stack pointer. */
3747 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3749 /* Look for a trivial adjustment, otherwise assume nothing. */
3750 /* Note that the SPU restore_stack_block pattern refers to
3751 the stack pointer in V4SImode. Consider that non-trivial. */
3752 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3753 && GET_CODE (SET_SRC (set
)) == PLUS
3754 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3755 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3756 return INTVAL (XEXP (SET_SRC (set
), 1));
3757 /* ??? Reload can generate no-op moves, which will be cleaned
3758 up later. Recognize it and continue searching. */
3759 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3762 return HOST_WIDE_INT_MIN
;
3768 /* Otherwise only think about autoinc patterns. */
3769 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3772 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3773 != stack_pointer_rtx
);
3775 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3776 mem
= SET_SRC (set
);
3780 addr
= XEXP (mem
, 0);
3781 switch (GET_CODE (addr
))
3785 return GET_MODE_SIZE (GET_MODE (mem
));
3788 return -GET_MODE_SIZE (GET_MODE (mem
));
3791 addr
= XEXP (addr
, 1);
3792 gcc_assert (GET_CODE (addr
) == PLUS
);
3793 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3794 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3795 return INTVAL (XEXP (addr
, 1));
3803 fixup_args_size_notes (rtx prev
, rtx last
, int end_args_size
)
3805 int args_size
= end_args_size
;
3806 bool saw_unknown
= false;
3809 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3811 HOST_WIDE_INT this_delta
;
3813 if (!NONDEBUG_INSN_P (insn
))
3816 this_delta
= find_args_size_adjust (insn
);
3817 if (this_delta
== 0)
3820 || ACCUMULATE_OUTGOING_ARGS
3821 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3825 gcc_assert (!saw_unknown
);
3826 if (this_delta
== HOST_WIDE_INT_MIN
)
3829 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3830 #ifdef STACK_GROWS_DOWNWARD
3831 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
3833 args_size
-= this_delta
;
3836 return saw_unknown
? INT_MIN
: args_size
;
3839 #ifdef PUSH_ROUNDING
3840 /* Emit single push insn. */
3843 emit_single_push_insn_1 (enum machine_mode mode
, rtx x
, tree type
)
3846 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3848 enum insn_code icode
;
3850 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3851 /* If there is push pattern, use it. Otherwise try old way of throwing
3852 MEM representing push operation to move expander. */
3853 icode
= optab_handler (push_optab
, mode
);
3854 if (icode
!= CODE_FOR_nothing
)
3856 struct expand_operand ops
[1];
3858 create_input_operand (&ops
[0], x
, mode
);
3859 if (maybe_expand_insn (icode
, 1, ops
))
3862 if (GET_MODE_SIZE (mode
) == rounded_size
)
3863 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3864 /* If we are to pad downward, adjust the stack pointer first and
3865 then store X into the stack location using an offset. This is
3866 because emit_move_insn does not know how to pad; it does not have
3868 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3870 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3871 HOST_WIDE_INT offset
;
3873 emit_move_insn (stack_pointer_rtx
,
3874 expand_binop (Pmode
,
3875 #ifdef STACK_GROWS_DOWNWARD
3881 GEN_INT (rounded_size
),
3882 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3884 offset
= (HOST_WIDE_INT
) padding_size
;
3885 #ifdef STACK_GROWS_DOWNWARD
3886 if (STACK_PUSH_CODE
== POST_DEC
)
3887 /* We have already decremented the stack pointer, so get the
3889 offset
+= (HOST_WIDE_INT
) rounded_size
;
3891 if (STACK_PUSH_CODE
== POST_INC
)
3892 /* We have already incremented the stack pointer, so get the
3894 offset
-= (HOST_WIDE_INT
) rounded_size
;
3896 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3900 #ifdef STACK_GROWS_DOWNWARD
3901 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3902 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3903 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3905 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3906 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3907 GEN_INT (rounded_size
));
3909 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3912 dest
= gen_rtx_MEM (mode
, dest_addr
);
3916 set_mem_attributes (dest
, type
, 1);
3918 if (flag_optimize_sibling_calls
)
3919 /* Function incoming arguments may overlap with sibling call
3920 outgoing arguments and we cannot allow reordering of reads
3921 from function arguments with stores to outgoing arguments
3922 of sibling calls. */
3923 set_mem_alias_set (dest
, 0);
3925 emit_move_insn (dest
, x
);
3928 /* Emit and annotate a single push insn. */
3931 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3933 int delta
, old_delta
= stack_pointer_delta
;
3934 rtx prev
= get_last_insn ();
3937 emit_single_push_insn_1 (mode
, x
, type
);
3939 last
= get_last_insn ();
3941 /* Notice the common case where we emitted exactly one insn. */
3942 if (PREV_INSN (last
) == prev
)
3944 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
3948 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
3949 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
3953 /* Generate code to push X onto the stack, assuming it has mode MODE and
3955 MODE is redundant except when X is a CONST_INT (since they don't
3957 SIZE is an rtx for the size of data to be copied (in bytes),
3958 needed only if X is BLKmode.
3960 ALIGN (in bits) is maximum alignment we can assume.
3962 If PARTIAL and REG are both nonzero, then copy that many of the first
3963 bytes of X into registers starting with REG, and push the rest of X.
3964 The amount of space pushed is decreased by PARTIAL bytes.
3965 REG must be a hard register in this case.
3966 If REG is zero but PARTIAL is not, take any all others actions for an
3967 argument partially in registers, but do not actually load any
3970 EXTRA is the amount in bytes of extra space to leave next to this arg.
3971 This is ignored if an argument block has already been allocated.
3973 On a machine that lacks real push insns, ARGS_ADDR is the address of
3974 the bottom of the argument block for this call. We use indexing off there
3975 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3976 argument block has not been preallocated.
3978 ARGS_SO_FAR is the size of args previously pushed for this call.
3980 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3981 for arguments passed in registers. If nonzero, it will be the number
3982 of bytes required. */
3985 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3986 unsigned int align
, int partial
, rtx reg
, int extra
,
3987 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3991 enum direction stack_direction
3992 #ifdef STACK_GROWS_DOWNWARD
3998 /* Decide where to pad the argument: `downward' for below,
3999 `upward' for above, or `none' for don't pad it.
4000 Default is below for small data on big-endian machines; else above. */
4001 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4003 /* Invert direction if stack is post-decrement.
4005 if (STACK_PUSH_CODE
== POST_DEC
)
4006 if (where_pad
!= none
)
4007 where_pad
= (where_pad
== downward
? upward
: downward
);
4012 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4014 /* Copy a block into the stack, entirely or partially. */
4021 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4022 used
= partial
- offset
;
4024 if (mode
!= BLKmode
)
4026 /* A value is to be stored in an insufficiently aligned
4027 stack slot; copy via a suitably aligned slot if
4029 size
= GEN_INT (GET_MODE_SIZE (mode
));
4030 if (!MEM_P (xinner
))
4032 temp
= assign_temp (type
, 1, 1);
4033 emit_move_insn (temp
, xinner
);
4040 /* USED is now the # of bytes we need not copy to the stack
4041 because registers will take care of them. */
4044 xinner
= adjust_address (xinner
, BLKmode
, used
);
4046 /* If the partial register-part of the arg counts in its stack size,
4047 skip the part of stack space corresponding to the registers.
4048 Otherwise, start copying to the beginning of the stack space,
4049 by setting SKIP to 0. */
4050 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4052 #ifdef PUSH_ROUNDING
4053 /* Do it with several push insns if that doesn't take lots of insns
4054 and if there is no difficulty with push insns that skip bytes
4055 on the stack for alignment purposes. */
4058 && CONST_INT_P (size
)
4060 && MEM_ALIGN (xinner
) >= align
4061 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
4062 /* Here we avoid the case of a structure whose weak alignment
4063 forces many pushes of a small amount of data,
4064 and such small pushes do rounding that causes trouble. */
4065 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4066 || align
>= BIGGEST_ALIGNMENT
4067 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4068 == (align
/ BITS_PER_UNIT
)))
4069 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4071 /* Push padding now if padding above and stack grows down,
4072 or if padding below and stack grows up.
4073 But if space already allocated, this has already been done. */
4074 if (extra
&& args_addr
== 0
4075 && where_pad
!= none
&& where_pad
!= stack_direction
)
4076 anti_adjust_stack (GEN_INT (extra
));
4078 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4081 #endif /* PUSH_ROUNDING */
4085 /* Otherwise make space on the stack and copy the data
4086 to the address of that space. */
4088 /* Deduct words put into registers from the size we must copy. */
4091 if (CONST_INT_P (size
))
4092 size
= GEN_INT (INTVAL (size
) - used
);
4094 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4095 GEN_INT (used
), NULL_RTX
, 0,
4099 /* Get the address of the stack space.
4100 In this case, we do not deal with EXTRA separately.
4101 A single stack adjust will do. */
4104 temp
= push_block (size
, extra
, where_pad
== downward
);
4107 else if (CONST_INT_P (args_so_far
))
4108 temp
= memory_address (BLKmode
,
4109 plus_constant (Pmode
, args_addr
,
4110 skip
+ INTVAL (args_so_far
)));
4112 temp
= memory_address (BLKmode
,
4113 plus_constant (Pmode
,
4114 gen_rtx_PLUS (Pmode
,
4119 if (!ACCUMULATE_OUTGOING_ARGS
)
4121 /* If the source is referenced relative to the stack pointer,
4122 copy it to another register to stabilize it. We do not need
4123 to do this if we know that we won't be changing sp. */
4125 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4126 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4127 temp
= copy_to_reg (temp
);
4130 target
= gen_rtx_MEM (BLKmode
, temp
);
4132 /* We do *not* set_mem_attributes here, because incoming arguments
4133 may overlap with sibling call outgoing arguments and we cannot
4134 allow reordering of reads from function arguments with stores
4135 to outgoing arguments of sibling calls. We do, however, want
4136 to record the alignment of the stack slot. */
4137 /* ALIGN may well be better aligned than TYPE, e.g. due to
4138 PARM_BOUNDARY. Assume the caller isn't lying. */
4139 set_mem_align (target
, align
);
4141 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4144 else if (partial
> 0)
4146 /* Scalar partly in registers. */
4148 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4151 /* # bytes of start of argument
4152 that we must make space for but need not store. */
4153 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4154 int args_offset
= INTVAL (args_so_far
);
4157 /* Push padding now if padding above and stack grows down,
4158 or if padding below and stack grows up.
4159 But if space already allocated, this has already been done. */
4160 if (extra
&& args_addr
== 0
4161 && where_pad
!= none
&& where_pad
!= stack_direction
)
4162 anti_adjust_stack (GEN_INT (extra
));
4164 /* If we make space by pushing it, we might as well push
4165 the real data. Otherwise, we can leave OFFSET nonzero
4166 and leave the space uninitialized. */
4170 /* Now NOT_STACK gets the number of words that we don't need to
4171 allocate on the stack. Convert OFFSET to words too. */
4172 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4173 offset
/= UNITS_PER_WORD
;
4175 /* If the partial register-part of the arg counts in its stack size,
4176 skip the part of stack space corresponding to the registers.
4177 Otherwise, start copying to the beginning of the stack space,
4178 by setting SKIP to 0. */
4179 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4181 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4182 x
= validize_mem (force_const_mem (mode
, x
));
4184 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4185 SUBREGs of such registers are not allowed. */
4186 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4187 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4188 x
= copy_to_reg (x
);
4190 /* Loop over all the words allocated on the stack for this arg. */
4191 /* We can do it by words, because any scalar bigger than a word
4192 has a size a multiple of a word. */
4193 #ifndef PUSH_ARGS_REVERSED
4194 for (i
= not_stack
; i
< size
; i
++)
4196 for (i
= size
- 1; i
>= not_stack
; i
--)
4198 if (i
>= not_stack
+ offset
)
4199 emit_push_insn (operand_subword_force (x
, i
, mode
),
4200 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4202 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4204 reg_parm_stack_space
, alignment_pad
);
4211 /* Push padding now if padding above and stack grows down,
4212 or if padding below and stack grows up.
4213 But if space already allocated, this has already been done. */
4214 if (extra
&& args_addr
== 0
4215 && where_pad
!= none
&& where_pad
!= stack_direction
)
4216 anti_adjust_stack (GEN_INT (extra
));
4218 #ifdef PUSH_ROUNDING
4219 if (args_addr
== 0 && PUSH_ARGS
)
4220 emit_single_push_insn (mode
, x
, type
);
4224 if (CONST_INT_P (args_so_far
))
4226 = memory_address (mode
,
4227 plus_constant (Pmode
, args_addr
,
4228 INTVAL (args_so_far
)));
4230 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4232 dest
= gen_rtx_MEM (mode
, addr
);
4234 /* We do *not* set_mem_attributes here, because incoming arguments
4235 may overlap with sibling call outgoing arguments and we cannot
4236 allow reordering of reads from function arguments with stores
4237 to outgoing arguments of sibling calls. We do, however, want
4238 to record the alignment of the stack slot. */
4239 /* ALIGN may well be better aligned than TYPE, e.g. due to
4240 PARM_BOUNDARY. Assume the caller isn't lying. */
4241 set_mem_align (dest
, align
);
4243 emit_move_insn (dest
, x
);
4247 /* If part should go in registers, copy that part
4248 into the appropriate registers. Do this now, at the end,
4249 since mem-to-mem copies above may do function calls. */
4250 if (partial
> 0 && reg
!= 0)
4252 /* Handle calls that pass values in multiple non-contiguous locations.
4253 The Irix 6 ABI has examples of this. */
4254 if (GET_CODE (reg
) == PARALLEL
)
4255 emit_group_load (reg
, x
, type
, -1);
4258 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4259 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4263 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4264 anti_adjust_stack (GEN_INT (extra
));
4266 if (alignment_pad
&& args_addr
== 0)
4267 anti_adjust_stack (alignment_pad
);
4270 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4274 get_subtarget (rtx x
)
4278 /* Only registers can be subtargets. */
4280 /* Don't use hard regs to avoid extending their life. */
4281 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4285 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4286 FIELD is a bitfield. Returns true if the optimization was successful,
4287 and there's nothing else to do. */
4290 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4291 unsigned HOST_WIDE_INT bitpos
,
4292 unsigned HOST_WIDE_INT bitregion_start
,
4293 unsigned HOST_WIDE_INT bitregion_end
,
4294 enum machine_mode mode1
, rtx str_rtx
,
4297 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4298 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4303 enum tree_code code
;
4305 if (mode1
!= VOIDmode
4306 || bitsize
>= BITS_PER_WORD
4307 || str_bitsize
> BITS_PER_WORD
4308 || TREE_SIDE_EFFECTS (to
)
4309 || TREE_THIS_VOLATILE (to
))
4313 if (TREE_CODE (src
) != SSA_NAME
)
4315 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4318 srcstmt
= get_gimple_for_ssa_name (src
);
4320 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4323 code
= gimple_assign_rhs_code (srcstmt
);
4325 op0
= gimple_assign_rhs1 (srcstmt
);
4327 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4328 to find its initialization. Hopefully the initialization will
4329 be from a bitfield load. */
4330 if (TREE_CODE (op0
) == SSA_NAME
)
4332 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4334 /* We want to eventually have OP0 be the same as TO, which
4335 should be a bitfield. */
4337 || !is_gimple_assign (op0stmt
)
4338 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4340 op0
= gimple_assign_rhs1 (op0stmt
);
4343 op1
= gimple_assign_rhs2 (srcstmt
);
4345 if (!operand_equal_p (to
, op0
, 0))
4348 if (MEM_P (str_rtx
))
4350 unsigned HOST_WIDE_INT offset1
;
4352 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4353 str_mode
= word_mode
;
4354 str_mode
= get_best_mode (bitsize
, bitpos
,
4355 bitregion_start
, bitregion_end
,
4356 MEM_ALIGN (str_rtx
), str_mode
, 0);
4357 if (str_mode
== VOIDmode
)
4359 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4362 bitpos
%= str_bitsize
;
4363 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4364 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4366 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4369 /* If the bit field covers the whole REG/MEM, store_field
4370 will likely generate better code. */
4371 if (bitsize
>= str_bitsize
)
4374 /* We can't handle fields split across multiple entities. */
4375 if (bitpos
+ bitsize
> str_bitsize
)
4378 if (BYTES_BIG_ENDIAN
)
4379 bitpos
= str_bitsize
- bitpos
- bitsize
;
4385 /* For now, just optimize the case of the topmost bitfield
4386 where we don't need to do any masking and also
4387 1 bit bitfields where xor can be used.
4388 We might win by one instruction for the other bitfields
4389 too if insv/extv instructions aren't used, so that
4390 can be added later. */
4391 if (bitpos
+ bitsize
!= str_bitsize
4392 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4395 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4396 value
= convert_modes (str_mode
,
4397 TYPE_MODE (TREE_TYPE (op1
)), value
,
4398 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4400 /* We may be accessing data outside the field, which means
4401 we can alias adjacent data. */
4402 if (MEM_P (str_rtx
))
4404 str_rtx
= shallow_copy_rtx (str_rtx
);
4405 set_mem_alias_set (str_rtx
, 0);
4406 set_mem_expr (str_rtx
, 0);
4409 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4410 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4412 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4415 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4416 result
= expand_binop (str_mode
, binop
, str_rtx
,
4417 value
, str_rtx
, 1, OPTAB_WIDEN
);
4418 if (result
!= str_rtx
)
4419 emit_move_insn (str_rtx
, result
);
4424 if (TREE_CODE (op1
) != INTEGER_CST
)
4426 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4427 value
= convert_modes (str_mode
,
4428 TYPE_MODE (TREE_TYPE (op1
)), value
,
4429 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4431 /* We may be accessing data outside the field, which means
4432 we can alias adjacent data. */
4433 if (MEM_P (str_rtx
))
4435 str_rtx
= shallow_copy_rtx (str_rtx
);
4436 set_mem_alias_set (str_rtx
, 0);
4437 set_mem_expr (str_rtx
, 0);
4440 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4441 if (bitpos
+ bitsize
!= str_bitsize
)
4443 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1);
4444 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4446 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4447 result
= expand_binop (str_mode
, binop
, str_rtx
,
4448 value
, str_rtx
, 1, OPTAB_WIDEN
);
4449 if (result
!= str_rtx
)
4450 emit_move_insn (str_rtx
, result
);
4460 /* In the C++ memory model, consecutive bit fields in a structure are
4461 considered one memory location.
4463 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4464 returns the bit range of consecutive bits in which this COMPONENT_REF
4465 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4466 and *OFFSET may be adjusted in the process.
4468 If the access does not need to be restricted, 0 is returned in both
4469 *BITSTART and *BITEND. */
4472 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4473 unsigned HOST_WIDE_INT
*bitend
,
4475 HOST_WIDE_INT
*bitpos
,
4478 HOST_WIDE_INT bitoffset
;
4481 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4483 field
= TREE_OPERAND (exp
, 1);
4484 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4485 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4486 need to limit the range we can access. */
4489 *bitstart
= *bitend
= 0;
4493 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4494 part of a larger bit field, then the representative does not serve any
4495 useful purpose. This can occur in Ada. */
4496 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4498 enum machine_mode rmode
;
4499 HOST_WIDE_INT rbitsize
, rbitpos
;
4503 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4504 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4505 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4507 *bitstart
= *bitend
= 0;
4512 /* Compute the adjustment to bitpos from the offset of the field
4513 relative to the representative. DECL_FIELD_OFFSET of field and
4514 repr are the same by construction if they are not constants,
4515 see finish_bitfield_layout. */
4516 if (host_integerp (DECL_FIELD_OFFSET (field
), 1)
4517 && host_integerp (DECL_FIELD_OFFSET (repr
), 1))
4518 bitoffset
= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
4519 - tree_low_cst (DECL_FIELD_OFFSET (repr
), 1)) * BITS_PER_UNIT
;
4522 bitoffset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
4523 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr
), 1));
4525 /* If the adjustment is larger than bitpos, we would have a negative bit
4526 position for the lower bound and this may wreak havoc later. This can
4527 occur only if we have a non-null offset, so adjust offset and bitpos
4528 to make the lower bound non-negative. */
4529 if (bitoffset
> *bitpos
)
4531 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4533 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4534 gcc_assert (*offset
!= NULL_TREE
);
4538 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4542 *bitstart
= *bitpos
- bitoffset
;
4544 *bitend
= *bitstart
+ tree_low_cst (DECL_SIZE (repr
), 1) - 1;
4547 /* Returns true if the MEM_REF REF refers to an object that does not
4548 reside in memory and has non-BLKmode. */
4551 mem_ref_refers_to_non_mem_p (tree ref
)
4553 tree base
= TREE_OPERAND (ref
, 0);
4554 if (TREE_CODE (base
) != ADDR_EXPR
)
4556 base
= TREE_OPERAND (base
, 0);
4557 return (DECL_P (base
)
4558 && !TREE_ADDRESSABLE (base
)
4559 && DECL_MODE (base
) != BLKmode
4560 && DECL_RTL_SET_P (base
)
4561 && !MEM_P (DECL_RTL (base
)));
4564 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4565 is true, try generating a nontemporal store. */
4568 expand_assignment (tree to
, tree from
, bool nontemporal
)
4572 enum machine_mode mode
;
4574 enum insn_code icode
;
4576 /* Don't crash if the lhs of the assignment was erroneous. */
4577 if (TREE_CODE (to
) == ERROR_MARK
)
4579 expand_normal (from
);
4583 /* Optimize away no-op moves without side-effects. */
4584 if (operand_equal_p (to
, from
, 0))
4587 /* Handle misaligned stores. */
4588 mode
= TYPE_MODE (TREE_TYPE (to
));
4589 if ((TREE_CODE (to
) == MEM_REF
4590 || TREE_CODE (to
) == TARGET_MEM_REF
)
4592 && !mem_ref_refers_to_non_mem_p (to
)
4593 && ((align
= get_object_alignment (to
))
4594 < GET_MODE_ALIGNMENT (mode
))
4595 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4596 != CODE_FOR_nothing
)
4597 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4601 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4602 reg
= force_not_mem (reg
);
4603 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4605 if (icode
!= CODE_FOR_nothing
)
4607 struct expand_operand ops
[2];
4609 create_fixed_operand (&ops
[0], mem
);
4610 create_input_operand (&ops
[1], reg
, mode
);
4611 /* The movmisalign<mode> pattern cannot fail, else the assignment
4612 would silently be omitted. */
4613 expand_insn (icode
, 2, ops
);
4616 store_bit_field (mem
, GET_MODE_BITSIZE (mode
),
4617 0, 0, 0, mode
, reg
);
4621 /* Assignment of a structure component needs special treatment
4622 if the structure component's rtx is not simply a MEM.
