fwprop: Fix single_use_p calculation
[official-gcc.git] / gcc / ira-costs.c
blob7547f3e0f535d2ec4c2b72a527b3627e6a00884b
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2021 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "addresses.h"
36 #include "reload.h"
38 /* The flags is set up every time when we calculate pseudo register
39 classes through function ira_set_pseudo_classes. */
40 static bool pseudo_classes_defined_p = false;
42 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
43 static bool allocno_p;
45 /* Number of elements in array `costs'. */
46 static int cost_elements_num;
48 /* The `costs' struct records the cost of using hard registers of each
49 class considered for the calculation and of using memory for each
50 allocno or pseudo. */
51 struct costs
53 int mem_cost;
54 /* Costs for register classes start here. We process only some
55 allocno classes. */
56 int cost[1];
59 #define max_struct_costs_size \
60 (this_target_ira_int->x_max_struct_costs_size)
61 #define init_cost \
62 (this_target_ira_int->x_init_cost)
63 #define temp_costs \
64 (this_target_ira_int->x_temp_costs)
65 #define op_costs \
66 (this_target_ira_int->x_op_costs)
67 #define this_op_costs \
68 (this_target_ira_int->x_this_op_costs)
70 /* Costs of each class for each allocno or pseudo. */
71 static struct costs *costs;
73 /* Accumulated costs of each class for each allocno. */
74 static struct costs *total_allocno_costs;
76 /* It is the current size of struct costs. */
77 static size_t struct_costs_size;
79 /* Return pointer to structure containing costs of allocno or pseudo
80 with given NUM in array ARR. */
81 #define COSTS(arr, num) \
82 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
84 /* Return index in COSTS when processing reg with REGNO. */
85 #define COST_INDEX(regno) (allocno_p \
86 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
87 : (int) regno)
89 /* Record register class preferences of each allocno or pseudo. Null
90 value means no preferences. It happens on the 1st iteration of the
91 cost calculation. */
92 static enum reg_class *pref;
94 /* Allocated buffers for pref. */
95 static enum reg_class *pref_buffer;
97 /* Record allocno class of each allocno with the same regno. */
98 static enum reg_class *regno_aclass;
100 /* Record cost gains for not allocating a register with an invariant
101 equivalence. */
102 static int *regno_equiv_gains;
104 /* Execution frequency of the current insn. */
105 static int frequency;
109 /* Info about reg classes whose costs are calculated for a pseudo. */
110 struct cost_classes
112 /* Number of the cost classes in the subsequent array. */
113 int num;
114 /* Container of the cost classes. */
115 enum reg_class classes[N_REG_CLASSES];
116 /* Map reg class -> index of the reg class in the previous array.
117 -1 if it is not a cost class. */
118 int index[N_REG_CLASSES];
119 /* Map hard regno index of first class in array CLASSES containing
120 the hard regno, -1 otherwise. */
121 int hard_regno_index[FIRST_PSEUDO_REGISTER];
124 /* Types of pointers to the structure above. */
125 typedef struct cost_classes *cost_classes_t;
126 typedef const struct cost_classes *const_cost_classes_t;
128 /* Info about cost classes for each pseudo. */
129 static cost_classes_t *regno_cost_classes;
131 /* Helper for cost_classes hashing. */
133 struct cost_classes_hasher : pointer_hash <cost_classes>
135 static inline hashval_t hash (const cost_classes *);
136 static inline bool equal (const cost_classes *, const cost_classes *);
137 static inline void remove (cost_classes *);
140 /* Returns hash value for cost classes info HV. */
141 inline hashval_t
142 cost_classes_hasher::hash (const cost_classes *hv)
144 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
147 /* Compares cost classes info HV1 and HV2. */
148 inline bool
149 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
151 return (hv1->num == hv2->num
152 && memcmp (hv1->classes, hv2->classes,
153 sizeof (enum reg_class) * hv1->num) == 0);
156 /* Delete cost classes info V from the hash table. */
157 inline void
158 cost_classes_hasher::remove (cost_classes *v)
160 ira_free (v);
163 /* Hash table of unique cost classes. */
164 static hash_table<cost_classes_hasher> *cost_classes_htab;
166 /* Map allocno class -> cost classes for pseudo of given allocno
167 class. */
168 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
170 /* Map mode -> cost classes for pseudo of give mode. */
171 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
173 /* Cost classes that include all classes in ira_important_classes. */
174 static cost_classes all_cost_classes;
176 /* Use the array of classes in CLASSES_PTR to fill out the rest of
177 the structure. */
178 static void
179 complete_cost_classes (cost_classes_t classes_ptr)
181 for (int i = 0; i < N_REG_CLASSES; i++)
182 classes_ptr->index[i] = -1;
183 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
184 classes_ptr->hard_regno_index[i] = -1;
185 for (int i = 0; i < classes_ptr->num; i++)
187 enum reg_class cl = classes_ptr->classes[i];
188 classes_ptr->index[cl] = i;
189 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
191 unsigned int hard_regno = ira_class_hard_regs[cl][j];
192 if (classes_ptr->hard_regno_index[hard_regno] < 0)
193 classes_ptr->hard_regno_index[hard_regno] = i;
198 /* Initialize info about the cost classes for each pseudo. */
199 static void
200 initiate_regno_cost_classes (void)
202 int size = sizeof (cost_classes_t) * max_reg_num ();
204 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
205 memset (regno_cost_classes, 0, size);
206 memset (cost_classes_aclass_cache, 0,
207 sizeof (cost_classes_t) * N_REG_CLASSES);
208 memset (cost_classes_mode_cache, 0,
209 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
210 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
211 all_cost_classes.num = ira_important_classes_num;
212 for (int i = 0; i < ira_important_classes_num; i++)
213 all_cost_classes.classes[i] = ira_important_classes[i];
214 complete_cost_classes (&all_cost_classes);
217 /* Create new cost classes from cost classes FROM and set up members
218 index and hard_regno_index. Return the new classes. The function
219 implements some common code of two functions
220 setup_regno_cost_classes_by_aclass and
221 setup_regno_cost_classes_by_mode. */
222 static cost_classes_t
223 setup_cost_classes (cost_classes_t from)
225 cost_classes_t classes_ptr;
227 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
228 classes_ptr->num = from->num;
229 for (int i = 0; i < from->num; i++)
230 classes_ptr->classes[i] = from->classes[i];
231 complete_cost_classes (classes_ptr);
232 return classes_ptr;
235 /* Return a version of FULL that only considers registers in REGS that are
236 valid for mode MODE. Both FULL and the returned class are globally
237 allocated. */
238 static cost_classes_t
239 restrict_cost_classes (cost_classes_t full, machine_mode mode,
240 const_hard_reg_set regs)
242 static struct cost_classes narrow;
243 int map[N_REG_CLASSES];
244 narrow.num = 0;
245 for (int i = 0; i < full->num; i++)
247 /* Assume that we'll drop the class. */
248 map[i] = -1;
250 /* Ignore classes that are too small for the mode. */
251 enum reg_class cl = full->classes[i];
252 if (!contains_reg_of_mode[cl][mode])
253 continue;
255 /* Calculate the set of registers in CL that belong to REGS and
256 are valid for MODE. */
257 HARD_REG_SET valid_for_cl = reg_class_contents[cl] & regs;
258 valid_for_cl &= ~(ira_prohibited_class_mode_regs[cl][mode]
259 | ira_no_alloc_regs);
260 if (hard_reg_set_empty_p (valid_for_cl))
261 continue;
263 /* Don't use this class if the set of valid registers is a subset
264 of an existing class. For example, suppose we have two classes
265 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
266 that the mode changes allowed by FR_REGS are not as general as
267 the mode changes allowed by GR_REGS.
269 In this situation, the mode changes for GR_AND_FR_REGS could
270 either be seen as the union or the intersection of the mode
271 changes allowed by the two subclasses. The justification for
272 the union-based definition would be that, if you want a mode
273 change that's only allowed by GR_REGS, you can pick a register
274 from the GR_REGS subclass. The justification for the
275 intersection-based definition would be that every register
276 from the class would allow the mode change.
