2005-01-22 Thomas Koenig <Thomas.Koenig@online.de>
[official-gcc.git] / gcc / function.c
blob76c1b8e430ff38611c6143da0fb44def4f8fc68d
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
65 #ifndef LOCAL_ALIGNMENT
66 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67 #endif
69 #ifndef STACK_ALIGNMENT_NEEDED
70 #define STACK_ALIGNMENT_NEEDED 1
71 #endif
73 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
75 /* Some systems use __main in a way incompatible with its use in gcc, in these
76 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
77 give the same symbol without quotes for an alternative entry point. You
78 must define both, or neither. */
79 #ifndef NAME__MAIN
80 #define NAME__MAIN "__main"
81 #endif
83 /* Round a value to the lowest integer less than it that is a multiple of
84 the required alignment. Avoid using division in case the value is
85 negative. Assume the alignment is a power of two. */
86 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
88 /* Similar, but round to the next highest integer that meets the
89 alignment. */
90 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
92 /* Nonzero if function being compiled doesn't contain any calls
93 (ignoring the prologue and epilogue). This is set prior to
94 local register allocation and is valid for the remaining
95 compiler passes. */
96 int current_function_is_leaf;
98 /* Nonzero if function being compiled doesn't modify the stack pointer
99 (ignoring the prologue and epilogue). This is only valid after
100 life_analysis has run. */
101 int current_function_sp_is_unchanging;
103 /* Nonzero if the function being compiled is a leaf function which only
104 uses leaf registers. This is valid after reload (specifically after
105 sched2) and is useful only if the port defines LEAF_REGISTERS. */
106 int current_function_uses_only_leaf_regs;
108 /* Nonzero once virtual register instantiation has been done.
109 assign_stack_local uses frame_pointer_rtx when this is nonzero.
110 calls.c:emit_library_call_value_1 uses it to set up
111 post-instantiation libcalls. */
112 int virtuals_instantiated;
114 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
115 static GTY(()) int funcdef_no;
117 /* These variables hold pointers to functions to create and destroy
118 target specific, per-function data structures. */
119 struct machine_function * (*init_machine_status) (void);
121 /* The currently compiled function. */
122 struct function *cfun = 0;
124 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
125 static GTY(()) varray_type prologue;
126 static GTY(()) varray_type epilogue;
128 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
129 in this function. */
130 static GTY(()) varray_type sibcall_epilogue;
132 /* In order to evaluate some expressions, such as function calls returning
133 structures in memory, we need to temporarily allocate stack locations.
134 We record each allocated temporary in the following structure.
136 Associated with each temporary slot is a nesting level. When we pop up
137 one level, all temporaries associated with the previous level are freed.
138 Normally, all temporaries are freed after the execution of the statement
139 in which they were created. However, if we are inside a ({...}) grouping,
140 the result may be in a temporary and hence must be preserved. If the
141 result could be in a temporary, we preserve it if we can determine which
142 one it is in. If we cannot determine which temporary may contain the
143 result, all temporaries are preserved. A temporary is preserved by
144 pretending it was allocated at the previous nesting level.
146 Automatic variables are also assigned temporary slots, at the nesting
147 level where they are defined. They are marked a "kept" so that
148 free_temp_slots will not free them. */
150 struct temp_slot GTY(())
152 /* Points to next temporary slot. */
153 struct temp_slot *next;
154 /* Points to previous temporary slot. */
155 struct temp_slot *prev;
157 /* The rtx to used to reference the slot. */
158 rtx slot;
159 /* The rtx used to represent the address if not the address of the
160 slot above. May be an EXPR_LIST if multiple addresses exist. */
161 rtx address;
162 /* The alignment (in bits) of the slot. */
163 unsigned int align;
164 /* The size, in units, of the slot. */
165 HOST_WIDE_INT size;
166 /* The type of the object in the slot, or zero if it doesn't correspond
167 to a type. We use this to determine whether a slot can be reused.
168 It can be reused if objects of the type of the new slot will always
169 conflict with objects of the type of the old slot. */
170 tree type;
171 /* Nonzero if this temporary is currently in use. */
172 char in_use;
173 /* Nonzero if this temporary has its address taken. */
174 char addr_taken;
175 /* Nesting level at which this slot is being used. */
176 int level;
177 /* Nonzero if this should survive a call to free_temp_slots. */
178 int keep;
179 /* The offset of the slot from the frame_pointer, including extra space
180 for alignment. This info is for combine_temp_slots. */
181 HOST_WIDE_INT base_offset;
182 /* The size of the slot, including extra space for alignment. This
183 info is for combine_temp_slots. */
184 HOST_WIDE_INT full_size;
187 /* Forward declarations. */
189 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
190 struct function *);
191 static struct temp_slot *find_temp_slot_from_address (rtx);
192 static void instantiate_decls (tree, int);
193 static void instantiate_decls_1 (tree, int);
194 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
195 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
196 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, varray_type *);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
207 static int contains (rtx, varray_type);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void instantiate_virtual_regs_lossage (rtx);
218 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
220 /* Pointer to chain of `struct function' for containing functions. */
221 struct function *outer_function_chain;
223 /* Given a function decl for a containing function,
224 return the `struct function' for it. */
226 struct function *
227 find_function_data (tree decl)
229 struct function *p;
231 for (p = outer_function_chain; p; p = p->outer)
232 if (p->decl == decl)
233 return p;
235 gcc_unreachable ();
238 /* Save the current context for compilation of a nested function.
239 This is called from language-specific code. The caller should use
240 the enter_nested langhook to save any language-specific state,
241 since this function knows only about language-independent
242 variables. */
244 void
245 push_function_context_to (tree context)
247 struct function *p;
249 if (context)
251 if (context == current_function_decl)
252 cfun->contains_functions = 1;
253 else
255 struct function *containing = find_function_data (context);
256 containing->contains_functions = 1;
260 if (cfun == 0)
261 init_dummy_function_start ();
262 p = cfun;
264 p->outer = outer_function_chain;
265 outer_function_chain = p;
267 lang_hooks.function.enter_nested (p);
269 cfun = 0;
272 void
273 push_function_context (void)
275 push_function_context_to (current_function_decl);
278 /* Restore the last saved context, at the end of a nested function.
279 This function is called from language-specific code. */
281 void
282 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
284 struct function *p = outer_function_chain;
286 cfun = p;
287 outer_function_chain = p->outer;
289 current_function_decl = p->decl;
291 lang_hooks.function.leave_nested (p);
293 /* Reset variables that have known state during rtx generation. */
294 virtuals_instantiated = 0;
295 generating_concat_p = 1;
298 void
299 pop_function_context (void)
301 pop_function_context_from (current_function_decl);
304 /* Clear out all parts of the state in F that can safely be discarded
305 after the function has been parsed, but not compiled, to let
306 garbage collection reclaim the memory. */
308 void
309 free_after_parsing (struct function *f)
311 /* f->expr->forced_labels is used by code generation. */
312 /* f->emit->regno_reg_rtx is used by code generation. */
313 /* f->varasm is used by code generation. */
314 /* f->eh->eh_return_stub_label is used by code generation. */
316 lang_hooks.function.final (f);
319 /* Clear out all parts of the state in F that can safely be discarded
320 after the function has been compiled, to let garbage collection
321 reclaim the memory. */
323 void
324 free_after_compilation (struct function *f)
326 f->eh = NULL;
327 f->expr = NULL;
328 f->emit = NULL;
329 f->varasm = NULL;
330 f->machine = NULL;
332 f->x_avail_temp_slots = NULL;
333 f->x_used_temp_slots = NULL;
334 f->arg_offset_rtx = NULL;
335 f->return_rtx = NULL;
336 f->internal_arg_pointer = NULL;
337 f->x_nonlocal_goto_handler_labels = NULL;
338 f->x_return_label = NULL;
339 f->x_naked_return_label = NULL;
340 f->x_stack_slot_list = NULL;
341 f->x_tail_recursion_reentry = NULL;
342 f->x_arg_pointer_save_area = NULL;
343 f->x_parm_birth_insn = NULL;
344 f->original_arg_vector = NULL;
345 f->original_decl_initial = NULL;
346 f->epilogue_delay_list = NULL;
349 /* Allocate fixed slots in the stack frame of the current function. */
351 /* Return size needed for stack frame based on slots so far allocated in
352 function F.
353 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
354 the caller may have to do that. */
356 HOST_WIDE_INT
357 get_func_frame_size (struct function *f)
359 #ifdef FRAME_GROWS_DOWNWARD
360 return -f->x_frame_offset;
361 #else
362 return f->x_frame_offset;
363 #endif
366 /* Return size needed for stack frame based on slots so far allocated.
367 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
368 the caller may have to do that. */
369 HOST_WIDE_INT
370 get_frame_size (void)
372 return get_func_frame_size (cfun);
375 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
376 with machine mode MODE.
378 ALIGN controls the amount of alignment for the address of the slot:
379 0 means according to MODE,
380 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
381 -2 means use BITS_PER_UNIT,
382 positive specifies alignment boundary in bits.
384 We do not round to stack_boundary here.
386 FUNCTION specifies the function to allocate in. */
388 static rtx
389 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
390 struct function *function)
392 rtx x, addr;
393 int bigend_correction = 0;
394 unsigned int alignment;
395 int frame_off, frame_alignment, frame_phase;
397 if (align == 0)
399 tree type;
401 if (mode == BLKmode)
402 alignment = BIGGEST_ALIGNMENT;
403 else
404 alignment = GET_MODE_ALIGNMENT (mode);
406 /* Allow the target to (possibly) increase the alignment of this
407 stack slot. */
408 type = lang_hooks.types.type_for_mode (mode, 0);
409 if (type)
410 alignment = LOCAL_ALIGNMENT (type, alignment);
412 alignment /= BITS_PER_UNIT;
414 else if (align == -1)
416 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
417 size = CEIL_ROUND (size, alignment);
419 else if (align == -2)
420 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
421 else
422 alignment = align / BITS_PER_UNIT;
424 #ifdef FRAME_GROWS_DOWNWARD
425 function->x_frame_offset -= size;
426 #endif
428 /* Ignore alignment we can't do with expected alignment of the boundary. */
429 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
430 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
432 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
433 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
435 /* Calculate how many bytes the start of local variables is off from
436 stack alignment. */
437 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
438 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
439 frame_phase = frame_off ? frame_alignment - frame_off : 0;
441 /* Round the frame offset to the specified alignment. The default is
442 to always honor requests to align the stack but a port may choose to
443 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
444 if (STACK_ALIGNMENT_NEEDED
445 || mode != BLKmode
446 || size != 0)
448 /* We must be careful here, since FRAME_OFFSET might be negative and
449 division with a negative dividend isn't as well defined as we might
450 like. So we instead assume that ALIGNMENT is a power of two and
451 use logical operations which are unambiguous. */
452 #ifdef FRAME_GROWS_DOWNWARD
453 function->x_frame_offset
454 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
455 (unsigned HOST_WIDE_INT) alignment)
456 + frame_phase);
457 #else
458 function->x_frame_offset
459 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
460 (unsigned HOST_WIDE_INT) alignment)
461 + frame_phase);
462 #endif
465 /* On a big-endian machine, if we are allocating more space than we will use,
466 use the least significant bytes of those that are allocated. */
467 if (BYTES_BIG_ENDIAN && mode != BLKmode)
468 bigend_correction = size - GET_MODE_SIZE (mode);
470 /* If we have already instantiated virtual registers, return the actual
471 address relative to the frame pointer. */
472 if (function == cfun && virtuals_instantiated)
473 addr = plus_constant (frame_pointer_rtx,
474 trunc_int_for_mode
475 (frame_offset + bigend_correction
476 + STARTING_FRAME_OFFSET, Pmode));
477 else
478 addr = plus_constant (virtual_stack_vars_rtx,
479 trunc_int_for_mode
480 (function->x_frame_offset + bigend_correction,
481 Pmode));
483 #ifndef FRAME_GROWS_DOWNWARD
484 function->x_frame_offset += size;
485 #endif
487 x = gen_rtx_MEM (mode, addr);
489 function->x_stack_slot_list
490 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
492 return x;
495 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
496 current function. */
499 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
501 return assign_stack_local_1 (mode, size, align, cfun);
505 /* Removes temporary slot TEMP from LIST. */
507 static void
508 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
510 if (temp->next)
511 temp->next->prev = temp->prev;
512 if (temp->prev)
513 temp->prev->next = temp->next;
514 else
515 *list = temp->next;
517 temp->prev = temp->next = NULL;
520 /* Inserts temporary slot TEMP to LIST. */
522 static void
523 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
525 temp->next = *list;
526 if (*list)
527 (*list)->prev = temp;
528 temp->prev = NULL;
529 *list = temp;
532 /* Returns the list of used temp slots at LEVEL. */
534 static struct temp_slot **
535 temp_slots_at_level (int level)
538 if (!used_temp_slots)
539 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
541 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
542 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
544 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
547 /* Returns the maximal temporary slot level. */
549 static int
550 max_slot_level (void)
552 if (!used_temp_slots)
553 return -1;
555 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
558 /* Moves temporary slot TEMP to LEVEL. */
560 static void
561 move_slot_to_level (struct temp_slot *temp, int level)
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, temp_slots_at_level (level));
565 temp->level = level;
568 /* Make temporary slot TEMP available. */
570 static void
571 make_slot_available (struct temp_slot *temp)
573 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
574 insert_slot_to_list (temp, &avail_temp_slots);
575 temp->in_use = 0;
576 temp->level = -1;
579 /* Allocate a temporary stack slot and record it for possible later
580 reuse.
582 MODE is the machine mode to be given to the returned rtx.
584 SIZE is the size in units of the space required. We do no rounding here
585 since assign_stack_local will do any required rounding.
587 KEEP is 1 if this slot is to be retained after a call to
588 free_temp_slots. Automatic variables for a block are allocated
589 with this flag. KEEP values of 2 or 3 were needed respectively
590 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
591 or for SAVE_EXPRs, but they are now unused and will abort.
593 TYPE is the type that will be used for the stack slot. */
596 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
597 tree type)
599 unsigned int align;
600 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
601 rtx slot;
603 /* If SIZE is -1 it means that somebody tried to allocate a temporary
604 of a variable size. */
605 gcc_assert (size != -1);
607 /* These are now unused. */
608 gcc_assert (keep <= 1);
610 if (mode == BLKmode)
611 align = BIGGEST_ALIGNMENT;
612 else
613 align = GET_MODE_ALIGNMENT (mode);
615 if (! type)
616 type = lang_hooks.types.type_for_mode (mode, 0);
618 if (type)
619 align = LOCAL_ALIGNMENT (type, align);
621 /* Try to find an available, already-allocated temporary of the proper
622 mode which meets the size and alignment requirements. Choose the
623 smallest one with the closest alignment. */
624 for (p = avail_temp_slots; p; p = p->next)
626 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
627 && objects_must_conflict_p (p->type, type)
628 && (best_p == 0 || best_p->size > p->size
629 || (best_p->size == p->size && best_p->align > p->align)))
631 if (p->align == align && p->size == size)
633 selected = p;
634 cut_slot_from_list (selected, &avail_temp_slots);
635 best_p = 0;
636 break;
638 best_p = p;
642 /* Make our best, if any, the one to use. */
643 if (best_p)
645 selected = best_p;
646 cut_slot_from_list (selected, &avail_temp_slots);
648 /* If there are enough aligned bytes left over, make them into a new
649 temp_slot so that the extra bytes don't get wasted. Do this only
650 for BLKmode slots, so that we can be sure of the alignment. */
651 if (GET_MODE (best_p->slot) == BLKmode)
653 int alignment = best_p->align / BITS_PER_UNIT;
654 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
656 if (best_p->size - rounded_size >= alignment)
658 p = ggc_alloc (sizeof (struct temp_slot));
659 p->in_use = p->addr_taken = 0;
660 p->size = best_p->size - rounded_size;
661 p->base_offset = best_p->base_offset + rounded_size;
662 p->full_size = best_p->full_size - rounded_size;
663 p->slot = gen_rtx_MEM (BLKmode,
664 plus_constant (XEXP (best_p->slot, 0),
665 rounded_size));
666 p->align = best_p->align;
667 p->address = 0;
668 p->type = best_p->type;
669 insert_slot_to_list (p, &avail_temp_slots);
671 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
672 stack_slot_list);
674 best_p->size = rounded_size;
675 best_p->full_size = rounded_size;
680 /* If we still didn't find one, make a new temporary. */
681 if (selected == 0)
683 HOST_WIDE_INT frame_offset_old = frame_offset;
685 p = ggc_alloc (sizeof (struct temp_slot));
687 /* We are passing an explicit alignment request to assign_stack_local.
688 One side effect of that is assign_stack_local will not round SIZE
689 to ensure the frame offset remains suitably aligned.
691 So for requests which depended on the rounding of SIZE, we go ahead
692 and round it now. We also make sure ALIGNMENT is at least
693 BIGGEST_ALIGNMENT. */
694 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
695 p->slot = assign_stack_local (mode,
696 (mode == BLKmode
697 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
698 : size),
699 align);
701 p->align = align;
703 /* The following slot size computation is necessary because we don't
704 know the actual size of the temporary slot until assign_stack_local
705 has performed all the frame alignment and size rounding for the
706 requested temporary. Note that extra space added for alignment
707 can be either above or below this stack slot depending on which
708 way the frame grows. We include the extra space if and only if it
709 is above this slot. */
710 #ifdef FRAME_GROWS_DOWNWARD
711 p->size = frame_offset_old - frame_offset;
712 #else
713 p->size = size;
714 #endif
716 /* Now define the fields used by combine_temp_slots. */
717 #ifdef FRAME_GROWS_DOWNWARD
718 p->base_offset = frame_offset;
719 p->full_size = frame_offset_old - frame_offset;
720 #else
721 p->base_offset = frame_offset_old;
722 p->full_size = frame_offset - frame_offset_old;
723 #endif
724 p->address = 0;
726 selected = p;
729 p = selected;
730 p->in_use = 1;
731 p->addr_taken = 0;
732 p->type = type;
733 p->level = temp_slot_level;
734 p->keep = keep;
736 pp = temp_slots_at_level (p->level);
737 insert_slot_to_list (p, pp);
739 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
740 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
741 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
743 /* If we know the alias set for the memory that will be used, use
744 it. If there's no TYPE, then we don't know anything about the
745 alias set for the memory. */
746 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
747 set_mem_align (slot, align);
749 /* If a type is specified, set the relevant flags. */
750 if (type != 0)
752 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
753 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
756 return slot;
759 /* Allocate a temporary stack slot and record it for possible later
760 reuse. First three arguments are same as in preceding function. */
763 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
765 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
768 /* Assign a temporary.