4623 Assignment of an array element at a constant index, and assignment of
4624 an array element in an unaligned packed structure field, has the same
4625 problem. Same for (partially) storing into a non-memory object. */
4626 if (handled_component_p (to
)
4627 || (TREE_CODE (to
) == MEM_REF
4628 && mem_ref_refers_to_non_mem_p (to
))
4629 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4631 enum machine_mode mode1
;
4632 HOST_WIDE_INT bitsize
, bitpos
;
4633 unsigned HOST_WIDE_INT bitregion_start
= 0;
4634 unsigned HOST_WIDE_INT bitregion_end
= 0;
4643 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4644 &unsignedp
, &volatilep
, true);
4646 if (TREE_CODE (to
) == COMPONENT_REF
4647 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4648 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4650 /* If we are going to use store_bit_field and extract_bit_field,
4651 make sure to_rtx will be safe for multiple use. */
4652 mode
= TYPE_MODE (TREE_TYPE (tem
));
4653 if (TREE_CODE (tem
) == MEM_REF
4655 && ((align
= get_object_alignment (tem
))
4656 < GET_MODE_ALIGNMENT (mode
))
4657 && ((icode
= optab_handler (movmisalign_optab
, mode
))
4658 != CODE_FOR_nothing
))
4660 struct expand_operand ops
[2];
4663 to_rtx
= gen_reg_rtx (mode
);
4664 mem
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4666 /* If the misaligned store doesn't overwrite all bits, perform
4667 rmw cycle on MEM. */
4668 if (bitsize
!= GET_MODE_BITSIZE (mode
))
4670 create_input_operand (&ops
[0], to_rtx
, mode
);
4671 create_fixed_operand (&ops
[1], mem
);
4672 /* The movmisalign<mode> pattern cannot fail, else the assignment
4673 would silently be omitted. */
4674 expand_insn (icode
, 2, ops
);
4676 mem
= copy_rtx (mem
);
4682 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4685 /* If the bitfield is volatile, we want to access it in the
4686 field's mode, not the computed mode.
4687 If a MEM has VOIDmode (external with incomplete type),
4688 use BLKmode for it instead. */
4691 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
4692 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4693 else if (GET_MODE (to_rtx
) == VOIDmode
)
4694 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4699 enum machine_mode address_mode
;
4702 if (!MEM_P (to_rtx
))
4704 /* We can get constant negative offsets into arrays with broken
4705 user code. Translate this to a trap instead of ICEing. */
4706 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4707 expand_builtin_trap ();
4708 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4711 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4712 address_mode
= get_address_mode (to_rtx
);
4713 if (GET_MODE (offset_rtx
) != address_mode
)
4714 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4716 /* A constant address in TO_RTX can have VOIDmode, we must not try
4717 to call force_reg for that case. Avoid that case. */
4719 && GET_MODE (to_rtx
) == BLKmode
4720 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4722 && (bitpos
% bitsize
) == 0
4723 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4724 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4726 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4730 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4731 highest_pow2_factor_for_target (to
,
4735 /* No action is needed if the target is not a memory and the field
4736 lies completely outside that target. This can occur if the source
4737 code contains an out-of-bounds access to a small array. */
4739 && GET_MODE (to_rtx
) != BLKmode
4740 && (unsigned HOST_WIDE_INT
) bitpos
4741 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4743 expand_normal (from
);
4746 /* Handle expand_expr of a complex value returning a CONCAT. */
4747 else if (GET_CODE (to_rtx
) == CONCAT
)
4749 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4750 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4752 && bitsize
== mode_bitsize
)
4753 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4754 else if (bitsize
== mode_bitsize
/ 2
4755 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4756 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4758 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4759 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4760 bitregion_start
, bitregion_end
,
4761 mode1
, from
, TREE_TYPE (tem
),
4762 get_alias_set (to
), nontemporal
);
4763 else if (bitpos
>= mode_bitsize
/ 2)
4764 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4765 bitpos
- mode_bitsize
/ 2,
4766 bitregion_start
, bitregion_end
,
4768 TREE_TYPE (tem
), get_alias_set (to
),
4770 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4773 result
= expand_normal (from
);
4774 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4775 TYPE_MODE (TREE_TYPE (from
)), 0);
4776 emit_move_insn (XEXP (to_rtx
, 0),
4777 read_complex_part (from_rtx
, false));
4778 emit_move_insn (XEXP (to_rtx
, 1),
4779 read_complex_part (from_rtx
, true));
4783 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4784 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4785 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4786 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4787 result
= store_field (temp
, bitsize
, bitpos
,
4788 bitregion_start
, bitregion_end
,
4790 TREE_TYPE (tem
), get_alias_set (to
),
4792 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4793 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4800 /* If the field is at offset zero, we could have been given the
4801 DECL_RTX of the parent struct. Don't munge it. */
4802 to_rtx
= shallow_copy_rtx (to_rtx
);
4804 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4806 /* Deal with volatile and readonly fields. The former is only
4807 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4809 MEM_VOLATILE_P (to_rtx
) = 1;
4810 if (component_uses_parent_alias_set (to
))
4811 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4814 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4815 bitregion_start
, bitregion_end
,
4820 result
= store_field (to_rtx
, bitsize
, bitpos
,
4821 bitregion_start
, bitregion_end
,
4823 TREE_TYPE (tem
), get_alias_set (to
),
4829 struct expand_operand ops
[2];
4831 create_fixed_operand (&ops
[0], mem
);
4832 create_input_operand (&ops
[1], to_rtx
, mode
);
4833 /* The movmisalign<mode> pattern cannot fail, else the assignment
4834 would silently be omitted. */
4835 expand_insn (icode
, 2, ops
);
4839 preserve_temp_slots (result
);
4844 /* If the rhs is a function call and its value is not an aggregate,
4845 call the function before we start to compute the lhs.
4846 This is needed for correct code for cases such as
4847 val = setjmp (buf) on machines where reference to val
4848 requires loading up part of an address in a separate insn.
4850 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4851 since it might be a promoted variable where the zero- or sign- extension
4852 needs to be done. Handling this in the normal way is safe because no
4853 computation is done before the call. The same is true for SSA names. */
4854 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4855 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4856 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4857 && ! (((TREE_CODE (to
) == VAR_DECL
4858 || TREE_CODE (to
) == PARM_DECL
4859 || TREE_CODE (to
) == RESULT_DECL
)
4860 && REG_P (DECL_RTL (to
)))
4861 || TREE_CODE (to
) == SSA_NAME
))
4866 value
= expand_normal (from
);
4868 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4870 /* Handle calls that return values in multiple non-contiguous locations.
4871 The Irix 6 ABI has examples of this. */
4872 if (GET_CODE (to_rtx
) == PARALLEL
)
4874 if (GET_CODE (value
) == PARALLEL
)
4875 emit_group_move (to_rtx
, value
);
4877 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4878 int_size_in_bytes (TREE_TYPE (from
)));
4880 else if (GET_CODE (value
) == PARALLEL
)
4881 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
4882 int_size_in_bytes (TREE_TYPE (from
)));
4883 else if (GET_MODE (to_rtx
) == BLKmode
)
4884 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4887 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4888 value
= convert_memory_address_addr_space
4889 (GET_MODE (to_rtx
), value
,
4890 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
4892 emit_move_insn (to_rtx
, value
);
4894 preserve_temp_slots (to_rtx
);
4899 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
4900 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4902 /* Don't move directly into a return register. */
4903 if (TREE_CODE (to
) == RESULT_DECL
4904 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4909 if (REG_P (to_rtx
) && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
)
4910 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
4912 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
4914 /* Handle calls that return values in multiple non-contiguous locations.
4915 The Irix 6 ABI has examples of this. */
4916 if (GET_CODE (to_rtx
) == PARALLEL
)
4918 if (GET_CODE (temp
) == PARALLEL
)
4919 emit_group_move (to_rtx
, temp
);
4921 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4922 int_size_in_bytes (TREE_TYPE (from
)));
4925 emit_move_insn (to_rtx
, temp
);
4927 preserve_temp_slots (to_rtx
);
4932 /* In case we are returning the contents of an object which overlaps
4933 the place the value is being stored, use a safe function when copying
4934 a value through a pointer into a structure value return block. */
4935 if (TREE_CODE (to
) == RESULT_DECL
4936 && TREE_CODE (from
) == INDIRECT_REF
4937 && ADDR_SPACE_GENERIC_P
4938 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
4939 && refs_may_alias_p (to
, from
)
4940 && cfun
->returns_struct
4941 && !cfun
->returns_pcc_struct
)
4946 size
= expr_size (from
);
4947 from_rtx
= expand_normal (from
);
4949 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4950 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4951 XEXP (from_rtx
, 0), Pmode
,
4952 convert_to_mode (TYPE_MODE (sizetype
),
4953 size
, TYPE_UNSIGNED (sizetype
)),
4954 TYPE_MODE (sizetype
));
4956 preserve_temp_slots (to_rtx
);
4961 /* Compute FROM and store the value in the rtx we got. */
4964 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
4965 preserve_temp_slots (result
);
4970 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4971 succeeded, false otherwise. */
4974 emit_storent_insn (rtx to
, rtx from
)
4976 struct expand_operand ops
[2];
4977 enum machine_mode mode
= GET_MODE (to
);
4978 enum insn_code code
= optab_handler (storent_optab
, mode
);
4980 if (code
== CODE_FOR_nothing
)
4983 create_fixed_operand (&ops
[0], to
);
4984 create_input_operand (&ops
[1], from
, mode
);
4985 return maybe_expand_insn (code
, 2, ops
);
4988 /* Generate code for computing expression EXP,
4989 and storing the value into TARGET.
4991 If the mode is BLKmode then we may return TARGET itself.
4992 It turns out that in BLKmode it doesn't cause a problem.
4993 because C has no operators that could combine two different
4994 assignments into the same BLKmode object with different values
4995 with no sequence point. Will other languages need this to
4998 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4999 stack, and block moves may need to be treated specially.
5001 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5004 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5007 rtx alt_rtl
= NULL_RTX
;
5008 location_t loc
= EXPR_LOCATION (exp
);
5010 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5012 /* C++ can generate ?: expressions with a throw expression in one
5013 branch and an rvalue in the other. Here, we resolve attempts to
5014 store the throw expression's nonexistent result. */
5015 gcc_assert (!call_param_p
);
5016 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5019 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5021 /* Perform first part of compound expression, then assign from second
5023 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5024 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5025 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5028 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5030 /* For conditional expression, get safe form of the target. Then
5031 test the condition, doing the appropriate assignment on either
5032 side. This avoids the creation of unnecessary temporaries.
5033 For non-BLKmode, it is more efficient not to do this. */
5035 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
5037 do_pending_stack_adjust ();
5039 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5040 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5042 emit_jump_insn (gen_jump (lab2
));
5045 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5052 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5053 /* If this is a scalar in a register that is stored in a wider mode
5054 than the declared mode, compute the result into its declared mode
5055 and then convert to the wider mode. Our value is the computed
5058 rtx inner_target
= 0;
5060 /* We can do the conversion inside EXP, which will often result
5061 in some optimizations. Do the conversion in two steps: first
5062 change the signedness, if needed, then the extend. But don't
5063 do this if the type of EXP is a subtype of something else
5064 since then the conversion might involve more than just
5065 converting modes. */
5066 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5067 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5068 && GET_MODE_PRECISION (GET_MODE (target
))
5069 == TYPE_PRECISION (TREE_TYPE (exp
)))
5071 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
5072 != SUBREG_PROMOTED_UNSIGNED_P (target
))
5074 /* Some types, e.g. Fortran's logical*4, won't have a signed
5075 version, so use the mode instead. */
5077 = (signed_or_unsigned_type_for
5078 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
5080 ntype
= lang_hooks
.types
.type_for_mode
5081 (TYPE_MODE (TREE_TYPE (exp
)),
5082 SUBREG_PROMOTED_UNSIGNED_P (target
));
5084 exp
= fold_convert_loc (loc
, ntype
, exp
);
5087 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5088 (GET_MODE (SUBREG_REG (target
)),
5089 SUBREG_PROMOTED_UNSIGNED_P (target
)),
5092 inner_target
= SUBREG_REG (target
);
5095 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5096 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5098 /* If TEMP is a VOIDmode constant, use convert_modes to make
5099 sure that we properly convert it. */
5100 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5102 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5103 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
5104 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5105 GET_MODE (target
), temp
,
5106 SUBREG_PROMOTED_UNSIGNED_P (target
));
5109 convert_move (SUBREG_REG (target
), temp
,
5110 SUBREG_PROMOTED_UNSIGNED_P (target
));
5114 else if ((TREE_CODE (exp
) == STRING_CST
5115 || (TREE_CODE (exp
) == MEM_REF
5116 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5117 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5119 && integer_zerop (TREE_OPERAND (exp
, 1))))
5120 && !nontemporal
&& !call_param_p
5123 /* Optimize initialization of an array with a STRING_CST. */
5124 HOST_WIDE_INT exp_len
, str_copy_len
;
5126 tree str
= TREE_CODE (exp
) == STRING_CST
5127 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5129 exp_len
= int_expr_size (exp
);
5133 if (TREE_STRING_LENGTH (str
) <= 0)
5136 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5137 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5140 str_copy_len
= TREE_STRING_LENGTH (str
);
5141 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5142 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5144 str_copy_len
+= STORE_MAX_PIECES
- 1;
5145 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5147 str_copy_len
= MIN (str_copy_len
, exp_len
);
5148 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5149 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5150 MEM_ALIGN (target
), false))
5155 dest_mem
= store_by_pieces (dest_mem
,
5156 str_copy_len
, builtin_strncpy_read_str
,
5158 TREE_STRING_POINTER (str
)),
5159 MEM_ALIGN (target
), false,
5160 exp_len
> str_copy_len
? 1 : 0);
5161 if (exp_len
> str_copy_len
)
5162 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5163 GEN_INT (exp_len
- str_copy_len
),
5172 /* If we want to use a nontemporal store, force the value to
5174 tmp_target
= nontemporal
? NULL_RTX
: target
;
5175 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5177 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5181 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5182 the same as that of TARGET, adjust the constant. This is needed, for
5183 example, in case it is a CONST_DOUBLE and we want only a word-sized
5185 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5186 && TREE_CODE (exp
) != ERROR_MARK
5187 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5188 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5189 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5191 /* If value was not generated in the target, store it there.
5192 Convert the value to TARGET's type first if necessary and emit the
5193 pending incrementations that have been queued when expanding EXP.
5194 Note that we cannot emit the whole queue blindly because this will
5195 effectively disable the POST_INC optimization later.
5197 If TEMP and TARGET compare equal according to rtx_equal_p, but
5198 one or both of them are volatile memory refs, we have to distinguish
5200 - expand_expr has used TARGET. In this case, we must not generate
5201 another copy. This can be detected by TARGET being equal according
5203 - expand_expr has not used TARGET - that means that the source just
5204 happens to have the same RTX form. Since temp will have been created
5205 by expand_expr, it will compare unequal according to == .
5206 We must generate a copy in this case, to reach the correct number
5207 of volatile memory references. */
5209 if ((! rtx_equal_p (temp
, target
)
5210 || (temp
!= target
&& (side_effects_p (temp
)
5211 || side_effects_p (target
))))
5212 && TREE_CODE (exp
) != ERROR_MARK
5213 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5214 but TARGET is not valid memory reference, TEMP will differ
5215 from TARGET although it is really the same location. */
5217 && rtx_equal_p (alt_rtl
, target
)
5218 && !side_effects_p (alt_rtl
)
5219 && !side_effects_p (target
))
5220 /* If there's nothing to copy, don't bother. Don't call
5221 expr_size unless necessary, because some front-ends (C++)
5222 expr_size-hook must not be given objects that are not
5223 supposed to be bit-copied or bit-initialized. */
5224 && expr_size (exp
) != const0_rtx
)
5226 if (GET_MODE (temp
) != GET_MODE (target
)
5227 && GET_MODE (temp
) != VOIDmode
)
5229 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5230 if (GET_MODE (target
) == BLKmode
5231 && GET_MODE (temp
) == BLKmode
)
5232 emit_block_move (target
, temp
, expr_size (exp
),
5234 ? BLOCK_OP_CALL_PARM
5235 : BLOCK_OP_NORMAL
));
5236 else if (GET_MODE (target
) == BLKmode
)
5237 store_bit_field (target
, INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5238 0, 0, 0, GET_MODE (temp
), temp
);
5240 convert_move (target
, temp
, unsignedp
);
5243 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5245 /* Handle copying a string constant into an array. The string
5246 constant may be shorter than the array. So copy just the string's
5247 actual length, and clear the rest. First get the size of the data
5248 type of the string, which is actually the size of the target. */
5249 rtx size
= expr_size (exp
);
5251 if (CONST_INT_P (size
)
5252 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5253 emit_block_move (target
, temp
, size
,
5255 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5258 enum machine_mode pointer_mode
5259 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5260 enum machine_mode address_mode
= get_address_mode (target
);
5262 /* Compute the size of the data to copy from the string. */
5264 = size_binop_loc (loc
, MIN_EXPR
,
5265 make_tree (sizetype
, size
),
5266 size_int (TREE_STRING_LENGTH (exp
)));
5268 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5270 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5273 /* Copy that much. */
5274 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5275 TYPE_UNSIGNED (sizetype
));
5276 emit_block_move (target
, temp
, copy_size_rtx
,
5278 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5280 /* Figure out how much is left in TARGET that we have to clear.
5281 Do all calculations in pointer_mode. */
5282 if (CONST_INT_P (copy_size_rtx
))
5284 size
= plus_constant (address_mode
, size
,
5285 -INTVAL (copy_size_rtx
));
5286 target
= adjust_address (target
, BLKmode
,
5287 INTVAL (copy_size_rtx
));
5291 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5292 copy_size_rtx
, NULL_RTX
, 0,
5295 if (GET_MODE (copy_size_rtx
) != address_mode
)
5296 copy_size_rtx
= convert_to_mode (address_mode
,
5298 TYPE_UNSIGNED (sizetype
));
5300 target
= offset_address (target
, copy_size_rtx
,
5301 highest_pow2_factor (copy_size
));
5302 label
= gen_label_rtx ();
5303 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5304 GET_MODE (size
), 0, label
);
5307 if (size
!= const0_rtx
)
5308 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5314 /* Handle calls that return values in multiple non-contiguous locations.
5315 The Irix 6 ABI has examples of this. */
5316 else if (GET_CODE (target
) == PARALLEL
)
5318 if (GET_CODE (temp
) == PARALLEL
)
5319 emit_group_move (target
, temp
);
5321 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5322 int_size_in_bytes (TREE_TYPE (exp
)));
5324 else if (GET_CODE (temp
) == PARALLEL
)
5325 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5326 int_size_in_bytes (TREE_TYPE (exp
)));
5327 else if (GET_MODE (temp
) == BLKmode
)
5328 emit_block_move (target
, temp
, expr_size (exp
),
5330 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5331 /* If we emit a nontemporal store, there is nothing else to do. */
5332 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5336 temp
= force_operand (temp
, target
);
5338 emit_move_insn (target
, temp
);
5345 /* Return true if field F of structure TYPE is a flexible array. */
5348 flexible_array_member_p (const_tree f
, const_tree type
)
5353 return (DECL_CHAIN (f
) == NULL
5354 && TREE_CODE (tf
) == ARRAY_TYPE
5356 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5357 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5358 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5359 && int_size_in_bytes (type
) >= 0);
5362 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5363 must have in order for it to completely initialize a value of type TYPE.
5364 Return -1 if the number isn't known.
5366 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5368 static HOST_WIDE_INT
5369 count_type_elements (const_tree type
, bool for_ctor_p
)
5371 switch (TREE_CODE (type
))
5377 nelts
= array_type_nelts (type
);
5378 if (nelts
&& host_integerp (nelts
, 1))
5380 unsigned HOST_WIDE_INT n
;
5382 n
= tree_low_cst (nelts
, 1) + 1;
5383 if (n
== 0 || for_ctor_p
)
5386 return n
* count_type_elements (TREE_TYPE (type
), false);
5388 return for_ctor_p
? -1 : 1;
5393 unsigned HOST_WIDE_INT n
;
5397 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5398 if (TREE_CODE (f
) == FIELD_DECL
)
5401 n
+= count_type_elements (TREE_TYPE (f
), false);
5402 else if (!flexible_array_member_p (f
, type
))
5403 /* Don't count flexible arrays, which are not supposed
5404 to be initialized. */
5412 case QUAL_UNION_TYPE
:
5417 gcc_assert (!for_ctor_p
);
5418 /* Estimate the number of scalars in each field and pick the
5419 maximum. Other estimates would do instead; the idea is simply
5420 to make sure that the estimate is not sensitive to the ordering
5423 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5424 if (TREE_CODE (f
) == FIELD_DECL
)
5426 m
= count_type_elements (TREE_TYPE (f
), false);
5427 /* If the field doesn't span the whole union, add an extra
5428 scalar for the rest. */
5429 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5430 TYPE_SIZE (type
)) != 1)
5442 return TYPE_VECTOR_SUBPARTS (type
);
5446 case FIXED_POINT_TYPE
:
5451 case REFERENCE_TYPE
:
5467 /* Helper for categorize_ctor_elements. Identical interface. */
5470 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5471 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5473 unsigned HOST_WIDE_INT idx
;
5474 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5475 tree value
, purpose
, elt_type
;
5477 /* Whether CTOR is a valid constant initializer, in accordance with what
5478 initializer_constant_valid_p does. If inferred from the constructor
5479 elements, true until proven otherwise. */
5480 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5481 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5486 elt_type
= NULL_TREE
;
5488 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5490 HOST_WIDE_INT mult
= 1;
5492 if (TREE_CODE (purpose
) == RANGE_EXPR
)
5494 tree lo_index
= TREE_OPERAND (purpose
, 0);
5495 tree hi_index
= TREE_OPERAND (purpose
, 1);
5497 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
5498 mult
= (tree_low_cst (hi_index
, 1)
5499 - tree_low_cst (lo_index
, 1) + 1);
5502 elt_type
= TREE_TYPE (value
);
5504 switch (TREE_CODE (value
))
5508 HOST_WIDE_INT nz
= 0, ic
= 0;
5510 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5513 nz_elts
+= mult
* nz
;
5514 init_elts
+= mult
* ic
;
5516 if (const_from_elts_p
&& const_p
)
5517 const_p
= const_elt_p
;
5524 if (!initializer_zerop (value
))
5530 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5531 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5535 if (!initializer_zerop (TREE_REALPART (value
)))
5537 if (!initializer_zerop (TREE_IMAGPART (value
)))
5545 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5547 tree v
= VECTOR_CST_ELT (value
, i
);
5548 if (!initializer_zerop (v
))
5557 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5558 nz_elts
+= mult
* tc
;
5559 init_elts
+= mult
* tc
;
5561 if (const_from_elts_p
&& const_p
)
5562 const_p
= initializer_constant_valid_p (value
, elt_type
)
5569 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5570 num_fields
, elt_type
))
5571 *p_complete
= false;
5573 *p_nz_elts
+= nz_elts
;
5574 *p_init_elts
+= init_elts
;
5579 /* Examine CTOR to discover:
5580 * how many scalar fields are set to nonzero values,
5581 and place it in *P_NZ_ELTS;
5582 * how many scalar fields in total are in CTOR,
5583 and place it in *P_ELT_COUNT.
