2005-01-22 Thomas Koenig <Thomas.Koenig@online.de>
[official-gcc.git] / gcc / expr.c
blobcc725e4d79ed631ddfe1099d06772e4d97a74b68
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
62 #ifdef PUSH_ROUNDING
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
67 #endif
68 #endif
70 #endif
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
75 #else
76 #define STACK_PUSH_CODE PRE_INC
77 #endif
78 #endif
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
87 int cse_not_expected;
89 /* This structure is used by move_by_pieces to describe the move to
90 be performed. */
91 struct move_by_pieces
93 rtx to;
94 rtx to_addr;
95 int autinc_to;
96 int explicit_inc_to;
97 rtx from;
98 rtx from_addr;
99 int autinc_from;
100 int explicit_inc_from;
101 unsigned HOST_WIDE_INT len;
102 HOST_WIDE_INT offset;
103 int reverse;
106 /* This structure is used by store_by_pieces to describe the clear to
107 be performed. */
109 struct store_by_pieces
111 rtx to;
112 rtx to_addr;
113 int autinc_to;
114 int explicit_inc_to;
115 unsigned HOST_WIDE_INT len;
116 HOST_WIDE_INT offset;
117 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
118 void *constfundata;
119 int reverse;
122 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
123 unsigned int,
124 unsigned int);
125 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
126 struct move_by_pieces *);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
129 static rtx emit_block_move_via_libcall (rtx, rtx, rtx);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces *);
137 static bool clear_storage_via_clrmem (rtx, rtx, unsigned);
138 static rtx clear_storage_via_libcall (rtx, rtx);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, int);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, int);
149 static unsigned HOST_WIDE_INT highest_pow2_factor (tree);
150 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
152 static int is_aligning_offset (tree, tree);
153 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
154 enum expand_modifier);
155 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
156 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
157 #ifdef PUSH_ROUNDING
158 static void emit_single_push_insn (enum machine_mode, rtx, tree);
159 #endif
160 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
161 static rtx const_vector_from_tree (tree);
162 static void write_complex_part (rtx, rtx, bool);
164 /* Record for each mode whether we can move a register directly to or
165 from an object of that mode in memory. If we can't, we won't try
166 to use that mode directly when accessing a field of that mode. */
168 static char direct_load[NUM_MACHINE_MODES];
169 static char direct_store[NUM_MACHINE_MODES];
171 /* Record for each mode whether we can float-extend from memory. */
173 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO)
181 #endif
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO)
189 #endif
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero, or
193 to "memcpy" storage when the source is a constant string. */
194 #ifndef STORE_BY_PIECES_P
195 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
196 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
197 < (unsigned int) MOVE_RATIO)
198 #endif
200 /* This array records the insn_code of insns to perform block moves. */
201 enum insn_code movmem_optab[NUM_MACHINE_MODES];
203 /* This array records the insn_code of insns to perform block clears. */
204 enum insn_code clrmem_optab[NUM_MACHINE_MODES];
206 /* These arrays record the insn_code of two different kinds of insns
207 to perform block compares. */
208 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
209 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
211 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
213 #ifndef SLOW_UNALIGNED_ACCESS
214 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
215 #endif
217 /* This is run once per compilation to set up which modes can be used
218 directly in memory and to initialize the block move optab. */
220 void
221 init_expr_once (void)
223 rtx insn, pat;
224 enum machine_mode mode;
225 int num_clobbers;
226 rtx mem, mem1;
227 rtx reg;
229 /* Try indexing by frame ptr and try by stack ptr.
230 It is known that on the Convex the stack ptr isn't a valid index.
231 With luck, one or the other is valid on any machine. */
232 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
233 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
235 /* A scratch register we can modify in-place below to avoid
236 useless RTL allocations. */
237 reg = gen_rtx_REG (VOIDmode, -1);
239 insn = rtx_alloc (INSN);
240 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
241 PATTERN (insn) = pat;
243 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
244 mode = (enum machine_mode) ((int) mode + 1))
246 int regno;
248 direct_load[(int) mode] = direct_store[(int) mode] = 0;
249 PUT_MODE (mem, mode);
250 PUT_MODE (mem1, mode);
251 PUT_MODE (reg, mode);
253 /* See if there is some register that can be used in this mode and
254 directly loaded or stored from memory. */
256 if (mode != VOIDmode && mode != BLKmode)
257 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
258 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
259 regno++)
261 if (! HARD_REGNO_MODE_OK (regno, mode))
262 continue;
264 REGNO (reg) = regno;
266 SET_SRC (pat) = mem;
267 SET_DEST (pat) = reg;
268 if (recog (pat, insn, &num_clobbers) >= 0)
269 direct_load[(int) mode] = 1;
271 SET_SRC (pat) = mem1;
272 SET_DEST (pat) = reg;
273 if (recog (pat, insn, &num_clobbers) >= 0)
274 direct_load[(int) mode] = 1;
276 SET_SRC (pat) = reg;
277 SET_DEST (pat) = mem;
278 if (recog (pat, insn, &num_clobbers) >= 0)
279 direct_store[(int) mode] = 1;
281 SET_SRC (pat) = reg;
282 SET_DEST (pat) = mem1;
283 if (recog (pat, insn, &num_clobbers) >= 0)
284 direct_store[(int) mode] = 1;
288 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
290 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
291 mode = GET_MODE_WIDER_MODE (mode))
293 enum machine_mode srcmode;
294 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
295 srcmode = GET_MODE_WIDER_MODE (srcmode))
297 enum insn_code ic;
299 ic = can_extend_p (mode, srcmode, 0);
300 if (ic == CODE_FOR_nothing)
301 continue;
303 PUT_MODE (mem, srcmode);
305 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
306 float_extend_from_mem[mode][srcmode] = true;
311 /* This is run at the start of compiling a function. */
313 void
314 init_expr (void)
316 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
319 /* Copy data from FROM to TO, where the machine modes are not the same.
320 Both modes may be integer, or both may be floating.
321 UNSIGNEDP should be nonzero if FROM is an unsigned type.
322 This causes zero-extension instead of sign-extension. */
324 void
325 convert_move (rtx to, rtx from, int unsignedp)
327 enum machine_mode to_mode = GET_MODE (to);
328 enum machine_mode from_mode = GET_MODE (from);
329 int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT;
330 int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT;
331 enum insn_code code;
332 rtx libcall;
334 /* rtx code for making an equivalent value. */
335 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
336 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
339 gcc_assert (to_real == from_real);
341 /* If the source and destination are already the same, then there's
342 nothing to do. */
343 if (to == from)
344 return;
346 /* If FROM is a SUBREG that indicates that we have already done at least
347 the required extension, strip it. We don't handle such SUBREGs as
348 TO here. */
350 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
351 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
352 >= GET_MODE_SIZE (to_mode))
353 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
354 from = gen_lowpart (to_mode, from), from_mode = to_mode;
356 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
358 if (to_mode == from_mode
359 || (from_mode == VOIDmode && CONSTANT_P (from)))
361 emit_move_insn (to, from);
362 return;
365 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
367 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
369 if (VECTOR_MODE_P (to_mode))
370 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
371 else
372 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
374 emit_move_insn (to, from);
375 return;
378 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
380 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
381 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
382 return;
385 if (to_real)
387 rtx value, insns;
388 convert_optab tab;
390 gcc_assert (GET_MODE_PRECISION (from_mode)
391 != GET_MODE_PRECISION (to_mode));
393 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
394 tab = sext_optab;
395 else
396 tab = trunc_optab;
398 /* Try converting directly if the insn is supported. */
400 code = tab->handlers[to_mode][from_mode].insn_code;
401 if (code != CODE_FOR_nothing)
403 emit_unop_insn (code, to, from,
404 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
405 return;
408 /* Otherwise use a libcall. */
409 libcall = tab->handlers[to_mode][from_mode].libfunc;
411 /* Is this conversion implemented yet? */
412 gcc_assert (libcall);
414 start_sequence ();
415 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
416 1, from, from_mode);
417 insns = get_insns ();
418 end_sequence ();
419 emit_libcall_block (insns, to, value,
420 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
421 from)
422 : gen_rtx_FLOAT_EXTEND (to_mode, from));
423 return;
426 /* Handle pointer conversion. */ /* SPEE 900220. */
427 /* Targets are expected to provide conversion insns between PxImode and
428 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
429 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
431 enum machine_mode full_mode
432 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
434 gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
435 != CODE_FOR_nothing);
437 if (full_mode != from_mode)
438 from = convert_to_mode (full_mode, from, unsignedp);
439 emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
440 to, from, UNKNOWN);
441 return;
443 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
445 enum machine_mode full_mode
446 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
448 gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
449 != CODE_FOR_nothing);
451 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
452 to, from, UNKNOWN);
453 if (to_mode == full_mode)
454 return;
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
460 /* Now both modes are integers. */
462 /* Handle expanding beyond a word. */
463 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
464 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
466 rtx insns;
467 rtx lowpart;
468 rtx fill_value;
469 rtx lowfrom;
470 int i;
471 enum machine_mode lowpart_mode;
472 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
474 /* Try converting directly if the insn is supported. */
475 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
476 != CODE_FOR_nothing)
478 /* If FROM is a SUBREG, put it into a register. Do this
479 so that we always generate the same set of insns for
480 better cse'ing; if an intermediate assignment occurred,
481 we won't be doing the operation directly on the SUBREG. */
482 if (optimize > 0 && GET_CODE (from) == SUBREG)
483 from = force_reg (from_mode, from);
484 emit_unop_insn (code, to, from, equiv_code);
485 return;
487 /* Next, try converting via full word. */
488 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
489 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
490 != CODE_FOR_nothing))
492 if (REG_P (to))
494 if (reg_overlap_mentioned_p (to, from))
495 from = force_reg (from_mode, from);
496 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
498 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
499 emit_unop_insn (code, to,
500 gen_lowpart (word_mode, to), equiv_code);
501 return;
504 /* No special multiword conversion insn; do it by hand. */
505 start_sequence ();
507 /* Since we will turn this into a no conflict block, we must ensure
508 that the source does not overlap the target. */
510 if (reg_overlap_mentioned_p (to, from))
511 from = force_reg (from_mode, from);
513 /* Get a copy of FROM widened to a word, if necessary. */
514 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
515 lowpart_mode = word_mode;
516 else
517 lowpart_mode = from_mode;
519 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
521 lowpart = gen_lowpart (lowpart_mode, to);
522 emit_move_insn (lowpart, lowfrom);
524 /* Compute the value to put in each remaining word. */
525 if (unsignedp)
526 fill_value = const0_rtx;
527 else
529 #ifdef HAVE_slt
530 if (HAVE_slt
531 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
532 && STORE_FLAG_VALUE == -1)
534 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
535 lowpart_mode, 0);
536 fill_value = gen_reg_rtx (word_mode);
537 emit_insn (gen_slt (fill_value));
539 else
540 #endif
542 fill_value
543 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
544 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
545 NULL_RTX, 0);
546 fill_value = convert_to_mode (word_mode, fill_value, 1);
550 /* Fill the remaining words. */
551 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
553 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
554 rtx subword = operand_subword (to, index, 1, to_mode);
556 gcc_assert (subword);
558 if (fill_value != subword)
559 emit_move_insn (subword, fill_value);
562 insns = get_insns ();
563 end_sequence ();
565 emit_no_conflict_block (insns, to, from, NULL_RTX,
566 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
567 return;
570 /* Truncating multi-word to a word or less. */
571 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
572 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
574 if (!((MEM_P (from)
575 && ! MEM_VOLATILE_P (from)
576 && direct_load[(int) to_mode]
577 && ! mode_dependent_address_p (XEXP (from, 0)))
578 || REG_P (from)
579 || GET_CODE (from) == SUBREG))
580 from = force_reg (from_mode, from);
581 convert_move (to, gen_lowpart (word_mode, from), 0);
582 return;
585 /* Now follow all the conversions between integers
586 no more than a word long. */
588 /* For truncation, usually we can just refer to FROM in a narrower mode. */
589 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
590 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
591 GET_MODE_BITSIZE (from_mode)))
593 if (!((MEM_P (from)
594 && ! MEM_VOLATILE_P (from)
595 && direct_load[(int) to_mode]
596 && ! mode_dependent_address_p (XEXP (from, 0)))
597 || REG_P (from)
598 || GET_CODE (from) == SUBREG))
599 from = force_reg (from_mode, from);
600 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
601 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
602 from = copy_to_reg (from);
603 emit_move_insn (to, gen_lowpart (to_mode, from));
604 return;
607 /* Handle extension. */
608 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
610 /* Convert directly if that works. */
611 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
612 != CODE_FOR_nothing)
614 if (flag_force_mem)
615 from = force_not_mem (from);
617 emit_unop_insn (code, to, from, equiv_code);
618 return;
620 else
622 enum machine_mode intermediate;
623 rtx tmp;
624 tree shift_amount;
626 /* Search for a mode to convert via. */
627 for (intermediate = from_mode; intermediate != VOIDmode;
628 intermediate = GET_MODE_WIDER_MODE (intermediate))
629 if (((can_extend_p (to_mode, intermediate, unsignedp)
630 != CODE_FOR_nothing)
631 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
632 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
633 GET_MODE_BITSIZE (intermediate))))
634 && (can_extend_p (intermediate, from_mode, unsignedp)
635 != CODE_FOR_nothing))
637 convert_move (to, convert_to_mode (intermediate, from,
638 unsignedp), unsignedp);
639 return;
642 /* No suitable intermediate mode.
643 Generate what we need with shifts. */
644 shift_amount = build_int_cst (NULL_TREE,
645 GET_MODE_BITSIZE (to_mode)
646 - GET_MODE_BITSIZE (from_mode));
647 from = gen_lowpart (to_mode, force_reg (from_mode, from));
648 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
649 to, unsignedp);
650 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
651 to, unsignedp);
652 if (tmp != to)
653 emit_move_insn (to, tmp);
654 return;
658 /* Support special truncate insns for certain modes. */
659 if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
661 emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
662 to, from, UNKNOWN);
663 return;
666 /* Handle truncation of volatile memrefs, and so on;
667 the things that couldn't be truncated directly,
668 and for which there was no special instruction.
670 ??? Code above formerly short-circuited this, for most integer
671 mode pairs, with a force_reg in from_mode followed by a recursive
672 call to this routine. Appears always to have been wrong. */
673 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
675 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
676 emit_move_insn (to, temp);
677 return;
680 /* Mode combination is not recognized. */
681 gcc_unreachable ();
684 /* Return an rtx for a value that would result
685 from converting X to mode MODE.
686 Both X and MODE may be floating, or both integer.
687 UNSIGNEDP is nonzero if X is an unsigned value.
688 This can be done by referring to a part of X in place
689 or by copying to a new temporary with conversion. */
692 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
694 return convert_modes (mode, VOIDmode, x, unsignedp);
697 /* Return an rtx for a value that would result
698 from converting X from mode OLDMODE to mode MODE.
699 Both modes may be floating, or both integer.
700 UNSIGNEDP is nonzero if X is an unsigned value.
702 This can be done by referring to a part of X in place
703 or by copying to a new temporary with conversion.
705 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
708 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
710 rtx temp;
712 /* If FROM is a SUBREG that indicates that we have already done at least
713 the required extension, strip it. */
715 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
716 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
717 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
718 x = gen_lowpart (mode, x);
720 if (GET_MODE (x) != VOIDmode)
721 oldmode = GET_MODE (x);
723 if (mode == oldmode)
724 return x;
726 /* There is one case that we must handle specially: If we are converting
727 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
728 we are to interpret the constant as unsigned, gen_lowpart will do
729 the wrong if the constant appears negative. What we want to do is
730 make the high-order word of the constant zero, not all ones. */
732 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
733 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
734 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
736 HOST_WIDE_INT val = INTVAL (x);
738 if (oldmode != VOIDmode
739 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
741 int width = GET_MODE_BITSIZE (oldmode);
743 /* We need to zero extend VAL. */
744 val &= ((HOST_WIDE_INT) 1 << width) - 1;
747 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
750 /* We can do this with a gen_lowpart if both desired and current modes
751 are integer, and this is either a constant integer, a register, or a
752 non-volatile MEM. Except for the constant case where MODE is no
753 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
755 if ((GET_CODE (x) == CONST_INT
756 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
757 || (GET_MODE_CLASS (mode) == MODE_INT
758 && GET_MODE_CLASS (oldmode) == MODE_INT
759 && (GET_CODE (x) == CONST_DOUBLE
760 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
761 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
762 && direct_load[(int) mode])
763 || (REG_P (x)
764 && (! HARD_REGISTER_P (x)
765 || HARD_REGNO_MODE_OK (REGNO (x), mode))
766 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
767 GET_MODE_BITSIZE (GET_MODE (x)))))))))
769 /* ?? If we don't know OLDMODE, we have to assume here that
770 X does not need sign- or zero-extension. This may not be
771 the case, but it's the best we can do. */
772 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
773 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
775 HOST_WIDE_INT val = INTVAL (x);
776 int width = GET_MODE_BITSIZE (oldmode);
778 /* We must sign or zero-extend in this case. Start by
779 zero-extending, then sign extend if we need to. */
780 val &= ((HOST_WIDE_INT) 1 << width) - 1;
781 if (! unsignedp
782 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
783 val |= (HOST_WIDE_INT) (-1) << width;
785 return gen_int_mode (val, mode);
788 return gen_lowpart (mode, x);
791 /* Converting from integer constant into mode is always equivalent to an
792 subreg operation. */
793 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
795 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
796 return simplify_gen_subreg (mode, x, oldmode, 0);
799 temp = gen_reg_rtx (mode);
800 convert_move (temp, x, unsignedp);
801 return temp;
804 /* STORE_MAX_PIECES is the number of bytes at a time that we can
805 store efficiently. Due to internal GCC limitations, this is
806 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
807 for an immediate constant. */
809 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
811 /* Determine whether the LEN bytes can be moved by using several move
812 instructions. Return nonzero if a call to move_by_pieces should
813 succeed. */
816 can_move_by_pieces (unsigned HOST_WIDE_INT len,
817 unsigned int align ATTRIBUTE_UNUSED)
819 return MOVE_BY_PIECES_P (len, align);
822 /* Generate several move instructions to copy LEN bytes from block FROM to
823 block TO. (These are MEM rtx's with BLKmode).
825 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
826 used to push FROM to the stack.
828 ALIGN is maximum stack alignment we can assume.
830 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
831 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
832 stpcpy. */
835 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
836 unsigned int align, int endp)
838 struct move_by_pieces data;
839 rtx to_addr, from_addr = XEXP (from, 0);
840 unsigned int max_size = MOVE_MAX_PIECES + 1;
841 enum machine_mode mode = VOIDmode, tmode;
842 enum insn_code icode;
844 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
846 data.offset = 0;
847 data.from_addr = from_addr;
848 if (to)
850 to_addr = XEXP (to, 0);
851 data.to = to;
852 data.autinc_to
853 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
854 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
855 data.reverse
856 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
858 else
860 to_addr = NULL_RTX;
861 data.to = NULL_RTX;
862 data.autinc_to = 1;
863 #ifdef STACK_GROWS_DOWNWARD
864 data.reverse = 1;
865 #else
866 data.reverse = 0;
867 #endif
869 data.to_addr = to_addr;
870 data.from = from;
871 data.autinc_from
872 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
873 || GET_CODE (from_addr) == POST_INC
874 || GET_CODE (from_addr) == POST_DEC);
876 data.explicit_inc_from = 0;
877 data.explicit_inc_to = 0;
878 if (data.reverse) data.offset = len;
879 data.len = len;
881 /* If copying requires more than two move insns,
882 copy addresses to registers (to make displacements shorter)
883 and use post-increment if available. */
884 if (!(data.autinc_from && data.autinc_to)
885 && move_by_pieces_ninsns (len, align, max_size) > 2)
887 /* Find the mode of the largest move... */
888 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
889 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
890 if (GET_MODE_SIZE (tmode) < max_size)
891 mode = tmode;
893 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
895 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
896 data.autinc_from = 1;
897 data.explicit_inc_from = -1;
899 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
901 data.from_addr = copy_addr_to_reg (from_addr);
902 data.autinc_from = 1;
903 data.explicit_inc_from = 1;
905 if (!data.autinc_from && CONSTANT_P (from_addr))
906 data.from_addr = copy_addr_to_reg (from_addr);
907 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
909 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
910 data.autinc_to = 1;
911 data.explicit_inc_to = -1;
913 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
915 data.to_addr = copy_addr_to_reg (to_addr);
916 data.autinc_to = 1;
917 data.explicit_inc_to = 1;
919 if (!data.autinc_to && CONSTANT_P (to_addr))
920 data.to_addr = copy_addr_to_reg (to_addr);
923 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
924 if (align >= GET_MODE_ALIGNMENT (tmode))
925 align = GET_MODE_ALIGNMENT (tmode);
926 else
928 enum machine_mode xmode;
930 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
931 tmode != VOIDmode;
932 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
933 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
934 || SLOW_UNALIGNED_ACCESS (tmode, align))
935 break;
937 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
940 /* First move what we can in the largest integer mode, then go to
941 successively smaller modes. */
943 while (max_size > 1)
945 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
946 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
947 if (GET_MODE_SIZE (tmode) < max_size)
948 mode = tmode;
950 if (mode == VOIDmode)
951 break;
953 icode = mov_optab->handlers[(int) mode].insn_code;
954 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
955 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
957 max_size = GET_MODE_SIZE (mode);
960 /* The code above should have handled everything. */
961 gcc_assert (!data.len);
963 if (endp)
965 rtx to1;
967 gcc_assert (!data.reverse);
968 if (data.autinc_to)
970 if (endp == 2)
972 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
973 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
974 else
975 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
976 -1));
978 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
979 data.offset);
981 else
983 if (endp == 2)
984 --data.offset;
985 to1 = adjust_address (data.to, QImode, data.offset);
987 return to1;
989 else
990 return data.to;
993 /* Return number of insns required to move L bytes by pieces.
994 ALIGN (in bits) is maximum alignment we can assume. */
996 static unsigned HOST_WIDE_INT
997 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
998 unsigned int max_size)
1000 unsigned HOST_WIDE_INT n_insns = 0;
1001 enum machine_mode tmode;
1003 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1004 if (align >= GET_MODE_ALIGNMENT (tmode))
1005 align = GET_MODE_ALIGNMENT (tmode);
1006 else
1008 enum machine_mode tmode, xmode;
1010 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1011 tmode != VOIDmode;
1012 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1013 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1014 || SLOW_UNALIGNED_ACCESS (tmode, align))
1015 break;
1017 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1020 while (max_size > 1)
1022 enum machine_mode mode = VOIDmode;
1023 enum insn_code icode;
1025 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1026 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1027 if (GET_MODE_SIZE (tmode) < max_size)
1028 mode = tmode;
1030 if (mode == VOIDmode)
1031 break;
1033 icode = mov_optab->handlers[(int) mode].insn_code;
1034 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1035 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1037 max_size = GET_MODE_SIZE (mode);
1040 gcc_assert (!l);
1041 return n_insns;
1044 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1045 with move instructions for mode MODE. GENFUN is the gen_... function
1046 to make a move insn for that mode. DATA has all the other info. */
1048 static void
1049 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1050 struct move_by_pieces *data)
1052 unsigned int size = GET_MODE_SIZE (mode);
1053 rtx to1 = NULL_RTX, from1;
1055 while (data->len >= size)
1057 if (data->reverse)
1058 data->offset -= size;
1060 if (data->to)
1062 if (data->autinc_to)
1063 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1064 data->offset);
1065 else
1066 to1 = adjust_address (data->to, mode, data->offset);
1069 if (data->autinc_from)
1070 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1071 data->offset);
1072 else
1073 from1 = adjust_address (data->from, mode, data->offset);
1075 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1076 emit_insn (gen_add2_insn (data->to_addr,
1077 GEN_INT (-(HOST_WIDE_INT)size)));
1078 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1079 emit_insn (gen_add2_insn (data->from_addr,
1080 GEN_INT (-(HOST_WIDE_INT)size)));
1082 if (data->to)
1083 emit_insn ((*genfun) (to1, from1));
1084 else
1086 #ifdef PUSH_ROUNDING
1087 emit_single_push_insn (mode, from1, NULL);
1088 #else
1089 gcc_unreachable ();
1090 #endif
1093 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1094 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1095 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1096 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1098 if (! data->reverse)
1099 data->offset += size;
1101 data->len -= size;
1105 /* Emit code to move a block Y to a block X. This may be done with
1106 string-move instructions, with multiple scalar move instructions,
1107 or with a library call.
1109 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1110 SIZE is an rtx that says how long they are.
1111 ALIGN is the maximum alignment we can assume they have.
1112 METHOD describes what kind of copy this is, and what mechanisms may be used.
1114 Return the address of the new block, if memcpy is called and returns it,
1115 0 otherwise. */
1118 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1120 bool may_use_call;
1121 rtx retval = 0;
1122 unsigned int align;
1124 switch (method)
1126 case BLOCK_OP_NORMAL:
1127 may_use_call = true;
1128 break;
1130 case BLOCK_OP_CALL_PARM:
1131 may_use_call = block_move_libcall_safe_for_call_parm ();
1133 /* Make inhibit_defer_pop nonzero around the library call
1134 to force it to pop the arguments right away. */
1135 NO_DEFER_POP;
1136 break;
1138 case BLOCK_OP_NO_LIBCALL:
1139 may_use_call = false;
1140 break;
1142 default:
1143 gcc_unreachable ();
1146 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1148 gcc_assert (MEM_P (x));
1149 gcc_assert (MEM_P (y));
1150 gcc_assert (size);
1152 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1153 block copy is more efficient for other large modes, e.g. DCmode. */
1154 x = adjust_address (x, BLKmode, 0);
1155 y = adjust_address (y, BLKmode, 0);
1157 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1158 can be incorrect is coming from __builtin_memcpy. */
1159 if (GET_CODE (size) == CONST_INT)
1161 if (INTVAL (size) == 0)
1162 return 0;
1164 x = shallow_copy_rtx (x);
1165 y = shallow_copy_rtx (y);
1166 set_mem_size (x, size);
1167 set_mem_size (y, size);
1170 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1171 move_by_pieces (x, y, INTVAL (size), align, 0);
1172 else if (emit_block_move_via_movmem (x, y, size, align))
1174 else if (may_use_call)
1175 retval = emit_block_move_via_libcall (x, y, size);
1176 else
1177 emit_block_move_via_loop (x, y, size, align);
1179 if (method == BLOCK_OP_CALL_PARM)
1180 OK_DEFER_POP;
1182 return retval;
1185 /* A subroutine of emit_block_move. Returns true if calling the
1186 block move libcall will not clobber any parameters which may have
1187 already been placed on the stack. */
1189 static bool
1190 block_move_libcall_safe_for_call_parm (void)
1192 /* If arguments are pushed on the stack, then they're safe. */
1193 if (PUSH_ARGS)
1194 return true;
1196 /* If registers go on the stack anyway, any argument is sure to clobber
1197 an outgoing argument. */
1198 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1200 tree fn = emit_block_move_libcall_fn (false);
1201 (void) fn;
1202 if (REG_PARM_STACK_SPACE (fn) != 0)
1203 return false;
1205 #endif
1207 /* If any argument goes in memory, then it might clobber an outgoing
1208 argument. */
1210 CUMULATIVE_ARGS args_so_far;
1211 tree fn, arg;
1213 fn = emit_block_move_libcall_fn (false);
1214 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1216 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1217 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1219 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1220 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1221 if (!tmp || !REG_P (tmp))
1222 return false;
1223 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1224 return false;
1225 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1228 return true;
1231 /* A subroutine of emit_block_move. Expand a movmem pattern;
1232 return true if successful. */
1234 static bool
1235 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1237 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1238 int save_volatile_ok = volatile_ok;
1239 enum machine_mode mode;
1241 /* Since this is a move insn, we don't care about volatility. */
1242 volatile_ok = 1;
1244 /* Try the most limited insn first, because there's no point
1245 including more than one in the machine description unless
1246 the more limited one has some advantage. */
1248 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1249 mode = GET_MODE_WIDER_MODE (mode))
1251 enum insn_code code = movmem_optab[(int) mode];
1252 insn_operand_predicate_fn pred;
1254 if (code != CODE_FOR_nothing
1255 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1256 here because if SIZE is less than the mode mask, as it is
1257 returned by the macro, it will definitely be less than the
1258 actual mode mask. */
1259 && ((GET_CODE (size) == CONST_INT
1260 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1261 <= (GET_MODE_MASK (mode) >> 1)))
1262 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1263 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1264 || (*pred) (x, BLKmode))
1265 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1266 || (*pred) (y, BLKmode))
1267 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1268 || (*pred) (opalign, VOIDmode)))
1270 rtx op2;
1271 rtx last = get_last_insn ();
1272 rtx pat;
1274 op2 = convert_to_mode (mode, size, 1);
1275 pred = insn_data[(int) code].operand[2].predicate;
1276 if (pred != 0 && ! (*pred) (op2, mode))
1277 op2 = copy_to_mode_reg (mode, op2);
1279 /* ??? When called via emit_block_move_for_call, it'd be
1280 nice if there were some way to inform the backend, so
1281 that it doesn't fail the expansion because it thinks
1282 emitting the libcall would be more efficient. */
1284 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1285 if (pat)
1287 emit_insn (pat);
1288 volatile_ok = save_volatile_ok;
1289 return true;
1291 else
1292 delete_insns_since (last);
1296 volatile_ok = save_volatile_ok;
1297 return false;
1300 /* A subroutine of emit_block_move. Expand a call to memcpy.