769 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
770 and so that should be used in error messages. In either case, we
771 allocate of the given type.
772 KEEP is as for assign_stack_temp.
773 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
774 it is 0 if a register is OK.
775 DONT_PROMOTE is 1 if we should not promote values in register
776 to wider modes. */
779 assign_temp (tree type_or_decl, int keep, int memory_required,
780 int dont_promote ATTRIBUTE_UNUSED)
782 tree type, decl;
783 enum machine_mode mode;
784 #ifdef PROMOTE_MODE
785 int unsignedp;
786 #endif
788 if (DECL_P (type_or_decl))
789 decl = type_or_decl, type = TREE_TYPE (decl);
790 else
791 decl = NULL, type = type_or_decl;
793 mode = TYPE_MODE (type);
794 #ifdef PROMOTE_MODE
795 unsignedp = TYPE_UNSIGNED (type);
796 #endif
798 if (mode == BLKmode || memory_required)
800 HOST_WIDE_INT size = int_size_in_bytes (type);
801 tree size_tree;
802 rtx tmp;
804 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
805 problems with allocating the stack space. */
806 if (size == 0)
807 size = 1;
809 /* Unfortunately, we don't yet know how to allocate variable-sized
810 temporaries. However, sometimes we have a fixed upper limit on
811 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
812 instead. This is the case for Chill variable-sized strings. */
813 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
814 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
815 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
816 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
818 /* If we still haven't been able to get a size, see if the language
819 can compute a maximum size. */
820 if (size == -1
821 && (size_tree = lang_hooks.types.max_size (type)) != 0
822 && host_integerp (size_tree, 1))
823 size = tree_low_cst (size_tree, 1);
825 /* The size of the temporary may be too large to fit into an integer. */
826 /* ??? Not sure this should happen except for user silliness, so limit
827 this to things that aren't compiler-generated temporaries. The
828 rest of the time we'll abort in assign_stack_temp_for_type. */
829 if (decl && size == -1
830 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
832 error ("%Jsize of variable %qD is too large", decl, decl);
833 size = 1;
836 tmp = assign_stack_temp_for_type (mode, size, keep, type);
837 return tmp;
840 #ifdef PROMOTE_MODE
841 if (! dont_promote)
842 mode = promote_mode (type, mode, &unsignedp, 0);
843 #endif
845 return gen_reg_rtx (mode);
848 /* Combine temporary stack slots which are adjacent on the stack.
850 This allows for better use of already allocated stack space. This is only
851 done for BLKmode slots because we can be sure that we won't have alignment
852 problems in this case. */
854 static void
855 combine_temp_slots (void)
857 struct temp_slot *p, *q, *next, *next_q;
858 int num_slots;
860 /* We can't combine slots, because the information about which slot
861 is in which alias set will be lost. */
862 if (flag_strict_aliasing)
863 return;
865 /* If there are a lot of temp slots, don't do anything unless
866 high levels of optimization. */
867 if (! flag_expensive_optimizations)
868 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
869 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
870 return;
872 for (p = avail_temp_slots; p; p = next)
874 int delete_p = 0;
876 next = p->next;
878 if (GET_MODE (p->slot) != BLKmode)
879 continue;
881 for (q = p->next; q; q = next_q)
883 int delete_q = 0;
885 next_q = q->next;
887 if (GET_MODE (q->slot) != BLKmode)
888 continue;
890 if (p->base_offset + p->full_size == q->base_offset)
892 /* Q comes after P; combine Q into P. */
893 p->size += q->size;
894 p->full_size += q->full_size;
895 delete_q = 1;
897 else if (q->base_offset + q->full_size == p->base_offset)
899 /* P comes after Q; combine P into Q. */
900 q->size += p->size;
901 q->full_size += p->full_size;
902 delete_p = 1;
903 break;
905 if (delete_q)
906 cut_slot_from_list (q, &avail_temp_slots);
909 /* Either delete P or advance past it. */
910 if (delete_p)
911 cut_slot_from_list (p, &avail_temp_slots);
915 /* Find the temp slot corresponding to the object at address X. */
917 static struct temp_slot *
918 find_temp_slot_from_address (rtx x)
920 struct temp_slot *p;
921 rtx next;
922 int i;
924 for (i = max_slot_level (); i >= 0; i--)
925 for (p = *temp_slots_at_level (i); p; p = p->next)
927 if (XEXP (p->slot, 0) == x
928 || p->address == x
929 || (GET_CODE (x) == PLUS
930 && XEXP (x, 0) == virtual_stack_vars_rtx
931 && GET_CODE (XEXP (x, 1)) == CONST_INT
932 && INTVAL (XEXP (x, 1)) >= p->base_offset
933 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
934 return p;
936 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
937 for (next = p->address; next; next = XEXP (next, 1))
938 if (XEXP (next, 0) == x)
939 return p;
942 /* If we have a sum involving a register, see if it points to a temp
943 slot. */
944 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
945 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
946 return p;
947 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
948 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
949 return p;
951 return 0;
954 /* Indicate that NEW is an alternate way of referring to the temp slot
955 that previously was known by OLD. */
957 void
958 update_temp_slot_address (rtx old, rtx new)
960 struct temp_slot *p;
962 if (rtx_equal_p (old, new))
963 return;
965 p = find_temp_slot_from_address (old);
967 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
968 is a register, see if one operand of the PLUS is a temporary
969 location. If so, NEW points into it. Otherwise, if both OLD and
970 NEW are a PLUS and if there is a register in common between them.
971 If so, try a recursive call on those values. */
972 if (p == 0)
974 if (GET_CODE (old) != PLUS)
975 return;
977 if (REG_P (new))
979 update_temp_slot_address (XEXP (old, 0), new);
980 update_temp_slot_address (XEXP (old, 1), new);
981 return;
983 else if (GET_CODE (new) != PLUS)
984 return;
986 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
987 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
988 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
989 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
990 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
991 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
992 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
993 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
995 return;
998 /* Otherwise add an alias for the temp's address. */
999 else if (p->address == 0)
1000 p->address = new;
1001 else
1003 if (GET_CODE (p->address) != EXPR_LIST)
1004 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1006 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1010 /* If X could be a reference to a temporary slot, mark the fact that its
1011 address was taken. */
1013 void
1014 mark_temp_addr_taken (rtx x)
1016 struct temp_slot *p;
1018 if (x == 0)
1019 return;
1021 /* If X is not in memory or is at a constant address, it cannot be in
1022 a temporary slot. */
1023 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1024 return;
1026 p = find_temp_slot_from_address (XEXP (x, 0));
1027 if (p != 0)
1028 p->addr_taken = 1;
1031 /* If X could be a reference to a temporary slot, mark that slot as
1032 belonging to the to one level higher than the current level. If X
1033 matched one of our slots, just mark that one. Otherwise, we can't
1034 easily predict which it is, so upgrade all of them. Kept slots
1035 need not be touched.
1037 This is called when an ({...}) construct occurs and a statement
1038 returns a value in memory. */
1040 void
1041 preserve_temp_slots (rtx x)
1043 struct temp_slot *p = 0, *next;
1045 /* If there is no result, we still might have some objects whose address
1046 were taken, so we need to make sure they stay around. */
1047 if (x == 0)
1049 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1051 next = p->next;
1053 if (p->addr_taken)
1054 move_slot_to_level (p, temp_slot_level - 1);
1057 return;
1060 /* If X is a register that is being used as a pointer, see if we have
1061 a temporary slot we know it points to. To be consistent with
1062 the code below, we really should preserve all non-kept slots
1063 if we can't find a match, but that seems to be much too costly. */
1064 if (REG_P (x) && REG_POINTER (x))
1065 p = find_temp_slot_from_address (x);
1067 /* If X is not in memory or is at a constant address, it cannot be in
1068 a temporary slot, but it can contain something whose address was
1069 taken. */
1070 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1072 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1074 next = p->next;
1076 if (p->addr_taken)
1077 move_slot_to_level (p, temp_slot_level - 1);
1080 return;
1083 /* First see if we can find a match. */
1084 if (p == 0)
1085 p = find_temp_slot_from_address (XEXP (x, 0));
1087 if (p != 0)
1089 /* Move everything at our level whose address was taken to our new
1090 level in case we used its address. */
1091 struct temp_slot *q;
1093 if (p->level == temp_slot_level)
1095 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1097 next = q->next;
1099 if (p != q && q->addr_taken)
1100 move_slot_to_level (q, temp_slot_level - 1);
1103 move_slot_to_level (p, temp_slot_level - 1);
1104 p->addr_taken = 0;
1106 return;
1109 /* Otherwise, preserve all non-kept slots at this level. */
1110 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1112 next = p->next;
1114 if (!p->keep)
1115 move_slot_to_level (p, temp_slot_level - 1);
1119 /* Free all temporaries used so far. This is normally called at the
1120 end of generating code for a statement. */
1122 void
1123 free_temp_slots (void)
1125 struct temp_slot *p, *next;
1127 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1129 next = p->next;
1131 if (!p->keep)
1132 make_slot_available (p);
1135 combine_temp_slots ();
1138 /* Push deeper into the nesting level for stack temporaries. */
1140 void
1141 push_temp_slots (void)
1143 temp_slot_level++;
1146 /* Pop a temporary nesting level. All slots in use in the current level
1147 are freed. */
1149 void
1150 pop_temp_slots (void)
1152 struct temp_slot *p, *next;
1154 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1156 next = p->next;
1157 make_slot_available (p);
1160 combine_temp_slots ();
1162 temp_slot_level--;
1165 /* Initialize temporary slots. */
1167 void
1168 init_temp_slots (void)
1170 /* We have not allocated any temporaries yet. */
1171 avail_temp_slots = 0;
1172 used_temp_slots = 0;
1173 temp_slot_level = 0;
1176 /* These routines are responsible for converting virtual register references
1177 to the actual hard register references once RTL generation is complete.
1179 The following four variables are used for communication between the
1180 routines. They contain the offsets of the virtual registers from their
1181 respective hard registers. */
1183 static int in_arg_offset;
1184 static int var_offset;
1185 static int dynamic_offset;
1186 static int out_arg_offset;
1187 static int cfa_offset;
1189 /* In most machines, the stack pointer register is equivalent to the bottom
1190 of the stack. */
1192 #ifndef STACK_POINTER_OFFSET
1193 #define STACK_POINTER_OFFSET 0
1194 #endif
1196 /* If not defined, pick an appropriate default for the offset of dynamically
1197 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1198 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1200 #ifndef STACK_DYNAMIC_OFFSET
1202 /* The bottom of the stack points to the actual arguments. If
1203 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1204 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1205 stack space for register parameters is not pushed by the caller, but
1206 rather part of the fixed stack areas and hence not included in
1207 `current_function_outgoing_args_size'. Nevertheless, we must allow
1208 for it when allocating stack dynamic objects. */
1210 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1211 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1212 ((ACCUMULATE_OUTGOING_ARGS \
1213 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1214 + (STACK_POINTER_OFFSET)) \
1216 #else
1217 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1218 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1219 + (STACK_POINTER_OFFSET))
1220 #endif
1221 #endif
1223 /* On most machines, the CFA coincides with the first incoming parm. */
1225 #ifndef ARG_POINTER_CFA_OFFSET
1226 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1227 #endif
1230 /* Pass through the INSNS of function FNDECL and convert virtual register
1231 references to hard register references. */
1233 void
1234 instantiate_virtual_regs (void)
1236 rtx insn;
1238 /* Compute the offsets to use for this function. */
1239 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1240 var_offset = STARTING_FRAME_OFFSET;
1241 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1242 out_arg_offset = STACK_POINTER_OFFSET;
1243 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1245 /* Scan all variables and parameters of this function. For each that is
1246 in memory, instantiate all virtual registers if the result is a valid
1247 address. If not, we do it later. That will handle most uses of virtual
1248 regs on many machines. */
1249 instantiate_decls (current_function_decl, 1);
1251 /* Initialize recognition, indicating that volatile is OK. */
1252 init_recog ();
1254 /* Scan through all the insns, instantiating every virtual register still
1255 present. */
1256 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1257 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1258 || GET_CODE (insn) == CALL_INSN)
1260 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1261 if (INSN_DELETED_P (insn))
1262 continue;
1263 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1264 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1265 if (GET_CODE (insn) == CALL_INSN)
1266 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1267 NULL_RTX, 0);
1269 /* Past this point all ASM statements should match. Verify that
1270 to avoid failures later in the compilation process. */
1271 if (asm_noperands (PATTERN (insn)) >= 0
1272 && ! check_asm_operands (PATTERN (insn)))
1273 instantiate_virtual_regs_lossage (insn);
1276 /* Now instantiate the remaining register equivalences for debugging info.
1277 These will not be valid addresses. */
1278 instantiate_decls (current_function_decl, 0);
1280 /* Indicate that, from now on, assign_stack_local should use
1281 frame_pointer_rtx. */
1282 virtuals_instantiated = 1;
1285 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1286 all virtual registers in their DECL_RTL's.
1288 If VALID_ONLY, do this only if the resulting address is still valid.
1289 Otherwise, always do it. */
1291 static void
1292 instantiate_decls (tree fndecl, int valid_only)
1294 tree decl;
1296 /* Process all parameters of the function. */
1297 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1299 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1300 HOST_WIDE_INT size_rtl;
1302 instantiate_decl (DECL_RTL (decl), size, valid_only);
1304 /* If the parameter was promoted, then the incoming RTL mode may be
1305 larger than the declared type size. We must use the larger of
1306 the two sizes. */
1307 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1308 size = MAX (size_rtl, size);
1309 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1312 /* Now process all variables defined in the function or its subblocks. */
1313 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1316 /* Subroutine of instantiate_decls: Process all decls in the given
1317 BLOCK node and all its subblocks. */
1319 static void
1320 instantiate_decls_1 (tree let, int valid_only)
1322 tree t;
1324 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1325 if (DECL_RTL_SET_P (t))
1326 instantiate_decl (DECL_RTL (t),
1327 int_size_in_bytes (TREE_TYPE (t)),
1328 valid_only);
1330 /* Process all subblocks. */
1331 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1332 instantiate_decls_1 (t, valid_only);
1335 /* Subroutine of the preceding procedures: Given RTL representing a
1336 decl and the size of the object, do any instantiation required.
1338 If VALID_ONLY is nonzero, it means that the RTL should only be
1339 changed if the new address is valid. */
1341 static void
1342 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1344 enum machine_mode mode;
1345 rtx addr;
1347 if (x == 0)
1348 return;
1350 /* If this is a CONCAT, recurse for the pieces. */
1351 if (GET_CODE (x) == CONCAT)
1353 instantiate_decl (XEXP (x, 0), size / 2, valid_only);
1354 instantiate_decl (XEXP (x, 1), size / 2, valid_only);
1355 return;
1358 /* If this is not a MEM, no need to do anything. Similarly if the
1359 address is a constant or a register that is not a virtual register. */
1360 if (!MEM_P (x))
1361 return;
1363 addr = XEXP (x, 0);
1364 if (CONSTANT_P (addr)
1365 || (REG_P (addr)
1366 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1367 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1368 return;
1370 /* If we should only do this if the address is valid, copy the address.
1371 We need to do this so we can undo any changes that might make the
1372 address invalid. This copy is unfortunate, but probably can't be
1373 avoided. */
1375 if (valid_only)
1376 addr = copy_rtx (addr);
1378 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1380 if (valid_only && size >= 0)
1382 unsigned HOST_WIDE_INT decl_size = size;
1384 /* Now verify that the resulting address is valid for every integer or
1385 floating-point mode up to and including SIZE bytes long. We do this
1386 since the object might be accessed in any mode and frame addresses
1387 are shared. */
1389 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1390 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1391 mode = GET_MODE_WIDER_MODE (mode))
1392 if (! memory_address_p (mode, addr))
1393 return;
1395 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1396 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1397 mode = GET_MODE_WIDER_MODE (mode))
1398 if (! memory_address_p (mode, addr))
1399 return;
1402 /* Put back the address now that we have updated it and we either know
1403 it is valid or we don't care whether it is valid. */
1405 XEXP (x, 0) = addr;
1408 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1409 is a virtual register, return the equivalent hard register and set the
1410 offset indirectly through the pointer. Otherwise, return 0. */
1412 static rtx
1413 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1415 rtx new;
1416 HOST_WIDE_INT offset;
1418 if (x == virtual_incoming_args_rtx)
1419 new = arg_pointer_rtx, offset = in_arg_offset;
1420 else if (x == virtual_stack_vars_rtx)
1421 new = frame_pointer_rtx, offset = var_offset;
1422 else if (x == virtual_stack_dynamic_rtx)
1423 new = stack_pointer_rtx, offset = dynamic_offset;
1424 else if (x == virtual_outgoing_args_rtx)
1425 new = stack_pointer_rtx, offset = out_arg_offset;
1426 else if (x == virtual_cfa_rtx)
1427 new = arg_pointer_rtx, offset = cfa_offset;
1428 else
1429 return 0;
1431 *poffset = offset;
1432 return new;
1436 /* Called when instantiate_virtual_regs has failed to update the instruction.
1437 Usually this means that non-matching instruction has been emit, however for
1438 asm statements it may be the problem in the constraints. */
1439 static void
1440 instantiate_virtual_regs_lossage (rtx insn)
1442 gcc_assert (asm_noperands (PATTERN (insn)) >= 0);
1443 error_for_asm (insn, "impossible constraint in %<asm%>");
1444 delete_insn (insn);
1446 /* Given a pointer to a piece of rtx and an optional pointer to the
1447 containing object, instantiate any virtual registers present in it.
1449 If EXTRA_INSNS, we always do the replacement and generate
1450 any extra insns before OBJECT. If it zero, we do nothing if replacement
1451 is not valid.
