embedded updates
[official-gcc.git] / libjava / verify.cc
blob562cfaf5bc3d7bb2c9b1f0b11baa999a0abf6e10
1 // defineclass.cc - defining a class from .class format.
3 /* Copyright (C) 2001, 2002 Free Software Foundation
5 This file is part of libgcj.
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
11 // Written by Tom Tromey <tromey@redhat.com>
13 // Define VERIFY_DEBUG to enable debugging output.
15 #include <config.h>
17 #include <jvm.h>
18 #include <gcj/cni.h>
19 #include <java-insns.h>
20 #include <java-interp.h>
22 #ifdef INTERPRETER
24 #include <java/lang/Class.h>
25 #include <java/lang/VerifyError.h>
26 #include <java/lang/Throwable.h>
27 #include <java/lang/reflect/Modifier.h>
28 #include <java/lang/StringBuffer.h>
30 #ifdef VERIFY_DEBUG
31 #include <stdio.h>
32 #endif /* VERIFY_DEBUG */
35 static void debug_print (const char *fmt, ...)
36 __attribute__ ((format (printf, 1, 2)));
38 static inline void
39 debug_print (const char *fmt, ...)
41 #ifdef VERIFY_DEBUG
42 va_list ap;
43 va_start (ap, fmt);
44 vfprintf (stderr, fmt, ap);
45 va_end (ap);
46 #endif /* VERIFY_DEBUG */
49 class _Jv_BytecodeVerifier
51 private:
53 static const int FLAG_INSN_START = 1;
54 static const int FLAG_BRANCH_TARGET = 2;
56 struct state;
57 struct type;
58 struct subr_info;
59 struct subr_entry_info;
60 struct linked_utf8;
62 // The current PC.
63 int PC;
64 // The PC corresponding to the start of the current instruction.
65 int start_PC;
67 // The current state of the stack, locals, etc.
68 state *current_state;
70 // We store the state at branch targets, for merging. This holds
71 // such states.
72 state **states;
74 // We keep a linked list of all the PCs which we must reverify.
75 // The link is done using the PC values. This is the head of the
76 // list.
77 int next_verify_pc;
79 // We keep some flags for each instruction. The values are the
80 // FLAG_* constants defined above.
81 char *flags;
83 // We need to keep track of which instructions can call a given
84 // subroutine. FIXME: this is inefficient. We keep a linked list
85 // of all calling `jsr's at at each jsr target.
86 subr_info **jsr_ptrs;
88 // We keep a linked list of entries which map each `ret' instruction
89 // to its unique subroutine entry point. We expect that there won't
90 // be many `ret' instructions, so a linked list is ok.
91 subr_entry_info *entry_points;
93 // The current top of the stack, in terms of slots.
94 int stacktop;
95 // The current depth of the stack. This will be larger than
96 // STACKTOP when wide types are on the stack.
97 int stackdepth;
99 // The bytecode itself.
100 unsigned char *bytecode;
101 // The exceptions.
102 _Jv_InterpException *exception;
104 // Defining class.
105 jclass current_class;
106 // This method.
107 _Jv_InterpMethod *current_method;
109 // A linked list of utf8 objects we allocate. This is really ugly,
110 // but without this our utf8 objects would be collected.
111 linked_utf8 *utf8_list;
113 struct linked_utf8
115 _Jv_Utf8Const *val;
116 linked_utf8 *next;
119 _Jv_Utf8Const *make_utf8_const (char *s, int len)
121 _Jv_Utf8Const *val = _Jv_makeUtf8Const (s, len);
122 _Jv_Utf8Const *r = (_Jv_Utf8Const *) _Jv_Malloc (sizeof (_Jv_Utf8Const)
123 + val->length
124 + 1);
125 r->length = val->length;
126 r->hash = val->hash;
127 memcpy (r->data, val->data, val->length + 1);
129 linked_utf8 *lu = (linked_utf8 *) _Jv_Malloc (sizeof (linked_utf8));
130 lu->val = r;
131 lu->next = utf8_list;
132 utf8_list = lu;
134 return r;
137 // This enum holds a list of tags for all the different types we
138 // need to handle. Reference types are treated specially by the
139 // type class.
140 enum type_val
142 void_type,
144 // The values for primitive types are chosen to correspond to values
145 // specified to newarray.
146 boolean_type = 4,
147 char_type = 5,
148 float_type = 6,
149 double_type = 7,
150 byte_type = 8,
151 short_type = 9,
152 int_type = 10,
153 long_type = 11,
155 // Used when overwriting second word of a double or long in the
156 // local variables. Also used after merging local variable states
157 // to indicate an unusable value.
158 unsuitable_type,
159 return_address_type,
160 continuation_type,
162 // There is an obscure special case which requires us to note when
163 // a local variable has not been used by a subroutine. See
164 // push_jump_merge for more information.
165 unused_by_subroutine_type,
167 // Everything after `reference_type' must be a reference type.
168 reference_type,
169 null_type,
170 unresolved_reference_type,
171 uninitialized_reference_type,
172 uninitialized_unresolved_reference_type
175 // Return the type_val corresponding to a primitive signature
176 // character. For instance `I' returns `int.class'.
177 type_val get_type_val_for_signature (jchar sig)
179 type_val rt;
180 switch (sig)
182 case 'Z':
183 rt = boolean_type;
184 break;
185 case 'B':
186 rt = byte_type;
187 break;
188 case 'C':
189 rt = char_type;
190 break;
191 case 'S':
192 rt = short_type;
193 break;
194 case 'I':
195 rt = int_type;
196 break;
197 case 'J':
198 rt = long_type;
199 break;
200 case 'F':
201 rt = float_type;
202 break;
203 case 'D':
204 rt = double_type;
205 break;
206 case 'V':
207 rt = void_type;
208 break;
209 default:
210 verify_fail ("invalid signature");
212 return rt;
215 // Return the type_val corresponding to a primitive class.
216 type_val get_type_val_for_signature (jclass k)
218 return get_type_val_for_signature ((jchar) k->method_count);
221 // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
222 // TARGET haven't been prepared.
223 static bool is_assignable_from_slow (jclass target, jclass source)
225 // This will terminate when SOURCE==Object.
226 while (true)
228 if (source == target)
229 return true;
231 if (target->isPrimitive () || source->isPrimitive ())
232 return false;
234 // Check array case first because we can have an array whose
235 // component type is not prepared; _Jv_IsAssignableFrom
236 // doesn't handle this correctly.
237 if (target->isArray ())
239 if (! source->isArray ())
240 return false;
241 target = target->getComponentType ();
242 source = source->getComponentType ();
244 // _Jv_IsAssignableFrom can handle a target which is an
245 // interface even if it hasn't been prepared.
246 else if ((target->state > JV_STATE_LINKED || target->isInterface ())
247 && source->state > JV_STATE_LINKED)
248 return _Jv_IsAssignableFrom (target, source);
249 else if (target->isInterface ())
251 for (int i = 0; i < source->interface_count; ++i)
253 // We use a recursive call because we also need to
254 // check superinterfaces.
255 if (is_assignable_from_slow (target, source->interfaces[i]))
256 return true;
258 source = source->getSuperclass ();
259 if (source == NULL)
260 return false;
262 else if (target == &java::lang::Object::class$)
263 return true;
264 else if (source->isInterface ()
265 || source == &java::lang::Object::class$)
266 return false;
267 else
268 source = source->getSuperclass ();
272 // This is used to keep track of which `jsr's correspond to a given
273 // jsr target.
274 struct subr_info
276 // PC of the instruction just after the jsr.
277 int pc;
278 // Link.
279 subr_info *next;
282 // This is used to keep track of which subroutine entry point
283 // corresponds to which `ret' instruction.
284 struct subr_entry_info
286 // PC of the subroutine entry point.
287 int pc;
288 // PC of the `ret' instruction.
289 int ret_pc;
290 // Link.
291 subr_entry_info *next;
294 // The `type' class is used to represent a single type in the
295 // verifier.
296 struct type
298 // The type.
299 type_val key;
300 // Some associated data.
301 union
303 // For a resolved reference type, this is a pointer to the class.
304 jclass klass;
305 // For other reference types, this it the name of the class.
306 _Jv_Utf8Const *name;
307 } data;
308 // This is used when constructing a new object. It is the PC of the
309 // `new' instruction which created the object. We use the special
310 // value -2 to mean that this is uninitialized, and the special
311 // value -1 for the case where the current method is itself the
312 // <init> method.
313 int pc;
315 static const int UNINIT = -2;
316 static const int SELF = -1;
318 // Basic constructor.
319 type ()
321 key = unsuitable_type;
322 data.klass = NULL;
323 pc = UNINIT;
326 // Make a new instance given the type tag. We assume a generic
327 // `reference_type' means Object.
328 type (type_val k)
330 key = k;
331 data.klass = NULL;
332 if (key == reference_type)
333 data.klass = &java::lang::Object::class$;
334 pc = UNINIT;
337 // Make a new instance given a class.
338 type (jclass klass)
340 key = reference_type;
341 data.klass = klass;
342 pc = UNINIT;
345 // Make a new instance given the name of a class.
346 type (_Jv_Utf8Const *n)
348 key = unresolved_reference_type;
349 data.name = n;
350 pc = UNINIT;
353 // Copy constructor.
354 type (const type &t)
356 key = t.key;
357 data = t.data;
358 pc = t.pc;
361 // These operators are required because libgcj can't link in
362 // -lstdc++.
363 void *operator new[] (size_t bytes)
365 return _Jv_Malloc (bytes);
368 void operator delete[] (void *mem)
370 _Jv_Free (mem);
373 type& operator= (type_val k)
375 key = k;
376 data.klass = NULL;
377 pc = UNINIT;
378 return *this;
381 type& operator= (const type& t)
383 key = t.key;
384 data = t.data;
385 pc = t.pc;
386 return *this;
389 // Promote a numeric type.
390 type &promote ()
392 if (key == boolean_type || key == char_type
393 || key == byte_type || key == short_type)
394 key = int_type;
395 return *this;
398 // If *THIS is an unresolved reference type, resolve it.
399 void resolve (_Jv_BytecodeVerifier *verifier)
401 if (key != unresolved_reference_type
402 && key != uninitialized_unresolved_reference_type)
403 return;
405 using namespace java::lang;
406 java::lang::ClassLoader *loader
407 = verifier->current_class->getClassLoader();
408 // We might see either kind of name. Sigh.