278 However, if we have a register that needs to be in GR_REGS,
279 using GR_AND_FR_REGS with the intersection-based definition
280 would be too pessimistic, since it would bring in restrictions
281 that only apply to FR_REGS. Conversely, if we have a register
282 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
283 union-based definition would lose the extra restrictions
284 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
285 for cases where GR_REGS and FP_REGS are both valid. */
286 int pos;
287 for (pos = 0; pos < narrow.num; ++pos)
289 enum reg_class cl2 = narrow.classes[pos];
290 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
291 break;
293 map[i] = pos;
294 if (pos == narrow.num)
296 /* If several classes are equivalent, prefer to use the one
297 that was chosen as the allocno class. */
298 enum reg_class cl2 = ira_allocno_class_translate[cl];
299 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
300 cl = cl2;
301 narrow.classes[narrow.num++] = cl;
304 if (narrow.num == full->num)
305 return full;
307 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
308 if (*slot == NULL)
310 cost_classes_t classes = setup_cost_classes (&narrow);
311 /* Map equivalent classes to the representative that we chose above. */
312 for (int i = 0; i < ira_important_classes_num; i++)
314 enum reg_class cl = ira_important_classes[i];
315 int index = full->index[cl];
316 if (index >= 0)
317 classes->index[cl] = map[index];
319 *slot = classes;
321 return *slot;
324 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
325 This function is used when we know an initial approximation of
326 allocno class of the pseudo already, e.g. on the second iteration
327 of class cost calculation or after class cost calculation in
328 register-pressure sensitive insn scheduling or register-pressure
329 sensitive loop-invariant motion. */
330 static void
331 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
333 static struct cost_classes classes;
334 cost_classes_t classes_ptr;
335 enum reg_class cl;
336 int i;
337 cost_classes **slot;
338 HARD_REG_SET temp, temp2;
339 bool exclude_p;
341 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
343 temp = reg_class_contents[aclass] & ~ira_no_alloc_regs;
344 /* We exclude classes from consideration which are subsets of
345 ACLASS only if ACLASS is an uniform class. */
346 exclude_p = ira_uniform_class_p[aclass];
347 classes.num = 0;
348 for (i = 0; i < ira_important_classes_num; i++)
350 cl = ira_important_classes[i];
351 if (exclude_p)
353 /* Exclude non-uniform classes which are subsets of
354 ACLASS. */
355 temp2 = reg_class_contents[cl] & ~ira_no_alloc_regs;
356 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
357 continue;
359 classes.classes[classes.num++] = cl;
361 slot = cost_classes_htab->find_slot (&classes, INSERT);
362 if (*slot == NULL)
364 classes_ptr = setup_cost_classes (&classes);
365 *slot = classes_ptr;
367 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
369 if (regno_reg_rtx[regno] != NULL_RTX)
371 /* Restrict the classes to those that are valid for REGNO's mode
372 (which might for example exclude singleton classes if the mode
373 requires two registers). Also restrict the classes to those that
374 are valid for subregs of REGNO. */
375 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
376 if (!valid_regs)
377 valid_regs = &reg_class_contents[ALL_REGS];
378 classes_ptr = restrict_cost_classes (classes_ptr,
379 PSEUDO_REGNO_MODE (regno),
380 *valid_regs);
382 regno_cost_classes[regno] = classes_ptr;
385 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
386 decrease number of cost classes for the pseudo, if hard registers
387 of some important classes cannot hold a value of MODE. So the
388 pseudo cannot get hard register of some important classes and cost
389 calculation for such important classes is only wasting CPU
390 time. */
391 static void
392 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
394 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
395 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
396 mode, *valid_regs);
397 else
399 if (cost_classes_mode_cache[mode] == NULL)
400 cost_classes_mode_cache[mode]
401 = restrict_cost_classes (&all_cost_classes, mode,
402 reg_class_contents[ALL_REGS]);
403 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
407 /* Finalize info about the cost classes for each pseudo. */
408 static void
409 finish_regno_cost_classes (void)
411 ira_free (regno_cost_classes);
412 delete cost_classes_htab;
413 cost_classes_htab = NULL;
418 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
419 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
420 be a pseudo register. */
421 static int
422 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
423 secondary_reload_info *prev_sri)
425 secondary_reload_info sri;
426 reg_class_t secondary_class = NO_REGS;
428 /* If X is a SCRATCH, there is actually nothing to move since we are
429 assuming optimal allocation. */
430 if (GET_CODE (x) == SCRATCH)
431 return 0;
433 /* Get the class we will actually use for a reload. */
434 rclass = targetm.preferred_reload_class (x, rclass);
436 /* If we need a secondary reload for an intermediate, the cost is
437 that to load the input into the intermediate register, then to
438 copy it. */
439 sri.prev_sri = prev_sri;
440 sri.extra_cost = 0;
441 /* PR 68770: Secondary reload might examine the t_icode field. */
442 sri.t_icode = CODE_FOR_nothing;
444 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
446 if (secondary_class != NO_REGS)
448 ira_init_register_move_cost_if_necessary (mode);
449 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
450 + sri.extra_cost
451 + copy_cost (x, mode, secondary_class, to_p, &sri));
454 /* For memory, use the memory move cost, for (hard) registers, use
455 the cost to move between the register classes, and use 2 for
456 everything else (constants). */
457 if (MEM_P (x) || rclass == NO_REGS)
458 return sri.extra_cost
459 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
460 else if (REG_P (x))
462 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
464 ira_init_register_move_cost_if_necessary (mode);
465 return (sri.extra_cost
466 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
468 else
469 /* If this is a constant, we may eventually want to call rtx_cost
470 here. */
471 return sri.extra_cost + COSTS_N_INSNS (1);
476 /* Record the cost of using memory or hard registers of various
477 classes for the operands in INSN.
479 N_ALTS is the number of alternatives.
480 N_OPS is the number of operands.
481 OPS is an array of the operands.
482 MODES are the modes of the operands, in case any are VOIDmode.
483 CONSTRAINTS are the constraints to use for the operands. This array
484 is modified by this procedure.
486 This procedure works alternative by alternative. For each
487 alternative we assume that we will be able to allocate all allocnos
488 to their ideal register class and calculate the cost of using that
489 alternative. Then we compute, for each operand that is a
490 pseudo-register, the cost of having the allocno allocated to each
491 register class and using it in that alternative. To this cost is
492 added the cost of the alternative.
494 The cost of each class for this insn is its lowest cost among all
495 the alternatives. */
496 static void
497 record_reg_classes (int n_alts, int n_ops, rtx *ops,
498 machine_mode *modes, const char **constraints,
499 rtx_insn *insn, enum reg_class *pref)
501 int alt;
502 int i, j, k;
503 int insn_allows_mem[MAX_RECOG_OPERANDS];
504 move_table *move_in_cost, *move_out_cost;
505 short (*mem_cost)[2];
507 for (i = 0; i < n_ops; i++)
508 insn_allows_mem[i] = 0;
510 /* Process each alternative, each time minimizing an operand's cost
511 with the cost for each operand in that alternative. */
512 alternative_mask preferred = get_preferred_alternatives (insn);
513 for (alt = 0; alt < n_alts; alt++)
515 enum reg_class classes[MAX_RECOG_OPERANDS];
516 int allows_mem[MAX_RECOG_OPERANDS];
517 enum reg_class rclass;
518 int alt_fail = 0;
519 int alt_cost = 0, op_cost_add;
521 if (!TEST_BIT (preferred, alt))
523 for (i = 0; i < recog_data.n_operands; i++)
524 constraints[i] = skip_alternative (constraints[i]);
526 continue;
529 for (i = 0; i < n_ops; i++)
531 unsigned char c;
532 const char *p = constraints[i];
533 rtx op = ops[i];
534 machine_mode mode = modes[i];
535 int allows_addr = 0;
536 int win = 0;
538 /* Initially show we know nothing about the register class. */
539 classes[i] = NO_REGS;
540 allows_mem[i] = 0;
542 /* If this operand has no constraints at all, we can
543 conclude nothing about it since anything is valid. */
544 if (*p == 0)
546 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
547 memset (this_op_costs[i], 0, struct_costs_size);
548 continue;
551 /* If this alternative is only relevant when this operand
552 matches a previous operand, we do different things
553 depending on whether this operand is a allocno-reg or not.
554 We must process any modifiers for the operand before we
555 can make this test. */
556 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
557 p++;
559 if (p[0] >= '0' && p[0] <= '0' + i)
561 /* Copy class and whether memory is allowed from the
562 matching alternative. Then perform any needed cost
563 computations and/or adjustments. */
564 j = p[0] - '0';
565 classes[i] = classes[j];
566 allows_mem[i] = allows_mem[j];
567 if (allows_mem[i])
568 insn_allows_mem[i] = 1;
570 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
572 /* If this matches the other operand, we have no
573 added cost and we win. */
574 if (rtx_equal_p (ops[j], op))
575 win = 1;
576 /* If we can put the other operand into a register,
577 add to the cost of this alternative the cost to
578 copy this operand to the register used for the
579 other operand. */
580 else if (classes[j] != NO_REGS)
582 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
583 win = 1;
586 else if (! REG_P (ops[j])
587 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
589 /* This op is an allocno but the one it matches is
590 not. */
592 /* If we can't put the other operand into a
593 register, this alternative can't be used. */
595 if (classes[j] == NO_REGS)
596 alt_fail = 1;
597 /* Otherwise, add to the cost of this alternative
598 the cost to copy the other operand to the hard
599 register used for this operand. */
600 else
601 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
603 else
605 /* The costs of this operand are not the same as the
606 other operand since move costs are not symmetric.