1301 Return the return value from memcpy, 0 otherwise. */
1303 static rtx
1304 emit_block_move_via_libcall (rtx dst, rtx src, rtx size)
1306 rtx dst_addr, src_addr;
1307 tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1308 enum machine_mode size_mode;
1309 rtx retval;
1311 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1312 pseudos. We can then place those new pseudos into a VAR_DECL and
1313 use them later. */
1315 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1316 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1318 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1319 src_addr = convert_memory_address (ptr_mode, src_addr);
1321 dst_tree = make_tree (ptr_type_node, dst_addr);
1322 src_tree = make_tree (ptr_type_node, src_addr);
1324 size_mode = TYPE_MODE (sizetype);
1326 size = convert_to_mode (size_mode, size, 1);
1327 size = copy_to_mode_reg (size_mode, size);
1329 /* It is incorrect to use the libcall calling conventions to call
1330 memcpy in this context. This could be a user call to memcpy and
1331 the user may wish to examine the return value from memcpy. For
1332 targets where libcalls and normal calls have different conventions
1333 for returning pointers, we could end up generating incorrect code. */
1335 size_tree = make_tree (sizetype, size);
1337 fn = emit_block_move_libcall_fn (true);
1338 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1339 arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1340 arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1342 /* Now we have to build up the CALL_EXPR itself. */
1343 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1344 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1345 call_expr, arg_list, NULL_TREE);
1347 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
1349 return retval;
1352 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1353 for the function we use for block copies. The first time FOR_CALL
1354 is true, we call assemble_external. */
1356 static GTY(()) tree block_move_fn;
1358 void
1359 init_block_move_fn (const char *asmspec)
1361 if (!block_move_fn)
1363 tree args, fn;
1365 fn = get_identifier ("memcpy");
1366 args = build_function_type_list (ptr_type_node, ptr_type_node,
1367 const_ptr_type_node, sizetype,
1368 NULL_TREE);
1370 fn = build_decl (FUNCTION_DECL, fn, args);
1371 DECL_EXTERNAL (fn) = 1;
1372 TREE_PUBLIC (fn) = 1;
1373 DECL_ARTIFICIAL (fn) = 1;
1374 TREE_NOTHROW (fn) = 1;
1376 block_move_fn = fn;
1379 if (asmspec)
1380 set_user_assembler_name (block_move_fn, asmspec);
1383 static tree
1384 emit_block_move_libcall_fn (int for_call)
1386 static bool emitted_extern;
1388 if (!block_move_fn)
1389 init_block_move_fn (NULL);
1391 if (for_call && !emitted_extern)
1393 emitted_extern = true;
1394 make_decl_rtl (block_move_fn);
1395 assemble_external (block_move_fn);
1398 return block_move_fn;
1401 /* A subroutine of emit_block_move. Copy the data via an explicit
1402 loop. This is used only when libcalls are forbidden. */
1403 /* ??? It'd be nice to copy in hunks larger than QImode. */
1405 static void
1406 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1407 unsigned int align ATTRIBUTE_UNUSED)
1409 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1410 enum machine_mode iter_mode;
1412 iter_mode = GET_MODE (size);
1413 if (iter_mode == VOIDmode)
1414 iter_mode = word_mode;
1416 top_label = gen_label_rtx ();
1417 cmp_label = gen_label_rtx ();
1418 iter = gen_reg_rtx (iter_mode);
1420 emit_move_insn (iter, const0_rtx);
1422 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1423 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1424 do_pending_stack_adjust ();
1426 emit_jump (cmp_label);
1427 emit_label (top_label);
1429 tmp = convert_modes (Pmode, iter_mode, iter, true);
1430 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1431 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1432 x = change_address (x, QImode, x_addr);
1433 y = change_address (y, QImode, y_addr);
1435 emit_move_insn (x, y);
1437 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1438 true, OPTAB_LIB_WIDEN);
1439 if (tmp != iter)
1440 emit_move_insn (iter, tmp);
1442 emit_label (cmp_label);
1444 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1445 true, top_label);
1448 /* Copy all or part of a value X into registers starting at REGNO.
1449 The number of registers to be filled is NREGS. */
1451 void
1452 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1454 int i;
1455 #ifdef HAVE_load_multiple
1456 rtx pat;
1457 rtx last;
1458 #endif
1460 if (nregs == 0)
1461 return;
1463 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1464 x = validize_mem (force_const_mem (mode, x));
1466 /* See if the machine can do this with a load multiple insn. */
1467 #ifdef HAVE_load_multiple
1468 if (HAVE_load_multiple)
1470 last = get_last_insn ();
1471 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1472 GEN_INT (nregs));
1473 if (pat)
1475 emit_insn (pat);
1476 return;
1478 else
1479 delete_insns_since (last);
1481 #endif
1483 for (i = 0; i < nregs; i++)
1484 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1485 operand_subword_force (x, i, mode));
1488 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1489 The number of registers to be filled is NREGS. */
1491 void
1492 move_block_from_reg (int regno, rtx x, int nregs)
1494 int i;
1496 if (nregs == 0)
1497 return;
1499 /* See if the machine can do this with a store multiple insn. */
1500 #ifdef HAVE_store_multiple
1501 if (HAVE_store_multiple)
1503 rtx last = get_last_insn ();
1504 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1505 GEN_INT (nregs));
1506 if (pat)
1508 emit_insn (pat);
1509 return;
1511 else
1512 delete_insns_since (last);
1514 #endif
1516 for (i = 0; i < nregs; i++)
1518 rtx tem = operand_subword (x, i, 1, BLKmode);
1520 gcc_assert (tem);
1522 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1526 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1527 ORIG, where ORIG is a non-consecutive group of registers represented by
1528 a PARALLEL. The clone is identical to the original except in that the
1529 original set of registers is replaced by a new set of pseudo registers.
1530 The new set has the same modes as the original set. */
1533 gen_group_rtx (rtx orig)
1535 int i, length;
1536 rtx *tmps;
1538 gcc_assert (GET_CODE (orig) == PARALLEL);
1540 length = XVECLEN (orig, 0);
1541 tmps = alloca (sizeof (rtx) * length);
1543 /* Skip a NULL entry in first slot. */
1544 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1546 if (i)
1547 tmps[0] = 0;
1549 for (; i < length; i++)
1551 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1552 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1554 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1557 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1560 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1561 except that values are placed in TMPS[i], and must later be moved
1562 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1564 static void
1565 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1567 rtx src;
1568 int start, i;
1569 enum machine_mode m = GET_MODE (orig_src);
1571 gcc_assert (GET_CODE (dst) == PARALLEL);
1573 if (m != VOIDmode
1574 && !SCALAR_INT_MODE_P (m)
1575 && !MEM_P (orig_src)
1576 && GET_CODE (orig_src) != CONCAT)
1578 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1579 if (imode == BLKmode)
1580 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1581 else
1582 src = gen_reg_rtx (imode);
1583 if (imode != BLKmode)
1584 src = gen_lowpart (GET_MODE (orig_src), src);
1585 emit_move_insn (src, orig_src);
1586 /* ...and back again. */
1587 if (imode != BLKmode)
1588 src = gen_lowpart (imode, src);
1589 emit_group_load_1 (tmps, dst, src, type, ssize);
1590 return;
1593 /* Check for a NULL entry, used to indicate that the parameter goes
1594 both on the stack and in registers. */
1595 if (XEXP (XVECEXP (dst, 0, 0), 0))
1596 start = 0;
1597 else
1598 start = 1;
1600 /* Process the pieces. */
1601 for (i = start; i < XVECLEN (dst, 0); i++)
1603 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1604 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1605 unsigned int bytelen = GET_MODE_SIZE (mode);
1606 int shift = 0;
1608 /* Handle trailing fragments that run over the size of the struct. */
1609 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1611 /* Arrange to shift the fragment to where it belongs.
1612 extract_bit_field loads to the lsb of the reg. */
1613 if (
1614 #ifdef BLOCK_REG_PADDING
1615 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1616 == (BYTES_BIG_ENDIAN ? upward : downward)
1617 #else
1618 BYTES_BIG_ENDIAN
1619 #endif
1621 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1622 bytelen = ssize - bytepos;
1623 gcc_assert (bytelen > 0);
1626 /* If we won't be loading directly from memory, protect the real source
1627 from strange tricks we might play; but make sure that the source can
1628 be loaded directly into the destination. */
1629 src = orig_src;
1630 if (!MEM_P (orig_src)
1631 && (!CONSTANT_P (orig_src)
1632 || (GET_MODE (orig_src) != mode
1633 && GET_MODE (orig_src) != VOIDmode)))
1635 if (GET_MODE (orig_src) == VOIDmode)
1636 src = gen_reg_rtx (mode);
1637 else
1638 src = gen_reg_rtx (GET_MODE (orig_src));
1640 emit_move_insn (src, orig_src);
1643 /* Optimize the access just a bit. */
1644 if (MEM_P (src)
1645 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1646 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1647 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1648 && bytelen == GET_MODE_SIZE (mode))
1650 tmps[i] = gen_reg_rtx (mode);
1651 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1653 else if (COMPLEX_MODE_P (mode)
1654 && GET_MODE (src) == mode
1655 && bytelen == GET_MODE_SIZE (mode))
1656 /* Let emit_move_complex do the bulk of the work. */
1657 tmps[i] = src;
1658 else if (GET_CODE (src) == CONCAT)
1660 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1661 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1663 if ((bytepos == 0 && bytelen == slen0)
1664 || (bytepos != 0 && bytepos + bytelen <= slen))
1666 /* The following assumes that the concatenated objects all
1667 have the same size. In this case, a simple calculation
1668 can be used to determine the object and the bit field
1669 to be extracted. */
1670 tmps[i] = XEXP (src, bytepos / slen0);
1671 if (! CONSTANT_P (tmps[i])
1672 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1673 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1674 (bytepos % slen0) * BITS_PER_UNIT,
1675 1, NULL_RTX, mode, mode);
1677 else
1679 rtx mem;
1681 gcc_assert (!bytepos);
1682 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1683 emit_move_insn (mem, src);
1684 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1685 0, 1, NULL_RTX, mode, mode);
1688 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1689 SIMD register, which is currently broken. While we get GCC
1690 to emit proper RTL for these cases, let's dump to memory. */
1691 else if (VECTOR_MODE_P (GET_MODE (dst))
1692 && REG_P (src))
1694 int slen = GET_MODE_SIZE (GET_MODE (src));
1695 rtx mem;
1697 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1698 emit_move_insn (mem, src);
1699 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1701 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1702 && XVECLEN (dst, 0) > 1)
1703 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1704 else if (CONSTANT_P (src)
1705 || (REG_P (src) && GET_MODE (src) == mode))
1706 tmps[i] = src;
1707 else
1708 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1709 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1710 mode, mode);
1712 if (shift)
1713 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1714 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1718 /* Emit code to move a block SRC of type TYPE to a block DST,
1719 where DST is non-consecutive registers represented by a PARALLEL.
1720 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1721 if not known. */
1723 void
1724 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1726 rtx *tmps;
1727 int i;
1729 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1730 emit_group_load_1 (tmps, dst, src, type, ssize);
1732 /* Copy the extracted pieces into the proper (probable) hard regs. */
1733 for (i = 0; i < XVECLEN (dst, 0); i++)
1735 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1736 if (d == NULL)
1737 continue;
1738 emit_move_insn (d, tmps[i]);
1742 /* Similar, but load SRC into new pseudos in a format that looks like
1743 PARALLEL. This can later be fed to emit_group_move to get things
1744 in the right place. */
1747 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1749 rtvec vec;
1750 int i;
1752 vec = rtvec_alloc (XVECLEN (parallel, 0));
1753 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1755 /* Convert the vector to look just like the original PARALLEL, except
1756 with the computed values. */
1757 for (i = 0; i < XVECLEN (parallel, 0); i++)
1759 rtx e = XVECEXP (parallel, 0, i);
1760 rtx d = XEXP (e, 0);
1762 if (d)
1764 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1765 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1767 RTVEC_ELT (vec, i) = e;
1770 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1773 /* Emit code to move a block SRC to block DST, where SRC and DST are
1774 non-consecutive groups of registers, each represented by a PARALLEL. */
1776 void
1777 emit_group_move (rtx dst, rtx src)
1779 int i;
1781 gcc_assert (GET_CODE (src) == PARALLEL
1782 && GET_CODE (dst) == PARALLEL
1783 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1785 /* Skip first entry if NULL. */
1786 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1787 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1788 XEXP (XVECEXP (src, 0, i), 0));
1791 /* Move a group of registers represented by a PARALLEL into pseudos. */
1794 emit_group_move_into_temps (rtx src)
1796 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1797 int i;
1799 for (i = 0; i < XVECLEN (src, 0); i++)
1801 rtx e = XVECEXP (src, 0, i);
1802 rtx d = XEXP (e, 0);
1804 if (d)
1805 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1806 RTVEC_ELT (vec, i) = e;
1809 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1812 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1813 where SRC is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_DST, or -1 if not
1815 known. */
1817 void
1818 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1820 rtx *tmps, dst;
1821 int start, i;
1822 enum machine_mode m = GET_MODE (orig_dst);
1824 gcc_assert (GET_CODE (src) == PARALLEL);
1826 if (!SCALAR_INT_MODE_P (m)
1827 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1829 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1830 if (imode == BLKmode)
1831 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1832 else
1833 dst = gen_reg_rtx (imode);
1834 emit_group_store (dst, src, type, ssize);
1835 if (imode != BLKmode)
1836 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1837 emit_move_insn (orig_dst, dst);
1838 return;
1841 /* Check for a NULL entry, used to indicate that the parameter goes
1842 both on the stack and in registers. */
1843 if (XEXP (XVECEXP (src, 0, 0), 0))
1844 start = 0;
1845 else
1846 start = 1;
1848 tmps = alloca (sizeof (rtx) * XVECLEN (src, 0));
1850 /* Copy the (probable) hard regs into pseudos. */
1851 for (i = start; i < XVECLEN (src, 0); i++)
1853 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1854 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1855 emit_move_insn (tmps[i], reg);
1858 /* If we won't be storing directly into memory, protect the real destination
1859 from strange tricks we might play. */
1860 dst = orig_dst;
1861 if (GET_CODE (dst) == PARALLEL)
1863 rtx temp;
1865 /* We can get a PARALLEL dst if there is a conditional expression in
1866 a return statement. In that case, the dst and src are the same,
1867 so no action is necessary. */
1868 if (rtx_equal_p (dst, src))
1869 return;
1871 /* It is unclear if we can ever reach here, but we may as well handle
1872 it. Allocate a temporary, and split this into a store/load to/from
1873 the temporary. */
1875 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1876 emit_group_store (temp, src, type, ssize);
1877 emit_group_load (dst, temp, type, ssize);
1878 return;
1880 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1882 dst = gen_reg_rtx (GET_MODE (orig_dst));
1883 /* Make life a bit easier for combine. */
1884 emit_move_insn (dst, CONST0_RTX (GET_MODE (orig_dst)));
1887 /* Process the pieces. */
1888 for (i = start; i < XVECLEN (src, 0); i++)
1890 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1891 enum machine_mode mode = GET_MODE (tmps[i]);
1892 unsigned int bytelen = GET_MODE_SIZE (mode);
1893 rtx dest = dst;
1895 /* Handle trailing fragments that run over the size of the struct. */
1896 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1898 /* store_bit_field always takes its value from the lsb.
1899 Move the fragment to the lsb if it's not already there. */
1900 if (
1901 #ifdef BLOCK_REG_PADDING
1902 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1903 == (BYTES_BIG_ENDIAN ? upward : downward)
1904 #else
1905 BYTES_BIG_ENDIAN
1906 #endif
1909 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1910 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
1911 build_int_cst (NULL_TREE, shift),
1912 tmps[i], 0);
1914 bytelen = ssize - bytepos;
1917 if (GET_CODE (dst) == CONCAT)
1919 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1920 dest = XEXP (dst, 0);
1921 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1923 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
1924 dest = XEXP (dst, 1);
1926 else
1928 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
1929 dest = assign_stack_temp (GET_MODE (dest),
1930 GET_MODE_SIZE (GET_MODE (dest)), 0);
1931 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
1932 tmps[i]);
1933 dst = dest;
1934 break;
1938 /* Optimize the access just a bit. */
1939 if (MEM_P (dest)
1940 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
1941 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
1942 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1943 && bytelen == GET_MODE_SIZE (mode))
1944 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
1945 else
1946 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
1947 mode, tmps[i]);
1950 /* Copy from the pseudo into the (probable) hard reg. */
1951 if (orig_dst != dst)
1952 emit_move_insn (orig_dst, dst);
1955 /* Generate code to copy a BLKmode object of TYPE out of a
1956 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1957 is null, a stack temporary is created. TGTBLK is returned.
1959 The purpose of this routine is to handle functions that return
1960 BLKmode structures in registers. Some machines (the PA for example)
1961 want to return all small structures in registers regardless of the
1962 structure's alignment. */
1965 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
1967 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
1968 rtx src = NULL, dst = NULL;
1969 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
1970 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
1972 if (tgtblk == 0)
1974 tgtblk = assign_temp (build_qualified_type (type,
1975 (TYPE_QUALS (type)
1976 | TYPE_QUAL_CONST)),
1977 0, 1, 1);
1978 preserve_temp_slots (tgtblk);
1981 /* This code assumes srcreg is at least a full word. If it isn't, copy it
1982 into a new pseudo which is a full word. */
1984 if (GET_MODE (srcreg) != BLKmode
1985 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
1986 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
1988 /* If the structure doesn't take up a whole number of words, see whether
1989 SRCREG is padded on the left or on the right. If it's on the left,
1990 set PADDING_CORRECTION to the number of bits to skip.
1992 In most ABIs, the structure will be returned at the least end of
1993 the register, which translates to right padding on little-endian
1994 targets and left padding on big-endian targets. The opposite
1995 holds if the structure is returned at the most significant
1996 end of the register. */
1997 if (bytes % UNITS_PER_WORD != 0
1998 && (targetm.calls.return_in_msb (type)
1999 ? !BYTES_BIG_ENDIAN
2000 : BYTES_BIG_ENDIAN))
2001 padding_correction
2002 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2004 /* Copy the structure BITSIZE bites at a time.
2006 We could probably emit more efficient code for machines which do not use
2007 strict alignment, but it doesn't seem worth the effort at the current
2008 time. */
2009 for (bitpos = 0, xbitpos = padding_correction;
2010 bitpos < bytes * BITS_PER_UNIT;
2011 bitpos += bitsize, xbitpos += bitsize)
2013 /* We need a new source operand each time xbitpos is on a
2014 word boundary and when xbitpos == padding_correction
2015 (the first time through). */
2016 if (xbitpos % BITS_PER_WORD == 0
2017 || xbitpos == padding_correction)
2018 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2019 GET_MODE (srcreg));
2021 /* We need a new destination operand each time bitpos is on
2022 a word boundary. */
2023 if (bitpos % BITS_PER_WORD == 0)
2024 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2026 /* Use xbitpos for the source extraction (right justified) and
2027 xbitpos for the destination store (left justified). */
2028 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2029 extract_bit_field (src, bitsize,
2030 xbitpos % BITS_PER_WORD, 1,
2031 NULL_RTX, word_mode, word_mode));
2034 return tgtblk;
2037 /* Add a USE expression for REG to the (possibly empty) list pointed
2038 to by CALL_FUSAGE. REG must denote a hard register. */
2040 void
2041 use_reg (rtx *call_fusage, rtx reg)
2043 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2045 *call_fusage
2046 = gen_rtx_EXPR_LIST (VOIDmode,
2047 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2050 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2051 starting at REGNO. All of these registers must be hard registers. */
2053 void
2054 use_regs (rtx *call_fusage, int regno, int nregs)
2056 int i;
2058 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2060 for (i = 0; i < nregs; i++)
2061 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2064 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2065 PARALLEL REGS. This is for calls that pass values in multiple
2066 non-contiguous locations. The Irix 6 ABI has examples of this. */
2068 void
2069 use_group_regs (rtx *call_fusage, rtx regs)
2071 int i;
2073 for (i = 0; i < XVECLEN (regs, 0); i++)
2075 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2077 /* A NULL entry means the parameter goes both on the stack and in
2078 registers. This can also be a MEM for targets that pass values
2079 partially on the stack and partially in registers. */
2080 if (reg != 0 && REG_P (reg))
2081 use_reg (call_fusage, reg);
2086 /* Determine whether the LEN bytes generated by CONSTFUN can be
2087 stored to memory using several move instructions. CONSTFUNDATA is
2088 a pointer which will be passed as argument in every CONSTFUN call.
2089 ALIGN is maximum alignment we can assume. Return nonzero if a
2090 call to store_by_pieces should succeed. */
2093 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2094 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2095 void *constfundata, unsigned int align)
2097 unsigned HOST_WIDE_INT l;
2098 unsigned int max_size;
2099 HOST_WIDE_INT offset = 0;
2100 enum machine_mode mode, tmode;
2101 enum insn_code icode;
2102 int reverse;
2103 rtx cst;
2105 if (len == 0)
2106 return 1;
2108 if (! STORE_BY_PIECES_P (len, align))
2109 return 0;
2111 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2112 if (align >= GET_MODE_ALIGNMENT (tmode))
2113 align = GET_MODE_ALIGNMENT (tmode);
2114 else
2116 enum machine_mode xmode;
2118 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2119 tmode != VOIDmode;
2120 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2121 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2122 || SLOW_UNALIGNED_ACCESS (tmode, align))
2123 break;
2125 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2128 /* We would first store what we can in the largest integer mode, then go to
2129 successively smaller modes. */
2131 for (reverse = 0;
2132 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2133 reverse++)
2135 l = len;
2136 mode = VOIDmode;
2137 max_size = STORE_MAX_PIECES + 1;
2138 while (max_size > 1)
2140 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2141 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2142 if (GET_MODE_SIZE (tmode) < max_size)
2143 mode = tmode;
2145 if (mode == VOIDmode)
2146 break;
2148 icode = mov_optab->handlers[(int) mode].insn_code;
2149 if (icode != CODE_FOR_nothing
2150 && align >= GET_MODE_ALIGNMENT (mode))
2152 unsigned int size = GET_MODE_SIZE (mode);
2154 while (l >= size)
2156 if (reverse)
2157 offset -= size;
2159 cst = (*constfun) (constfundata, offset, mode);
2160 if (!LEGITIMATE_CONSTANT_P (cst))
2161 return 0;
2163 if (!reverse)
2164 offset += size;
2166 l -= size;
2170 max_size = GET_MODE_SIZE (mode);
2173 /* The code above should have handled everything. */
2174 gcc_assert (!l);
2177 return 1;
2180 /* Generate several move instructions to store LEN bytes generated by
2181 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2182 pointer which will be passed as argument in every CONSTFUN call.
2183 ALIGN is maximum alignment we can assume.
2184 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2185 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2186 stpcpy. */
2189 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2190 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2191 void *constfundata, unsigned int align, int endp)
2193 struct store_by_pieces data;
2195 if (len == 0)
2197 gcc_assert (endp != 2);
2198 return to;
2201 gcc_assert (STORE_BY_PIECES_P (len, align));
2202 data.constfun = constfun;
2203 data.constfundata = constfundata;
2204 data.len = len;
2205 data.to = to;
2206 store_by_pieces_1 (&data, align);
2207 if (endp)
2209 rtx to1;
2211 gcc_assert (!data.reverse);
2212 if (data.autinc_to)
2214 if (endp == 2)
2216 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2217 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2218 else
2219 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2220 -1));
2222 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2223 data.offset);
2225 else
2227 if (endp == 2)
2228 --data.offset;
2229 to1 = adjust_address (data.to, QImode, data.offset);
2231 return to1;
2233 else
2234 return data.to;
2237 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2238 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2240 static void
2241 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2243 struct store_by_pieces data;
2245 if (len == 0)
2246 return;
2248 data.constfun = clear_by_pieces_1;
2249 data.constfundata = NULL;
2250 data.len = len;
2251 data.to = to;
2252 store_by_pieces_1 (&data, align);
2255 /* Callback routine for clear_by_pieces.
2256 Return const0_rtx unconditionally. */
2258 static rtx
2259 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2260 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2261 enum machine_mode mode ATTRIBUTE_UNUSED)
2263 return const0_rtx;
2266 /* Subroutine of clear_by_pieces and store_by_pieces.
2267 Generate several move instructions to store LEN bytes of block TO. (A MEM
2268 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2270 static void
2271 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2272 unsigned int align ATTRIBUTE_UNUSED)
2274 rtx to_addr = XEXP (data->to, 0);
2275 unsigned int max_size = STORE_MAX_PIECES + 1;
2276 enum machine_mode mode = VOIDmode, tmode;
2277 enum insn_code icode;
2279 data->offset = 0;
2280 data->to_addr = to_addr;
2281 data->autinc_to
2282 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2283 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2285 data->explicit_inc_to = 0;
2286 data->reverse
2287 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2288 if (data->reverse)
2289 data->offset = data->len;
2291 /* If storing requires more than two move insns,
2292 copy addresses to registers (to make displacements shorter)
2293 and use post-increment if available. */
2294 if (!data->autinc_to
2295 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2297 /* Determine the main mode we'll be using. */
2298 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2299 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2300 if (GET_MODE_SIZE (tmode) < max_size)
2301 mode = tmode;
2303 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2305 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2306 data->autinc_to = 1;
2307 data->explicit_inc_to = -1;
2310 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2311 && ! data->autinc_to)
2313 data->to_addr = copy_addr_to_reg (to_addr);
2314 data->autinc_to = 1;
2315 data->explicit_inc_to = 1;
2318 if ( !data->autinc_to && CONSTANT_P (to_addr))
2319 data->to_addr = copy_addr_to_reg (to_addr);
2322 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2323 if (align >= GET_MODE_ALIGNMENT (tmode))
2324 align = GET_MODE_ALIGNMENT (tmode);
2325 else
2327 enum machine_mode xmode;
2329 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2330 tmode != VOIDmode;
2331 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2332 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2333 || SLOW_UNALIGNED_ACCESS (tmode, align))
2334 break;
2336 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2339 /* First store what we can in the largest integer mode, then go to
2340 successively smaller modes. */
2342 while (max_size > 1)
2344 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2345 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2346 if (GET_MODE_SIZE (tmode) < max_size)
2347 mode = tmode;
2349 if (mode == VOIDmode)
2350 break;
2352 icode = mov_optab->handlers[(int) mode].insn_code;
2353 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2354 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2356 max_size = GET_MODE_SIZE (mode);
2359 /* The code above should have handled everything. */
2360 gcc_assert (!data->len);
2363 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2364 with move instructions for mode MODE. GENFUN is the gen_... function
2365 to make a move insn for that mode. DATA has all the other info. */
2367 static void
2368 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2369 struct store_by_pieces *data)
2371 unsigned int size = GET_MODE_SIZE (mode);
2372 rtx to1, cst;
2374 while (data->len >= size)
2376 if (data->reverse)
2377 data->offset -= size;
2379 if (data->autinc_to)
2380 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2381 data->offset);
2382 else
2383 to1 = adjust_address (data->to, mode, data->offset);
2385 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2386 emit_insn (gen_add2_insn (data->to_addr,
2387 GEN_INT (-(HOST_WIDE_INT) size)));
2389 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2390 emit_insn ((*genfun) (to1, cst));
2392 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2393 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2395 if (! data->reverse)
2396 data->offset += size;
2398 data->len -= size;
2402 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2403 its length in bytes. */
2406 clear_storage (rtx object, rtx size)
2408 enum machine_mode mode = GET_MODE (object);
2409 unsigned int align;
2411 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2412 just move a zero. Otherwise, do this a piece at a time. */
2413 if (mode != BLKmode
2414 && GET_CODE (size) == CONST_INT
2415 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2417 rtx zero = CONST0_RTX (mode);
2418 if (zero != NULL)
2420 emit_move_insn (object, zero);
2421 return NULL;
2424 if (COMPLEX_MODE_P (mode))
2426 zero = CONST0_RTX (GET_MODE_INNER (mode));
2427 if (zero != NULL)
2429 write_complex_part (object, zero, 0);
2430 write_complex_part (object, zero, 1);
2431 return NULL;
2436 if (size == const0_rtx)
2437 return NULL;
2439 align = MEM_ALIGN (object);
2441 if (GET_CODE (size) == CONST_INT
2442 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2443 clear_by_pieces (object, INTVAL (size), align);
2444 else if (clear_storage_via_clrmem (object, size, align))
2446 else
2447 return clear_storage_via_libcall (object, size);
2449 return NULL;
2452 /* A subroutine of clear_storage. Expand a clrmem pattern;
2453 return true if successful. */
2455 static bool
2456 clear_storage_via_clrmem (rtx object, rtx size, unsigned int align)
2458 /* Try the most limited insn first, because there's no point
2459 including more than one in the machine description unless
2460 the more limited one has some advantage. */
2462 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2463 enum machine_mode mode;
2465 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2466 mode = GET_MODE_WIDER_MODE (mode))
2468 enum insn_code code = clrmem_optab[(int) mode];
2469 insn_operand_predicate_fn pred;
2471 if (code != CODE_FOR_nothing
2472 /* We don't need MODE to be narrower than
2473 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2474 the mode mask, as it is returned by the macro, it will
2475 definitely be less than the actual mode mask. */
2476 && ((GET_CODE (size) == CONST_INT
2477 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2478 <= (GET_MODE_MASK (mode) >> 1)))
2479 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2480 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2481 || (*pred) (object, BLKmode))
2482 && ((pred = insn_data[(int) code].operand[2].predicate) == 0
2483 || (*pred) (opalign, VOIDmode)))
2485 rtx op1;
2486 rtx last = get_last_insn ();
2487 rtx pat;
2489 op1 = convert_to_mode (mode, size, 1);
2490 pred = insn_data[(int) code].operand[1].predicate;
2491 if (pred != 0 && ! (*pred) (op1, mode))
2492 op1 = copy_to_mode_reg (mode, op1);
2494 pat = GEN_FCN ((int) code) (object, op1, opalign);
2495 if (pat)
2497 emit_insn (pat);
2498 return true;
2500 else
2501 delete_insns_since (last);
2505 return false;
2508 /* A subroutine of clear_storage. Expand a call to memset.