409 if (data.name->data[0] == 'L'
410 && data.name->data[data.name->length - 1] == ';')
411 data.klass = _Jv_FindClassFromSignature (data.name->data, loader);
412 else
413 data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
414 false, loader);
415 key = (key == unresolved_reference_type
416 ? reference_type
417 : uninitialized_reference_type);
420 // Mark this type as the uninitialized result of `new'.
421 void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier)
423 if (key == reference_type)
424 key = uninitialized_reference_type;
425 else if (key == unresolved_reference_type)
426 key = uninitialized_unresolved_reference_type;
427 else
428 verifier->verify_fail ("internal error in type::uninitialized");
429 pc = npc;
432 // Mark this type as now initialized.
433 void set_initialized (int npc)
435 if (npc != UNINIT && pc == npc
436 && (key == uninitialized_reference_type
437 || key == uninitialized_unresolved_reference_type))
439 key = (key == uninitialized_reference_type
440 ? reference_type
441 : unresolved_reference_type);
442 pc = UNINIT;
447 // Return true if an object of type K can be assigned to a variable
448 // of type *THIS. Handle various special cases too. Might modify
449 // *THIS or K. Note however that this does not perform numeric
450 // promotion.
451 bool compatible (type &k, _Jv_BytecodeVerifier *verifier)
453 // Any type is compatible with the unsuitable type.
454 if (key == unsuitable_type)
455 return true;
457 if (key < reference_type || k.key < reference_type)
458 return key == k.key;
460 // The `null' type is convertible to any reference type.
461 // FIXME: is this correct for THIS?
462 if (key == null_type || k.key == null_type)
463 return true;
465 // Any reference type is convertible to Object. This is a special
466 // case so we don't need to unnecessarily resolve a class.
467 if (key == reference_type
468 && data.klass == &java::lang::Object::class$)
469 return true;
471 // An initialized type and an uninitialized type are not
472 // compatible.
473 if (isinitialized () != k.isinitialized ())
474 return false;
476 // Two uninitialized objects are compatible if either:
477 // * The PCs are identical, or
478 // * One PC is UNINIT.
479 if (! isinitialized ())
481 if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
482 return false;
485 // Two unresolved types are equal if their names are the same.
486 if (! isresolved ()
487 && ! k.isresolved ()
488 && _Jv_equalUtf8Consts (data.name, k.data.name))
489 return true;
491 // We must resolve both types and check assignability.
492 resolve (verifier);
493 k.resolve (verifier);
494 return is_assignable_from_slow (data.klass, k.data.klass);
497 bool isvoid () const
499 return key == void_type;
502 bool iswide () const
504 return key == long_type || key == double_type;
507 // Return number of stack or local variable slots taken by this
508 // type.
509 int depth () const
511 return iswide () ? 2 : 1;
514 bool isarray () const
516 // We treat null_type as not an array. This is ok based on the
517 // current uses of this method.
518 if (key == reference_type)
519 return data.klass->isArray ();
520 else if (key == unresolved_reference_type)
521 return data.name->data[0] == '[';
522 return false;
525 bool isnull () const
527 return key == null_type;
530 bool isinterface (_Jv_BytecodeVerifier *verifier)
532 resolve (verifier);
533 if (key != reference_type)
534 return false;
535 return data.klass->isInterface ();
538 bool isabstract (_Jv_BytecodeVerifier *verifier)
540 resolve (verifier);
541 if (key != reference_type)
542 return false;
543 using namespace java::lang::reflect;
544 return Modifier::isAbstract (data.klass->getModifiers ());
547 // Return the element type of an array.
548 type element_type (_Jv_BytecodeVerifier *verifier)
550 // FIXME: maybe should do string manipulation here.
551 resolve (verifier);
552 if (key != reference_type)
553 verifier->verify_fail ("programmer error in type::element_type()", -1);
555 jclass k = data.klass->getComponentType ();
556 if (k->isPrimitive ())
557 return type (verifier->get_type_val_for_signature (k));
558 return type (k);
561 // Return the array type corresponding to an initialized
562 // reference. We could expand this to work for other kinds of
563 // types, but currently we don't need to.
564 type to_array (_Jv_BytecodeVerifier *verifier)
566 // Resolving isn't ideal, because it might force us to load
567 // another class, but it's easy. FIXME?
568 if (key == unresolved_reference_type)
569 resolve (verifier);
571 if (key == reference_type)
572 return type (_Jv_GetArrayClass (data.klass,
573 data.klass->getClassLoader ()));
574 else
575 verifier->verify_fail ("internal error in type::to_array()");
578 bool isreference () const
580 return key >= reference_type;
583 int get_pc () const
585 return pc;
588 bool isinitialized () const
590 return (key == reference_type
591 || key == null_type
592 || key == unresolved_reference_type);
595 bool isresolved () const
597 return (key == reference_type
598 || key == null_type
599 || key == uninitialized_reference_type);
602 void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier)
604 // The way this is written, we don't need to check isarray().
605 if (key == reference_type)
607 jclass k = data.klass;
608 while (k->isArray () && ndims > 0)
610 k = k->getComponentType ();
611 --ndims;
614 else
616 // We know KEY == unresolved_reference_type.
617 char *p = data.name->data;
618 while (*p++ == '[' && ndims-- > 0)
622 if (ndims > 0)
623 verifier->verify_fail ("array type has fewer dimensions than required");
626 // Merge OLD_TYPE into this. On error throw exception.
627 bool merge (type& old_type, bool local_semantics,
628 _Jv_BytecodeVerifier *verifier)
630 bool changed = false;
631 bool refo = old_type.isreference ();
632 bool refn = isreference ();
633 if (refo && refn)
635 if (old_type.key == null_type)
637 else if (key == null_type)
639 *this = old_type;
640 changed = true;
642 else if (isinitialized () != old_type.isinitialized ())
643 verifier->verify_fail ("merging initialized and uninitialized types");
644 else
646 if (! isinitialized ())
648 if (pc == UNINIT)
649 pc = old_type.pc;
650 else if (old_type.pc == UNINIT)
652 else if (pc != old_type.pc)
653 verifier->verify_fail ("merging different uninitialized types");
656 if (! isresolved ()
657 && ! old_type.isresolved ()
658 && _Jv_equalUtf8Consts (data.name, old_type.data.name))
660 // Types are identical.
662 else
664 resolve (verifier);
665 old_type.resolve (verifier);
667 jclass k = data.klass;
668 jclass oldk = old_type.data.klass;
670 int arraycount = 0;
671 while (k->isArray () && oldk->isArray ())
673 ++arraycount;
674 k = k->getComponentType ();
675 oldk = oldk->getComponentType ();
678 // This loop will end when we hit Object.
679 while (true)
681 if (is_assignable_from_slow (k, oldk))
682 break;
683 k = k->getSuperclass ();
684 changed = true;
687 if (changed)
689 while (arraycount > 0)
691 java::lang::ClassLoader *loader
692 = verifier->current_class->getClassLoader();
693 k = _Jv_GetArrayClass (k, loader);
694 --arraycount;
696 data.klass = k;
701 else if (refo || refn || key != old_type.key)
703 if (local_semantics)
705 // If we're merging into an "unused" slot, then we
706 // simply accept whatever we're merging from.
707 if (key == unused_by_subroutine_type)
709 *this = old_type;
710 changed = true;
712 else if (old_type.key == unused_by_subroutine_type)
714 // Do nothing.
716 // If we already have an `unsuitable' type, then we
717 // don't need to change again.
718 else if (key != unsuitable_type)
720 key = unsuitable_type;
721 changed = true;
724 else
725 verifier->verify_fail ("unmergeable type");
727 return changed;
730 #ifdef VERIFY_DEBUG
731 void print (void) const
733 char c = '?';
734 switch (key)
736 case boolean_type: c = 'Z'; break;
737 case byte_type: c = 'B'; break;
738 case char_type: c = 'C'; break;
739 case short_type: c = 'S'; break;
740 case int_type: c = 'I'; break;
741 case long_type: c = 'J'; break;
742 case float_type: c = 'F'; break;
743 case double_type: c = 'D'; break;
744 case void_type: c = 'V'; break;
745 case unsuitable_type: c = '-'; break;
746 case return_address_type: c = 'r'; break;
747 case continuation_type: c = '+'; break;
748 case unused_by_subroutine_type: c = '_'; break;
749 case reference_type: c = 'L'; break;
750 case null_type: c = '@'; break;
751 case unresolved_reference_type: c = 'l'; break;
752 case uninitialized_reference_type: c = 'U'; break;
753 case uninitialized_unresolved_reference_type: c = 'u'; break;
755 debug_print ("%c", c);
757 #endif /* VERIFY_DEBUG */
760 // This class holds all the state information we need for a given
761 // location.
762 struct state
764 // Current top of stack.
765 int stacktop;
766 // Current stack depth. This is like the top of stack but it
767 // includes wide variable information.
768 int stackdepth;
769 // The stack.
770 type *stack;
771 // The local variables.
772 type *locals;
773 // This is used in subroutines to keep track of which local
774 // variables have been accessed.
775 bool *local_changed;
776 // If not 0, then we are in a subroutine. The value is the PC of
777 // the subroutine's entry point. We can use 0 as an exceptional
778 // value because PC=0 can never be a subroutine.
779 int subroutine;
780 // This is used to keep a linked list of all the states which
781 // require re-verification. We use the PC to keep track.
782 int next;
783 // We keep track of the type of `this' specially. This is used to
784 // ensure that an instance initializer invokes another initializer
785 // on `this' before returning. We must keep track of this
786 // specially because otherwise we might be confused by code which
787 // assigns to locals[0] (overwriting `this') and then returns
788 // without really initializing.
789 type this_type;
791 // INVALID marks a state which is not on the linked list of states
792 // requiring reverification.
793 static const int INVALID = -1;
794 // NO_NEXT marks the state at the end of the reverification list.