607 Moreover, if we cannot tie them, this alternative
608 needs to do a copy, which is one insn. */
609 struct costs *pp = this_op_costs[i];
610 int *pp_costs = pp->cost;
611 cost_classes_t cost_classes_ptr
612 = regno_cost_classes[REGNO (op)];
613 enum reg_class *cost_classes = cost_classes_ptr->classes;
614 bool in_p = recog_data.operand_type[i] != OP_OUT;
615 bool out_p = recog_data.operand_type[i] != OP_IN;
616 enum reg_class op_class = classes[i];
618 ira_init_register_move_cost_if_necessary (mode);
619 if (! in_p)
621 ira_assert (out_p);
622 if (op_class == NO_REGS)
624 mem_cost = ira_memory_move_cost[mode];
625 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
627 rclass = cost_classes[k];
628 pp_costs[k] = mem_cost[rclass][0] * frequency;
631 else
633 move_out_cost = ira_may_move_out_cost[mode];
634 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
636 rclass = cost_classes[k];
637 pp_costs[k]
638 = move_out_cost[op_class][rclass] * frequency;
642 else if (! out_p)
644 ira_assert (in_p);
645 if (op_class == NO_REGS)
647 mem_cost = ira_memory_move_cost[mode];
648 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
650 rclass = cost_classes[k];
651 pp_costs[k] = mem_cost[rclass][1] * frequency;
654 else
656 move_in_cost = ira_may_move_in_cost[mode];
657 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
659 rclass = cost_classes[k];
660 pp_costs[k]
661 = move_in_cost[rclass][op_class] * frequency;
665 else
667 if (op_class == NO_REGS)
669 mem_cost = ira_memory_move_cost[mode];
670 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
672 rclass = cost_classes[k];
673 pp_costs[k] = ((mem_cost[rclass][0]
674 + mem_cost[rclass][1])
675 * frequency);
678 else
680 move_in_cost = ira_may_move_in_cost[mode];
681 move_out_cost = ira_may_move_out_cost[mode];
682 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
684 rclass = cost_classes[k];
685 pp_costs[k] = ((move_in_cost[rclass][op_class]
686 + move_out_cost[op_class][rclass])
687 * frequency);
692 /* If the alternative actually allows memory, make
693 things a bit cheaper since we won't need an extra
694 insn to load it. */
695 pp->mem_cost
696 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
697 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
698 - allows_mem[i]) * frequency;
700 /* If we have assigned a class to this allocno in
701 our first pass, add a cost to this alternative
702 corresponding to what we would add if this
703 allocno were not in the appropriate class. */
704 if (pref)
706 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
708 if (pref_class == NO_REGS)
709 alt_cost
710 += ((out_p
711 ? ira_memory_move_cost[mode][op_class][0] : 0)
712 + (in_p
713 ? ira_memory_move_cost[mode][op_class][1]
714 : 0));
715 else if (ira_reg_class_intersect
716 [pref_class][op_class] == NO_REGS)
717 alt_cost
718 += ira_register_move_cost[mode][pref_class][op_class];
720 if (REGNO (ops[i]) != REGNO (ops[j])
721 && ! find_reg_note (insn, REG_DEAD, op))
722 alt_cost += 2;
724 p++;
728 /* Scan all the constraint letters. See if the operand
729 matches any of the constraints. Collect the valid
730 register classes and see if this operand accepts
731 memory. */
732 while ((c = *p))
734 switch (c)
736 case '*':
737 /* Ignore the next letter for this pass. */
738 c = *++p;
739 break;
741 case '^':
742 alt_cost += 2;
743 break;
745 case '?':
746 alt_cost += 2;
747 break;
749 case 'g':
750 if (MEM_P (op)
751 || (CONSTANT_P (op)
752 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
753 win = 1;
754 insn_allows_mem[i] = allows_mem[i] = 1;
755 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
756 break;
758 default:
759 enum constraint_num cn = lookup_constraint (p);
760 enum reg_class cl;
761 switch (get_constraint_type (cn))
763 case CT_REGISTER:
764 cl = reg_class_for_constraint (cn);
765 if (cl != NO_REGS)
766 classes[i] = ira_reg_class_subunion[classes[i]][cl];
767 break;
769 case CT_CONST_INT:
770 if (CONST_INT_P (op)
771 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
772 win = 1;
773 break;
775 case CT_MEMORY:
776 /* Every MEM can be reloaded to fit. */
777 insn_allows_mem[i] = allows_mem[i] = 1;
778 if (MEM_P (op))
779 win = 1;
780 break;
782 case CT_SPECIAL_MEMORY:
783 case CT_RELAXED_MEMORY:
784 insn_allows_mem[i] = allows_mem[i] = 1;
785 if (MEM_P (extract_mem_from_operand (op))
786 && constraint_satisfied_p (op, cn))
787 win = 1;
788 break;
790 case CT_ADDRESS:
791 /* Every address can be reloaded to fit. */
792 allows_addr = 1;
793 if (address_operand (op, GET_MODE (op))
794 || constraint_satisfied_p (op, cn))
795 win = 1;
796 /* We know this operand is an address, so we
797 want it to be allocated to a hard register
798 that can be the base of an address,
799 i.e. BASE_REG_CLASS. */
800 classes[i]
801 = ira_reg_class_subunion[classes[i]]
802 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
803 ADDRESS, SCRATCH)];
804 break;
806 case CT_FIXED_FORM:
807 if (constraint_satisfied_p (op, cn))
808 win = 1;
809 break;
811 break;
813 p += CONSTRAINT_LEN (c, p);
814 if (c == ',')
815 break;
818 constraints[i] = p;
820 if (alt_fail)
821 break;
823 /* How we account for this operand now depends on whether it
824 is a pseudo register or not. If it is, we first check if
825 any register classes are valid. If not, we ignore this
826 alternative, since we want to assume that all allocnos get
827 allocated for register preferencing. If some register
828 class is valid, compute the costs of moving the allocno
829 into that class. */
830 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
832 if (classes[i] == NO_REGS && ! allows_mem[i])
834 /* We must always fail if the operand is a REG, but
835 we did not find a suitable class and memory is
836 not allowed.
838 Otherwise we may perform an uninitialized read
839 from this_op_costs after the `continue' statement
840 below. */
841 alt_fail = 1;
843 else
845 unsigned int regno = REGNO (op);
846 struct costs *pp = this_op_costs[i];
847 int *pp_costs = pp->cost;
848 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
849 enum reg_class *cost_classes = cost_classes_ptr->classes;
850 bool in_p = recog_data.operand_type[i] != OP_OUT;
851 bool out_p = recog_data.operand_type[i] != OP_IN;
852 enum reg_class op_class = classes[i];
854 ira_init_register_move_cost_if_necessary (mode);
855 if (! in_p)
857 ira_assert (out_p);
858 if (op_class == NO_REGS)
860 mem_cost = ira_memory_move_cost[mode];
861 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
863 rclass = cost_classes[k];
864 pp_costs[k] = mem_cost[rclass][0] * frequency;
867 else
869 move_out_cost = ira_may_move_out_cost[mode];
870 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
872 rclass = cost_classes[k];
873 pp_costs[k]
874 = move_out_cost[op_class][rclass] * frequency;
878 else if (! out_p)
880 ira_assert (in_p);
881 if (op_class == NO_REGS)
883 mem_cost = ira_memory_move_cost[mode];
884 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
886 rclass = cost_classes[k];
887 pp_costs[k] = mem_cost[rclass][1] * frequency;
890 else
892 move_in_cost = ira_may_move_in_cost[mode];
893 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
895 rclass = cost_classes[k];
896 pp_costs[k]
897 = move_in_cost[rclass][op_class] * frequency;
901 else
903 if (op_class == NO_REGS)
905 mem_cost = ira_memory_move_cost[mode];
906 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
908 rclass = cost_classes[k];
909 pp_costs[k] = ((mem_cost[rclass][0]
910 + mem_cost[rclass][1])
911 * frequency);
914 else
916 move_in_cost = ira_may_move_in_cost[mode];
917 move_out_cost = ira_may_move_out_cost[mode];
918 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
920 rclass = cost_classes[k];
921 pp_costs[k] = ((move_in_cost[rclass][op_class]
922 + move_out_cost[op_class][rclass])
923 * frequency);
928 if (op_class == NO_REGS)
929 /* Although we don't need insn to reload from
930 memory, still accessing memory is usually more
931 expensive than a register. */
932 pp->mem_cost = frequency;
933 else
934 /* If the alternative actually allows memory, make
935 things a bit cheaper since we won't need an
936 extra insn to load it. */
937 pp->mem_cost
938 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
939 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
940 - allows_mem[i]) * frequency;
941 /* If we have assigned a class to this allocno in
942 our first pass, add a cost to this alternative
943 corresponding to what we would add if this
944 allocno were not in the appropriate class. */
945 if (pref)
947 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
949 if (pref_class == NO_REGS)
951 if (op_class != NO_REGS)
952 alt_cost
953 += ((out_p
954 ? ira_memory_move_cost[mode][op_class][0]
955 : 0)
956 + (in_p
957 ? ira_memory_move_cost[mode][op_class][1]
958 : 0));
960 else if (op_class == NO_REGS)
961 alt_cost
962 += ((out_p
963 ? ira_memory_move_cost[mode][pref_class][1]
964 : 0)
965 + (in_p
966 ? ira_memory_move_cost[mode][pref_class][0]