2509 Return the return value of memset, 0 otherwise. */
2511 static rtx
2512 clear_storage_via_libcall (rtx object, rtx size)
2514 tree call_expr, arg_list, fn, object_tree, size_tree;
2515 enum machine_mode size_mode;
2516 rtx retval;
2518 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2519 place those into new pseudos into a VAR_DECL and use them later. */
2521 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2523 size_mode = TYPE_MODE (sizetype);
2524 size = convert_to_mode (size_mode, size, 1);
2525 size = copy_to_mode_reg (size_mode, size);
2527 /* It is incorrect to use the libcall calling conventions to call
2528 memset in this context. This could be a user call to memset and
2529 the user may wish to examine the return value from memset. For
2530 targets where libcalls and normal calls have different conventions
2531 for returning pointers, we could end up generating incorrect code. */
2533 object_tree = make_tree (ptr_type_node, object);
2534 size_tree = make_tree (sizetype, size);
2536 fn = clear_storage_libcall_fn (true);
2537 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2538 arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2539 arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2541 /* Now we have to build up the CALL_EXPR itself. */
2542 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2543 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2544 call_expr, arg_list, NULL_TREE);
2546 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
2548 return retval;
2551 /* A subroutine of clear_storage_via_libcall. Create the tree node
2552 for the function we use for block clears. The first time FOR_CALL
2553 is true, we call assemble_external. */
2555 static GTY(()) tree block_clear_fn;
2557 void
2558 init_block_clear_fn (const char *asmspec)
2560 if (!block_clear_fn)
2562 tree fn, args;
2564 fn = get_identifier ("memset");
2565 args = build_function_type_list (ptr_type_node, ptr_type_node,
2566 integer_type_node, sizetype,
2567 NULL_TREE);
2569 fn = build_decl (FUNCTION_DECL, fn, args);
2570 DECL_EXTERNAL (fn) = 1;
2571 TREE_PUBLIC (fn) = 1;
2572 DECL_ARTIFICIAL (fn) = 1;
2573 TREE_NOTHROW (fn) = 1;
2575 block_clear_fn = fn;
2578 if (asmspec)
2579 set_user_assembler_name (block_clear_fn, asmspec);
2582 static tree
2583 clear_storage_libcall_fn (int for_call)
2585 static bool emitted_extern;
2587 if (!block_clear_fn)
2588 init_block_clear_fn (NULL);
2590 if (for_call && !emitted_extern)
2592 emitted_extern = true;
2593 make_decl_rtl (block_clear_fn);
2594 assemble_external (block_clear_fn);
2597 return block_clear_fn;
2600 /* Write to one of the components of the complex value CPLX. Write VAL to
2601 the real part if IMAG_P is false, and the imaginary part if its true. */
2603 static void
2604 write_complex_part (rtx cplx, rtx val, bool imag_p)
2606 enum machine_mode cmode;
2607 enum machine_mode imode;
2608 unsigned ibitsize;
2610 if (GET_CODE (cplx) == CONCAT)
2612 emit_move_insn (XEXP (cplx, imag_p), val);
2613 return;
2616 cmode = GET_MODE (cplx);
2617 imode = GET_MODE_INNER (cmode);
2618 ibitsize = GET_MODE_BITSIZE (imode);
2620 /* If the sub-object is at least word sized, then we know that subregging
2621 will work. This special case is important, since store_bit_field
2622 wants to operate on integer modes, and there's rarely an OImode to
2623 correspond to TCmode. */
2624 if (ibitsize >= BITS_PER_WORD
2625 /* For hard regs we have exact predicates. Assume we can split
2626 the original object if it spans an even number of hard regs.
2627 This special case is important for SCmode on 64-bit platforms
2628 where the natural size of floating-point regs is 32-bit. */
2629 || (GET_CODE (cplx) == REG
2630 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2631 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0)
2632 /* For MEMs we always try to make a "subreg", that is to adjust
2633 the MEM, because store_bit_field may generate overly
2634 convoluted RTL for sub-word fields. */
2635 || MEM_P (cplx))
2637 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2638 imag_p ? GET_MODE_SIZE (imode) : 0);
2639 if (part)
2641 emit_move_insn (part, val);
2642 return;
2644 else
2645 /* simplify_gen_subreg may fail for sub-word MEMs. */
2646 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2649 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2652 /* Extract one of the components of the complex value CPLX. Extract the
2653 real part if IMAG_P is false, and the imaginary part if it's true. */
2655 static rtx
2656 read_complex_part (rtx cplx, bool imag_p)
2658 enum machine_mode cmode, imode;
2659 unsigned ibitsize;
2661 if (GET_CODE (cplx) == CONCAT)
2662 return XEXP (cplx, imag_p);
2664 cmode = GET_MODE (cplx);
2665 imode = GET_MODE_INNER (cmode);
2666 ibitsize = GET_MODE_BITSIZE (imode);
2668 /* Special case reads from complex constants that got spilled to memory. */
2669 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2671 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2672 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2674 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2675 if (CONSTANT_CLASS_P (part))
2676 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2680 /* If the sub-object is at least word sized, then we know that subregging
2681 will work. This special case is important, since extract_bit_field
2682 wants to operate on integer modes, and there's rarely an OImode to
2683 correspond to TCmode. */
2684 if (ibitsize >= BITS_PER_WORD
2685 /* For hard regs we have exact predicates. Assume we can split
2686 the original object if it spans an even number of hard regs.
2687 This special case is important for SCmode on 64-bit platforms
2688 where the natural size of floating-point regs is 32-bit. */
2689 || (GET_CODE (cplx) == REG
2690 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2691 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0)
2692 /* For MEMs we always try to make a "subreg", that is to adjust
2693 the MEM, because extract_bit_field may generate overly
2694 convoluted RTL for sub-word fields. */
2695 || MEM_P (cplx))
2697 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2698 imag_p ? GET_MODE_SIZE (imode) : 0);
2699 if (ret)
2700 return ret;
2701 else
2702 /* simplify_gen_subreg may fail for sub-word MEMs. */
2703 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2706 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2707 true, NULL_RTX, imode, imode);
2710 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2711 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2712 represented in NEW_MODE. If FORCE is true, this will never happen, as
2713 we'll force-create a SUBREG if needed. */
2715 static rtx
2716 emit_move_change_mode (enum machine_mode new_mode,
2717 enum machine_mode old_mode, rtx x, bool force)
2719 rtx ret;
2721 if (reload_in_progress && MEM_P (x))
2723 /* We can't use gen_lowpart here because it may call change_address
2724 which is not appropriate if we were called when a reload was in
2725 progress. We don't have to worry about changing the address since
2726 the size in bytes is supposed to be the same. Copy the MEM to
2727 change the mode and move any substitutions from the old MEM to
2728 the new one. */
2730 ret = adjust_address_nv (x, new_mode, 0);
2731 copy_replacements (x, ret);
2733 else
2735 /* Note that we do want simplify_subreg's behaviour of validating
2736 that the new mode is ok for a hard register. If we were to use
2737 simplify_gen_subreg, we would create the subreg, but would
2738 probably run into the target not being able to implement it. */
2739 /* Except, of course, when FORCE is true, when this is exactly what
2740 we want. Which is needed for CCmodes on some targets. */
2741 if (force)
2742 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2743 else
2744 ret = simplify_subreg (new_mode, x, old_mode, 0);
2747 return ret;
2750 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2751 an integer mode of the same size as MODE. Returns the instruction
2752 emitted, or NULL if such a move could not be generated. */
2754 static rtx
2755 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y)
2757 enum machine_mode imode;
2758 enum insn_code code;
2760 /* There must exist a mode of the exact size we require. */
2761 imode = int_mode_for_mode (mode);
2762 if (imode == BLKmode)
2763 return NULL_RTX;
2765 /* The target must support moves in this mode. */
2766 code = mov_optab->handlers[imode].insn_code;
2767 if (code == CODE_FOR_nothing)
2768 return NULL_RTX;
2770 x = emit_move_change_mode (imode, mode, x, false);
2771 if (x == NULL_RTX)
2772 return NULL_RTX;
2773 y = emit_move_change_mode (imode, mode, y, false);
2774 if (y == NULL_RTX)
2775 return NULL_RTX;
2776 return emit_insn (GEN_FCN (code) (x, y));
2779 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2780 Return an equivalent MEM that does not use an auto-increment. */
2782 static rtx
2783 emit_move_resolve_push (enum machine_mode mode, rtx x)
2785 enum rtx_code code = GET_CODE (XEXP (x, 0));
2786 HOST_WIDE_INT adjust;
2787 rtx temp;
2789 adjust = GET_MODE_SIZE (mode);
2790 #ifdef PUSH_ROUNDING
2791 adjust = PUSH_ROUNDING (adjust);
2792 #endif
2793 if (code == PRE_DEC || code == POST_DEC)
2794 adjust = -adjust;
2796 /* Do not use anti_adjust_stack, since we don't want to update
2797 stack_pointer_delta. */
2798 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2799 GEN_INT (adjust), stack_pointer_rtx,
2800 0, OPTAB_LIB_WIDEN);
2801 if (temp != stack_pointer_rtx)
2802 emit_move_insn (stack_pointer_rtx, temp);
2804 switch (code)
2806 case PRE_INC:
2807 case PRE_DEC:
2808 temp = stack_pointer_rtx;
2809 break;
2810 case POST_INC:
2811 temp = plus_constant (stack_pointer_rtx, -GET_MODE_SIZE (mode));
2812 break;
2813 case POST_DEC:
2814 temp = plus_constant (stack_pointer_rtx, GET_MODE_SIZE (mode));
2815 break;
2816 default:
2817 gcc_unreachable ();
2820 return replace_equiv_address (x, temp);
2823 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2824 X is known to satisfy push_operand, and MODE is known to be complex.
2825 Returns the last instruction emitted. */
2827 static rtx
2828 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
2830 enum machine_mode submode = GET_MODE_INNER (mode);
2831 bool imag_first;
2833 #ifdef PUSH_ROUNDING
2834 unsigned int submodesize = GET_MODE_SIZE (submode);
2836 /* In case we output to the stack, but the size is smaller than the
2837 machine can push exactly, we need to use move instructions. */
2838 if (PUSH_ROUNDING (submodesize) != submodesize)
2840 x = emit_move_resolve_push (mode, x);
2841 return emit_move_insn (x, y);
2843 #endif
2845 /* Note that the real part always precedes the imag part in memory
2846 regardless of machine's endianness. */
2847 switch (GET_CODE (XEXP (x, 0)))
2849 case PRE_DEC:
2850 case POST_DEC:
2851 imag_first = true;
2852 break;
2853 case PRE_INC:
2854 case POST_INC:
2855 imag_first = false;
2856 break;
2857 default:
2858 gcc_unreachable ();
2861 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2862 read_complex_part (y, imag_first));
2863 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2864 read_complex_part (y, !imag_first));
2867 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2868 MODE is known to be complex. Returns the last instruction emitted. */
2870 static rtx
2871 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
2873 bool try_int;
2875 /* Need to take special care for pushes, to maintain proper ordering
2876 of the data, and possibly extra padding. */
2877 if (push_operand (x, mode))
2878 return emit_move_complex_push (mode, x, y);
2880 /* For memory to memory moves, optimial behaviour can be had with the
2881 existing block move logic. */
2882 if (MEM_P (x) && MEM_P (y))
2884 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
2885 BLOCK_OP_NO_LIBCALL);
2886 return get_last_insn ();
2889 /* See if we can coerce the target into moving both values at once. */
2891 /* Not possible if the values are inherently not adjacent. */
2892 if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
2893 try_int = false;
2894 /* Is possible if both are registers (or subregs of registers). */
2895 else if (register_operand (x, mode) && register_operand (y, mode))
2896 try_int = true;
2897 /* If one of the operands is a memory, and alignment constraints
2898 are friendly enough, we may be able to do combined memory operations.
2899 We do not attempt this if Y is a constant because that combination is
2900 usually better with the by-parts thing below. */
2901 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
2902 && (!STRICT_ALIGNMENT
2903 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
2904 try_int = true;
2905 else
2906 try_int = false;
2908 if (try_int)
2910 rtx ret = emit_move_via_integer (mode, x, y);
2911 if (ret)
2912 return ret;
2915 /* Show the output dies here. This is necessary for SUBREGs
2916 of pseudos since we cannot track their lifetimes correctly;
2917 hard regs shouldn't appear here except as return values. */
2918 if (!reload_completed && !reload_in_progress
2919 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
2920 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
2922 write_complex_part (x, read_complex_part (y, false), false);
2923 write_complex_part (x, read_complex_part (y, true), true);
2924 return get_last_insn ();
2927 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2928 MODE is known to be MODE_CC. Returns the last instruction emitted. */
2930 static rtx
2931 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
2933 rtx ret;
2935 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
2936 if (mode != CCmode)
2938 enum insn_code code = mov_optab->handlers[CCmode].insn_code;
2939 if (code != CODE_FOR_nothing)
2941 x = emit_move_change_mode (CCmode, mode, x, true);
2942 y = emit_move_change_mode (CCmode, mode, y, true);
2943 return emit_insn (GEN_FCN (code) (x, y));
2947 /* Otherwise, find the MODE_INT mode of the same width. */
2948 ret = emit_move_via_integer (mode, x, y);
2949 gcc_assert (ret != NULL);
2950 return ret;
2953 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2954 MODE is any multi-word or full-word mode that lacks a move_insn
2955 pattern. Note that you will get better code if you define such
2956 patterns, even if they must turn into multiple assembler instructions. */
2958 static rtx
2959 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
2961 rtx last_insn = 0;
2962 rtx seq, inner;
2963 bool need_clobber;
2964 int i;
2966 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
2968 /* If X is a push on the stack, do the push now and replace
2969 X with a reference to the stack pointer. */
2970 if (push_operand (x, mode))
2971 x = emit_move_resolve_push (mode, x);
2973 /* If we are in reload, see if either operand is a MEM whose address
2974 is scheduled for replacement. */
2975 if (reload_in_progress && MEM_P (x)
2976 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
2977 x = replace_equiv_address_nv (x, inner);
2978 if (reload_in_progress && MEM_P (y)
2979 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
2980 y = replace_equiv_address_nv (y, inner);
2982 start_sequence ();
2984 need_clobber = false;
2985 for (i = 0;
2986 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2987 i++)
2989 rtx xpart = operand_subword (x, i, 1, mode);
2990 rtx ypart = operand_subword (y, i, 1, mode);
2992 /* If we can't get a part of Y, put Y into memory if it is a
2993 constant. Otherwise, force it into a register. If we still
2994 can't get a part of Y, abort. */
2995 if (ypart == 0 && CONSTANT_P (y))
2997 y = force_const_mem (mode, y);
2998 ypart = operand_subword (y, i, 1, mode);
3000 else if (ypart == 0)
3001 ypart = operand_subword_force (y, i, mode);
3003 gcc_assert (xpart && ypart);
3005 need_clobber |= (GET_CODE (xpart) == SUBREG);
3007 last_insn = emit_move_insn (xpart, ypart);
3010 seq = get_insns ();
3011 end_sequence ();
3013 /* Show the output dies here. This is necessary for SUBREGs
3014 of pseudos since we cannot track their lifetimes correctly;
3015 hard regs shouldn't appear here except as return values.
3016 We never want to emit such a clobber after reload. */
3017 if (x != y
3018 && ! (reload_in_progress || reload_completed)
3019 && need_clobber != 0)
3020 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3022 emit_insn (seq);
3024 return last_insn;
3027 /* Low level part of emit_move_insn.
3028 Called just like emit_move_insn, but assumes X and Y
3029 are basically valid. */
3032 emit_move_insn_1 (rtx x, rtx y)
3034 enum machine_mode mode = GET_MODE (x);
3035 enum insn_code code;
3037 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3039 code = mov_optab->handlers[mode].insn_code;
3040 if (code != CODE_FOR_nothing)
3041 return emit_insn (GEN_FCN (code) (x, y));
3043 /* Expand complex moves by moving real part and imag part. */
3044 if (COMPLEX_MODE_P (mode))
3045 return emit_move_complex (mode, x, y);
3047 if (GET_MODE_CLASS (mode) == MODE_CC)
3048 return emit_move_ccmode (mode, x, y);
3050 /* Try using a move pattern for the corresponding integer mode. This is
3051 only safe when simplify_subreg can convert MODE constants into integer
3052 constants. At present, it can only do this reliably if the value
3053 fits within a HOST_WIDE_INT. */
3054 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3056 rtx ret = emit_move_via_integer (mode, x, y);
3057 if (ret)
3058 return ret;
3061 return emit_move_multi_word (mode, x, y);
3064 /* Generate code to copy Y into X.
3065 Both Y and X must have the same mode, except that
3066 Y can be a constant with VOIDmode.
3067 This mode cannot be BLKmode; use emit_block_move for that.
3069 Return the last instruction emitted. */
3072 emit_move_insn (rtx x, rtx y)
3074 enum machine_mode mode = GET_MODE (x);
3075 rtx y_cst = NULL_RTX;
3076 rtx last_insn, set;
3078 gcc_assert (mode != BLKmode
3079 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3081 if (CONSTANT_P (y))
3083 if (optimize
3084 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3085 && (last_insn = compress_float_constant (x, y)))
3086 return last_insn;
3088 y_cst = y;
3090 if (!LEGITIMATE_CONSTANT_P (y))
3092 y = force_const_mem (mode, y);
3094 /* If the target's cannot_force_const_mem prevented the spill,
3095 assume that the target's move expanders will also take care
3096 of the non-legitimate constant. */
3097 if (!y)
3098 y = y_cst;
3102 /* If X or Y are memory references, verify that their addresses are valid
3103 for the machine. */
3104 if (MEM_P (x)
3105 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3106 && ! push_operand (x, GET_MODE (x)))
3107 || (flag_force_addr
3108 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3109 x = validize_mem (x);
3111 if (MEM_P (y)
3112 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3113 || (flag_force_addr
3114 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3115 y = validize_mem (y);
3117 gcc_assert (mode != BLKmode);
3119 last_insn = emit_move_insn_1 (x, y);
3121 if (y_cst && REG_P (x)
3122 && (set = single_set (last_insn)) != NULL_RTX
3123 && SET_DEST (set) == x
3124 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3125 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3127 return last_insn;
3130 /* If Y is representable exactly in a narrower mode, and the target can
3131 perform the extension directly from constant or memory, then emit the
3132 move as an extension. */
3134 static rtx
3135 compress_float_constant (rtx x, rtx y)
3137 enum machine_mode dstmode = GET_MODE (x);
3138 enum machine_mode orig_srcmode = GET_MODE (y);
3139 enum machine_mode srcmode;
3140 REAL_VALUE_TYPE r;
3142 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3144 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3145 srcmode != orig_srcmode;
3146 srcmode = GET_MODE_WIDER_MODE (srcmode))
3148 enum insn_code ic;
3149 rtx trunc_y, last_insn;
3151 /* Skip if the target can't extend this way. */
3152 ic = can_extend_p (dstmode, srcmode, 0);
3153 if (ic == CODE_FOR_nothing)
3154 continue;
3156 /* Skip if the narrowed value isn't exact. */
3157 if (! exact_real_truncate (srcmode, &r))
3158 continue;
3160 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3162 if (LEGITIMATE_CONSTANT_P (trunc_y))
3164 /* Skip if the target needs extra instructions to perform
3165 the extension. */
3166 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3167 continue;
3169 else if (float_extend_from_mem[dstmode][srcmode])
3170 trunc_y = validize_mem (force_const_mem (srcmode, trunc_y));
3171 else
3172 continue;
3174 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3175 last_insn = get_last_insn ();
3177 if (REG_P (x))
3178 set_unique_reg_note (last_insn, REG_EQUAL, y);
3180 return last_insn;
3183 return NULL_RTX;
3186 /* Pushing data onto the stack. */
3188 /* Push a block of length SIZE (perhaps variable)
3189 and return an rtx to address the beginning of the block.
3190 The value may be virtual_outgoing_args_rtx.
3192 EXTRA is the number of bytes of padding to push in addition to SIZE.
3193 BELOW nonzero means this padding comes at low addresses;
3194 otherwise, the padding comes at high addresses. */
3197 push_block (rtx size, int extra, int below)
3199 rtx temp;
3201 size = convert_modes (Pmode, ptr_mode, size, 1);
3202 if (CONSTANT_P (size))
3203 anti_adjust_stack (plus_constant (size, extra));
3204 else if (REG_P (size) && extra == 0)
3205 anti_adjust_stack (size);
3206 else
3208 temp = copy_to_mode_reg (Pmode, size);
3209 if (extra != 0)
3210 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3211 temp, 0, OPTAB_LIB_WIDEN);
3212 anti_adjust_stack (temp);
3215 #ifndef STACK_GROWS_DOWNWARD
3216 if (0)
3217 #else
3218 if (1)
3219 #endif
3221 temp = virtual_outgoing_args_rtx;
3222 if (extra != 0 && below)
3223 temp = plus_constant (temp, extra);
3225 else
3227 if (GET_CODE (size) == CONST_INT)
3228 temp = plus_constant (virtual_outgoing_args_rtx,
3229 -INTVAL (size) - (below ? 0 : extra));
3230 else if (extra != 0 && !below)
3231 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3232 negate_rtx (Pmode, plus_constant (size, extra)));
3233 else
3234 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3235 negate_rtx (Pmode, size));
3238 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3241 #ifdef PUSH_ROUNDING
3243 /* Emit single push insn. */
3245 static void
3246 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3248 rtx dest_addr;
3249 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3250 rtx dest;
3251 enum insn_code icode;
3252 insn_operand_predicate_fn pred;
3254 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3255 /* If there is push pattern, use it. Otherwise try old way of throwing
3256 MEM representing push operation to move expander. */
3257 icode = push_optab->handlers[(int) mode].insn_code;
3258 if (icode != CODE_FOR_nothing)
3260 if (((pred = insn_data[(int) icode].operand[0].predicate)
3261 && !((*pred) (x, mode))))
3262 x = force_reg (mode, x);
3263 emit_insn (GEN_FCN (icode) (x));
3264 return;
3266 if (GET_MODE_SIZE (mode) == rounded_size)
3267 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3268 /* If we are to pad downward, adjust the stack pointer first and
3269 then store X into the stack location using an offset. This is
3270 because emit_move_insn does not know how to pad; it does not have
3271 access to type. */
3272 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3274 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3275 HOST_WIDE_INT offset;
3277 emit_move_insn (stack_pointer_rtx,
3278 expand_binop (Pmode,
3279 #ifdef STACK_GROWS_DOWNWARD
3280 sub_optab,
3281 #else
3282 add_optab,
3283 #endif
3284 stack_pointer_rtx,
3285 GEN_INT (rounded_size),
3286 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3288 offset = (HOST_WIDE_INT) padding_size;
3289 #ifdef STACK_GROWS_DOWNWARD
3290 if (STACK_PUSH_CODE == POST_DEC)
3291 /* We have already decremented the stack pointer, so get the
3292 previous value. */
3293 offset += (HOST_WIDE_INT) rounded_size;
3294 #else
3295 if (STACK_PUSH_CODE == POST_INC)
3296 /* We have already incremented the stack pointer, so get the
3297 previous value. */
3298 offset -= (HOST_WIDE_INT) rounded_size;
3299 #endif
3300 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3302 else
3304 #ifdef STACK_GROWS_DOWNWARD
3305 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3306 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3307 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3308 #else
3309 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3310 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3311 GEN_INT (rounded_size));
3312 #endif
3313 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3316 dest = gen_rtx_MEM (mode, dest_addr);
3318 if (type != 0)
3320 set_mem_attributes (dest, type, 1);
3322 if (flag_optimize_sibling_calls)
3323 /* Function incoming arguments may overlap with sibling call
3324 outgoing arguments and we cannot allow reordering of reads
3325 from function arguments with stores to outgoing arguments
3326 of sibling calls. */
3327 set_mem_alias_set (dest, 0);
3329 emit_move_insn (dest, x);
3331 #endif
3333 /* Generate code to push X onto the stack, assuming it has mode MODE and
3334 type TYPE.
3335 MODE is redundant except when X is a CONST_INT (since they don't
3336 carry mode info).
3337 SIZE is an rtx for the size of data to be copied (in bytes),
3338 needed only if X is BLKmode.
3340 ALIGN (in bits) is maximum alignment we can assume.
3342 If PARTIAL and REG are both nonzero, then copy that many of the first
3343 bytes of X into registers starting with REG, and push the rest of X.
3344 The amount of space pushed is decreased by PARTIAL bytes.
3345 REG must be a hard register in this case.
3346 If REG is zero but PARTIAL is not, take any all others actions for an
3347 argument partially in registers, but do not actually load any
3348 registers.
3350 EXTRA is the amount in bytes of extra space to leave next to this arg.
3351 This is ignored if an argument block has already been allocated.
3353 On a machine that lacks real push insns, ARGS_ADDR is the address of
3354 the bottom of the argument block for this call. We use indexing off there
3355 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3356 argument block has not been preallocated.
3358 ARGS_SO_FAR is the size of args previously pushed for this call.
3360 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3361 for arguments passed in registers. If nonzero, it will be the number
3362 of bytes required. */
3364 void
3365 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3366 unsigned int align, int partial, rtx reg, int extra,
3367 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3368 rtx alignment_pad)
3370 rtx xinner;
3371 enum direction stack_direction
3372 #ifdef STACK_GROWS_DOWNWARD
3373 = downward;
3374 #else
3375 = upward;
3376 #endif
3378 /* Decide where to pad the argument: `downward' for below,
3379 `upward' for above, or `none' for don't pad it.
3380 Default is below for small data on big-endian machines; else above. */
3381 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3383 /* Invert direction if stack is post-decrement.
3384 FIXME: why? */
3385 if (STACK_PUSH_CODE == POST_DEC)
3386 if (where_pad != none)
3387 where_pad = (where_pad == downward ? upward : downward);
3389 xinner = x;
3391 if (mode == BLKmode)
3393 /* Copy a block into the stack, entirely or partially. */
3395 rtx temp;
3396 int used;
3397 int offset;
3398 int skip;
3400 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3401 used = partial - offset;
3403 gcc_assert (size);
3405 /* USED is now the # of bytes we need not copy to the stack
3406 because registers will take care of them. */
3408 if (partial != 0)
3409 xinner = adjust_address (xinner, BLKmode, used);
3411 /* If the partial register-part of the arg counts in its stack size,
3412 skip the part of stack space corresponding to the registers.
3413 Otherwise, start copying to the beginning of the stack space,
3414 by setting SKIP to 0. */
3415 skip = (reg_parm_stack_space == 0) ? 0 : used;
3417 #ifdef PUSH_ROUNDING
3418 /* Do it with several push insns if that doesn't take lots of insns
3419 and if there is no difficulty with push insns that skip bytes
3420 on the stack for alignment purposes. */
3421 if (args_addr == 0
3422 && PUSH_ARGS
3423 && GET_CODE (size) == CONST_INT
3424 && skip == 0
3425 && MEM_ALIGN (xinner) >= align
3426 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3427 /* Here we avoid the case of a structure whose weak alignment
3428 forces many pushes of a small amount of data,
3429 and such small pushes do rounding that causes trouble. */
3430 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3431 || align >= BIGGEST_ALIGNMENT
3432 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3433 == (align / BITS_PER_UNIT)))
3434 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3436 /* Push padding now if padding above and stack grows down,
3437 or if padding below and stack grows up.
3438 But if space already allocated, this has already been done. */
3439 if (extra && args_addr == 0
3440 && where_pad != none && where_pad != stack_direction)
3441 anti_adjust_stack (GEN_INT (extra));
3443 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3445 else
3446 #endif /* PUSH_ROUNDING */
3448 rtx target;
3450 /* Otherwise make space on the stack and copy the data
3451 to the address of that space. */
3453 /* Deduct words put into registers from the size we must copy. */
3454 if (partial != 0)
3456 if (GET_CODE (size) == CONST_INT)
3457 size = GEN_INT (INTVAL (size) - used);
3458 else
3459 size = expand_binop (GET_MODE (size), sub_optab, size,
3460 GEN_INT (used), NULL_RTX, 0,
3461 OPTAB_LIB_WIDEN);
3464 /* Get the address of the stack space.