795 static const int NO_NEXT = -2;
797 state ()
798 : this_type ()
800 stack = NULL;
801 locals = NULL;
802 local_changed = NULL;
805 state (int max_stack, int max_locals)
806 : this_type ()
808 stacktop = 0;
809 stackdepth = 0;
810 stack = new type[max_stack];
811 for (int i = 0; i < max_stack; ++i)
812 stack[i] = unsuitable_type;
813 locals = new type[max_locals];
814 local_changed = (bool *) _Jv_Malloc (sizeof (bool) * max_locals);
815 for (int i = 0; i < max_locals; ++i)
817 locals[i] = unsuitable_type;
818 local_changed[i] = false;
820 next = INVALID;
821 subroutine = 0;
824 state (const state *orig, int max_stack, int max_locals,
825 bool ret_semantics = false)
827 stack = new type[max_stack];
828 locals = new type[max_locals];
829 local_changed = (bool *) _Jv_Malloc (sizeof (bool) * max_locals);
830 copy (orig, max_stack, max_locals, ret_semantics);
831 next = INVALID;
834 ~state ()
836 if (stack)
837 delete[] stack;
838 if (locals)
839 delete[] locals;
840 if (local_changed)
841 _Jv_Free (local_changed);
844 void *operator new[] (size_t bytes)
846 return _Jv_Malloc (bytes);
849 void operator delete[] (void *mem)
851 _Jv_Free (mem);
854 void *operator new (size_t bytes)
856 return _Jv_Malloc (bytes);
859 void operator delete (void *mem)
861 _Jv_Free (mem);
864 void copy (const state *copy, int max_stack, int max_locals,
865 bool ret_semantics = false)
867 stacktop = copy->stacktop;
868 stackdepth = copy->stackdepth;
869 subroutine = copy->subroutine;
870 for (int i = 0; i < max_stack; ++i)
871 stack[i] = copy->stack[i];
872 for (int i = 0; i < max_locals; ++i)
874 // See push_jump_merge to understand this case.
875 if (ret_semantics)
876 locals[i] = type (copy->local_changed[i]
877 ? unsuitable_type
878 : unused_by_subroutine_type);
879 else
880 locals[i] = copy->locals[i];
881 local_changed[i] = copy->local_changed[i];
883 this_type = copy->this_type;
884 // Don't modify `next'.
887 // Modify this state to reflect entry to an exception handler.
888 void set_exception (type t, int max_stack)
890 stackdepth = 1;
891 stacktop = 1;
892 stack[0] = t;
893 for (int i = stacktop; i < max_stack; ++i)
894 stack[i] = unsuitable_type;
896 // FIXME: subroutine handling?
899 // Modify this state to reflect entry into a subroutine.
900 void enter_subroutine (int npc, int max_locals)
902 subroutine = npc;
903 // Mark all items as unchanged. Each subroutine needs to keep
904 // track of its `changed' state independently. In the case of
905 // nested subroutines, this information will be merged back into
906 // parent by the `ret'.
907 for (int i = 0; i < max_locals; ++i)
908 local_changed[i] = false;
911 // Merge STATE_OLD into this state. Destructively modifies this
912 // state. Returns true if the new state was in fact changed.
913 // Will throw an exception if the states are not mergeable.
914 bool merge (state *state_old, bool ret_semantics,
915 int max_locals, _Jv_BytecodeVerifier *verifier)
917 bool changed = false;
919 // Special handling for `this'. If one or the other is
920 // uninitialized, then the merge is uninitialized.
921 if (this_type.isinitialized ())
922 this_type = state_old->this_type;
924 // Merge subroutine states. Here we just keep track of what
925 // subroutine we think we're in. We only check for a merge
926 // (which is invalid) when we see a `ret'.
927 if (subroutine == state_old->subroutine)
929 // Nothing.
931 else if (subroutine == 0)
933 subroutine = state_old->subroutine;
934 changed = true;
936 else
938 // If the subroutines differ, indicate that the state
939 // changed. This is needed to detect when subroutines have
940 // merged.
941 changed = true;
944 // Merge stacks.
945 if (state_old->stacktop != stacktop)
946 verifier->verify_fail ("stack sizes differ");
947 for (int i = 0; i < state_old->stacktop; ++i)
949 if (stack[i].merge (state_old->stack[i], false, verifier))
950 changed = true;
953 // Merge local variables.
954 for (int i = 0; i < max_locals; ++i)
956 // If we're not processing a `ret', then we merge every
957 // local variable. If we are processing a `ret', then we
958 // only merge locals which changed in the subroutine. When
959 // processing a `ret', STATE_OLD is the state at the point
960 // of the `ret', and THIS is the state just after the `jsr'.
961 if (! ret_semantics || state_old->local_changed[i])
963 if (locals[i].merge (state_old->locals[i], true, verifier))
965 changed = true;
966 note_variable (i);
970 // If we're in a subroutine, we must compute the union of
971 // all the changed local variables.
972 if (state_old->local_changed[i])
973 note_variable (i);
976 return changed;
979 // Throw an exception if there is an uninitialized object on the
980 // stack or in a local variable. EXCEPTION_SEMANTICS controls
981 // whether we're using backwards-branch or exception-handing
982 // semantics.
983 void check_no_uninitialized_objects (int max_locals,
984 _Jv_BytecodeVerifier *verifier,
985 bool exception_semantics = false)
987 if (! exception_semantics)
989 for (int i = 0; i < stacktop; ++i)
990 if (stack[i].isreference () && ! stack[i].isinitialized ())
991 verifier->verify_fail ("uninitialized object on stack");
994 for (int i = 0; i < max_locals; ++i)
995 if (locals[i].isreference () && ! locals[i].isinitialized ())
996 verifier->verify_fail ("uninitialized object in local variable");
998 check_this_initialized (verifier);
1001 // Ensure that `this' has been initialized.
1002 void check_this_initialized (_Jv_BytecodeVerifier *verifier)
1004 if (this_type.isreference () && ! this_type.isinitialized ())
1005 verifier->verify_fail ("`this' is uninitialized");
1008 // Set type of `this'.
1009 void set_this_type (const type &k)
1011 this_type = k;
1014 // Note that a local variable was modified.
1015 void note_variable (int index)
1017 if (subroutine > 0)
1018 local_changed[index] = true;
1021 // Mark each `new'd object we know of that was allocated at PC as
1022 // initialized.
1023 void set_initialized (int pc, int max_locals)
1025 for (int i = 0; i < stacktop; ++i)
1026 stack[i].set_initialized (pc);
1027 for (int i = 0; i < max_locals; ++i)
1028 locals[i].set_initialized (pc);
1029 this_type.set_initialized (pc);
1032 // Return true if this state is the unmerged result of a `ret'.
1033 bool is_unmerged_ret_state (int max_locals) const
1035 for (int i = 0; i < max_locals; ++i)
1037 if (locals[i].key == unused_by_subroutine_type)
1038 return true;
1040 return false;
1043 #ifdef VERIFY_DEBUG
1044 void print (const char *leader, int pc,
1045 int max_stack, int max_locals) const
1047 debug_print ("%s [%4d]: [stack] ", leader, pc);
1048 int i;
1049 for (i = 0; i < stacktop; ++i)
1050 stack[i].print ();
1051 for (; i < max_stack; ++i)
1052 debug_print (".");
1053 debug_print (" [local] ");
1054 for (i = 0; i < max_locals; ++i)
1055 locals[i].print ();
1056 if (subroutine == 0)
1057 debug_print (" | None");
1058 else
1059 debug_print (" | %4d", subroutine);
1060 debug_print (" | %p\n", this);
1062 #else
1063 inline void print (const char *, int, int, int) const
1066 #endif /* VERIFY_DEBUG */
1069 type pop_raw ()
1071 if (current_state->stacktop <= 0)
1072 verify_fail ("stack empty");
1073 type r = current_state->stack[--current_state->stacktop];
1074 current_state->stackdepth -= r.depth ();
1075 if (current_state->stackdepth < 0)
1076 verify_fail ("stack empty", start_PC);
1077 return r;
1080 type pop32 ()
1082 type r = pop_raw ();
1083 if (r.iswide ())
1084 verify_fail ("narrow pop of wide type");
1085 return r;
1088 type pop64 ()
1090 type r = pop_raw ();
1091 if (! r.iswide ())
1092 verify_fail ("wide pop of narrow type");
1093 return r;
1096 type pop_type (type match)
1098 match.promote ();
1099 type t = pop_raw ();
1100 if (! match.compatible (t, this))
1101 verify_fail ("incompatible type on stack");
1102 return t;
1105 // Pop a reference type or a return address.
1106 type pop_ref_or_return ()
1108 type t = pop_raw ();
1109 if (! t.isreference () && t.key != return_address_type)
1110 verify_fail ("expected reference or return address on stack");
1111 return t;
1114 void push_type (type t)
1116 // If T is a numeric type like short, promote it to int.
1117 t.promote ();
1119 int depth = t.depth ();
1120 if (current_state->stackdepth + depth > current_method->max_stack)
1121 verify_fail ("stack overflow");
1122 current_state->stack[current_state->stacktop++] = t;
1123 current_state->stackdepth += depth;
1126 void set_variable (int index, type t)
1128 // If T is a numeric type like short, promote it to int.
1129 t.promote ();
1131 int depth = t.depth ();
1132 if (index > current_method->max_locals - depth)
1133 verify_fail ("invalid local variable");
1134 current_state->locals[index] = t;
1135 current_state->note_variable (index);
1137 if (depth == 2)
1139 current_state->locals[index + 1] = continuation_type;
1140 current_state->note_variable (index + 1);
1142 if (index > 0 && current_state->locals[index - 1].iswide ())
1144 current_state->locals[index - 1] = unsuitable_type;
1145 // There's no need to call note_variable here.
1149 type get_variable (int index, type t)
1151 int depth = t.depth ();
1152 if (index > current_method->max_locals - depth)
1153 verify_fail ("invalid local variable");
1154 if (! t.compatible (current_state->locals[index], this))
1155 verify_fail ("incompatible type in local variable");
1156 if (depth == 2)
1158 type t (continuation_type);
1159 if (! current_state->locals[index + 1].compatible (t, this))
1160 verify_fail ("invalid local variable");
1162 return current_state->locals[index];
1165 // Make sure ARRAY is an array type and that its elements are
1166 // compatible with type ELEMENT. Returns the actual element type.
1167 type require_array_type (type array, type element)
1169 // An odd case. Here we just pretend that everything went ok. If
1170 // the requested element type is some kind of reference, return
1171 // the null type instead.
1172 if (array.isnull ())
1173 return element.isreference () ? type (null_type) : element;
1175 if (! array.isarray ())
1176 verify_fail ("array required");
1178 type t = array.element_type (this);
1179 if (! element.compatible (t, this))
1181 // Special case for byte arrays, which must also be boolean
1182 // arrays.
1183 bool ok = true;
1184 if (element.key == byte_type)
1186 type e2 (boolean_type);
1187 ok = e2.compatible (t, this);
1189 if (! ok)
1190 verify_fail ("incompatible array element type");
1193 // Return T and not ELEMENT, because T might be specialized.