967 : 0));
968 else if (ira_reg_class_intersect[pref_class][op_class]
969 == NO_REGS)
970 alt_cost += (ira_register_move_cost
971 [mode][pref_class][op_class]);
976 /* Otherwise, if this alternative wins, either because we
977 have already determined that or if we have a hard
978 register of the proper class, there is no cost for this
979 alternative. */
980 else if (win || (REG_P (op)
981 && reg_fits_class_p (op, classes[i],
982 0, GET_MODE (op))))
985 /* If registers are valid, the cost of this alternative
986 includes copying the object to and/or from a
987 register. */
988 else if (classes[i] != NO_REGS)
990 if (recog_data.operand_type[i] != OP_OUT)
991 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
993 if (recog_data.operand_type[i] != OP_IN)
994 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
996 /* The only other way this alternative can be used is if
997 this is a constant that could be placed into memory. */
998 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
999 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1000 else
1001 alt_fail = 1;
1003 if (alt_fail)
1004 break;
1007 if (alt_fail)
1009 /* The loop above might have exited early once the failure
1010 was seen. Skip over the constraints for the remaining
1011 operands. */
1012 i += 1;
1013 for (; i < n_ops; ++i)
1014 constraints[i] = skip_alternative (constraints[i]);
1015 continue;
1018 op_cost_add = alt_cost * frequency;
1019 /* Finally, update the costs with the information we've
1020 calculated about this alternative. */
1021 for (i = 0; i < n_ops; i++)
1022 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1024 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1025 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1026 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1027 cost_classes_t cost_classes_ptr
1028 = regno_cost_classes[REGNO (ops[i])];
1030 pp->mem_cost = MIN (pp->mem_cost,
1031 (qq->mem_cost + op_cost_add) * scale);
1033 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1034 pp_costs[k]
1035 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1039 if (allocno_p)
1040 for (i = 0; i < n_ops; i++)
1042 ira_allocno_t a;
1043 rtx op = ops[i];
1045 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1046 continue;
1047 a = ira_curr_regno_allocno_map [REGNO (op)];
1048 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1049 ALLOCNO_BAD_SPILL_P (a) = true;
1056 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1057 static inline bool
1058 ok_for_index_p_nonstrict (rtx reg)
1060 unsigned regno = REGNO (reg);
1062 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1065 /* A version of regno_ok_for_base_p for use here, when all
1066 pseudo-registers should count as OK. Arguments as for
1067 regno_ok_for_base_p. */
1068 static inline bool
1069 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1070 enum rtx_code outer_code, enum rtx_code index_code)
1072 unsigned regno = REGNO (reg);
1074 if (regno >= FIRST_PSEUDO_REGISTER)
1075 return true;
1076 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1079 /* Record the pseudo registers we must reload into hard registers in a
1080 subexpression of a memory address, X.
1082 If CONTEXT is 0, we are looking at the base part of an address,
1083 otherwise we are looking at the index part.
1085 MODE and AS are the mode and address space of the memory reference;
1086 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1087 These four arguments are passed down to base_reg_class.
1089 SCALE is twice the amount to multiply the cost by (it is twice so
1090 we can represent half-cost adjustments). */
1091 static void
1092 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1093 int context, enum rtx_code outer_code,
1094 enum rtx_code index_code, int scale)
1096 enum rtx_code code = GET_CODE (x);
1097 enum reg_class rclass;
1099 if (context == 1)
1100 rclass = INDEX_REG_CLASS;
1101 else
1102 rclass = base_reg_class (mode, as, outer_code, index_code);
1104 switch (code)
1106 case CONST_INT:
1107 case CONST:
1108 case CC0:
1109 case PC:
1110 case SYMBOL_REF:
1111 case LABEL_REF:
1112 return;
1114 case PLUS:
1115 /* When we have an address that is a sum, we must determine
1116 whether registers are "base" or "index" regs. If there is a
1117 sum of two registers, we must choose one to be the "base".
1118 Luckily, we can use the REG_POINTER to make a good choice
1119 most of the time. We only need to do this on machines that
1120 can have two registers in an address and where the base and
1121 index register classes are different.
1123 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1124 but that seems bogus since it should only be set when we are
1125 sure the register is being used as a pointer. */
1127 rtx arg0 = XEXP (x, 0);
1128 rtx arg1 = XEXP (x, 1);
1129 enum rtx_code code0 = GET_CODE (arg0);
1130 enum rtx_code code1 = GET_CODE (arg1);
1132 /* Look inside subregs. */
1133 if (code0 == SUBREG)
1134 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1135 if (code1 == SUBREG)
1136 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1138 /* If index registers do not appear, or coincide with base registers,
1139 just record registers in any non-constant operands. We
1140 assume here, as well as in the tests below, that all
1141 addresses are in canonical form. */
1142 if (MAX_REGS_PER_ADDRESS == 1
1143 || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1145 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1146 if (! CONSTANT_P (arg1))
1147 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1150 /* If the second operand is a constant integer, it doesn't
1151 change what class the first operand must be. */
1152 else if (CONST_SCALAR_INT_P (arg1))
1153 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1154 /* If the second operand is a symbolic constant, the first
1155 operand must be an index register. */
1156 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1157 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1158 /* If both operands are registers but one is already a hard
1159 register of index or reg-base class, give the other the
1160 class that the hard register is not. */
1161 else if (code0 == REG && code1 == REG
1162 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1163 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1164 || ok_for_index_p_nonstrict (arg0)))
1165 record_address_regs (mode, as, arg1,
1166 ok_for_base_p_nonstrict (arg0, mode, as,
1167 PLUS, REG) ? 1 : 0,
1168 PLUS, REG, scale);
1169 else if (code0 == REG && code1 == REG
1170 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1171 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1172 || ok_for_index_p_nonstrict (arg1)))
1173 record_address_regs (mode, as, arg0,
1174 ok_for_base_p_nonstrict (arg1, mode, as,
1175 PLUS, REG) ? 1 : 0,
1176 PLUS, REG, scale);
1177 /* If one operand is known to be a pointer, it must be the
1178 base with the other operand the index. Likewise if the
1179 other operand is a MULT. */
1180 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1182 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1183 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1185 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1187 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1188 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1190 /* Otherwise, count equal chances that each might be a base or
1191 index register. This case should be rare. */
1192 else
1194 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1195 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1196 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1197 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1200 break;
1202 /* Double the importance of an allocno that is incremented or
1203 decremented, since it would take two extra insns if it ends
1204 up in the wrong place. */
1205 case POST_MODIFY:
1206 case PRE_MODIFY:
1207 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1208 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1209 if (REG_P (XEXP (XEXP (x, 1), 1)))
1210 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1211 2 * scale);
1212 break;
1214 case POST_INC:
1215 case PRE_INC:
1216 case POST_DEC:
1217 case PRE_DEC:
1218 /* Double the importance of an allocno that is incremented or
1219 decremented, since it would take two extra insns if it ends
1220 up in the wrong place. */
1221 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1222 break;
1224 case REG:
1226 struct costs *pp;
1227 int *pp_costs;
1228 enum reg_class i;
1229 int k, regno, add_cost;
1230 cost_classes_t cost_classes_ptr;
1231 enum reg_class *cost_classes;
1232 move_table *move_in_cost;
1234 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1235 break;
1237 regno = REGNO (x);
1238 if (allocno_p)
1239 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1240 pp = COSTS (costs, COST_INDEX (regno));