5584 * whether the constructor is complete -- in the sense that every
5585 meaningful byte is explicitly given a value --
5586 and place it in *P_COMPLETE.
5588 Return whether or not CTOR is a valid static constant initializer, the same
5589 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5592 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5593 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5599 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5602 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5603 of which had type LAST_TYPE. Each element was itself a complete
5604 initializer, in the sense that every meaningful byte was explicitly
5605 given a value. Return true if the same is true for the constructor
5609 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5610 const_tree last_type
)
5612 if (TREE_CODE (type
) == UNION_TYPE
5613 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5618 gcc_assert (num_elts
== 1 && last_type
);
5620 /* ??? We could look at each element of the union, and find the
5621 largest element. Which would avoid comparing the size of the
5622 initialized element against any tail padding in the union.
5623 Doesn't seem worth the effort... */
5624 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5627 return count_type_elements (type
, true) == num_elts
;
5630 /* Return 1 if EXP contains mostly (3/4) zeros. */
5633 mostly_zeros_p (const_tree exp
)
5635 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5637 HOST_WIDE_INT nz_elts
, init_elts
;
5640 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5641 return !complete_p
|| nz_elts
< init_elts
/ 4;
5644 return initializer_zerop (exp
);
5647 /* Return 1 if EXP contains all zeros. */
5650 all_zeros_p (const_tree exp
)
5652 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5654 HOST_WIDE_INT nz_elts
, init_elts
;
5657 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5658 return nz_elts
== 0;
5661 return initializer_zerop (exp
);
5664 /* Helper function for store_constructor.
5665 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5666 TYPE is the type of the CONSTRUCTOR, not the element type.
5667 CLEARED is as for store_constructor.
5668 ALIAS_SET is the alias set to use for any stores.
5670 This provides a recursive shortcut back to store_constructor when it isn't
5671 necessary to go through store_field. This is so that we can pass through
5672 the cleared field to let store_constructor know that we may not have to
5673 clear a substructure if the outer structure has already been cleared. */
5676 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5677 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5678 tree exp
, tree type
, int cleared
,
5679 alias_set_type alias_set
)
5681 if (TREE_CODE (exp
) == CONSTRUCTOR
5682 /* We can only call store_constructor recursively if the size and
5683 bit position are on a byte boundary. */
5684 && bitpos
% BITS_PER_UNIT
== 0
5685 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5686 /* If we have a nonzero bitpos for a register target, then we just
5687 let store_field do the bitfield handling. This is unlikely to
5688 generate unnecessary clear instructions anyways. */
5689 && (bitpos
== 0 || MEM_P (target
)))
5693 = adjust_address (target
,
5694 GET_MODE (target
) == BLKmode
5696 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5697 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5700 /* Update the alias set, if required. */
5701 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5702 && MEM_ALIAS_SET (target
) != 0)
5704 target
= copy_rtx (target
);
5705 set_mem_alias_set (target
, alias_set
);
5708 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5711 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, type
, alias_set
,
5715 /* Store the value of constructor EXP into the rtx TARGET.
5716 TARGET is either a REG or a MEM; we know it cannot conflict, since
5717 safe_from_p has been called.
5718 CLEARED is true if TARGET is known to have been zero'd.
5719 SIZE is the number of bytes of TARGET we are allowed to modify: this
5720 may not be the same as the size of EXP if we are assigning to a field
5721 which has been packed to exclude padding bits. */
5724 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5726 tree type
= TREE_TYPE (exp
);
5727 #ifdef WORD_REGISTER_OPERATIONS
5728 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5731 switch (TREE_CODE (type
))
5735 case QUAL_UNION_TYPE
:
5737 unsigned HOST_WIDE_INT idx
;
5740 /* If size is zero or the target is already cleared, do nothing. */
5741 if (size
== 0 || cleared
)
5743 /* We either clear the aggregate or indicate the value is dead. */
5744 else if ((TREE_CODE (type
) == UNION_TYPE
5745 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5746 && ! CONSTRUCTOR_ELTS (exp
))
5747 /* If the constructor is empty, clear the union. */
5749 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5753 /* If we are building a static constructor into a register,
5754 set the initial value as zero so we can fold the value into
5755 a constant. But if more than one register is involved,
5756 this probably loses. */
5757 else if (REG_P (target
) && TREE_STATIC (exp
)
5758 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5760 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5764 /* If the constructor has fewer fields than the structure or
5765 if we are initializing the structure to mostly zeros, clear
5766 the whole structure first. Don't do this if TARGET is a
5767 register whose mode size isn't equal to SIZE since
5768 clear_storage can't handle this case. */
5770 && (((int)VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (exp
))
5771 != fields_length (type
))
5772 || mostly_zeros_p (exp
))
5774 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5777 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5781 if (REG_P (target
) && !cleared
)
5782 emit_clobber (target
);
5784 /* Store each element of the constructor into the
5785 corresponding field of TARGET. */
5786 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5788 enum machine_mode mode
;
5789 HOST_WIDE_INT bitsize
;
5790 HOST_WIDE_INT bitpos
= 0;
5792 rtx to_rtx
= target
;
5794 /* Just ignore missing fields. We cleared the whole
5795 structure, above, if any fields are missing. */
5799 if (cleared
&& initializer_zerop (value
))
5802 if (host_integerp (DECL_SIZE (field
), 1))
5803 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
5807 mode
= DECL_MODE (field
);
5808 if (DECL_BIT_FIELD (field
))
5811 offset
= DECL_FIELD_OFFSET (field
);
5812 if (host_integerp (offset
, 0)
5813 && host_integerp (bit_position (field
), 0))
5815 bitpos
= int_bit_position (field
);
5819 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5823 enum machine_mode address_mode
;
5827 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5828 make_tree (TREE_TYPE (exp
),
5831 offset_rtx
= expand_normal (offset
);
5832 gcc_assert (MEM_P (to_rtx
));
5834 address_mode
= get_address_mode (to_rtx
);
5835 if (GET_MODE (offset_rtx
) != address_mode
)
5836 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5838 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5839 highest_pow2_factor (offset
));
5842 #ifdef WORD_REGISTER_OPERATIONS
5843 /* If this initializes a field that is smaller than a
5844 word, at the start of a word, try to widen it to a full
5845 word. This special case allows us to output C++ member
5846 function initializations in a form that the optimizers
5849 && bitsize
< BITS_PER_WORD
5850 && bitpos
% BITS_PER_WORD
== 0
5851 && GET_MODE_CLASS (mode
) == MODE_INT
5852 && TREE_CODE (value
) == INTEGER_CST
5854 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5856 tree type
= TREE_TYPE (value
);
5858 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5860 type
= lang_hooks
.types
.type_for_mode
5861 (word_mode
, TYPE_UNSIGNED (type
));
5862 value
= fold_convert (type
, value
);
5865 if (BYTES_BIG_ENDIAN
)
5867 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5868 build_int_cst (type
,
5869 BITS_PER_WORD
- bitsize
));
5870 bitsize
= BITS_PER_WORD
;
5875 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5876 && DECL_NONADDRESSABLE_P (field
))
5878 to_rtx
= copy_rtx (to_rtx
);
5879 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5882 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5883 value
, type
, cleared
,
5884 get_alias_set (TREE_TYPE (field
)));
5891 unsigned HOST_WIDE_INT i
;
5894 tree elttype
= TREE_TYPE (type
);
5896 HOST_WIDE_INT minelt
= 0;
5897 HOST_WIDE_INT maxelt
= 0;
5899 domain
= TYPE_DOMAIN (type
);
5900 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5901 && TYPE_MAX_VALUE (domain
)
5902 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5903 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5905 /* If we have constant bounds for the range of the type, get them. */
5908 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5909 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5912 /* If the constructor has fewer elements than the array, clear
5913 the whole array first. Similarly if this is static
5914 constructor of a non-BLKmode object. */
5917 else if (REG_P (target
) && TREE_STATIC (exp
))
5921 unsigned HOST_WIDE_INT idx
;
5923 HOST_WIDE_INT count
= 0, zero_count
= 0;
5924 need_to_clear
= ! const_bounds_p
;
5926 /* This loop is a more accurate version of the loop in
5927 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5928 is also needed to check for missing elements. */
5929 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5931 HOST_WIDE_INT this_node_count
;
5936 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5938 tree lo_index
= TREE_OPERAND (index
, 0);
5939 tree hi_index
= TREE_OPERAND (index
, 1);
5941 if (! host_integerp (lo_index
, 1)
5942 || ! host_integerp (hi_index
, 1))
5948 this_node_count
= (tree_low_cst (hi_index
, 1)
5949 - tree_low_cst (lo_index
, 1) + 1);
5952 this_node_count
= 1;
5954 count
+= this_node_count
;
5955 if (mostly_zeros_p (value
))
5956 zero_count
+= this_node_count
;
5959 /* Clear the entire array first if there are any missing
5960 elements, or if the incidence of zero elements is >=
5963 && (count
< maxelt
- minelt
+ 1
5964 || 4 * zero_count
>= 3 * count
))
5968 if (need_to_clear
&& size
> 0)
5971 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5973 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5977 if (!cleared
&& REG_P (target
))
5978 /* Inform later passes that the old value is dead. */
5979 emit_clobber (target
);
5981 /* Store each element of the constructor into the
5982 corresponding element of TARGET, determined by counting the
5984 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
5986 enum machine_mode mode
;
5987 HOST_WIDE_INT bitsize
;
5988 HOST_WIDE_INT bitpos
;
5989 rtx xtarget
= target
;
5991 if (cleared
&& initializer_zerop (value
))
5994 mode
= TYPE_MODE (elttype
);
5995 if (mode
== BLKmode
)
5996 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
5997 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
6000 bitsize
= GET_MODE_BITSIZE (mode
);
6002 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6004 tree lo_index
= TREE_OPERAND (index
, 0);
6005 tree hi_index
= TREE_OPERAND (index
, 1);
6006 rtx index_r
, pos_rtx
;
6007 HOST_WIDE_INT lo
, hi
, count
;
6010 /* If the range is constant and "small", unroll the loop. */
6012 && host_integerp (lo_index
, 0)
6013 && host_integerp (hi_index
, 0)
6014 && (lo
= tree_low_cst (lo_index
, 0),
6015 hi
= tree_low_cst (hi_index
, 0),
6016 count
= hi
- lo
+ 1,
6019 || (host_integerp (TYPE_SIZE (elttype
), 1)
6020 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
6023 lo
-= minelt
; hi
-= minelt
;
6024 for (; lo
<= hi
; lo
++)
6026 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
6029 && !MEM_KEEP_ALIAS_SET_P (target
)
6030 && TREE_CODE (type
) == ARRAY_TYPE
6031 && TYPE_NONALIASED_COMPONENT (type
))
6033 target
= copy_rtx (target
);
6034 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6037 store_constructor_field
6038 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
6039 get_alias_set (elttype
));
6044 rtx loop_start
= gen_label_rtx ();
6045 rtx loop_end
= gen_label_rtx ();
6048 expand_normal (hi_index
);
6050 index
= build_decl (EXPR_LOCATION (exp
),
6051 VAR_DECL
, NULL_TREE
, domain
);
6052 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6053 SET_DECL_RTL (index
, index_r
);
6054 store_expr (lo_index
, index_r
, 0, false);
6056 /* Build the head of the loop. */
6057 do_pending_stack_adjust ();
6058 emit_label (loop_start
);
6060 /* Assign value to element index. */
6062 fold_convert (ssizetype
,
6063 fold_build2 (MINUS_EXPR
,
6066 TYPE_MIN_VALUE (domain
)));
6069 size_binop (MULT_EXPR
, position
,
6070 fold_convert (ssizetype
,
6071 TYPE_SIZE_UNIT (elttype
)));
6073 pos_rtx
= expand_normal (position
);
6074 xtarget
= offset_address (target
, pos_rtx
,
6075 highest_pow2_factor (position
));
6076 xtarget
= adjust_address (xtarget
, mode
, 0);
6077 if (TREE_CODE (value
) == CONSTRUCTOR
)
6078 store_constructor (value
, xtarget
, cleared
,
6079 bitsize
/ BITS_PER_UNIT
);
6081 store_expr (value
, xtarget
, 0, false);
6083 /* Generate a conditional jump to exit the loop. */
6084 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6086 jumpif (exit_cond
, loop_end
, -1);
6088 /* Update the loop counter, and jump to the head of
6090 expand_assignment (index
,
6091 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6092 index
, integer_one_node
),
6095 emit_jump (loop_start
);
6097 /* Build the end of the loop. */
6098 emit_label (loop_end
);
6101 else if ((index
!= 0 && ! host_integerp (index
, 0))
6102 || ! host_integerp (TYPE_SIZE (elttype
), 1))
6107 index
= ssize_int (1);
6110 index
= fold_convert (ssizetype
,
6111 fold_build2 (MINUS_EXPR
,
6114 TYPE_MIN_VALUE (domain
)));
6117 size_binop (MULT_EXPR
, index
,
6118 fold_convert (ssizetype
,
6119 TYPE_SIZE_UNIT (elttype
)));
6120 xtarget
= offset_address (target
,
6121 expand_normal (position
),
6122 highest_pow2_factor (position
));
6123 xtarget
= adjust_address (xtarget
, mode
, 0);
6124 store_expr (value
, xtarget
, 0, false);
6129 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
6130 * tree_low_cst (TYPE_SIZE (elttype
), 1));
6132 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
6134 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6135 && TREE_CODE (type
) == ARRAY_TYPE
6136 && TYPE_NONALIASED_COMPONENT (type
))
6138 target
= copy_rtx (target
);
6139 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6141 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6142 type
, cleared
, get_alias_set (elttype
));
6150 unsigned HOST_WIDE_INT idx
;
6151 constructor_elt
*ce
;
6154 int icode
= CODE_FOR_nothing
;
6155 tree elttype
= TREE_TYPE (type
);
6156 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
6157 enum machine_mode eltmode
= TYPE_MODE (elttype
);
6158 HOST_WIDE_INT bitsize
;
6159 HOST_WIDE_INT bitpos
;
6160 rtvec vector
= NULL
;
6162 alias_set_type alias
;
6164 gcc_assert (eltmode
!= BLKmode
);
6166 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6167 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6169 enum machine_mode mode
= GET_MODE (target
);
6171 icode
= (int) optab_handler (vec_init_optab
, mode
);
6172 if (icode
!= CODE_FOR_nothing
)
6176 vector
= rtvec_alloc (n_elts
);
6177 for (i
= 0; i
< n_elts
; i
++)
6178 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6182 /* If the constructor has fewer elements than the vector,
6183 clear the whole array first. Similarly if this is static
6184 constructor of a non-BLKmode object. */
6187 else if (REG_P (target
) && TREE_STATIC (exp
))
6191 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6194 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6196 int n_elts_here
= tree_low_cst
6197 (int_const_binop (TRUNC_DIV_EXPR
,
6198 TYPE_SIZE (TREE_TYPE (value
)),
6199 TYPE_SIZE (elttype
)), 1);
6201 count
+= n_elts_here
;
6202 if (mostly_zeros_p (value
))
6203 zero_count
+= n_elts_here
;
6206 /* Clear the entire vector first if there are any missing elements,
6207 or if the incidence of zero elements is >= 75%. */
6208 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6211 if (need_to_clear
&& size
> 0 && !vector
)
6214 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6216 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6220 /* Inform later passes that the old value is dead. */
6221 if (!cleared
&& !vector
&& REG_P (target
))
6222 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6225 alias
= MEM_ALIAS_SET (target
);
6227 alias
= get_alias_set (elttype
);
6229 /* Store each element of the constructor into the corresponding
6230 element of TARGET, determined by counting the elements. */
6231 for (idx
= 0, i
= 0;
6232 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
6233 idx
++, i
+= bitsize
/ elt_size
)
6235 HOST_WIDE_INT eltpos
;
6236 tree value
= ce
->value
;
6238 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
6239 if (cleared
&& initializer_zerop (value
))
6243 eltpos
= tree_low_cst (ce
->index
, 1);
6249 /* Vector CONSTRUCTORs should only be built from smaller
6250 vectors in the case of BLKmode vectors. */
6251 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6252 RTVEC_ELT (vector
, eltpos
)
6253 = expand_normal (value
);
6257 enum machine_mode value_mode
=
6258 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6259 ? TYPE_MODE (TREE_TYPE (value
))
6261 bitpos
= eltpos
* elt_size
;
6262 store_constructor_field (target
, bitsize
, bitpos
,
6263 value_mode
, value
, type
,
6269 emit_insn (GEN_FCN (icode
)
6271 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6280 /* Store the value of EXP (an expression tree)
6281 into a subfield of TARGET which has mode MODE and occupies
6282 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6283 If MODE is VOIDmode, it means that we are storing into a bit-field.
6285 BITREGION_START is bitpos of the first bitfield in this region.
6286 BITREGION_END is the bitpos of the ending bitfield in this region.
6287 These two fields are 0, if the C++ memory model does not apply,
6288 or we are not interested in keeping track of bitfield regions.
6290 Always return const0_rtx unless we have something particular to
6293 TYPE is the type of the underlying object,
6295 ALIAS_SET is the alias set for the destination. This value will
6296 (in general) be different from that for TARGET, since TARGET is a
6297 reference to the containing structure.
6299 If NONTEMPORAL is true, try generating a nontemporal store. */
6302 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6303 unsigned HOST_WIDE_INT bitregion_start
,
6304 unsigned HOST_WIDE_INT bitregion_end
,
6305 enum machine_mode mode
, tree exp
, tree type
,
6306 alias_set_type alias_set
, bool nontemporal
)
6308 if (TREE_CODE (exp
) == ERROR_MARK
)
6311 /* If we have nothing to store, do nothing unless the expression has
6314 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6316 /* If we are storing into an unaligned field of an aligned union that is
6317 in a register, we may have the mode of TARGET being an integer mode but
6318 MODE == BLKmode. In that case, get an aligned object whose size and
6319 alignment are the same as TARGET and store TARGET into it (we can avoid
6320 the store if the field being stored is the entire width of TARGET). Then
6321 call ourselves recursively to store the field into a BLKmode version of
6322 that object. Finally, load from the object into TARGET. This is not
6323 very efficient in general, but should only be slightly more expensive
6324 than the otherwise-required unaligned accesses. Perhaps this can be
6325 cleaned up later. It's tempting to make OBJECT readonly, but it's set
6326 twice, once with emit_move_insn and once via store_field. */
6329 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
6331 rtx object
= assign_temp (type
, 1, 1);
6332 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
6334 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
6335 emit_move_insn (object
, target
);
6337 store_field (blk_object
, bitsize
, bitpos
,
6338 bitregion_start
, bitregion_end
,
6339 mode
, exp
, type
, MEM_ALIAS_SET (blk_object
), nontemporal
);
6341 emit_move_insn (target
, object
);
6343 /* We want to return the BLKmode version of the data. */
6347 if (GET_CODE (target
) == CONCAT
)
6349 /* We're storing into a struct containing a single __complex. */
6351 gcc_assert (!bitpos
);
6352 return store_expr (exp
, target
, 0, nontemporal
);
6355 /* If the structure is in a register or if the component
6356 is a bit field, we cannot use addressing to access it.
6357 Use bit-field techniques or SUBREG to store in it. */
6359 if (mode
== VOIDmode
6360 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6361 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6362 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6364 || GET_CODE (target
) == SUBREG
6365 /* If the field isn't aligned enough to store as an ordinary memref,
6366 store it as a bit field. */
6368 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6369 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6370 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6371 || (bitpos
% BITS_PER_UNIT
!= 0)))
6372 || (bitsize
>= 0 && mode
!= BLKmode
6373 && GET_MODE_BITSIZE (mode
) > bitsize
)
6374 /* If the RHS and field are a constant size and the size of the
6375 RHS isn't the same size as the bitfield, we must use bitfield
6378 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6379 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6380 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6381 decl we must use bitfield operations. */
6383 && TREE_CODE (exp
) == MEM_REF
6384 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6385 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6386 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6387 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6392 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6393 implies a mask operation. If the precision is the same size as
6394 the field we're storing into, that mask is redundant. This is
6395 particularly common with bit field assignments generated by the
6397 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6400 tree type
= TREE_TYPE (exp
);
6401 if (INTEGRAL_TYPE_P (type
)
6402 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6403 && bitsize
== TYPE_PRECISION (type
))
6405 tree op
= gimple_assign_rhs1 (nop_def
);
6406 type
= TREE_TYPE (op
);
6407 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6412 temp
= expand_normal (exp
);
6414 /* If BITSIZE is narrower than the size of the type of EXP
6415 we will be narrowing TEMP. Normally, what's wanted are the
6416 low-order bits. However, if EXP's type is a record and this is
6417 big-endian machine, we want the upper BITSIZE bits. */
6418 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6419 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6420 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6421 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6422 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6425 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6426 if (mode
!= VOIDmode
&& mode
!= BLKmode
6427 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6428 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6430 /* If the modes of TEMP and TARGET are both BLKmode, both
6431 must be in memory and BITPOS must be aligned on a byte
6432 boundary. If so, we simply do a block copy. Likewise
6433 for a BLKmode-like TARGET. */
6434 if (GET_MODE (temp
) == BLKmode
6435 && (GET_MODE (target
) == BLKmode
6437 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6438 && (bitpos
% BITS_PER_UNIT
) == 0
6439 && (bitsize
% BITS_PER_UNIT
) == 0)))
6441 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6442 && (bitpos
% BITS_PER_UNIT
) == 0);
6444 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6445 emit_block_move (target
, temp
,
6446 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6453 /* Handle calls that return values in multiple non-contiguous locations.