1194 return t;
1197 jint get_byte ()
1199 if (PC >= current_method->code_length)
1200 verify_fail ("premature end of bytecode");
1201 return (jint) bytecode[PC++] & 0xff;
1204 jint get_ushort ()
1206 jint b1 = get_byte ();
1207 jint b2 = get_byte ();
1208 return (jint) ((b1 << 8) | b2) & 0xffff;
1211 jint get_short ()
1213 jint b1 = get_byte ();
1214 jint b2 = get_byte ();
1215 jshort s = (b1 << 8) | b2;
1216 return (jint) s;
1219 jint get_int ()
1221 jint b1 = get_byte ();
1222 jint b2 = get_byte ();
1223 jint b3 = get_byte ();
1224 jint b4 = get_byte ();
1225 return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
1228 int compute_jump (int offset)
1230 int npc = start_PC + offset;
1231 if (npc < 0 || npc >= current_method->code_length)
1232 verify_fail ("branch out of range", start_PC);
1233 return npc;
1236 // Merge the indicated state into the state at the branch target and
1237 // schedule a new PC if there is a change. If RET_SEMANTICS is
1238 // true, then we are merging from a `ret' instruction into the
1239 // instruction after a `jsr'. This is a special case with its own
1240 // modified semantics.
1241 void push_jump_merge (int npc, state *nstate, bool ret_semantics = false)
1243 bool changed = true;
1244 if (states[npc] == NULL)
1246 // There's a weird situation here. If are examining the
1247 // branch that results from a `ret', and there is not yet a
1248 // state available at the branch target (the instruction just
1249 // after the `jsr'), then we have to construct a special kind
1250 // of state at that point for future merging. This special
1251 // state has the type `unused_by_subroutine_type' in each slot
1252 // which was not modified by the subroutine.
1253 states[npc] = new state (nstate, current_method->max_stack,
1254 current_method->max_locals, ret_semantics);
1255 debug_print ("== New state in push_jump_merge\n");
1256 states[npc]->print ("New", npc, current_method->max_stack,
1257 current_method->max_locals);
1259 else
1261 debug_print ("== Merge states in push_jump_merge\n");
1262 nstate->print ("Frm", start_PC, current_method->max_stack,
1263 current_method->max_locals);
1264 states[npc]->print (" To", npc, current_method->max_stack,
1265 current_method->max_locals);
1266 changed = states[npc]->merge (nstate, ret_semantics,
1267 current_method->max_locals, this);
1268 states[npc]->print ("New", npc, current_method->max_stack,
1269 current_method->max_locals);
1272 if (changed && states[npc]->next == state::INVALID)
1274 // The merge changed the state, and the new PC isn't yet on our
1275 // list of PCs to re-verify.
1276 states[npc]->next = next_verify_pc;
1277 next_verify_pc = npc;
1281 void push_jump (int offset)
1283 int npc = compute_jump (offset);
1284 if (npc < PC)
1285 current_state->check_no_uninitialized_objects (current_method->max_locals, this);
1286 push_jump_merge (npc, current_state);
1289 void push_exception_jump (type t, int pc)
1291 current_state->check_no_uninitialized_objects (current_method->max_locals,
1292 this, true);
1293 state s (current_state, current_method->max_stack,
1294 current_method->max_locals);
1295 if (current_method->max_stack < 1)
1296 verify_fail ("stack overflow at exception handler");
1297 s.set_exception (t, current_method->max_stack);
1298 push_jump_merge (pc, &s);
1301 int pop_jump ()
1303 int *prev_loc = &next_verify_pc;
1304 int npc = next_verify_pc;
1305 bool skipped = false;
1307 while (npc != state::NO_NEXT)
1309 // If the next available PC is an unmerged `ret' state, then
1310 // we aren't yet ready to handle it. That's because we would
1311 // need all kind of special cases to do so. So instead we
1312 // defer this jump until after we've processed it via a
1313 // fall-through. This has to happen because the instruction
1314 // before this one must be a `jsr'.
1315 if (! states[npc]->is_unmerged_ret_state (current_method->max_locals))
1317 *prev_loc = states[npc]->next;
1318 states[npc]->next = state::INVALID;
1319 return npc;
1322 skipped = true;
1323 prev_loc = &states[npc]->next;
1324 npc = states[npc]->next;
1327 // If we've skipped states and there is nothing else, that's a
1328 // bug.
1329 if (skipped)
1330 verify_fail ("pop_jump: can't happen");
1331 return state::NO_NEXT;
1334 void invalidate_pc ()
1336 PC = state::NO_NEXT;
1339 void note_branch_target (int pc, bool is_jsr_target = false)
1341 // Don't check `pc <= PC', because we've advanced PC after
1342 // fetching the target and we haven't yet checked the next
1343 // instruction.
1344 if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
1345 verify_fail ("branch not to instruction start", start_PC);
1346 flags[pc] |= FLAG_BRANCH_TARGET;
1347 if (is_jsr_target)
1349 // Record the jsr which called this instruction.
1350 subr_info *info = (subr_info *) _Jv_Malloc (sizeof (subr_info));
1351 info->pc = PC;
1352 info->next = jsr_ptrs[pc];
1353 jsr_ptrs[pc] = info;
1357 void skip_padding ()
1359 while ((PC % 4) > 0)
1360 if (get_byte () != 0)
1361 verify_fail ("found nonzero padding byte");
1364 // Return the subroutine to which the instruction at PC belongs.
1365 int get_subroutine (int pc)
1367 if (states[pc] == NULL)
1368 return 0;
1369 return states[pc]->subroutine;
1372 // Do the work for a `ret' instruction. INDEX is the index into the
1373 // local variables.
1374 void handle_ret_insn (int index)
1376 get_variable (index, return_address_type);
1378 int csub = current_state->subroutine;
1379 if (csub == 0)
1380 verify_fail ("no subroutine");
1382 // Check to see if we've merged subroutines.
1383 subr_entry_info *entry;
1384 for (entry = entry_points; entry != NULL; entry = entry->next)
1386 if (entry->ret_pc == start_PC)
1387 break;
1389 if (entry == NULL)
1391 entry = (subr_entry_info *) _Jv_Malloc (sizeof (subr_entry_info));
1392 entry->pc = csub;
1393 entry->ret_pc = start_PC;
1394 entry->next = entry_points;
1395 entry_points = entry;
1397 else if (entry->pc != csub)
1398 verify_fail ("subroutines merged");
1400 for (subr_info *subr = jsr_ptrs[csub]; subr != NULL; subr = subr->next)
1402 // Temporarily modify the current state so it looks like we're
1403 // in the enclosing context.
1404 current_state->subroutine = get_subroutine (subr->pc);
1405 if (subr->pc < PC)
1406 current_state->check_no_uninitialized_objects (current_method->max_locals, this);
1407 push_jump_merge (subr->pc, current_state, true);
1410 current_state->subroutine = csub;
1411 invalidate_pc ();
1414 // We're in the subroutine SUB, calling a subroutine at DEST. Make
1415 // sure this subroutine isn't already on the stack.
1416 void check_nonrecursive_call (int sub, int dest)
1418 if (sub == 0)
1419 return;
1420 if (sub == dest)
1421 verify_fail ("recursive subroutine call");
1422 for (subr_info *info = jsr_ptrs[sub]; info != NULL; info = info->next)
1423 check_nonrecursive_call (get_subroutine (info->pc), dest);
1426 void handle_jsr_insn (int offset)
1428 int npc = compute_jump (offset);
1430 if (npc < PC)
1431 current_state->check_no_uninitialized_objects (current_method->max_locals, this);
1432 check_nonrecursive_call (current_state->subroutine, npc);
1434 // Create a new state and modify it as appropriate for entry into
1435 // a subroutine. We're writing this in a weird way because,
1436 // unfortunately, push_type only works on the current state.
1437 push_type (return_address_type);
1438 push_jump_merge (npc, current_state);
1439 // Clean up the weirdness.
1440 pop_type (return_address_type);
1442 // On entry to the subroutine, the subroutine number must be set
1443 // and the locals must be marked as cleared. We do this after
1444 // merging state so that we don't erroneously "notice" a variable
1445 // change merely on entry.
1446 states[npc]->enter_subroutine (npc, current_method->max_locals);
1449 jclass construct_primitive_array_type (type_val prim)
1451 jclass k = NULL;
1452 switch (prim)
1454 case boolean_type:
1455 k = JvPrimClass (boolean);
1456 break;
1457 case char_type:
1458 k = JvPrimClass (char);
1459 break;
1460 case float_type:
1461 k = JvPrimClass (float);
1462 break;
1463 case double_type:
1464 k = JvPrimClass (double);
1465 break;
1466 case byte_type:
1467 k = JvPrimClass (byte);
1468 break;
1469 case short_type:
1470 k = JvPrimClass (short);
1471 break;
1472 case int_type:
1473 k = JvPrimClass (int);
1474 break;
1475 case long_type:
1476 k = JvPrimClass (long);
1477 break;
1478 default:
1479 verify_fail ("unknown type in construct_primitive_array_type");
1481 k = _Jv_GetArrayClass (k, NULL);
1482 return k;
1485 // This pass computes the location of branch targets and also
1486 // instruction starts.
1487 void branch_prepass ()
1489 flags = (char *) _Jv_Malloc (current_method->code_length);
1490 jsr_ptrs = (subr_info **) _Jv_Malloc (sizeof (subr_info *)
1491 * current_method->code_length);
1493 for (int i = 0; i < current_method->code_length; ++i)
1495 flags[i] = 0;
1496 jsr_ptrs[i] = NULL;
1499 bool last_was_jsr = false;
1501 PC = 0;
1502 while (PC < current_method->code_length)
1504 // Set `start_PC' early so that error checking can have the
1505 // correct value.
1506 start_PC = PC;
1507 flags[PC] |= FLAG_INSN_START;
1509 // If the previous instruction was a jsr, then the next
1510 // instruction is a branch target -- the branch being the
1511 // corresponding `ret'.