1241 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1242 if (INT_MAX - add_cost < pp->mem_cost)
1243 pp->mem_cost = INT_MAX;
1244 else
1245 pp->mem_cost += add_cost;
1246 cost_classes_ptr = regno_cost_classes[regno];
1247 cost_classes = cost_classes_ptr->classes;
1248 pp_costs = pp->cost;
1249 ira_init_register_move_cost_if_necessary (Pmode);
1250 move_in_cost = ira_may_move_in_cost[Pmode];
1251 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1253 i = cost_classes[k];
1254 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1255 if (INT_MAX - add_cost < pp_costs[k])
1256 pp_costs[k] = INT_MAX;
1257 else
1258 pp_costs[k] += add_cost;
1261 break;
1263 default:
1265 const char *fmt = GET_RTX_FORMAT (code);
1266 int i;
1267 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1268 if (fmt[i] == 'e')
1269 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1270 scale);
1277 /* Calculate the costs of insn operands. */
1278 static void
1279 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1281 const char *constraints[MAX_RECOG_OPERANDS];
1282 machine_mode modes[MAX_RECOG_OPERANDS];
1283 rtx set;
1284 int i;
1286 if ((set = single_set (insn)) != NULL_RTX
1287 /* In rare cases the single set insn might have less 2 operands
1288 as the source can be a fixed special reg. */
1289 && recog_data.n_operands > 1
1290 && recog_data.operand[0] == SET_DEST (set)
1291 && recog_data.operand[1] == SET_SRC (set))
1293 int regno, other_regno;
1294 rtx dest = SET_DEST (set);
1295 rtx src = SET_SRC (set);
1297 if (GET_CODE (dest) == SUBREG
1298 && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1299 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1300 dest = SUBREG_REG (dest);
1301 if (GET_CODE (src) == SUBREG
1302 && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1303 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1304 src = SUBREG_REG (src);
1305 if (REG_P (src) && REG_P (dest)
1306 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1307 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1308 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1309 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1311 machine_mode mode = GET_MODE (SET_SRC (set));
1312 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1313 enum reg_class *cost_classes = cost_classes_ptr->classes;
1314 reg_class_t rclass, hard_reg_class, pref_class, bigger_hard_reg_class;
1315 int cost, k;
1316 move_table *move_costs;
1317 bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1319 ira_init_register_move_cost_if_necessary (mode);
1320 move_costs = ira_register_move_cost[mode];
1321 hard_reg_class = REGNO_REG_CLASS (other_regno);
1322 bigger_hard_reg_class = ira_pressure_class_translate[hard_reg_class];
1323 /* Target code may return any cost for mode which does not
1324 fit the hard reg class (e.g. DImode for AREG on
1325 i386). Check this and use a bigger class to get the
1326 right cost. */
1327 if (bigger_hard_reg_class != NO_REGS
1328 && ! ira_hard_reg_in_set_p (other_regno, mode,
1329 reg_class_contents[hard_reg_class]))
1330 hard_reg_class = bigger_hard_reg_class;
1331 i = regno == (int) REGNO (src) ? 1 : 0;
1332 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1334 rclass = cost_classes[k];
1335 cost = (i == 0
1336 ? move_costs[hard_reg_class][rclass]
1337 : move_costs[rclass][hard_reg_class]);
1339 op_costs[i]->cost[k] = cost * frequency;
1340 /* If we have assigned a class to this allocno in our
1341 first pass, add a cost to this alternative
1342 corresponding to what we would add if this allocno
1343 were not in the appropriate class. */
1344 if (pref)
1346 if ((pref_class = pref[COST_INDEX (regno)]) == NO_REGS)
1347 op_costs[i]->cost[k]
1348 += ((i == 0 ? ira_memory_move_cost[mode][rclass][0] : 0)
1349 + (i == 1 ? ira_memory_move_cost[mode][rclass][1] : 0)
1350 * frequency);
1351 else if (ira_reg_class_intersect[pref_class][rclass]
1352 == NO_REGS)
1353 op_costs[i]->cost[k]
1354 += (move_costs[pref_class][rclass]
1355 * frequency);
1357 /* If this insn is a single set copying operand 1 to
1358 operand 0 and one operand is an allocno with the
1359 other a hard reg or an allocno that prefers a hard
1360 register that is in its own register class then we
1361 may want to adjust the cost of that register class to
1364 Avoid the adjustment if the source does not die to
1365 avoid stressing of register allocator by preferencing
1366 two colliding registers into single class. */
1367 if (dead_p
1368 && TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1369 && (reg_class_size[(int) rclass]
1370 == (ira_reg_class_max_nregs
1371 [(int) rclass][(int) GET_MODE(src)])))
1373 if (reg_class_size[rclass] == 1)
1374 op_costs[i]->cost[k] = -frequency;
1375 else if (in_hard_reg_set_p (reg_class_contents[rclass],
1376 GET_MODE(src), other_regno))
1377 op_costs[i]->cost[k] = -frequency;
1380 op_costs[i]->mem_cost
1381 = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
1382 if (pref && (pref_class = pref[COST_INDEX (regno)]) != NO_REGS)
1383 op_costs[i]->mem_cost
1384 += ira_memory_move_cost[mode][pref_class][i] * frequency;
1385 return;
1389 for (i = 0; i < recog_data.n_operands; i++)
1391 constraints[i] = recog_data.constraints[i];
1392 modes[i] = recog_data.operand_mode[i];
1395 /* If we get here, we are set up to record the costs of all the
1396 operands for this insn. Start by initializing the costs. Then
1397 handle any address registers. Finally record the desired classes
1398 for any allocnos, doing it twice if some pair of operands are
1399 commutative. */
1400 for (i = 0; i < recog_data.n_operands; i++)
1402 rtx op_mem = extract_mem_from_operand (recog_data.operand[i]);
1403 memcpy (op_costs[i], init_cost, struct_costs_size);
1405 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1406 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1408 if (MEM_P (op_mem))
1409 record_address_regs (GET_MODE (op_mem),
1410 MEM_ADDR_SPACE (op_mem),
1411 XEXP (op_mem, 0),
1412 0, MEM, SCRATCH, frequency * 2);
1413 else if (constraints[i][0] == 'p'
1414 || (insn_extra_address_constraint
1415 (lookup_constraint (constraints[i]))))
1416 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1417 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1418 frequency * 2);
1421 /* Check for commutative in a separate loop so everything will have
1422 been initialized. We must do this even if one operand is a
1423 constant--see addsi3 in m68k.md. */
1424 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1425 if (constraints[i][0] == '%')
1427 const char *xconstraints[MAX_RECOG_OPERANDS];
1428 int j;
1430 /* Handle commutative operands by swapping the
1431 constraints. We assume the modes are the same. */
1432 for (j = 0; j < recog_data.n_operands; j++)
1433 xconstraints[j] = constraints[j];
1435 xconstraints[i] = constraints[i+1];
1436 xconstraints[i+1] = constraints[i];
1437 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1438 recog_data.operand, modes,
1439 xconstraints, insn, pref);
1441 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1442 recog_data.operand, modes,
1443 constraints, insn, pref);
1448 /* Process one insn INSN. Scan it and record each time it would save
1449 code to put a certain allocnos in a certain class. Return the last
1450 insn processed, so that the scan can be continued from there. */
1451 static rtx_insn *
1452 scan_one_insn (rtx_insn *insn)
1454 enum rtx_code pat_code;
1455 rtx set, note;
1456 int i, k;
1457 bool counted_mem;
1459 if (!NONDEBUG_INSN_P (insn))
1460 return insn;
1462 pat_code = GET_CODE (PATTERN (insn));
1463 if (pat_code == ASM_INPUT)
1464 return insn;
1466 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1467 and initialize the register move costs of mode M.
1469 The pseudo may be related to another pseudo via a copy (implicit or
1470 explicit) and if there are no mode M uses/sets of the original
1471 pseudo, then we may leave the register move costs uninitialized for
1472 mode M. */
1473 if (pat_code == USE || pat_code == CLOBBER)
1475 rtx x = XEXP (PATTERN (insn), 0);
1476 if (GET_CODE (x) == REG
1477 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1478 && have_regs_of_mode[GET_MODE (x)])
1479 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1480 return insn;
1483 counted_mem = false;
1484 set = single_set (insn);
1485 extract_insn (insn);
1487 /* If this insn loads a parameter from its stack slot, then it
1488 represents a savings, rather than a cost, if the parameter is
1489 stored in memory. Record this fact.
1491 Similarly if we're loading other constants from memory (constant
1492 pool, TOC references, small data areas, etc) and this is the only
1493 assignment to the destination pseudo.
1495 Don't do this if SET_SRC (set) isn't a general operand, if it is
1496 a memory requiring special instructions to load it, decreasing
1497 mem_cost might result in it being loaded using the specialized
1498 instruction into a register, then stored into stack and loaded
1499 again from the stack. See PR52208.