6454 The Irix 6 ABI has examples of this. */
6455 if (GET_CODE (temp
) == PARALLEL
)
6459 /* We are not supposed to have a true bitfield in this case. */
6460 gcc_assert (bitsize
== GET_MODE_BITSIZE (mode
));
6462 /* If we don't store at bit 0, we need an intermediate pseudo
6463 since emit_group_store only stores at bit 0. */
6465 temp_target
= gen_reg_rtx (mode
);
6467 temp_target
= target
;
6469 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
),
6470 int_size_in_bytes (TREE_TYPE (exp
)));
6472 if (temp_target
== target
)
6478 /* Store the value in the bitfield. */
6479 store_bit_field (target
, bitsize
, bitpos
,
6480 bitregion_start
, bitregion_end
,
6487 /* Now build a reference to just the desired component. */
6488 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6490 if (to_rtx
== target
)
6491 to_rtx
= copy_rtx (to_rtx
);
6493 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6494 set_mem_alias_set (to_rtx
, alias_set
);
6496 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6500 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6501 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6502 codes and find the ultimate containing object, which we return.
6504 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6505 bit position, and *PUNSIGNEDP to the signedness of the field.
6506 If the position of the field is variable, we store a tree
6507 giving the variable offset (in units) in *POFFSET.
6508 This offset is in addition to the bit position.
6509 If the position is not variable, we store 0 in *POFFSET.
6511 If any of the extraction expressions is volatile,
6512 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6514 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6515 Otherwise, it is a mode that can be used to access the field.
6517 If the field describes a variable-sized object, *PMODE is set to
6518 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6519 this case, but the address of the object can be found.
6521 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6522 look through nodes that serve as markers of a greater alignment than
6523 the one that can be deduced from the expression. These nodes make it
6524 possible for front-ends to prevent temporaries from being created by
6525 the middle-end on alignment considerations. For that purpose, the
6526 normal operating mode at high-level is to always pass FALSE so that
6527 the ultimate containing object is really returned; moreover, the
6528 associated predicate handled_component_p will always return TRUE
6529 on these nodes, thus indicating that they are essentially handled
6530 by get_inner_reference. TRUE should only be passed when the caller
6531 is scanning the expression in order to build another representation
6532 and specifically knows how to handle these nodes; as such, this is
6533 the normal operating mode in the RTL expanders. */
6536 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6537 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6538 enum machine_mode
*pmode
, int *punsignedp
,
6539 int *pvolatilep
, bool keep_aligning
)
6542 enum machine_mode mode
= VOIDmode
;
6543 bool blkmode_bitfield
= false;
6544 tree offset
= size_zero_node
;
6545 double_int bit_offset
= double_int_zero
;
6547 /* First get the mode, signedness, and size. We do this from just the
6548 outermost expression. */
6550 if (TREE_CODE (exp
) == COMPONENT_REF
)
6552 tree field
= TREE_OPERAND (exp
, 1);
6553 size_tree
= DECL_SIZE (field
);
6554 if (!DECL_BIT_FIELD (field
))
6555 mode
= DECL_MODE (field
);
6556 else if (DECL_MODE (field
) == BLKmode
)
6557 blkmode_bitfield
= true;
6558 else if (TREE_THIS_VOLATILE (exp
)
6559 && flag_strict_volatile_bitfields
> 0)
6560 /* Volatile bitfields should be accessed in the mode of the
6561 field's type, not the mode computed based on the bit
6563 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6565 *punsignedp
= DECL_UNSIGNED (field
);
6567 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6569 size_tree
= TREE_OPERAND (exp
, 1);
6570 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6571 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6573 /* For vector types, with the correct size of access, use the mode of
6575 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6576 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6577 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6578 mode
= TYPE_MODE (TREE_TYPE (exp
));
6582 mode
= TYPE_MODE (TREE_TYPE (exp
));
6583 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6585 if (mode
== BLKmode
)
6586 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6588 *pbitsize
= GET_MODE_BITSIZE (mode
);
6593 if (! host_integerp (size_tree
, 1))
6594 mode
= BLKmode
, *pbitsize
= -1;
6596 *pbitsize
= tree_low_cst (size_tree
, 1);
6599 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6600 and find the ultimate containing object. */
6603 switch (TREE_CODE (exp
))
6606 bit_offset
+= tree_to_double_int (TREE_OPERAND (exp
, 2));
6611 tree field
= TREE_OPERAND (exp
, 1);
6612 tree this_offset
= component_ref_field_offset (exp
);
6614 /* If this field hasn't been filled in yet, don't go past it.
6615 This should only happen when folding expressions made during
6616 type construction. */
6617 if (this_offset
== 0)
6620 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6621 bit_offset
+= tree_to_double_int (DECL_FIELD_BIT_OFFSET (field
));
6623 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6628 case ARRAY_RANGE_REF
:
6630 tree index
= TREE_OPERAND (exp
, 1);
6631 tree low_bound
= array_ref_low_bound (exp
);
6632 tree unit_size
= array_ref_element_size (exp
);
6634 /* We assume all arrays have sizes that are a multiple of a byte.
6635 First subtract the lower bound, if any, in the type of the
6636 index, then convert to sizetype and multiply by the size of
6637 the array element. */
6638 if (! integer_zerop (low_bound
))
6639 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6642 offset
= size_binop (PLUS_EXPR
, offset
,
6643 size_binop (MULT_EXPR
,
6644 fold_convert (sizetype
, index
),
6653 bit_offset
+= double_int::from_uhwi (*pbitsize
);
6656 case VIEW_CONVERT_EXPR
:
6657 if (keep_aligning
&& STRICT_ALIGNMENT
6658 && (TYPE_ALIGN (TREE_TYPE (exp
))
6659 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6660 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6661 < BIGGEST_ALIGNMENT
)
6662 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6663 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6668 /* Hand back the decl for MEM[&decl, off]. */
6669 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6671 tree off
= TREE_OPERAND (exp
, 1);
6672 if (!integer_zerop (off
))
6674 double_int boff
, coff
= mem_ref_offset (exp
);
6675 boff
= coff
.alshift (BITS_PER_UNIT
== 8
6676 ? 3 : exact_log2 (BITS_PER_UNIT
),
6677 HOST_BITS_PER_DOUBLE_INT
);
6680 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6688 /* If any reference in the chain is volatile, the effect is volatile. */
6689 if (TREE_THIS_VOLATILE (exp
))
6692 exp
= TREE_OPERAND (exp
, 0);
6696 /* If OFFSET is constant, see if we can return the whole thing as a
6697 constant bit position. Make sure to handle overflow during
6699 if (TREE_CODE (offset
) == INTEGER_CST
)
6701 double_int tem
= tree_to_double_int (offset
);
6702 tem
= tem
.sext (TYPE_PRECISION (sizetype
));
6703 tem
= tem
.alshift (BITS_PER_UNIT
== 8 ? 3 : exact_log2 (BITS_PER_UNIT
),
6704 HOST_BITS_PER_DOUBLE_INT
);
6706 if (tem
.fits_shwi ())
6708 *pbitpos
= tem
.to_shwi ();
6709 *poffset
= offset
= NULL_TREE
;
6713 /* Otherwise, split it up. */
6716 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6717 if (bit_offset
.is_negative ())
6720 = double_int::mask (BITS_PER_UNIT
== 8
6721 ? 3 : exact_log2 (BITS_PER_UNIT
));
6722 double_int tem
= bit_offset
.and_not (mask
);
6723 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6724 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6726 tem
= tem
.arshift (BITS_PER_UNIT
== 8
6727 ? 3 : exact_log2 (BITS_PER_UNIT
),
6728 HOST_BITS_PER_DOUBLE_INT
);
6729 offset
= size_binop (PLUS_EXPR
, offset
,
6730 double_int_to_tree (sizetype
, tem
));
6733 *pbitpos
= bit_offset
.to_shwi ();
6737 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6738 if (mode
== VOIDmode
6740 && (*pbitpos
% BITS_PER_UNIT
) == 0
6741 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6749 /* Return a tree of sizetype representing the size, in bytes, of the element
6750 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6753 array_ref_element_size (tree exp
)
6755 tree aligned_size
= TREE_OPERAND (exp
, 3);
6756 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6757 location_t loc
= EXPR_LOCATION (exp
);
6759 /* If a size was specified in the ARRAY_REF, it's the size measured
6760 in alignment units of the element type. So multiply by that value. */
6763 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6764 sizetype from another type of the same width and signedness. */
6765 if (TREE_TYPE (aligned_size
) != sizetype
)
6766 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6767 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6768 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6771 /* Otherwise, take the size from that of the element type. Substitute
6772 any PLACEHOLDER_EXPR that we have. */
6774 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6777 /* Return a tree representing the lower bound of the array mentioned in
6778 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6781 array_ref_low_bound (tree exp
)
6783 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6785 /* If a lower bound is specified in EXP, use it. */
6786 if (TREE_OPERAND (exp
, 2))
6787 return TREE_OPERAND (exp
, 2);
6789 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6790 substituting for a PLACEHOLDER_EXPR as needed. */
6791 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6792 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6794 /* Otherwise, return a zero of the appropriate type. */
6795 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6798 /* Returns true if REF is an array reference to an array at the end of
6799 a structure. If this is the case, the array may be allocated larger
6800 than its upper bound implies. */
6803 array_at_struct_end_p (tree ref
)
6805 if (TREE_CODE (ref
) != ARRAY_REF
6806 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
6809 while (handled_component_p (ref
))
6811 /* If the reference chain contains a component reference to a
6812 non-union type and there follows another field the reference
6813 is not at the end of a structure. */
6814 if (TREE_CODE (ref
) == COMPONENT_REF
6815 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
6817 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
6818 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
6819 nextf
= DECL_CHAIN (nextf
);
6824 ref
= TREE_OPERAND (ref
, 0);
6827 /* If the reference is based on a declared entity, the size of the array
6828 is constrained by its given domain. */
6835 /* Return a tree representing the upper bound of the array mentioned in
6836 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6839 array_ref_up_bound (tree exp
)
6841 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6843 /* If there is a domain type and it has an upper bound, use it, substituting
6844 for a PLACEHOLDER_EXPR as needed. */
6845 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6846 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6848 /* Otherwise fail. */
6852 /* Return a tree representing the offset, in bytes, of the field referenced
6853 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6856 component_ref_field_offset (tree exp
)
6858 tree aligned_offset
= TREE_OPERAND (exp
, 2);
6859 tree field
= TREE_OPERAND (exp
, 1);
6860 location_t loc
= EXPR_LOCATION (exp
);
6862 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6863 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6867 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6868 sizetype from another type of the same width and signedness. */
6869 if (TREE_TYPE (aligned_offset
) != sizetype
)
6870 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
6871 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
6872 size_int (DECL_OFFSET_ALIGN (field
)
6876 /* Otherwise, take the offset from that of the field. Substitute
6877 any PLACEHOLDER_EXPR that we have. */
6879 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
6882 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6884 static unsigned HOST_WIDE_INT
6885 target_align (const_tree target
)
6887 /* We might have a chain of nested references with intermediate misaligning
6888 bitfields components, so need to recurse to find out. */
6890 unsigned HOST_WIDE_INT this_align
, outer_align
;
6892 switch (TREE_CODE (target
))
6898 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
6899 outer_align
= target_align (TREE_OPERAND (target
, 0));
6900 return MIN (this_align
, outer_align
);
6903 case ARRAY_RANGE_REF
:
6904 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6905 outer_align
= target_align (TREE_OPERAND (target
, 0));
6906 return MIN (this_align
, outer_align
);
6909 case NON_LVALUE_EXPR
:
6910 case VIEW_CONVERT_EXPR
:
6911 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6912 outer_align
= target_align (TREE_OPERAND (target
, 0));
6913 return MAX (this_align
, outer_align
);
6916 return TYPE_ALIGN (TREE_TYPE (target
));
6921 /* Given an rtx VALUE that may contain additions and multiplications, return
6922 an equivalent value that just refers to a register, memory, or constant.
6923 This is done by generating instructions to perform the arithmetic and
6924 returning a pseudo-register containing the value.
6926 The returned value may be a REG, SUBREG, MEM or constant. */
6929 force_operand (rtx value
, rtx target
)
6932 /* Use subtarget as the target for operand 0 of a binary operation. */
6933 rtx subtarget
= get_subtarget (target
);
6934 enum rtx_code code
= GET_CODE (value
);
6936 /* Check for subreg applied to an expression produced by loop optimizer. */
6938 && !REG_P (SUBREG_REG (value
))
6939 && !MEM_P (SUBREG_REG (value
)))
6942 = simplify_gen_subreg (GET_MODE (value
),
6943 force_reg (GET_MODE (SUBREG_REG (value
)),
6944 force_operand (SUBREG_REG (value
),
6946 GET_MODE (SUBREG_REG (value
)),
6947 SUBREG_BYTE (value
));
6948 code
= GET_CODE (value
);
6951 /* Check for a PIC address load. */
6952 if ((code
== PLUS
|| code
== MINUS
)
6953 && XEXP (value
, 0) == pic_offset_table_rtx
6954 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
6955 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
6956 || GET_CODE (XEXP (value
, 1)) == CONST
))
6959 subtarget
= gen_reg_rtx (GET_MODE (value
));
6960 emit_move_insn (subtarget
, value
);
6964 if (ARITHMETIC_P (value
))
6966 op2
= XEXP (value
, 1);
6967 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
6969 if (code
== MINUS
&& CONST_INT_P (op2
))
6972 op2
= negate_rtx (GET_MODE (value
), op2
);
6975 /* Check for an addition with OP2 a constant integer and our first
6976 operand a PLUS of a virtual register and something else. In that
6977 case, we want to emit the sum of the virtual register and the
6978 constant first and then add the other value. This allows virtual
6979 register instantiation to simply modify the constant rather than
6980 creating another one around this addition. */
6981 if (code
== PLUS
&& CONST_INT_P (op2
)
6982 && GET_CODE (XEXP (value
, 0)) == PLUS
6983 && REG_P (XEXP (XEXP (value
, 0), 0))
6984 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6985 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
6987 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
6988 XEXP (XEXP (value
, 0), 0), op2
,
6989 subtarget
, 0, OPTAB_LIB_WIDEN
);
6990 return expand_simple_binop (GET_MODE (value
), code
, temp
,
6991 force_operand (XEXP (XEXP (value
,
6993 target
, 0, OPTAB_LIB_WIDEN
);
6996 op1
= force_operand (XEXP (value
, 0), subtarget
);
6997 op2
= force_operand (op2
, NULL_RTX
);
7001 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7003 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7004 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7005 target
, 1, OPTAB_LIB_WIDEN
);
7007 return expand_divmod (0,
7008 FLOAT_MODE_P (GET_MODE (value
))
7009 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7010 GET_MODE (value
), op1
, op2
, target
, 0);
7012 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7015 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7018 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7021 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7022 target
, 0, OPTAB_LIB_WIDEN
);
7024 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7025 target
, 1, OPTAB_LIB_WIDEN
);
7028 if (UNARY_P (value
))
7031 target
= gen_reg_rtx (GET_MODE (value
));
7032 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7039 case FLOAT_TRUNCATE
:
7040 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7045 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7049 case UNSIGNED_FLOAT
:
7050 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7054 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7058 #ifdef INSN_SCHEDULING
7059 /* On machines that have insn scheduling, we want all memory reference to be
7060 explicit, so we need to deal with such paradoxical SUBREGs. */
7061 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7063 = simplify_gen_subreg (GET_MODE (value
),
7064 force_reg (GET_MODE (SUBREG_REG (value
)),
7065 force_operand (SUBREG_REG (value
),
7067 GET_MODE (SUBREG_REG (value
)),
7068 SUBREG_BYTE (value
));
7074 /* Subroutine of expand_expr: return nonzero iff there is no way that
7075 EXP can reference X, which is being modified. TOP_P is nonzero if this
7076 call is going to be used to determine whether we need a temporary
7077 for EXP, as opposed to a recursive call to this function.
7079 It is always safe for this routine to return zero since it merely
7080 searches for optimization opportunities. */
7083 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7089 /* If EXP has varying size, we MUST use a target since we currently
7090 have no way of allocating temporaries of variable size
7091 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7092 So we assume here that something at a higher level has prevented a
7093 clash. This is somewhat bogus, but the best we can do. Only
7094 do this when X is BLKmode and when we are at the top level. */
7095 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7096 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7097 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7098 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7099 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7101 && GET_MODE (x
) == BLKmode
)
7102 /* If X is in the outgoing argument area, it is always safe. */
7104 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7105 || (GET_CODE (XEXP (x
, 0)) == PLUS
7106 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7109 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7110 find the underlying pseudo. */
7111 if (GET_CODE (x
) == SUBREG
)
7114 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7118 /* Now look at our tree code and possibly recurse. */
7119 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7121 case tcc_declaration
:
7122 exp_rtl
= DECL_RTL_IF_SET (exp
);
7128 case tcc_exceptional
:
7129 if (TREE_CODE (exp
) == TREE_LIST
)
7133 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7135 exp
= TREE_CHAIN (exp
);
7138 if (TREE_CODE (exp
) != TREE_LIST
)
7139 return safe_from_p (x
, exp
, 0);
7142 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7144 constructor_elt
*ce
;
7145 unsigned HOST_WIDE_INT idx
;
7147 FOR_EACH_VEC_ELT (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7148 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7149 || !safe_from_p (x
, ce
->value
, 0))
7153 else if (TREE_CODE (exp
) == ERROR_MARK
)
7154 return 1; /* An already-visited SAVE_EXPR? */
7159 /* The only case we look at here is the DECL_INITIAL inside a
7161 return (TREE_CODE (exp
) != DECL_EXPR
7162 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7163 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7164 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7167 case tcc_comparison
:
7168 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7173 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7175 case tcc_expression
:
7178 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7179 the expression. If it is set, we conflict iff we are that rtx or
7180 both are in memory. Otherwise, we check all operands of the
7181 expression recursively. */
7183 switch (TREE_CODE (exp
))
7186 /* If the operand is static or we are static, we can't conflict.
7187 Likewise if we don't conflict with the operand at all. */
7188 if (staticp (TREE_OPERAND (exp
, 0))
7189 || TREE_STATIC (exp
)
7190 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7193 /* Otherwise, the only way this can conflict is if we are taking
7194 the address of a DECL a that address if part of X, which is
7196 exp
= TREE_OPERAND (exp
, 0);
7199 if (!DECL_RTL_SET_P (exp
)
7200 || !MEM_P (DECL_RTL (exp
)))
7203 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7209 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7210 get_alias_set (exp
)))
7215 /* Assume that the call will clobber all hard registers and
7217 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7222 case WITH_CLEANUP_EXPR
:
7223 case CLEANUP_POINT_EXPR
:
7224 /* Lowered by gimplify.c. */
7228 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7234 /* If we have an rtx, we do not need to scan our operands. */
7238 nops
= TREE_OPERAND_LENGTH (exp
);
7239 for (i
= 0; i
< nops
; i
++)
7240 if (TREE_OPERAND (exp
, i
) != 0
7241 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7247 /* Should never get a type here. */
7251 /* If we have an rtl, find any enclosed object. Then see if we conflict
7255 if (GET_CODE (exp_rtl
) == SUBREG
)
7257 exp_rtl
= SUBREG_REG (exp_rtl
);
7259 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7263 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7264 are memory and they conflict. */
7265 return ! (rtx_equal_p (x
, exp_rtl
)
7266 || (MEM_P (x
) && MEM_P (exp_rtl
)
7267 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7270 /* If we reach here, it is safe. */
7275 /* Return the highest power of two that EXP is known to be a multiple of.
7276 This is used in updating alignment of MEMs in array references. */
7278 unsigned HOST_WIDE_INT
7279 highest_pow2_factor (const_tree exp
)
7281 unsigned HOST_WIDE_INT c0
, c1
;
7283 switch (TREE_CODE (exp
))
7286 /* We can find the lowest bit that's a one. If the low
7287 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7288 We need to handle this case since we can find it in a COND_EXPR,
7289 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7290 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7292 if (TREE_OVERFLOW (exp
))
7293 return BIGGEST_ALIGNMENT
;
7296 /* Note: tree_low_cst is intentionally not used here,
7297 we don't care about the upper bits. */
7298 c0
= TREE_INT_CST_LOW (exp
);
7300 return c0
? c0
: BIGGEST_ALIGNMENT
;
7304 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
7305 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7306 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7307 return MIN (c0
, c1
);
7310 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7311 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7314 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
7316 if (integer_pow2p (TREE_OPERAND (exp
, 1))
7317 && host_integerp (TREE_OPERAND (exp
, 1), 1))
7319 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7320 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
7321 return MAX (1, c0
/ c1
);
7326 /* The highest power of two of a bit-and expression is the maximum of
7327 that of its operands. We typically get here for a complex LHS and
7328 a constant negative power of two on the RHS to force an explicit
7329 alignment, so don't bother looking at the LHS. */
7330 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7334 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
7337 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7340 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7341 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
7342 return MIN (c0
, c1
);
7351 /* Similar, except that the alignment requirements of TARGET are
7352 taken into account. Assume it is at least as aligned as its
7353 type, unless it is a COMPONENT_REF in which case the layout of
7354 the structure gives the alignment. */
7356 static unsigned HOST_WIDE_INT
7357 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7359 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7360 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7362 return MAX (factor
, talign
);
7365 #ifdef HAVE_conditional_move
7366 /* Convert the tree comparison code TCODE to the rtl one where the
7367 signedness is UNSIGNEDP. */
7369 static enum rtx_code
7370 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7382 code
= unsignedp
? LTU
: LT
;
7385 code
= unsignedp
? LEU
: LE
;
7388 code
= unsignedp
? GTU
: GT
;
7391 code
= unsignedp
? GEU
: GE
;
7393 case UNORDERED_EXPR
:
7425 /* Subroutine of expand_expr. Expand the two operands of a binary
7426 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7427 The value may be stored in TARGET if TARGET is nonzero. The
7428 MODIFIER argument is as documented by expand_expr. */
7431 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7432 enum expand_modifier modifier
)
7434 if (! safe_from_p (target
, exp1
, 1))
7436 if (operand_equal_p (exp0
, exp1
, 0))
7438 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7439 *op1
= copy_rtx (*op0
);
7443 /* If we need to preserve evaluation order, copy exp0 into its own
7444 temporary variable so that it can't be clobbered by exp1. */
7445 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7446 exp0
= save_expr (exp0
);
7447 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7448 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7453 /* Return a MEM that contains constant EXP. DEFER is as for
7454 output_constant_def and MODIFIER is as for expand_expr. */
7457 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7461 mem
= output_constant_def (exp
, defer
);
7462 if (modifier
!= EXPAND_INITIALIZER
)
7463 mem
= use_anchored_address (mem
);
7467 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7468 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7471 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7472 enum expand_modifier modifier
, addr_space_t as
)
7474 rtx result
, subtarget
;
7476 HOST_WIDE_INT bitsize
, bitpos
;
7477 int volatilep
, unsignedp
;
7478 enum machine_mode mode1
;
7480 /* If we are taking the address of a constant and are at the top level,
7481 we have to use output_constant_def since we can't call force_const_mem
7483 /* ??? This should be considered a front-end bug. We should not be
7484 generating ADDR_EXPR of something that isn't an LVALUE. The only
7485 exception here is STRING_CST. */
7486 if (CONSTANT_CLASS_P (exp
))
7488 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7489 if (modifier
< EXPAND_SUM
)
7490 result
= force_operand (result
, target
);
7494 /* Everything must be something allowed by is_gimple_addressable. */
7495 switch (TREE_CODE (exp
))
7498 /* This case will happen via recursion for &a->b. */
7499 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7503 tree tem
= TREE_OPERAND (exp
, 0);
7504 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7505 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7506 return expand_expr (tem
, target
, tmode
, modifier
);
7510 /* Expand the initializer like constants above. */
7511 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7513 if (modifier
< EXPAND_SUM
)
7514 result
= force_operand (result
, target
);
7518 /* The real part of the complex number is always first, therefore
7519 the address is the same as the address of the parent object. */
7522 inner
= TREE_OPERAND (exp
, 0);
7526 /* The imaginary part of the complex number is always second.