1512 if (last_was_jsr)
1513 note_branch_target (PC);
1514 last_was_jsr = false;
1516 java_opcode opcode = (java_opcode) bytecode[PC++];
1517 switch (opcode)
1519 case op_nop:
1520 case op_aconst_null:
1521 case op_iconst_m1:
1522 case op_iconst_0:
1523 case op_iconst_1:
1524 case op_iconst_2:
1525 case op_iconst_3:
1526 case op_iconst_4:
1527 case op_iconst_5:
1528 case op_lconst_0:
1529 case op_lconst_1:
1530 case op_fconst_0:
1531 case op_fconst_1:
1532 case op_fconst_2:
1533 case op_dconst_0:
1534 case op_dconst_1:
1535 case op_iload_0:
1536 case op_iload_1:
1537 case op_iload_2:
1538 case op_iload_3:
1539 case op_lload_0:
1540 case op_lload_1:
1541 case op_lload_2:
1542 case op_lload_3:
1543 case op_fload_0:
1544 case op_fload_1:
1545 case op_fload_2:
1546 case op_fload_3:
1547 case op_dload_0:
1548 case op_dload_1:
1549 case op_dload_2:
1550 case op_dload_3:
1551 case op_aload_0:
1552 case op_aload_1:
1553 case op_aload_2:
1554 case op_aload_3:
1555 case op_iaload:
1556 case op_laload:
1557 case op_faload:
1558 case op_daload:
1559 case op_aaload:
1560 case op_baload:
1561 case op_caload:
1562 case op_saload:
1563 case op_istore_0:
1564 case op_istore_1:
1565 case op_istore_2:
1566 case op_istore_3:
1567 case op_lstore_0:
1568 case op_lstore_1:
1569 case op_lstore_2:
1570 case op_lstore_3:
1571 case op_fstore_0:
1572 case op_fstore_1:
1573 case op_fstore_2:
1574 case op_fstore_3:
1575 case op_dstore_0:
1576 case op_dstore_1:
1577 case op_dstore_2:
1578 case op_dstore_3:
1579 case op_astore_0:
1580 case op_astore_1:
1581 case op_astore_2:
1582 case op_astore_3:
1583 case op_iastore:
1584 case op_lastore:
1585 case op_fastore:
1586 case op_dastore:
1587 case op_aastore:
1588 case op_bastore:
1589 case op_castore:
1590 case op_sastore:
1591 case op_pop:
1592 case op_pop2:
1593 case op_dup:
1594 case op_dup_x1:
1595 case op_dup_x2:
1596 case op_dup2:
1597 case op_dup2_x1:
1598 case op_dup2_x2:
1599 case op_swap:
1600 case op_iadd:
1601 case op_isub:
1602 case op_imul:
1603 case op_idiv:
1604 case op_irem:
1605 case op_ishl:
1606 case op_ishr:
1607 case op_iushr:
1608 case op_iand:
1609 case op_ior:
1610 case op_ixor:
1611 case op_ladd:
1612 case op_lsub:
1613 case op_lmul:
1614 case op_ldiv:
1615 case op_lrem:
1616 case op_lshl:
1617 case op_lshr:
1618 case op_lushr:
1619 case op_land:
1620 case op_lor:
1621 case op_lxor:
1622 case op_fadd:
1623 case op_fsub:
1624 case op_fmul:
1625 case op_fdiv:
1626 case op_frem:
1627 case op_dadd:
1628 case op_dsub:
1629 case op_dmul:
1630 case op_ddiv:
1631 case op_drem:
1632 case op_ineg:
1633 case op_i2b:
1634 case op_i2c:
1635 case op_i2s:
1636 case op_lneg:
1637 case op_fneg:
1638 case op_dneg:
1639 case op_i2l:
1640 case op_i2f:
1641 case op_i2d:
1642 case op_l2i:
1643 case op_l2f:
1644 case op_l2d:
1645 case op_f2i:
1646 case op_f2l:
1647 case op_f2d:
1648 case op_d2i:
1649 case op_d2l:
1650 case op_d2f:
1651 case op_lcmp:
1652 case op_fcmpl:
1653 case op_fcmpg:
1654 case op_dcmpl:
1655 case op_dcmpg:
1656 case op_monitorenter:
1657 case op_monitorexit:
1658 case op_ireturn:
1659 case op_lreturn:
1660 case op_freturn:
1661 case op_dreturn:
1662 case op_areturn:
1663 case op_return:
1664 case op_athrow:
1665 case op_arraylength:
1666 break;
1668 case op_bipush:
1669 case op_ldc:
1670 case op_iload:
1671 case op_lload:
1672 case op_fload:
1673 case op_dload:
1674 case op_aload:
1675 case op_istore:
1676 case op_lstore:
1677 case op_fstore:
1678 case op_dstore:
1679 case op_astore:
1680 case op_ret:
1681 case op_newarray:
1682 get_byte ();
1683 break;
1685 case op_iinc:
1686 case op_sipush:
1687 case op_ldc_w:
1688 case op_ldc2_w:
1689 case op_getstatic:
1690 case op_getfield:
1691 case op_putfield:
1692 case op_putstatic:
1693 case op_new:
1694 case op_anewarray:
1695 case op_instanceof:
1696 case op_checkcast:
1697 case op_invokespecial:
1698 case op_invokestatic:
1699 case op_invokevirtual:
1700 get_short ();
1701 break;
1703 case op_multianewarray:
1704 get_short ();
1705 get_byte ();
1706 break;
1708 case op_jsr:
1709 last_was_jsr = true;
1710 // Fall through.
1711 case op_ifeq:
1712 case op_ifne:
1713 case op_iflt:
1714 case op_ifge:
1715 case op_ifgt:
1716 case op_ifle:
1717 case op_if_icmpeq:
1718 case op_if_icmpne:
1719 case op_if_icmplt:
1720 case op_if_icmpge:
1721 case op_if_icmpgt:
1722 case op_if_icmple:
1723 case op_if_acmpeq:
1724 case op_if_acmpne:
1725 case op_ifnull:
1726 case op_ifnonnull:
1727 case op_goto:
1728 note_branch_target (compute_jump (get_short ()), last_was_jsr);
1729 break;
1731 case op_tableswitch:
1733 skip_padding ();
1734 note_branch_target (compute_jump (get_int ()));
1735 jint low = get_int ();
1736 jint hi = get_int ();
1737 if (low > hi)
1738 verify_fail ("invalid tableswitch", start_PC);
1739 for (int i = low; i <= hi; ++i)
1740 note_branch_target (compute_jump (get_int ()));
1742 break;
1744 case op_lookupswitch:
1746 skip_padding ();
1747 note_branch_target (compute_jump (get_int ()));
1748 int npairs = get_int ();
1749 if (npairs < 0)
1750 verify_fail ("too few pairs in lookupswitch", start_PC);
1751 while (npairs-- > 0)
1753 get_int ();
1754 note_branch_target (compute_jump (get_int ()));
1757 break;
1759 case op_invokeinterface:
1760 get_short ();
1761 get_byte ();
1762 get_byte ();
1763 break;
1765 case op_wide:
1767 opcode = (java_opcode) get_byte ();
1768 get_short ();
1769 if (opcode == op_iinc)
1770 get_short ();
1772 break;
1774 case op_jsr_w:
1775 last_was_jsr = true;
1776 // Fall through.
1777 case op_goto_w:
1778 note_branch_target (compute_jump (get_int ()), last_was_jsr);
1779 break;
1781 default:
1782 verify_fail ("unrecognized instruction in branch_prepass",
1783 start_PC);
1786 // See if any previous branch tried to branch to the middle of
1787 // this instruction.
1788 for (int pc = start_PC + 1; pc < PC; ++pc)
1790 if ((flags[pc] & FLAG_BRANCH_TARGET))
1791 verify_fail ("branch to middle of instruction", pc);
1795 // Verify exception handlers.
1796 for (int i = 0; i < current_method->exc_count; ++i)
1798 if (! (flags[exception[i].handler_pc] & FLAG_INSN_START))
1799 verify_fail ("exception handler not at instruction start",
1800 exception[i].handler_pc);
1801 if (! (flags[exception[i].start_pc] & FLAG_INSN_START))
1802 verify_fail ("exception start not at instruction start",
1803 exception[i].start_pc);
1804 if (exception[i].end_pc != current_method->code_length
1805 && ! (flags[exception[i].end_pc] & FLAG_INSN_START))
1806 verify_fail ("exception end not at instruction start",
1807 exception[i].end_pc);
1809 flags[exception[i].handler_pc] |= FLAG_BRANCH_TARGET;
1813 void check_pool_index (int index)
1815 if (index < 0 || index >= current_class->constants.size)
1816 verify_fail ("constant pool index out of range", start_PC);
1819 type check_class_constant (int index)
1821 check_pool_index (index);
1822 _Jv_Constants *pool = &current_class->constants;
1823 if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
1824 return type (pool->data[index].clazz);
1825 else if (pool->tags[index] == JV_CONSTANT_Class)
1826 return type (pool->data[index].utf8);
1827 verify_fail ("expected class constant", start_PC);
1830 type check_constant (int index)
1832 check_pool_index (index);
1833 _Jv_Constants *pool = &current_class->constants;
1834 if (pool->tags[index] == JV_CONSTANT_ResolvedString
1835 || pool->tags[index] == JV_CONSTANT_String)
1836 return type (&java::lang::String::class$);
1837 else if (pool->tags[index] == JV_CONSTANT_Integer)
1838 return type (int_type);
1839 else if (pool->tags[index] == JV_CONSTANT_Float)
1840 return type (float_type);
1841 verify_fail ("String, int, or float constant expected", start_PC);
1844 type check_wide_constant (int index)
1846 check_pool_index (index);
1847 _Jv_Constants *pool = &current_class->constants;
1848 if (pool->tags[index] == JV_CONSTANT_Long)
1849 return type (long_type);
1850 else if (pool->tags[index] == JV_CONSTANT_Double)
1851 return type (double_type);
1852 verify_fail ("long or double constant expected", start_PC);
1855 // Helper for both field and method. These are laid out the same in
1856 // the constant pool.
1857 type handle_field_or_method (int index, int expected,
1858 _Jv_Utf8Const **name,
1859 _Jv_Utf8Const **fmtype)
1861 check_pool_index (index);
1862 _Jv_Constants *pool = &current_class->constants;
1863 if (pool->tags[index] != expected)
1864 verify_fail ("didn't see expected constant", start_PC);
1865 // Once we know we have a Fieldref or Methodref we assume that it
1866 // is correctly laid out in the constant pool. I think the code
1867 // in defineclass.cc guarantees this.
1868 _Jv_ushort class_index, name_and_type_index;
1869 _Jv_loadIndexes (&pool->data[index],
1870 class_index,
1871 name_and_type_index);
1872 _Jv_ushort name_index, desc_index;
1873 _Jv_loadIndexes (&pool->data[name_and_type_index],
1874 name_index, desc_index);
1876 *name = pool->data[name_index].utf8;
1877 *fmtype = pool->data[desc_index].utf8;
1879 return check_class_constant (class_index);
1882 // Return field's type, compute class' type if requested.