1501 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1502 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1503 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1504 && ((MEM_P (XEXP (note, 0))
1505 && !side_effects_p (SET_SRC (set)))
1506 || (CONSTANT_P (XEXP (note, 0))
1507 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1508 XEXP (note, 0))
1509 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1510 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1511 /* LRA does not use equiv with a symbol for PIC code. */
1512 && (! ira_use_lra_p || ! pic_offset_table_rtx
1513 || ! contains_symbol_ref_p (XEXP (note, 0))))
1515 enum reg_class cl = GENERAL_REGS;
1516 rtx reg = SET_DEST (set);
1517 int num = COST_INDEX (REGNO (reg));
1519 COSTS (costs, num)->mem_cost
1520 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1521 record_address_regs (GET_MODE (SET_SRC (set)),
1522 MEM_ADDR_SPACE (SET_SRC (set)),
1523 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1524 frequency * 2);
1525 counted_mem = true;
1528 record_operand_costs (insn, pref);
1530 /* Now add the cost for each operand to the total costs for its
1531 allocno. */
1532 for (i = 0; i < recog_data.n_operands; i++)
1534 rtx op = recog_data.operand[i];
1536 if (GET_CODE (op) == SUBREG)
1537 op = SUBREG_REG (op);
1538 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1540 int regno = REGNO (op);
1541 struct costs *p = COSTS (costs, COST_INDEX (regno));
1542 struct costs *q = op_costs[i];
1543 int *p_costs = p->cost, *q_costs = q->cost;
1544 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1545 int add_cost;
1547 /* If the already accounted for the memory "cost" above, don't
1548 do so again. */
1549 if (!counted_mem)
1551 add_cost = q->mem_cost;
1552 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1553 p->mem_cost = INT_MAX;
1554 else
1555 p->mem_cost += add_cost;
1557 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1559 add_cost = q_costs[k];
1560 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1561 p_costs[k] = INT_MAX;
1562 else
1563 p_costs[k] += add_cost;
1567 return insn;
1572 /* Print allocnos costs to file F. */
1573 static void
1574 print_allocno_costs (FILE *f)
1576 int k;
1577 ira_allocno_t a;
1578 ira_allocno_iterator ai;
1580 ira_assert (allocno_p);
1581 fprintf (f, "\n");
1582 FOR_EACH_ALLOCNO (a, ai)
1584 int i, rclass;
1585 basic_block bb;
1586 int regno = ALLOCNO_REGNO (a);
1587 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1588 enum reg_class *cost_classes = cost_classes_ptr->classes;
1590 i = ALLOCNO_NUM (a);
1591 fprintf (f, " a%d(r%d,", i, regno);
1592 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1593 fprintf (f, "b%d", bb->index);
1594 else
1595 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1596 fprintf (f, ") costs:");
1597 for (k = 0; k < cost_classes_ptr->num; k++)
1599 rclass = cost_classes[k];
1600 fprintf (f, " %s:%d", reg_class_names[rclass],
1601 COSTS (costs, i)->cost[k]);
1602 if (flag_ira_region == IRA_REGION_ALL
1603 || flag_ira_region == IRA_REGION_MIXED)
1604 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1606 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1607 if (flag_ira_region == IRA_REGION_ALL
1608 || flag_ira_region == IRA_REGION_MIXED)
1609 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1610 fprintf (f, "\n");
1614 /* Print pseudo costs to file F. */
1615 static void
1616 print_pseudo_costs (FILE *f)
1618 int regno, k;
1619 int rclass;
1620 cost_classes_t cost_classes_ptr;
1621 enum reg_class *cost_classes;
1623 ira_assert (! allocno_p);
1624 fprintf (f, "\n");
1625 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1627 if (REG_N_REFS (regno) <= 0)
1628 continue;
1629 cost_classes_ptr = regno_cost_classes[regno];
1630 cost_classes = cost_classes_ptr->classes;
1631 fprintf (f, " r%d costs:", regno);
1632 for (k = 0; k < cost_classes_ptr->num; k++)
1634 rclass = cost_classes[k];
1635 fprintf (f, " %s:%d", reg_class_names[rclass],
1636 COSTS (costs, regno)->cost[k]);
1638 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1642 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1643 costs. */
1644 static void
1645 process_bb_for_costs (basic_block bb)
1647 rtx_insn *insn;
1649 frequency = REG_FREQ_FROM_BB (bb);
1650 if (frequency == 0)
1651 frequency = 1;
1652 FOR_BB_INSNS (bb, insn)
1653 insn = scan_one_insn (insn);
1656 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1657 costs. */
1658 static void
1659 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1661 basic_block bb;
1663 bb = loop_tree_node->bb;
1664 if (bb != NULL)
1665 process_bb_for_costs (bb);
1668 /* Find costs of register classes and memory for allocnos or pseudos
1669 and their best costs. Set up preferred, alternative and allocno
1670 classes for pseudos. */
1671 static void
1672 find_costs_and_classes (FILE *dump_file)
1674 int i, k, start, max_cost_classes_num;
1675 int pass;
1676 basic_block bb;
1677 enum reg_class *regno_best_class, new_class;
1679 init_recog ();
1680 regno_best_class
1681 = (enum reg_class *) ira_allocate (max_reg_num ()
1682 * sizeof (enum reg_class));
1683 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1684 regno_best_class[i] = NO_REGS;
1685 if (!resize_reg_info () && allocno_p
1686 && pseudo_classes_defined_p && flag_expensive_optimizations)
1688 ira_allocno_t a;
1689 ira_allocno_iterator ai;
1691 pref = pref_buffer;
1692 max_cost_classes_num = 1;
1693 FOR_EACH_ALLOCNO (a, ai)
1695 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1696 setup_regno_cost_classes_by_aclass
1697 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1698 max_cost_classes_num
1699 = MAX (max_cost_classes_num,
1700 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1702 start = 1;
1704 else
1706 pref = NULL;
1707 max_cost_classes_num = ira_important_classes_num;
1708 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1709 if (regno_reg_rtx[i] != NULL_RTX)
1710 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1711 else
1712 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1713 start = 0;
1715 if (allocno_p)
1716 /* Clear the flag for the next compiled function. */
1717 pseudo_classes_defined_p = false;
1718 /* Normally we scan the insns once and determine the best class to
1719 use for each allocno. However, if -fexpensive-optimizations are
1720 on, we do so twice, the second time using the tentative best
1721 classes to guide the selection. */
1722 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1724 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1725 fprintf (dump_file,
1726 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1728 if (pass != start)
1730 max_cost_classes_num = 1;
1731 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1733 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1734 max_cost_classes_num
1735 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1739 struct_costs_size
1740 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1741 /* Zero out our accumulation of the cost of each class for each
1742 allocno. */
1743 memset (costs, 0, cost_elements_num * struct_costs_size);
1745 if (allocno_p)
1747 /* Scan the instructions and record each time it would save code
1748 to put a certain allocno in a certain class. */
1749 ira_traverse_loop_tree (true, ira_loop_tree_root,
1750 process_bb_node_for_costs, NULL);
1752 memcpy (total_allocno_costs, costs,
1753 max_struct_costs_size * ira_allocnos_num);
1755 else
1757 basic_block bb;
1759 FOR_EACH_BB_FN (bb, cfun)
1760 process_bb_for_costs (bb);
1763 if (pass == 0)
1764 pref = pref_buffer;
1766 /* Now for each allocno look at how desirable each class is and
1767 find which class is preferred. */
1768 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1770 ira_allocno_t a, parent_a;
1771 int rclass, a_num, parent_a_num, add_cost;
1772 ira_loop_tree_node_t parent;
1773 int best_cost, allocno_cost;
1774 enum reg_class best, alt_class;
1775 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1776 enum reg_class *cost_classes;
1777 int *i_costs = temp_costs->cost;
1778 int i_mem_cost;
1779 int equiv_savings = regno_equiv_gains[i];
1781 if (! allocno_p)
1783 if (regno_reg_rtx[i] == NULL_RTX)
1784 continue;
1785 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1786 i_mem_cost = temp_costs->mem_cost;
1787 cost_classes = cost_classes_ptr->classes;
1789 else
1791 if (ira_regno_allocno_map[i] == NULL)
1792 continue;
1793 memset (temp_costs, 0, struct_costs_size);
1794 i_mem_cost = 0;
1795 cost_classes = cost_classes_ptr->classes;
1796 /* Find cost of all allocnos with the same regno. */
1797 for (a = ira_regno_allocno_map[i];
1798 a != NULL;
1799 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1801 int *a_costs, *p_costs;
1803 a_num = ALLOCNO_NUM (a);
1804 if ((flag_ira_region == IRA_REGION_ALL
1805 || flag_ira_region == IRA_REGION_MIXED)
1806 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1807 && (parent_a = parent->regno_allocno_map[i]) != NULL
1808 /* There are no caps yet. */
1809 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1810 (a)->border_allocnos,
1811 ALLOCNO_NUM (a)))
1813 /* Propagate costs to upper levels in the region
1814 tree. */
1815 parent_a_num = ALLOCNO_NUM (parent_a);
1816 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1817 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1818 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1820 add_cost = a_costs[k];
1821 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1822 p_costs[k] = INT_MAX;
1823 else
1824 p_costs[k] += add_cost;
1826 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1827 if (add_cost > 0
1828 && (INT_MAX - add_cost
1829 < COSTS (total_allocno_costs,
1830 parent_a_num)->mem_cost))
1831 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1832 = INT_MAX;
1833 else
1834 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1835 += add_cost;
1837 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1838 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1840 a_costs = COSTS (costs, a_num)->cost;
1841 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1843 add_cost = a_costs[k];
1844 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1845 i_costs[k] = INT_MAX;
1846 else
1847 i_costs[k] += add_cost;
1849 add_cost = COSTS (costs, a_num)->mem_cost;
1850 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1851 i_mem_cost = INT_MAX;
1852 else
1853 i_mem_cost += add_cost;
1856 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1857 i_mem_cost = 0;
1858 else if (equiv_savings < 0)
1859 i_mem_cost = -equiv_savings;
1860 else if (equiv_savings > 0)
1862 i_mem_cost = 0;
1863 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1864 i_costs[k] += equiv_savings;
1867 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1868 best = ALL_REGS;
1869 alt_class = NO_REGS;
1870 /* Find best common class for all allocnos with the same
1871 regno. */
1872 for (k = 0; k < cost_classes_ptr->num; k++)
1874 rclass = cost_classes[k];
1875 if (i_costs[k] < best_cost)
1877 best_cost = i_costs[k];
1878 best = (enum reg_class) rclass;
1880 else if (i_costs[k] == best_cost)
1881 best = ira_reg_class_subunion[best][rclass];
1882 if (pass == flag_expensive_optimizations
1883 /* We still prefer registers to memory even at this
1884 stage if their costs are the same. We will make
1885 a final decision during assigning hard registers
1886 when we have all info including more accurate
1887 costs which might be affected by assigning hard
1888 registers to other pseudos because the pseudos
1889 involved in moves can be coalesced. */
1890 && i_costs[k] <= i_mem_cost
1891 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1892 > reg_class_size[alt_class]))
1893 alt_class = reg_class_subunion[alt_class][rclass];
1895 alt_class = ira_allocno_class_translate[alt_class];
1896 if (best_cost > i_mem_cost
1897 && ! non_spilled_static_chain_regno_p (i))
1898 regno_aclass[i] = NO_REGS;
1899 else if (!optimize && !targetm.class_likely_spilled_p (best))
1900 /* Registers in the alternative class are likely to need
1901 longer or slower sequences than registers in the best class.