1453 Return 1 if we either had nothing to do or if we were able to do the
1454 needed replacement. Return 0 otherwise; we only return zero if
1455 EXTRA_INSNS is zero.
1457 We first try some simple transformations to avoid the creation of extra
1458 pseudos. */
1460 static int
1461 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1463 rtx x;
1464 RTX_CODE code;
1465 rtx new = 0;
1466 HOST_WIDE_INT offset = 0;
1467 rtx temp;
1468 rtx seq;
1469 int i, j;
1470 const char *fmt;
1472 /* Re-start here to avoid recursion in common cases. */
1473 restart:
1475 x = *loc;
1476 if (x == 0)
1477 return 1;
1479 /* We may have detected and deleted invalid asm statements. */
1480 if (object && INSN_P (object) && INSN_DELETED_P (object))
1481 return 1;
1483 code = GET_CODE (x);
1485 /* Check for some special cases. */
1486 switch (code)
1488 case CONST_INT:
1489 case CONST_DOUBLE:
1490 case CONST_VECTOR:
1491 case CONST:
1492 case SYMBOL_REF:
1493 case CODE_LABEL:
1494 case PC:
1495 case CC0:
1496 case ASM_INPUT:
1497 case ADDR_VEC:
1498 case ADDR_DIFF_VEC:
1499 case RETURN:
1500 return 1;
1502 case SET:
1503 /* We are allowed to set the virtual registers. This means that
1504 the actual register should receive the source minus the
1505 appropriate offset. This is used, for example, in the handling
1506 of non-local gotos. */
1507 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1509 rtx src = SET_SRC (x);
1511 /* We are setting the register, not using it, so the relevant
1512 offset is the negative of the offset to use were we using
1513 the register. */
1514 offset = - offset;
1515 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1517 /* The only valid sources here are PLUS or REG. Just do
1518 the simplest possible thing to handle them. */
1519 if (!REG_P (src) && GET_CODE (src) != PLUS)
1521 instantiate_virtual_regs_lossage (object);
1522 return 1;
1525 start_sequence ();
1526 if (!REG_P (src))
1527 temp = force_operand (src, NULL_RTX);
1528 else
1529 temp = src;
1530 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1531 seq = get_insns ();
1532 end_sequence ();
1534 emit_insn_before (seq, object);
1535 SET_DEST (x) = new;
1537 if (! validate_change (object, &SET_SRC (x), temp, 0)
1538 || ! extra_insns)
1539 instantiate_virtual_regs_lossage (object);
1541 return 1;
1544 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1545 loc = &SET_SRC (x);
1546 goto restart;
1548 case PLUS:
1549 /* Handle special case of virtual register plus constant. */
1550 if (CONSTANT_P (XEXP (x, 1)))
1552 rtx old, new_offset;
1554 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1555 if (GET_CODE (XEXP (x, 0)) == PLUS)
1557 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1559 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1560 extra_insns);
1561 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1563 else
1565 loc = &XEXP (x, 0);
1566 goto restart;
1570 #ifdef POINTERS_EXTEND_UNSIGNED
1571 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1572 we can commute the PLUS and SUBREG because pointers into the
1573 frame are well-behaved. */
1574 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1575 && GET_CODE (XEXP (x, 1)) == CONST_INT
1576 && 0 != (new
1577 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1578 &offset))
1579 && validate_change (object, loc,
1580 plus_constant (gen_lowpart (ptr_mode,
1581 new),
1582 offset
1583 + INTVAL (XEXP (x, 1))),
1585 return 1;
1586 #endif
1587 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1589 /* We know the second operand is a constant. Unless the
1590 first operand is a REG (which has been already checked),
1591 it needs to be checked. */
1592 if (!REG_P (XEXP (x, 0)))
1594 loc = &XEXP (x, 0);
1595 goto restart;
1597 return 1;
1600 new_offset = plus_constant (XEXP (x, 1), offset);
1602 /* If the new constant is zero, try to replace the sum with just
1603 the register. */
1604 if (new_offset == const0_rtx
1605 && validate_change (object, loc, new, 0))
1606 return 1;
1608 /* Next try to replace the register and new offset.
1609 There are two changes to validate here and we can't assume that
1610 in the case of old offset equals new just changing the register
1611 will yield a valid insn. In the interests of a little efficiency,
1612 however, we only call validate change once (we don't queue up the
1613 changes and then call apply_change_group). */
1615 old = XEXP (x, 0);
1616 if (offset == 0
1617 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1618 : (XEXP (x, 0) = new,
1619 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1621 if (! extra_insns)
1623 XEXP (x, 0) = old;
1624 return 0;
1627 /* Otherwise copy the new constant into a register and replace
1628 constant with that register. */
1629 temp = gen_reg_rtx (Pmode);
1630 XEXP (x, 0) = new;
1631 if (validate_change (object, &XEXP (x, 1), temp, 0))
1632 emit_insn_before (gen_move_insn (temp, new_offset), object);
1633 else
1635 /* If that didn't work, replace this expression with a
1636 register containing the sum. */
1638 XEXP (x, 0) = old;
1639 new = gen_rtx_PLUS (Pmode, new, new_offset);
1641 start_sequence ();
1642 temp = force_operand (new, NULL_RTX);
1643 seq = get_insns ();
1644 end_sequence ();
1646 emit_insn_before (seq, object);
1647 if (! validate_change (object, loc, temp, 0)
1648 && ! validate_replace_rtx (x, temp, object))
1650 instantiate_virtual_regs_lossage (object);
1651 return 1;
1656 return 1;
1659 /* Fall through to generic two-operand expression case. */
1660 case EXPR_LIST:
1661 case CALL:
1662 case COMPARE:
1663 case MINUS:
1664 case MULT:
1665 case DIV: case UDIV:
1666 case MOD: case UMOD:
1667 case AND: case IOR: case XOR:
1668 case ROTATERT: case ROTATE:
1669 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1670 case NE: case EQ:
1671 case GE: case GT: case GEU: case GTU:
1672 case LE: case LT: case LEU: case LTU:
1673 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1674 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1675 loc = &XEXP (x, 0);
1676 goto restart;
1678 case MEM:
1679 /* Most cases of MEM that convert to valid addresses have already been
1680 handled by our scan of decls. The only special handling we
1681 need here is to make a copy of the rtx to ensure it isn't being
1682 shared if we have to change it to a pseudo.
1684 If the rtx is a simple reference to an address via a virtual register,
1685 it can potentially be shared. In such cases, first try to make it
1686 a valid address, which can also be shared. Otherwise, copy it and
1687 proceed normally.
1689 First check for common cases that need no processing. These are
1690 usually due to instantiation already being done on a previous instance
1691 of a shared rtx. */
1693 temp = XEXP (x, 0);
1694 if (CONSTANT_ADDRESS_P (temp)
1695 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1696 || temp == arg_pointer_rtx
1697 #endif
1698 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1699 || temp == hard_frame_pointer_rtx
1700 #endif
1701 || temp == frame_pointer_rtx)
1702 return 1;
1704 if (GET_CODE (temp) == PLUS
1705 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1706 && (XEXP (temp, 0) == frame_pointer_rtx
1707 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1708 || XEXP (temp, 0) == hard_frame_pointer_rtx
1709 #endif
1710 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1711 || XEXP (temp, 0) == arg_pointer_rtx
1712 #endif
1714 return 1;
1716 if (temp == virtual_stack_vars_rtx
1717 || temp == virtual_incoming_args_rtx
1718 || (GET_CODE (temp) == PLUS
1719 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1720 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1721 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1723 /* This MEM may be shared. If the substitution can be done without
1724 the need to generate new pseudos, we want to do it in place
1725 so all copies of the shared rtx benefit. The call below will
1726 only make substitutions if the resulting address is still
1727 valid.
1729 Note that we cannot pass X as the object in the recursive call
1730 since the insn being processed may not allow all valid
1731 addresses. However, if we were not passed on object, we can
1732 only modify X without copying it if X will have a valid
1733 address.
1735 ??? Also note that this can still lose if OBJECT is an insn that
1736 has less restrictions on an address that some other insn.
1737 In that case, we will modify the shared address. This case
1738 doesn't seem very likely, though. One case where this could
1739 happen is in the case of a USE or CLOBBER reference, but we
1740 take care of that below. */
1742 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1743 object ? object : x, 0))
1744 return 1;
1746 /* Otherwise make a copy and process that copy. We copy the entire
1747 RTL expression since it might be a PLUS which could also be
1748 shared. */
1749 *loc = x = copy_rtx (x);
1752 /* Fall through to generic unary operation case. */
1753 case PREFETCH:
1754 case SUBREG:
1755 case STRICT_LOW_PART:
1756 case NEG: case NOT:
1757 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1758 case SIGN_EXTEND: case ZERO_EXTEND:
1759 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1760 case FLOAT: case FIX:
1761 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1762 case ABS:
1763 case SQRT:
1764 case FFS:
1765 case CLZ: case CTZ:
1766 case POPCOUNT: case PARITY:
1767 /* These case either have just one operand or we know that we need not
1768 check the rest of the operands. */
1769 loc = &XEXP (x, 0);
1770 goto restart;
1772 case USE:
1773 case CLOBBER:
1774 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1775 go ahead and make the invalid one, but do it to a copy. For a REG,
1776 just make the recursive call, since there's no chance of a problem. */
1778 if ((MEM_P (XEXP (x, 0))
1779 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1781 || (REG_P (XEXP (x, 0))
1782 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1783 return 1;
1785 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1786 loc = &XEXP (x, 0);
1787 goto restart;
1789 case REG:
1790 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1791 in front of this insn and substitute the temporary. */
1792 if ((new = instantiate_new_reg (x, &offset)) != 0)
1794 temp = plus_constant (new, offset);
1795 if (!validate_change (object, loc, temp, 0))
1797 if (! extra_insns)
1798 return 0;
1800 start_sequence ();
1801 temp = force_operand (temp, NULL_RTX);
1802 seq = get_insns ();
1803 end_sequence ();
1805 emit_insn_before (seq, object);
1806 if (! validate_change (object, loc, temp, 0)
1807 && ! validate_replace_rtx (x, temp, object))
1808 instantiate_virtual_regs_lossage (object);
1812 return 1;
1814 default:
1815 break;
1818 /* Scan all subexpressions. */
1819 fmt = GET_RTX_FORMAT (code);
1820 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1821 if (*fmt == 'e')
1823 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1824 return 0;
1826 else if (*fmt == 'E')
1827 for (j = 0; j < XVECLEN (x, i); j++)
1828 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1829 extra_insns))
1830 return 0;
1832 return 1;
1835 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1836 This means a type for which function calls must pass an address to the
1837 function or get an address back from the function.
1838 EXP may be a type node or an expression (whose type is tested). */
1841 aggregate_value_p (tree exp, tree fntype)
1843 int i, regno, nregs;
1844 rtx reg;
1846 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1848 if (fntype)
1849 switch (TREE_CODE (fntype))
1851 case CALL_EXPR:
1852 fntype = get_callee_fndecl (fntype);
1853 fntype = fntype ? TREE_TYPE (fntype) : 0;
1854 break;
1855 case FUNCTION_DECL:
1856 fntype = TREE_TYPE (fntype);
1857 break;
1858 case FUNCTION_TYPE:
1859 case METHOD_TYPE:
1860 break;
1861 case IDENTIFIER_NODE:
1862 fntype = 0;
1863 break;
1864 default:
1865 /* We don't expect other rtl types here. */
1866 gcc_unreachable ();
1869 if (TREE_CODE (type) == VOID_TYPE)
1870 return 0;
1871 /* If the front end has decided that this needs to be passed by
1872 reference, do so. */
1873 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1874 && DECL_BY_REFERENCE (exp))
1875 return 1;
1876 if (targetm.calls.return_in_memory (type, fntype))
1877 return 1;
1878 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1879 and thus can't be returned in registers. */
1880 if (TREE_ADDRESSABLE (type))
1881 return 1;
1882 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1883 return 1;
1884 /* Make sure we have suitable call-clobbered regs to return
1885 the value in; if not, we must return it in memory. */
1886 reg = hard_function_value (type, 0, 0);
1888 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1889 it is OK. */
1890 if (!REG_P (reg))
1891 return 0;
1893 regno = REGNO (reg);
1894 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1895 for (i = 0; i < nregs; i++)
1896 if (! call_used_regs[regno + i])
1897 return 1;
1898 return 0;
1901 /* Return true if we should assign DECL a pseudo register; false if it
1902 should live on the local stack. */
1904 bool
1905 use_register_for_decl (tree decl)
1907 /* Honor volatile. */
1908 if (TREE_SIDE_EFFECTS (decl))
1909 return false;
1911 /* Honor addressability. */
1912 if (TREE_ADDRESSABLE (decl))
1913 return false;
1915 /* Only register-like things go in registers. */
1916 if (DECL_MODE (decl) == BLKmode)
1917 return false;
1919 /* If -ffloat-store specified, don't put explicit float variables
1920 into registers. */
1921 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1922 propagates values across these stores, and it probably shouldn't. */
1923 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1924 return false;
1926 /* If we're not interested in tracking debugging information for
1927 this decl, then we can certainly put it in a register. */
1928 if (DECL_IGNORED_P (decl))
1929 return true;
1931 return (optimize || DECL_REGISTER (decl));
1934 /* Return true if TYPE should be passed by invisible reference. */
1936 bool
1937 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1938 tree type, bool named_arg)
1940 if (type)
1942 /* If this type contains non-trivial constructors, then it is
1943 forbidden for the middle-end to create any new copies. */
1944 if (TREE_ADDRESSABLE (type))
1945 return true;
1947 /* GCC post 3.4 passes *all* variable sized types by reference. */
1948 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1949 return true;
1952 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1955 /* Return true if TYPE, which is passed by reference, should be callee
1956 copied instead of caller copied. */
1958 bool
1959 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1960 tree type, bool named_arg)
1962 if (type && TREE_ADDRESSABLE (type))
1963 return false;
1964 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1967 /* Structures to communicate between the subroutines of assign_parms.
1968 The first holds data persistent across all parameters, the second
1969 is cleared out for each parameter. */
1971 struct assign_parm_data_all
1973 CUMULATIVE_ARGS args_so_far;
1974 struct args_size stack_args_size;
1975 tree function_result_decl;
1976 tree orig_fnargs;
1977 rtx conversion_insns;
1978 HOST_WIDE_INT pretend_args_size;
1979 HOST_WIDE_INT extra_pretend_bytes;
1980 int reg_parm_stack_space;
1983 struct assign_parm_data_one
1985 tree nominal_type;
1986 tree passed_type;
1987 rtx entry_parm;
1988 rtx stack_parm;
1989 enum machine_mode nominal_mode;
1990 enum machine_mode passed_mode;
1991 enum machine_mode promoted_mode;
1992 struct locate_and_pad_arg_data locate;
1993 int partial;
1994 BOOL_BITFIELD named_arg : 1;
1995 BOOL_BITFIELD last_named : 1;
1996 BOOL_BITFIELD passed_pointer : 1;
1997 BOOL_BITFIELD on_stack : 1;
1998 BOOL_BITFIELD loaded_in_reg : 1;
2001 /* A subroutine of assign_parms. Initialize ALL. */
2003 static void
2004 assign_parms_initialize_all (struct assign_parm_data_all *all)
2006 tree fntype;
2008 memset (all, 0, sizeof (*all));
2010 fntype = TREE_TYPE (current_function_decl);
2012 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2013 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2014 #else
2015 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2016 current_function_decl, -1);
2017 #endif
2019 #ifdef REG_PARM_STACK_SPACE
2020 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2021 #endif
2024 /* If ARGS contains entries with complex types, split the entry into two
2025 entries of the component type. Return a new list of substitutions are
2026 needed, else the old list. */
2028 static tree
2029 split_complex_args (tree args)
2031 tree p;
2033 /* Before allocating memory, check for the common case of no complex. */
2034 for (p = args; p; p = TREE_CHAIN (p))
2036 tree type = TREE_TYPE (p);
2037 if (TREE_CODE (type) == COMPLEX_TYPE
2038 && targetm.calls.split_complex_arg (type))
2039 goto found;
2041 return args;
2043 found:
2044 args = copy_list (args);
2046 for (p = args; p; p = TREE_CHAIN (p))
2048 tree type = TREE_TYPE (p);
2049 if (TREE_CODE (type) == COMPLEX_TYPE
2050 && targetm.calls.split_complex_arg (type))
2052 tree decl;
2053 tree subtype = TREE_TYPE (type);
2054 bool addressable = TREE_ADDRESSABLE (p);
2056 /* Rewrite the PARM_DECL's type with its component. */
2057 TREE_TYPE (p) = subtype;
2058 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2059 DECL_MODE (p) = VOIDmode;
2060 DECL_SIZE (p) = NULL;
2061 DECL_SIZE_UNIT (p) = NULL;
2062 /* If this arg must go in memory, put it in a pseudo here.
2063 We can't allow it to go in memory as per normal parms,
2064 because the usual place might not have the imag part
2065 adjacent to the real part. */
2066 DECL_ARTIFICIAL (p) = addressable;
2067 DECL_IGNORED_P (p) = addressable;
2068 TREE_ADDRESSABLE (p) = 0;
2069 layout_decl (p, 0);
2071 /* Build a second synthetic decl. */
2072 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2073 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2074 DECL_ARTIFICIAL (decl) = addressable;
2075 DECL_IGNORED_P (decl) = addressable;
2076 layout_decl (decl, 0);
2078 /* Splice it in; skip the new decl. */
2079 TREE_CHAIN (decl) = TREE_CHAIN (p);
2080 TREE_CHAIN (p) = decl;
2081 p = decl;
2085 return args;
2088 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2089 the hidden struct return argument, and (abi willing) complex args.