1883 type check_field_constant (int index, type *class_type = NULL)
1885 _Jv_Utf8Const *name, *field_type;
1886 type ct = handle_field_or_method (index,
1887 JV_CONSTANT_Fieldref,
1888 &name, &field_type);
1889 if (class_type)
1890 *class_type = ct;
1891 if (field_type->data[0] == '[' || field_type->data[0] == 'L')
1892 return type (field_type);
1893 return get_type_val_for_signature (field_type->data[0]);
1896 type check_method_constant (int index, bool is_interface,
1897 _Jv_Utf8Const **method_name,
1898 _Jv_Utf8Const **method_signature)
1900 return handle_field_or_method (index,
1901 (is_interface
1902 ? JV_CONSTANT_InterfaceMethodref
1903 : JV_CONSTANT_Methodref),
1904 method_name, method_signature);
1907 type get_one_type (char *&p)
1909 char *start = p;
1911 int arraycount = 0;
1912 while (*p == '[')
1914 ++arraycount;
1915 ++p;
1918 char v = *p++;
1920 if (v == 'L')
1922 while (*p != ';')
1923 ++p;
1924 ++p;
1925 _Jv_Utf8Const *name = make_utf8_const (start, p - start);
1926 return type (name);
1929 // Casting to jchar here is ok since we are looking at an ASCII
1930 // character.
1931 type_val rt = get_type_val_for_signature (jchar (v));
1933 if (arraycount == 0)
1935 // Callers of this function eventually push their arguments on
1936 // the stack. So, promote them here.
1937 return type (rt).promote ();
1940 jclass k = construct_primitive_array_type (rt);
1941 while (--arraycount > 0)
1942 k = _Jv_GetArrayClass (k, NULL);
1943 return type (k);
1946 void compute_argument_types (_Jv_Utf8Const *signature,
1947 type *types)
1949 char *p = signature->data;
1950 // Skip `('.
1951 ++p;
1953 int i = 0;
1954 while (*p != ')')
1955 types[i++] = get_one_type (p);
1958 type compute_return_type (_Jv_Utf8Const *signature)
1960 char *p = signature->data;
1961 while (*p != ')')
1962 ++p;
1963 ++p;
1964 return get_one_type (p);
1967 void check_return_type (type onstack)
1969 type rt = compute_return_type (current_method->self->signature);
1970 if (! rt.compatible (onstack, this))
1971 verify_fail ("incompatible return type");
1974 // Initialize the stack for the new method. Returns true if this
1975 // method is an instance initializer.
1976 bool initialize_stack ()
1978 int var = 0;
1979 bool is_init = false;
1981 using namespace java::lang::reflect;
1982 if (! Modifier::isStatic (current_method->self->accflags))
1984 type kurr (current_class);
1985 if (_Jv_equalUtf8Consts (current_method->self->name, gcj::init_name))
1987 kurr.set_uninitialized (type::SELF, this);
1988 is_init = true;
1990 set_variable (0, kurr);
1991 current_state->set_this_type (kurr);
1992 ++var;
1995 // We have to handle wide arguments specially here.
1996 int arg_count = _Jv_count_arguments (current_method->self->signature);
1997 type arg_types[arg_count];
1998 compute_argument_types (current_method->self->signature, arg_types);
1999 for (int i = 0; i < arg_count; ++i)
2001 set_variable (var, arg_types[i]);
2002 ++var;
2003 if (arg_types[i].iswide ())
2004 ++var;
2007 return is_init;
2010 void verify_instructions_0 ()
2012 current_state = new state (current_method->max_stack,
2013 current_method->max_locals);
2015 PC = 0;
2016 start_PC = 0;
2018 // True if we are verifying an instance initializer.
2019 bool this_is_init = initialize_stack ();
2021 states = (state **) _Jv_Malloc (sizeof (state *)
2022 * current_method->code_length);
2023 for (int i = 0; i < current_method->code_length; ++i)
2024 states[i] = NULL;
2026 next_verify_pc = state::NO_NEXT;
2028 while (true)
2030 // If the PC was invalidated, get a new one from the work list.
2031 if (PC == state::NO_NEXT)
2033 PC = pop_jump ();
2034 if (PC == state::INVALID)
2035 verify_fail ("can't happen: saw state::INVALID");
2036 if (PC == state::NO_NEXT)
2037 break;
2038 // Set up the current state.
2039 current_state->copy (states[PC], current_method->max_stack,
2040 current_method->max_locals);
2042 else
2044 // Control can't fall off the end of the bytecode. We
2045 // only need to check this in the fall-through case,
2046 // because branch bounds are checked when they are
2047 // pushed.
2048 if (PC >= current_method->code_length)
2049 verify_fail ("fell off end");
2051 // We only have to do this checking in the situation where
2052 // control flow falls through from the previous
2053 // instruction. Otherwise merging is done at the time we
2054 // push the branch.
2055 if (states[PC] != NULL)
2057 // We've already visited this instruction. So merge
2058 // the states together. If this yields no change then
2059 // we don't have to re-verify. However, if the new
2060 // state is an the result of an unmerged `ret', we
2061 // must continue through it.
2062 debug_print ("== Fall through merge\n");
2063 states[PC]->print ("Old", PC, current_method->max_stack,
2064 current_method->max_locals);
2065 current_state->print ("Cur", PC, current_method->max_stack,
2066 current_method->max_locals);
2067 if (! current_state->merge (states[PC], false,
2068 current_method->max_locals, this)
2069 && ! states[PC]->is_unmerged_ret_state (current_method->max_locals))
2071 debug_print ("== Fall through optimization\n");
2072 invalidate_pc ();
2073 continue;
2075 // Save a copy of it for later.
2076 states[PC]->copy (current_state, current_method->max_stack,
2077 current_method->max_locals);
2078 current_state->print ("New", PC, current_method->max_stack,
2079 current_method->max_locals);
2083 // We only have to keep saved state at branch targets. If
2084 // we're at a branch target and the state here hasn't been set
2085 // yet, we set it now.
2086 if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
2088 states[PC] = new state (current_state, current_method->max_stack,
2089 current_method->max_locals);
2092 // Set this before handling exceptions so that debug output is
2093 // sane.
2094 start_PC = PC;
2096 // Update states for all active exception handlers. Ordinarily
2097 // there are not many exception handlers. So we simply run
2098 // through them all.
2099 for (int i = 0; i < current_method->exc_count; ++i)
2101 if (PC >= exception[i].start_pc && PC < exception[i].end_pc)
2103 type handler (&java::lang::Throwable::class$);
2104 if (exception[i].handler_type != 0)
2105 handler = check_class_constant (exception[i].handler_type);
2106 push_exception_jump (handler, exception[i].handler_pc);
2110 current_state->print (" ", PC, current_method->max_stack,
2111 current_method->max_locals);
2112 java_opcode opcode = (java_opcode) bytecode[PC++];
2113 switch (opcode)
2115 case op_nop:
2116 break;
2118 case op_aconst_null:
2119 push_type (null_type);
2120 break;
2122 case op_iconst_m1:
2123 case op_iconst_0:
2124 case op_iconst_1:
2125 case op_iconst_2:
2126 case op_iconst_3:
2127 case op_iconst_4:
2128 case op_iconst_5:
2129 push_type (int_type);
2130 break;
2132 case op_lconst_0:
2133 case op_lconst_1:
2134 push_type (long_type);
2135 break;
2137 case op_fconst_0:
2138 case op_fconst_1:
2139 case op_fconst_2:
2140 push_type (float_type);
2141 break;
2143 case op_dconst_0:
2144 case op_dconst_1:
2145 push_type (double_type);
2146 break;
2148 case op_bipush:
2149 get_byte ();
2150 push_type (int_type);
2151 break;
2153 case op_sipush:
2154 get_short ();
2155 push_type (int_type);
2156 break;
2158 case op_ldc:
2159 push_type (check_constant (get_byte ()));
2160 break;
2161 case op_ldc_w:
2162 push_type (check_constant (get_ushort ()));
2163 break;
2164 case op_ldc2_w:
2165 push_type (check_wide_constant (get_ushort ()));
2166 break;
2168 case op_iload:
2169 push_type (get_variable (get_byte (), int_type));
2170 break;
2171 case op_lload:
2172 push_type (get_variable (get_byte (), long_type));
2173 break;
2174 case op_fload:
2175 push_type (get_variable (get_byte (), float_type));
2176 break;
2177 case op_dload:
2178 push_type (get_variable (get_byte (), double_type));
2179 break;
2180 case op_aload:
2181 push_type (get_variable (get_byte (), reference_type));
2182 break;
2184 case op_iload_0:
2185 case op_iload_1:
2186 case op_iload_2:
2187 case op_iload_3:
2188 push_type (get_variable (opcode - op_iload_0, int_type));
2189 break;
2190 case op_lload_0:
2191 case op_lload_1:
2192 case op_lload_2:
2193 case op_lload_3:
2194 push_type (get_variable (opcode - op_lload_0, long_type));
2195 break;
2196 case op_fload_0:
2197 case op_fload_1:
2198 case op_fload_2:
2199 case op_fload_3:
2200 push_type (get_variable (opcode - op_fload_0, float_type));
2201 break;
2202 case op_dload_0:
2203 case op_dload_1:
2204 case op_dload_2:
2205 case op_dload_3:
2206 push_type (get_variable (opcode - op_dload_0, double_type));
2207 break;
2208 case op_aload_0:
2209 case op_aload_1:
2210 case op_aload_2:
2211 case op_aload_3:
2212 push_type (get_variable (opcode - op_aload_0, reference_type));
2213 break;
2214 case op_iaload:
2215 pop_type (int_type);
2216 push_type (require_array_type (pop_type (reference_type),
2217 int_type));
2218 break;
2219 case op_laload:
2220 pop_type (int_type);
2221 push_type (require_array_type (pop_type (reference_type),
2222 long_type));
2223 break;
2224 case op_faload:
2225 pop_type (int_type);
2226 push_type (require_array_type (pop_type (reference_type),
2227 float_type));