1902 When optimizing we make some effort to use the best class
1903 over the alternative class where possible, but at -O0 we
1904 effectively give the alternative class equal weight.
1905 We then run the risk of using slower alternative registers
1906 when plenty of registers from the best class are still free.
1907 This is especially true because live ranges tend to be very
1908 short in -O0 code and so register pressure tends to be low.
1910 Avoid that by ignoring the alternative class if the best
1911 class has plenty of registers.
1913 The union class arrays give important classes and only
1914 part of it are allocno classes. So translate them into
1915 allocno classes. */
1916 regno_aclass[i] = ira_allocno_class_translate[best];
1917 else
1919 /* Make the common class the biggest class of best and
1920 alt_class. Translate the common class into an
1921 allocno class too. */
1922 regno_aclass[i] = (ira_allocno_class_translate
1923 [ira_reg_class_superunion[best][alt_class]]);
1924 ira_assert (regno_aclass[i] != NO_REGS
1925 && ira_reg_allocno_class_p[regno_aclass[i]]);
1927 if ((new_class
1928 = (reg_class) (targetm.ira_change_pseudo_allocno_class
1929 (i, regno_aclass[i], best))) != regno_aclass[i])
1931 regno_aclass[i] = new_class;
1932 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1933 reg_class_contents[best]))
1934 best = new_class;
1935 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1936 reg_class_contents[alt_class]))
1937 alt_class = new_class;
1939 if (pass == flag_expensive_optimizations)
1941 if (best_cost > i_mem_cost
1942 /* Do not assign NO_REGS to static chain pointer
1943 pseudo when non-local goto is used. */
1944 && ! non_spilled_static_chain_regno_p (i))
1945 best = alt_class = NO_REGS;
1946 else if (best == alt_class)
1947 alt_class = NO_REGS;
1948 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1949 if ((!allocno_p || internal_flag_ira_verbose > 2)
1950 && dump_file != NULL)
1951 fprintf (dump_file,
1952 " r%d: preferred %s, alternative %s, allocno %s\n",
1953 i, reg_class_names[best], reg_class_names[alt_class],
1954 reg_class_names[regno_aclass[i]]);
1956 regno_best_class[i] = best;
1957 if (! allocno_p)
1959 pref[i] = (best_cost > i_mem_cost
1960 && ! non_spilled_static_chain_regno_p (i)
1961 ? NO_REGS : best);
1962 continue;
1964 for (a = ira_regno_allocno_map[i];
1965 a != NULL;
1966 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1968 enum reg_class aclass = regno_aclass[i];
1969 int a_num = ALLOCNO_NUM (a);
1970 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1971 int *a_costs = COSTS (costs, a_num)->cost;
1973 if (aclass == NO_REGS)
1974 best = NO_REGS;
1975 else
1977 /* Finding best class which is subset of the common
1978 class. */
1979 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1980 allocno_cost = best_cost;
1981 best = ALL_REGS;
1982 for (k = 0; k < cost_classes_ptr->num; k++)
1984 rclass = cost_classes[k];
1985 if (! ira_class_subset_p[rclass][aclass])
1986 continue;
1987 if (total_a_costs[k] < best_cost)
1989 best_cost = total_a_costs[k];
1990 allocno_cost = a_costs[k];
1991 best = (enum reg_class) rclass;
1993 else if (total_a_costs[k] == best_cost)
1995 best = ira_reg_class_subunion[best][rclass];
1996 allocno_cost = MAX (allocno_cost, a_costs[k]);
1999 ALLOCNO_CLASS_COST (a) = allocno_cost;
2001 if (internal_flag_ira_verbose > 2 && dump_file != NULL
2002 && (pass == 0 || pref[a_num] != best))
2004 fprintf (dump_file, " a%d (r%d,", a_num, i);
2005 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
2006 fprintf (dump_file, "b%d", bb->index);
2007 else
2008 fprintf (dump_file, "l%d",
2009 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
2010 fprintf (dump_file, ") best %s, allocno %s\n",
2011 reg_class_names[best],
2012 reg_class_names[aclass]);
2014 pref[a_num] = best;
2015 if (pass == flag_expensive_optimizations && best != aclass
2016 && ira_class_hard_regs_num[best] > 0
2017 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
2018 >= ira_class_hard_regs_num[best]))
2020 int ind = cost_classes_ptr->index[aclass];
2022 ira_assert (ind >= 0);
2023 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
2024 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2025 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
2026 / (ira_register_move_cost
2027 [ALLOCNO_MODE (a)][best][aclass]));
2028 for (k = 0; k < cost_classes_ptr->num; k++)
2029 if (ira_class_subset_p[cost_classes[k]][best])
2030 a_costs[k] = a_costs[ind];
2035 if (internal_flag_ira_verbose > 4 && dump_file)
2037 if (allocno_p)
2038 print_allocno_costs (dump_file);
2039 else
2040 print_pseudo_costs (dump_file);
2041 fprintf (dump_file,"\n");
2044 ira_free (regno_best_class);
2049 /* Process moves involving hard regs to modify allocno hard register
2050 costs. We can do this only after determining allocno class. If a
2051 hard register forms a register class, then moves with the hard
2052 register are already taken into account in class costs for the
2053 allocno. */
2054 static void
2055 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2057 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2058 bool to_p;
2059 ira_allocno_t a, curr_a;
2060 ira_loop_tree_node_t curr_loop_tree_node;
2061 enum reg_class rclass;
2062 basic_block bb;
2063 rtx_insn *insn;
2064 rtx set, src, dst;
2066 bb = loop_tree_node->bb;
2067 if (bb == NULL)
2068 return;
2069 freq = REG_FREQ_FROM_BB (bb);
2070 if (freq == 0)
2071 freq = 1;
2072 FOR_BB_INSNS (bb, insn)
2074 if (!NONDEBUG_INSN_P (insn))
2075 continue;
2076 set = single_set (insn);
2077 if (set == NULL_RTX)
2078 continue;
2079 dst = SET_DEST (set);
2080 src = SET_SRC (set);
2081 if (! REG_P (dst) || ! REG_P (src))
2082 continue;
2083 dst_regno = REGNO (dst);
2084 src_regno = REGNO (src);
2085 if (dst_regno >= FIRST_PSEUDO_REGISTER
2086 && src_regno < FIRST_PSEUDO_REGISTER)
2088 hard_regno = src_regno;
2089 a = ira_curr_regno_allocno_map[dst_regno];
2090 to_p = true;
2092 else if (src_regno >= FIRST_PSEUDO_REGISTER
2093 && dst_regno < FIRST_PSEUDO_REGISTER)
2095 hard_regno = dst_regno;
2096 a = ira_curr_regno_allocno_map[src_regno];
2097 to_p = false;
2099 else
2100 continue;
2101 if (reg_class_size[(int) REGNO_REG_CLASS (hard_regno)]
2102 == (ira_reg_class_max_nregs
2103 [REGNO_REG_CLASS (hard_regno)][(int) ALLOCNO_MODE(a)]))
2104 /* If the class can provide only one hard reg to the allocno,
2105 we processed the insn record_operand_costs already and we
2106 actually updated the hard reg cost there. */
2107 continue;
2108 rclass = ALLOCNO_CLASS (a);
2109 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2110 continue;
2111 i = ira_class_hard_reg_index[rclass][hard_regno];
2112 if (i < 0)
2113 continue;
2114 a_regno = ALLOCNO_REGNO (a);
2115 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2116 curr_loop_tree_node != NULL;
2117 curr_loop_tree_node = curr_loop_tree_node->parent)
2118 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2119 ira_add_allocno_pref (curr_a, hard_regno, freq);
2121 int cost;
2122 enum reg_class hard_reg_class;
2123 machine_mode mode;
2125 mode = ALLOCNO_MODE (a);
2126 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2127 ira_init_register_move_cost_if_necessary (mode);
2128 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2129 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2130 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2131 ALLOCNO_CLASS_COST (a));
2132 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2133 rclass, 0);
2134 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2135 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2136 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2137 ALLOCNO_HARD_REG_COSTS (a)[i]);
2142 /* After we find hard register and memory costs for allocnos, define
2143 its class and modify hard register cost because insns moving
2144 allocno to/from hard registers. */
2145 static void