3465 In this case, we do not deal with EXTRA separately.
3466 A single stack adjust will do. */
3467 if (! args_addr)
3469 temp = push_block (size, extra, where_pad == downward);
3470 extra = 0;
3472 else if (GET_CODE (args_so_far) == CONST_INT)
3473 temp = memory_address (BLKmode,
3474 plus_constant (args_addr,
3475 skip + INTVAL (args_so_far)));
3476 else
3477 temp = memory_address (BLKmode,
3478 plus_constant (gen_rtx_PLUS (Pmode,
3479 args_addr,
3480 args_so_far),
3481 skip));
3483 if (!ACCUMULATE_OUTGOING_ARGS)
3485 /* If the source is referenced relative to the stack pointer,
3486 copy it to another register to stabilize it. We do not need
3487 to do this if we know that we won't be changing sp. */
3489 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3490 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3491 temp = copy_to_reg (temp);
3494 target = gen_rtx_MEM (BLKmode, temp);
3496 /* We do *not* set_mem_attributes here, because incoming arguments
3497 may overlap with sibling call outgoing arguments and we cannot
3498 allow reordering of reads from function arguments with stores
3499 to outgoing arguments of sibling calls. We do, however, want
3500 to record the alignment of the stack slot. */
3501 /* ALIGN may well be better aligned than TYPE, e.g. due to
3502 PARM_BOUNDARY. Assume the caller isn't lying. */
3503 set_mem_align (target, align);
3505 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3508 else if (partial > 0)
3510 /* Scalar partly in registers. */
3512 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3513 int i;
3514 int not_stack;
3515 /* # bytes of start of argument
3516 that we must make space for but need not store. */
3517 int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD);
3518 int args_offset = INTVAL (args_so_far);
3519 int skip;
3521 /* Push padding now if padding above and stack grows down,
3522 or if padding below and stack grows up.
3523 But if space already allocated, this has already been done. */
3524 if (extra && args_addr == 0
3525 && where_pad != none && where_pad != stack_direction)
3526 anti_adjust_stack (GEN_INT (extra));
3528 /* If we make space by pushing it, we might as well push
3529 the real data. Otherwise, we can leave OFFSET nonzero
3530 and leave the space uninitialized. */
3531 if (args_addr == 0)
3532 offset = 0;
3534 /* Now NOT_STACK gets the number of words that we don't need to
3535 allocate on the stack. */
3536 not_stack = (partial - offset) / UNITS_PER_WORD;
3538 /* If the partial register-part of the arg counts in its stack size,
3539 skip the part of stack space corresponding to the registers.
3540 Otherwise, start copying to the beginning of the stack space,
3541 by setting SKIP to 0. */
3542 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3544 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3545 x = validize_mem (force_const_mem (mode, x));
3547 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3548 SUBREGs of such registers are not allowed. */
3549 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3550 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3551 x = copy_to_reg (x);
3553 /* Loop over all the words allocated on the stack for this arg. */
3554 /* We can do it by words, because any scalar bigger than a word
3555 has a size a multiple of a word. */
3556 #ifndef PUSH_ARGS_REVERSED
3557 for (i = not_stack; i < size; i++)
3558 #else
3559 for (i = size - 1; i >= not_stack; i--)
3560 #endif
3561 if (i >= not_stack + offset)
3562 emit_push_insn (operand_subword_force (x, i, mode),
3563 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3564 0, args_addr,
3565 GEN_INT (args_offset + ((i - not_stack + skip)
3566 * UNITS_PER_WORD)),
3567 reg_parm_stack_space, alignment_pad);
3569 else
3571 rtx addr;
3572 rtx dest;
3574 /* Push padding now if padding above and stack grows down,
3575 or if padding below and stack grows up.
3576 But if space already allocated, this has already been done. */
3577 if (extra && args_addr == 0
3578 && where_pad != none && where_pad != stack_direction)
3579 anti_adjust_stack (GEN_INT (extra));
3581 #ifdef PUSH_ROUNDING
3582 if (args_addr == 0 && PUSH_ARGS)
3583 emit_single_push_insn (mode, x, type);
3584 else
3585 #endif
3587 if (GET_CODE (args_so_far) == CONST_INT)
3588 addr
3589 = memory_address (mode,
3590 plus_constant (args_addr,
3591 INTVAL (args_so_far)));
3592 else
3593 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3594 args_so_far));
3595 dest = gen_rtx_MEM (mode, addr);
3597 /* We do *not* set_mem_attributes here, because incoming arguments
3598 may overlap with sibling call outgoing arguments and we cannot
3599 allow reordering of reads from function arguments with stores
3600 to outgoing arguments of sibling calls. We do, however, want
3601 to record the alignment of the stack slot. */
3602 /* ALIGN may well be better aligned than TYPE, e.g. due to
3603 PARM_BOUNDARY. Assume the caller isn't lying. */
3604 set_mem_align (dest, align);
3606 emit_move_insn (dest, x);
3610 /* If part should go in registers, copy that part
3611 into the appropriate registers. Do this now, at the end,
3612 since mem-to-mem copies above may do function calls. */
3613 if (partial > 0 && reg != 0)
3615 /* Handle calls that pass values in multiple non-contiguous locations.
3616 The Irix 6 ABI has examples of this. */
3617 if (GET_CODE (reg) == PARALLEL)
3618 emit_group_load (reg, x, type, -1);
3619 else
3621 gcc_assert (partial % UNITS_PER_WORD == 0);
3622 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3626 if (extra && args_addr == 0 && where_pad == stack_direction)
3627 anti_adjust_stack (GEN_INT (extra));
3629 if (alignment_pad && args_addr == 0)
3630 anti_adjust_stack (alignment_pad);
3633 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3634 operations. */
3636 static rtx
3637 get_subtarget (rtx x)
3639 return (optimize
3640 || x == 0
3641 /* Only registers can be subtargets. */
3642 || !REG_P (x)
3643 /* Don't use hard regs to avoid extending their life. */
3644 || REGNO (x) < FIRST_PSEUDO_REGISTER
3645 ? 0 : x);
3648 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3649 FIELD is a bitfield. Returns true if the optimization was successful,
3650 and there's nothing else to do. */
3652 static bool
3653 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3654 unsigned HOST_WIDE_INT bitpos,
3655 enum machine_mode mode1, rtx str_rtx,
3656 tree to, tree src)
3658 enum machine_mode str_mode = GET_MODE (str_rtx);
3659 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3660 tree op0, op1;
3661 rtx value, result;
3662 optab binop;
3664 if (mode1 != VOIDmode
3665 || bitsize >= BITS_PER_WORD
3666 || str_bitsize > BITS_PER_WORD
3667 || TREE_SIDE_EFFECTS (to)
3668 || TREE_THIS_VOLATILE (to))
3669 return false;
3671 STRIP_NOPS (src);
3672 if (!BINARY_CLASS_P (src)
3673 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3674 return false;
3676 op0 = TREE_OPERAND (src, 0);
3677 op1 = TREE_OPERAND (src, 1);
3678 STRIP_NOPS (op0);
3680 if (!operand_equal_p (to, op0, 0))
3681 return false;
3683 if (MEM_P (str_rtx))
3685 unsigned HOST_WIDE_INT offset1;
3687 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3688 str_mode = word_mode;
3689 str_mode = get_best_mode (bitsize, bitpos,
3690 MEM_ALIGN (str_rtx), str_mode, 0);
3691 if (str_mode == VOIDmode)
3692 return false;
3693 str_bitsize = GET_MODE_BITSIZE (str_mode);
3695 offset1 = bitpos;
3696 bitpos %= str_bitsize;
3697 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
3698 str_rtx = adjust_address (str_rtx, str_mode, offset1);
3700 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3701 return false;
3703 /* If the bit field covers the whole REG/MEM, store_field
3704 will likely generate better code. */
3705 if (bitsize >= str_bitsize)
3706 return false;
3708 /* We can't handle fields split across multiple entities. */
3709 if (bitpos + bitsize > str_bitsize)
3710 return false;
3712 if (BYTES_BIG_ENDIAN)
3713 bitpos = str_bitsize - bitpos - bitsize;
3715 switch (TREE_CODE (src))
3717 case PLUS_EXPR:
3718 case MINUS_EXPR:
3719 /* For now, just optimize the case of the topmost bitfield
3720 where we don't need to do any masking and also
3721 1 bit bitfields where xor can be used.
3722 We might win by one instruction for the other bitfields
3723 too if insv/extv instructions aren't used, so that
3724 can be added later. */
3725 if (bitpos + bitsize != str_bitsize
3726 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3727 break;
3729 value = expand_expr (op1, NULL_RTX, str_mode, 0);
3730 value = convert_modes (str_mode,
3731 TYPE_MODE (TREE_TYPE (op1)), value,
3732 TYPE_UNSIGNED (TREE_TYPE (op1)));
3734 /* We may be accessing data outside the field, which means
3735 we can alias adjacent data. */
3736 if (MEM_P (str_rtx))
3738 str_rtx = shallow_copy_rtx (str_rtx);
3739 set_mem_alias_set (str_rtx, 0);
3740 set_mem_expr (str_rtx, 0);
3743 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3744 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
3746 value = expand_and (str_mode, value, const1_rtx, NULL);
3747 binop = xor_optab;
3749 value = expand_shift (LSHIFT_EXPR, str_mode, value,
3750 build_int_cst (NULL_TREE, bitpos),
3751 NULL_RTX, 1);
3752 result = expand_binop (str_mode, binop, str_rtx,
3753 value, str_rtx, 1, OPTAB_WIDEN);
3754 if (result != str_rtx)
3755 emit_move_insn (str_rtx, result);
3756 return true;
3758 default:
3759 break;
3762 return false;
3766 /* Expand an assignment that stores the value of FROM into TO. */
3768 void
3769 expand_assignment (tree to, tree from)
3771 rtx to_rtx = 0;
3772 rtx result;
3774 /* Don't crash if the lhs of the assignment was erroneous. */
3776 if (TREE_CODE (to) == ERROR_MARK)
3778 result = expand_expr (from, NULL_RTX, VOIDmode, 0);
3779 return;
3782 /* Assignment of a structure component needs special treatment
3783 if the structure component's rtx is not simply a MEM.
3784 Assignment of an array element at a constant index, and assignment of
3785 an array element in an unaligned packed structure field, has the same
3786 problem. */
3787 if (handled_component_p (to)
3788 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
3790 enum machine_mode mode1;
3791 HOST_WIDE_INT bitsize, bitpos;
3792 rtx orig_to_rtx;
3793 tree offset;
3794 int unsignedp;
3795 int volatilep = 0;
3796 tree tem;
3798 push_temp_slots ();
3799 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3800 &unsignedp, &volatilep, true);
3802 /* If we are going to use store_bit_field and extract_bit_field,
3803 make sure to_rtx will be safe for multiple use. */
3805 orig_to_rtx = to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, 0);
3807 if (offset != 0)
3809 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
3811 gcc_assert (MEM_P (to_rtx));
3813 #ifdef POINTERS_EXTEND_UNSIGNED
3814 if (GET_MODE (offset_rtx) != Pmode)
3815 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
3816 #else
3817 if (GET_MODE (offset_rtx) != ptr_mode)
3818 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3819 #endif
3821 /* A constant address in TO_RTX can have VOIDmode, we must not try
3822 to call force_reg for that case. Avoid that case. */
3823 if (MEM_P (to_rtx)
3824 && GET_MODE (to_rtx) == BLKmode
3825 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3826 && bitsize > 0
3827 && (bitpos % bitsize) == 0
3828 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3829 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
3831 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
3832 bitpos = 0;
3835 to_rtx = offset_address (to_rtx, offset_rtx,
3836 highest_pow2_factor_for_target (to,
3837 offset));
3840 /* Handle expand_expr of a complex value returning a CONCAT. */
3841 if (GET_CODE (to_rtx) == CONCAT)
3843 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
3845 gcc_assert (bitpos == 0);
3846 result = store_expr (from, to_rtx, false);
3848 else
3850 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
3851 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
3854 else
3856 if (MEM_P (to_rtx))
3858 /* If the field is at offset zero, we could have been given the
3859 DECL_RTX of the parent struct. Don't munge it. */
3860 to_rtx = shallow_copy_rtx (to_rtx);
3862 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
3864 /* Deal with volatile and readonly fields. The former is only
3865 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3866 if (volatilep)
3867 MEM_VOLATILE_P (to_rtx) = 1;
3868 if (component_uses_parent_alias_set (to))
3869 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
3872 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
3873 to_rtx, to, from))
3874 result = NULL;
3875 else
3876 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
3877 TREE_TYPE (tem), get_alias_set (to));
3880 if (result)
3881 preserve_temp_slots (result);
3882 free_temp_slots ();
3883 pop_temp_slots ();
3884 return;
3887 /* If the rhs is a function call and its value is not an aggregate,
3888 call the function before we start to compute the lhs.
3889 This is needed for correct code for cases such as
3890 val = setjmp (buf) on machines where reference to val
3891 requires loading up part of an address in a separate insn.
3893 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
3894 since it might be a promoted variable where the zero- or sign- extension
3895 needs to be done. Handling this in the normal way is safe because no
3896 computation is done before the call. */
3897 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
3898 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
3899 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
3900 && REG_P (DECL_RTL (to))))
3902 rtx value;
3904 push_temp_slots ();
3905 value = expand_expr (from, NULL_RTX, VOIDmode, 0);
3906 if (to_rtx == 0)
3907 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
3909 /* Handle calls that return values in multiple non-contiguous locations.
3910 The Irix 6 ABI has examples of this. */
3911 if (GET_CODE (to_rtx) == PARALLEL)
3912 emit_group_load (to_rtx, value, TREE_TYPE (from),
3913 int_size_in_bytes (TREE_TYPE (from)));
3914 else if (GET_MODE (to_rtx) == BLKmode)
3915 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
3916 else
3918 if (POINTER_TYPE_P (TREE_TYPE (to)))
3919 value = convert_memory_address (GET_MODE (to_rtx), value);
3920 emit_move_insn (to_rtx, value);
3922 preserve_temp_slots (to_rtx);
3923 free_temp_slots ();
3924 pop_temp_slots ();
3925 return;
3928 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3929 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3931 if (to_rtx == 0)
3932 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
3934 /* Don't move directly into a return register. */
3935 if (TREE_CODE (to) == RESULT_DECL
3936 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
3938 rtx temp;
3940 push_temp_slots ();
3941 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
3943 if (GET_CODE (to_rtx) == PARALLEL)
3944 emit_group_load (to_rtx, temp, TREE_TYPE (from),
3945 int_size_in_bytes (TREE_TYPE (from)));
3946 else
3947 emit_move_insn (to_rtx, temp);
3949 preserve_temp_slots (to_rtx);
3950 free_temp_slots ();
3951 pop_temp_slots ();
3952 return;
3955 /* In case we are returning the contents of an object which overlaps
3956 the place the value is being stored, use a safe function when copying
3957 a value through a pointer into a structure value return block. */
3958 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
3959 && current_function_returns_struct
3960 && !current_function_returns_pcc_struct)
3962 rtx from_rtx, size;
3964 push_temp_slots ();
3965 size = expr_size (from);
3966 from_rtx = expand_expr (from, NULL_RTX, VOIDmode, 0);
3968 emit_library_call (memmove_libfunc, LCT_NORMAL,
3969 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
3970 XEXP (from_rtx, 0), Pmode,
3971 convert_to_mode (TYPE_MODE (sizetype),
3972 size, TYPE_UNSIGNED (sizetype)),
3973 TYPE_MODE (sizetype));
3975 preserve_temp_slots (to_rtx);
3976 free_temp_slots ();
3977 pop_temp_slots ();
3978 return;
3981 /* Compute FROM and store the value in the rtx we got. */
3983 push_temp_slots ();
3984 result = store_expr (from, to_rtx, 0);
3985 preserve_temp_slots (result);
3986 free_temp_slots ();
3987 pop_temp_slots ();
3988 return;
3991 /* Generate code for computing expression EXP,
3992 and storing the value into TARGET.
3994 If the mode is BLKmode then we may return TARGET itself.
3995 It turns out that in BLKmode it doesn't cause a problem.
3996 because C has no operators that could combine two different
3997 assignments into the same BLKmode object with different values
3998 with no sequence point. Will other languages need this to
3999 be more thorough?
4001 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4002 stack, and block moves may need to be treated specially. */
4005 store_expr (tree exp, rtx target, int call_param_p)
4007 rtx temp;
4008 rtx alt_rtl = NULL_RTX;
4009 int dont_return_target = 0;
4011 if (VOID_TYPE_P (TREE_TYPE (exp)))
4013 /* C++ can generate ?: expressions with a throw expression in one
4014 branch and an rvalue in the other. Here, we resolve attempts to
4015 store the throw expression's nonexistent result. */
4016 gcc_assert (!call_param_p);
4017 expand_expr (exp, const0_rtx, VOIDmode, 0);
4018 return NULL_RTX;
4020 if (TREE_CODE (exp) == COMPOUND_EXPR)
4022 /* Perform first part of compound expression, then assign from second
4023 part. */
4024 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4025 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4026 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4028 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4030 /* For conditional expression, get safe form of the target. Then
4031 test the condition, doing the appropriate assignment on either
4032 side. This avoids the creation of unnecessary temporaries.
4033 For non-BLKmode, it is more efficient not to do this. */
4035 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4037 do_pending_stack_adjust ();
4038 NO_DEFER_POP;
4039 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4040 store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4041 emit_jump_insn (gen_jump (lab2));
4042 emit_barrier ();
4043 emit_label (lab1);
4044 store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
4045 emit_label (lab2);
4046 OK_DEFER_POP;
4048 return NULL_RTX;
4050 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4051 /* If this is a scalar in a register that is stored in a wider mode
4052 than the declared mode, compute the result into its declared mode
4053 and then convert to the wider mode. Our value is the computed
4054 expression. */
4056 rtx inner_target = 0;
4058 /* We can do the conversion inside EXP, which will often result
4059 in some optimizations. Do the conversion in two steps: first
4060 change the signedness, if needed, then the extend. But don't
4061 do this if the type of EXP is a subtype of something else
4062 since then the conversion might involve more than just
4063 converting modes. */
4064 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4065 && TREE_TYPE (TREE_TYPE (exp)) == 0
4066 && (!lang_hooks.reduce_bit_field_operations
4067 || (GET_MODE_PRECISION (GET_MODE (target))
4068 == TYPE_PRECISION (TREE_TYPE (exp)))))
4070 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4071 != SUBREG_PROMOTED_UNSIGNED_P (target))
4072 exp = convert
4073 (lang_hooks.types.signed_or_unsigned_type
4074 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
4076 exp = convert (lang_hooks.types.type_for_mode
4077 (GET_MODE (SUBREG_REG (target)),
4078 SUBREG_PROMOTED_UNSIGNED_P (target)),
4079 exp);
4081 inner_target = SUBREG_REG (target);
4084 temp = expand_expr (exp, inner_target, VOIDmode,
4085 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4087 /* If TEMP is a VOIDmode constant, use convert_modes to make
4088 sure that we properly convert it. */
4089 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4091 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4092 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4093 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4094 GET_MODE (target), temp,
4095 SUBREG_PROMOTED_UNSIGNED_P (target));
4098 convert_move (SUBREG_REG (target), temp,
4099 SUBREG_PROMOTED_UNSIGNED_P (target));
4101 return NULL_RTX;
4103 else
4105 temp = expand_expr_real (exp, target, GET_MODE (target),
4106 (call_param_p
4107 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4108 &alt_rtl);
4109 /* Return TARGET if it's a specified hardware register.
4110 If TARGET is a volatile mem ref, either return TARGET
4111 or return a reg copied *from* TARGET; ANSI requires this.
4113 Otherwise, if TEMP is not TARGET, return TEMP
4114 if it is constant (for efficiency),
4115 or if we really want the correct value. */
4116 if (!(target && REG_P (target)
4117 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4118 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4119 && ! rtx_equal_p (temp, target)
4120 && CONSTANT_P (temp))
4121 dont_return_target = 1;
4124 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4125 the same as that of TARGET, adjust the constant. This is needed, for
4126 example, in case it is a CONST_DOUBLE and we want only a word-sized
4127 value. */
4128 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4129 && TREE_CODE (exp) != ERROR_MARK
4130 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4131 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4132 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4134 /* If value was not generated in the target, store it there.
4135 Convert the value to TARGET's type first if necessary and emit the
4136 pending incrementations that have been queued when expanding EXP.
4137 Note that we cannot emit the whole queue blindly because this will
4138 effectively disable the POST_INC optimization later.
4140 If TEMP and TARGET compare equal according to rtx_equal_p, but
4141 one or both of them are volatile memory refs, we have to distinguish
4142 two cases:
4143 - expand_expr has used TARGET. In this case, we must not generate
4144 another copy. This can be detected by TARGET being equal according
4145 to == .
4146 - expand_expr has not used TARGET - that means that the source just
4147 happens to have the same RTX form. Since temp will have been created
4148 by expand_expr, it will compare unequal according to == .
4149 We must generate a copy in this case, to reach the correct number
4150 of volatile memory references. */
4152 if ((! rtx_equal_p (temp, target)
4153 || (temp != target && (side_effects_p (temp)
4154 || side_effects_p (target))))
4155 && TREE_CODE (exp) != ERROR_MARK
4156 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4157 but TARGET is not valid memory reference, TEMP will differ
4158 from TARGET although it is really the same location. */
4159 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4160 /* If there's nothing to copy, don't bother. Don't call expr_size
4161 unless necessary, because some front-ends (C++) expr_size-hook
4162 aborts on objects that are not supposed to be bit-copied or
4163 bit-initialized. */
4164 && expr_size (exp) != const0_rtx)
4166 if (GET_MODE (temp) != GET_MODE (target)
4167 && GET_MODE (temp) != VOIDmode)
4169 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4170 if (dont_return_target)
4172 /* In this case, we will return TEMP,
4173 so make sure it has the proper mode.
4174 But don't forget to store the value into TARGET. */
4175 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4176 emit_move_insn (target, temp);
4178 else
4179 convert_move (target, temp, unsignedp);
4182 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4184 /* Handle copying a string constant into an array. The string
4185 constant may be shorter than the array. So copy just the string's
4186 actual length, and clear the rest. First get the size of the data
4187 type of the string, which is actually the size of the target. */
4188 rtx size = expr_size (exp);
4190 if (GET_CODE (size) == CONST_INT
4191 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4192 emit_block_move (target, temp, size,
4193 (call_param_p
4194 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4195 else
4197 /* Compute the size of the data to copy from the string. */
4198 tree copy_size
4199 = size_binop (MIN_EXPR,
4200 make_tree (sizetype, size),
4201 size_int (TREE_STRING_LENGTH (exp)));
4202 rtx copy_size_rtx
4203 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4204 (call_param_p
4205 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4206 rtx label = 0;
4208 /* Copy that much. */
4209 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4210 TYPE_UNSIGNED (sizetype));
4211 emit_block_move (target, temp, copy_size_rtx,
4212 (call_param_p
4213 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4215 /* Figure out how much is left in TARGET that we have to clear.
4216 Do all calculations in ptr_mode. */
4217 if (GET_CODE (copy_size_rtx) == CONST_INT)
4219 size = plus_constant (size, -INTVAL (copy_size_rtx));
4220 target = adjust_address (target, BLKmode,
4221 INTVAL (copy_size_rtx));
4223 else
4225 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4226 copy_size_rtx, NULL_RTX, 0,
4227 OPTAB_LIB_WIDEN);
4229 #ifdef POINTERS_EXTEND_UNSIGNED
4230 if (GET_MODE (copy_size_rtx) != Pmode)
4231 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4232 TYPE_UNSIGNED (sizetype));
4233 #endif
4235 target = offset_address (target, copy_size_rtx,
4236 highest_pow2_factor (copy_size));
4237 label = gen_label_rtx ();
4238 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4239 GET_MODE (size), 0, label);
4242 if (size != const0_rtx)
4243 clear_storage (target, size);
4245 if (label)
4246 emit_label (label);
4249 /* Handle calls that return values in multiple non-contiguous locations.
4250 The Irix 6 ABI has examples of this. */
4251 else if (GET_CODE (target) == PARALLEL)
4252 emit_group_load (target, temp, TREE_TYPE (exp),
4253 int_size_in_bytes (TREE_TYPE (exp)));
4254 else if (GET_MODE (temp) == BLKmode)
4255 emit_block_move (target, temp, expr_size (exp),
4256 (call_param_p
4257 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4258 else
4260 temp = force_operand (temp, target);
4261 if (temp != target)
4262 emit_move_insn (target, temp);
4266 return NULL_RTX;
4269 /* Examine CTOR to discover:
4270 * how many scalar fields are set to nonzero values,
4271 and place it in *P_NZ_ELTS;
4272 * how many scalar fields are set to non-constant values,
4273 and place it in *P_NC_ELTS; and
4274 * how many scalar fields in total are in CTOR,
4275 and place it in *P_ELT_COUNT. */
4277 static void
4278 categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4279 HOST_WIDE_INT *p_nc_elts,
4280 HOST_WIDE_INT *p_elt_count)
4282 HOST_WIDE_INT nz_elts, nc_elts, elt_count;
4283 tree list;
4285 nz_elts = 0;
4286 nc_elts = 0;
4287 elt_count = 0;
4289 for (list = CONSTRUCTOR_ELTS (ctor); list; list = TREE_CHAIN (list))
4291 tree value = TREE_VALUE (list);
4292 tree purpose = TREE_PURPOSE (list);
4293 HOST_WIDE_INT mult;
4295 mult = 1;
4296 if (TREE_CODE (purpose) == RANGE_EXPR)
4298 tree lo_index = TREE_OPERAND (purpose, 0);
4299 tree hi_index = TREE_OPERAND (purpose, 1);
4301 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4302 mult = (tree_low_cst (hi_index, 1)
4303 - tree_low_cst (lo_index, 1) + 1);
4306 switch (TREE_CODE (value))
4308 case CONSTRUCTOR:
4310 HOST_WIDE_INT nz = 0, nc = 0, count = 0;
4311 categorize_ctor_elements_1 (value, &nz, &nc, &count);
4312 nz_elts += mult * nz;
4313 nc_elts += mult * nc;
4314 elt_count += mult * count;
4316 break;
4318 case INTEGER_CST:
4319 case REAL_CST:
4320 if (!initializer_zerop (value))
4321 nz_elts += mult;
4322 elt_count += mult;
4323 break;
4325 case STRING_CST:
4326 nz_elts += mult * TREE_STRING_LENGTH (value);
4327 elt_count += mult * TREE_STRING_LENGTH (value);
4328 break;
4330 case COMPLEX_CST:
4331 if (!initializer_zerop (TREE_REALPART (value)))
4332 nz_elts += mult;
4333 if (!initializer_zerop (TREE_IMAGPART (value)))
4334 nz_elts += mult;
4335 elt_count += mult;
4336 break;
4338 case VECTOR_CST:
4340 tree v;
4341 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4343 if (!initializer_zerop (TREE_VALUE (v)))
4344 nz_elts += mult;
4345 elt_count += mult;
4348 break;
4350 default:
4351 nz_elts += mult;
4352 elt_count += mult;
4353 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
4354 nc_elts += mult;
4355 break;
4359 *p_nz_elts += nz_elts;
4360 *p_nc_elts += nc_elts;
4361 *p_elt_count += elt_count;
4364 void
4365 categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4366 HOST_WIDE_INT *p_nc_elts,
4367 HOST_WIDE_INT *p_elt_count)
4369 *p_nz_elts = 0;
4370 *p_nc_elts = 0;
4371 *p_elt_count = 0;
4372 categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count);
4375 /* Count the number of scalars in TYPE. Return -1 on overflow or
4376 variable-sized. */
4378 HOST_WIDE_INT
4379 count_type_elements (tree type)
4381 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4382 switch (TREE_CODE (type))
4384 case ARRAY_TYPE:
4386 tree telts = array_type_nelts (type);
4387 if (telts && host_integerp (telts, 1))
4389 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4390 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type));
4391 if (n == 0)
4392 return 0;
4393 else if (max / n > m)
4394 return n * m;
4396 return -1;
4399 case RECORD_TYPE:
4401 HOST_WIDE_INT n = 0, t;
4402 tree f;
4404 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4405 if (TREE_CODE (f) == FIELD_DECL)
4407 t = count_type_elements (TREE_TYPE (f));
4408 if (t < 0)
4409 return -1;
4410 n += t;
4413 return n;
4416 case UNION_TYPE:
4417 case QUAL_UNION_TYPE:
4419 /* Ho hum. How in the world do we guess here? Clearly it isn't
4420 right to count the fields. Guess based on the number of words. */
4421 HOST_WIDE_INT n = int_size_in_bytes (type);
4422 if (n < 0)
4423 return -1;
4424 return n / UNITS_PER_WORD;
4427 case COMPLEX_TYPE:
4428 return 2;
4430 case VECTOR_TYPE:
4431 return TYPE_VECTOR_SUBPARTS (type);
4433 case INTEGER_TYPE:
4434 case REAL_TYPE:
4435 case ENUMERAL_TYPE:
4436 case BOOLEAN_TYPE:
4437 case CHAR_TYPE:
4438 case POINTER_TYPE:
4439 case OFFSET_TYPE:
4440 case REFERENCE_TYPE:
4441 return 1;
4443 case VOID_TYPE:
4444 case METHOD_TYPE:
4445 case FILE_TYPE:
4446 case FUNCTION_TYPE:
4447 case LANG_TYPE:
4448 default:
4449 gcc_unreachable ();
4453 /* Return 1 if EXP contains mostly (3/4) zeros. */
4455 static int
4456 mostly_zeros_p (tree exp)
4458 if (TREE_CODE (exp) == CONSTRUCTOR)
4461 HOST_WIDE_INT nz_elts, nc_elts, count, elts;
4463 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count);
4464 elts = count_type_elements (TREE_TYPE (exp));
4466 return nz_elts < elts / 4;
4469 return initializer_zerop (exp);
4472 /* Helper function for store_constructor.