2090 Return the new parameter list. */
2092 static tree
2093 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2095 tree fndecl = current_function_decl;
2096 tree fntype = TREE_TYPE (fndecl);
2097 tree fnargs = DECL_ARGUMENTS (fndecl);
2099 /* If struct value address is treated as the first argument, make it so. */
2100 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2101 && ! current_function_returns_pcc_struct
2102 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2104 tree type = build_pointer_type (TREE_TYPE (fntype));
2105 tree decl;
2107 decl = build_decl (PARM_DECL, NULL_TREE, type);
2108 DECL_ARG_TYPE (decl) = type;
2109 DECL_ARTIFICIAL (decl) = 1;
2110 DECL_IGNORED_P (decl) = 1;
2112 TREE_CHAIN (decl) = fnargs;
2113 fnargs = decl;
2114 all->function_result_decl = decl;
2117 all->orig_fnargs = fnargs;
2119 /* If the target wants to split complex arguments into scalars, do so. */
2120 if (targetm.calls.split_complex_arg)
2121 fnargs = split_complex_args (fnargs);
2123 return fnargs;
2126 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2127 data for the parameter. Incorporate ABI specifics such as pass-by-
2128 reference and type promotion. */
2130 static void
2131 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2132 struct assign_parm_data_one *data)
2134 tree nominal_type, passed_type;
2135 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2137 memset (data, 0, sizeof (*data));
2139 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2140 if (current_function_stdarg)
2142 tree tem;
2143 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2144 if (DECL_NAME (tem))
2145 break;
2146 if (tem == 0)
2147 data->last_named = true;
2150 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2151 most machines, if this is a varargs/stdarg function, then we treat
2152 the last named arg as if it were anonymous too. */
2153 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2154 data->named_arg = 1;
2155 else
2156 data->named_arg = !data->last_named;
2158 nominal_type = TREE_TYPE (parm);
2159 passed_type = DECL_ARG_TYPE (parm);
2161 /* Look out for errors propagating this far. Also, if the parameter's
2162 type is void then its value doesn't matter. */
2163 if (TREE_TYPE (parm) == error_mark_node
2164 /* This can happen after weird syntax errors
2165 or if an enum type is defined among the parms. */
2166 || TREE_CODE (parm) != PARM_DECL
2167 || passed_type == NULL
2168 || VOID_TYPE_P (nominal_type))
2170 nominal_type = passed_type = void_type_node;
2171 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2172 goto egress;
2175 /* Find mode of arg as it is passed, and mode of arg as it should be
2176 during execution of this function. */
2177 passed_mode = TYPE_MODE (passed_type);
2178 nominal_mode = TYPE_MODE (nominal_type);
2180 /* If the parm is to be passed as a transparent union, use the type of
2181 the first field for the tests below. We have already verified that
2182 the modes are the same. */
2183 if (DECL_TRANSPARENT_UNION (parm)
2184 || (TREE_CODE (passed_type) == UNION_TYPE
2185 && TYPE_TRANSPARENT_UNION (passed_type)))
2186 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2188 /* See if this arg was passed by invisible reference. */
2189 if (pass_by_reference (&all->args_so_far, passed_mode,
2190 passed_type, data->named_arg))
2192 passed_type = nominal_type = build_pointer_type (passed_type);
2193 data->passed_pointer = true;
2194 passed_mode = nominal_mode = Pmode;
2197 /* Find mode as it is passed by the ABI. */
2198 promoted_mode = passed_mode;
2199 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2201 int unsignedp = TYPE_UNSIGNED (passed_type);
2202 promoted_mode = promote_mode (passed_type, promoted_mode,
2203 &unsignedp, 1);
2206 egress:
2207 data->nominal_type = nominal_type;
2208 data->passed_type = passed_type;
2209 data->nominal_mode = nominal_mode;
2210 data->passed_mode = passed_mode;
2211 data->promoted_mode = promoted_mode;
2214 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2216 static void
2217 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2218 struct assign_parm_data_one *data, bool no_rtl)
2220 int varargs_pretend_bytes = 0;
2222 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2223 data->promoted_mode,
2224 data->passed_type,
2225 &varargs_pretend_bytes, no_rtl);
2227 /* If the back-end has requested extra stack space, record how much is
2228 needed. Do not change pretend_args_size otherwise since it may be
2229 nonzero from an earlier partial argument. */
2230 if (varargs_pretend_bytes > 0)
2231 all->pretend_args_size = varargs_pretend_bytes;
2234 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2235 the incoming location of the current parameter. */
2237 static void
2238 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2239 struct assign_parm_data_one *data)
2241 HOST_WIDE_INT pretend_bytes = 0;
2242 rtx entry_parm;
2243 bool in_regs;
2245 if (data->promoted_mode == VOIDmode)
2247 data->entry_parm = data->stack_parm = const0_rtx;
2248 return;
2251 #ifdef FUNCTION_INCOMING_ARG
2252 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2253 data->passed_type, data->named_arg);
2254 #else
2255 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2256 data->passed_type, data->named_arg);
2257 #endif
2259 if (entry_parm == 0)
2260 data->promoted_mode = data->passed_mode;
2262 /* Determine parm's home in the stack, in case it arrives in the stack
2263 or we should pretend it did. Compute the stack position and rtx where
2264 the argument arrives and its size.
2266 There is one complexity here: If this was a parameter that would
2267 have been passed in registers, but wasn't only because it is
2268 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2269 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2270 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2271 as it was the previous time. */
2272 in_regs = entry_parm != 0;
2273 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2274 in_regs = true;
2275 #endif
2276 if (!in_regs && !data->named_arg)
2278 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2280 rtx tem;
2281 #ifdef FUNCTION_INCOMING_ARG
2282 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2283 data->passed_type, true);
2284 #else
2285 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2286 data->passed_type, true);
2287 #endif
2288 in_regs = tem != NULL;
2292 /* If this parameter was passed both in registers and in the stack, use
2293 the copy on the stack. */
2294 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2295 data->passed_type))
2296 entry_parm = 0;
2298 if (entry_parm)
2300 int partial;
2302 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2303 data->promoted_mode,
2304 data->passed_type,
2305 data->named_arg);
2306 data->partial = partial;
2308 /* The caller might already have allocated stack space for the
2309 register parameters. */
2310 if (partial != 0 && all->reg_parm_stack_space == 0)
2312 /* Part of this argument is passed in registers and part
2313 is passed on the stack. Ask the prologue code to extend
2314 the stack part so that we can recreate the full value.
2316 PRETEND_BYTES is the size of the registers we need to store.
2317 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2318 stack space that the prologue should allocate.
2320 Internally, gcc assumes that the argument pointer is aligned
2321 to STACK_BOUNDARY bits. This is used both for alignment
2322 optimizations (see init_emit) and to locate arguments that are
2323 aligned to more than PARM_BOUNDARY bits. We must preserve this
2324 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2325 a stack boundary. */
2327 /* We assume at most one partial arg, and it must be the first
2328 argument on the stack. */
2329 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2331 pretend_bytes = partial;
2332 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2334 /* We want to align relative to the actual stack pointer, so
2335 don't include this in the stack size until later. */
2336 all->extra_pretend_bytes = all->pretend_args_size;
2340 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2341 entry_parm ? data->partial : 0, current_function_decl,
2342 &all->stack_args_size, &data->locate);
2344 /* Adjust offsets to include the pretend args. */
2345 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2346 data->locate.slot_offset.constant += pretend_bytes;
2347 data->locate.offset.constant += pretend_bytes;
2349 data->entry_parm = entry_parm;
2352 /* A subroutine of assign_parms. If there is actually space on the stack
2353 for this parm, count it in stack_args_size and return true. */
2355 static bool
2356 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2357 struct assign_parm_data_one *data)
2359 /* Trivially true if we've no incoming register. */
2360 if (data->entry_parm == NULL)
2362 /* Also true if we're partially in registers and partially not,
2363 since we've arranged to drop the entire argument on the stack. */
2364 else if (data->partial != 0)
2366 /* Also true if the target says that it's passed in both registers
2367 and on the stack. */
2368 else if (GET_CODE (data->entry_parm) == PARALLEL
2369 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2371 /* Also true if the target says that there's stack allocated for
2372 all register parameters. */
2373 else if (all->reg_parm_stack_space > 0)
2375 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2376 else
2377 return false;
2379 all->stack_args_size.constant += data->locate.size.constant;
2380 if (data->locate.size.var)
2381 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2383 return true;
2386 /* A subroutine of assign_parms. Given that this parameter is allocated
2387 stack space by the ABI, find it. */
2389 static void
2390 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2392 rtx offset_rtx, stack_parm;
2393 unsigned int align, boundary;
2395 /* If we're passing this arg using a reg, make its stack home the
2396 aligned stack slot. */
2397 if (data->entry_parm)
2398 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2399 else
2400 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2402 stack_parm = current_function_internal_arg_pointer;
2403 if (offset_rtx != const0_rtx)
2404 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2405 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2407 set_mem_attributes (stack_parm, parm, 1);
2409 boundary = data->locate.boundary;
2410 align = BITS_PER_UNIT;
2412 /* If we're padding upward, we know that the alignment of the slot
2413 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2414 intentionally forcing upward padding. Otherwise we have to come
2415 up with a guess at the alignment based on OFFSET_RTX. */
2416 if (data->locate.where_pad != downward || data->entry_parm)
2417 align = boundary;
2418 else if (GET_CODE (offset_rtx) == CONST_INT)
2420 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2421 align = align & -align;
2423 set_mem_align (stack_parm, align);
2425 if (data->entry_parm)
2426 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2428 data->stack_parm = stack_parm;
2431 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2432 always valid and contiguous. */
2434 static void
2435 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2437 rtx entry_parm = data->entry_parm;
2438 rtx stack_parm = data->stack_parm;
2440 /* If this parm was passed part in regs and part in memory, pretend it
2441 arrived entirely in memory by pushing the register-part onto the stack.
2442 In the special case of a DImode or DFmode that is split, we could put
2443 it together in a pseudoreg directly, but for now that's not worth
2444 bothering with. */
2445 if (data->partial != 0)
2447 /* Handle calls that pass values in multiple non-contiguous
2448 locations. The Irix 6 ABI has examples of this. */
2449 if (GET_CODE (entry_parm) == PARALLEL)
2450 emit_group_store (validize_mem (stack_parm), entry_parm,
2451 data->passed_type,
2452 int_size_in_bytes (data->passed_type));
2453 else
2455 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2456 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2457 data->partial / UNITS_PER_WORD);
2460 entry_parm = stack_parm;
2463 /* If we didn't decide this parm came in a register, by default it came
2464 on the stack. */
2465 else if (entry_parm == NULL)
2466 entry_parm = stack_parm;
2468 /* When an argument is passed in multiple locations, we can't make use
2469 of this information, but we can save some copying if the whole argument
2470 is passed in a single register. */
2471 else if (GET_CODE (entry_parm) == PARALLEL
2472 && data->nominal_mode != BLKmode
2473 && data->passed_mode != BLKmode)
2475 size_t i, len = XVECLEN (entry_parm, 0);
2477 for (i = 0; i < len; i++)
2478 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2479 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2480 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2481 == data->passed_mode)
2482 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2484 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2485 break;
2489 data->entry_parm = entry_parm;
2492 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2493 always valid and properly aligned. */
2495 static void
2496 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2498 rtx stack_parm = data->stack_parm;
2500 /* If we can't trust the parm stack slot to be aligned enough for its
2501 ultimate type, don't use that slot after entry. We'll make another
2502 stack slot, if we need one. */
2503 if (stack_parm
2504 && ((STRICT_ALIGNMENT
2505 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2506 || (data->nominal_type
2507 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2508 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2509 stack_parm = NULL;
2511 /* If parm was passed in memory, and we need to convert it on entry,
2512 don't store it back in that same slot. */
2513 else if (data->entry_parm == stack_parm
2514 && data->nominal_mode != BLKmode
2515 && data->nominal_mode != data->passed_mode)
2516 stack_parm = NULL;
2518 data->stack_parm = stack_parm;
2521 /* A subroutine of assign_parms. Return true if the current parameter
2522 should be stored as a BLKmode in the current frame. */
2524 static bool
2525 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2527 if (data->nominal_mode == BLKmode)
2528 return true;
2529 if (GET_CODE (data->entry_parm) == PARALLEL)
2530 return true;
2532 #ifdef BLOCK_REG_PADDING
2533 /* Only assign_parm_setup_block knows how to deal with register arguments
2534 that are padded at the least significant end. */
2535 if (REG_P (data->entry_parm)
2536 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2537 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2538 == (BYTES_BIG_ENDIAN ? upward : downward)))
2539 return true;
2540 #endif
2542 return false;
2545 /* A subroutine of assign_parms. Arrange for the parameter to be
2546 present and valid in DATA->STACK_RTL. */
2548 static void
2549 assign_parm_setup_block (struct assign_parm_data_all *all,
2550 tree parm, struct assign_parm_data_one *data)
2552 rtx entry_parm = data->entry_parm;
2553 rtx stack_parm = data->stack_parm;
2554 HOST_WIDE_INT size;
2555 HOST_WIDE_INT size_stored;
2556 rtx orig_entry_parm = entry_parm;
2558 if (GET_CODE (entry_parm) == PARALLEL)
2559 entry_parm = emit_group_move_into_temps (entry_parm);
2561 /* If we've a non-block object that's nevertheless passed in parts,
2562 reconstitute it in register operations rather than on the stack. */
2563 if (GET_CODE (entry_parm) == PARALLEL
2564 && data->nominal_mode != BLKmode)
2566 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2568 if ((XVECLEN (entry_parm, 0) > 1
2569 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2570 && use_register_for_decl (parm))
2572 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2574 push_to_sequence (all->conversion_insns);
2576 /* For values returned in multiple registers, handle possible
2577 incompatible calls to emit_group_store.
2579 For example, the following would be invalid, and would have to
2580 be fixed by the conditional below:
2582 emit_group_store ((reg:SF), (parallel:DF))
2583 emit_group_store ((reg:SI), (parallel:DI))
2585 An example of this are doubles in e500 v2:
2586 (parallel:DF (expr_list (reg:SI) (const_int 0))
2587 (expr_list (reg:SI) (const_int 4))). */
2588 if (data->nominal_mode != data->passed_mode)
2590 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2591 emit_group_store (t, entry_parm, NULL_TREE,
2592 GET_MODE_SIZE (GET_MODE (entry_parm)));
2593 convert_move (parmreg, t, 0);
2595 else
2596 emit_group_store (parmreg, entry_parm, data->nominal_type,
2597 int_size_in_bytes (data->nominal_type));
2599 all->conversion_insns = get_insns ();
2600 end_sequence ();
2602 SET_DECL_RTL (parm, parmreg);
2603 return;
2607 size = int_size_in_bytes (data->passed_type);
2608 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2609 if (stack_parm == 0)
2611 stack_parm = assign_stack_local (BLKmode, size_stored,
2612 TYPE_ALIGN (data->passed_type));
2613 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2614 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2615 set_mem_attributes (stack_parm, parm, 1);
2618 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2619 calls that pass values in multiple non-contiguous locations. */
2620 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2622 rtx mem;
2624 /* Note that we will be storing an integral number of words.
2625 So we have to be careful to ensure that we allocate an
2626 integral number of words. We do this above when we call
2627 assign_stack_local if space was not allocated in the argument
2628 list. If it was, this will not work if PARM_BOUNDARY is not
2629 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2630 if it becomes a problem. Exception is when BLKmode arrives
2631 with arguments not conforming to word_mode. */
2633 if (data->stack_parm == 0)
2635 else if (GET_CODE (entry_parm) == PARALLEL)
2637 else
2638 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2640 mem = validize_mem (stack_parm);
2642 /* Handle values in multiple non-contiguous locations. */
2643 if (GET_CODE (entry_parm) == PARALLEL)
2645 push_to_sequence (all->conversion_insns);
2646 emit_group_store (mem, entry_parm, data->passed_type, size);
2647 all->conversion_insns = get_insns ();
2648 end_sequence ();
2651 else if (size == 0)
2654 /* If SIZE is that of a mode no bigger than a word, just use
2655 that mode's store operation. */
2656 else if (size <= UNITS_PER_WORD)
2658 enum machine_mode mode
2659 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2661 if (mode != BLKmode
2662 #ifdef BLOCK_REG_PADDING
2663 && (size == UNITS_PER_WORD
2664 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2665 != (BYTES_BIG_ENDIAN ? upward : downward)))
2666 #endif
2669 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2670 emit_move_insn (change_address (mem, mode, 0), reg);
2673 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2674 machine must be aligned to the left before storing
2675 to memory. Note that the previous test doesn't
2676 handle all cases (e.g. SIZE == 3). */
2677 else if (size != UNITS_PER_WORD
2678 #ifdef BLOCK_REG_PADDING
2679 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2680 == downward)
2681 #else
2682 && BYTES_BIG_ENDIAN
2683 #endif
2686 rtx tem, x;
2687 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2688 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2690 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2691 build_int_cst (NULL_TREE, by),
2692 NULL_RTX, 1);
2693 tem = change_address (mem, word_mode, 0);
2694 emit_move_insn (tem, x);
2696 else
2697 move_block_from_reg (REGNO (entry_parm), mem,
2698 size_stored / UNITS_PER_WORD);
2700 else
2701 move_block_from_reg (REGNO (entry_parm), mem,
2702 size_stored / UNITS_PER_WORD);
2704 else if (data->stack_parm == 0)
2706 push_to_sequence (all->conversion_insns);
2707 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2708 BLOCK_OP_NORMAL);
2709 all->conversion_insns = get_insns ();
2710 end_sequence ();
2713 data->stack_parm = stack_parm;
2714 SET_DECL_RTL (parm, stack_parm);
2717 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2718 parameter. Get it there. Perform all ABI specified conversions. */
2720 static void
2721 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2722 struct assign_parm_data_one *data)
2724 rtx parmreg;
2725 enum machine_mode promoted_nominal_mode;
2726 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2727 bool did_conversion = false;
2729 /* Store the parm in a pseudoregister during the function, but we may
2730 need to do it in a wider mode. */
2732 promoted_nominal_mode
2733 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2735 parmreg = gen_reg_rtx (promoted_nominal_mode);
2737 if (!DECL_ARTIFICIAL (parm))
2738 mark_user_reg (parmreg);
2740 /* If this was an item that we received a pointer to,
2741 set DECL_RTL appropriately. */
2742 if (data->passed_pointer)
2744 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2745 set_mem_attributes (x, parm, 1);
2746 SET_DECL_RTL (parm, x);
2748 else
2749 SET_DECL_RTL (parm, parmreg);
2751 /* Copy the value into the register. */
2752 if (data->nominal_mode != data->passed_mode
2753 || promoted_nominal_mode != data->promoted_mode)
2755 int save_tree_used;
2757 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2758 mode, by the caller. We now have to convert it to
2759 NOMINAL_MODE, if different. However, PARMREG may be in
2760 a different mode than NOMINAL_MODE if it is being stored
2761 promoted.
2763 If ENTRY_PARM is a hard register, it might be in a register
2764 not valid for operating in its mode (e.g., an odd-numbered
2765 register for a DFmode). In that case, moves are the only
2766 thing valid, so we can't do a convert from there. This
2767 occurs when the calling sequence allow such misaligned
2768 usages.