2228 break;
2229 case op_daload:
2230 pop_type (int_type);
2231 push_type (require_array_type (pop_type (reference_type),
2232 double_type));
2233 break;
2234 case op_aaload:
2235 pop_type (int_type);
2236 push_type (require_array_type (pop_type (reference_type),
2237 reference_type));
2238 break;
2239 case op_baload:
2240 pop_type (int_type);
2241 require_array_type (pop_type (reference_type), byte_type);
2242 push_type (int_type);
2243 break;
2244 case op_caload:
2245 pop_type (int_type);
2246 require_array_type (pop_type (reference_type), char_type);
2247 push_type (int_type);
2248 break;
2249 case op_saload:
2250 pop_type (int_type);
2251 require_array_type (pop_type (reference_type), short_type);
2252 push_type (int_type);
2253 break;
2254 case op_istore:
2255 set_variable (get_byte (), pop_type (int_type));
2256 break;
2257 case op_lstore:
2258 set_variable (get_byte (), pop_type (long_type));
2259 break;
2260 case op_fstore:
2261 set_variable (get_byte (), pop_type (float_type));
2262 break;
2263 case op_dstore:
2264 set_variable (get_byte (), pop_type (double_type));
2265 break;
2266 case op_astore:
2267 set_variable (get_byte (), pop_ref_or_return ());
2268 break;
2269 case op_istore_0:
2270 case op_istore_1:
2271 case op_istore_2:
2272 case op_istore_3:
2273 set_variable (opcode - op_istore_0, pop_type (int_type));
2274 break;
2275 case op_lstore_0:
2276 case op_lstore_1:
2277 case op_lstore_2:
2278 case op_lstore_3:
2279 set_variable (opcode - op_lstore_0, pop_type (long_type));
2280 break;
2281 case op_fstore_0:
2282 case op_fstore_1:
2283 case op_fstore_2:
2284 case op_fstore_3:
2285 set_variable (opcode - op_fstore_0, pop_type (float_type));
2286 break;
2287 case op_dstore_0:
2288 case op_dstore_1:
2289 case op_dstore_2:
2290 case op_dstore_3:
2291 set_variable (opcode - op_dstore_0, pop_type (double_type));
2292 break;
2293 case op_astore_0:
2294 case op_astore_1:
2295 case op_astore_2:
2296 case op_astore_3:
2297 set_variable (opcode - op_astore_0, pop_ref_or_return ());
2298 break;
2299 case op_iastore:
2300 pop_type (int_type);
2301 pop_type (int_type);
2302 require_array_type (pop_type (reference_type), int_type);
2303 break;
2304 case op_lastore:
2305 pop_type (long_type);
2306 pop_type (int_type);
2307 require_array_type (pop_type (reference_type), long_type);
2308 break;
2309 case op_fastore:
2310 pop_type (float_type);
2311 pop_type (int_type);
2312 require_array_type (pop_type (reference_type), float_type);
2313 break;
2314 case op_dastore:
2315 pop_type (double_type);
2316 pop_type (int_type);
2317 require_array_type (pop_type (reference_type), double_type);
2318 break;
2319 case op_aastore:
2320 pop_type (reference_type);
2321 pop_type (int_type);
2322 require_array_type (pop_type (reference_type), reference_type);
2323 break;
2324 case op_bastore:
2325 pop_type (int_type);
2326 pop_type (int_type);
2327 require_array_type (pop_type (reference_type), byte_type);
2328 break;
2329 case op_castore:
2330 pop_type (int_type);
2331 pop_type (int_type);
2332 require_array_type (pop_type (reference_type), char_type);
2333 break;
2334 case op_sastore:
2335 pop_type (int_type);
2336 pop_type (int_type);
2337 require_array_type (pop_type (reference_type), short_type);
2338 break;
2339 case op_pop:
2340 pop32 ();
2341 break;
2342 case op_pop2:
2343 pop64 ();
2344 break;
2345 case op_dup:
2347 type t = pop32 ();
2348 push_type (t);
2349 push_type (t);
2351 break;
2352 case op_dup_x1:
2354 type t1 = pop32 ();
2355 type t2 = pop32 ();
2356 push_type (t1);
2357 push_type (t2);
2358 push_type (t1);
2360 break;
2361 case op_dup_x2:
2363 type t1 = pop32 ();
2364 type t2 = pop_raw ();
2365 if (! t2.iswide ())
2367 type t3 = pop32 ();
2368 push_type (t1);
2369 push_type (t3);
2371 else
2372 push_type (t1);
2373 push_type (t2);
2374 push_type (t1);
2376 break;
2377 case op_dup2:
2379 type t = pop_raw ();
2380 if (! t.iswide ())
2382 type t2 = pop32 ();
2383 push_type (t2);
2384 push_type (t);
2385 push_type (t2);
2387 else
2388 push_type (t);
2389 push_type (t);
2391 break;
2392 case op_dup2_x1:
2394 type t1 = pop_raw ();
2395 type t2 = pop32 ();
2396 if (! t1.iswide ())
2398 type t3 = pop32 ();
2399 push_type (t2);
2400 push_type (t1);
2401 push_type (t3);
2403 else
2404 push_type (t1);
2405 push_type (t2);
2406 push_type (t1);
2408 break;
2409 case op_dup2_x2:
2411 type t1 = pop_raw ();
2412 if (t1.iswide ())
2414 type t2 = pop_raw ();
2415 if (t2.iswide ())
2417 push_type (t1);
2418 push_type (t2);
2420 else
2422 type t3 = pop32 ();
2423 push_type (t1);
2424 push_type (t3);
2425 push_type (t2);
2427 push_type (t1);
2429 else
2431 type t2 = pop32 ();
2432 type t3 = pop_raw ();
2433 if (t3.iswide ())
2435 push_type (t2);
2436 push_type (t1);
2438 else
2440 type t4 = pop32 ();
2441 push_type (t2);
2442 push_type (t1);
2443 push_type (t4);
2445 push_type (t3);
2446 push_type (t2);
2447 push_type (t1);
2450 break;
2451 case op_swap:
2453 type t1 = pop32 ();
2454 type t2 = pop32 ();
2455 push_type (t1);
2456 push_type (t2);
2458 break;
2459 case op_iadd:
2460 case op_isub:
2461 case op_imul:
2462 case op_idiv:
2463 case op_irem:
2464 case op_ishl:
2465 case op_ishr:
2466 case op_iushr:
2467 case op_iand:
2468 case op_ior:
2469 case op_ixor:
2470 pop_type (int_type);
2471 push_type (pop_type (int_type));
2472 break;
2473 case op_ladd:
2474 case op_lsub:
2475 case op_lmul:
2476 case op_ldiv:
2477 case op_lrem:
2478 case op_land:
2479 case op_lor:
2480 case op_lxor:
2481 pop_type (long_type);
2482 push_type (pop_type (long_type));
2483 break;
2484 case op_lshl:
2485 case op_lshr:
2486 case op_lushr:
2487 pop_type (int_type);
2488 push_type (pop_type (long_type));
2489 break;
2490 case op_fadd:
2491 case op_fsub:
2492 case op_fmul:
2493 case op_fdiv:
2494 case op_frem:
2495 pop_type (float_type);
2496 push_type (pop_type (float_type));
2497 break;
2498 case op_dadd:
2499 case op_dsub:
2500 case op_dmul:
2501 case op_ddiv:
2502 case op_drem:
2503 pop_type (double_type);
2504 push_type (pop_type (double_type));
2505 break;
2506 case op_ineg:
2507 case op_i2b:
2508 case op_i2c:
2509 case op_i2s:
2510 push_type (pop_type (int_type));
2511 break;
2512 case op_lneg:
2513 push_type (pop_type (long_type));
2514 break;
2515 case op_fneg:
2516 push_type (pop_type (float_type));
2517 break;
2518 case op_dneg:
2519 push_type (pop_type (double_type));
2520 break;
2521 case op_iinc:
2522 get_variable (get_byte (), int_type);
2523 get_byte ();
2524 break;
2525 case op_i2l:
2526 pop_type (int_type);
2527 push_type (long_type);
2528 break;
2529 case op_i2f:
2530 pop_type (int_type);
2531 push_type (float_type);
2532 break;
2533 case op_i2d:
2534 pop_type (int_type);
2535 push_type (double_type);
2536 break;
2537 case op_l2i:
2538 pop_type (long_type);
2539 push_type (int_type);
2540 break;
2541 case op_l2f:
2542 pop_type (long_type);
2543 push_type (float_type);
2544 break;
2545 case op_l2d:
2546 pop_type (long_type);
2547 push_type (double_type);
2548 break;
2549 case op_f2i:
2550 pop_type (float_type);
2551 push_type (int_type);
2552 break;
2553 case op_f2l:
2554 pop_type (float_type);
2555 push_type (long_type);
2556 break;
2557 case op_f2d:
2558 pop_type (float_type);
2559 push_type (double_type);
2560 break;
2561 case op_d2i:
2562 pop_type (double_type);
2563 push_type (int_type);
2564 break;
2565 case op_d2l:
2566 pop_type (double_type);
2567 push_type (long_type);
2568 break;
2569 case op_d2f:
2570 pop_type (double_type);
2571 push_type (float_type);
2572 break;
2573 case op_lcmp:
2574 pop_type (long_type);
2575 pop_type (long_type);
2576 push_type (int_type);
2577 break;
2578 case op_fcmpl:
2579 case op_fcmpg:
2580 pop_type (float_type);
2581 pop_type (float_type);
2582 push_type (int_type);
2583 break;
2584 case op_dcmpl:
2585 case op_dcmpg:
2586 pop_type (double_type);
2587 pop_type (double_type);
2588 push_type (int_type);
2589 break;
2590 case op_ifeq:
2591 case op_ifne:
2592 case op_iflt:
2593 case op_ifge:
2594 case op_ifgt:
2595 case op_ifle:
2596 pop_type (int_type);
2597 push_jump (get_short ());
2598 break;
2599 case op_if_icmpeq:
2600 case op_if_icmpne:
2601 case op_if_icmplt:
2602 case op_if_icmpge:
2603 case op_if_icmpgt:
2604 case op_if_icmple:
2605 pop_type (int_type);
2606 pop_type (int_type);
2607 push_jump (get_short ());
2608 break;
2609 case op_if_acmpeq:
2610 case op_if_acmpne:
2611 pop_type (reference_type);
2612 pop_type (reference_type);
2613 push_jump (get_short ());
2614 break;
2615 case op_goto:
2616 push_jump (get_short ());
2617 invalidate_pc ();
2618 break;
2619 case op_jsr:
2620 handle_jsr_insn (get_short ());
2621 break;
2622 case op_ret:
2623 handle_ret_insn (get_byte ());
2624 break;
2625 case op_tableswitch:
2627 pop_type (int_type);
2628 skip_padding ();
2629 push_jump (get_int ());
2630 jint low = get_int ();
2631 jint high = get_int ();
2632 // Already checked LOW -vs- HIGH.
2633 for (int i = low; i <= high; ++i)
2634 push_jump (get_int ());
2635 invalidate_pc ();
2637 break;
2639 case op_lookupswitch:
2641 pop_type (int_type);
2642 skip_padding ();
2643 push_jump (get_int ());
2644 jint npairs = get_int ();
2645 // Already checked NPAIRS >= 0.