4473 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4474 TYPE is the type of the CONSTRUCTOR, not the element type.
4475 CLEARED is as for store_constructor.
4476 ALIAS_SET is the alias set to use for any stores.
4478 This provides a recursive shortcut back to store_constructor when it isn't
4479 necessary to go through store_field. This is so that we can pass through
4480 the cleared field to let store_constructor know that we may not have to
4481 clear a substructure if the outer structure has already been cleared. */
4483 static void
4484 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4485 HOST_WIDE_INT bitpos, enum machine_mode mode,
4486 tree exp, tree type, int cleared, int alias_set)
4488 if (TREE_CODE (exp) == CONSTRUCTOR
4489 /* We can only call store_constructor recursively if the size and
4490 bit position are on a byte boundary. */
4491 && bitpos % BITS_PER_UNIT == 0
4492 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4493 /* If we have a nonzero bitpos for a register target, then we just
4494 let store_field do the bitfield handling. This is unlikely to
4495 generate unnecessary clear instructions anyways. */
4496 && (bitpos == 0 || MEM_P (target)))
4498 if (MEM_P (target))
4499 target
4500 = adjust_address (target,
4501 GET_MODE (target) == BLKmode
4502 || 0 != (bitpos
4503 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4504 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4507 /* Update the alias set, if required. */
4508 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4509 && MEM_ALIAS_SET (target) != 0)
4511 target = copy_rtx (target);
4512 set_mem_alias_set (target, alias_set);
4515 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4517 else
4518 store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
4521 /* Store the value of constructor EXP into the rtx TARGET.
4522 TARGET is either a REG or a MEM; we know it cannot conflict, since
4523 safe_from_p has been called.
4524 CLEARED is true if TARGET is known to have been zero'd.
4525 SIZE is the number of bytes of TARGET we are allowed to modify: this
4526 may not be the same as the size of EXP if we are assigning to a field
4527 which has been packed to exclude padding bits. */
4529 static void
4530 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4532 tree type = TREE_TYPE (exp);
4533 #ifdef WORD_REGISTER_OPERATIONS
4534 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4535 #endif
4537 switch (TREE_CODE (type))
4539 case RECORD_TYPE:
4540 case UNION_TYPE:
4541 case QUAL_UNION_TYPE:
4543 tree elt;
4545 /* If size is zero or the target is already cleared, do nothing. */
4546 if (size == 0 || cleared)
4547 cleared = 1;
4548 /* We either clear the aggregate or indicate the value is dead. */
4549 else if ((TREE_CODE (type) == UNION_TYPE
4550 || TREE_CODE (type) == QUAL_UNION_TYPE)
4551 && ! CONSTRUCTOR_ELTS (exp))
4552 /* If the constructor is empty, clear the union. */
4554 clear_storage (target, expr_size (exp));
4555 cleared = 1;
4558 /* If we are building a static constructor into a register,
4559 set the initial value as zero so we can fold the value into
4560 a constant. But if more than one register is involved,
4561 this probably loses. */
4562 else if (REG_P (target) && TREE_STATIC (exp)
4563 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4565 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4566 cleared = 1;
4569 /* If the constructor has fewer fields than the structure or
4570 if we are initializing the structure to mostly zeros, clear
4571 the whole structure first. Don't do this if TARGET is a
4572 register whose mode size isn't equal to SIZE since
4573 clear_storage can't handle this case. */
4574 else if (size > 0
4575 && ((list_length (CONSTRUCTOR_ELTS (exp))
4576 != fields_length (type))
4577 || mostly_zeros_p (exp))
4578 && (!REG_P (target)
4579 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4580 == size)))
4582 clear_storage (target, GEN_INT (size));
4583 cleared = 1;
4586 if (! cleared)
4587 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4589 /* Store each element of the constructor into the
4590 corresponding field of TARGET. */
4592 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
4594 tree field = TREE_PURPOSE (elt);
4595 tree value = TREE_VALUE (elt);
4596 enum machine_mode mode;
4597 HOST_WIDE_INT bitsize;
4598 HOST_WIDE_INT bitpos = 0;
4599 tree offset;
4600 rtx to_rtx = target;
4602 /* Just ignore missing fields. We cleared the whole
4603 structure, above, if any fields are missing. */
4604 if (field == 0)
4605 continue;
4607 if (cleared && initializer_zerop (value))
4608 continue;
4610 if (host_integerp (DECL_SIZE (field), 1))
4611 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4612 else
4613 bitsize = -1;
4615 mode = DECL_MODE (field);
4616 if (DECL_BIT_FIELD (field))
4617 mode = VOIDmode;
4619 offset = DECL_FIELD_OFFSET (field);
4620 if (host_integerp (offset, 0)
4621 && host_integerp (bit_position (field), 0))
4623 bitpos = int_bit_position (field);
4624 offset = 0;
4626 else
4627 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4629 if (offset)
4631 rtx offset_rtx;
4633 offset
4634 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4635 make_tree (TREE_TYPE (exp),
4636 target));
4638 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
4639 gcc_assert (MEM_P (to_rtx));
4641 #ifdef POINTERS_EXTEND_UNSIGNED
4642 if (GET_MODE (offset_rtx) != Pmode)
4643 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4644 #else
4645 if (GET_MODE (offset_rtx) != ptr_mode)
4646 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4647 #endif
4649 to_rtx = offset_address (to_rtx, offset_rtx,
4650 highest_pow2_factor (offset));
4653 #ifdef WORD_REGISTER_OPERATIONS
4654 /* If this initializes a field that is smaller than a
4655 word, at the start of a word, try to widen it to a full
4656 word. This special case allows us to output C++ member
4657 function initializations in a form that the optimizers
4658 can understand. */
4659 if (REG_P (target)
4660 && bitsize < BITS_PER_WORD
4661 && bitpos % BITS_PER_WORD == 0
4662 && GET_MODE_CLASS (mode) == MODE_INT
4663 && TREE_CODE (value) == INTEGER_CST
4664 && exp_size >= 0
4665 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
4667 tree type = TREE_TYPE (value);
4669 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4671 type = lang_hooks.types.type_for_size
4672 (BITS_PER_WORD, TYPE_UNSIGNED (type));
4673 value = convert (type, value);
4676 if (BYTES_BIG_ENDIAN)
4677 value
4678 = fold (build2 (LSHIFT_EXPR, type, value,
4679 build_int_cst (NULL_TREE,
4680 BITS_PER_WORD - bitsize)));
4681 bitsize = BITS_PER_WORD;
4682 mode = word_mode;
4684 #endif
4686 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
4687 && DECL_NONADDRESSABLE_P (field))
4689 to_rtx = copy_rtx (to_rtx);
4690 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4693 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4694 value, type, cleared,
4695 get_alias_set (TREE_TYPE (field)));
4697 break;
4699 case ARRAY_TYPE:
4701 tree elt;
4702 int i;
4703 int need_to_clear;
4704 tree domain;
4705 tree elttype = TREE_TYPE (type);
4706 int const_bounds_p;
4707 HOST_WIDE_INT minelt = 0;
4708 HOST_WIDE_INT maxelt = 0;
4710 domain = TYPE_DOMAIN (type);
4711 const_bounds_p = (TYPE_MIN_VALUE (domain)
4712 && TYPE_MAX_VALUE (domain)
4713 && host_integerp (TYPE_MIN_VALUE (domain), 0)
4714 && host_integerp (TYPE_MAX_VALUE (domain), 0));
4716 /* If we have constant bounds for the range of the type, get them. */
4717 if (const_bounds_p)
4719 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
4720 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
4723 /* If the constructor has fewer elements than the array, clear
4724 the whole array first. Similarly if this is static
4725 constructor of a non-BLKmode object. */
4726 if (cleared)
4727 need_to_clear = 0;
4728 else if (REG_P (target) && TREE_STATIC (exp))
4729 need_to_clear = 1;
4730 else
4732 HOST_WIDE_INT count = 0, zero_count = 0;
4733 need_to_clear = ! const_bounds_p;
4735 /* This loop is a more accurate version of the loop in
4736 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4737 is also needed to check for missing elements. */
4738 for (elt = CONSTRUCTOR_ELTS (exp);
4739 elt != NULL_TREE && ! need_to_clear;
4740 elt = TREE_CHAIN (elt))
4742 tree index = TREE_PURPOSE (elt);
4743 HOST_WIDE_INT this_node_count;
4745 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4747 tree lo_index = TREE_OPERAND (index, 0);
4748 tree hi_index = TREE_OPERAND (index, 1);
4750 if (! host_integerp (lo_index, 1)
4751 || ! host_integerp (hi_index, 1))
4753 need_to_clear = 1;
4754 break;
4757 this_node_count = (tree_low_cst (hi_index, 1)
4758 - tree_low_cst (lo_index, 1) + 1);
4760 else
4761 this_node_count = 1;
4763 count += this_node_count;
4764 if (mostly_zeros_p (TREE_VALUE (elt)))
4765 zero_count += this_node_count;
4768 /* Clear the entire array first if there are any missing
4769 elements, or if the incidence of zero elements is >=
4770 75%. */
4771 if (! need_to_clear
4772 && (count < maxelt - minelt + 1
4773 || 4 * zero_count >= 3 * count))
4774 need_to_clear = 1;
4777 if (need_to_clear && size > 0)
4779 if (REG_P (target))
4780 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4781 else
4782 clear_storage (target, GEN_INT (size));
4783 cleared = 1;
4786 if (!cleared && REG_P (target))
4787 /* Inform later passes that the old value is dead. */
4788 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4790 /* Store each element of the constructor into the
4791 corresponding element of TARGET, determined by counting the
4792 elements. */
4793 for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
4794 elt;
4795 elt = TREE_CHAIN (elt), i++)
4797 enum machine_mode mode;
4798 HOST_WIDE_INT bitsize;
4799 HOST_WIDE_INT bitpos;
4800 int unsignedp;
4801 tree value = TREE_VALUE (elt);
4802 tree index = TREE_PURPOSE (elt);
4803 rtx xtarget = target;
4805 if (cleared && initializer_zerop (value))
4806 continue;
4808 unsignedp = TYPE_UNSIGNED (elttype);
4809 mode = TYPE_MODE (elttype);
4810 if (mode == BLKmode)
4811 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
4812 ? tree_low_cst (TYPE_SIZE (elttype), 1)
4813 : -1);
4814 else
4815 bitsize = GET_MODE_BITSIZE (mode);
4817 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4819 tree lo_index = TREE_OPERAND (index, 0);
4820 tree hi_index = TREE_OPERAND (index, 1);
4821 rtx index_r, pos_rtx;
4822 HOST_WIDE_INT lo, hi, count;
4823 tree position;
4825 /* If the range is constant and "small", unroll the loop. */
4826 if (const_bounds_p
4827 && host_integerp (lo_index, 0)
4828 && host_integerp (hi_index, 0)
4829 && (lo = tree_low_cst (lo_index, 0),
4830 hi = tree_low_cst (hi_index, 0),
4831 count = hi - lo + 1,
4832 (!MEM_P (target)
4833 || count <= 2
4834 || (host_integerp (TYPE_SIZE (elttype), 1)
4835 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
4836 <= 40 * 8)))))
4838 lo -= minelt; hi -= minelt;
4839 for (; lo <= hi; lo++)
4841 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
4843 if (MEM_P (target)
4844 && !MEM_KEEP_ALIAS_SET_P (target)
4845 && TREE_CODE (type) == ARRAY_TYPE
4846 && TYPE_NONALIASED_COMPONENT (type))
4848 target = copy_rtx (target);
4849 MEM_KEEP_ALIAS_SET_P (target) = 1;
4852 store_constructor_field
4853 (target, bitsize, bitpos, mode, value, type, cleared,
4854 get_alias_set (elttype));
4857 else
4859 rtx loop_start = gen_label_rtx ();
4860 rtx loop_end = gen_label_rtx ();
4861 tree exit_cond;
4863 expand_expr (hi_index, NULL_RTX, VOIDmode, 0);
4864 unsignedp = TYPE_UNSIGNED (domain);
4866 index = build_decl (VAR_DECL, NULL_TREE, domain);
4868 index_r
4869 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
4870 &unsignedp, 0));
4871 SET_DECL_RTL (index, index_r);
4872 store_expr (lo_index, index_r, 0);
4874 /* Build the head of the loop. */
4875 do_pending_stack_adjust ();
4876 emit_label (loop_start);
4878 /* Assign value to element index. */
4879 position
4880 = convert (ssizetype,
4881 fold (build2 (MINUS_EXPR, TREE_TYPE (index),
4882 index, TYPE_MIN_VALUE (domain))));
4883 position = size_binop (MULT_EXPR, position,
4884 convert (ssizetype,
4885 TYPE_SIZE_UNIT (elttype)));
4887 pos_rtx = expand_expr (position, 0, VOIDmode, 0);
4888 xtarget = offset_address (target, pos_rtx,
4889 highest_pow2_factor (position));
4890 xtarget = adjust_address (xtarget, mode, 0);
4891 if (TREE_CODE (value) == CONSTRUCTOR)
4892 store_constructor (value, xtarget, cleared,
4893 bitsize / BITS_PER_UNIT);
4894 else
4895 store_expr (value, xtarget, 0);
4897 /* Generate a conditional jump to exit the loop. */
4898 exit_cond = build2 (LT_EXPR, integer_type_node,
4899 index, hi_index);
4900 jumpif (exit_cond, loop_end);
4902 /* Update the loop counter, and jump to the head of
4903 the loop. */
4904 expand_assignment (index,
4905 build2 (PLUS_EXPR, TREE_TYPE (index),
4906 index, integer_one_node));
4908 emit_jump (loop_start);
4910 /* Build the end of the loop. */
4911 emit_label (loop_end);
4914 else if ((index != 0 && ! host_integerp (index, 0))
4915 || ! host_integerp (TYPE_SIZE (elttype), 1))
4917 tree position;
4919 if (index == 0)
4920 index = ssize_int (1);
4922 if (minelt)
4923 index = fold_convert (ssizetype,
4924 fold (build2 (MINUS_EXPR,
4925 TREE_TYPE (index),
4926 index,
4927 TYPE_MIN_VALUE (domain))));
4929 position = size_binop (MULT_EXPR, index,
4930 convert (ssizetype,
4931 TYPE_SIZE_UNIT (elttype)));
4932 xtarget = offset_address (target,
4933 expand_expr (position, 0, VOIDmode, 0),
4934 highest_pow2_factor (position));
4935 xtarget = adjust_address (xtarget, mode, 0);
4936 store_expr (value, xtarget, 0);
4938 else
4940 if (index != 0)
4941 bitpos = ((tree_low_cst (index, 0) - minelt)
4942 * tree_low_cst (TYPE_SIZE (elttype), 1));
4943 else
4944 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
4946 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
4947 && TREE_CODE (type) == ARRAY_TYPE
4948 && TYPE_NONALIASED_COMPONENT (type))
4950 target = copy_rtx (target);
4951 MEM_KEEP_ALIAS_SET_P (target) = 1;
4953 store_constructor_field (target, bitsize, bitpos, mode, value,
4954 type, cleared, get_alias_set (elttype));
4957 break;
4960 case VECTOR_TYPE:
4962 tree elt;
4963 int i;
4964 int need_to_clear;
4965 int icode = 0;
4966 tree elttype = TREE_TYPE (type);
4967 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
4968 enum machine_mode eltmode = TYPE_MODE (elttype);
4969 HOST_WIDE_INT bitsize;
4970 HOST_WIDE_INT bitpos;
4971 rtvec vector = NULL;
4972 unsigned n_elts;
4974 gcc_assert (eltmode != BLKmode);
4976 n_elts = TYPE_VECTOR_SUBPARTS (type);
4977 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
4979 enum machine_mode mode = GET_MODE (target);
4981 icode = (int) vec_init_optab->handlers[mode].insn_code;
4982 if (icode != CODE_FOR_nothing)
4984 unsigned int i;
4986 vector = rtvec_alloc (n_elts);
4987 for (i = 0; i < n_elts; i++)
4988 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
4992 /* If the constructor has fewer elements than the vector,
4993 clear the whole array first. Similarly if this is static
4994 constructor of a non-BLKmode object. */
4995 if (cleared)
4996 need_to_clear = 0;
4997 else if (REG_P (target) && TREE_STATIC (exp))
4998 need_to_clear = 1;
4999 else
5001 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5003 for (elt = CONSTRUCTOR_ELTS (exp);
5004 elt != NULL_TREE;
5005 elt = TREE_CHAIN (elt))
5007 int n_elts_here = tree_low_cst
5008 (int_const_binop (TRUNC_DIV_EXPR,
5009 TYPE_SIZE (TREE_TYPE (TREE_VALUE (elt))),
5010 TYPE_SIZE (elttype), 0), 1);
5012 count += n_elts_here;
5013 if (mostly_zeros_p (TREE_VALUE (elt)))
5014 zero_count += n_elts_here;
5017 /* Clear the entire vector first if there are any missing elements,
5018 or if the incidence of zero elements is >= 75%. */
5019 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5022 if (need_to_clear && size > 0 && !vector)
5024 if (REG_P (target))
5025 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5026 else
5027 clear_storage (target, GEN_INT (size));
5028 cleared = 1;
5031 if (!cleared && REG_P (target))
5032 /* Inform later passes that the old value is dead. */
5033 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5035 /* Store each element of the constructor into the corresponding
5036 element of TARGET, determined by counting the elements. */
5037 for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
5038 elt;
5039 elt = TREE_CHAIN (elt), i += bitsize / elt_size)
5041 tree value = TREE_VALUE (elt);
5042 tree index = TREE_PURPOSE (elt);
5043 HOST_WIDE_INT eltpos;
5045 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5046 if (cleared && initializer_zerop (value))
5047 continue;
5049 if (index != 0)
5050 eltpos = tree_low_cst (index, 1);
5051 else
5052 eltpos = i;
5054 if (vector)
5056 /* Vector CONSTRUCTORs should only be built from smaller
5057 vectors in the case of BLKmode vectors. */
5058 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5059 RTVEC_ELT (vector, eltpos)
5060 = expand_expr (value, NULL_RTX, VOIDmode, 0);
5062 else
5064 enum machine_mode value_mode =
5065 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5066 ? TYPE_MODE (TREE_TYPE (value))
5067 : eltmode;
5068 bitpos = eltpos * elt_size;
5069 store_constructor_field (target, bitsize, bitpos,
5070 value_mode, value, type,
5071 cleared, get_alias_set (elttype));
5075 if (vector)
5076 emit_insn (GEN_FCN (icode)
5077 (target,
5078 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5079 break;
5082 default:
5083 gcc_unreachable ();
5087 /* Store the value of EXP (an expression tree)
5088 into a subfield of TARGET which has mode MODE and occupies
5089 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5090 If MODE is VOIDmode, it means that we are storing into a bit-field.
5092 Always return const0_rtx unless we have something particular to
5093 return.
5095 TYPE is the type of the underlying object,
5097 ALIAS_SET is the alias set for the destination. This value will
5098 (in general) be different from that for TARGET, since TARGET is a
5099 reference to the containing structure. */
5101 static rtx
5102 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5103 enum machine_mode mode, tree exp, tree type, int alias_set)
5105 HOST_WIDE_INT width_mask = 0;
5107 if (TREE_CODE (exp) == ERROR_MARK)
5108 return const0_rtx;
5110 /* If we have nothing to store, do nothing unless the expression has
5111 side-effects. */
5112 if (bitsize == 0)
5113 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5114 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5115 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5117 /* If we are storing into an unaligned field of an aligned union that is
5118 in a register, we may have the mode of TARGET being an integer mode but
5119 MODE == BLKmode. In that case, get an aligned object whose size and
5120 alignment are the same as TARGET and store TARGET into it (we can avoid
5121 the store if the field being stored is the entire width of TARGET). Then
5122 call ourselves recursively to store the field into a BLKmode version of
5123 that object. Finally, load from the object into TARGET. This is not
5124 very efficient in general, but should only be slightly more expensive
5125 than the otherwise-required unaligned accesses. Perhaps this can be
5126 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5127 twice, once with emit_move_insn and once via store_field. */
5129 if (mode == BLKmode
5130 && (REG_P (target) || GET_CODE (target) == SUBREG))
5132 rtx object = assign_temp (type, 0, 1, 1);
5133 rtx blk_object = adjust_address (object, BLKmode, 0);
5135 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5136 emit_move_insn (object, target);
5138 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
5140 emit_move_insn (target, object);
5142 /* We want to return the BLKmode version of the data. */
5143 return blk_object;
5146 if (GET_CODE (target) == CONCAT)
5148 /* We're storing into a struct containing a single __complex. */
5150 gcc_assert (!bitpos);
5151 return store_expr (exp, target, 0);
5154 /* If the structure is in a register or if the component
5155 is a bit field, we cannot use addressing to access it.
5156 Use bit-field techniques or SUBREG to store in it. */
5158 if (mode == VOIDmode
5159 || (mode != BLKmode && ! direct_store[(int) mode]
5160 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5161 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5162 || REG_P (target)
5163 || GET_CODE (target) == SUBREG
5164 /* If the field isn't aligned enough to store as an ordinary memref,
5165 store it as a bit field. */
5166 || (mode != BLKmode
5167 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5168 || bitpos % GET_MODE_ALIGNMENT (mode))
5169 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5170 || (bitpos % BITS_PER_UNIT != 0)))
5171 /* If the RHS and field are a constant size and the size of the
5172 RHS isn't the same size as the bitfield, we must use bitfield
5173 operations. */
5174 || (bitsize >= 0
5175 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5176 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5178 rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
5180 /* If BITSIZE is narrower than the size of the type of EXP
5181 we will be narrowing TEMP. Normally, what's wanted are the
5182 low-order bits. However, if EXP's type is a record and this is
5183 big-endian machine, we want the upper BITSIZE bits. */
5184 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5185 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5186 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5187 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5188 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5189 - bitsize),
5190 NULL_RTX, 1);
5192 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5193 MODE. */
5194 if (mode != VOIDmode && mode != BLKmode
5195 && mode != TYPE_MODE (TREE_TYPE (exp)))
5196 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5198 /* If the modes of TARGET and TEMP are both BLKmode, both
5199 must be in memory and BITPOS must be aligned on a byte
5200 boundary. If so, we simply do a block copy. */
5201 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5203 gcc_assert (MEM_P (target) && MEM_P (temp)
5204 && !(bitpos % BITS_PER_UNIT));
5206 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5207 emit_block_move (target, temp,
5208 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5209 / BITS_PER_UNIT),
5210 BLOCK_OP_NORMAL);
5212 return const0_rtx;
5215 /* Store the value in the bitfield. */
5216 store_bit_field (target, bitsize, bitpos, mode, temp);
5218 return const0_rtx;
5220 else
5222 /* Now build a reference to just the desired component. */
5223 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5225 if (to_rtx == target)
5226 to_rtx = copy_rtx (to_rtx);
5228 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5229 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5230 set_mem_alias_set (to_rtx, alias_set);
5232 return store_expr (exp, to_rtx, 0);
5236 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5237 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5238 codes and find the ultimate containing object, which we return.
5240 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5241 bit position, and *PUNSIGNEDP to the signedness of the field.
5242 If the position of the field is variable, we store a tree
5243 giving the variable offset (in units) in *POFFSET.
5244 This offset is in addition to the bit position.
5245 If the position is not variable, we store 0 in *POFFSET.
5247 If any of the extraction expressions is volatile,
5248 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5250 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5251 is a mode that can be used to access the field. In that case, *PBITSIZE
5252 is redundant.
5254 If the field describes a variable-sized object, *PMODE is set to
5255 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5256 this case, but the address of the object can be found.
5258 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5259 look through nodes that serve as markers of a greater alignment than
5260 the one that can be deduced from the expression. These nodes make it
5261 possible for front-ends to prevent temporaries from being created by
5262 the middle-end on alignment considerations. For that purpose, the
5263 normal operating mode at high-level is to always pass FALSE so that
5264 the ultimate containing object is really returned; moreover, the
5265 associated predicate handled_component_p will always return TRUE
5266 on these nodes, thus indicating that they are essentially handled
5267 by get_inner_reference. TRUE should only be passed when the caller
5268 is scanning the expression in order to build another representation
5269 and specifically knows how to handle these nodes; as such, this is
5270 the normal operating mode in the RTL expanders. */
5272 tree
5273 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5274 HOST_WIDE_INT *pbitpos, tree *poffset,
5275 enum machine_mode *pmode, int *punsignedp,
5276 int *pvolatilep, bool keep_aligning)
5278 tree size_tree = 0;
5279 enum machine_mode mode = VOIDmode;
5280 tree offset = size_zero_node;
5281 tree bit_offset = bitsize_zero_node;
5282 tree tem;
5284 /* First get the mode, signedness, and size. We do this from just the
5285 outermost expression. */
5286 if (TREE_CODE (exp) == COMPONENT_REF)
5288 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5289 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5290 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5292 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5294 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5296 size_tree = TREE_OPERAND (exp, 1);
5297 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5299 else
5301 mode = TYPE_MODE (TREE_TYPE (exp));
5302 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5304 if (mode == BLKmode)
5305 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5306 else
5307 *pbitsize = GET_MODE_BITSIZE (mode);
5310 if (size_tree != 0)
5312 if (! host_integerp (size_tree, 1))
5313 mode = BLKmode, *pbitsize = -1;
5314 else
5315 *pbitsize = tree_low_cst (size_tree, 1);
5318 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5319 and find the ultimate containing object. */
5320 while (1)
5322 switch (TREE_CODE (exp))
5324 case BIT_FIELD_REF:
5325 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5326 TREE_OPERAND (exp, 2));
5327 break;
5329 case COMPONENT_REF:
5331 tree field = TREE_OPERAND (exp, 1);
5332 tree this_offset = component_ref_field_offset (exp);
5334 /* If this field hasn't been filled in yet, don't go past it.
5335 This should only happen when folding expressions made during
5336 type construction. */
5337 if (this_offset == 0)
5338 break;
5340 offset = size_binop (PLUS_EXPR, offset, this_offset);
5341 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5342 DECL_FIELD_BIT_OFFSET (field));
5344 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5346 break;
5348 case ARRAY_REF:
5349 case ARRAY_RANGE_REF:
5351 tree index = TREE_OPERAND (exp, 1);
5352 tree low_bound = array_ref_low_bound (exp);
5353 tree unit_size = array_ref_element_size (exp);
5355 /* We assume all arrays have sizes that are a multiple of a byte.
5356 First subtract the lower bound, if any, in the type of the
5357 index, then convert to sizetype and multiply by the size of
5358 the array element. */
5359 if (! integer_zerop (low_bound))
5360 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
5361 index, low_bound));
5363 offset = size_binop (PLUS_EXPR, offset,
5364 size_binop (MULT_EXPR,
5365 convert (sizetype, index),
5366 unit_size));
5368 break;
5370 case REALPART_EXPR:
5371 break;
5373 case IMAGPART_EXPR:
5374 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5375 bitsize_int (*pbitsize));
5376 break;
5378 case VIEW_CONVERT_EXPR:
5379 if (keep_aligning && STRICT_ALIGNMENT
5380 && (TYPE_ALIGN (TREE_TYPE (exp))
5381 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5382 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5383 < BIGGEST_ALIGNMENT)
5384 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5385 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5386 goto done;
5387 break;
5389 default:
5390 goto done;
5393 /* If any reference in the chain is volatile, the effect is volatile. */
5394 if (TREE_THIS_VOLATILE (exp))
5395 *pvolatilep = 1;
5397 exp = TREE_OPERAND (exp, 0);
5399 done:
5401 /* If OFFSET is constant, see if we can return the whole thing as a
5402 constant bit position. Otherwise, split it up. */
5403 if (host_integerp (offset, 0)
5404 && 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset),
5405 bitsize_unit_node))
5406 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5407 && host_integerp (tem, 0))
5408 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5409 else
5410 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5412 *pmode = mode;
5413 return exp;
5416 /* Return a tree of sizetype representing the size, in bytes, of the element
5417 of EXP, an ARRAY_REF. */
5419 tree
5420 array_ref_element_size (tree exp)
5422 tree aligned_size = TREE_OPERAND (exp, 3);
5423 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5425 /* If a size was specified in the ARRAY_REF, it's the size measured
5426 in alignment units of the element type. So multiply by that value. */
5427 if (aligned_size)
5429 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5430 sizetype from another type of the same width and signedness. */
5431 if (TREE_TYPE (aligned_size) != sizetype)
5432 aligned_size = fold_convert (sizetype, aligned_size);
5433 return size_binop (MULT_EXPR, aligned_size,
5434 size_int (TYPE_ALIGN_UNIT (elmt_type)));
5437 /* Otherwise, take the size from that of the element type. Substitute
5438 any PLACEHOLDER_EXPR that we have. */
5439 else
5440 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5443 /* Return a tree representing the lower bound of the array mentioned in
5444 EXP, an ARRAY_REF. */
5446 tree
5447 array_ref_low_bound (tree exp)
5449 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5451 /* If a lower bound is specified in EXP, use it. */
5452 if (TREE_OPERAND (exp, 2))
5453 return TREE_OPERAND (exp, 2);
5455 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5456 substituting for a PLACEHOLDER_EXPR as needed. */
5457 if (domain_type && TYPE_MIN_VALUE (domain_type))
5458 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5460 /* Otherwise, return a zero of the appropriate type. */
5461 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5464 /* Return a tree representing the upper bound of the array mentioned in
5465 EXP, an ARRAY_REF. */
5467 tree
5468 array_ref_up_bound (tree exp)
5470 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5472 /* If there is a domain type and it has an upper bound, use it, substituting
5473 for a PLACEHOLDER_EXPR as needed. */
5474 if (domain_type && TYPE_MAX_VALUE (domain_type))
5475 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5477 /* Otherwise fail. */
5478 return NULL_TREE;
5481 /* Return a tree representing the offset, in bytes, of the field referenced
5482 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5484 tree
5485 component_ref_field_offset (tree exp)
5487 tree aligned_offset = TREE_OPERAND (exp, 2);
5488 tree field = TREE_OPERAND (exp, 1);
5490 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5491 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5492 value. */
5493 if (aligned_offset)
5495 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5496 sizetype from another type of the same width and signedness. */
5497 if (TREE_TYPE (aligned_offset) != sizetype)
5498 aligned_offset = fold_convert (sizetype, aligned_offset);
5499 return size_binop (MULT_EXPR, aligned_offset,
5500 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5503 /* Otherwise, take the offset from that of the field. Substitute
5504 any PLACEHOLDER_EXPR that we have. */
5505 else
5506 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5509 /* Return 1 if T is an expression that get_inner_reference handles. */
5512 handled_component_p (tree t)
5514 switch (TREE_CODE (t))
5516 case BIT_FIELD_REF:
5517 case COMPONENT_REF:
5518 case ARRAY_REF:
5519 case ARRAY_RANGE_REF:
5520 case VIEW_CONVERT_EXPR:
5521 case REALPART_EXPR:
5522 case IMAGPART_EXPR:
5523 return 1;
5525 default:
5526 return 0;
5530 /* Given an rtx VALUE that may contain additions and multiplications, return
5531 an equivalent value that just refers to a register, memory, or constant.