2770 In addition, the conversion may involve a call, which could
2771 clobber parameters which haven't been copied to pseudo
2772 registers yet. Therefore, we must first copy the parm to
2773 a pseudo reg here, and save the conversion until after all
2774 parameters have been moved. */
2776 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2778 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2780 push_to_sequence (all->conversion_insns);
2781 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2783 if (GET_CODE (tempreg) == SUBREG
2784 && GET_MODE (tempreg) == data->nominal_mode
2785 && REG_P (SUBREG_REG (tempreg))
2786 && data->nominal_mode == data->passed_mode
2787 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2788 && GET_MODE_SIZE (GET_MODE (tempreg))
2789 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2791 /* The argument is already sign/zero extended, so note it
2792 into the subreg. */
2793 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2794 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2797 /* TREE_USED gets set erroneously during expand_assignment. */
2798 save_tree_used = TREE_USED (parm);
2799 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2800 TREE_USED (parm) = save_tree_used;
2801 all->conversion_insns = get_insns ();
2802 end_sequence ();
2804 did_conversion = true;
2806 else
2807 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2809 /* If we were passed a pointer but the actual value can safely live
2810 in a register, put it in one. */
2811 if (data->passed_pointer
2812 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2813 /* If by-reference argument was promoted, demote it. */
2814 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2815 || use_register_for_decl (parm)))
2817 /* We can't use nominal_mode, because it will have been set to
2818 Pmode above. We must use the actual mode of the parm. */
2819 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2820 mark_user_reg (parmreg);
2822 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2824 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2825 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2827 push_to_sequence (all->conversion_insns);
2828 emit_move_insn (tempreg, DECL_RTL (parm));
2829 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2830 emit_move_insn (parmreg, tempreg);
2831 all->conversion_insns = get_insns ();
2832 end_sequence ();
2834 did_conversion = true;
2836 else
2837 emit_move_insn (parmreg, DECL_RTL (parm));
2839 SET_DECL_RTL (parm, parmreg);
2841 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2842 now the parm. */
2843 data->stack_parm = NULL;
2846 /* Mark the register as eliminable if we did no conversion and it was
2847 copied from memory at a fixed offset, and the arg pointer was not
2848 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2849 offset formed an invalid address, such memory-equivalences as we
2850 make here would screw up life analysis for it. */
2851 if (data->nominal_mode == data->passed_mode
2852 && !did_conversion
2853 && data->stack_parm != 0
2854 && MEM_P (data->stack_parm)
2855 && data->locate.offset.var == 0
2856 && reg_mentioned_p (virtual_incoming_args_rtx,
2857 XEXP (data->stack_parm, 0)))
2859 rtx linsn = get_last_insn ();
2860 rtx sinsn, set;
2862 /* Mark complex types separately. */
2863 if (GET_CODE (parmreg) == CONCAT)
2865 enum machine_mode submode
2866 = GET_MODE_INNER (GET_MODE (parmreg));
2867 int regnor = REGNO (XEXP (parmreg, 0));
2868 int regnoi = REGNO (XEXP (parmreg, 1));
2869 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2870 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2871 GET_MODE_SIZE (submode));
2873 /* Scan backwards for the set of the real and
2874 imaginary parts. */
2875 for (sinsn = linsn; sinsn != 0;
2876 sinsn = prev_nonnote_insn (sinsn))
2878 set = single_set (sinsn);
2879 if (set == 0)
2880 continue;
2882 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2883 REG_NOTES (sinsn)
2884 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2885 REG_NOTES (sinsn));
2886 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2887 REG_NOTES (sinsn)
2888 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2889 REG_NOTES (sinsn));
2892 else if ((set = single_set (linsn)) != 0
2893 && SET_DEST (set) == parmreg)
2894 REG_NOTES (linsn)
2895 = gen_rtx_EXPR_LIST (REG_EQUIV,
2896 data->stack_parm, REG_NOTES (linsn));
2899 /* For pointer data type, suggest pointer register. */
2900 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2901 mark_reg_pointer (parmreg,
2902 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2905 /* A subroutine of assign_parms. Allocate stack space to hold the current
2906 parameter. Get it there. Perform all ABI specified conversions. */
2908 static void
2909 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2910 struct assign_parm_data_one *data)
2912 /* Value must be stored in the stack slot STACK_PARM during function
2913 execution. */
2914 bool to_conversion = false;
2916 if (data->promoted_mode != data->nominal_mode)
2918 /* Conversion is required. */
2919 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2921 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2923 push_to_sequence (all->conversion_insns);
2924 to_conversion = true;
2926 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2927 TYPE_UNSIGNED (TREE_TYPE (parm)));
2929 if (data->stack_parm)
2930 /* ??? This may need a big-endian conversion on sparc64. */
2931 data->stack_parm
2932 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2935 if (data->entry_parm != data->stack_parm)
2937 rtx src, dest;
2939 if (data->stack_parm == 0)
2941 data->stack_parm
2942 = assign_stack_local (GET_MODE (data->entry_parm),
2943 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2944 TYPE_ALIGN (data->passed_type));
2945 set_mem_attributes (data->stack_parm, parm, 1);
2948 dest = validize_mem (data->stack_parm);
2949 src = validize_mem (data->entry_parm);
2951 if (MEM_P (src))
2953 /* Use a block move to handle potentially misaligned entry_parm. */
2954 if (!to_conversion)
2955 push_to_sequence (all->conversion_insns);
2956 to_conversion = true;
2958 emit_block_move (dest, src,
2959 GEN_INT (int_size_in_bytes (data->passed_type)),
2960 BLOCK_OP_NORMAL);
2962 else
2963 emit_move_insn (dest, src);
2966 if (to_conversion)
2968 all->conversion_insns = get_insns ();
2969 end_sequence ();
2972 SET_DECL_RTL (parm, data->stack_parm);
2975 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2976 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2978 static void
2979 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2981 tree parm;
2982 tree orig_fnargs = all->orig_fnargs;
2984 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2986 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2987 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2989 rtx tmp, real, imag;
2990 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2992 real = DECL_RTL (fnargs);
2993 imag = DECL_RTL (TREE_CHAIN (fnargs));
2994 if (inner != GET_MODE (real))
2996 real = gen_lowpart_SUBREG (inner, real);
2997 imag = gen_lowpart_SUBREG (inner, imag);
3000 if (TREE_ADDRESSABLE (parm))
3002 rtx rmem, imem;
3003 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3005 /* split_complex_arg put the real and imag parts in
3006 pseudos. Move them to memory. */
3007 tmp = assign_stack_local (DECL_MODE (parm), size,
3008 TYPE_ALIGN (TREE_TYPE (parm)));
3009 set_mem_attributes (tmp, parm, 1);
3010 rmem = adjust_address_nv (tmp, inner, 0);
3011 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3012 push_to_sequence (all->conversion_insns);
3013 emit_move_insn (rmem, real);
3014 emit_move_insn (imem, imag);
3015 all->conversion_insns = get_insns ();
3016 end_sequence ();
3018 else
3019 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3020 SET_DECL_RTL (parm, tmp);
3022 real = DECL_INCOMING_RTL (fnargs);
3023 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3024 if (inner != GET_MODE (real))
3026 real = gen_lowpart_SUBREG (inner, real);
3027 imag = gen_lowpart_SUBREG (inner, imag);
3029 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3030 set_decl_incoming_rtl (parm, tmp);
3031 fnargs = TREE_CHAIN (fnargs);
3033 else
3035 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3036 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
3038 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3039 instead of the copy of decl, i.e. FNARGS. */
3040 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3041 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3044 fnargs = TREE_CHAIN (fnargs);
3048 /* Assign RTL expressions to the function's parameters. This may involve
3049 copying them into registers and using those registers as the DECL_RTL. */
3051 static void
3052 assign_parms (tree fndecl)
3054 struct assign_parm_data_all all;
3055 tree fnargs, parm;
3056 rtx internal_arg_pointer;
3057 int varargs_setup = 0;
3059 /* If the reg that the virtual arg pointer will be translated into is
3060 not a fixed reg or is the stack pointer, make a copy of the virtual
3061 arg pointer, and address parms via the copy. The frame pointer is
3062 considered fixed even though it is not marked as such.
3064 The second time through, simply use ap to avoid generating rtx. */
3066 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3067 || ! (fixed_regs[ARG_POINTER_REGNUM]
3068 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3069 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3070 else
3071 internal_arg_pointer = virtual_incoming_args_rtx;
3072 current_function_internal_arg_pointer = internal_arg_pointer;
3074 assign_parms_initialize_all (&all);
3075 fnargs = assign_parms_augmented_arg_list (&all);
3077 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3079 struct assign_parm_data_one data;
3081 /* Extract the type of PARM; adjust it according to ABI. */
3082 assign_parm_find_data_types (&all, parm, &data);
3084 /* Early out for errors and void parameters. */
3085 if (data.passed_mode == VOIDmode)
3087 SET_DECL_RTL (parm, const0_rtx);
3088 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3089 continue;
3092 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3093 for the unnamed dummy argument following the last named argument.
3094 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3095 we only want to do this when we get to the actual last named
3096 argument, which will be the first time LAST_NAMED gets set. */
3097 if (data.last_named && !varargs_setup)
3099 varargs_setup = true;
3100 assign_parms_setup_varargs (&all, &data, false);
3103 /* Find out where the parameter arrives in this function. */
3104 assign_parm_find_entry_rtl (&all, &data);
3106 /* Find out where stack space for this parameter might be. */
3107 if (assign_parm_is_stack_parm (&all, &data))
3109 assign_parm_find_stack_rtl (parm, &data);
3110 assign_parm_adjust_entry_rtl (&data);
3113 /* Record permanently how this parm was passed. */
3114 set_decl_incoming_rtl (parm, data.entry_parm);
3116 /* Update info on where next arg arrives in registers. */
3117 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3118 data.passed_type, data.named_arg);
3120 assign_parm_adjust_stack_rtl (&data);
3122 if (assign_parm_setup_block_p (&data))
3123 assign_parm_setup_block (&all, parm, &data);
3124 else if (data.passed_pointer || use_register_for_decl (parm))
3125 assign_parm_setup_reg (&all, parm, &data);
3126 else
3127 assign_parm_setup_stack (&all, parm, &data);
3130 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3131 assign_parms_unsplit_complex (&all, fnargs);
3133 /* Output all parameter conversion instructions (possibly including calls)
3134 now that all parameters have been copied out of hard registers. */
3135 emit_insn (all.conversion_insns);
3137 /* If we are receiving a struct value address as the first argument, set up
3138 the RTL for the function result. As this might require code to convert
3139 the transmitted address to Pmode, we do this here to ensure that possible
3140 preliminary conversions of the address have been emitted already. */
3141 if (all.function_result_decl)
3143 tree result = DECL_RESULT (current_function_decl);
3144 rtx addr = DECL_RTL (all.function_result_decl);
3145 rtx x;
3147 if (DECL_BY_REFERENCE (result))
3148 x = addr;
3149 else
3151 addr = convert_memory_address (Pmode, addr);
3152 x = gen_rtx_MEM (DECL_MODE (result), addr);
3153 set_mem_attributes (x, result, 1);
3155 SET_DECL_RTL (result, x);
3158 /* We have aligned all the args, so add space for the pretend args. */
3159 current_function_pretend_args_size = all.pretend_args_size;
3160 all.stack_args_size.constant += all.extra_pretend_bytes;
3161 current_function_args_size = all.stack_args_size.constant;
3163 /* Adjust function incoming argument size for alignment and
3164 minimum length. */
3166 #ifdef REG_PARM_STACK_SPACE
3167 current_function_args_size = MAX (current_function_args_size,
3168 REG_PARM_STACK_SPACE (fndecl));
3169 #endif
3171 current_function_args_size
3172 = ((current_function_args_size + STACK_BYTES - 1)
3173 / STACK_BYTES) * STACK_BYTES;
3175 #ifdef ARGS_GROW_DOWNWARD
3176 current_function_arg_offset_rtx
3177 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3178 : expand_expr (size_diffop (all.stack_args_size.var,
3179 size_int (-all.stack_args_size.constant)),
3180 NULL_RTX, VOIDmode, 0));
3181 #else
3182 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3183 #endif
3185 /* See how many bytes, if any, of its args a function should try to pop
3186 on return. */
3188 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3189 current_function_args_size);
3191 /* For stdarg.h function, save info about
3192 regs and stack space used by the named args. */
3194 current_function_args_info = all.args_so_far;
3196 /* Set the rtx used for the function return value. Put this in its
3197 own variable so any optimizers that need this information don't have
3198 to include tree.h. Do this here so it gets done when an inlined
3199 function gets output. */
3201 current_function_return_rtx
3202 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3203 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3205 /* If scalar return value was computed in a pseudo-reg, or was a named
3206 return value that got dumped to the stack, copy that to the hard
3207 return register. */
3208 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3210 tree decl_result = DECL_RESULT (fndecl);
3211 rtx decl_rtl = DECL_RTL (decl_result);
3213 if (REG_P (decl_rtl)
3214 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3215 : DECL_REGISTER (decl_result))
3217 rtx real_decl_rtl;
3219 #ifdef FUNCTION_OUTGOING_VALUE
3220 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3221 fndecl);
3222 #else
3223 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3224 fndecl);
3225 #endif
3226 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3227 /* The delay slot scheduler assumes that current_function_return_rtx
3228 holds the hard register containing the return value, not a
3229 temporary pseudo. */
3230 current_function_return_rtx = real_decl_rtl;
3235 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3236 For all seen types, gimplify their sizes. */
3238 static tree
3239 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3241 tree t = *tp;
3243 *walk_subtrees = 0;
3244 if (TYPE_P (t))
3246 if (POINTER_TYPE_P (t))
3247 *walk_subtrees = 1;
3248 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3249 && !TYPE_SIZES_GIMPLIFIED (t))
3251 gimplify_type_sizes (t, (tree *) data);
3252 *walk_subtrees = 1;
3256 return NULL;
3259 /* Gimplify the parameter list for current_function_decl. This involves
3260 evaluating SAVE_EXPRs of variable sized parameters and generating code
3261 to implement callee-copies reference parameters. Returns a list of
3262 statements to add to the beginning of the function, or NULL if nothing
3263 to do. */
3265 tree
3266 gimplify_parameters (void)
3268 struct assign_parm_data_all all;
3269 tree fnargs, parm, stmts = NULL;
3271 assign_parms_initialize_all (&all);
3272 fnargs = assign_parms_augmented_arg_list (&all);
3274 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3276 struct assign_parm_data_one data;
3278 /* Extract the type of PARM; adjust it according to ABI. */
3279 assign_parm_find_data_types (&all, parm, &data);
3281 /* Early out for errors and void parameters. */
3282 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3283 continue;
3285 /* Update info on where next arg arrives in registers. */
3286 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3287 data.passed_type, data.named_arg);
3289 /* ??? Once upon a time variable_size stuffed parameter list
3290 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3291 turned out to be less than manageable in the gimple world.
3292 Now we have to hunt them down ourselves. */
3293 walk_tree_without_duplicates (&data.passed_type,
3294 gimplify_parm_type, &stmts);
3296 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3298 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3299 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3302 if (data.passed_pointer)
3304 tree type = TREE_TYPE (data.passed_type);
3305 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3306 type, data.named_arg))
3308 tree local, t;
3310 /* For constant sized objects, this is trivial; for
3311 variable-sized objects, we have to play games. */
3312 if (TREE_CONSTANT (DECL_SIZE (parm)))
3314 local = create_tmp_var (type, get_name (parm));
3315 DECL_IGNORED_P (local) = 0;
3317 else
3319 tree ptr_type, addr, args;
3321 ptr_type = build_pointer_type (type);
3322 addr = create_tmp_var (ptr_type, get_name (parm));
3323 DECL_IGNORED_P (addr) = 0;
3324 local = build_fold_indirect_ref (addr);
3326 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3327 t = built_in_decls[BUILT_IN_ALLOCA];
3328 t = build_function_call_expr (t, args);
3329 t = fold_convert (ptr_type, t);
3330 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3331 gimplify_and_add (t, &stmts);
3334 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3335 gimplify_and_add (t, &stmts);
3337 DECL_VALUE_EXPR (parm) = local;
3342 return stmts;
3345 /* Indicate whether REGNO is an incoming argument to the current function
3346 that was promoted to a wider mode. If so, return the RTX for the
3347 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3348 that REGNO is promoted from and whether the promotion was signed or
3349 unsigned. */
3352 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3354 tree arg;
3356 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3357 arg = TREE_CHAIN (arg))
3358 if (REG_P (DECL_INCOMING_RTL (arg))
3359 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3360 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3362 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3363 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3365 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3366 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3367 && mode != DECL_MODE (arg))
3369 *pmode = DECL_MODE (arg);
3370 *punsignedp = unsignedp;
3371 return DECL_INCOMING_RTL (arg);
3375 return 0;
3379 /* Compute the size and offset from the start of the stacked arguments for a
3380 parm passed in mode PASSED_MODE and with type TYPE.
3382 INITIAL_OFFSET_PTR points to the current offset into the stacked
3383 arguments.
3385 The starting offset and size for this parm are returned in
3386 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3387 nonzero, the offset is that of stack slot, which is returned in
3388 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3389 padding required from the initial offset ptr to the stack slot.
3391 IN_REGS is nonzero if the argument will be passed in registers. It will
3392 never be set if REG_PARM_STACK_SPACE is not defined.
3394 FNDECL is the function in which the argument was defined.
3396 There are two types of rounding that are done. The first, controlled by
3397 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3398 list to be aligned to the specific boundary (in bits). This rounding
3399 affects the initial and starting offsets, but not the argument size.