7527 The expression is therefore always offset by the size of the
7530 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7531 inner
= TREE_OPERAND (exp
, 0);
7535 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7536 expand_expr, as that can have various side effects; LABEL_DECLs for
7537 example, may not have their DECL_RTL set yet. Expand the rtl of
7538 CONSTRUCTORs too, which should yield a memory reference for the
7539 constructor's contents. Assume language specific tree nodes can
7540 be expanded in some interesting way. */
7541 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7543 || TREE_CODE (exp
) == CONSTRUCTOR
7544 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7546 result
= expand_expr (exp
, target
, tmode
,
7547 modifier
== EXPAND_INITIALIZER
7548 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7550 /* If the DECL isn't in memory, then the DECL wasn't properly
7551 marked TREE_ADDRESSABLE, which will be either a front-end
7552 or a tree optimizer bug. */
7554 if (TREE_ADDRESSABLE (exp
)
7556 && ! targetm
.calls
.allocate_stack_slots_for_args())
7558 error ("local frame unavailable (naked function?)");
7562 gcc_assert (MEM_P (result
));
7563 result
= XEXP (result
, 0);
7565 /* ??? Is this needed anymore? */
7567 TREE_USED (exp
) = 1;
7569 if (modifier
!= EXPAND_INITIALIZER
7570 && modifier
!= EXPAND_CONST_ADDRESS
7571 && modifier
!= EXPAND_SUM
)
7572 result
= force_operand (result
, target
);
7576 /* Pass FALSE as the last argument to get_inner_reference although
7577 we are expanding to RTL. The rationale is that we know how to
7578 handle "aligning nodes" here: we can just bypass them because
7579 they won't change the final object whose address will be returned
7580 (they actually exist only for that purpose). */
7581 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7582 &mode1
, &unsignedp
, &volatilep
, false);
7586 /* We must have made progress. */
7587 gcc_assert (inner
!= exp
);
7589 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7590 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7591 inner alignment, force the inner to be sufficiently aligned. */
7592 if (CONSTANT_CLASS_P (inner
)
7593 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7595 inner
= copy_node (inner
);
7596 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7597 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7598 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7600 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7606 if (modifier
!= EXPAND_NORMAL
)
7607 result
= force_operand (result
, NULL
);
7608 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7609 modifier
== EXPAND_INITIALIZER
7610 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7612 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7613 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7615 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7616 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7619 subtarget
= bitpos
? NULL_RTX
: target
;
7620 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7621 1, OPTAB_LIB_WIDEN
);
7627 /* Someone beforehand should have rejected taking the address
7628 of such an object. */
7629 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7631 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7632 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7633 if (modifier
< EXPAND_SUM
)
7634 result
= force_operand (result
, target
);
7640 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7641 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7644 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
7645 enum expand_modifier modifier
)
7647 addr_space_t as
= ADDR_SPACE_GENERIC
;
7648 enum machine_mode address_mode
= Pmode
;
7649 enum machine_mode pointer_mode
= ptr_mode
;
7650 enum machine_mode rmode
;
7653 /* Target mode of VOIDmode says "whatever's natural". */
7654 if (tmode
== VOIDmode
)
7655 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7657 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7659 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7660 address_mode
= targetm
.addr_space
.address_mode (as
);
7661 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7664 /* We can get called with some Weird Things if the user does silliness
7665 like "(short) &a". In that case, convert_memory_address won't do
7666 the right thing, so ignore the given target mode. */
7667 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7668 tmode
= address_mode
;
7670 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7671 tmode
, modifier
, as
);
7673 /* Despite expand_expr claims concerning ignoring TMODE when not
7674 strictly convenient, stuff breaks if we don't honor it. Note
7675 that combined with the above, we only do this for pointer modes. */
7676 rmode
= GET_MODE (result
);
7677 if (rmode
== VOIDmode
)
7680 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7685 /* Generate code for computing CONSTRUCTOR EXP.
7686 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7687 is TRUE, instead of creating a temporary variable in memory
7688 NULL is returned and the caller needs to handle it differently. */
7691 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7692 bool avoid_temp_mem
)
7694 tree type
= TREE_TYPE (exp
);
7695 enum machine_mode mode
= TYPE_MODE (type
);
7697 /* Try to avoid creating a temporary at all. This is possible
7698 if all of the initializer is zero.
7699 FIXME: try to handle all [0..255] initializers we can handle
7701 if (TREE_STATIC (exp
)
7702 && !TREE_ADDRESSABLE (exp
)
7703 && target
!= 0 && mode
== BLKmode
7704 && all_zeros_p (exp
))
7706 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7710 /* All elts simple constants => refer to a constant in memory. But
7711 if this is a non-BLKmode mode, let it store a field at a time
7712 since that should make a CONST_INT or CONST_DOUBLE when we
7713 fold. Likewise, if we have a target we can use, it is best to
7714 store directly into the target unless the type is large enough
7715 that memcpy will be used. If we are making an initializer and
7716 all operands are constant, put it in memory as well.
7718 FIXME: Avoid trying to fill vector constructors piece-meal.
7719 Output them with output_constant_def below unless we're sure
7720 they're zeros. This should go away when vector initializers
7721 are treated like VECTOR_CST instead of arrays. */
7722 if ((TREE_STATIC (exp
)
7723 && ((mode
== BLKmode
7724 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7725 || TREE_ADDRESSABLE (exp
)
7726 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
7727 && (! MOVE_BY_PIECES_P
7728 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
7730 && ! mostly_zeros_p (exp
))))
7731 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7732 && TREE_CONSTANT (exp
)))
7739 constructor
= expand_expr_constant (exp
, 1, modifier
);
7741 if (modifier
!= EXPAND_CONST_ADDRESS
7742 && modifier
!= EXPAND_INITIALIZER
7743 && modifier
!= EXPAND_SUM
)
7744 constructor
= validize_mem (constructor
);
7749 /* Handle calls that pass values in multiple non-contiguous
7750 locations. The Irix 6 ABI has examples of this. */
7751 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7752 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7758 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
7759 | (TREE_READONLY (exp
)
7760 * TYPE_QUAL_CONST
))),
7761 TREE_ADDRESSABLE (exp
), 1);
7764 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7769 /* expand_expr: generate code for computing expression EXP.
7770 An rtx for the computed value is returned. The value is never null.
7771 In the case of a void EXP, const0_rtx is returned.
7773 The value may be stored in TARGET if TARGET is nonzero.
7774 TARGET is just a suggestion; callers must assume that
7775 the rtx returned may not be the same as TARGET.
7777 If TARGET is CONST0_RTX, it means that the value will be ignored.
7779 If TMODE is not VOIDmode, it suggests generating the
7780 result in mode TMODE. But this is done only when convenient.
7781 Otherwise, TMODE is ignored and the value generated in its natural mode.
7782 TMODE is just a suggestion; callers must assume that
7783 the rtx returned may not have mode TMODE.
7785 Note that TARGET may have neither TMODE nor MODE. In that case, it
7786 probably will not be used.
7788 If MODIFIER is EXPAND_SUM then when EXP is an addition
7789 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7790 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7791 products as above, or REG or MEM, or constant.
7792 Ordinarily in such cases we would output mul or add instructions
7793 and then return a pseudo reg containing the sum.
7795 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7796 it also marks a label as absolutely required (it can't be dead).
7797 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7798 This is used for outputting expressions used in initializers.
7800 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7801 with a constant address even if that address is not normally legitimate.
7802 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7804 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7805 a call parameter. Such targets require special care as we haven't yet
7806 marked TARGET so that it's safe from being trashed by libcalls. We
7807 don't want to use TARGET for anything but the final result;
7808 Intermediate values must go elsewhere. Additionally, calls to
7809 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7811 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7812 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7813 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7814 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7818 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7819 enum expand_modifier modifier
, rtx
*alt_rtl
)
7823 /* Handle ERROR_MARK before anybody tries to access its type. */
7824 if (TREE_CODE (exp
) == ERROR_MARK
7825 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7827 ret
= CONST0_RTX (tmode
);
7828 return ret
? ret
: const0_rtx
;
7831 /* If this is an expression of some kind and it has an associated line
7832 number, then emit the line number before expanding the expression.
7834 We need to save and restore the file and line information so that
7835 errors discovered during expansion are emitted with the right
7836 information. It would be better of the diagnostic routines
7837 used the file/line information embedded in the tree nodes rather
7839 if (cfun
&& EXPR_HAS_LOCATION (exp
))
7841 location_t saved_location
= input_location
;
7842 location_t saved_curr_loc
= get_curr_insn_source_location ();
7843 tree saved_block
= get_curr_insn_block ();
7844 input_location
= EXPR_LOCATION (exp
);
7845 set_curr_insn_source_location (input_location
);
7847 /* Record where the insns produced belong. */
7848 set_curr_insn_block (TREE_BLOCK (exp
));
7850 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7852 input_location
= saved_location
;
7853 set_curr_insn_block (saved_block
);
7854 set_curr_insn_source_location (saved_curr_loc
);
7858 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7864 /* Try to expand the conditional expression which is represented by
7865 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7866 return the rtl reg which repsents the result. Otherwise return
7870 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
7871 tree treeop1 ATTRIBUTE_UNUSED
,
7872 tree treeop2 ATTRIBUTE_UNUSED
)
7874 #ifdef HAVE_conditional_move
7876 rtx op00
, op01
, op1
, op2
;
7877 enum rtx_code comparison_code
;
7878 enum machine_mode comparison_mode
;
7881 tree type
= TREE_TYPE (treeop1
);
7882 int unsignedp
= TYPE_UNSIGNED (type
);
7883 enum machine_mode mode
= TYPE_MODE (type
);
7885 temp
= assign_temp (type
, 0, 1);
7887 /* If we cannot do a conditional move on the mode, try doing it
7888 with the promoted mode. */
7889 if (!can_conditionally_move_p (mode
))
7890 mode
= promote_mode (type
, mode
, &unsignedp
);
7892 if (!can_conditionally_move_p (mode
))
7896 expand_operands (treeop1
, treeop2
,
7897 temp
, &op1
, &op2
, EXPAND_NORMAL
);
7899 if (TREE_CODE (treeop0
) == SSA_NAME
7900 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
7902 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
7903 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
7904 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
7905 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
7906 comparison_mode
= TYPE_MODE (type
);
7907 unsignedp
= TYPE_UNSIGNED (type
);
7908 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7910 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
7912 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
7913 enum tree_code cmpcode
= TREE_CODE (treeop0
);
7914 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
7915 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
7916 unsignedp
= TYPE_UNSIGNED (type
);
7917 comparison_mode
= TYPE_MODE (type
);
7918 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7922 op00
= expand_normal (treeop0
);
7924 comparison_code
= NE
;
7925 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
7928 if (GET_MODE (op1
) != mode
)
7929 op1
= gen_lowpart (mode
, op1
);
7931 if (GET_MODE (op2
) != mode
)
7932 op2
= gen_lowpart (mode
, op2
);
7934 /* Try to emit the conditional move. */
7935 insn
= emit_conditional_move (temp
, comparison_code
,
7936 op00
, op01
, comparison_mode
,
7940 /* If we could do the conditional move, emit the sequence,
7944 rtx seq
= get_insns ();
7950 /* Otherwise discard the sequence and fall back to code with
7958 expand_expr_real_2 (sepops ops
, rtx target
, enum machine_mode tmode
,
7959 enum expand_modifier modifier
)
7961 rtx op0
, op1
, op2
, temp
;
7964 enum machine_mode mode
;
7965 enum tree_code code
= ops
->code
;
7967 rtx subtarget
, original_target
;
7969 bool reduce_bit_field
;
7970 location_t loc
= ops
->location
;
7971 tree treeop0
, treeop1
, treeop2
;
7972 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7973 ? reduce_to_bit_field_precision ((expr), \
7979 mode
= TYPE_MODE (type
);
7980 unsignedp
= TYPE_UNSIGNED (type
);
7986 /* We should be called only on simple (binary or unary) expressions,
7987 exactly those that are valid in gimple expressions that aren't
7988 GIMPLE_SINGLE_RHS (or invalid). */
7989 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
7990 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
7991 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
7993 ignore
= (target
== const0_rtx
7994 || ((CONVERT_EXPR_CODE_P (code
)
7995 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
7996 && TREE_CODE (type
) == VOID_TYPE
));
7998 /* We should be called only if we need the result. */
7999 gcc_assert (!ignore
);
8001 /* An operation in what may be a bit-field type needs the
8002 result to be reduced to the precision of the bit-field type,
8003 which is narrower than that of the type's mode. */
8004 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8005 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8007 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8010 /* Use subtarget as the target for operand 0 of a binary operation. */
8011 subtarget
= get_subtarget (target
);
8012 original_target
= target
;
8016 case NON_LVALUE_EXPR
:
8019 if (treeop0
== error_mark_node
)
8022 if (TREE_CODE (type
) == UNION_TYPE
)
8024 tree valtype
= TREE_TYPE (treeop0
);
8026 /* If both input and output are BLKmode, this conversion isn't doing
8027 anything except possibly changing memory attribute. */
8028 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8030 rtx result
= expand_expr (treeop0
, target
, tmode
,
8033 result
= copy_rtx (result
);
8034 set_mem_attributes (result
, type
, 0);
8040 if (TYPE_MODE (type
) != BLKmode
)
8041 target
= gen_reg_rtx (TYPE_MODE (type
));
8043 target
= assign_temp (type
, 1, 1);
8047 /* Store data into beginning of memory target. */
8048 store_expr (treeop0
,
8049 adjust_address (target
, TYPE_MODE (valtype
), 0),
8050 modifier
== EXPAND_STACK_PARM
,
8055 gcc_assert (REG_P (target
));
8057 /* Store this field into a union of the proper type. */
8058 store_field (target
,
8059 MIN ((int_size_in_bytes (TREE_TYPE
8062 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8063 0, 0, 0, TYPE_MODE (valtype
), treeop0
,
8067 /* Return the entire union. */
8071 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8073 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8076 /* If the signedness of the conversion differs and OP0 is
8077 a promoted SUBREG, clear that indication since we now
8078 have to do the proper extension. */
8079 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8080 && GET_CODE (op0
) == SUBREG
)
8081 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8083 return REDUCE_BIT_FIELD (op0
);
8086 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8087 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8088 if (GET_MODE (op0
) == mode
)
8091 /* If OP0 is a constant, just convert it into the proper mode. */
8092 else if (CONSTANT_P (op0
))
8094 tree inner_type
= TREE_TYPE (treeop0
);
8095 enum machine_mode inner_mode
= GET_MODE (op0
);
8097 if (inner_mode
== VOIDmode
)
8098 inner_mode
= TYPE_MODE (inner_type
);
8100 if (modifier
== EXPAND_INITIALIZER
)
8101 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8102 subreg_lowpart_offset (mode
,
8105 op0
= convert_modes (mode
, inner_mode
, op0
,
8106 TYPE_UNSIGNED (inner_type
));
8109 else if (modifier
== EXPAND_INITIALIZER
)
8110 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8112 else if (target
== 0)
8113 op0
= convert_to_mode (mode
, op0
,
8114 TYPE_UNSIGNED (TREE_TYPE
8118 convert_move (target
, op0
,
8119 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8123 return REDUCE_BIT_FIELD (op0
);
8125 case ADDR_SPACE_CONVERT_EXPR
:
8127 tree treeop0_type
= TREE_TYPE (treeop0
);
8129 addr_space_t as_from
;
8131 gcc_assert (POINTER_TYPE_P (type
));
8132 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8134 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8135 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8137 /* Conversions between pointers to the same address space should
8138 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8139 gcc_assert (as_to
!= as_from
);
8141 /* Ask target code to handle conversion between pointers
8142 to overlapping address spaces. */
8143 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8144 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8146 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8147 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8152 /* For disjoint address spaces, converting anything but
8153 a null pointer invokes undefined behaviour. We simply
8154 always return a null pointer here. */
8155 return CONST0_RTX (mode
);
8158 case POINTER_PLUS_EXPR
:
8159 /* Even though the sizetype mode and the pointer's mode can be different
8160 expand is able to handle this correctly and get the correct result out
8161 of the PLUS_EXPR code. */
8162 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8163 if sizetype precision is smaller than pointer precision. */
8164 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8165 treeop1
= fold_convert_loc (loc
, type
,
8166 fold_convert_loc (loc
, ssizetype
,
8168 /* If sizetype precision is larger than pointer precision, truncate the
8169 offset to have matching modes. */
8170 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8171 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8174 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8175 something else, make sure we add the register to the constant and
8176 then to the other thing. This case can occur during strength
8177 reduction and doing it this way will produce better code if the
8178 frame pointer or argument pointer is eliminated.
8180 fold-const.c will ensure that the constant is always in the inner
8181 PLUS_EXPR, so the only case we need to do anything about is if
8182 sp, ap, or fp is our second argument, in which case we must swap
8183 the innermost first argument and our second argument. */
8185 if (TREE_CODE (treeop0
) == PLUS_EXPR
8186 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8187 && TREE_CODE (treeop1
) == VAR_DECL
8188 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8189 || DECL_RTL (treeop1
) == stack_pointer_rtx
8190 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8195 /* If the result is to be ptr_mode and we are adding an integer to
8196 something, we might be forming a constant. So try to use
8197 plus_constant. If it produces a sum and we can't accept it,
8198 use force_operand. This allows P = &ARR[const] to generate
8199 efficient code on machines where a SYMBOL_REF is not a valid
8202 If this is an EXPAND_SUM call, always return the sum. */
8203 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8204 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8206 if (modifier
== EXPAND_STACK_PARM
)
8208 if (TREE_CODE (treeop0
) == INTEGER_CST
8209 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8210 && TREE_CONSTANT (treeop1
))
8214 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8216 /* Use immed_double_const to ensure that the constant is
8217 truncated according to the mode of OP1, then sign extended
8218 to a HOST_WIDE_INT. Using the constant directly can result
8219 in non-canonical RTL in a 64x32 cross compile. */
8221 = immed_double_const (TREE_INT_CST_LOW (treeop0
),
8223 TYPE_MODE (TREE_TYPE (treeop1
)));
8224 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8225 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8226 op1
= force_operand (op1
, target
);
8227 return REDUCE_BIT_FIELD (op1
);
8230 else if (TREE_CODE (treeop1
) == INTEGER_CST
8231 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8232 && TREE_CONSTANT (treeop0
))
8236 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8237 (modifier
== EXPAND_INITIALIZER
8238 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8239 if (! CONSTANT_P (op0
))
8241 op1
= expand_expr (treeop1
, NULL_RTX
,
8242 VOIDmode
, modifier
);
8243 /* Return a PLUS if modifier says it's OK. */
8244 if (modifier
== EXPAND_SUM
8245 || modifier
== EXPAND_INITIALIZER
)
8246 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8249 /* Use immed_double_const to ensure that the constant is
8250 truncated according to the mode of OP1, then sign extended
8251 to a HOST_WIDE_INT. Using the constant directly can result
8252 in non-canonical RTL in a 64x32 cross compile. */
8254 = immed_double_const (TREE_INT_CST_LOW (treeop1
),
8256 TYPE_MODE (TREE_TYPE (treeop0
)));
8257 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8258 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8259 op0
= force_operand (op0
, target
);
8260 return REDUCE_BIT_FIELD (op0
);
8264 /* Use TER to expand pointer addition of a negated value
8265 as pointer subtraction. */
8266 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8267 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8268 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8269 && TREE_CODE (treeop1
) == SSA_NAME
8270 && TYPE_MODE (TREE_TYPE (treeop0
))
8271 == TYPE_MODE (TREE_TYPE (treeop1
)))
8273 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8276 treeop1
= gimple_assign_rhs1 (def
);
8282 /* No sense saving up arithmetic to be done
8283 if it's all in the wrong mode to form part of an address.
8284 And force_operand won't know whether to sign-extend or
8286 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8287 || mode
!= ptr_mode
)
8289 expand_operands (treeop0
, treeop1
,
8290 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8291 if (op0
== const0_rtx
)
8293 if (op1
== const0_rtx
)
8298 expand_operands (treeop0
, treeop1
,
8299 subtarget
, &op0
, &op1
, modifier
);
8300 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8304 /* For initializers, we are allowed to return a MINUS of two
8305 symbolic constants. Here we handle all cases when both operands
8307 /* Handle difference of two symbolic constants,
8308 for the sake of an initializer. */
8309 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8310 && really_constant_p (treeop0
)
8311 && really_constant_p (treeop1
))
8313 expand_operands (treeop0
, treeop1
,
8314 NULL_RTX
, &op0
, &op1
, modifier
);
8316 /* If the last operand is a CONST_INT, use plus_constant of
8317 the negated constant. Else make the MINUS. */
8318 if (CONST_INT_P (op1
))
8319 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8322 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8325 /* No sense saving up arithmetic to be done
8326 if it's all in the wrong mode to form part of an address.
8327 And force_operand won't know whether to sign-extend or
8329 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8330 || mode
!= ptr_mode
)
8333 expand_operands (treeop0
, treeop1
,
8334 subtarget
, &op0
, &op1
, modifier
);
8336 /* Convert A - const to A + (-const). */
8337 if (CONST_INT_P (op1
))
8339 op1
= negate_rtx (mode
, op1
);
8340 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8345 case WIDEN_MULT_PLUS_EXPR
:
8346 case WIDEN_MULT_MINUS_EXPR
:
8347 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8348 op2
= expand_normal (treeop2
);
8349 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8353 case WIDEN_MULT_EXPR
:
8354 /* If first operand is constant, swap them.