5532 This is done by generating instructions to perform the arithmetic and
5533 returning a pseudo-register containing the value.
5535 The returned value may be a REG, SUBREG, MEM or constant. */
5538 force_operand (rtx value, rtx target)
5540 rtx op1, op2;
5541 /* Use subtarget as the target for operand 0 of a binary operation. */
5542 rtx subtarget = get_subtarget (target);
5543 enum rtx_code code = GET_CODE (value);
5545 /* Check for subreg applied to an expression produced by loop optimizer. */
5546 if (code == SUBREG
5547 && !REG_P (SUBREG_REG (value))
5548 && !MEM_P (SUBREG_REG (value)))
5550 value = simplify_gen_subreg (GET_MODE (value),
5551 force_reg (GET_MODE (SUBREG_REG (value)),
5552 force_operand (SUBREG_REG (value),
5553 NULL_RTX)),
5554 GET_MODE (SUBREG_REG (value)),
5555 SUBREG_BYTE (value));
5556 code = GET_CODE (value);
5559 /* Check for a PIC address load. */
5560 if ((code == PLUS || code == MINUS)
5561 && XEXP (value, 0) == pic_offset_table_rtx
5562 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5563 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5564 || GET_CODE (XEXP (value, 1)) == CONST))
5566 if (!subtarget)
5567 subtarget = gen_reg_rtx (GET_MODE (value));
5568 emit_move_insn (subtarget, value);
5569 return subtarget;
5572 if (code == ZERO_EXTEND || code == SIGN_EXTEND)
5574 if (!target)
5575 target = gen_reg_rtx (GET_MODE (value));
5576 convert_move (target, force_operand (XEXP (value, 0), NULL),
5577 code == ZERO_EXTEND);
5578 return target;
5581 if (ARITHMETIC_P (value))
5583 op2 = XEXP (value, 1);
5584 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
5585 subtarget = 0;
5586 if (code == MINUS && GET_CODE (op2) == CONST_INT)
5588 code = PLUS;
5589 op2 = negate_rtx (GET_MODE (value), op2);
5592 /* Check for an addition with OP2 a constant integer and our first
5593 operand a PLUS of a virtual register and something else. In that
5594 case, we want to emit the sum of the virtual register and the
5595 constant first and then add the other value. This allows virtual
5596 register instantiation to simply modify the constant rather than
5597 creating another one around this addition. */
5598 if (code == PLUS && GET_CODE (op2) == CONST_INT
5599 && GET_CODE (XEXP (value, 0)) == PLUS
5600 && REG_P (XEXP (XEXP (value, 0), 0))
5601 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5602 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5604 rtx temp = expand_simple_binop (GET_MODE (value), code,
5605 XEXP (XEXP (value, 0), 0), op2,
5606 subtarget, 0, OPTAB_LIB_WIDEN);
5607 return expand_simple_binop (GET_MODE (value), code, temp,
5608 force_operand (XEXP (XEXP (value,
5609 0), 1), 0),
5610 target, 0, OPTAB_LIB_WIDEN);
5613 op1 = force_operand (XEXP (value, 0), subtarget);
5614 op2 = force_operand (op2, NULL_RTX);
5615 switch (code)
5617 case MULT:
5618 return expand_mult (GET_MODE (value), op1, op2, target, 1);
5619 case DIV:
5620 if (!INTEGRAL_MODE_P (GET_MODE (value)))
5621 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5622 target, 1, OPTAB_LIB_WIDEN);
5623 else
5624 return expand_divmod (0,
5625 FLOAT_MODE_P (GET_MODE (value))
5626 ? RDIV_EXPR : TRUNC_DIV_EXPR,
5627 GET_MODE (value), op1, op2, target, 0);
5628 break;
5629 case MOD:
5630 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5631 target, 0);
5632 break;
5633 case UDIV:
5634 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
5635 target, 1);
5636 break;
5637 case UMOD:
5638 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5639 target, 1);
5640 break;
5641 case ASHIFTRT:
5642 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5643 target, 0, OPTAB_LIB_WIDEN);
5644 break;
5645 default:
5646 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5647 target, 1, OPTAB_LIB_WIDEN);
5650 if (UNARY_P (value))
5652 op1 = force_operand (XEXP (value, 0), NULL_RTX);
5653 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
5656 #ifdef INSN_SCHEDULING
5657 /* On machines that have insn scheduling, we want all memory reference to be
5658 explicit, so we need to deal with such paradoxical SUBREGs. */
5659 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
5660 && (GET_MODE_SIZE (GET_MODE (value))
5661 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
5662 value
5663 = simplify_gen_subreg (GET_MODE (value),
5664 force_reg (GET_MODE (SUBREG_REG (value)),
5665 force_operand (SUBREG_REG (value),
5666 NULL_RTX)),
5667 GET_MODE (SUBREG_REG (value)),
5668 SUBREG_BYTE (value));
5669 #endif
5671 return value;
5674 /* Subroutine of expand_expr: return nonzero iff there is no way that
5675 EXP can reference X, which is being modified. TOP_P is nonzero if this
5676 call is going to be used to determine whether we need a temporary
5677 for EXP, as opposed to a recursive call to this function.
5679 It is always safe for this routine to return zero since it merely
5680 searches for optimization opportunities. */
5683 safe_from_p (rtx x, tree exp, int top_p)
5685 rtx exp_rtl = 0;
5686 int i, nops;
5688 if (x == 0
5689 /* If EXP has varying size, we MUST use a target since we currently
5690 have no way of allocating temporaries of variable size
5691 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5692 So we assume here that something at a higher level has prevented a
5693 clash. This is somewhat bogus, but the best we can do. Only
5694 do this when X is BLKmode and when we are at the top level. */
5695 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
5696 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5697 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5698 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5699 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5700 != INTEGER_CST)
5701 && GET_MODE (x) == BLKmode)
5702 /* If X is in the outgoing argument area, it is always safe. */
5703 || (MEM_P (x)
5704 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5705 || (GET_CODE (XEXP (x, 0)) == PLUS
5706 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
5707 return 1;
5709 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5710 find the underlying pseudo. */
5711 if (GET_CODE (x) == SUBREG)
5713 x = SUBREG_REG (x);
5714 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5715 return 0;
5718 /* Now look at our tree code and possibly recurse. */
5719 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5721 case tcc_declaration:
5722 exp_rtl = DECL_RTL_IF_SET (exp);
5723 break;
5725 case tcc_constant:
5726 return 1;
5728 case tcc_exceptional:
5729 if (TREE_CODE (exp) == TREE_LIST)
5731 while (1)
5733 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
5734 return 0;
5735 exp = TREE_CHAIN (exp);
5736 if (!exp)
5737 return 1;
5738 if (TREE_CODE (exp) != TREE_LIST)
5739 return safe_from_p (x, exp, 0);
5742 else if (TREE_CODE (exp) == ERROR_MARK)
5743 return 1; /* An already-visited SAVE_EXPR? */
5744 else
5745 return 0;
5747 case tcc_statement:
5748 /* The only case we look at here is the DECL_INITIAL inside a
5749 DECL_EXPR. */
5750 return (TREE_CODE (exp) != DECL_EXPR
5751 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
5752 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
5753 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
5755 case tcc_binary:
5756 case tcc_comparison:
5757 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
5758 return 0;
5759 /* Fall through. */
5761 case tcc_unary:
5762 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5764 case tcc_expression:
5765 case tcc_reference:
5766 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5767 the expression. If it is set, we conflict iff we are that rtx or
5768 both are in memory. Otherwise, we check all operands of the
5769 expression recursively. */
5771 switch (TREE_CODE (exp))
5773 case ADDR_EXPR:
5774 /* If the operand is static or we are static, we can't conflict.
5775 Likewise if we don't conflict with the operand at all. */
5776 if (staticp (TREE_OPERAND (exp, 0))
5777 || TREE_STATIC (exp)
5778 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
5779 return 1;
5781 /* Otherwise, the only way this can conflict is if we are taking
5782 the address of a DECL a that address if part of X, which is
5783 very rare. */
5784 exp = TREE_OPERAND (exp, 0);
5785 if (DECL_P (exp))
5787 if (!DECL_RTL_SET_P (exp)
5788 || !MEM_P (DECL_RTL (exp)))
5789 return 0;
5790 else
5791 exp_rtl = XEXP (DECL_RTL (exp), 0);
5793 break;
5795 case MISALIGNED_INDIRECT_REF:
5796 case ALIGN_INDIRECT_REF:
5797 case INDIRECT_REF:
5798 if (MEM_P (x)
5799 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
5800 get_alias_set (exp)))
5801 return 0;
5802 break;
5804 case CALL_EXPR:
5805 /* Assume that the call will clobber all hard registers and
5806 all of memory. */
5807 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5808 || MEM_P (x))
5809 return 0;
5810 break;
5812 case WITH_CLEANUP_EXPR:
5813 case CLEANUP_POINT_EXPR:
5814 /* Lowered by gimplify.c. */
5815 gcc_unreachable ();
5817 case SAVE_EXPR:
5818 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5820 default:
5821 break;
5824 /* If we have an rtx, we do not need to scan our operands. */
5825 if (exp_rtl)
5826 break;
5828 nops = TREE_CODE_LENGTH (TREE_CODE (exp));
5829 for (i = 0; i < nops; i++)
5830 if (TREE_OPERAND (exp, i) != 0
5831 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
5832 return 0;
5834 /* If this is a language-specific tree code, it may require
5835 special handling. */
5836 if ((unsigned int) TREE_CODE (exp)
5837 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
5838 && !lang_hooks.safe_from_p (x, exp))
5839 return 0;
5840 break;
5842 case tcc_type:
5843 /* Should never get a type here. */
5844 gcc_unreachable ();
5847 /* If we have an rtl, find any enclosed object. Then see if we conflict
5848 with it. */
5849 if (exp_rtl)
5851 if (GET_CODE (exp_rtl) == SUBREG)
5853 exp_rtl = SUBREG_REG (exp_rtl);
5854 if (REG_P (exp_rtl)
5855 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
5856 return 0;
5859 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5860 are memory and they conflict. */
5861 return ! (rtx_equal_p (x, exp_rtl)
5862 || (MEM_P (x) && MEM_P (exp_rtl)
5863 && true_dependence (exp_rtl, VOIDmode, x,
5864 rtx_addr_varies_p)));
5867 /* If we reach here, it is safe. */
5868 return 1;
5872 /* Return the highest power of two that EXP is known to be a multiple of.
5873 This is used in updating alignment of MEMs in array references. */
5875 static unsigned HOST_WIDE_INT
5876 highest_pow2_factor (tree exp)
5878 unsigned HOST_WIDE_INT c0, c1;
5880 switch (TREE_CODE (exp))
5882 case INTEGER_CST:
5883 /* We can find the lowest bit that's a one. If the low
5884 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
5885 We need to handle this case since we can find it in a COND_EXPR,
5886 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
5887 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
5888 later ICE. */
5889 if (TREE_CONSTANT_OVERFLOW (exp))
5890 return BIGGEST_ALIGNMENT;
5891 else
5893 /* Note: tree_low_cst is intentionally not used here,
5894 we don't care about the upper bits. */
5895 c0 = TREE_INT_CST_LOW (exp);
5896 c0 &= -c0;
5897 return c0 ? c0 : BIGGEST_ALIGNMENT;
5899 break;
5901 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
5902 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5903 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5904 return MIN (c0, c1);
5906 case MULT_EXPR:
5907 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5908 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5909 return c0 * c1;
5911 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
5912 case CEIL_DIV_EXPR:
5913 if (integer_pow2p (TREE_OPERAND (exp, 1))
5914 && host_integerp (TREE_OPERAND (exp, 1), 1))
5916 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5917 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
5918 return MAX (1, c0 / c1);
5920 break;
5922 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
5923 case SAVE_EXPR:
5924 return highest_pow2_factor (TREE_OPERAND (exp, 0));
5926 case COMPOUND_EXPR:
5927 return highest_pow2_factor (TREE_OPERAND (exp, 1));
5929 case COND_EXPR:
5930 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5931 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
5932 return MIN (c0, c1);
5934 default:
5935 break;
5938 return 1;
5941 /* Similar, except that the alignment requirements of TARGET are
5942 taken into account. Assume it is at least as aligned as its
5943 type, unless it is a COMPONENT_REF in which case the layout of
5944 the structure gives the alignment. */
5946 static unsigned HOST_WIDE_INT
5947 highest_pow2_factor_for_target (tree target, tree exp)
5949 unsigned HOST_WIDE_INT target_align, factor;
5951 factor = highest_pow2_factor (exp);
5952 if (TREE_CODE (target) == COMPONENT_REF)
5953 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
5954 else
5955 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
5956 return MAX (factor, target_align);
5959 /* Expands variable VAR. */
5961 void
5962 expand_var (tree var)
5964 if (DECL_EXTERNAL (var))
5965 return;
5967 if (TREE_STATIC (var))
5968 /* If this is an inlined copy of a static local variable,
5969 look up the original decl. */
5970 var = DECL_ORIGIN (var);
5972 if (TREE_STATIC (var)
5973 ? !TREE_ASM_WRITTEN (var)
5974 : !DECL_RTL_SET_P (var))
5976 if (TREE_CODE (var) == VAR_DECL && DECL_VALUE_EXPR (var))
5977 /* Should be ignored. */;
5978 else if (lang_hooks.expand_decl (var))
5979 /* OK. */;
5980 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
5981 expand_decl (var);
5982 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
5983 rest_of_decl_compilation (var, 0, 0);
5984 else
5985 /* No expansion needed. */
5986 gcc_assert (TREE_CODE (var) == TYPE_DECL
5987 || TREE_CODE (var) == CONST_DECL
5988 || TREE_CODE (var) == FUNCTION_DECL
5989 || TREE_CODE (var) == LABEL_DECL);
5993 /* Subroutine of expand_expr. Expand the two operands of a binary
5994 expression EXP0 and EXP1 placing the results in OP0 and OP1.
5995 The value may be stored in TARGET if TARGET is nonzero. The
5996 MODIFIER argument is as documented by expand_expr. */
5998 static void
5999 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6000 enum expand_modifier modifier)
6002 if (! safe_from_p (target, exp1, 1))
6003 target = 0;
6004 if (operand_equal_p (exp0, exp1, 0))
6006 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6007 *op1 = copy_rtx (*op0);
6009 else
6011 /* If we need to preserve evaluation order, copy exp0 into its own
6012 temporary variable so that it can't be clobbered by exp1. */
6013 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6014 exp0 = save_expr (exp0);
6015 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6016 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6021 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6022 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6024 static rtx
6025 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6026 enum expand_modifier modifier)
6028 rtx result, subtarget;
6029 tree inner, offset;
6030 HOST_WIDE_INT bitsize, bitpos;
6031 int volatilep, unsignedp;
6032 enum machine_mode mode1;
6034 /* If we are taking the address of a constant and are at the top level,
6035 we have to use output_constant_def since we can't call force_const_mem
6036 at top level. */
6037 /* ??? This should be considered a front-end bug. We should not be
6038 generating ADDR_EXPR of something that isn't an LVALUE. The only
6039 exception here is STRING_CST. */
6040 if (TREE_CODE (exp) == CONSTRUCTOR
6041 || CONSTANT_CLASS_P (exp))
6042 return XEXP (output_constant_def (exp, 0), 0);
6044 /* Everything must be something allowed by is_gimple_addressable. */
6045 switch (TREE_CODE (exp))
6047 case INDIRECT_REF:
6048 /* This case will happen via recursion for &a->b. */
6049 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, EXPAND_NORMAL);
6051 case CONST_DECL:
6052 /* Recurse and make the output_constant_def clause above handle this. */
6053 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6054 tmode, modifier);
6056 case REALPART_EXPR:
6057 /* The real part of the complex number is always first, therefore
6058 the address is the same as the address of the parent object. */
6059 offset = 0;
6060 bitpos = 0;
6061 inner = TREE_OPERAND (exp, 0);
6062 break;
6064 case IMAGPART_EXPR:
6065 /* The imaginary part of the complex number is always second.
6066 The expression is therefore always offset by the size of the
6067 scalar type. */
6068 offset = 0;
6069 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6070 inner = TREE_OPERAND (exp, 0);
6071 break;
6073 default:
6074 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6075 expand_expr, as that can have various side effects; LABEL_DECLs for
6076 example, may not have their DECL_RTL set yet. Assume language
6077 specific tree nodes can be expanded in some interesting way. */
6078 if (DECL_P (exp)
6079 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6081 result = expand_expr (exp, target, tmode,
6082 modifier == EXPAND_INITIALIZER
6083 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6085 /* If the DECL isn't in memory, then the DECL wasn't properly
6086 marked TREE_ADDRESSABLE, which will be either a front-end
6087 or a tree optimizer bug. */
6088 gcc_assert (GET_CODE (result) == MEM);
6089 result = XEXP (result, 0);
6091 /* ??? Is this needed anymore? */
6092 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6094 assemble_external (exp);
6095 TREE_USED (exp) = 1;
6098 if (modifier != EXPAND_INITIALIZER
6099 && modifier != EXPAND_CONST_ADDRESS)
6100 result = force_operand (result, target);
6101 return result;
6104 /* Pass FALSE as the last argument to get_inner_reference although
6105 we are expanding to RTL. The rationale is that we know how to
6106 handle "aligning nodes" here: we can just bypass them because
6107 they won't change the final object whose address will be returned
6108 (they actually exist only for that purpose). */
6109 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6110 &mode1, &unsignedp, &volatilep, false);
6111 break;
6114 /* We must have made progress. */
6115 gcc_assert (inner != exp);
6117 subtarget = offset || bitpos ? NULL_RTX : target;
6118 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6120 if (offset)
6122 rtx tmp;
6124 if (modifier != EXPAND_NORMAL)
6125 result = force_operand (result, NULL);
6126 tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6128 result = convert_memory_address (tmode, result);
6129 tmp = convert_memory_address (tmode, tmp);
6131 if (modifier == EXPAND_SUM)
6132 result = gen_rtx_PLUS (tmode, result, tmp);
6133 else
6135 subtarget = bitpos ? NULL_RTX : target;
6136 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6137 1, OPTAB_LIB_WIDEN);
6141 if (bitpos)
6143 /* Someone beforehand should have rejected taking the address
6144 of such an object. */
6145 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6147 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6148 if (modifier < EXPAND_SUM)
6149 result = force_operand (result, target);
6152 return result;
6155 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6156 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6158 static rtx
6159 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6160 enum expand_modifier modifier)
6162 enum machine_mode rmode;
6163 rtx result;
6165 /* Target mode of VOIDmode says "whatever's natural". */
6166 if (tmode == VOIDmode)
6167 tmode = TYPE_MODE (TREE_TYPE (exp));
6169 /* We can get called with some Weird Things if the user does silliness
6170 like "(short) &a". In that case, convert_memory_address won't do
6171 the right thing, so ignore the given target mode. */
6172 if (tmode != Pmode && tmode != ptr_mode)
6173 tmode = Pmode;
6175 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6176 tmode, modifier);
6178 /* Despite expand_expr claims concerning ignoring TMODE when not
6179 strictly convenient, stuff breaks if we don't honor it. Note
6180 that combined with the above, we only do this for pointer modes. */
6181 rmode = GET_MODE (result);
6182 if (rmode == VOIDmode)
6183 rmode = tmode;
6184 if (rmode != tmode)
6185 result = convert_memory_address (tmode, result);
6187 return result;
6191 /* expand_expr: generate code for computing expression EXP.
6192 An rtx for the computed value is returned. The value is never null.
6193 In the case of a void EXP, const0_rtx is returned.
6195 The value may be stored in TARGET if TARGET is nonzero.
6196 TARGET is just a suggestion; callers must assume that
6197 the rtx returned may not be the same as TARGET.
6199 If TARGET is CONST0_RTX, it means that the value will be ignored.
6201 If TMODE is not VOIDmode, it suggests generating the
6202 result in mode TMODE. But this is done only when convenient.
6203 Otherwise, TMODE is ignored and the value generated in its natural mode.
6204 TMODE is just a suggestion; callers must assume that
6205 the rtx returned may not have mode TMODE.
6207 Note that TARGET may have neither TMODE nor MODE. In that case, it
6208 probably will not be used.
6210 If MODIFIER is EXPAND_SUM then when EXP is an addition
6211 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6212 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6213 products as above, or REG or MEM, or constant.
6214 Ordinarily in such cases we would output mul or add instructions
6215 and then return a pseudo reg containing the sum.
6217 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6218 it also marks a label as absolutely required (it can't be dead).
6219 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6220 This is used for outputting expressions used in initializers.
6222 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6223 with a constant address even if that address is not normally legitimate.
6224 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6226 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6227 a call parameter. Such targets require special care as we haven't yet
6228 marked TARGET so that it's safe from being trashed by libcalls. We
6229 don't want to use TARGET for anything but the final result;
6230 Intermediate values must go elsewhere. Additionally, calls to
6231 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6233 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6234 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6235 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6236 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6237 recursively. */
6239 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6240 enum expand_modifier, rtx *);
6243 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6244 enum expand_modifier modifier, rtx *alt_rtl)
6246 int rn = -1;
6247 rtx ret, last = NULL;
6249 /* Handle ERROR_MARK before anybody tries to access its type. */
6250 if (TREE_CODE (exp) == ERROR_MARK
6251 || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6253 ret = CONST0_RTX (tmode);
6254 return ret ? ret : const0_rtx;
6257 if (flag_non_call_exceptions)
6259 rn = lookup_stmt_eh_region (exp);
6260 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6261 if (rn >= 0)
6262 last = get_last_insn ();
6265 /* If this is an expression of some kind and it has an associated line
6266 number, then emit the line number before expanding the expression.
6268 We need to save and restore the file and line information so that
6269 errors discovered during expansion are emitted with the right
6270 information. It would be better of the diagnostic routines
6271 used the file/line information embedded in the tree nodes rather
6272 than globals. */
6273 if (cfun && EXPR_HAS_LOCATION (exp))
6275 location_t saved_location = input_location;
6276 input_location = EXPR_LOCATION (exp);
6277 emit_line_note (input_location);
6279 /* Record where the insns produced belong. */
6280 record_block_change (TREE_BLOCK (exp));
6282 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6284 input_location = saved_location;
6286 else
6288 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6291 /* If using non-call exceptions, mark all insns that may trap.
6292 expand_call() will mark CALL_INSNs before we get to this code,
6293 but it doesn't handle libcalls, and these may trap. */
6294 if (rn >= 0)
6296 rtx insn;
6297 for (insn = next_real_insn (last); insn;
6298 insn = next_real_insn (insn))
6300 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6301 /* If we want exceptions for non-call insns, any
6302 may_trap_p instruction may throw. */
6303 && GET_CODE (PATTERN (insn)) != CLOBBER
6304 && GET_CODE (PATTERN (insn)) != USE
6305 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6307 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6308 REG_NOTES (insn));
6313 return ret;
6316 static rtx
6317 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6318 enum expand_modifier modifier, rtx *alt_rtl)
6320 rtx op0, op1, temp;
6321 tree type = TREE_TYPE (exp);
6322 int unsignedp;
6323 enum machine_mode mode;
6324 enum tree_code code = TREE_CODE (exp);
6325 optab this_optab;
6326 rtx subtarget, original_target;
6327 int ignore;
6328 tree context;
6329 bool reduce_bit_field = false;
6330 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6331 ? reduce_to_bit_field_precision ((expr), \
6332 target, \
6333 type) \
6334 : (expr))
6336 mode = TYPE_MODE (type);
6337 unsignedp = TYPE_UNSIGNED (type);
6338 if (lang_hooks.reduce_bit_field_operations
6339 && TREE_CODE (type) == INTEGER_TYPE
6340 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6342 /* An operation in what may be a bit-field type needs the
6343 result to be reduced to the precision of the bit-field type,
6344 which is narrower than that of the type's mode. */
6345 reduce_bit_field = true;
6346 if (modifier == EXPAND_STACK_PARM)
6347 target = 0;
6350 /* Use subtarget as the target for operand 0 of a binary operation. */
6351 subtarget = get_subtarget (target);
6352 original_target = target;
6353 ignore = (target == const0_rtx
6354 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6355 || code == CONVERT_EXPR || code == COND_EXPR
6356 || code == VIEW_CONVERT_EXPR)
6357 && TREE_CODE (type) == VOID_TYPE));
6359 /* If we are going to ignore this result, we need only do something
6360 if there is a side-effect somewhere in the expression. If there
6361 is, short-circuit the most common cases here. Note that we must
6362 not call expand_expr with anything but const0_rtx in case this
6363 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6365 if (ignore)
6367 if (! TREE_SIDE_EFFECTS (exp))
6368 return const0_rtx;
6370 /* Ensure we reference a volatile object even if value is ignored, but
6371 don't do this if all we are doing is taking its address. */
6372 if (TREE_THIS_VOLATILE (exp)
6373 && TREE_CODE (exp) != FUNCTION_DECL
6374 && mode != VOIDmode && mode != BLKmode
6375 && modifier != EXPAND_CONST_ADDRESS)
6377 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6378 if (MEM_P (temp))
6379 temp = copy_to_reg (temp);
6380 return const0_rtx;
6383 if (TREE_CODE_CLASS (code) == tcc_unary
6384 || code == COMPONENT_REF || code == INDIRECT_REF)
6385 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6386 modifier);
6388 else if (TREE_CODE_CLASS (code) == tcc_binary
6389 || TREE_CODE_CLASS (code) == tcc_comparison
6390 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6392 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6393 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6394 return const0_rtx;
6396 else if (code == BIT_FIELD_REF)
6398 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6399 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6400 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6401 return const0_rtx;
6404 target = 0;
6407 /* If will do cse, generate all results into pseudo registers
6408 since 1) that allows cse to find more things
6409 and 2) otherwise cse could produce an insn the machine
6410 cannot support. An exception is a CONSTRUCTOR into a multi-word
6411 MEM: that's much more likely to be most efficient into the MEM.
6412 Another is a CALL_EXPR which must return in memory. */
6414 if (! cse_not_expected && mode != BLKmode && target
6415 && (!REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
6416 && ! (code == CONSTRUCTOR && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
6417 && ! (code == CALL_EXPR && aggregate_value_p (exp, exp)))
6418 target = 0;
6420 switch (code)
6422 case LABEL_DECL:
6424 tree function = decl_function_context (exp);
6426 temp = label_rtx (exp);
6427 temp = gen_rtx_LABEL_REF (Pmode, temp);
6429 if (function != current_function_decl
6430 && function != 0)
6431 LABEL_REF_NONLOCAL_P (temp) = 1;
6433 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6434 return temp;
6437 case SSA_NAME:
6438 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6439 NULL);
6441 case PARM_DECL:
6442 case VAR_DECL:
6443 /* If a static var's type was incomplete when the decl was written,
6444 but the type is complete now, lay out the decl now. */
6445 if (DECL_SIZE (exp) == 0
6446 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6447 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6448 layout_decl (exp, 0);
6450 /* ... fall through ... */
6452 case FUNCTION_DECL:
6453 case RESULT_DECL:
6454 gcc_assert (DECL_RTL (exp));
6456 /* Ensure variable marked as used even if it doesn't go through
6457 a parser. If it hasn't be used yet, write out an external
6458 definition. */
6459 if (! TREE_USED (exp))
6461 assemble_external (exp);
6462 TREE_USED (exp) = 1;
6465 /* Show we haven't gotten RTL for this yet. */
6466 temp = 0;
6468 /* Variables inherited from containing functions should have
6469 been lowered by this point. */
6470 context = decl_function_context (exp);
6471 gcc_assert (!context
6472 || context == current_function_decl
6473 || TREE_STATIC (exp)
6474 /* ??? C++ creates functions that are not TREE_STATIC. */
6475 || TREE_CODE (exp) == FUNCTION_DECL);
6477 /* This is the case of an array whose size is to be determined
6478 from its initializer, while the initializer is still being parsed.