3401 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3402 optionally rounds the size of the parm to PARM_BOUNDARY. The
3403 initial offset is not affected by this rounding, while the size always
3404 is and the starting offset may be. */
3406 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3407 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3408 callers pass in the total size of args so far as
3409 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3411 void
3412 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3413 int partial, tree fndecl ATTRIBUTE_UNUSED,
3414 struct args_size *initial_offset_ptr,
3415 struct locate_and_pad_arg_data *locate)
3417 tree sizetree;
3418 enum direction where_pad;
3419 int boundary;
3420 int reg_parm_stack_space = 0;
3421 int part_size_in_regs;
3423 #ifdef REG_PARM_STACK_SPACE
3424 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3426 /* If we have found a stack parm before we reach the end of the
3427 area reserved for registers, skip that area. */
3428 if (! in_regs)
3430 if (reg_parm_stack_space > 0)
3432 if (initial_offset_ptr->var)
3434 initial_offset_ptr->var
3435 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3436 ssize_int (reg_parm_stack_space));
3437 initial_offset_ptr->constant = 0;
3439 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3440 initial_offset_ptr->constant = reg_parm_stack_space;
3443 #endif /* REG_PARM_STACK_SPACE */
3445 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3447 sizetree
3448 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3449 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3450 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3451 locate->where_pad = where_pad;
3452 locate->boundary = boundary;
3454 #ifdef ARGS_GROW_DOWNWARD
3455 locate->slot_offset.constant = -initial_offset_ptr->constant;
3456 if (initial_offset_ptr->var)
3457 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3458 initial_offset_ptr->var);
3461 tree s2 = sizetree;
3462 if (where_pad != none
3463 && (!host_integerp (sizetree, 1)
3464 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3465 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3466 SUB_PARM_SIZE (locate->slot_offset, s2);
3469 locate->slot_offset.constant += part_size_in_regs;
3471 if (!in_regs
3472 #ifdef REG_PARM_STACK_SPACE
3473 || REG_PARM_STACK_SPACE (fndecl) > 0
3474 #endif
3476 pad_to_arg_alignment (&locate->slot_offset, boundary,
3477 &locate->alignment_pad);
3479 locate->size.constant = (-initial_offset_ptr->constant
3480 - locate->slot_offset.constant);
3481 if (initial_offset_ptr->var)
3482 locate->size.var = size_binop (MINUS_EXPR,
3483 size_binop (MINUS_EXPR,
3484 ssize_int (0),
3485 initial_offset_ptr->var),
3486 locate->slot_offset.var);
3488 /* Pad_below needs the pre-rounded size to know how much to pad
3489 below. */
3490 locate->offset = locate->slot_offset;
3491 if (where_pad == downward)
3492 pad_below (&locate->offset, passed_mode, sizetree);
3494 #else /* !ARGS_GROW_DOWNWARD */
3495 if (!in_regs
3496 #ifdef REG_PARM_STACK_SPACE
3497 || REG_PARM_STACK_SPACE (fndecl) > 0
3498 #endif
3500 pad_to_arg_alignment (initial_offset_ptr, boundary,
3501 &locate->alignment_pad);
3502 locate->slot_offset = *initial_offset_ptr;
3504 #ifdef PUSH_ROUNDING
3505 if (passed_mode != BLKmode)
3506 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3507 #endif
3509 /* Pad_below needs the pre-rounded size to know how much to pad below
3510 so this must be done before rounding up. */
3511 locate->offset = locate->slot_offset;
3512 if (where_pad == downward)
3513 pad_below (&locate->offset, passed_mode, sizetree);
3515 if (where_pad != none
3516 && (!host_integerp (sizetree, 1)
3517 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3518 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3520 ADD_PARM_SIZE (locate->size, sizetree);
3522 locate->size.constant -= part_size_in_regs;
3523 #endif /* ARGS_GROW_DOWNWARD */
3526 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3527 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3529 static void
3530 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3531 struct args_size *alignment_pad)
3533 tree save_var = NULL_TREE;
3534 HOST_WIDE_INT save_constant = 0;
3535 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3536 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3538 #ifdef SPARC_STACK_BOUNDARY_HACK
3539 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3540 higher than the real alignment of %sp. However, when it does this,
3541 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3542 This is a temporary hack while the sparc port is fixed. */
3543 if (SPARC_STACK_BOUNDARY_HACK)
3544 sp_offset = 0;
3545 #endif
3547 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3549 save_var = offset_ptr->var;
3550 save_constant = offset_ptr->constant;
3553 alignment_pad->var = NULL_TREE;
3554 alignment_pad->constant = 0;
3556 if (boundary > BITS_PER_UNIT)
3558 if (offset_ptr->var)
3560 tree sp_offset_tree = ssize_int (sp_offset);
3561 tree offset = size_binop (PLUS_EXPR,
3562 ARGS_SIZE_TREE (*offset_ptr),
3563 sp_offset_tree);
3564 #ifdef ARGS_GROW_DOWNWARD
3565 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3566 #else
3567 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3568 #endif
3570 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3571 /* ARGS_SIZE_TREE includes constant term. */
3572 offset_ptr->constant = 0;
3573 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3574 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3575 save_var);
3577 else
3579 offset_ptr->constant = -sp_offset +
3580 #ifdef ARGS_GROW_DOWNWARD
3581 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3582 #else
3583 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3584 #endif
3585 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3586 alignment_pad->constant = offset_ptr->constant - save_constant;
3591 static void
3592 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3594 if (passed_mode != BLKmode)
3596 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3597 offset_ptr->constant
3598 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3599 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3600 - GET_MODE_SIZE (passed_mode));
3602 else
3604 if (TREE_CODE (sizetree) != INTEGER_CST
3605 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3607 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3608 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3609 /* Add it in. */
3610 ADD_PARM_SIZE (*offset_ptr, s2);
3611 SUB_PARM_SIZE (*offset_ptr, sizetree);
3616 /* Walk the tree of blocks describing the binding levels within a function
3617 and warn about variables the might be killed by setjmp or vfork.
3618 This is done after calling flow_analysis and before global_alloc
3619 clobbers the pseudo-regs to hard regs. */
3621 void
3622 setjmp_vars_warning (tree block)
3624 tree decl, sub;
3626 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3628 if (TREE_CODE (decl) == VAR_DECL
3629 && DECL_RTL_SET_P (decl)
3630 && REG_P (DECL_RTL (decl))
3631 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3632 warning ("%Jvariable %qD might be clobbered by %<longjmp%>"
3633 " or %<vfork%>",
3634 decl, decl);
3637 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3638 setjmp_vars_warning (sub);
3641 /* Do the appropriate part of setjmp_vars_warning
3642 but for arguments instead of local variables. */
3644 void
3645 setjmp_args_warning (void)
3647 tree decl;
3648 for (decl = DECL_ARGUMENTS (current_function_decl);
3649 decl; decl = TREE_CHAIN (decl))
3650 if (DECL_RTL (decl) != 0
3651 && REG_P (DECL_RTL (decl))
3652 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3653 warning ("%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3654 decl, decl);
3658 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3659 and create duplicate blocks. */
3660 /* ??? Need an option to either create block fragments or to create
3661 abstract origin duplicates of a source block. It really depends
3662 on what optimization has been performed. */
3664 void
3665 reorder_blocks (void)
3667 tree block = DECL_INITIAL (current_function_decl);
3668 varray_type block_stack;
3670 if (block == NULL_TREE)
3671 return;
3673 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3675 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3676 clear_block_marks (block);
3678 /* Prune the old trees away, so that they don't get in the way. */
3679 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3680 BLOCK_CHAIN (block) = NULL_TREE;
3682 /* Recreate the block tree from the note nesting. */
3683 reorder_blocks_1 (get_insns (), block, &block_stack);
3684 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3686 /* Remove deleted blocks from the block fragment chains. */
3687 reorder_fix_fragments (block);
3690 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3692 void
3693 clear_block_marks (tree block)
3695 while (block)
3697 TREE_ASM_WRITTEN (block) = 0;
3698 clear_block_marks (BLOCK_SUBBLOCKS (block));
3699 block = BLOCK_CHAIN (block);
3703 static void
3704 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3706 rtx insn;
3708 for (insn = insns; insn; insn = NEXT_INSN (insn))
3710 if (NOTE_P (insn))
3712 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3714 tree block = NOTE_BLOCK (insn);
3716 /* If we have seen this block before, that means it now
3717 spans multiple address regions. Create a new fragment. */
3718 if (TREE_ASM_WRITTEN (block))
3720 tree new_block = copy_node (block);
3721 tree origin;
3723 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3724 ? BLOCK_FRAGMENT_ORIGIN (block)
3725 : block);
3726 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3727 BLOCK_FRAGMENT_CHAIN (new_block)
3728 = BLOCK_FRAGMENT_CHAIN (origin);
3729 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3731 NOTE_BLOCK (insn) = new_block;
3732 block = new_block;
3735 BLOCK_SUBBLOCKS (block) = 0;
3736 TREE_ASM_WRITTEN (block) = 1;
3737 /* When there's only one block for the entire function,
3738 current_block == block and we mustn't do this, it
3739 will cause infinite recursion. */
3740 if (block != current_block)
3742 BLOCK_SUPERCONTEXT (block) = current_block;
3743 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3744 BLOCK_SUBBLOCKS (current_block) = block;
3745 current_block = block;
3747 VARRAY_PUSH_TREE (*p_block_stack, block);
3749 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3751 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3752 VARRAY_POP (*p_block_stack);
3753 BLOCK_SUBBLOCKS (current_block)
3754 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3755 current_block = BLOCK_SUPERCONTEXT (current_block);
3761 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3762 appears in the block tree, select one of the fragments to become
3763 the new origin block. */
3765 static void
3766 reorder_fix_fragments (tree block)
3768 while (block)
3770 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3771 tree new_origin = NULL_TREE;
3773 if (dup_origin)
3775 if (! TREE_ASM_WRITTEN (dup_origin))
3777 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3779 /* Find the first of the remaining fragments. There must
3780 be at least one -- the current block. */
3781 while (! TREE_ASM_WRITTEN (new_origin))
3782 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3783 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3786 else if (! dup_origin)
3787 new_origin = block;
3789 /* Re-root the rest of the fragments to the new origin. In the
3790 case that DUP_ORIGIN was null, that means BLOCK was the origin
3791 of a chain of fragments and we want to remove those fragments
3792 that didn't make it to the output. */
3793 if (new_origin)
3795 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3796 tree chain = *pp;
3798 while (chain)
3800 if (TREE_ASM_WRITTEN (chain))
3802 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3803 *pp = chain;
3804 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3806 chain = BLOCK_FRAGMENT_CHAIN (chain);
3808 *pp = NULL_TREE;
3811 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3812 block = BLOCK_CHAIN (block);
3816 /* Reverse the order of elements in the chain T of blocks,
3817 and return the new head of the chain (old last element). */
3819 tree
3820 blocks_nreverse (tree t)
3822 tree prev = 0, decl, next;
3823 for (decl = t; decl; decl = next)
3825 next = BLOCK_CHAIN (decl);
3826 BLOCK_CHAIN (decl) = prev;
3827 prev = decl;
3829 return prev;
3832 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3833 non-NULL, list them all into VECTOR, in a depth-first preorder
3834 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3835 blocks. */
3837 static int
3838 all_blocks (tree block, tree *vector)
3840 int n_blocks = 0;
3842 while (block)
3844 TREE_ASM_WRITTEN (block) = 0;
3846 /* Record this block. */
3847 if (vector)
3848 vector[n_blocks] = block;
3850 ++n_blocks;
3852 /* Record the subblocks, and their subblocks... */
3853 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3854 vector ? vector + n_blocks : 0);
3855 block = BLOCK_CHAIN (block);
3858 return n_blocks;
3861 /* Return a vector containing all the blocks rooted at BLOCK. The
3862 number of elements in the vector is stored in N_BLOCKS_P. The
3863 vector is dynamically allocated; it is the caller's responsibility
3864 to call `free' on the pointer returned. */
3866 static tree *
3867 get_block_vector (tree block, int *n_blocks_p)
3869 tree *block_vector;
3871 *n_blocks_p = all_blocks (block, NULL);
3872 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3873 all_blocks (block, block_vector);
3875 return block_vector;
3878 static GTY(()) int next_block_index = 2;
3880 /* Set BLOCK_NUMBER for all the blocks in FN. */
3882 void
3883 number_blocks (tree fn)
3885 int i;
3886 int n_blocks;
3887 tree *block_vector;
3889 /* For SDB and XCOFF debugging output, we start numbering the blocks
3890 from 1 within each function, rather than keeping a running
3891 count. */
3892 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3893 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3894 next_block_index = 1;
3895 #endif
3897 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3899 /* The top-level BLOCK isn't numbered at all. */
3900 for (i = 1; i < n_blocks; ++i)
3901 /* We number the blocks from two. */
3902 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3904 free (block_vector);
3906 return;
3909 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3911 tree
3912 debug_find_var_in_block_tree (tree var, tree block)
3914 tree t;
3916 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3917 if (t == var)
3918 return block;
3920 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3922 tree ret = debug_find_var_in_block_tree (var, t);
3923 if (ret)
3924 return ret;
3927 return NULL_TREE;
3930 /* Allocate a function structure for FNDECL and set its contents
3931 to the defaults. */
3933 void
3934 allocate_struct_function (tree fndecl)
3936 tree result;
3937 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3939 cfun = ggc_alloc_cleared (sizeof (struct function));
3941 cfun->stack_alignment_needed = STACK_BOUNDARY;
3942 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3944 current_function_funcdef_no = funcdef_no++;
3946 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3948 init_eh_for_function ();
3950 lang_hooks.function.init (cfun);
3951 if (init_machine_status)
3952 cfun->machine = (*init_machine_status) ();
3954 if (fndecl == NULL)
3955 return;
3957 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3958 cfun->decl = fndecl;
3960 result = DECL_RESULT (fndecl);
3961 if (aggregate_value_p (result, fndecl))
3963 #ifdef PCC_STATIC_STRUCT_RETURN
3964 current_function_returns_pcc_struct = 1;
3965 #endif
3966 current_function_returns_struct = 1;
3969 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3971 current_function_stdarg
3972 = (fntype
3973 && TYPE_ARG_TYPES (fntype) != 0
3974 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3975 != void_type_node));
3978 /* Reset cfun, and other non-struct-function variables to defaults as
3979 appropriate for emitting rtl at the start of a function. */
3981 static void
3982 prepare_function_start (tree fndecl)
3984 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3985 cfun = DECL_STRUCT_FUNCTION (fndecl);
3986 else
3987 allocate_struct_function (fndecl);
3988 init_emit ();
3989 init_varasm_status (cfun);
3990 init_expr ();
3992 cse_not_expected = ! optimize;
3994 /* Caller save not needed yet. */
3995 caller_save_needed = 0;
3997 /* We haven't done register allocation yet. */
3998 reg_renumber = 0;
4000 /* Indicate that we have not instantiated virtual registers yet. */
4001 virtuals_instantiated = 0;
4003 /* Indicate that we want CONCATs now. */
4004 generating_concat_p = 1;
4006 /* Indicate we have no need of a frame pointer yet. */
4007 frame_pointer_needed = 0;
4010 /* Initialize the rtl expansion mechanism so that we can do simple things
4011 like generate sequences. This is used to provide a context during global
4012 initialization of some passes. */
4013 void
4014 init_dummy_function_start (void)
4016 prepare_function_start (NULL);
4019 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4020 and initialize static variables for generating RTL for the statements
4021 of the function. */
4023 void
4024 init_function_start (tree subr)
4026 prepare_function_start (subr);
4028 /* Prevent ever trying to delete the first instruction of a
4029 function. Also tell final how to output a linenum before the
4030 function prologue. Note linenums could be missing, e.g. when
4031 compiling a Java .class file. */
4032 if (! DECL_IS_BUILTIN (subr))
4033 emit_line_note (DECL_SOURCE_LOCATION (subr));
4035 /* Make sure first insn is a note even if we don't want linenums.
4036 This makes sure the first insn will never be deleted.
4037 Also, final expects a note to appear there. */
4038 emit_note (NOTE_INSN_DELETED);
4040 /* Warn if this value is an aggregate type,
4041 regardless of which calling convention we are using for it. */
4042 if (warn_aggregate_return
4043 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4044 warning ("function returns an aggregate");
4047 /* Make sure all values used by the optimization passes have sane
4048 defaults. */
4049 void
4050 init_function_for_compilation (void)
4052 reg_renumber = 0;
4054 /* No prologue/epilogue insns yet. */
4055 VARRAY_GROW (prologue, 0);
4056 VARRAY_GROW (epilogue, 0);
4057 VARRAY_GROW (sibcall_epilogue, 0);
4060 /* Expand a call to __main at the beginning of a possible main function. */
4062 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
4063 #undef HAS_INIT_SECTION
4064 #define HAS_INIT_SECTION
4065 #endif
4067 void
4068 expand_main_function (void)
4070 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
4071 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
4073 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
4074 rtx tmp, seq;
4076 start_sequence ();
4077 /* Forcibly align the stack. */
4078 #ifdef STACK_GROWS_DOWNWARD
4079 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
4080 stack_pointer_rtx, 1, OPTAB_WIDEN);
4081 #else
4082 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
4083 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
4084 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
4085 stack_pointer_rtx, 1, OPTAB_WIDEN);
4086 #endif
4087 if (tmp != stack_pointer_rtx)
4088 emit_move_insn (stack_pointer_rtx, tmp);
4090 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
4091 tmp = force_reg (Pmode, const0_rtx);
4092 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
4093 seq = get_insns ();
4094 end_sequence ();
4096 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
4097 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
4098 break;
4099 if (tmp)
4100 emit_insn_before (seq, tmp);
4101 else
4102 emit_insn (seq);
4104 #endif
4106 #ifndef HAS_INIT_SECTION
4107 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4108 #endif
4111 /* Start the RTL for a new function, and set variables used for
4112 emitting RTL.
4113 SUBR is the FUNCTION_DECL node.
4114 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4115 the function's parameters, which must be run at any return statement. */
4117 void
4118 expand_function_start (tree subr)
4120 /* Make sure volatile mem refs aren't considered
4121 valid operands of arithmetic insns. */
4122 init_recog_no_volatile ();
4124 current_function_profile
4125 = (profile_flag
4126 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4128 current_function_limit_stack
4129 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4131 /* Make the label for return statements to jump to. Do not special
4132 case machines with special return instructions -- they will be
4133 handled later during jump, ifcvt, or epilogue creation. */
4134 return_label = gen_label_rtx ();
4136 /* Initialize rtx used to return the value. */
4137 /* Do this before assign_parms so that we copy the struct value address
4138 before any library calls that assign parms might generate. */
4140 /* Decide whether to return the value in memory or in a register. */
4141 if (aggregate_value_p (DECL_RESULT (subr), subr))
4143 /* Returning something that won't go in a register. */
4144 rtx value_address = 0;
4146 #ifdef PCC_STATIC_STRUCT_RETURN
4147 if (current_function_returns_pcc_struct)
4149 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4150 value_address = assemble_static_space (size);
4152 else
4153 #endif
4155 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4156 /* Expect to be passed the address of a place to store the value.
4157 If it is passed as an argument, assign_parms will take care of
4158 it. */
4159 if (sv)
4161 value_address = gen_reg_rtx (Pmode);
4162 emit_move_insn (value_address, sv);
4165 if (value_address)
4167 rtx x = value_address;
4168 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4170 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4171 set_mem_attributes (x, DECL_RESULT (subr), 1);
4173 SET_DECL_RTL (DECL_RESULT (subr), x);
4176 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4177 /* If return mode is void, this decl rtl should not be used. */
4178 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4179 else
4181 /* Compute the return values into a pseudo reg, which we will copy
4182 into the true return register after the cleanups are done. */
4183 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4184 if (TYPE_MODE (return_type) != BLKmode
4185 && targetm.calls.return_in_msb (return_type))
4186 /* expand_function_end will insert the appropriate padding in
4187 this case. Use the return value's natural (unpadded) mode
4188 within the function proper. */
4189 SET_DECL_RTL (DECL_RESULT (subr),
4190 gen_reg_rtx (TYPE_MODE (return_type)));
4191 else
4193 /* In order to figure out what mode to use for the pseudo, we
4194 figure out what the mode of the eventual return register will
4195 actually be, and use that. */
4196 rtx hard_reg = hard_function_value (return_type, subr, 1);
4198 /* Structures that are returned in registers are not
4199 aggregate_value_p, so we may see a PARALLEL or a REG. */
4200 if (REG_P (hard_reg))
4201 SET_DECL_RTL (DECL_RESULT (subr),
4202 gen_reg_rtx (GET_MODE (hard_reg)));
4203 else
4205 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4206 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4210 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4211 result to the real return register(s). */
4212 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4215 /* Initialize rtx for parameters and local variables.