8355 Thus the following special case checks need only
8356 check the second operand. */
8357 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8364 /* First, check if we have a multiplication of one signed and one
8365 unsigned operand. */
8366 if (TREE_CODE (treeop1
) != INTEGER_CST
8367 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8368 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8370 enum machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8371 this_optab
= usmul_widen_optab
;
8372 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8373 != CODE_FOR_nothing
)
8375 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8376 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8379 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8384 /* Check for a multiplication with matching signedness. */
8385 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8386 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8387 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8388 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8390 tree op0type
= TREE_TYPE (treeop0
);
8391 enum machine_mode innermode
= TYPE_MODE (op0type
);
8392 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8393 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8394 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8396 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8398 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8399 != CODE_FOR_nothing
)
8401 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8403 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8404 unsignedp
, this_optab
);
8405 return REDUCE_BIT_FIELD (temp
);
8407 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8409 && innermode
== word_mode
)
8412 op0
= expand_normal (treeop0
);
8413 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8414 op1
= convert_modes (innermode
, mode
,
8415 expand_normal (treeop1
), unsignedp
);
8417 op1
= expand_normal (treeop1
);
8418 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8419 unsignedp
, OPTAB_LIB_WIDEN
);
8420 hipart
= gen_highpart (innermode
, temp
);
8421 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8425 emit_move_insn (hipart
, htem
);
8426 return REDUCE_BIT_FIELD (temp
);
8430 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8431 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8432 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8433 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8437 optab opt
= fma_optab
;
8440 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8442 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8444 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8447 gcc_assert (fn
!= NULL_TREE
);
8448 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8449 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8452 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8453 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8458 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8461 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8462 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8465 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8468 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8471 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8474 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8478 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8480 op2
= expand_normal (treeop2
);
8481 op1
= expand_normal (treeop1
);
8483 return expand_ternary_op (TYPE_MODE (type
), opt
,
8484 op0
, op1
, op2
, target
, 0);
8488 /* If this is a fixed-point operation, then we cannot use the code
8489 below because "expand_mult" doesn't support sat/no-sat fixed-point
8491 if (ALL_FIXED_POINT_MODE_P (mode
))
8494 /* If first operand is constant, swap them.
8495 Thus the following special case checks need only
8496 check the second operand. */
8497 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8504 /* Attempt to return something suitable for generating an
8505 indexed address, for machines that support that. */
8507 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8508 && host_integerp (treeop1
, 0))
8510 tree exp1
= treeop1
;
8512 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8516 op0
= force_operand (op0
, NULL_RTX
);
8518 op0
= copy_to_mode_reg (mode
, op0
);
8520 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8521 gen_int_mode (tree_low_cst (exp1
, 0),
8522 TYPE_MODE (TREE_TYPE (exp1
)))));
8525 if (modifier
== EXPAND_STACK_PARM
)
8528 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8529 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8531 case TRUNC_DIV_EXPR
:
8532 case FLOOR_DIV_EXPR
:
8534 case ROUND_DIV_EXPR
:
8535 case EXACT_DIV_EXPR
:
8536 /* If this is a fixed-point operation, then we cannot use the code
8537 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8539 if (ALL_FIXED_POINT_MODE_P (mode
))
8542 if (modifier
== EXPAND_STACK_PARM
)
8544 /* Possible optimization: compute the dividend with EXPAND_SUM
8545 then if the divisor is constant can optimize the case
8546 where some terms of the dividend have coeffs divisible by it. */
8547 expand_operands (treeop0
, treeop1
,
8548 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8549 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8554 case MULT_HIGHPART_EXPR
:
8555 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8556 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8560 case TRUNC_MOD_EXPR
:
8561 case FLOOR_MOD_EXPR
:
8563 case ROUND_MOD_EXPR
:
8564 if (modifier
== EXPAND_STACK_PARM
)
8566 expand_operands (treeop0
, treeop1
,
8567 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8568 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8570 case FIXED_CONVERT_EXPR
:
8571 op0
= expand_normal (treeop0
);
8572 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8573 target
= gen_reg_rtx (mode
);
8575 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8576 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8577 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8578 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8580 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8583 case FIX_TRUNC_EXPR
:
8584 op0
= expand_normal (treeop0
);
8585 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8586 target
= gen_reg_rtx (mode
);
8587 expand_fix (target
, op0
, unsignedp
);
8591 op0
= expand_normal (treeop0
);
8592 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8593 target
= gen_reg_rtx (mode
);
8594 /* expand_float can't figure out what to do if FROM has VOIDmode.
8595 So give it the correct mode. With -O, cse will optimize this. */
8596 if (GET_MODE (op0
) == VOIDmode
)
8597 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8599 expand_float (target
, op0
,
8600 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8604 op0
= expand_expr (treeop0
, subtarget
,
8605 VOIDmode
, EXPAND_NORMAL
);
8606 if (modifier
== EXPAND_STACK_PARM
)
8608 temp
= expand_unop (mode
,
8609 optab_for_tree_code (NEGATE_EXPR
, type
,
8613 return REDUCE_BIT_FIELD (temp
);
8616 op0
= expand_expr (treeop0
, subtarget
,
8617 VOIDmode
, EXPAND_NORMAL
);
8618 if (modifier
== EXPAND_STACK_PARM
)
8621 /* ABS_EXPR is not valid for complex arguments. */
8622 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8623 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8625 /* Unsigned abs is simply the operand. Testing here means we don't
8626 risk generating incorrect code below. */
8627 if (TYPE_UNSIGNED (type
))
8630 return expand_abs (mode
, op0
, target
, unsignedp
,
8631 safe_from_p (target
, treeop0
, 1));
8635 target
= original_target
;
8637 || modifier
== EXPAND_STACK_PARM
8638 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8639 || GET_MODE (target
) != mode
8641 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8642 target
= gen_reg_rtx (mode
);
8643 expand_operands (treeop0
, treeop1
,
8644 target
, &op0
, &op1
, EXPAND_NORMAL
);
8646 /* First try to do it with a special MIN or MAX instruction.
8647 If that does not win, use a conditional jump to select the proper
8649 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8650 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8655 /* At this point, a MEM target is no longer useful; we will get better
8658 if (! REG_P (target
))
8659 target
= gen_reg_rtx (mode
);
8661 /* If op1 was placed in target, swap op0 and op1. */
8662 if (target
!= op0
&& target
== op1
)
8669 /* We generate better code and avoid problems with op1 mentioning
8670 target by forcing op1 into a pseudo if it isn't a constant. */
8671 if (! CONSTANT_P (op1
))
8672 op1
= force_reg (mode
, op1
);
8675 enum rtx_code comparison_code
;
8678 if (code
== MAX_EXPR
)
8679 comparison_code
= unsignedp
? GEU
: GE
;
8681 comparison_code
= unsignedp
? LEU
: LE
;
8683 /* Canonicalize to comparisons against 0. */
8684 if (op1
== const1_rtx
)
8686 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8687 or (a != 0 ? a : 1) for unsigned.
8688 For MIN we are safe converting (a <= 1 ? a : 1)
8689 into (a <= 0 ? a : 1) */
8690 cmpop1
= const0_rtx
;
8691 if (code
== MAX_EXPR
)
8692 comparison_code
= unsignedp
? NE
: GT
;
8694 if (op1
== constm1_rtx
&& !unsignedp
)
8696 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8697 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8698 cmpop1
= const0_rtx
;
8699 if (code
== MIN_EXPR
)
8700 comparison_code
= LT
;
8702 #ifdef HAVE_conditional_move
8703 /* Use a conditional move if possible. */
8704 if (can_conditionally_move_p (mode
))
8708 /* ??? Same problem as in expmed.c: emit_conditional_move
8709 forces a stack adjustment via compare_from_rtx, and we
8710 lose the stack adjustment if the sequence we are about
8711 to create is discarded. */
8712 do_pending_stack_adjust ();
8716 /* Try to emit the conditional move. */
8717 insn
= emit_conditional_move (target
, comparison_code
,
8722 /* If we could do the conditional move, emit the sequence,
8726 rtx seq
= get_insns ();
8732 /* Otherwise discard the sequence and fall back to code with
8738 emit_move_insn (target
, op0
);
8740 temp
= gen_label_rtx ();
8741 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8742 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8745 emit_move_insn (target
, op1
);
8750 op0
= expand_expr (treeop0
, subtarget
,
8751 VOIDmode
, EXPAND_NORMAL
);
8752 if (modifier
== EXPAND_STACK_PARM
)
8754 /* In case we have to reduce the result to bitfield precision
8755 for unsigned bitfield expand this as XOR with a proper constant
8757 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8758 temp
= expand_binop (mode
, xor_optab
, op0
,
8759 immed_double_int_const
8760 (double_int::mask (TYPE_PRECISION (type
)), mode
),
8761 target
, 1, OPTAB_LIB_WIDEN
);
8763 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8767 /* ??? Can optimize bitwise operations with one arg constant.
8768 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8769 and (a bitwise1 b) bitwise2 b (etc)
8770 but that is probably not worth while. */
8779 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8780 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8781 == TYPE_PRECISION (type
)));
8786 /* If this is a fixed-point operation, then we cannot use the code
8787 below because "expand_shift" doesn't support sat/no-sat fixed-point
8789 if (ALL_FIXED_POINT_MODE_P (mode
))
8792 if (! safe_from_p (subtarget
, treeop1
, 1))
8794 if (modifier
== EXPAND_STACK_PARM
)
8796 op0
= expand_expr (treeop0
, subtarget
,
8797 VOIDmode
, EXPAND_NORMAL
);
8798 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8800 if (code
== LSHIFT_EXPR
)
8801 temp
= REDUCE_BIT_FIELD (temp
);
8804 /* Could determine the answer when only additive constants differ. Also,
8805 the addition of one can be handled by changing the condition. */
8812 case UNORDERED_EXPR
:
8820 temp
= do_store_flag (ops
,
8821 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8822 tmode
!= VOIDmode
? tmode
: mode
);
8826 /* Use a compare and a jump for BLKmode comparisons, or for function
8827 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8830 || modifier
== EXPAND_STACK_PARM
8831 || ! safe_from_p (target
, treeop0
, 1)
8832 || ! safe_from_p (target
, treeop1
, 1)
8833 /* Make sure we don't have a hard reg (such as function's return
8834 value) live across basic blocks, if not optimizing. */
8835 || (!optimize
&& REG_P (target
)
8836 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8837 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8839 emit_move_insn (target
, const0_rtx
);
8841 op1
= gen_label_rtx ();
8842 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
8844 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
8845 emit_move_insn (target
, constm1_rtx
);
8847 emit_move_insn (target
, const1_rtx
);
8853 /* Get the rtx code of the operands. */
8854 op0
= expand_normal (treeop0
);
8855 op1
= expand_normal (treeop1
);
8858 target
= gen_reg_rtx (TYPE_MODE (type
));
8860 /* Move the real (op0) and imaginary (op1) parts to their location. */
8861 write_complex_part (target
, op0
, false);
8862 write_complex_part (target
, op1
, true);
8866 case WIDEN_SUM_EXPR
:
8868 tree oprnd0
= treeop0
;
8869 tree oprnd1
= treeop1
;
8871 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8872 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
8877 case REDUC_MAX_EXPR
:
8878 case REDUC_MIN_EXPR
:
8879 case REDUC_PLUS_EXPR
:
8881 op0
= expand_normal (treeop0
);
8882 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8883 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
8888 case VEC_LSHIFT_EXPR
:
8889 case VEC_RSHIFT_EXPR
:
8891 target
= expand_vec_shift_expr (ops
, target
);
8895 case VEC_UNPACK_HI_EXPR
:
8896 case VEC_UNPACK_LO_EXPR
:
8898 op0
= expand_normal (treeop0
);
8899 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
8905 case VEC_UNPACK_FLOAT_HI_EXPR
:
8906 case VEC_UNPACK_FLOAT_LO_EXPR
:
8908 op0
= expand_normal (treeop0
);
8909 /* The signedness is determined from input operand. */
8910 temp
= expand_widen_pattern_expr
8911 (ops
, op0
, NULL_RTX
, NULL_RTX
,
8912 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8918 case VEC_WIDEN_MULT_HI_EXPR
:
8919 case VEC_WIDEN_MULT_LO_EXPR
:
8920 case VEC_WIDEN_MULT_EVEN_EXPR
:
8921 case VEC_WIDEN_MULT_ODD_EXPR
:
8922 case VEC_WIDEN_LSHIFT_HI_EXPR
:
8923 case VEC_WIDEN_LSHIFT_LO_EXPR
:
8924 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8925 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
8927 gcc_assert (target
);
8930 case VEC_PACK_TRUNC_EXPR
:
8931 case VEC_PACK_SAT_EXPR
:
8932 case VEC_PACK_FIX_TRUNC_EXPR
:
8933 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8937 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
8938 op2
= expand_normal (treeop2
);
8940 /* Careful here: if the target doesn't support integral vector modes,
8941 a constant selection vector could wind up smooshed into a normal
8942 integral constant. */
8943 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
8945 tree sel_type
= TREE_TYPE (treeop2
);
8946 enum machine_mode vmode
8947 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
8948 TYPE_VECTOR_SUBPARTS (sel_type
));
8949 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
8950 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
8951 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
8954 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
8956 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
8962 tree oprnd0
= treeop0
;
8963 tree oprnd1
= treeop1
;
8964 tree oprnd2
= treeop2
;
8967 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8968 op2
= expand_normal (oprnd2
);
8969 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8974 case REALIGN_LOAD_EXPR
:
8976 tree oprnd0
= treeop0
;
8977 tree oprnd1
= treeop1
;
8978 tree oprnd2
= treeop2
;
8981 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8982 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8983 op2
= expand_normal (oprnd2
);
8984 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8991 /* A COND_EXPR with its type being VOID_TYPE represents a
8992 conditional jump and is handled in
8993 expand_gimple_cond_expr. */
8994 gcc_assert (!VOID_TYPE_P (type
));
8996 /* Note that COND_EXPRs whose type is a structure or union
8997 are required to be constructed to contain assignments of
8998 a temporary variable, so that we can evaluate them here
8999 for side effect only. If type is void, we must do likewise. */
9001 gcc_assert (!TREE_ADDRESSABLE (type
)
9003 && TREE_TYPE (treeop1
) != void_type_node
9004 && TREE_TYPE (treeop2
) != void_type_node
);
9006 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9010 /* If we are not to produce a result, we have no target. Otherwise,
9011 if a target was specified use it; it will not be used as an
9012 intermediate target unless it is safe. If no target, use a
9015 if (modifier
!= EXPAND_STACK_PARM
9017 && safe_from_p (original_target
, treeop0
, 1)
9018 && GET_MODE (original_target
) == mode
9019 && !MEM_P (original_target
))
9020 temp
= original_target
;
9022 temp
= assign_temp (type
, 0, 1);
9024 do_pending_stack_adjust ();
9026 op0
= gen_label_rtx ();
9027 op1
= gen_label_rtx ();
9028 jumpifnot (treeop0
, op0
, -1);
9029 store_expr (treeop1
, temp
,
9030 modifier
== EXPAND_STACK_PARM
,
9033 emit_jump_insn (gen_jump (op1
));
9036 store_expr (treeop2
, temp
,
9037 modifier
== EXPAND_STACK_PARM
,
9045 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9052 /* Here to do an ordinary binary operator. */
9054 expand_operands (treeop0
, treeop1
,
9055 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9057 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9059 if (modifier
== EXPAND_STACK_PARM
)
9061 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9062 unsignedp
, OPTAB_LIB_WIDEN
);
9064 /* Bitwise operations do not need bitfield reduction as we expect their
9065 operands being properly truncated. */
9066 if (code
== BIT_XOR_EXPR
9067 || code
== BIT_AND_EXPR
9068 || code
== BIT_IOR_EXPR
)
9070 return REDUCE_BIT_FIELD (temp
);
9072 #undef REDUCE_BIT_FIELD
9075 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
9076 enum expand_modifier modifier
, rtx
*alt_rtl
)
9078 rtx op0
, op1
, temp
, decl_rtl
;
9081 enum machine_mode mode
;
9082 enum tree_code code
= TREE_CODE (exp
);
9083 rtx subtarget
, original_target
;
9086 bool reduce_bit_field
;
9087 location_t loc
= EXPR_LOCATION (exp
);
9088 struct separate_ops ops
;
9089 tree treeop0
, treeop1
, treeop2
;
9090 tree ssa_name
= NULL_TREE
;
9093 type
= TREE_TYPE (exp
);
9094 mode
= TYPE_MODE (type
);
9095 unsignedp
= TYPE_UNSIGNED (type
);
9097 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9098 if (!VL_EXP_CLASS_P (exp
))
9099 switch (TREE_CODE_LENGTH (code
))
9102 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9103 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9104 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9114 ignore
= (target
== const0_rtx
9115 || ((CONVERT_EXPR_CODE_P (code
)
9116 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9117 && TREE_CODE (type
) == VOID_TYPE
));
9119 /* An operation in what may be a bit-field type needs the
9120 result to be reduced to the precision of the bit-field type,
9121 which is narrower than that of the type's mode. */
9122 reduce_bit_field
= (!ignore
9123 && INTEGRAL_TYPE_P (type
)
9124 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9126 /* If we are going to ignore this result, we need only do something
9127 if there is a side-effect somewhere in the expression. If there
9128 is, short-circuit the most common cases here. Note that we must
9129 not call expand_expr with anything but const0_rtx in case this
9130 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9134 if (! TREE_SIDE_EFFECTS (exp
))
9137 /* Ensure we reference a volatile object even if value is ignored, but
9138 don't do this if all we are doing is taking its address. */
9139 if (TREE_THIS_VOLATILE (exp
)
9140 && TREE_CODE (exp
) != FUNCTION_DECL
9141 && mode
!= VOIDmode
&& mode
!= BLKmode
9142 && modifier
!= EXPAND_CONST_ADDRESS
)
9144 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9150 if (TREE_CODE_CLASS (code
) == tcc_unary
9151 || code
== BIT_FIELD_REF
9152 || code
== COMPONENT_REF
9153 || code
== INDIRECT_REF
)
9154 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9157 else if (TREE_CODE_CLASS (code
) == tcc_binary
9158 || TREE_CODE_CLASS (code
) == tcc_comparison
9159 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9161 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9162 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9169 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9172 /* Use subtarget as the target for operand 0 of a binary operation. */
9173 subtarget
= get_subtarget (target
);
9174 original_target
= target
;
9180 tree function
= decl_function_context (exp
);
9182 temp
= label_rtx (exp
);
9183 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9185 if (function
!= current_function_decl
9187 LABEL_REF_NONLOCAL_P (temp
) = 1;
9189 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9194 /* ??? ivopts calls expander, without any preparation from
9195 out-of-ssa. So fake instructions as if this was an access to the
9196 base variable. This unnecessarily allocates a pseudo, see how we can
9197 reuse it, if partition base vars have it set already. */
9198 if (!currently_expanding_to_rtl
)
9200 tree var
= SSA_NAME_VAR (exp
);
9201 if (var
&& DECL_RTL_SET_P (var
))
9202 return DECL_RTL (var
);
9203 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9204 LAST_VIRTUAL_REGISTER
+ 1);
9207 g
= get_gimple_for_ssa_name (exp
);
9208 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9210 && modifier
== EXPAND_INITIALIZER
9211 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9212 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9213 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9214 g
= SSA_NAME_DEF_STMT (exp
);
9217 rtx r
= expand_expr_real (gimple_assign_rhs_to_tree (g
), target
,
9218 tmode
, modifier
, NULL
);
9219 if (REG_P (r
) && !REG_EXPR (r
))
9220 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9225 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9226 exp
= SSA_NAME_VAR (ssa_name
);
9227 goto expand_decl_rtl
;
9231 /* If a static var's type was incomplete when the decl was written,
9232 but the type is complete now, lay out the decl now. */
9233 if (DECL_SIZE (exp
) == 0
9234 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9235 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9236 layout_decl (exp
, 0);
9238 /* ... fall through ... */
9242 decl_rtl
= DECL_RTL (exp
);
9244 gcc_assert (decl_rtl
);
9245 decl_rtl
= copy_rtx (decl_rtl
);
9246 /* Record writes to register variables. */
9247 if (modifier
== EXPAND_WRITE
9249 && HARD_REGISTER_P (decl_rtl
))
9250 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9251 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9253 /* Ensure variable marked as used even if it doesn't go through
9254 a parser. If it hasn't be used yet, write out an external
9256 TREE_USED (exp
) = 1;
9258 /* Show we haven't gotten RTL for this yet. */
9261 /* Variables inherited from containing functions should have
9262 been lowered by this point. */
9263 context
= decl_function_context (exp
);
9264 gcc_assert (!context
9265 || context
== current_function_decl
9266 || TREE_STATIC (exp
)
9267 || DECL_EXTERNAL (exp
)
9268 /* ??? C++ creates functions that are not TREE_STATIC. */
9269 || TREE_CODE (exp
) == FUNCTION_DECL
);
9271 /* This is the case of an array whose size is to be determined
9272 from its initializer, while the initializer is still being parsed.
9273 ??? We aren't parsing while expanding anymore. */
9275 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9276 temp
= validize_mem (decl_rtl
);
9278 /* If DECL_RTL is memory, we are in the normal case and the
9279 address is not valid, get the address into a register. */
9281 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9284 *alt_rtl
= decl_rtl
;
9285 decl_rtl
= use_anchored_address (decl_rtl
);
9286 if (modifier
!= EXPAND_CONST_ADDRESS
9287 && modifier
!= EXPAND_SUM
9288 && !memory_address_addr_space_p (DECL_MODE (exp
),
9290 MEM_ADDR_SPACE (decl_rtl
)))
9291 temp
= replace_equiv_address (decl_rtl
,
9292 copy_rtx (XEXP (decl_rtl
, 0)));
9295 /* If we got something, return it. But first, set the alignment
9296 if the address is a register. */
9299 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9300 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9305 /* If the mode of DECL_RTL does not match that of the decl,
9306 there are two cases: we are dealing with a BLKmode value
9307 that is returned in a register, or we are dealing with
9308 a promoted value. In the latter case, return a SUBREG
9309 of the wanted mode, but mark it so that we know that it
9310 was already extended. */
9311 if (REG_P (decl_rtl
)
9312 && DECL_MODE (exp
) != BLKmode
9313 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9315 enum machine_mode pmode
;
9317 /* Get the signedness to be used for this variable. Ensure we get
9318 the same mode we got when the variable was declared. */
9319 if (code
== SSA_NAME
9320 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9321 && gimple_code (g
) == GIMPLE_CALL
)
9323 gcc_assert (!gimple_call_internal_p (g
));
9324 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9325 gimple_call_fntype (g
),
9329 pmode
= promote_decl_mode (exp
, &unsignedp
);
9330 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9332 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9333 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9334 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
9341 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
9342 TREE_INT_CST_HIGH (exp
), mode
);
9348 tree tmp
= NULL_TREE
;
9349 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9350 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9351 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9352 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9353 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9354 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9355 return const_vector_from_tree (exp
);
9356 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9358 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9360 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9364 VEC(constructor_elt
,gc
) *v
;
9366 v
= VEC_alloc (constructor_elt
, gc
, VECTOR_CST_NELTS (exp
));
9367 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9368 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9369 tmp
= build_constructor (type
, v
);
9371 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9376 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9379 /* If optimized, generate immediate CONST_DOUBLE
9380 which will be turned into memory by reload if necessary.