6479 See expand_decl. */
6481 if (MEM_P (DECL_RTL (exp))
6482 && REG_P (XEXP (DECL_RTL (exp), 0)))
6483 temp = validize_mem (DECL_RTL (exp));
6485 /* If DECL_RTL is memory, we are in the normal case and either
6486 the address is not valid or it is not a register and -fforce-addr
6487 is specified, get the address into a register. */
6489 else if (MEM_P (DECL_RTL (exp))
6490 && modifier != EXPAND_CONST_ADDRESS
6491 && modifier != EXPAND_SUM
6492 && modifier != EXPAND_INITIALIZER
6493 && (! memory_address_p (DECL_MODE (exp),
6494 XEXP (DECL_RTL (exp), 0))
6495 || (flag_force_addr
6496 && !REG_P (XEXP (DECL_RTL (exp), 0)))))
6498 if (alt_rtl)
6499 *alt_rtl = DECL_RTL (exp);
6500 temp = replace_equiv_address (DECL_RTL (exp),
6501 copy_rtx (XEXP (DECL_RTL (exp), 0)));
6504 /* If we got something, return it. But first, set the alignment
6505 if the address is a register. */
6506 if (temp != 0)
6508 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6509 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6511 return temp;
6514 /* If the mode of DECL_RTL does not match that of the decl, it
6515 must be a promoted value. We return a SUBREG of the wanted mode,
6516 but mark it so that we know that it was already extended. */
6518 if (REG_P (DECL_RTL (exp))
6519 && GET_MODE (DECL_RTL (exp)) != DECL_MODE (exp))
6521 enum machine_mode pmode;
6523 /* Get the signedness used for this variable. Ensure we get the
6524 same mode we got when the variable was declared. */
6525 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6526 (TREE_CODE (exp) == RESULT_DECL ? 1 : 0));
6527 gcc_assert (GET_MODE (DECL_RTL (exp)) == pmode);
6529 temp = gen_lowpart_SUBREG (mode, DECL_RTL (exp));
6530 SUBREG_PROMOTED_VAR_P (temp) = 1;
6531 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6532 return temp;
6535 return DECL_RTL (exp);
6537 case INTEGER_CST:
6538 temp = immed_double_const (TREE_INT_CST_LOW (exp),
6539 TREE_INT_CST_HIGH (exp), mode);
6541 /* ??? If overflow is set, fold will have done an incomplete job,
6542 which can result in (plus xx (const_int 0)), which can get
6543 simplified by validate_replace_rtx during virtual register
6544 instantiation, which can result in unrecognizable insns.
6545 Avoid this by forcing all overflows into registers. */
6546 if (TREE_CONSTANT_OVERFLOW (exp)
6547 && modifier != EXPAND_INITIALIZER)
6548 temp = force_reg (mode, temp);
6550 return temp;
6552 case VECTOR_CST:
6553 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_INT
6554 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_FLOAT)
6555 return const_vector_from_tree (exp);
6556 else
6557 return expand_expr (build1 (CONSTRUCTOR, TREE_TYPE (exp),
6558 TREE_VECTOR_CST_ELTS (exp)),
6559 ignore ? const0_rtx : target, tmode, modifier);
6561 case CONST_DECL:
6562 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
6564 case REAL_CST:
6565 /* If optimized, generate immediate CONST_DOUBLE
6566 which will be turned into memory by reload if necessary.
6568 We used to force a register so that loop.c could see it. But
6569 this does not allow gen_* patterns to perform optimizations with
6570 the constants. It also produces two insns in cases like "x = 1.0;".
6571 On most machines, floating-point constants are not permitted in
6572 many insns, so we'd end up copying it to a register in any case.
6574 Now, we do the copying in expand_binop, if appropriate. */
6575 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
6576 TYPE_MODE (TREE_TYPE (exp)));
6578 case COMPLEX_CST:
6579 /* Handle evaluating a complex constant in a CONCAT target. */
6580 if (original_target && GET_CODE (original_target) == CONCAT)
6582 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
6583 rtx rtarg, itarg;
6585 rtarg = XEXP (original_target, 0);
6586 itarg = XEXP (original_target, 1);
6588 /* Move the real and imaginary parts separately. */
6589 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
6590 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
6592 if (op0 != rtarg)
6593 emit_move_insn (rtarg, op0);
6594 if (op1 != itarg)
6595 emit_move_insn (itarg, op1);
6597 return original_target;
6600 /* ... fall through ... */
6602 case STRING_CST:
6603 temp = output_constant_def (exp, 1);
6605 /* temp contains a constant address.
6606 On RISC machines where a constant address isn't valid,
6607 make some insns to get that address into a register. */
6608 if (modifier != EXPAND_CONST_ADDRESS
6609 && modifier != EXPAND_INITIALIZER
6610 && modifier != EXPAND_SUM
6611 && (! memory_address_p (mode, XEXP (temp, 0))
6612 || flag_force_addr))
6613 return replace_equiv_address (temp,
6614 copy_rtx (XEXP (temp, 0)));
6615 return temp;
6617 case SAVE_EXPR:
6619 tree val = TREE_OPERAND (exp, 0);
6620 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
6622 if (!SAVE_EXPR_RESOLVED_P (exp))
6624 /* We can indeed still hit this case, typically via builtin
6625 expanders calling save_expr immediately before expanding
6626 something. Assume this means that we only have to deal
6627 with non-BLKmode values. */
6628 gcc_assert (GET_MODE (ret) != BLKmode);
6630 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
6631 DECL_ARTIFICIAL (val) = 1;
6632 DECL_IGNORED_P (val) = 1;
6633 TREE_OPERAND (exp, 0) = val;
6634 SAVE_EXPR_RESOLVED_P (exp) = 1;
6636 if (!CONSTANT_P (ret))
6637 ret = copy_to_reg (ret);
6638 SET_DECL_RTL (val, ret);
6641 return ret;
6644 case GOTO_EXPR:
6645 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6646 expand_goto (TREE_OPERAND (exp, 0));
6647 else
6648 expand_computed_goto (TREE_OPERAND (exp, 0));
6649 return const0_rtx;
6651 case CONSTRUCTOR:
6652 /* If we don't need the result, just ensure we evaluate any
6653 subexpressions. */
6654 if (ignore)
6656 tree elt;
6658 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
6659 expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode, 0);
6661 return const0_rtx;
6664 /* All elts simple constants => refer to a constant in memory. But
6665 if this is a non-BLKmode mode, let it store a field at a time
6666 since that should make a CONST_INT or CONST_DOUBLE when we
6667 fold. Likewise, if we have a target we can use, it is best to
6668 store directly into the target unless the type is large enough
6669 that memcpy will be used. If we are making an initializer and
6670 all operands are constant, put it in memory as well.
6672 FIXME: Avoid trying to fill vector constructors piece-meal.
6673 Output them with output_constant_def below unless we're sure
6674 they're zeros. This should go away when vector initializers
6675 are treated like VECTOR_CST instead of arrays.
6677 else if ((TREE_STATIC (exp)
6678 && ((mode == BLKmode
6679 && ! (target != 0 && safe_from_p (target, exp, 1)))
6680 || TREE_ADDRESSABLE (exp)
6681 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6682 && (! MOVE_BY_PIECES_P
6683 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6684 TYPE_ALIGN (type)))
6685 && ! mostly_zeros_p (exp))))
6686 || ((modifier == EXPAND_INITIALIZER
6687 || modifier == EXPAND_CONST_ADDRESS)
6688 && TREE_CONSTANT (exp)))
6690 rtx constructor = output_constant_def (exp, 1);
6692 if (modifier != EXPAND_CONST_ADDRESS
6693 && modifier != EXPAND_INITIALIZER
6694 && modifier != EXPAND_SUM)
6695 constructor = validize_mem (constructor);
6697 return constructor;
6699 else
6701 /* Handle calls that pass values in multiple non-contiguous
6702 locations. The Irix 6 ABI has examples of this. */
6703 if (target == 0 || ! safe_from_p (target, exp, 1)
6704 || GET_CODE (target) == PARALLEL
6705 || modifier == EXPAND_STACK_PARM)
6706 target
6707 = assign_temp (build_qualified_type (type,
6708 (TYPE_QUALS (type)
6709 | (TREE_READONLY (exp)
6710 * TYPE_QUAL_CONST))),
6711 0, TREE_ADDRESSABLE (exp), 1);
6713 store_constructor (exp, target, 0, int_expr_size (exp));
6714 return target;
6717 case MISALIGNED_INDIRECT_REF:
6718 case ALIGN_INDIRECT_REF:
6719 case INDIRECT_REF:
6721 tree exp1 = TREE_OPERAND (exp, 0);
6722 tree orig;
6724 if (modifier != EXPAND_WRITE)
6726 tree t;
6728 t = fold_read_from_constant_string (exp);
6729 if (t)
6730 return expand_expr (t, target, tmode, modifier);
6733 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
6734 op0 = memory_address (mode, op0);
6736 if (code == ALIGN_INDIRECT_REF)
6738 int align = TYPE_ALIGN_UNIT (type);
6739 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
6740 op0 = memory_address (mode, op0);
6743 temp = gen_rtx_MEM (mode, op0);
6745 orig = REF_ORIGINAL (exp);
6746 if (!orig)
6747 orig = exp;
6748 set_mem_attributes (temp, orig, 0);
6750 /* Resolve the misalignment now, so that we don't have to remember
6751 to resolve it later. Of course, this only works for reads. */
6752 /* ??? When we get around to supporting writes, we'll have to handle
6753 this in store_expr directly. The vectorizer isn't generating
6754 those yet, however. */
6755 if (code == MISALIGNED_INDIRECT_REF)
6757 int icode;
6758 rtx reg, insn;
6760 gcc_assert (modifier == EXPAND_NORMAL);
6762 /* The vectorizer should have already checked the mode. */
6763 icode = movmisalign_optab->handlers[mode].insn_code;
6764 gcc_assert (icode != CODE_FOR_nothing);
6766 /* We've already validated the memory, and we're creating a
6767 new pseudo destination. The predicates really can't fail. */
6768 reg = gen_reg_rtx (mode);
6770 /* Nor can the insn generator. */
6771 insn = GEN_FCN (icode) (reg, temp);
6772 emit_insn (insn);
6774 return reg;
6777 return temp;
6780 case ARRAY_REF:
6783 tree array = TREE_OPERAND (exp, 0);
6784 tree index = TREE_OPERAND (exp, 1);
6786 /* Fold an expression like: "foo"[2].
6787 This is not done in fold so it won't happen inside &.
6788 Don't fold if this is for wide characters since it's too
6789 difficult to do correctly and this is a very rare case. */
6791 if (modifier != EXPAND_CONST_ADDRESS
6792 && modifier != EXPAND_INITIALIZER
6793 && modifier != EXPAND_MEMORY)
6795 tree t = fold_read_from_constant_string (exp);
6797 if (t)
6798 return expand_expr (t, target, tmode, modifier);
6801 /* If this is a constant index into a constant array,
6802 just get the value from the array. Handle both the cases when
6803 we have an explicit constructor and when our operand is a variable
6804 that was declared const. */
6806 if (modifier != EXPAND_CONST_ADDRESS
6807 && modifier != EXPAND_INITIALIZER
6808 && modifier != EXPAND_MEMORY
6809 && TREE_CODE (array) == CONSTRUCTOR
6810 && ! TREE_SIDE_EFFECTS (array)
6811 && TREE_CODE (index) == INTEGER_CST)
6813 tree elem;
6815 for (elem = CONSTRUCTOR_ELTS (array);
6816 (elem && !tree_int_cst_equal (TREE_PURPOSE (elem), index));
6817 elem = TREE_CHAIN (elem))
6820 if (elem && !TREE_SIDE_EFFECTS (TREE_VALUE (elem)))
6821 return expand_expr (fold (TREE_VALUE (elem)), target, tmode,
6822 modifier);
6825 else if (optimize >= 1
6826 && modifier != EXPAND_CONST_ADDRESS
6827 && modifier != EXPAND_INITIALIZER
6828 && modifier != EXPAND_MEMORY
6829 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
6830 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
6831 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
6832 && targetm.binds_local_p (array))
6834 if (TREE_CODE (index) == INTEGER_CST)
6836 tree init = DECL_INITIAL (array);
6838 if (TREE_CODE (init) == CONSTRUCTOR)
6840 tree elem;
6842 for (elem = CONSTRUCTOR_ELTS (init);
6843 (elem
6844 && !tree_int_cst_equal (TREE_PURPOSE (elem), index));
6845 elem = TREE_CHAIN (elem))
6848 if (elem && !TREE_SIDE_EFFECTS (TREE_VALUE (elem)))
6849 return expand_expr (fold (TREE_VALUE (elem)), target,
6850 tmode, modifier);
6852 else if (TREE_CODE (init) == STRING_CST
6853 && 0 > compare_tree_int (index,
6854 TREE_STRING_LENGTH (init)))
6856 tree type = TREE_TYPE (TREE_TYPE (init));
6857 enum machine_mode mode = TYPE_MODE (type);
6859 if (GET_MODE_CLASS (mode) == MODE_INT
6860 && GET_MODE_SIZE (mode) == 1)
6861 return gen_int_mode (TREE_STRING_POINTER (init)
6862 [TREE_INT_CST_LOW (index)], mode);
6867 goto normal_inner_ref;
6869 case COMPONENT_REF:
6870 /* If the operand is a CONSTRUCTOR, we can just extract the
6871 appropriate field if it is present. */
6872 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
6874 tree elt;
6876 for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
6877 elt = TREE_CHAIN (elt))
6878 if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1)
6879 /* We can normally use the value of the field in the
6880 CONSTRUCTOR. However, if this is a bitfield in
6881 an integral mode that we can fit in a HOST_WIDE_INT,
6882 we must mask only the number of bits in the bitfield,
6883 since this is done implicitly by the constructor. If
6884 the bitfield does not meet either of those conditions,
6885 we can't do this optimization. */
6886 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt))
6887 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt)))
6888 == MODE_INT)
6889 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt)))
6890 <= HOST_BITS_PER_WIDE_INT))))
6892 if (DECL_BIT_FIELD (TREE_PURPOSE (elt))
6893 && modifier == EXPAND_STACK_PARM)
6894 target = 0;
6895 op0 = expand_expr (TREE_VALUE (elt), target, tmode, modifier);
6896 if (DECL_BIT_FIELD (TREE_PURPOSE (elt)))
6898 HOST_WIDE_INT bitsize
6899 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt)));
6900 enum machine_mode imode
6901 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt)));
6903 if (TYPE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt))))
6905 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
6906 op0 = expand_and (imode, op0, op1, target);
6908 else
6910 tree count
6911 = build_int_cst (NULL_TREE,
6912 GET_MODE_BITSIZE (imode) - bitsize);
6914 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
6915 target, 0);
6916 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
6917 target, 0);
6921 return op0;
6924 goto normal_inner_ref;
6926 case BIT_FIELD_REF:
6927 case ARRAY_RANGE_REF:
6928 normal_inner_ref:
6930 enum machine_mode mode1;
6931 HOST_WIDE_INT bitsize, bitpos;
6932 tree offset;
6933 int volatilep = 0;
6934 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6935 &mode1, &unsignedp, &volatilep, true);
6936 rtx orig_op0;
6938 /* If we got back the original object, something is wrong. Perhaps
6939 we are evaluating an expression too early. In any event, don't
6940 infinitely recurse. */
6941 gcc_assert (tem != exp);
6943 /* If TEM's type is a union of variable size, pass TARGET to the inner
6944 computation, since it will need a temporary and TARGET is known
6945 to have to do. This occurs in unchecked conversion in Ada. */
6947 orig_op0 = op0
6948 = expand_expr (tem,
6949 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
6950 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
6951 != INTEGER_CST)
6952 && modifier != EXPAND_STACK_PARM
6953 ? target : NULL_RTX),
6954 VOIDmode,
6955 (modifier == EXPAND_INITIALIZER
6956 || modifier == EXPAND_CONST_ADDRESS
6957 || modifier == EXPAND_STACK_PARM)
6958 ? modifier : EXPAND_NORMAL);
6960 /* If this is a constant, put it into a register if it is a
6961 legitimate constant and OFFSET is 0 and memory if it isn't. */
6962 if (CONSTANT_P (op0))
6964 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
6965 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
6966 && offset == 0)
6967 op0 = force_reg (mode, op0);
6968 else
6969 op0 = validize_mem (force_const_mem (mode, op0));
6972 /* Otherwise, if this object not in memory and we either have an
6973 offset or a BLKmode result, put it there. This case can't occur in
6974 C, but can in Ada if we have unchecked conversion of an expression
6975 from a scalar type to an array or record type or for an
6976 ARRAY_RANGE_REF whose type is BLKmode. */
6977 else if (!MEM_P (op0)
6978 && (offset != 0
6979 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
6981 tree nt = build_qualified_type (TREE_TYPE (tem),
6982 (TYPE_QUALS (TREE_TYPE (tem))
6983 | TYPE_QUAL_CONST));
6984 rtx memloc = assign_temp (nt, 1, 1, 1);
6986 emit_move_insn (memloc, op0);
6987 op0 = memloc;
6990 if (offset != 0)
6992 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
6993 EXPAND_SUM);
6995 gcc_assert (MEM_P (op0));
6997 #ifdef POINTERS_EXTEND_UNSIGNED
6998 if (GET_MODE (offset_rtx) != Pmode)
6999 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7000 #else
7001 if (GET_MODE (offset_rtx) != ptr_mode)
7002 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7003 #endif
7005 if (GET_MODE (op0) == BLKmode
7006 /* A constant address in OP0 can have VOIDmode, we must
7007 not try to call force_reg in that case. */
7008 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7009 && bitsize != 0
7010 && (bitpos % bitsize) == 0
7011 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7012 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7014 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7015 bitpos = 0;
7018 op0 = offset_address (op0, offset_rtx,
7019 highest_pow2_factor (offset));
7022 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7023 record its alignment as BIGGEST_ALIGNMENT. */
7024 if (MEM_P (op0) && bitpos == 0 && offset != 0
7025 && is_aligning_offset (offset, tem))
7026 set_mem_align (op0, BIGGEST_ALIGNMENT);
7028 /* Don't forget about volatility even if this is a bitfield. */
7029 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7031 if (op0 == orig_op0)
7032 op0 = copy_rtx (op0);
7034 MEM_VOLATILE_P (op0) = 1;
7037 /* The following code doesn't handle CONCAT.
7038 Assume only bitpos == 0 can be used for CONCAT, due to
7039 one element arrays having the same mode as its element. */
7040 if (GET_CODE (op0) == CONCAT)
7042 gcc_assert (bitpos == 0
7043 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7044 return op0;
7047 /* In cases where an aligned union has an unaligned object
7048 as a field, we might be extracting a BLKmode value from
7049 an integer-mode (e.g., SImode) object. Handle this case
7050 by doing the extract into an object as wide as the field
7051 (which we know to be the width of a basic mode), then
7052 storing into memory, and changing the mode to BLKmode. */
7053 if (mode1 == VOIDmode
7054 || REG_P (op0) || GET_CODE (op0) == SUBREG
7055 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7056 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7057 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7058 && modifier != EXPAND_CONST_ADDRESS
7059 && modifier != EXPAND_INITIALIZER)
7060 /* If the field isn't aligned enough to fetch as a memref,
7061 fetch it as a bit field. */
7062 || (mode1 != BLKmode
7063 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7064 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7065 || (MEM_P (op0)
7066 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7067 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7068 && ((modifier == EXPAND_CONST_ADDRESS
7069 || modifier == EXPAND_INITIALIZER)
7070 ? STRICT_ALIGNMENT
7071 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7072 || (bitpos % BITS_PER_UNIT != 0)))
7073 /* If the type and the field are a constant size and the
7074 size of the type isn't the same size as the bitfield,
7075 we must use bitfield operations. */
7076 || (bitsize >= 0
7077 && TYPE_SIZE (TREE_TYPE (exp))
7078 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7079 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7080 bitsize)))
7082 enum machine_mode ext_mode = mode;
7084 if (ext_mode == BLKmode
7085 && ! (target != 0 && MEM_P (op0)
7086 && MEM_P (target)
7087 && bitpos % BITS_PER_UNIT == 0))
7088 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7090 if (ext_mode == BLKmode)
7092 if (target == 0)
7093 target = assign_temp (type, 0, 1, 1);
7095 if (bitsize == 0)
7096 return target;
7098 /* In this case, BITPOS must start at a byte boundary and
7099 TARGET, if specified, must be a MEM. */
7100 gcc_assert (MEM_P (op0)
7101 && (!target || MEM_P (target))
7102 && !(bitpos % BITS_PER_UNIT));
7104 emit_block_move (target,
7105 adjust_address (op0, VOIDmode,
7106 bitpos / BITS_PER_UNIT),
7107 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7108 / BITS_PER_UNIT),
7109 (modifier == EXPAND_STACK_PARM
7110 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7112 return target;
7115 op0 = validize_mem (op0);
7117 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7118 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7120 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7121 (modifier == EXPAND_STACK_PARM
7122 ? NULL_RTX : target),
7123 ext_mode, ext_mode);
7125 /* If the result is a record type and BITSIZE is narrower than
7126 the mode of OP0, an integral mode, and this is a big endian
7127 machine, we must put the field into the high-order bits. */
7128 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7129 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7130 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7131 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7132 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7133 - bitsize),
7134 op0, 1);
7136 /* If the result type is BLKmode, store the data into a temporary
7137 of the appropriate type, but with the mode corresponding to the
7138 mode for the data we have (op0's mode). It's tempting to make
7139 this a constant type, since we know it's only being stored once,
7140 but that can cause problems if we are taking the address of this
7141 COMPONENT_REF because the MEM of any reference via that address
7142 will have flags corresponding to the type, which will not
7143 necessarily be constant. */
7144 if (mode == BLKmode)
7146 rtx new
7147 = assign_stack_temp_for_type
7148 (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7150 emit_move_insn (new, op0);
7151 op0 = copy_rtx (new);
7152 PUT_MODE (op0, BLKmode);
7153 set_mem_attributes (op0, exp, 1);
7156 return op0;
7159 /* If the result is BLKmode, use that to access the object
7160 now as well. */
7161 if (mode == BLKmode)
7162 mode1 = BLKmode;
7164 /* Get a reference to just this component. */
7165 if (modifier == EXPAND_CONST_ADDRESS
7166 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7167 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7168 else
7169 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7171 if (op0 == orig_op0)
7172 op0 = copy_rtx (op0);
7174 set_mem_attributes (op0, exp, 0);
7175 if (REG_P (XEXP (op0, 0)))
7176 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7178 MEM_VOLATILE_P (op0) |= volatilep;
7179 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7180 || modifier == EXPAND_CONST_ADDRESS
7181 || modifier == EXPAND_INITIALIZER)
7182 return op0;
7183 else if (target == 0)
7184 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7186 convert_move (target, op0, unsignedp);
7187 return target;
7190 case OBJ_TYPE_REF:
7191 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7193 case CALL_EXPR:
7194 /* Check for a built-in function. */
7195 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7196 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7197 == FUNCTION_DECL)
7198 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7200 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7201 == BUILT_IN_FRONTEND)
7202 return lang_hooks.expand_expr (exp, original_target,
7203 tmode, modifier,
7204 alt_rtl);
7205 else
7206 return expand_builtin (exp, target, subtarget, tmode, ignore);
7209 return expand_call (exp, target, ignore);
7211 case NON_LVALUE_EXPR:
7212 case NOP_EXPR:
7213 case CONVERT_EXPR:
7214 if (TREE_OPERAND (exp, 0) == error_mark_node)
7215 return const0_rtx;
7217 if (TREE_CODE (type) == UNION_TYPE)
7219 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7221 /* If both input and output are BLKmode, this conversion isn't doing
7222 anything except possibly changing memory attribute. */
7223 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7225 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7226 modifier);
7228 result = copy_rtx (result);
7229 set_mem_attributes (result, exp, 0);
7230 return result;
7233 if (target == 0)
7235 if (TYPE_MODE (type) != BLKmode)
7236 target = gen_reg_rtx (TYPE_MODE (type));
7237 else
7238 target = assign_temp (type, 0, 1, 1);
7241 if (MEM_P (target))
7242 /* Store data into beginning of memory target. */
7243 store_expr (TREE_OPERAND (exp, 0),
7244 adjust_address (target, TYPE_MODE (valtype), 0),
7245 modifier == EXPAND_STACK_PARM);
7247 else
7249 gcc_assert (REG_P (target));
7251 /* Store this field into a union of the proper type. */
7252 store_field (target,
7253 MIN ((int_size_in_bytes (TREE_TYPE
7254 (TREE_OPERAND (exp, 0)))
7255 * BITS_PER_UNIT),
7256 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7257 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7258 type, 0);
7261 /* Return the entire union. */
7262 return target;
7265 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7267 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7268 modifier);
7270 /* If the signedness of the conversion differs and OP0 is
7271 a promoted SUBREG, clear that indication since we now
7272 have to do the proper extension. */
7273 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7274 && GET_CODE (op0) == SUBREG)
7275 SUBREG_PROMOTED_VAR_P (op0) = 0;
7277 return REDUCE_BIT_FIELD (op0);
7280 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7281 if (GET_MODE (op0) == mode)
7284 /* If OP0 is a constant, just convert it into the proper mode. */
7285 else if (CONSTANT_P (op0))
7287 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7288 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7290 if (modifier == EXPAND_INITIALIZER)
7291 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7292 subreg_lowpart_offset (mode,
7293 inner_mode));
7294 else
7295 op0= convert_modes (mode, inner_mode, op0,
7296 TYPE_UNSIGNED (inner_type));
7299 else if (modifier == EXPAND_INITIALIZER)
7300 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7302 else if (target == 0)
7303 op0 = convert_to_mode (mode, op0,
7304 TYPE_UNSIGNED (TREE_TYPE
7305 (TREE_OPERAND (exp, 0))));
7306 else
7308 convert_move (target, op0,
7309 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7310 op0 = target;
7313 return REDUCE_BIT_FIELD (op0);
7315 case VIEW_CONVERT_EXPR:
7316 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7318 /* If the input and output modes are both the same, we are done.
7319 Otherwise, if neither mode is BLKmode and both are integral and within
7320 a word, we can use gen_lowpart. If neither is true, make sure the
7321 operand is in memory and convert the MEM to the new mode. */
7322 if (TYPE_MODE (type) == GET_MODE (op0))
7324 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7325 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7326 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
7327 && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_WORD
7328 && GET_MODE_SIZE (GET_MODE (op0)) <= UNITS_PER_WORD)
7329 op0 = gen_lowpart (TYPE_MODE (type), op0);
7330 else if (!MEM_P (op0))
7332 /* If the operand is not a MEM, force it into memory. Since we
7333 are going to be be changing the mode of the MEM, don't call
7334 force_const_mem for constants because we don't allow pool
7335 constants to change mode. */
7336 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7338 gcc_assert (!TREE_ADDRESSABLE (exp));
7340 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7341 target
7342 = assign_stack_temp_for_type
7343 (TYPE_MODE (inner_type),
7344 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7346 emit_move_insn (target, op0);
7347 op0 = target;
7350 /* At this point, OP0 is in the correct mode. If the output type is such
7351 that the operand is known to be aligned, indicate that it is.
7352 Otherwise, we need only be concerned about alignment for non-BLKmode
7353 results. */
7354 if (MEM_P (op0))
7356 op0 = copy_rtx (op0);
7358 if (TYPE_ALIGN_OK (type))
7359 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7360 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7361 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7363 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7364 HOST_WIDE_INT temp_size
7365 = MAX (int_size_in_bytes (inner_type),
7366 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7367 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7368 temp_size, 0, type);
7369 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7371 gcc_assert (!TREE_ADDRESSABLE (exp));
7373 if (GET_MODE (op0) == BLKmode)
7374 emit_block_move (new_with_op0_mode, op0,
7375 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7376 (modifier == EXPAND_STACK_PARM
7377 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7378 else
7379 emit_move_insn (new_with_op0_mode, op0);
7381 op0 = new;
7384 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7387 return op0;
7389 case PLUS_EXPR:
7390 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7391 something else, make sure we add the register to the constant and
7392 then to the other thing. This case can occur during strength
7393 reduction and doing it this way will produce better code if the
7394 frame pointer or argument pointer is eliminated.
7396 fold-const.c will ensure that the constant is always in the inner
7397 PLUS_EXPR, so the only case we need to do anything about is if
7398 sp, ap, or fp is our second argument, in which case we must swap
7399 the innermost first argument and our second argument. */
7401 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7402 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7403 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7404 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7405 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7406 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7408 tree t = TREE_OPERAND (exp, 1);
7410 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7411 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7414 /* If the result is to be ptr_mode and we are adding an integer to
7415 something, we might be forming a constant. So try to use
7416 plus_constant. If it produces a sum and we can't accept it,
7417 use force_operand. This allows P = &ARR[const] to generate
7418 efficient code on machines where a SYMBOL_REF is not a valid
7419 address.