4216 In some cases this requires emitting insns. */
4217 assign_parms (subr);
4219 /* If function gets a static chain arg, store it. */
4220 if (cfun->static_chain_decl)
4222 tree parm = cfun->static_chain_decl;
4223 rtx local = gen_reg_rtx (Pmode);
4225 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4226 SET_DECL_RTL (parm, local);
4227 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4229 emit_move_insn (local, static_chain_incoming_rtx);
4232 /* If the function receives a non-local goto, then store the
4233 bits we need to restore the frame pointer. */
4234 if (cfun->nonlocal_goto_save_area)
4236 tree t_save;
4237 rtx r_save;
4239 /* ??? We need to do this save early. Unfortunately here is
4240 before the frame variable gets declared. Help out... */
4241 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4243 t_save = build4 (ARRAY_REF, ptr_type_node,
4244 cfun->nonlocal_goto_save_area,
4245 integer_zero_node, NULL_TREE, NULL_TREE);
4246 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4247 r_save = convert_memory_address (Pmode, r_save);
4249 emit_move_insn (r_save, virtual_stack_vars_rtx);
4250 update_nonlocal_goto_save_area ();
4253 /* The following was moved from init_function_start.
4254 The move is supposed to make sdb output more accurate. */
4255 /* Indicate the beginning of the function body,
4256 as opposed to parm setup. */
4257 emit_note (NOTE_INSN_FUNCTION_BEG);
4259 if (!NOTE_P (get_last_insn ()))
4260 emit_note (NOTE_INSN_DELETED);
4261 parm_birth_insn = get_last_insn ();
4263 if (current_function_profile)
4265 #ifdef PROFILE_HOOK
4266 PROFILE_HOOK (current_function_funcdef_no);
4267 #endif
4270 /* After the display initializations is where the tail-recursion label
4271 should go, if we end up needing one. Ensure we have a NOTE here
4272 since some things (like trampolines) get placed before this. */
4273 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4275 /* Make sure there is a line number after the function entry setup code. */
4276 force_next_line_note ();
4279 /* Undo the effects of init_dummy_function_start. */
4280 void
4281 expand_dummy_function_end (void)
4283 /* End any sequences that failed to be closed due to syntax errors. */
4284 while (in_sequence_p ())
4285 end_sequence ();
4287 /* Outside function body, can't compute type's actual size
4288 until next function's body starts. */
4290 free_after_parsing (cfun);
4291 free_after_compilation (cfun);
4292 cfun = 0;
4295 /* Call DOIT for each hard register used as a return value from
4296 the current function. */
4298 void
4299 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4301 rtx outgoing = current_function_return_rtx;
4303 if (! outgoing)
4304 return;
4306 if (REG_P (outgoing))
4307 (*doit) (outgoing, arg);
4308 else if (GET_CODE (outgoing) == PARALLEL)
4310 int i;
4312 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4314 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4316 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4317 (*doit) (x, arg);
4322 static void
4323 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4325 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4328 void
4329 clobber_return_register (void)
4331 diddle_return_value (do_clobber_return_reg, NULL);
4333 /* In case we do use pseudo to return value, clobber it too. */
4334 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4336 tree decl_result = DECL_RESULT (current_function_decl);
4337 rtx decl_rtl = DECL_RTL (decl_result);
4338 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4340 do_clobber_return_reg (decl_rtl, NULL);
4345 static void
4346 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4348 emit_insn (gen_rtx_USE (VOIDmode, reg));
4351 void
4352 use_return_register (void)
4354 diddle_return_value (do_use_return_reg, NULL);
4357 /* Possibly warn about unused parameters. */
4358 void
4359 do_warn_unused_parameter (tree fn)
4361 tree decl;
4363 for (decl = DECL_ARGUMENTS (fn);
4364 decl; decl = TREE_CHAIN (decl))
4365 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4366 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4367 warning ("%Junused parameter %qD", decl, decl);
4370 static GTY(()) rtx initial_trampoline;
4372 /* Generate RTL for the end of the current function. */
4374 void
4375 expand_function_end (void)
4377 rtx clobber_after;
4379 /* If arg_pointer_save_area was referenced only from a nested
4380 function, we will not have initialized it yet. Do that now. */
4381 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4382 get_arg_pointer_save_area (cfun);
4384 /* If we are doing stack checking and this function makes calls,
4385 do a stack probe at the start of the function to ensure we have enough
4386 space for another stack frame. */
4387 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4389 rtx insn, seq;
4391 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4392 if (CALL_P (insn))
4394 start_sequence ();
4395 probe_stack_range (STACK_CHECK_PROTECT,
4396 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4397 seq = get_insns ();
4398 end_sequence ();
4399 emit_insn_before (seq, tail_recursion_reentry);
4400 break;
4404 /* Possibly warn about unused parameters.
4405 When frontend does unit-at-a-time, the warning is already
4406 issued at finalization time. */
4407 if (warn_unused_parameter
4408 && !lang_hooks.callgraph.expand_function)
4409 do_warn_unused_parameter (current_function_decl);
4411 /* End any sequences that failed to be closed due to syntax errors. */
4412 while (in_sequence_p ())
4413 end_sequence ();
4415 clear_pending_stack_adjust ();
4416 do_pending_stack_adjust ();
4418 /* @@@ This is a kludge. We want to ensure that instructions that
4419 may trap are not moved into the epilogue by scheduling, because
4420 we don't always emit unwind information for the epilogue.
4421 However, not all machine descriptions define a blockage insn, so
4422 emit an ASM_INPUT to act as one. */
4423 if (flag_non_call_exceptions)
4424 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4426 /* Mark the end of the function body.
4427 If control reaches this insn, the function can drop through
4428 without returning a value. */
4429 emit_note (NOTE_INSN_FUNCTION_END);
4431 /* Must mark the last line number note in the function, so that the test
4432 coverage code can avoid counting the last line twice. This just tells
4433 the code to ignore the immediately following line note, since there
4434 already exists a copy of this note somewhere above. This line number
4435 note is still needed for debugging though, so we can't delete it. */
4436 if (flag_test_coverage)
4437 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4439 /* Output a linenumber for the end of the function.
4440 SDB depends on this. */
4441 force_next_line_note ();
4442 emit_line_note (input_location);
4444 /* Before the return label (if any), clobber the return
4445 registers so that they are not propagated live to the rest of
4446 the function. This can only happen with functions that drop
4447 through; if there had been a return statement, there would
4448 have either been a return rtx, or a jump to the return label.
4450 We delay actual code generation after the current_function_value_rtx
4451 is computed. */
4452 clobber_after = get_last_insn ();
4454 /* Output the label for the actual return from the function. */
4455 emit_label (return_label);
4457 /* Let except.c know where it should emit the call to unregister
4458 the function context for sjlj exceptions. */
4459 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4460 sjlj_emit_function_exit_after (get_last_insn ());
4462 /* If we had calls to alloca, and this machine needs
4463 an accurate stack pointer to exit the function,
4464 insert some code to save and restore the stack pointer. */
4465 if (! EXIT_IGNORE_STACK
4466 && current_function_calls_alloca)
4468 rtx tem = 0;
4470 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4471 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4474 /* If scalar return value was computed in a pseudo-reg, or was a named
4475 return value that got dumped to the stack, copy that to the hard
4476 return register. */
4477 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4479 tree decl_result = DECL_RESULT (current_function_decl);
4480 rtx decl_rtl = DECL_RTL (decl_result);
4482 if (REG_P (decl_rtl)
4483 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4484 : DECL_REGISTER (decl_result))
4486 rtx real_decl_rtl = current_function_return_rtx;
4488 /* This should be set in assign_parms. */
4489 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4491 /* If this is a BLKmode structure being returned in registers,
4492 then use the mode computed in expand_return. Note that if
4493 decl_rtl is memory, then its mode may have been changed,
4494 but that current_function_return_rtx has not. */
4495 if (GET_MODE (real_decl_rtl) == BLKmode)
4496 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4498 /* If a non-BLKmode return value should be padded at the least
4499 significant end of the register, shift it left by the appropriate
4500 amount. BLKmode results are handled using the group load/store
4501 machinery. */
4502 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4503 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4505 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4506 REGNO (real_decl_rtl)),
4507 decl_rtl);
4508 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4510 /* If a named return value dumped decl_return to memory, then
4511 we may need to re-do the PROMOTE_MODE signed/unsigned
4512 extension. */
4513 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4515 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4517 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4518 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4519 &unsignedp, 1);
4521 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4523 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4525 /* If expand_function_start has created a PARALLEL for decl_rtl,
4526 move the result to the real return registers. Otherwise, do
4527 a group load from decl_rtl for a named return. */
4528 if (GET_CODE (decl_rtl) == PARALLEL)
4529 emit_group_move (real_decl_rtl, decl_rtl);
4530 else
4531 emit_group_load (real_decl_rtl, decl_rtl,
4532 TREE_TYPE (decl_result),
4533 int_size_in_bytes (TREE_TYPE (decl_result)));
4535 else
4536 emit_move_insn (real_decl_rtl, decl_rtl);
4540 /* If returning a structure, arrange to return the address of the value
4541 in a place where debuggers expect to find it.
4543 If returning a structure PCC style,
4544 the caller also depends on this value.
4545 And current_function_returns_pcc_struct is not necessarily set. */
4546 if (current_function_returns_struct
4547 || current_function_returns_pcc_struct)
4549 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4550 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4551 rtx outgoing;
4553 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4554 type = TREE_TYPE (type);
4555 else
4556 value_address = XEXP (value_address, 0);
4558 #ifdef FUNCTION_OUTGOING_VALUE
4559 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4560 current_function_decl);
4561 #else
4562 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4563 current_function_decl);
4564 #endif
4566 /* Mark this as a function return value so integrate will delete the
4567 assignment and USE below when inlining this function. */
4568 REG_FUNCTION_VALUE_P (outgoing) = 1;
4570 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4571 value_address = convert_memory_address (GET_MODE (outgoing),
4572 value_address);
4574 emit_move_insn (outgoing, value_address);
4576 /* Show return register used to hold result (in this case the address
4577 of the result. */
4578 current_function_return_rtx = outgoing;
4581 /* If this is an implementation of throw, do what's necessary to
4582 communicate between __builtin_eh_return and the epilogue. */
4583 expand_eh_return ();
4585 /* Emit the actual code to clobber return register. */
4587 rtx seq;
4589 start_sequence ();
4590 clobber_return_register ();
4591 expand_naked_return ();
4592 seq = get_insns ();
4593 end_sequence ();
4595 emit_insn_after (seq, clobber_after);
4598 /* Output the label for the naked return from the function. */
4599 emit_label (naked_return_label);
4601 /* ??? This should no longer be necessary since stupid is no longer with
4602 us, but there are some parts of the compiler (eg reload_combine, and
4603 sh mach_dep_reorg) that still try and compute their own lifetime info
4604 instead of using the general framework. */
4605 use_return_register ();
4609 get_arg_pointer_save_area (struct function *f)
4611 rtx ret = f->x_arg_pointer_save_area;
4613 if (! ret)
4615 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4616 f->x_arg_pointer_save_area = ret;
4619 if (f == cfun && ! f->arg_pointer_save_area_init)
4621 rtx seq;
4623 /* Save the arg pointer at the beginning of the function. The
4624 generated stack slot may not be a valid memory address, so we
4625 have to check it and fix it if necessary. */
4626 start_sequence ();
4627 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4628 seq = get_insns ();
4629 end_sequence ();
4631 push_topmost_sequence ();
4632 emit_insn_after (seq, entry_of_function ());
4633 pop_topmost_sequence ();
4636 return ret;
4639 /* Extend a vector that records the INSN_UIDs of INSNS
4640 (a list of one or more insns). */
4642 static void
4643 record_insns (rtx insns, varray_type *vecp)
4645 int i, len;
4646 rtx tmp;
4648 tmp = insns;
4649 len = 0;
4650 while (tmp != NULL_RTX)
4652 len++;
4653 tmp = NEXT_INSN (tmp);
4656 i = VARRAY_SIZE (*vecp);
4657 VARRAY_GROW (*vecp, i + len);
4658 tmp = insns;
4659 while (tmp != NULL_RTX)
4661 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4662 i++;
4663 tmp = NEXT_INSN (tmp);
4667 /* Set the locator of the insn chain starting at INSN to LOC. */
4668 static void
4669 set_insn_locators (rtx insn, int loc)
4671 while (insn != NULL_RTX)
4673 if (INSN_P (insn))
4674 INSN_LOCATOR (insn) = loc;
4675 insn = NEXT_INSN (insn);
4679 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4680 be running after reorg, SEQUENCE rtl is possible. */
4682 static int
4683 contains (rtx insn, varray_type vec)
4685 int i, j;
4687 if (NONJUMP_INSN_P (insn)
4688 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4690 int count = 0;
4691 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4692 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4693 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4694 count++;
4695 return count;
4697 else
4699 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4700 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4701 return 1;
4703 return 0;
4707 prologue_epilogue_contains (rtx insn)
4709 if (contains (insn, prologue))
4710 return 1;
4711 if (contains (insn, epilogue))
4712 return 1;
4713 return 0;
4717 sibcall_epilogue_contains (rtx insn)
4719 if (sibcall_epilogue)
4720 return contains (insn, sibcall_epilogue);
4721 return 0;
4724 #ifdef HAVE_return
4725 /* Insert gen_return at the end of block BB. This also means updating
4726 block_for_insn appropriately. */
4728 static void
4729 emit_return_into_block (basic_block bb, rtx line_note)
4731 emit_jump_insn_after (gen_return (), BB_END (bb));
4732 if (line_note)
4733 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4735 #endif /* HAVE_return */
4737 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4739 /* These functions convert the epilogue into a variant that does not modify the
4740 stack pointer. This is used in cases where a function returns an object
4741 whose size is not known until it is computed. The called function leaves the
4742 object on the stack, leaves the stack depressed, and returns a pointer to
4743 the object.
4745 What we need to do is track all modifications and references to the stack
4746 pointer, deleting the modifications and changing the references to point to
4747 the location the stack pointer would have pointed to had the modifications
4748 taken place.
4750 These functions need to be portable so we need to make as few assumptions
4751 about the epilogue as we can. However, the epilogue basically contains
4752 three things: instructions to reset the stack pointer, instructions to
4753 reload registers, possibly including the frame pointer, and an
4754 instruction to return to the caller.
4756 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4757 We also make no attempt to validate the insns we make since if they are
4758 invalid, we probably can't do anything valid. The intent is that these
4759 routines get "smarter" as more and more machines start to use them and
4760 they try operating on different epilogues.