2646 jint lastkey = 0;
2647 for (int i = 0; i < npairs; ++i)
2649 jint key = get_int ();
2650 if (i > 0 && key <= lastkey)
2651 verify_fail ("lookupswitch pairs unsorted", start_PC);
2652 lastkey = key;
2653 push_jump (get_int ());
2655 invalidate_pc ();
2657 break;
2658 case op_ireturn:
2659 check_return_type (pop_type (int_type));
2660 invalidate_pc ();
2661 break;
2662 case op_lreturn:
2663 check_return_type (pop_type (long_type));
2664 invalidate_pc ();
2665 break;
2666 case op_freturn:
2667 check_return_type (pop_type (float_type));
2668 invalidate_pc ();
2669 break;
2670 case op_dreturn:
2671 check_return_type (pop_type (double_type));
2672 invalidate_pc ();
2673 break;
2674 case op_areturn:
2675 check_return_type (pop_type (reference_type));
2676 invalidate_pc ();
2677 break;
2678 case op_return:
2679 // We only need to check this when the return type is
2680 // void, because all instance initializers return void.
2681 if (this_is_init)
2682 current_state->check_this_initialized (this);
2683 check_return_type (void_type);
2684 invalidate_pc ();
2685 break;
2686 case op_getstatic:
2687 push_type (check_field_constant (get_ushort ()));
2688 break;
2689 case op_putstatic:
2690 pop_type (check_field_constant (get_ushort ()));
2691 break;
2692 case op_getfield:
2694 type klass;
2695 type field = check_field_constant (get_ushort (), &klass);
2696 pop_type (klass);
2697 push_type (field);
2699 break;
2700 case op_putfield:
2702 type klass;
2703 type field = check_field_constant (get_ushort (), &klass);
2704 pop_type (field);
2706 // We have an obscure special case here: we can use
2707 // `putfield' on a field declared in this class, even if
2708 // `this' has not yet been initialized.
2709 if (! current_state->this_type.isinitialized ()
2710 && current_state->this_type.pc == type::SELF)
2711 klass.set_uninitialized (type::SELF, this);
2712 pop_type (klass);
2714 break;
2716 case op_invokevirtual:
2717 case op_invokespecial:
2718 case op_invokestatic:
2719 case op_invokeinterface:
2721 _Jv_Utf8Const *method_name, *method_signature;
2722 type class_type
2723 = check_method_constant (get_ushort (),
2724 opcode == op_invokeinterface,
2725 &method_name,
2726 &method_signature);
2727 // NARGS is only used when we're processing
2728 // invokeinterface. It is simplest for us to compute it
2729 // here and then verify it later.
2730 int nargs = 0;
2731 if (opcode == op_invokeinterface)
2733 nargs = get_byte ();
2734 if (get_byte () != 0)
2735 verify_fail ("invokeinterface dummy byte is wrong");
2738 bool is_init = false;
2739 if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
2741 is_init = true;
2742 if (opcode != op_invokespecial)
2743 verify_fail ("can't invoke <init>");
2745 else if (method_name->data[0] == '<')
2746 verify_fail ("can't invoke method starting with `<'");
2748 // Pop arguments and check types.
2749 int arg_count = _Jv_count_arguments (method_signature);
2750 type arg_types[arg_count];
2751 compute_argument_types (method_signature, arg_types);
2752 for (int i = arg_count - 1; i >= 0; --i)
2754 // This is only used for verifying the byte for
2755 // invokeinterface.
2756 nargs -= arg_types[i].depth ();
2757 pop_type (arg_types[i]);
2760 if (opcode == op_invokeinterface
2761 && nargs != 1)
2762 verify_fail ("wrong argument count for invokeinterface");
2764 if (opcode != op_invokestatic)
2766 type t = class_type;
2767 if (is_init)
2769 // In this case the PC doesn't matter.
2770 t.set_uninitialized (type::UNINIT, this);
2772 t = pop_type (t);
2773 if (is_init)
2774 current_state->set_initialized (t.get_pc (),
2775 current_method->max_locals);
2778 type rt = compute_return_type (method_signature);
2779 if (! rt.isvoid ())
2780 push_type (rt);
2782 break;
2784 case op_new:
2786 type t = check_class_constant (get_ushort ());
2787 if (t.isarray () || t.isinterface (this) || t.isabstract (this))
2788 verify_fail ("type is array, interface, or abstract");
2789 t.set_uninitialized (start_PC, this);
2790 push_type (t);
2792 break;
2794 case op_newarray:
2796 int atype = get_byte ();
2797 // We intentionally have chosen constants to make this
2798 // valid.
2799 if (atype < boolean_type || atype > long_type)
2800 verify_fail ("type not primitive", start_PC);
2801 pop_type (int_type);
2802 push_type (construct_primitive_array_type (type_val (atype)));
2804 break;
2805 case op_anewarray:
2806 pop_type (int_type);
2807 push_type (check_class_constant (get_ushort ()).to_array (this));
2808 break;
2809 case op_arraylength:
2811 type t = pop_type (reference_type);
2812 if (! t.isarray () && ! t.isnull ())
2813 verify_fail ("array type expected");
2814 push_type (int_type);
2816 break;
2817 case op_athrow:
2818 pop_type (type (&java::lang::Throwable::class$));
2819 invalidate_pc ();
2820 break;
2821 case op_checkcast:
2822 pop_type (reference_type);
2823 push_type (check_class_constant (get_ushort ()));
2824 break;
2825 case op_instanceof:
2826 pop_type (reference_type);
2827 check_class_constant (get_ushort ());
2828 push_type (int_type);
2829 break;
2830 case op_monitorenter:
2831 pop_type (reference_type);
2832 break;
2833 case op_monitorexit:
2834 pop_type (reference_type);
2835 break;
2836 case op_wide:
2838 switch (get_byte ())
2840 case op_iload:
2841 push_type (get_variable (get_ushort (), int_type));
2842 break;
2843 case op_lload:
2844 push_type (get_variable (get_ushort (), long_type));
2845 break;
2846 case op_fload:
2847 push_type (get_variable (get_ushort (), float_type));
2848 break;
2849 case op_dload:
2850 push_type (get_variable (get_ushort (), double_type));
2851 break;
2852 case op_aload:
2853 push_type (get_variable (get_ushort (), reference_type));
2854 break;
2855 case op_istore:
2856 set_variable (get_ushort (), pop_type (int_type));
2857 break;
2858 case op_lstore:
2859 set_variable (get_ushort (), pop_type (long_type));
2860 break;
2861 case op_fstore:
2862 set_variable (get_ushort (), pop_type (float_type));
2863 break;
2864 case op_dstore:
2865 set_variable (get_ushort (), pop_type (double_type));
2866 break;
2867 case op_astore:
2868 set_variable (get_ushort (), pop_type (reference_type));
2869 break;
2870 case op_ret:
2871 handle_ret_insn (get_short ());
2872 break;
2873 case op_iinc:
2874 get_variable (get_ushort (), int_type);
2875 get_short ();
2876 break;
2877 default:
2878 verify_fail ("unrecognized wide instruction", start_PC);
2881 break;
2882 case op_multianewarray:
2884 type atype = check_class_constant (get_ushort ());
2885 int dim = get_byte ();
2886 if (dim < 1)
2887 verify_fail ("too few dimensions to multianewarray", start_PC);
2888 atype.verify_dimensions (dim, this);
2889 for (int i = 0; i < dim; ++i)
2890 pop_type (int_type);
2891 push_type (atype);
2893 break;
2894 case op_ifnull:
2895 case op_ifnonnull:
2896 pop_type (reference_type);
2897 push_jump (get_short ());
2898 break;
2899 case op_goto_w:
2900 push_jump (get_int ());
2901 invalidate_pc ();
2902 break;
2903 case op_jsr_w:
2904 handle_jsr_insn (get_int ());
2905 break;
2907 default:
2908 // Unrecognized opcode.
2909 verify_fail ("unrecognized instruction in verify_instructions_0",
2910 start_PC);
2915 __attribute__ ((__noreturn__)) void verify_fail (char *s, jint pc = -1)
2917 using namespace java::lang;
2918 StringBuffer *buf = new StringBuffer ();
2920 buf->append (JvNewStringLatin1 ("verification failed"));
2921 if (pc == -1)
2922 pc = start_PC;
2923 if (pc != -1)
2925 buf->append (JvNewStringLatin1 (" at PC "));
2926 buf->append (pc);
2929 _Jv_InterpMethod *method = current_method;
2930 buf->append (JvNewStringLatin1 (" in "));
2931 buf->append (current_class->getName());
2932 buf->append ((jchar) ':');
2933 buf->append (JvNewStringUTF (method->get_method()->name->data));
2934 buf->append ((jchar) '(');
2935 buf->append (JvNewStringUTF (method->get_method()->signature->data));
2936 buf->append ((jchar) ')');
2938 buf->append (JvNewStringLatin1 (": "));
2939 buf->append (JvNewStringLatin1 (s));
2940 throw new java::lang::VerifyError (buf->toString ());
2943 public:
2945 void verify_instructions ()
2947 branch_prepass ();
2948 verify_instructions_0 ();
2951 _Jv_BytecodeVerifier (_Jv_InterpMethod *m)
2953 // We just print the text as utf-8. This is just for debugging
2954 // anyway.
2955 debug_print ("--------------------------------\n");
2956 debug_print ("-- Verifying method `%s'\n", m->self->name->data);
2958 current_method = m;
2959 bytecode = m->bytecode ();
2960 exception = m->exceptions ();
2961 current_class = m->defining_class;
2963 states = NULL;
2964 flags = NULL;
2965 jsr_ptrs = NULL;
2966 utf8_list = NULL;
2967 entry_points = NULL;
2970 ~_Jv_BytecodeVerifier ()
2972 if (states)
2973 _Jv_Free (states);
2974 if (flags)
2975 _Jv_Free (flags);
2977 if (jsr_ptrs)
2979 for (int i = 0; i < current_method->code_length; ++i)
2981 if (jsr_ptrs[i] != NULL)
2983 subr_info *info = jsr_ptrs[i];
2984 while (info != NULL)
2986 subr_info *next = info->next;
2987 _Jv_Free (info);
2988 info = next;
2992 _Jv_Free (jsr_ptrs);
2995 while (utf8_list != NULL)
2997 linked_utf8 *n = utf8_list->next;
2998 _Jv_Free (utf8_list->val);
2999 _Jv_Free (utf8_list);
3000 utf8_list = n;
3003 while (entry_points != NULL)
3005 subr_entry_info *next = entry_points->next;
3006 _Jv_Free (entry_points);
3007 entry_points = next;
3012 void
3013 _Jv_VerifyMethod (_Jv_InterpMethod *meth)
3015 _Jv_BytecodeVerifier v (meth);
3016 v.verify_instructions ();
3018 #endif /* INTERPRETER */