9382 We used to force a register so that loop.c could see it. But
9383 this does not allow gen_* patterns to perform optimizations with
9384 the constants. It also produces two insns in cases like "x = 1.0;".
9385 On most machines, floating-point constants are not permitted in
9386 many insns, so we'd end up copying it to a register in any case.
9388 Now, we do the copying in expand_binop, if appropriate. */
9389 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9390 TYPE_MODE (TREE_TYPE (exp
)));
9393 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9394 TYPE_MODE (TREE_TYPE (exp
)));
9397 /* Handle evaluating a complex constant in a CONCAT target. */
9398 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9400 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9403 rtarg
= XEXP (original_target
, 0);
9404 itarg
= XEXP (original_target
, 1);
9406 /* Move the real and imaginary parts separately. */
9407 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9408 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9411 emit_move_insn (rtarg
, op0
);
9413 emit_move_insn (itarg
, op1
);
9415 return original_target
;
9418 /* ... fall through ... */
9421 temp
= expand_expr_constant (exp
, 1, modifier
);
9423 /* temp contains a constant address.
9424 On RISC machines where a constant address isn't valid,
9425 make some insns to get that address into a register. */
9426 if (modifier
!= EXPAND_CONST_ADDRESS
9427 && modifier
!= EXPAND_INITIALIZER
9428 && modifier
!= EXPAND_SUM
9429 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9430 MEM_ADDR_SPACE (temp
)))
9431 return replace_equiv_address (temp
,
9432 copy_rtx (XEXP (temp
, 0)));
9438 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
9440 if (!SAVE_EXPR_RESOLVED_P (exp
))
9442 /* We can indeed still hit this case, typically via builtin
9443 expanders calling save_expr immediately before expanding
9444 something. Assume this means that we only have to deal
9445 with non-BLKmode values. */
9446 gcc_assert (GET_MODE (ret
) != BLKmode
);
9448 val
= build_decl (EXPR_LOCATION (exp
),
9449 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9450 DECL_ARTIFICIAL (val
) = 1;
9451 DECL_IGNORED_P (val
) = 1;
9453 TREE_OPERAND (exp
, 0) = treeop0
;
9454 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9456 if (!CONSTANT_P (ret
))
9457 ret
= copy_to_reg (ret
);
9458 SET_DECL_RTL (val
, ret
);
9466 /* If we don't need the result, just ensure we evaluate any
9470 unsigned HOST_WIDE_INT idx
;
9473 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9474 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9479 return expand_constructor (exp
, target
, modifier
, false);
9481 case TARGET_MEM_REF
:
9484 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9485 struct mem_address addr
;
9486 enum insn_code icode
;
9489 get_address_description (exp
, &addr
);
9490 op0
= addr_for_mem_ref (&addr
, as
, true);
9491 op0
= memory_address_addr_space (mode
, op0
, as
);
9492 temp
= gen_rtx_MEM (mode
, op0
);
9493 set_mem_attributes (temp
, exp
, 0);
9494 set_mem_addr_space (temp
, as
);
9495 align
= get_object_alignment (exp
);
9496 if (modifier
!= EXPAND_WRITE
9498 && align
< GET_MODE_ALIGNMENT (mode
)
9499 /* If the target does not have special handling for unaligned
9500 loads of mode then it can use regular moves for them. */
9501 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9502 != CODE_FOR_nothing
))
9504 struct expand_operand ops
[2];
9506 /* We've already validated the memory, and we're creating a
9507 new pseudo destination. The predicates really can't fail,
9508 nor can the generator. */
9509 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9510 create_fixed_operand (&ops
[1], temp
);
9511 expand_insn (icode
, 2, ops
);
9512 return ops
[0].value
;
9520 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9521 enum machine_mode address_mode
;
9522 tree base
= TREE_OPERAND (exp
, 0);
9524 enum insn_code icode
;
9526 /* Handle expansion of non-aliased memory with non-BLKmode. That
9527 might end up in a register. */
9528 if (mem_ref_refers_to_non_mem_p (exp
))
9530 HOST_WIDE_INT offset
= mem_ref_offset (exp
).low
;
9533 base
= TREE_OPERAND (base
, 0);
9535 && host_integerp (TYPE_SIZE (TREE_TYPE (exp
)), 1)
9536 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9537 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp
)))))
9538 return expand_expr (build1 (VIEW_CONVERT_EXPR
,
9539 TREE_TYPE (exp
), base
),
9540 target
, tmode
, modifier
);
9541 bit_offset
= bitsize_int (offset
* BITS_PER_UNIT
);
9542 bftype
= TREE_TYPE (base
);
9543 if (TYPE_MODE (TREE_TYPE (exp
)) != BLKmode
)
9544 bftype
= TREE_TYPE (exp
);
9547 temp
= assign_stack_temp (DECL_MODE (base
),
9548 GET_MODE_SIZE (DECL_MODE (base
)));
9549 store_expr (base
, temp
, 0, false);
9550 temp
= adjust_address (temp
, BLKmode
, offset
);
9551 set_mem_size (temp
, int_size_in_bytes (TREE_TYPE (exp
)));
9554 return expand_expr (build3 (BIT_FIELD_REF
, bftype
,
9556 TYPE_SIZE (TREE_TYPE (exp
)),
9558 target
, tmode
, modifier
);
9560 address_mode
= targetm
.addr_space
.address_mode (as
);
9561 base
= TREE_OPERAND (exp
, 0);
9562 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9564 tree mask
= gimple_assign_rhs2 (def_stmt
);
9565 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9566 gimple_assign_rhs1 (def_stmt
), mask
);
9567 TREE_OPERAND (exp
, 0) = base
;
9569 align
= get_object_alignment (exp
);
9570 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9571 op0
= memory_address_addr_space (address_mode
, op0
, as
);
9572 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9575 = immed_double_int_const (mem_ref_offset (exp
), address_mode
);
9576 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9578 op0
= memory_address_addr_space (mode
, op0
, as
);
9579 temp
= gen_rtx_MEM (mode
, op0
);
9580 set_mem_attributes (temp
, exp
, 0);
9581 set_mem_addr_space (temp
, as
);
9582 if (TREE_THIS_VOLATILE (exp
))
9583 MEM_VOLATILE_P (temp
) = 1;
9584 if (modifier
!= EXPAND_WRITE
9586 && align
< GET_MODE_ALIGNMENT (mode
))
9588 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9589 != CODE_FOR_nothing
)
9591 struct expand_operand ops
[2];
9593 /* We've already validated the memory, and we're creating a
9594 new pseudo destination. The predicates really can't fail,
9595 nor can the generator. */
9596 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9597 create_fixed_operand (&ops
[1], temp
);
9598 expand_insn (icode
, 2, ops
);
9599 return ops
[0].value
;
9601 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9602 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9603 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9604 true, (modifier
== EXPAND_STACK_PARM
9605 ? NULL_RTX
: target
),
9614 tree array
= treeop0
;
9615 tree index
= treeop1
;
9617 /* Fold an expression like: "foo"[2].
9618 This is not done in fold so it won't happen inside &.
9619 Don't fold if this is for wide characters since it's too
9620 difficult to do correctly and this is a very rare case. */
9622 if (modifier
!= EXPAND_CONST_ADDRESS
9623 && modifier
!= EXPAND_INITIALIZER
9624 && modifier
!= EXPAND_MEMORY
)
9626 tree t
= fold_read_from_constant_string (exp
);
9629 return expand_expr (t
, target
, tmode
, modifier
);
9632 /* If this is a constant index into a constant array,
9633 just get the value from the array. Handle both the cases when
9634 we have an explicit constructor and when our operand is a variable
9635 that was declared const. */
9637 if (modifier
!= EXPAND_CONST_ADDRESS
9638 && modifier
!= EXPAND_INITIALIZER
9639 && modifier
!= EXPAND_MEMORY
9640 && TREE_CODE (array
) == CONSTRUCTOR
9641 && ! TREE_SIDE_EFFECTS (array
)
9642 && TREE_CODE (index
) == INTEGER_CST
)
9644 unsigned HOST_WIDE_INT ix
;
9647 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9649 if (tree_int_cst_equal (field
, index
))
9651 if (!TREE_SIDE_EFFECTS (value
))
9652 return expand_expr (fold (value
), target
, tmode
, modifier
);
9657 else if (optimize
>= 1
9658 && modifier
!= EXPAND_CONST_ADDRESS
9659 && modifier
!= EXPAND_INITIALIZER
9660 && modifier
!= EXPAND_MEMORY
9661 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9662 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
9663 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
9664 && const_value_known_p (array
))
9666 if (TREE_CODE (index
) == INTEGER_CST
)
9668 tree init
= DECL_INITIAL (array
);
9670 if (TREE_CODE (init
) == CONSTRUCTOR
)
9672 unsigned HOST_WIDE_INT ix
;
9675 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
9677 if (tree_int_cst_equal (field
, index
))
9679 if (TREE_SIDE_EFFECTS (value
))
9682 if (TREE_CODE (value
) == CONSTRUCTOR
)
9684 /* If VALUE is a CONSTRUCTOR, this
9685 optimization is only useful if
9686 this doesn't store the CONSTRUCTOR
9687 into memory. If it does, it is more
9688 efficient to just load the data from
9689 the array directly. */
9690 rtx ret
= expand_constructor (value
, target
,
9692 if (ret
== NULL_RTX
)
9696 return expand_expr (fold (value
), target
, tmode
,
9700 else if(TREE_CODE (init
) == STRING_CST
)
9702 tree index1
= index
;
9703 tree low_bound
= array_ref_low_bound (exp
);
9704 index1
= fold_convert_loc (loc
, sizetype
,
9707 /* Optimize the special-case of a zero lower bound.
9709 We convert the low_bound to sizetype to avoid some problems
9710 with constant folding. (E.g. suppose the lower bound is 1,
9711 and its mode is QI. Without the conversion,l (ARRAY
9712 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
9713 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
9715 if (! integer_zerop (low_bound
))
9716 index1
= size_diffop_loc (loc
, index1
,
9717 fold_convert_loc (loc
, sizetype
,
9720 if (0 > compare_tree_int (index1
,
9721 TREE_STRING_LENGTH (init
)))
9723 tree type
= TREE_TYPE (TREE_TYPE (init
));
9724 enum machine_mode mode
= TYPE_MODE (type
);
9726 if (GET_MODE_CLASS (mode
) == MODE_INT
9727 && GET_MODE_SIZE (mode
) == 1)
9728 return gen_int_mode (TREE_STRING_POINTER (init
)
9729 [TREE_INT_CST_LOW (index1
)],
9736 goto normal_inner_ref
;
9739 /* If the operand is a CONSTRUCTOR, we can just extract the
9740 appropriate field if it is present. */
9741 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
9743 unsigned HOST_WIDE_INT idx
;
9746 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
9748 if (field
== treeop1
9749 /* We can normally use the value of the field in the
9750 CONSTRUCTOR. However, if this is a bitfield in
9751 an integral mode that we can fit in a HOST_WIDE_INT,
9752 we must mask only the number of bits in the bitfield,
9753 since this is done implicitly by the constructor. If
9754 the bitfield does not meet either of those conditions,
9755 we can't do this optimization. */
9756 && (! DECL_BIT_FIELD (field
)
9757 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
9758 && (GET_MODE_PRECISION (DECL_MODE (field
))
9759 <= HOST_BITS_PER_WIDE_INT
))))
9761 if (DECL_BIT_FIELD (field
)
9762 && modifier
== EXPAND_STACK_PARM
)
9764 op0
= expand_expr (value
, target
, tmode
, modifier
);
9765 if (DECL_BIT_FIELD (field
))
9767 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
9768 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
9770 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
9772 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
9773 op0
= expand_and (imode
, op0
, op1
, target
);
9777 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
9779 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
9781 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
9789 goto normal_inner_ref
;
9792 case ARRAY_RANGE_REF
:
9795 enum machine_mode mode1
, mode2
;
9796 HOST_WIDE_INT bitsize
, bitpos
;
9798 int volatilep
= 0, must_force_mem
;
9799 bool packedp
= false;
9800 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
9801 &mode1
, &unsignedp
, &volatilep
, true);
9802 rtx orig_op0
, memloc
;
9803 bool mem_attrs_from_type
= false;
9805 /* If we got back the original object, something is wrong. Perhaps
9806 we are evaluating an expression too early. In any event, don't
9807 infinitely recurse. */
9808 gcc_assert (tem
!= exp
);
9810 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp
, 0)))
9811 || (TREE_CODE (TREE_OPERAND (exp
, 1)) == FIELD_DECL
9812 && DECL_PACKED (TREE_OPERAND (exp
, 1))))
9815 /* If TEM's type is a union of variable size, pass TARGET to the inner
9816 computation, since it will need a temporary and TARGET is known
9817 to have to do. This occurs in unchecked conversion in Ada. */
9820 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
9821 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
9822 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
9824 && modifier
!= EXPAND_STACK_PARM
9825 ? target
: NULL_RTX
),
9827 (modifier
== EXPAND_INITIALIZER
9828 || modifier
== EXPAND_CONST_ADDRESS
9829 || modifier
== EXPAND_STACK_PARM
)
9830 ? modifier
: EXPAND_NORMAL
);
9833 /* If the bitfield is volatile, we want to access it in the
9834 field's mode, not the computed mode.
9835 If a MEM has VOIDmode (external with incomplete type),
9836 use BLKmode for it instead. */
9839 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
9840 op0
= adjust_address (op0
, mode1
, 0);
9841 else if (GET_MODE (op0
) == VOIDmode
)
9842 op0
= adjust_address (op0
, BLKmode
, 0);
9846 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
9848 /* If we have either an offset, a BLKmode result, or a reference
9849 outside the underlying object, we must force it to memory.
9850 Such a case can occur in Ada if we have unchecked conversion
9851 of an expression from a scalar type to an aggregate type or
9852 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9853 passed a partially uninitialized object or a view-conversion
9854 to a larger size. */
9855 must_force_mem
= (offset
9857 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
9859 /* Handle CONCAT first. */
9860 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
9863 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
9866 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9869 op0
= XEXP (op0
, 0);
9870 mode2
= GET_MODE (op0
);
9872 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9873 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
9877 op0
= XEXP (op0
, 1);
9879 mode2
= GET_MODE (op0
);
9882 /* Otherwise force into memory. */
9886 /* If this is a constant, put it in a register if it is a legitimate
9887 constant and we don't need a memory reference. */
9888 if (CONSTANT_P (op0
)
9890 && targetm
.legitimate_constant_p (mode2
, op0
)
9892 op0
= force_reg (mode2
, op0
);
9894 /* Otherwise, if this is a constant, try to force it to the constant
9895 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9896 is a legitimate constant. */
9897 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
9898 op0
= validize_mem (memloc
);
9900 /* Otherwise, if this is a constant or the object is not in memory
9901 and need be, put it there. */
9902 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
9904 tree nt
= build_qualified_type (TREE_TYPE (tem
),
9905 (TYPE_QUALS (TREE_TYPE (tem
))
9906 | TYPE_QUAL_CONST
));
9907 memloc
= assign_temp (nt
, 1, 1);
9908 emit_move_insn (memloc
, op0
);
9910 mem_attrs_from_type
= true;
9915 enum machine_mode address_mode
;
9916 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
9919 gcc_assert (MEM_P (op0
));
9921 address_mode
= get_address_mode (op0
);
9922 if (GET_MODE (offset_rtx
) != address_mode
)
9923 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
9925 if (GET_MODE (op0
) == BLKmode
9926 /* A constant address in OP0 can have VOIDmode, we must
9927 not try to call force_reg in that case. */
9928 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
9930 && (bitpos
% bitsize
) == 0
9931 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
9932 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
9934 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
9938 op0
= offset_address (op0
, offset_rtx
,
9939 highest_pow2_factor (offset
));
9942 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9943 record its alignment as BIGGEST_ALIGNMENT. */
9944 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
9945 && is_aligning_offset (offset
, tem
))
9946 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
9948 /* Don't forget about volatility even if this is a bitfield. */
9949 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
9951 if (op0
== orig_op0
)
9952 op0
= copy_rtx (op0
);
9954 MEM_VOLATILE_P (op0
) = 1;
9957 /* In cases where an aligned union has an unaligned object
9958 as a field, we might be extracting a BLKmode value from
9959 an integer-mode (e.g., SImode) object. Handle this case
9960 by doing the extract into an object as wide as the field
9961 (which we know to be the width of a basic mode), then
9962 storing into memory, and changing the mode to BLKmode. */
9963 if (mode1
== VOIDmode
9964 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
9965 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
9966 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
9967 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
9968 && modifier
!= EXPAND_CONST_ADDRESS
9969 && modifier
!= EXPAND_INITIALIZER
)
9970 /* If the field is volatile, we always want an aligned
9971 access. Do this in following two situations:
9972 1. the access is not already naturally
9973 aligned, otherwise "normal" (non-bitfield) volatile fields
9974 become non-addressable.
9975 2. the bitsize is narrower than the access size. Need
9976 to extract bitfields from the access. */
9977 || (volatilep
&& flag_strict_volatile_bitfields
> 0
9978 && (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0
9979 || (mode1
!= BLKmode
9980 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)))
9981 /* If the field isn't aligned enough to fetch as a memref,
9982 fetch it as a bit field. */
9983 || (mode1
!= BLKmode
9984 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
9985 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
9987 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
9988 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
9989 && ((modifier
== EXPAND_CONST_ADDRESS
9990 || modifier
== EXPAND_INITIALIZER
)
9992 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
9993 || (bitpos
% BITS_PER_UNIT
!= 0)))
9994 /* If the type and the field are a constant size and the
9995 size of the type isn't the same size as the bitfield,
9996 we must use bitfield operations. */
9998 && TYPE_SIZE (TREE_TYPE (exp
))
9999 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10000 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10003 enum machine_mode ext_mode
= mode
;
10005 if (ext_mode
== BLKmode
10006 && ! (target
!= 0 && MEM_P (op0
)
10008 && bitpos
% BITS_PER_UNIT
== 0))
10009 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10011 if (ext_mode
== BLKmode
)
10014 target
= assign_temp (type
, 1, 1);
10019 /* In this case, BITPOS must start at a byte boundary and
10020 TARGET, if specified, must be a MEM. */
10021 gcc_assert (MEM_P (op0
)
10022 && (!target
|| MEM_P (target
))
10023 && !(bitpos
% BITS_PER_UNIT
));
10025 emit_block_move (target
,
10026 adjust_address (op0
, VOIDmode
,
10027 bitpos
/ BITS_PER_UNIT
),
10028 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10030 (modifier
== EXPAND_STACK_PARM
10031 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10036 op0
= validize_mem (op0
);
10038 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10039 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10041 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
, packedp
,
10042 (modifier
== EXPAND_STACK_PARM
10043 ? NULL_RTX
: target
),
10044 ext_mode
, ext_mode
);
10046 /* If the result is a record type and BITSIZE is narrower than
10047 the mode of OP0, an integral mode, and this is a big endian
10048 machine, we must put the field into the high-order bits. */
10049 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10050 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10051 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10052 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10053 GET_MODE_BITSIZE (GET_MODE (op0
))
10054 - bitsize
, op0
, 1);
10056 /* If the result type is BLKmode, store the data into a temporary
10057 of the appropriate type, but with the mode corresponding to the
10058 mode for the data we have (op0's mode). It's tempting to make
10059 this a constant type, since we know it's only being stored once,
10060 but that can cause problems if we are taking the address of this
10061 COMPONENT_REF because the MEM of any reference via that address
10062 will have flags corresponding to the type, which will not
10063 necessarily be constant. */
10064 if (mode
== BLKmode
)
10068 new_rtx
= assign_stack_temp_for_type (ext_mode
,
10069 GET_MODE_BITSIZE (ext_mode
),
10071 emit_move_insn (new_rtx
, op0
);
10072 op0
= copy_rtx (new_rtx
);
10073 PUT_MODE (op0
, BLKmode
);
10079 /* If the result is BLKmode, use that to access the object
10081 if (mode
== BLKmode
)
10084 /* Get a reference to just this component. */
10085 if (modifier
== EXPAND_CONST_ADDRESS
10086 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10087 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10089 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10091 if (op0
== orig_op0
)
10092 op0
= copy_rtx (op0
);
10094 /* If op0 is a temporary because of forcing to memory, pass only the
10095 type to set_mem_attributes so that the original expression is never
10096 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10097 if (mem_attrs_from_type
)
10098 set_mem_attributes (op0
, type
, 0);
10100 set_mem_attributes (op0
, exp
, 0);
10102 if (REG_P (XEXP (op0
, 0)))
10103 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10105 MEM_VOLATILE_P (op0
) |= volatilep
;
10106 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10107 || modifier
== EXPAND_CONST_ADDRESS
10108 || modifier
== EXPAND_INITIALIZER
)
10110 else if (target
== 0)
10111 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10113 convert_move (target
, op0
, unsignedp
);
10118 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10121 /* All valid uses of __builtin_va_arg_pack () are removed during
10123 if (CALL_EXPR_VA_ARG_PACK (exp
))
10124 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10126 tree fndecl
= get_callee_fndecl (exp
), attr
;
10129 && (attr
= lookup_attribute ("error",
10130 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10131 error ("%Kcall to %qs declared with attribute error: %s",
10132 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10133 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10135 && (attr
= lookup_attribute ("warning",
10136 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10137 warning_at (tree_nonartificial_location (exp
),
10138 0, "%Kcall to %qs declared with attribute warning: %s",
10139 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10140 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10142 /* Check for a built-in function. */
10143 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10145 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10146 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10149 return expand_call (exp
, target
, ignore
);
10151 case VIEW_CONVERT_EXPR
:
10154 /* If we are converting to BLKmode, try to avoid an intermediate
10155 temporary by fetching an inner memory reference. */
10156 if (mode
== BLKmode
10157 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10158 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10159 && handled_component_p (treeop0
))
10161 enum machine_mode mode1
;
10162 HOST_WIDE_INT bitsize
, bitpos
;
10167 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10168 &offset
, &mode1
, &unsignedp
, &volatilep
,
10172 /* ??? We should work harder and deal with non-zero offsets. */
10174 && (bitpos
% BITS_PER_UNIT
) == 0
10176 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) == 0)
10178 /* See the normal_inner_ref case for the rationale. */
10180 = expand_expr (tem
,
10181 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10182 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10184 && modifier
!= EXPAND_STACK_PARM
10185 ? target
: NULL_RTX
),
10187 (modifier
== EXPAND_INITIALIZER
10188 || modifier
== EXPAND_CONST_ADDRESS
10189 || modifier
== EXPAND_STACK_PARM
)
10190 ? modifier
: EXPAND_NORMAL
);
10192 if (MEM_P (orig_op0
))
10196 /* Get a reference to just this component. */
10197 if (modifier
== EXPAND_CONST_ADDRESS
10198 || modifier
== EXPAND_SUM
10199 || modifier
== EXPAND_INITIALIZER
)
10200 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10202 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10204 if (op0
== orig_op0
)
10205 op0
= copy_rtx (op0
);
10207 set_mem_attributes (op0
, treeop0
, 0);
10208 if (REG_P (XEXP (op0
, 0)))
10209 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10211 MEM_VOLATILE_P (op0
) |= volatilep
;
10217 op0
= expand_expr (treeop0
,
10218 NULL_RTX
, VOIDmode
, modifier
);
10220 /* If the input and output modes are both the same, we are done. */
10221 if (mode
== GET_MODE (op0
))
10223 /* If neither mode is BLKmode, and both modes are the same size
10224 then we can use gen_lowpart. */
10225 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10226 && (GET_MODE_PRECISION (mode
)
10227 == GET_MODE_PRECISION (GET_MODE (op0
)))
10228 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10230 if (GET_CODE (op0
) == SUBREG
)
10231 op0
= force_reg (GET_MODE (op0
), op0
);
10232 temp
= gen_lowpart_common (mode
, op0
);
10237 if (!REG_P (op0
) && !MEM_P (op0
))
10238 op0
= force_reg (GET_MODE (op0
), op0
);
10239 op0
= gen_lowpart (mode
, op0
);
10242 /* If both types are integral, convert from one mode to the other. */
10243 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10244 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10245 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10246 /* As a last resort, spill op0 to memory, and reload it in a
10248 else if (!MEM_P (op0
))
10250 /* If the operand is not a MEM, force it into memory. Since we
10251 are going to be changing the mode of the MEM, don't call
10252 force_const_mem for constants because we don't allow pool
10253 constants to change mode. */
10254 tree inner_type
= TREE_TYPE (treeop0
);
10256 gcc_assert (!TREE_ADDRESSABLE (exp
));
10258 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10260 = assign_stack_temp_for_type
10261 (TYPE_MODE (inner_type
),
10262 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10264 emit_move_insn (target
, op0
);
10268 /* At this point, OP0 is in the correct mode. If the output type is
10269 such that the operand is known to be aligned, indicate that it is.