4762 We use the following structure to track what the part of the epilogue that
4763 we've already processed has done. We keep two copies of the SP equivalence,
4764 one for use during the insn we are processing and one for use in the next
4765 insn. The difference is because one part of a PARALLEL may adjust SP
4766 and the other may use it. */
4768 struct epi_info
4770 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4771 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4772 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4773 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4774 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4775 should be set to once we no longer need
4776 its value. */
4777 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4778 for registers. */
4781 static void handle_epilogue_set (rtx, struct epi_info *);
4782 static void update_epilogue_consts (rtx, rtx, void *);
4783 static void emit_equiv_load (struct epi_info *);
4785 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4786 no modifications to the stack pointer. Return the new list of insns. */
4788 static rtx
4789 keep_stack_depressed (rtx insns)
4791 int j;
4792 struct epi_info info;
4793 rtx insn, next;
4795 /* If the epilogue is just a single instruction, it must be OK as is. */
4796 if (NEXT_INSN (insns) == NULL_RTX)
4797 return insns;
4799 /* Otherwise, start a sequence, initialize the information we have, and
4800 process all the insns we were given. */
4801 start_sequence ();
4803 info.sp_equiv_reg = stack_pointer_rtx;
4804 info.sp_offset = 0;
4805 info.equiv_reg_src = 0;
4807 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4808 info.const_equiv[j] = 0;
4810 insn = insns;
4811 next = NULL_RTX;
4812 while (insn != NULL_RTX)
4814 next = NEXT_INSN (insn);
4816 if (!INSN_P (insn))
4818 add_insn (insn);
4819 insn = next;
4820 continue;
4823 /* If this insn references the register that SP is equivalent to and
4824 we have a pending load to that register, we must force out the load
4825 first and then indicate we no longer know what SP's equivalent is. */
4826 if (info.equiv_reg_src != 0
4827 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4829 emit_equiv_load (&info);
4830 info.sp_equiv_reg = 0;
4833 info.new_sp_equiv_reg = info.sp_equiv_reg;
4834 info.new_sp_offset = info.sp_offset;
4836 /* If this is a (RETURN) and the return address is on the stack,
4837 update the address and change to an indirect jump. */
4838 if (GET_CODE (PATTERN (insn)) == RETURN
4839 || (GET_CODE (PATTERN (insn)) == PARALLEL
4840 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4842 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4843 rtx base = 0;
4844 HOST_WIDE_INT offset = 0;
4845 rtx jump_insn, jump_set;
4847 /* If the return address is in a register, we can emit the insn
4848 unchanged. Otherwise, it must be a MEM and we see what the
4849 base register and offset are. In any case, we have to emit any
4850 pending load to the equivalent reg of SP, if any. */
4851 if (REG_P (retaddr))
4853 emit_equiv_load (&info);
4854 add_insn (insn);
4855 insn = next;
4856 continue;
4858 else
4860 rtx ret_ptr;
4861 gcc_assert (MEM_P (retaddr));
4863 ret_ptr = XEXP (retaddr, 0);
4865 if (REG_P (ret_ptr))
4867 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4868 offset = 0;
4870 else
4872 gcc_assert (GET_CODE (ret_ptr) == PLUS
4873 && REG_P (XEXP (ret_ptr, 0))
4874 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4875 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4876 offset = INTVAL (XEXP (ret_ptr, 1));
4880 /* If the base of the location containing the return pointer
4881 is SP, we must update it with the replacement address. Otherwise,
4882 just build the necessary MEM. */
4883 retaddr = plus_constant (base, offset);
4884 if (base == stack_pointer_rtx)
4885 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4886 plus_constant (info.sp_equiv_reg,
4887 info.sp_offset));
4889 retaddr = gen_rtx_MEM (Pmode, retaddr);
4891 /* If there is a pending load to the equivalent register for SP
4892 and we reference that register, we must load our address into
4893 a scratch register and then do that load. */
4894 if (info.equiv_reg_src
4895 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4897 unsigned int regno;
4898 rtx reg;
4900 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4901 if (HARD_REGNO_MODE_OK (regno, Pmode)
4902 && !fixed_regs[regno]
4903 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4904 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4905 regno)
4906 && !refers_to_regno_p (regno,
4907 regno + hard_regno_nregs[regno]
4908 [Pmode],
4909 info.equiv_reg_src, NULL)
4910 && info.const_equiv[regno] == 0)
4911 break;
4913 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4915 reg = gen_rtx_REG (Pmode, regno);
4916 emit_move_insn (reg, retaddr);
4917 retaddr = reg;
4920 emit_equiv_load (&info);
4921 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4923 /* Show the SET in the above insn is a RETURN. */
4924 jump_set = single_set (jump_insn);
4925 gcc_assert (jump_set);
4926 SET_IS_RETURN_P (jump_set) = 1;
4929 /* If SP is not mentioned in the pattern and its equivalent register, if
4930 any, is not modified, just emit it. Otherwise, if neither is set,
4931 replace the reference to SP and emit the insn. If none of those are
4932 true, handle each SET individually. */
4933 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4934 && (info.sp_equiv_reg == stack_pointer_rtx
4935 || !reg_set_p (info.sp_equiv_reg, insn)))
4936 add_insn (insn);
4937 else if (! reg_set_p (stack_pointer_rtx, insn)
4938 && (info.sp_equiv_reg == stack_pointer_rtx
4939 || !reg_set_p (info.sp_equiv_reg, insn)))
4941 int changed;
4943 changed = validate_replace_rtx (stack_pointer_rtx,
4944 plus_constant (info.sp_equiv_reg,
4945 info.sp_offset),
4946 insn);
4947 gcc_assert (changed);
4949 add_insn (insn);
4951 else if (GET_CODE (PATTERN (insn)) == SET)
4952 handle_epilogue_set (PATTERN (insn), &info);
4953 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4955 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4956 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4957 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4959 else
4960 add_insn (insn);
4962 info.sp_equiv_reg = info.new_sp_equiv_reg;
4963 info.sp_offset = info.new_sp_offset;
4965 /* Now update any constants this insn sets. */
4966 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4967 insn = next;
4970 insns = get_insns ();
4971 end_sequence ();
4972 return insns;
4975 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4976 structure that contains information about what we've seen so far. We
4977 process this SET by either updating that data or by emitting one or
4978 more insns. */
4980 static void
4981 handle_epilogue_set (rtx set, struct epi_info *p)
4983 /* First handle the case where we are setting SP. Record what it is being
4984 set from. If unknown, abort. */
4985 if (reg_set_p (stack_pointer_rtx, set))
4987 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4989 if (GET_CODE (SET_SRC (set)) == PLUS)
4991 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4992 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4993 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4994 else
4996 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4997 && (REGNO (XEXP (SET_SRC (set), 1))
4998 < FIRST_PSEUDO_REGISTER)
4999 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5000 p->new_sp_offset
5001 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5004 else
5005 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
5007 /* If we are adjusting SP, we adjust from the old data. */
5008 if (p->new_sp_equiv_reg == stack_pointer_rtx)
5010 p->new_sp_equiv_reg = p->sp_equiv_reg;
5011 p->new_sp_offset += p->sp_offset;
5014 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
5016 return;
5019 /* Next handle the case where we are setting SP's equivalent register.
5020 If we already have a value to set it to, abort. We could update, but
5021 there seems little point in handling that case. Note that we have
5022 to allow for the case where we are setting the register set in
5023 the previous part of a PARALLEL inside a single insn. But use the
5024 old offset for any updates within this insn. We must allow for the case
5025 where the register is being set in a different (usually wider) mode than
5026 Pmode). */
5027 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
5029 gcc_assert (!p->equiv_reg_src
5030 && REG_P (p->new_sp_equiv_reg)
5031 && REG_P (SET_DEST (set))
5032 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
5033 <= BITS_PER_WORD)
5034 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
5035 p->equiv_reg_src
5036 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5037 plus_constant (p->sp_equiv_reg,
5038 p->sp_offset));
5041 /* Otherwise, replace any references to SP in the insn to its new value
5042 and emit the insn. */
5043 else
5045 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5046 plus_constant (p->sp_equiv_reg,
5047 p->sp_offset));
5048 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5049 plus_constant (p->sp_equiv_reg,
5050 p->sp_offset));
5051 emit_insn (set);
5055 /* Update the tracking information for registers set to constants. */
5057 static void
5058 update_epilogue_consts (rtx dest, rtx x, void *data)
5060 struct epi_info *p = (struct epi_info *) data;
5061 rtx new;
5063 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5064 return;
5066 /* If we are either clobbering a register or doing a partial set,
5067 show we don't know the value. */
5068 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5069 p->const_equiv[REGNO (dest)] = 0;
5071 /* If we are setting it to a constant, record that constant. */
5072 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5073 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5075 /* If this is a binary operation between a register we have been tracking
5076 and a constant, see if we can compute a new constant value. */
5077 else if (ARITHMETIC_P (SET_SRC (x))
5078 && REG_P (XEXP (SET_SRC (x), 0))
5079 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5080 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5081 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5082 && 0 != (new = simplify_binary_operation
5083 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5084 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5085 XEXP (SET_SRC (x), 1)))
5086 && GET_CODE (new) == CONST_INT)
5087 p->const_equiv[REGNO (dest)] = new;
5089 /* Otherwise, we can't do anything with this value. */
5090 else
5091 p->const_equiv[REGNO (dest)] = 0;
5094 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5096 static void
5097 emit_equiv_load (struct epi_info *p)
5099 if (p->equiv_reg_src != 0)
5101 rtx dest = p->sp_equiv_reg;
5103 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5104 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5105 REGNO (p->sp_equiv_reg));
5107 emit_move_insn (dest, p->equiv_reg_src);
5108 p->equiv_reg_src = 0;
5111 #endif
5113 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5114 this into place with notes indicating where the prologue ends and where
5115 the epilogue begins. Update the basic block information when possible. */
5117 void
5118 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5120 int inserted = 0;
5121 edge e;
5122 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5123 rtx seq;
5124 #endif
5125 #ifdef HAVE_prologue
5126 rtx prologue_end = NULL_RTX;
5127 #endif
5128 #if defined (HAVE_epilogue) || defined(HAVE_return)
5129 rtx epilogue_end = NULL_RTX;
5130 #endif
5131 edge_iterator ei;
5133 #ifdef HAVE_prologue
5134 if (HAVE_prologue)
5136 start_sequence ();
5137 seq = gen_prologue ();
5138 emit_insn (seq);
5140 /* Retain a map of the prologue insns. */
5141 record_insns (seq, &prologue);
5142 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5144 seq = get_insns ();
5145 end_sequence ();
5146 set_insn_locators (seq, prologue_locator);
5148 /* Can't deal with multiple successors of the entry block
5149 at the moment. Function should always have at least one
5150 entry point. */
5151 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
5153 insert_insn_on_edge (seq, EDGE_SUCC (ENTRY_BLOCK_PTR, 0));
5154 inserted = 1;
5156 #endif
5158 /* If the exit block has no non-fake predecessors, we don't need
5159 an epilogue. */
5160 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5161 if ((e->flags & EDGE_FAKE) == 0)
5162 break;
5163 if (e == NULL)
5164 goto epilogue_done;
5166 #ifdef HAVE_return
5167 if (optimize && HAVE_return)
5169 /* If we're allowed to generate a simple return instruction,
5170 then by definition we don't need a full epilogue. Examine
5171 the block that falls through to EXIT. If it does not
5172 contain any code, examine its predecessors and try to
5173 emit (conditional) return instructions. */
5175 basic_block last;
5176 rtx label;
5178 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5179 if (e->flags & EDGE_FALLTHRU)
5180 break;
5181 if (e == NULL)
5182 goto epilogue_done;
5183 last = e->src;
5185 /* Verify that there are no active instructions in the last block. */
5186 label = BB_END (last);
5187 while (label && !LABEL_P (label))
5189 if (active_insn_p (label))
5190 break;
5191 label = PREV_INSN (label);
5194 if (BB_HEAD (last) == label && LABEL_P (label))
5196 edge_iterator ei2;
5197 rtx epilogue_line_note = NULL_RTX;
5199 /* Locate the line number associated with the closing brace,
5200 if we can find one. */
5201 for (seq = get_last_insn ();
5202 seq && ! active_insn_p (seq);
5203 seq = PREV_INSN (seq))
5204 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5206 epilogue_line_note = seq;
5207 break;
5210 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5212 basic_block bb = e->src;
5213 rtx jump;
5215 if (bb == ENTRY_BLOCK_PTR)
5217 ei_next (&ei2);
5218 continue;
5221 jump = BB_END (bb);
5222 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5224 ei_next (&ei2);
5225 continue;
5228 /* If we have an unconditional jump, we can replace that
5229 with a simple return instruction. */
5230 if (simplejump_p (jump))
5232 emit_return_into_block (bb, epilogue_line_note);
5233 delete_insn (jump);
5236 /* If we have a conditional jump, we can try to replace
5237 that with a conditional return instruction. */
5238 else if (condjump_p (jump))
5240 if (! redirect_jump (jump, 0, 0))
5242 ei_next (&ei2);
5243 continue;
5246 /* If this block has only one successor, it both jumps
5247 and falls through to the fallthru block, so we can't
5248 delete the edge. */
5249 if (EDGE_COUNT (bb->succs) == 1)
5251 ei_next (&ei2);
5252 continue;
5255 else
5257 ei_next (&ei2);
5258 continue;
5261 /* Fix up the CFG for the successful change we just made. */
5262 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5265 /* Emit a return insn for the exit fallthru block. Whether
5266 this is still reachable will be determined later. */
5268 emit_barrier_after (BB_END (last));
5269 emit_return_into_block (last, epilogue_line_note);
5270 epilogue_end = BB_END (last);
5271 EDGE_SUCC (last, 0)->flags &= ~EDGE_FALLTHRU;
5272 goto epilogue_done;
5275 #endif
5276 /* Find the edge that falls through to EXIT. Other edges may exist
5277 due to RETURN instructions, but those don't need epilogues.
5278 There really shouldn't be a mixture -- either all should have
5279 been converted or none, however... */
5281 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5282 if (e->flags & EDGE_FALLTHRU)
5283 break;
5284 if (e == NULL)
5285 goto epilogue_done;
5287 #ifdef HAVE_epilogue
5288 if (HAVE_epilogue)
5290 start_sequence ();
5291 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5293 seq = gen_epilogue ();
5295 #ifdef INCOMING_RETURN_ADDR_RTX
5296 /* If this function returns with the stack depressed and we can support
5297 it, massage the epilogue to actually do that. */
5298 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5299 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5300 seq = keep_stack_depressed (seq);
5301 #endif
5303 emit_jump_insn (seq);
5305 /* Retain a map of the epilogue insns. */
5306 record_insns (seq, &epilogue);
5307 set_insn_locators (seq, epilogue_locator);
5309 seq = get_insns ();
5310 end_sequence ();
5312 insert_insn_on_edge (seq, e);
5313 inserted = 1;
5315 else
5316 #endif
5318 basic_block cur_bb;
5320 if (! next_active_insn (BB_END (e->src)))
5321 goto epilogue_done;
5322 /* We have a fall-through edge to the exit block, the source is not
5323 at the end of the function, and there will be an assembler epilogue
5324 at the end of the function.
5325 We can't use force_nonfallthru here, because that would try to
5326 use return. Inserting a jump 'by hand' is extremely messy, so
5327 we take advantage of cfg_layout_finalize using
5328 fixup_fallthru_exit_predecessor. */
5329 cfg_layout_initialize (0);
5330 FOR_EACH_BB (cur_bb)
5331 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5332 cur_bb->rbi->next = cur_bb->next_bb;
5333 cfg_layout_finalize ();
5335 epilogue_done:
5337 if (inserted)
5338 commit_edge_insertions ();
5340 #ifdef HAVE_sibcall_epilogue
5341 /* Emit sibling epilogues before any sibling call sites. */
5342 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5344 basic_block bb = e->src;
5345 rtx insn = BB_END (bb);
5346 rtx i;
5347 rtx newinsn;
5349 if (!CALL_P (insn)
5350 || ! SIBLING_CALL_P (insn))
5352 ei_next (&ei);
5353 continue;
5356 start_sequence ();
5357 emit_insn (gen_sibcall_epilogue ());
5358 seq = get_insns ();
5359 end_sequence ();
5361 /* Retain a map of the epilogue insns. Used in life analysis to
5362 avoid getting rid of sibcall epilogue insns. Do this before we
5363 actually emit the sequence. */
5364 record_insns (seq, &sibcall_epilogue);
5365 set_insn_locators (seq, epilogue_locator);
5367 i = PREV_INSN (insn);
5368 newinsn = emit_insn_before (seq, insn);
5369 ei_next (&ei);
5371 #endif
5373 #ifdef HAVE_prologue
5374 /* This is probably all useless now that we use locators. */
5375 if (prologue_end)
5377 rtx insn, prev;
5379 /* GDB handles `break f' by setting a breakpoint on the first
5380 line note after the prologue. Which means (1) that if
5381 there are line number notes before where we inserted the
5382 prologue we should move them, and (2) we should generate a
5383 note before the end of the first basic block, if there isn't
5384 one already there.
5386 ??? This behavior is completely broken when dealing with
5387 multiple entry functions. We simply place the note always
5388 into first basic block and let alternate entry points
5389 to be missed.
5392 for (insn = prologue_end; insn; insn = prev)
5394 prev = PREV_INSN (insn);
5395 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5397 /* Note that we cannot reorder the first insn in the
5398 chain, since rest_of_compilation relies on that
5399 remaining constant. */
5400 if (prev == NULL)
5401 break;
5402 reorder_insns (insn, insn, prologue_end);
5406 /* Find the last line number note in the first block. */
5407 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5408 insn != prologue_end && insn;
5409 insn = PREV_INSN (insn))
5410 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5411 break;
5413 /* If we didn't find one, make a copy of the first line number
5414 we run across. */
5415 if (! insn)
5417 for (insn = next_active_insn (prologue_end);
5418 insn;
5419 insn = PREV_INSN (insn))
5420 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5422 emit_note_copy_after (insn, prologue_end);
5423 break;
5427 #endif
5428 #ifdef HAVE_epilogue
5429 if (epilogue_end)
5431 rtx insn, next;
5433 /* Similarly, move any line notes that appear after the epilogue.
5434 There is no need, however, to be quite so anal about the existence
5435 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5436 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5437 info generation. */
5438 for (insn = epilogue_end; insn; insn = next)
5440 next = NEXT_INSN (insn);
5441 if (NOTE_P (insn)
5442 && (NOTE_LINE_NUMBER (insn) > 0
5443 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5444 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5445 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5448 #endif
5451 /* Reposition the prologue-end and epilogue-begin notes after instruction
5452 scheduling and delayed branch scheduling. */
5454 void
5455 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5457 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5458 rtx insn, last, note;
5459 int len;
5461 if ((len = VARRAY_SIZE (prologue)) > 0)
5463 last = 0, note = 0;
5465 /* Scan from the beginning until we reach the last prologue insn.
5466 We apparently can't depend on basic_block_{head,end} after
5467 reorg has run. */
5468 for (insn = f; insn; insn = NEXT_INSN (insn))
5470 if (NOTE_P (insn))
5472 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5473 note = insn;
5475 else if (contains (insn, prologue))
5477 last = insn;
5478 if (--len == 0)
5479 break;
5483 if (last)
5485 /* Find the prologue-end note if we haven't already, and
5486 move it to just after the last prologue insn. */
5487 if (note == 0)
5489 for (note = last; (note = NEXT_INSN (note));)
5490 if (NOTE_P (note)
5491 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5492 break;
5495 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5496 if (LABEL_P (last))
5497 last = NEXT_INSN (last);
5498 reorder_insns (note, note, last);
5502 if ((len = VARRAY_SIZE (epilogue)) > 0)
5504 last = 0, note = 0;
5506 /* Scan from the end until we reach the first epilogue insn.
5507 We apparently can't depend on basic_block_{head,end} after
5508 reorg has run. */
5509 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5511 if (NOTE_P (insn))
5513 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5514 note = insn;
5516 else if (contains (insn, epilogue))
5518 last = insn;
5519 if (--len == 0)
5520 break;
5524 if (last)
5526 /* Find the epilogue-begin note if we haven't already, and
5527 move it to just before the first epilogue insn. */
5528 if (note == 0)
5530 for (note = insn; (note = PREV_INSN (note));)
5531 if (NOTE_P (note)
5532 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5533 break;
5536 if (PREV_INSN (last) != note)
5537 reorder_insns (note, note, PREV_INSN (last));
5540 #endif /* HAVE_prologue or HAVE_epilogue */
5543 /* Called once, at initialization, to initialize function.c. */
5545 void
5546 init_function_once (void)
5548 VARRAY_INT_INIT (prologue, 0, "prologue");
5549 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5550 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5553 /* Resets insn_block_boundaries array. */
5555 void
5556 reset_block_changes (void)
5558 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5559 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5562 /* Record the boundary for BLOCK. */
5563 void
5564 record_block_change (tree block)
5566 int i, n;
5567 tree last_block;
5569 if (!block)
5570 return;
5572 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5573 VARRAY_POP (cfun->ib_boundaries_block);
5574 n = get_max_uid ();
5575 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5576 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5578 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5581 /* Finishes record of boundaries. */
5582 void finalize_block_changes (void)
5584 record_block_change (DECL_INITIAL (current_function_decl));
5587 /* For INSN return the BLOCK it belongs to. */
5588 void
5589 check_block_change (rtx insn, tree *block)
5591 unsigned uid = INSN_UID (insn);
5593 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5594 return;
5596 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5599 /* Releases the ib_boundaries_block records. */
5600 void
5601 free_block_changes (void)
5603 cfun->ib_boundaries_block = NULL;
5606 /* Returns the name of the current function. */
5607 const char *
5608 current_function_name (void)
5610 return lang_hooks.decl_printable_name (cfun->decl, 2);
5613 #include "gt-function.h"