2146 setup_allocno_class_and_costs (void)
2148 int i, j, n, regno, hard_regno, num;
2149 int *reg_costs;
2150 enum reg_class aclass, rclass;
2151 ira_allocno_t a;
2152 ira_allocno_iterator ai;
2153 cost_classes_t cost_classes_ptr;
2155 ira_assert (allocno_p);
2156 FOR_EACH_ALLOCNO (a, ai)
2158 i = ALLOCNO_NUM (a);
2159 regno = ALLOCNO_REGNO (a);
2160 aclass = regno_aclass[regno];
2161 cost_classes_ptr = regno_cost_classes[regno];
2162 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2163 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2164 ira_set_allocno_class (a, aclass);
2165 if (aclass == NO_REGS)
2166 continue;
2167 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2169 n = ira_class_hard_regs_num[aclass];
2170 ALLOCNO_HARD_REG_COSTS (a)
2171 = reg_costs = ira_allocate_cost_vector (aclass);
2172 for (j = n - 1; j >= 0; j--)
2174 hard_regno = ira_class_hard_regs[aclass][j];
2175 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2176 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2177 else
2179 rclass = REGNO_REG_CLASS (hard_regno);
2180 num = cost_classes_ptr->index[rclass];
2181 if (num < 0)
2183 num = cost_classes_ptr->hard_regno_index[hard_regno];
2184 ira_assert (num >= 0);
2186 reg_costs[j] = COSTS (costs, i)->cost[num];
2191 if (optimize)
2192 ira_traverse_loop_tree (true, ira_loop_tree_root,
2193 process_bb_node_for_hard_reg_moves, NULL);
2198 /* Function called once during compiler work. */
2199 void
2200 ira_init_costs_once (void)
2202 int i;
2204 init_cost = NULL;
2205 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2207 op_costs[i] = NULL;
2208 this_op_costs[i] = NULL;
2210 temp_costs = NULL;
2213 /* Free allocated temporary cost vectors. */
2214 void
2215 target_ira_int::free_ira_costs ()
2217 int i;
2219 free (x_init_cost);
2220 x_init_cost = NULL;
2221 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2223 free (x_op_costs[i]);
2224 free (x_this_op_costs[i]);
2225 x_op_costs[i] = x_this_op_costs[i] = NULL;
2227 free (x_temp_costs);
2228 x_temp_costs = NULL;
2231 /* This is called each time register related information is
2232 changed. */
2233 void
2234 ira_init_costs (void)
2236 int i;
2238 this_target_ira_int->free_ira_costs ();
2239 max_struct_costs_size
2240 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2241 /* Don't use ira_allocate because vectors live through several IRA
2242 calls. */
2243 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2244 init_cost->mem_cost = 1000000;
2245 for (i = 0; i < ira_important_classes_num; i++)
2246 init_cost->cost[i] = 1000000;
2247 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2249 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2250 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2252 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2257 /* Common initialization function for ira_costs and
2258 ira_set_pseudo_classes. */
2259 static void
2260 init_costs (void)
2262 init_subregs_of_mode ();
2263 costs = (struct costs *) ira_allocate (max_struct_costs_size
2264 * cost_elements_num);
2265 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2266 * cost_elements_num);
2267 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2268 * max_reg_num ());
2269 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2270 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2273 /* Common finalization function for ira_costs and
2274 ira_set_pseudo_classes. */
2275 static void
2276 finish_costs (void)
2278 finish_subregs_of_mode ();
2279 ira_free (regno_equiv_gains);
2280 ira_free (regno_aclass);
2281 ira_free (pref_buffer);
2282 ira_free (costs);
2285 /* Entry function which defines register class, memory and hard
2286 register costs for each allocno. */
2287 void
2288 ira_costs (void)
2290 allocno_p = true;
2291 cost_elements_num = ira_allocnos_num;
2292 init_costs ();
2293 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2294 * ira_allocnos_num);
2295 initiate_regno_cost_classes ();
2296 calculate_elim_costs_all_insns ();
2297 find_costs_and_classes (ira_dump_file);
2298 setup_allocno_class_and_costs ();
2299 finish_regno_cost_classes ();
2300 finish_costs ();
2301 ira_free (total_allocno_costs);
2304 /* Entry function which defines classes for pseudos.
2305 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2306 void
2307 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2309 allocno_p = false;
2310 internal_flag_ira_verbose = flag_ira_verbose;
2311 cost_elements_num = max_reg_num ();
2312 init_costs ();
2313 initiate_regno_cost_classes ();
2314 find_costs_and_classes (dump_file);
2315 finish_regno_cost_classes ();
2316 if (define_pseudo_classes)
2317 pseudo_classes_defined_p = true;
2319 finish_costs ();
2324 /* Change hard register costs for allocnos which lives through
2325 function calls. This is called only when we found all intersected
2326 calls during building allocno live ranges. */
2327 void
2328 ira_tune_allocno_costs (void)
2330 int j, n, regno;
2331 int cost, min_cost, *reg_costs;
2332 enum reg_class aclass, rclass;
2333 machine_mode mode;
2334 ira_allocno_t a;
2335 ira_allocno_iterator ai;
2336 ira_allocno_object_iterator oi;
2337 ira_object_t obj;
2338 bool skip_p;
2340 FOR_EACH_ALLOCNO (a, ai)
2342 aclass = ALLOCNO_CLASS (a);
2343 if (aclass == NO_REGS)
2344 continue;
2345 mode = ALLOCNO_MODE (a);
2346 n = ira_class_hard_regs_num[aclass];
2347 min_cost = INT_MAX;
2348 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2349 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2351 ira_allocate_and_set_costs
2352 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2353 ALLOCNO_CLASS_COST (a));
2354 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2355 for (j = n - 1; j >= 0; j--)
2357 regno = ira_class_hard_regs[aclass][j];
2358 skip_p = false;
2359 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2361 if (ira_hard_reg_set_intersection_p (regno, mode,
2362 OBJECT_CONFLICT_HARD_REGS
2363 (obj)))
2365 skip_p = true;
2366 break;
2369 if (skip_p)
2370 continue;
2371 rclass = REGNO_REG_CLASS (regno);
2372 cost = 0;
2373 if (ira_need_caller_save_p (a, regno))
2374 cost += (ALLOCNO_CALL_FREQ (a)
2375 * (ira_memory_move_cost[mode][rclass][0]
2376 + ira_memory_move_cost[mode][rclass][1]));
2377 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2378 cost += ((ira_memory_move_cost[mode][rclass][0]
2379 + ira_memory_move_cost[mode][rclass][1])
2380 * ALLOCNO_FREQ (a)
2381 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2382 #endif
2383 if (INT_MAX - cost < reg_costs[j])
2384 reg_costs[j] = INT_MAX;
2385 else
2386 reg_costs[j] += cost;
2387 if (min_cost > reg_costs[j])
2388 min_cost = reg_costs[j];
2391 if (min_cost != INT_MAX)
2392 ALLOCNO_CLASS_COST (a) = min_cost;
2394 /* Some targets allow pseudos to be allocated to unaligned sequences
2395 of hard registers. However, selecting an unaligned sequence can
2396 unnecessarily restrict later allocations. So increase the cost of
2397 unaligned hard regs to encourage the use of aligned hard regs. */
2399 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2401 if (nregs > 1)
2403 ira_allocate_and_set_costs
2404 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2405 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2406 for (j = n - 1; j >= 0; j--)
2408 regno = ira_non_ordered_class_hard_regs[aclass][j];
2409 if ((regno % nregs) != 0)
2411 int index = ira_class_hard_reg_index[aclass][regno];
2412 ira_assert (index != -1);
2413 reg_costs[index] += ALLOCNO_FREQ (a);
2421 /* Add COST to the estimated gain for eliminating REGNO with its
2422 equivalence. If COST is zero, record that no such elimination is
2423 possible. */
2425 void
2426 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2428 if (cost == 0)
2429 regno_equiv_gains[regno] = 0;
2430 else
2431 regno_equiv_gains[regno] += cost;
2434 void
2435 ira_costs_c_finalize (void)
2437 this_target_ira_int->free_ira_costs ();