10270 Otherwise, we need only be concerned about alignment for non-BLKmode
10274 enum insn_code icode
;
10276 op0
= copy_rtx (op0
);
10278 if (TYPE_ALIGN_OK (type
))
10279 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10280 else if (mode
!= BLKmode
10281 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
)
10282 /* If the target does have special handling for unaligned
10283 loads of mode then use them. */
10284 && ((icode
= optab_handler (movmisalign_optab
, mode
))
10285 != CODE_FOR_nothing
))
10289 op0
= adjust_address (op0
, mode
, 0);
10290 /* We've already validated the memory, and we're creating a
10291 new pseudo destination. The predicates really can't
10293 reg
= gen_reg_rtx (mode
);
10295 /* Nor can the insn generator. */
10296 insn
= GEN_FCN (icode
) (reg
, op0
);
10300 else if (STRICT_ALIGNMENT
10302 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10304 tree inner_type
= TREE_TYPE (treeop0
);
10305 HOST_WIDE_INT temp_size
10306 = MAX (int_size_in_bytes (inner_type
),
10307 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10309 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10310 rtx new_with_op0_mode
10311 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10313 gcc_assert (!TREE_ADDRESSABLE (exp
));
10315 if (GET_MODE (op0
) == BLKmode
)
10316 emit_block_move (new_with_op0_mode
, op0
,
10317 GEN_INT (GET_MODE_SIZE (mode
)),
10318 (modifier
== EXPAND_STACK_PARM
10319 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10321 emit_move_insn (new_with_op0_mode
, op0
);
10326 op0
= adjust_address (op0
, mode
, 0);
10333 tree lhs
= treeop0
;
10334 tree rhs
= treeop1
;
10335 gcc_assert (ignore
);
10337 /* Check for |= or &= of a bitfield of size one into another bitfield
10338 of size 1. In this case, (unless we need the result of the
10339 assignment) we can do this more efficiently with a
10340 test followed by an assignment, if necessary.
10342 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10343 things change so we do, this code should be enhanced to
10345 if (TREE_CODE (lhs
) == COMPONENT_REF
10346 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10347 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10348 && TREE_OPERAND (rhs
, 0) == lhs
10349 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10350 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10351 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10353 rtx label
= gen_label_rtx ();
10354 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10355 do_jump (TREE_OPERAND (rhs
, 1),
10357 value
? 0 : label
, -1);
10358 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10360 do_pending_stack_adjust ();
10361 emit_label (label
);
10365 expand_assignment (lhs
, rhs
, false);
10370 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10372 case REALPART_EXPR
:
10373 op0
= expand_normal (treeop0
);
10374 return read_complex_part (op0
, false);
10376 case IMAGPART_EXPR
:
10377 op0
= expand_normal (treeop0
);
10378 return read_complex_part (op0
, true);
10385 /* Expanded in cfgexpand.c. */
10386 gcc_unreachable ();
10388 case TRY_CATCH_EXPR
:
10390 case EH_FILTER_EXPR
:
10391 case TRY_FINALLY_EXPR
:
10392 /* Lowered by tree-eh.c. */
10393 gcc_unreachable ();
10395 case WITH_CLEANUP_EXPR
:
10396 case CLEANUP_POINT_EXPR
:
10398 case CASE_LABEL_EXPR
:
10403 case COMPOUND_EXPR
:
10404 case PREINCREMENT_EXPR
:
10405 case PREDECREMENT_EXPR
:
10406 case POSTINCREMENT_EXPR
:
10407 case POSTDECREMENT_EXPR
:
10410 case COMPOUND_LITERAL_EXPR
:
10411 /* Lowered by gimplify.c. */
10412 gcc_unreachable ();
10415 /* Function descriptors are not valid except for as
10416 initialization constants, and should not be expanded. */
10417 gcc_unreachable ();
10419 case WITH_SIZE_EXPR
:
10420 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10421 have pulled out the size to use in whatever context it needed. */
10422 return expand_expr_real (treeop0
, original_target
, tmode
,
10423 modifier
, alt_rtl
);
10426 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10430 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10431 signedness of TYPE), possibly returning the result in TARGET. */
10433 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10435 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10436 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10438 /* For constant values, reduce using build_int_cst_type. */
10439 if (CONST_INT_P (exp
))
10441 HOST_WIDE_INT value
= INTVAL (exp
);
10442 tree t
= build_int_cst_type (type
, value
);
10443 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10445 else if (TYPE_UNSIGNED (type
))
10447 rtx mask
= immed_double_int_const (double_int::mask (prec
),
10449 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
10453 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10454 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10455 exp
, count
, target
, 0);
10456 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10457 exp
, count
, target
, 0);
10461 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10462 when applied to the address of EXP produces an address known to be
10463 aligned more than BIGGEST_ALIGNMENT. */
10466 is_aligning_offset (const_tree offset
, const_tree exp
)
10468 /* Strip off any conversions. */
10469 while (CONVERT_EXPR_P (offset
))
10470 offset
= TREE_OPERAND (offset
, 0);
10472 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10473 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10474 if (TREE_CODE (offset
) != BIT_AND_EXPR
10475 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
10476 || compare_tree_int (TREE_OPERAND (offset
, 1),
10477 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10478 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
10481 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10482 It must be NEGATE_EXPR. Then strip any more conversions. */
10483 offset
= TREE_OPERAND (offset
, 0);
10484 while (CONVERT_EXPR_P (offset
))
10485 offset
= TREE_OPERAND (offset
, 0);
10487 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10490 offset
= TREE_OPERAND (offset
, 0);
10491 while (CONVERT_EXPR_P (offset
))
10492 offset
= TREE_OPERAND (offset
, 0);
10494 /* This must now be the address of EXP. */
10495 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10498 /* Return the tree node if an ARG corresponds to a string constant or zero
10499 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10500 in bytes within the string that ARG is accessing. The type of the
10501 offset will be `sizetype'. */
10504 string_constant (tree arg
, tree
*ptr_offset
)
10506 tree array
, offset
, lower_bound
;
10509 if (TREE_CODE (arg
) == ADDR_EXPR
)
10511 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10513 *ptr_offset
= size_zero_node
;
10514 return TREE_OPERAND (arg
, 0);
10516 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10518 array
= TREE_OPERAND (arg
, 0);
10519 offset
= size_zero_node
;
10521 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10523 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10524 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10525 if (TREE_CODE (array
) != STRING_CST
10526 && TREE_CODE (array
) != VAR_DECL
)
10529 /* Check if the array has a nonzero lower bound. */
10530 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10531 if (!integer_zerop (lower_bound
))
10533 /* If the offset and base aren't both constants, return 0. */
10534 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10536 if (TREE_CODE (offset
) != INTEGER_CST
)
10538 /* Adjust offset by the lower bound. */
10539 offset
= size_diffop (fold_convert (sizetype
, offset
),
10540 fold_convert (sizetype
, lower_bound
));
10543 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10545 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10546 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10547 if (TREE_CODE (array
) != ADDR_EXPR
)
10549 array
= TREE_OPERAND (array
, 0);
10550 if (TREE_CODE (array
) != STRING_CST
10551 && TREE_CODE (array
) != VAR_DECL
)
10557 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10559 tree arg0
= TREE_OPERAND (arg
, 0);
10560 tree arg1
= TREE_OPERAND (arg
, 1);
10565 if (TREE_CODE (arg0
) == ADDR_EXPR
10566 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10567 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10569 array
= TREE_OPERAND (arg0
, 0);
10572 else if (TREE_CODE (arg1
) == ADDR_EXPR
10573 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10574 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10576 array
= TREE_OPERAND (arg1
, 0);
10585 if (TREE_CODE (array
) == STRING_CST
)
10587 *ptr_offset
= fold_convert (sizetype
, offset
);
10590 else if (TREE_CODE (array
) == VAR_DECL
10591 || TREE_CODE (array
) == CONST_DECL
)
10595 /* Variables initialized to string literals can be handled too. */
10596 if (!const_value_known_p (array
)
10597 || !DECL_INITIAL (array
)
10598 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
10601 /* Avoid const char foo[4] = "abcde"; */
10602 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10603 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10604 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
10605 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10608 /* If variable is bigger than the string literal, OFFSET must be constant
10609 and inside of the bounds of the string literal. */
10610 offset
= fold_convert (sizetype
, offset
);
10611 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10612 && (! host_integerp (offset
, 1)
10613 || compare_tree_int (offset
, length
) >= 0))
10616 *ptr_offset
= offset
;
10617 return DECL_INITIAL (array
);
10623 /* Generate code to calculate OPS, and exploded expression
10624 using a store-flag instruction and return an rtx for the result.
10625 OPS reflects a comparison.
10627 If TARGET is nonzero, store the result there if convenient.
10629 Return zero if there is no suitable set-flag instruction
10630 available on this machine.
10632 Once expand_expr has been called on the arguments of the comparison,
10633 we are committed to doing the store flag, since it is not safe to
10634 re-evaluate the expression. We emit the store-flag insn by calling
10635 emit_store_flag, but only expand the arguments if we have a reason
10636 to believe that emit_store_flag will be successful. If we think that
10637 it will, but it isn't, we have to simulate the store-flag with a
10638 set/jump/set sequence. */
10641 do_store_flag (sepops ops
, rtx target
, enum machine_mode mode
)
10643 enum rtx_code code
;
10644 tree arg0
, arg1
, type
;
10646 enum machine_mode operand_mode
;
10649 rtx subtarget
= target
;
10650 location_t loc
= ops
->location
;
10655 /* Don't crash if the comparison was erroneous. */
10656 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
10659 type
= TREE_TYPE (arg0
);
10660 operand_mode
= TYPE_MODE (type
);
10661 unsignedp
= TYPE_UNSIGNED (type
);
10663 /* We won't bother with BLKmode store-flag operations because it would mean
10664 passing a lot of information to emit_store_flag. */
10665 if (operand_mode
== BLKmode
)
10668 /* We won't bother with store-flag operations involving function pointers
10669 when function pointers must be canonicalized before comparisons. */
10670 #ifdef HAVE_canonicalize_funcptr_for_compare
10671 if (HAVE_canonicalize_funcptr_for_compare
10672 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
10673 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
10675 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
10676 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
10677 == FUNCTION_TYPE
))))
10684 /* For vector typed comparisons emit code to generate the desired
10685 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10686 expander for this. */
10687 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10689 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10690 tree if_true
= constant_boolean_node (true, ops
->type
);
10691 tree if_false
= constant_boolean_node (false, ops
->type
);
10692 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10695 /* For vector typed comparisons emit code to generate the desired
10696 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10697 expander for this. */
10698 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10700 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10701 tree if_true
= constant_boolean_node (true, ops
->type
);
10702 tree if_false
= constant_boolean_node (false, ops
->type
);
10703 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10706 /* Get the rtx comparison code to use. We know that EXP is a comparison
10707 operation of some type. Some comparisons against 1 and -1 can be
10708 converted to comparisons with zero. Do so here so that the tests
10709 below will be aware that we have a comparison with zero. These
10710 tests will not catch constants in the first operand, but constants
10711 are rarely passed as the first operand. */
10722 if (integer_onep (arg1
))
10723 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
10725 code
= unsignedp
? LTU
: LT
;
10728 if (! unsignedp
&& integer_all_onesp (arg1
))
10729 arg1
= integer_zero_node
, code
= LT
;
10731 code
= unsignedp
? LEU
: LE
;
10734 if (! unsignedp
&& integer_all_onesp (arg1
))
10735 arg1
= integer_zero_node
, code
= GE
;
10737 code
= unsignedp
? GTU
: GT
;
10740 if (integer_onep (arg1
))
10741 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
10743 code
= unsignedp
? GEU
: GE
;
10746 case UNORDERED_EXPR
:
10772 gcc_unreachable ();
10775 /* Put a constant second. */
10776 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
10777 || TREE_CODE (arg0
) == FIXED_CST
)
10779 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
10780 code
= swap_condition (code
);
10783 /* If this is an equality or inequality test of a single bit, we can
10784 do this by shifting the bit being tested to the low-order bit and
10785 masking the result with the constant 1. If the condition was EQ,
10786 we xor it with 1. This does not require an scc insn and is faster
10787 than an scc insn even if we have it.
10789 The code to make this transformation was moved into fold_single_bit_test,
10790 so we just call into the folder and expand its result. */
10792 if ((code
== NE
|| code
== EQ
)
10793 && integer_zerop (arg1
)
10794 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
10796 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
10798 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
10800 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
10801 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
10802 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
10803 gimple_assign_rhs1 (srcstmt
),
10804 gimple_assign_rhs2 (srcstmt
));
10805 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
10807 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
10811 if (! get_subtarget (target
)
10812 || GET_MODE (subtarget
) != operand_mode
)
10815 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10818 target
= gen_reg_rtx (mode
);
10820 /* Try a cstore if possible. */
10821 return emit_store_flag_force (target
, code
, op0
, op1
,
10822 operand_mode
, unsignedp
,
10823 (TYPE_PRECISION (ops
->type
) == 1
10824 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
10828 /* Stubs in case we haven't got a casesi insn. */
10829 #ifndef HAVE_casesi
10830 # define HAVE_casesi 0
10831 # define gen_casesi(a, b, c, d, e) (0)
10832 # define CODE_FOR_casesi CODE_FOR_nothing
10835 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10836 0 otherwise (i.e. if there is no casesi instruction). */
10838 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
10839 rtx table_label
, rtx default_label
, rtx fallback_label
)
10841 struct expand_operand ops
[5];
10842 enum machine_mode index_mode
= SImode
;
10843 rtx op1
, op2
, index
;
10848 /* Convert the index to SImode. */
10849 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
10851 enum machine_mode omode
= TYPE_MODE (index_type
);
10852 rtx rangertx
= expand_normal (range
);
10854 /* We must handle the endpoints in the original mode. */
10855 index_expr
= build2 (MINUS_EXPR
, index_type
,
10856 index_expr
, minval
);
10857 minval
= integer_zero_node
;
10858 index
= expand_normal (index_expr
);
10860 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
10861 omode
, 1, default_label
);
10862 /* Now we can safely truncate. */
10863 index
= convert_to_mode (index_mode
, index
, 0);
10867 if (TYPE_MODE (index_type
) != index_mode
)
10869 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
10870 index_expr
= fold_convert (index_type
, index_expr
);
10873 index
= expand_normal (index_expr
);
10876 do_pending_stack_adjust ();
10878 op1
= expand_normal (minval
);
10879 op2
= expand_normal (range
);
10881 create_input_operand (&ops
[0], index
, index_mode
);
10882 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
10883 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
10884 create_fixed_operand (&ops
[3], table_label
);
10885 create_fixed_operand (&ops
[4], (default_label
10887 : fallback_label
));
10888 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
10892 /* Attempt to generate a tablejump instruction; same concept. */
10893 #ifndef HAVE_tablejump
10894 #define HAVE_tablejump 0
10895 #define gen_tablejump(x, y) (0)
10898 /* Subroutine of the next function.
10900 INDEX is the value being switched on, with the lowest value
10901 in the table already subtracted.
10902 MODE is its expected mode (needed if INDEX is constant).
10903 RANGE is the length of the jump table.
10904 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10906 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10907 index value is out of range. */
10910 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
10915 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
10916 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
10918 /* Do an unsigned comparison (in the proper mode) between the index
10919 expression and the value which represents the length of the range.
10920 Since we just finished subtracting the lower bound of the range
10921 from the index expression, this comparison allows us to simultaneously
10922 check that the original index expression value is both greater than
10923 or equal to the minimum value of the range and less than or equal to
10924 the maximum value of the range. */
10927 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
10930 /* If index is in range, it must fit in Pmode.
10931 Convert to Pmode so we can index with it. */
10933 index
= convert_to_mode (Pmode
, index
, 1);
10935 /* Don't let a MEM slip through, because then INDEX that comes
10936 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10937 and break_out_memory_refs will go to work on it and mess it up. */
10938 #ifdef PIC_CASE_VECTOR_ADDRESS
10939 if (flag_pic
&& !REG_P (index
))
10940 index
= copy_to_mode_reg (Pmode
, index
);
10943 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10944 GET_MODE_SIZE, because this indicates how large insns are. The other
10945 uses should all be Pmode, because they are addresses. This code
10946 could fail if addresses and insns are not the same size. */
10947 index
= gen_rtx_PLUS (Pmode
,
10948 gen_rtx_MULT (Pmode
, index
,
10949 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
10950 gen_rtx_LABEL_REF (Pmode
, table_label
));
10951 #ifdef PIC_CASE_VECTOR_ADDRESS
10953 index
= PIC_CASE_VECTOR_ADDRESS (index
);
10956 index
= memory_address (CASE_VECTOR_MODE
, index
);
10957 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
10958 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
10959 convert_move (temp
, vector
, 0);
10961 emit_jump_insn (gen_tablejump (temp
, table_label
));
10963 /* If we are generating PIC code or if the table is PC-relative, the
10964 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10965 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
10970 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
10971 rtx table_label
, rtx default_label
)
10975 if (! HAVE_tablejump
)
10978 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
10979 fold_convert (index_type
, index_expr
),
10980 fold_convert (index_type
, minval
));
10981 index
= expand_normal (index_expr
);
10982 do_pending_stack_adjust ();
10984 do_tablejump (index
, TYPE_MODE (index_type
),
10985 convert_modes (TYPE_MODE (index_type
),
10986 TYPE_MODE (TREE_TYPE (range
)),
10987 expand_normal (range
),
10988 TYPE_UNSIGNED (TREE_TYPE (range
))),
10989 table_label
, default_label
);
10993 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10995 const_vector_from_tree (tree exp
)
11001 enum machine_mode inner
, mode
;
11003 mode
= TYPE_MODE (TREE_TYPE (exp
));
11005 if (initializer_zerop (exp
))
11006 return CONST0_RTX (mode
);
11008 units
= GET_MODE_NUNITS (mode
);
11009 inner
= GET_MODE_INNER (mode
);
11011 v
= rtvec_alloc (units
);
11013 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11015 elt
= VECTOR_CST_ELT (exp
, i
);
11017 if (TREE_CODE (elt
) == REAL_CST
)
11018 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11020 else if (TREE_CODE (elt
) == FIXED_CST
)
11021 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11024 RTVEC_ELT (v
, i
) = immed_double_int_const (tree_to_double_int (elt
),
11028 return gen_rtx_CONST_VECTOR (mode
, v
);
11031 /* Build a decl for a personality function given a language prefix. */
11034 build_personality_function (const char *lang
)
11036 const char *unwind_and_version
;
11040 switch (targetm_common
.except_unwind_info (&global_options
))
11045 unwind_and_version
= "_sj0";
11049 unwind_and_version
= "_v0";
11052 unwind_and_version
= "_seh0";
11055 gcc_unreachable ();
11058 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11060 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11061 long_long_unsigned_type_node
,
11062 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11063 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11064 get_identifier (name
), type
);
11065 DECL_ARTIFICIAL (decl
) = 1;
11066 DECL_EXTERNAL (decl
) = 1;
11067 TREE_PUBLIC (decl
) = 1;
11069 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11070 are the flags assigned by targetm.encode_section_info. */
11071 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11076 /* Extracts the personality function of DECL and returns the corresponding
11080 get_personality_function (tree decl
)
11082 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11083 enum eh_personality_kind pk
;
11085 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11086 if (pk
== eh_personality_none
)
11090 && pk
== eh_personality_any
)
11091 personality
= lang_hooks
.eh_personality ();
11093 if (pk
== eh_personality_lang
)
11094 gcc_assert (personality
!= NULL_TREE
);
11096 return XEXP (DECL_RTL (personality
), 0);
11099 #include "gt-expr.h"