7421 If this is an EXPAND_SUM call, always return the sum. */
7422 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7423 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7425 if (modifier == EXPAND_STACK_PARM)
7426 target = 0;
7427 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7428 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7429 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7431 rtx constant_part;
7433 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7434 EXPAND_SUM);
7435 /* Use immed_double_const to ensure that the constant is
7436 truncated according to the mode of OP1, then sign extended
7437 to a HOST_WIDE_INT. Using the constant directly can result
7438 in non-canonical RTL in a 64x32 cross compile. */
7439 constant_part
7440 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7441 (HOST_WIDE_INT) 0,
7442 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7443 op1 = plus_constant (op1, INTVAL (constant_part));
7444 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7445 op1 = force_operand (op1, target);
7446 return REDUCE_BIT_FIELD (op1);
7449 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7450 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
7451 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7453 rtx constant_part;
7455 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7456 (modifier == EXPAND_INITIALIZER
7457 ? EXPAND_INITIALIZER : EXPAND_SUM));
7458 if (! CONSTANT_P (op0))
7460 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7461 VOIDmode, modifier);
7462 /* Return a PLUS if modifier says it's OK. */
7463 if (modifier == EXPAND_SUM
7464 || modifier == EXPAND_INITIALIZER)
7465 return simplify_gen_binary (PLUS, mode, op0, op1);
7466 goto binop2;
7468 /* Use immed_double_const to ensure that the constant is
7469 truncated according to the mode of OP1, then sign extended
7470 to a HOST_WIDE_INT. Using the constant directly can result
7471 in non-canonical RTL in a 64x32 cross compile. */
7472 constant_part
7473 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7474 (HOST_WIDE_INT) 0,
7475 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7476 op0 = plus_constant (op0, INTVAL (constant_part));
7477 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7478 op0 = force_operand (op0, target);
7479 return REDUCE_BIT_FIELD (op0);
7483 /* No sense saving up arithmetic to be done
7484 if it's all in the wrong mode to form part of an address.
7485 And force_operand won't know whether to sign-extend or
7486 zero-extend. */
7487 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7488 || mode != ptr_mode)
7490 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7491 subtarget, &op0, &op1, 0);
7492 if (op0 == const0_rtx)
7493 return op1;
7494 if (op1 == const0_rtx)
7495 return op0;
7496 goto binop2;
7499 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7500 subtarget, &op0, &op1, modifier);
7501 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7503 case MINUS_EXPR:
7504 /* For initializers, we are allowed to return a MINUS of two
7505 symbolic constants. Here we handle all cases when both operands
7506 are constant. */
7507 /* Handle difference of two symbolic constants,
7508 for the sake of an initializer. */
7509 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7510 && really_constant_p (TREE_OPERAND (exp, 0))
7511 && really_constant_p (TREE_OPERAND (exp, 1)))
7513 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7514 NULL_RTX, &op0, &op1, modifier);
7516 /* If the last operand is a CONST_INT, use plus_constant of
7517 the negated constant. Else make the MINUS. */
7518 if (GET_CODE (op1) == CONST_INT)
7519 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7520 else
7521 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7524 /* No sense saving up arithmetic to be done
7525 if it's all in the wrong mode to form part of an address.
7526 And force_operand won't know whether to sign-extend or
7527 zero-extend. */
7528 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7529 || mode != ptr_mode)
7530 goto binop;
7532 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7533 subtarget, &op0, &op1, modifier);
7535 /* Convert A - const to A + (-const). */
7536 if (GET_CODE (op1) == CONST_INT)
7538 op1 = negate_rtx (mode, op1);
7539 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7542 goto binop2;
7544 case MULT_EXPR:
7545 /* If first operand is constant, swap them.
7546 Thus the following special case checks need only
7547 check the second operand. */
7548 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7550 tree t1 = TREE_OPERAND (exp, 0);
7551 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7552 TREE_OPERAND (exp, 1) = t1;
7555 /* Attempt to return something suitable for generating an
7556 indexed address, for machines that support that. */
7558 if (modifier == EXPAND_SUM && mode == ptr_mode
7559 && host_integerp (TREE_OPERAND (exp, 1), 0))
7561 tree exp1 = TREE_OPERAND (exp, 1);
7563 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7564 EXPAND_SUM);
7566 if (!REG_P (op0))
7567 op0 = force_operand (op0, NULL_RTX);
7568 if (!REG_P (op0))
7569 op0 = copy_to_mode_reg (mode, op0);
7571 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7572 gen_int_mode (tree_low_cst (exp1, 0),
7573 TYPE_MODE (TREE_TYPE (exp1)))));
7576 if (modifier == EXPAND_STACK_PARM)
7577 target = 0;
7579 /* Check for multiplying things that have been extended
7580 from a narrower type. If this machine supports multiplying
7581 in that narrower type with a result in the desired type,
7582 do it that way, and avoid the explicit type-conversion. */
7583 if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7584 && TREE_CODE (type) == INTEGER_TYPE
7585 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7586 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7587 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7588 && int_fits_type_p (TREE_OPERAND (exp, 1),
7589 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7590 /* Don't use a widening multiply if a shift will do. */
7591 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7592 > HOST_BITS_PER_WIDE_INT)
7593 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7595 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7596 && (TYPE_PRECISION (TREE_TYPE
7597 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7598 == TYPE_PRECISION (TREE_TYPE
7599 (TREE_OPERAND
7600 (TREE_OPERAND (exp, 0), 0))))
7601 /* If both operands are extended, they must either both
7602 be zero-extended or both be sign-extended. */
7603 && (TYPE_UNSIGNED (TREE_TYPE
7604 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7605 == TYPE_UNSIGNED (TREE_TYPE
7606 (TREE_OPERAND
7607 (TREE_OPERAND (exp, 0), 0)))))))
7609 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
7610 enum machine_mode innermode = TYPE_MODE (op0type);
7611 bool zextend_p = TYPE_UNSIGNED (op0type);
7612 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7613 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7615 if (mode == GET_MODE_WIDER_MODE (innermode))
7617 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7619 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7620 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7621 TREE_OPERAND (exp, 1),
7622 NULL_RTX, &op0, &op1, 0);
7623 else
7624 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7625 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7626 NULL_RTX, &op0, &op1, 0);
7627 goto binop3;
7629 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7630 && innermode == word_mode)
7632 rtx htem, hipart;
7633 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7634 NULL_RTX, VOIDmode, 0);
7635 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7636 op1 = convert_modes (innermode, mode,
7637 expand_expr (TREE_OPERAND (exp, 1),
7638 NULL_RTX, VOIDmode, 0),
7639 unsignedp);
7640 else
7641 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7642 NULL_RTX, VOIDmode, 0);
7643 temp = expand_binop (mode, other_optab, op0, op1, target,
7644 unsignedp, OPTAB_LIB_WIDEN);
7645 hipart = gen_highpart (innermode, temp);
7646 htem = expand_mult_highpart_adjust (innermode, hipart,
7647 op0, op1, hipart,
7648 zextend_p);
7649 if (htem != hipart)
7650 emit_move_insn (hipart, htem);
7651 return REDUCE_BIT_FIELD (temp);
7655 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7656 subtarget, &op0, &op1, 0);
7657 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7659 case TRUNC_DIV_EXPR:
7660 case FLOOR_DIV_EXPR:
7661 case CEIL_DIV_EXPR:
7662 case ROUND_DIV_EXPR:
7663 case EXACT_DIV_EXPR:
7664 if (modifier == EXPAND_STACK_PARM)
7665 target = 0;
7666 /* Possible optimization: compute the dividend with EXPAND_SUM
7667 then if the divisor is constant can optimize the case
7668 where some terms of the dividend have coeffs divisible by it. */
7669 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7670 subtarget, &op0, &op1, 0);
7671 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7673 case RDIV_EXPR:
7674 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
7675 expensive divide. If not, combine will rebuild the original
7676 computation. */
7677 if (flag_unsafe_math_optimizations && optimize && !optimize_size
7678 && TREE_CODE (type) == REAL_TYPE
7679 && !real_onep (TREE_OPERAND (exp, 0)))
7680 return expand_expr (build2 (MULT_EXPR, type, TREE_OPERAND (exp, 0),
7681 build2 (RDIV_EXPR, type,
7682 build_real (type, dconst1),
7683 TREE_OPERAND (exp, 1))),
7684 target, tmode, modifier);
7686 goto binop;
7688 case TRUNC_MOD_EXPR:
7689 case FLOOR_MOD_EXPR:
7690 case CEIL_MOD_EXPR:
7691 case ROUND_MOD_EXPR:
7692 if (modifier == EXPAND_STACK_PARM)
7693 target = 0;
7694 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7695 subtarget, &op0, &op1, 0);
7696 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7698 case FIX_ROUND_EXPR:
7699 case FIX_FLOOR_EXPR:
7700 case FIX_CEIL_EXPR:
7701 gcc_unreachable (); /* Not used for C. */
7703 case FIX_TRUNC_EXPR:
7704 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7705 if (target == 0 || modifier == EXPAND_STACK_PARM)
7706 target = gen_reg_rtx (mode);
7707 expand_fix (target, op0, unsignedp);
7708 return target;
7710 case FLOAT_EXPR:
7711 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7712 if (target == 0 || modifier == EXPAND_STACK_PARM)
7713 target = gen_reg_rtx (mode);
7714 /* expand_float can't figure out what to do if FROM has VOIDmode.
7715 So give it the correct mode. With -O, cse will optimize this. */
7716 if (GET_MODE (op0) == VOIDmode)
7717 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
7718 op0);
7719 expand_float (target, op0,
7720 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7721 return target;
7723 case NEGATE_EXPR:
7724 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7725 if (modifier == EXPAND_STACK_PARM)
7726 target = 0;
7727 temp = expand_unop (mode,
7728 optab_for_tree_code (NEGATE_EXPR, type),
7729 op0, target, 0);
7730 gcc_assert (temp);
7731 return REDUCE_BIT_FIELD (temp);
7733 case ABS_EXPR:
7734 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7735 if (modifier == EXPAND_STACK_PARM)
7736 target = 0;
7738 /* ABS_EXPR is not valid for complex arguments. */
7739 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7740 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7742 /* Unsigned abs is simply the operand. Testing here means we don't
7743 risk generating incorrect code below. */
7744 if (TYPE_UNSIGNED (type))
7745 return op0;
7747 return expand_abs (mode, op0, target, unsignedp,
7748 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
7750 case MAX_EXPR:
7751 case MIN_EXPR:
7752 target = original_target;
7753 if (target == 0
7754 || modifier == EXPAND_STACK_PARM
7755 || (MEM_P (target) && MEM_VOLATILE_P (target))
7756 || GET_MODE (target) != mode
7757 || (REG_P (target)
7758 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7759 target = gen_reg_rtx (mode);
7760 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7761 target, &op0, &op1, 0);
7763 /* First try to do it with a special MIN or MAX instruction.
7764 If that does not win, use a conditional jump to select the proper
7765 value. */
7766 this_optab = optab_for_tree_code (code, type);
7767 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7768 OPTAB_WIDEN);
7769 if (temp != 0)
7770 return temp;
7772 /* At this point, a MEM target is no longer useful; we will get better
7773 code without it. */
7775 if (! REG_P (target))
7776 target = gen_reg_rtx (mode);
7778 /* If op1 was placed in target, swap op0 and op1. */
7779 if (target != op0 && target == op1)
7781 rtx tem = op0;
7782 op0 = op1;
7783 op1 = tem;
7786 /* We generate better code and avoid problems with op1 mentioning
7787 target by forcing op1 into a pseudo if it isn't a constant. */
7788 if (! CONSTANT_P (op1))
7789 op1 = force_reg (mode, op1);
7791 if (target != op0)
7792 emit_move_insn (target, op0);
7794 op0 = gen_label_rtx ();
7796 /* If this mode is an integer too wide to compare properly,
7797 compare word by word. Rely on cse to optimize constant cases. */
7798 if (GET_MODE_CLASS (mode) == MODE_INT
7799 && ! can_compare_p (GE, mode, ccp_jump))
7801 if (code == MAX_EXPR)
7802 do_jump_by_parts_greater_rtx (mode, unsignedp, target, op1,
7803 NULL_RTX, op0);
7804 else
7805 do_jump_by_parts_greater_rtx (mode, unsignedp, op1, target,
7806 NULL_RTX, op0);
7808 else
7810 do_compare_rtx_and_jump (target, op1, code == MAX_EXPR ? GE : LE,
7811 unsignedp, mode, NULL_RTX, NULL_RTX, op0);
7813 emit_move_insn (target, op1);
7814 emit_label (op0);
7815 return target;
7817 case BIT_NOT_EXPR:
7818 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7819 if (modifier == EXPAND_STACK_PARM)
7820 target = 0;
7821 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7822 gcc_assert (temp);
7823 return temp;
7825 /* ??? Can optimize bitwise operations with one arg constant.
7826 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7827 and (a bitwise1 b) bitwise2 b (etc)
7828 but that is probably not worth while. */
7830 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7831 boolean values when we want in all cases to compute both of them. In
7832 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7833 as actual zero-or-1 values and then bitwise anding. In cases where
7834 there cannot be any side effects, better code would be made by
7835 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7836 how to recognize those cases. */
7838 case TRUTH_AND_EXPR:
7839 code = BIT_AND_EXPR;
7840 case BIT_AND_EXPR:
7841 goto binop;
7843 case TRUTH_OR_EXPR:
7844 code = BIT_IOR_EXPR;
7845 case BIT_IOR_EXPR:
7846 goto binop;
7848 case TRUTH_XOR_EXPR:
7849 code = BIT_XOR_EXPR;
7850 case BIT_XOR_EXPR:
7851 goto binop;
7853 case LSHIFT_EXPR:
7854 case RSHIFT_EXPR:
7855 case LROTATE_EXPR:
7856 case RROTATE_EXPR:
7857 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7858 subtarget = 0;
7859 if (modifier == EXPAND_STACK_PARM)
7860 target = 0;
7861 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7862 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
7863 unsignedp);
7865 /* Could determine the answer when only additive constants differ. Also,
7866 the addition of one can be handled by changing the condition. */
7867 case LT_EXPR:
7868 case LE_EXPR:
7869 case GT_EXPR:
7870 case GE_EXPR:
7871 case EQ_EXPR:
7872 case NE_EXPR:
7873 case UNORDERED_EXPR:
7874 case ORDERED_EXPR:
7875 case UNLT_EXPR:
7876 case UNLE_EXPR:
7877 case UNGT_EXPR:
7878 case UNGE_EXPR:
7879 case UNEQ_EXPR:
7880 case LTGT_EXPR:
7881 temp = do_store_flag (exp,
7882 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
7883 tmode != VOIDmode ? tmode : mode, 0);
7884 if (temp != 0)
7885 return temp;
7887 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
7888 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
7889 && original_target
7890 && REG_P (original_target)
7891 && (GET_MODE (original_target)
7892 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
7894 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
7895 VOIDmode, 0);
7897 /* If temp is constant, we can just compute the result. */
7898 if (GET_CODE (temp) == CONST_INT)
7900 if (INTVAL (temp) != 0)
7901 emit_move_insn (target, const1_rtx);
7902 else
7903 emit_move_insn (target, const0_rtx);
7905 return target;
7908 if (temp != original_target)
7910 enum machine_mode mode1 = GET_MODE (temp);
7911 if (mode1 == VOIDmode)
7912 mode1 = tmode != VOIDmode ? tmode : mode;
7914 temp = copy_to_mode_reg (mode1, temp);
7917 op1 = gen_label_rtx ();
7918 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
7919 GET_MODE (temp), unsignedp, op1);
7920 emit_move_insn (temp, const1_rtx);
7921 emit_label (op1);
7922 return temp;
7925 /* If no set-flag instruction, must generate a conditional store
7926 into a temporary variable. Drop through and handle this
7927 like && and ||. */
7929 if (! ignore
7930 && (target == 0
7931 || modifier == EXPAND_STACK_PARM
7932 || ! safe_from_p (target, exp, 1)
7933 /* Make sure we don't have a hard reg (such as function's return
7934 value) live across basic blocks, if not optimizing. */
7935 || (!optimize && REG_P (target)
7936 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
7937 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7939 if (target)
7940 emit_move_insn (target, const0_rtx);
7942 op1 = gen_label_rtx ();
7943 jumpifnot (exp, op1);
7945 if (target)
7946 emit_move_insn (target, const1_rtx);
7948 emit_label (op1);
7949 return ignore ? const0_rtx : target;
7951 case TRUTH_NOT_EXPR:
7952 if (modifier == EXPAND_STACK_PARM)
7953 target = 0;
7954 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
7955 /* The parser is careful to generate TRUTH_NOT_EXPR
7956 only with operands that are always zero or one. */
7957 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
7958 target, 1, OPTAB_LIB_WIDEN);
7959 gcc_assert (temp);
7960 return temp;
7962 case STATEMENT_LIST:
7964 tree_stmt_iterator iter;
7966 gcc_assert (ignore);
7968 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
7969 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
7971 return const0_rtx;
7973 case COND_EXPR:
7974 /* A COND_EXPR with its type being VOID_TYPE represents a
7975 conditional jump and is handled in
7976 expand_gimple_cond_expr. */
7977 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
7979 /* Note that COND_EXPRs whose type is a structure or union
7980 are required to be constructed to contain assignments of
7981 a temporary variable, so that we can evaluate them here
7982 for side effect only. If type is void, we must do likewise. */
7984 gcc_assert (!TREE_ADDRESSABLE (type)
7985 && !ignore
7986 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
7987 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
7989 /* If we are not to produce a result, we have no target. Otherwise,
7990 if a target was specified use it; it will not be used as an
7991 intermediate target unless it is safe. If no target, use a
7992 temporary. */
7994 if (modifier != EXPAND_STACK_PARM
7995 && original_target
7996 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
7997 && GET_MODE (original_target) == mode
7998 #ifdef HAVE_conditional_move
7999 && (! can_conditionally_move_p (mode)
8000 || REG_P (original_target))
8001 #endif
8002 && !MEM_P (original_target))
8003 temp = original_target;
8004 else
8005 temp = assign_temp (type, 0, 0, 1);
8007 do_pending_stack_adjust ();
8008 NO_DEFER_POP;
8009 op0 = gen_label_rtx ();
8010 op1 = gen_label_rtx ();
8011 jumpifnot (TREE_OPERAND (exp, 0), op0);
8012 store_expr (TREE_OPERAND (exp, 1), temp,
8013 modifier == EXPAND_STACK_PARM);
8015 emit_jump_insn (gen_jump (op1));
8016 emit_barrier ();
8017 emit_label (op0);
8018 store_expr (TREE_OPERAND (exp, 2), temp,
8019 modifier == EXPAND_STACK_PARM);
8021 emit_label (op1);
8022 OK_DEFER_POP;
8023 return temp;
8025 case VEC_COND_EXPR:
8026 target = expand_vec_cond_expr (exp, target);
8027 return target;
8029 case MODIFY_EXPR:
8031 tree lhs = TREE_OPERAND (exp, 0);
8032 tree rhs = TREE_OPERAND (exp, 1);
8034 gcc_assert (ignore);
8036 /* Check for |= or &= of a bitfield of size one into another bitfield
8037 of size 1. In this case, (unless we need the result of the
8038 assignment) we can do this more efficiently with a
8039 test followed by an assignment, if necessary.
8041 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8042 things change so we do, this code should be enhanced to
8043 support it. */
8044 if (TREE_CODE (lhs) == COMPONENT_REF
8045 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8046 || TREE_CODE (rhs) == BIT_AND_EXPR)
8047 && TREE_OPERAND (rhs, 0) == lhs
8048 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8049 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8050 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8052 rtx label = gen_label_rtx ();
8054 do_jump (TREE_OPERAND (rhs, 1),
8055 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8056 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8057 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8058 (TREE_CODE (rhs) == BIT_IOR_EXPR
8059 ? integer_one_node
8060 : integer_zero_node)));
8061 do_pending_stack_adjust ();
8062 emit_label (label);
8063 return const0_rtx;
8066 expand_assignment (lhs, rhs);
8068 return const0_rtx;
8071 case RETURN_EXPR:
8072 if (!TREE_OPERAND (exp, 0))
8073 expand_null_return ();
8074 else
8075 expand_return (TREE_OPERAND (exp, 0));
8076 return const0_rtx;
8078 case ADDR_EXPR:
8079 return expand_expr_addr_expr (exp, target, tmode, modifier);
8081 case COMPLEX_EXPR:
8082 /* Get the rtx code of the operands. */
8083 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8084 op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
8086 if (!target)
8087 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8089 /* Move the real (op0) and imaginary (op1) parts to their location. */
8090 write_complex_part (target, op0, false);
8091 write_complex_part (target, op1, true);
8093 return target;
8095 case REALPART_EXPR:
8096 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8097 return read_complex_part (op0, false);
8099 case IMAGPART_EXPR:
8100 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8101 return read_complex_part (op0, true);
8103 case RESX_EXPR:
8104 expand_resx_expr (exp);
8105 return const0_rtx;
8107 case TRY_CATCH_EXPR:
8108 case CATCH_EXPR:
8109 case EH_FILTER_EXPR:
8110 case TRY_FINALLY_EXPR:
8111 /* Lowered by tree-eh.c. */
8112 gcc_unreachable ();
8114 case WITH_CLEANUP_EXPR:
8115 case CLEANUP_POINT_EXPR:
8116 case TARGET_EXPR:
8117 case CASE_LABEL_EXPR:
8118 case VA_ARG_EXPR:
8119 case BIND_EXPR:
8120 case INIT_EXPR:
8121 case CONJ_EXPR:
8122 case COMPOUND_EXPR:
8123 case PREINCREMENT_EXPR:
8124 case PREDECREMENT_EXPR:
8125 case POSTINCREMENT_EXPR:
8126 case POSTDECREMENT_EXPR:
8127 case LOOP_EXPR:
8128 case EXIT_EXPR:
8129 case TRUTH_ANDIF_EXPR:
8130 case TRUTH_ORIF_EXPR:
8131 /* Lowered by gimplify.c. */
8132 gcc_unreachable ();
8134 case EXC_PTR_EXPR:
8135 return get_exception_pointer (cfun);
8137 case FILTER_EXPR:
8138 return get_exception_filter (cfun);
8140 case FDESC_EXPR:
8141 /* Function descriptors are not valid except for as
8142 initialization constants, and should not be expanded. */
8143 gcc_unreachable ();
8145 case SWITCH_EXPR:
8146 expand_case (exp);
8147 return const0_rtx;
8149 case LABEL_EXPR:
8150 expand_label (TREE_OPERAND (exp, 0));
8151 return const0_rtx;
8153 case ASM_EXPR:
8154 expand_asm_expr (exp);
8155 return const0_rtx;
8157 case WITH_SIZE_EXPR:
8158 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8159 have pulled out the size to use in whatever context it needed. */
8160 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8161 modifier, alt_rtl);
8163 case REALIGN_LOAD_EXPR:
8165 tree oprnd0 = TREE_OPERAND (exp, 0);
8166 tree oprnd1 = TREE_OPERAND (exp, 1);
8167 tree oprnd2 = TREE_OPERAND (exp, 2);
8168 rtx op2;
8170 this_optab = optab_for_tree_code (code, type);
8171 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8172 op2 = expand_expr (oprnd2, NULL_RTX, VOIDmode, 0);
8173 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8174 target, unsignedp);
8175 if (temp == 0)
8176 abort ();
8177 return temp;
8181 default:
8182 return lang_hooks.expand_expr (exp, original_target, tmode,
8183 modifier, alt_rtl);
8186 /* Here to do an ordinary binary operator. */
8187 binop:
8188 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8189 subtarget, &op0, &op1, 0);
8190 binop2:
8191 this_optab = optab_for_tree_code (code, type);
8192 binop3:
8193 if (modifier == EXPAND_STACK_PARM)
8194 target = 0;
8195 temp = expand_binop (mode, this_optab, op0, op1, target,
8196 unsignedp, OPTAB_LIB_WIDEN);
8197 gcc_assert (temp);
8198 return REDUCE_BIT_FIELD (temp);
8200 #undef REDUCE_BIT_FIELD
8202 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8203 signedness of TYPE), possibly returning the result in TARGET. */
8204 static rtx
8205 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8207 HOST_WIDE_INT prec = TYPE_PRECISION (type);
8208 if (target && GET_MODE (target) != GET_MODE (exp))
8209 target = 0;
8210 if (TYPE_UNSIGNED (type))
8212 rtx mask;
8213 if (prec < HOST_BITS_PER_WIDE_INT)
8214 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8215 GET_MODE (exp));
8216 else
8217 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8218 ((unsigned HOST_WIDE_INT) 1
8219 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8220 GET_MODE (exp));
8221 return expand_and (GET_MODE (exp), exp, mask, target);
8223 else
8225 tree count = build_int_cst (NULL_TREE,
8226 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8227 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8228 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8232 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8233 when applied to the address of EXP produces an address known to be
8234 aligned more than BIGGEST_ALIGNMENT. */
8236 static int
8237 is_aligning_offset (tree offset, tree exp)
8239 /* Strip off any conversions. */
8240 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8241 || TREE_CODE (offset) == NOP_EXPR
8242 || TREE_CODE (offset) == CONVERT_EXPR)
8243 offset = TREE_OPERAND (offset, 0);
8245 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8246 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8247 if (TREE_CODE (offset) != BIT_AND_EXPR
8248 || !host_integerp (TREE_OPERAND (offset, 1), 1)
8249 || compare_tree_int (TREE_OPERAND (offset, 1),
8250 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8251 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8252 return 0;
8254 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8255 It must be NEGATE_EXPR. Then strip any more conversions. */
8256 offset = TREE_OPERAND (offset, 0);
8257 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8258 || TREE_CODE (offset) == NOP_EXPR
8259 || TREE_CODE (offset) == CONVERT_EXPR)
8260 offset = TREE_OPERAND (offset, 0);
8262 if (TREE_CODE (offset) != NEGATE_EXPR)
8263 return 0;
8265 offset = TREE_OPERAND (offset, 0);
8266 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8267 || TREE_CODE (offset) == NOP_EXPR
8268 || TREE_CODE (offset) == CONVERT_EXPR)
8269 offset = TREE_OPERAND (offset, 0);
8271 /* This must now be the address of EXP. */
8272 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8275 /* Return the tree node if an ARG corresponds to a string constant or zero
8276 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8277 in bytes within the string that ARG is accessing. The type of the
8278 offset will be `sizetype'. */
8280 tree
8281 string_constant (tree arg, tree *ptr_offset)
8283 tree array, offset;
8284 STRIP_NOPS (arg);
8286 if (TREE_CODE (arg) == ADDR_EXPR)
8288 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8290 *ptr_offset = size_zero_node;
8291 return TREE_OPERAND (arg, 0);
8293 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8295 array = TREE_OPERAND (arg, 0);
8296 offset = size_zero_node;
8298 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8300 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8301 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8302 if (TREE_CODE (array) != STRING_CST
8303 && TREE_CODE (array) != VAR_DECL)
8304 return 0;
8306 else
8307 return 0;
8309 else if (TREE_CODE (arg) == PLUS_EXPR)
8311 tree arg0 = TREE_OPERAND (arg, 0);
8312 tree arg1 = TREE_OPERAND (arg, 1);
8314 STRIP_NOPS (arg0);
8315 STRIP_NOPS (arg1);
8317 if (TREE_CODE (arg0) == ADDR_EXPR
8318 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8319 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8321 array = TREE_OPERAND (arg0, 0);
8322 offset = arg1;
8324 else if (TREE_CODE (arg1) == ADDR_EXPR
8325 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8326 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8328 array = TREE_OPERAND (arg1, 0);
8329 offset = arg0;
8331 else
8332 return 0;
8334 else
8335 return 0;
8337 if (TREE_CODE (array) == STRING_CST)
8339 *ptr_offset = convert (sizetype, offset);
8340 return array;
8342 else if (TREE_CODE (array) == VAR_DECL)
8344 int length;
8346 /* Variables initialized to string literals can be handled too. */
8347 if (DECL_INITIAL (array) == NULL_TREE
8348 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8349 return 0;
8351 /* If they are read-only, non-volatile and bind locally. */
8352 if (! TREE_READONLY (array)
8353 || TREE_SIDE_EFFECTS (array)
8354 || ! targetm.binds_local_p (array))
8355 return 0;
8357 /* Avoid const char foo[4] = "abcde"; */
8358 if (DECL_SIZE_UNIT (array) == NULL_TREE
8359 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8360 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8361 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8362 return 0;
8364 /* If variable is bigger than the string literal, OFFSET must be constant
8365 and inside of the bounds of the string literal. */
8366 offset = convert (sizetype, offset);
8367 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
8368 && (! host_integerp (offset, 1)
8369 || compare_tree_int (offset, length) >= 0))
8370 return 0;
8372 *ptr_offset = offset;
8373 return DECL_INITIAL (array);
8376 return 0;
8379 /* Generate code to calculate EXP using a store-flag instruction
8380 and return an rtx for the result. EXP is either a comparison
8381 or a TRUTH_NOT_EXPR whose operand is a comparison.
8383 If TARGET is nonzero, store the result there if convenient.
8385 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8386 cheap.
8388 Return zero if there is no suitable set-flag instruction
8389 available on this machine.
8391 Once expand_expr has been called on the arguments of the comparison,
8392 we are committed to doing the store flag, since it is not safe to
8393 re-evaluate the expression. We emit the store-flag insn by calling
8394 emit_store_flag, but only expand the arguments if we have a reason
8395 to believe that emit_store_flag will be successful. If we think that
8396 it will, but it isn't, we have to simulate the store-flag with a
8397 set/jump/set sequence. */
8399 static rtx
8400 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
8402 enum rtx_code code;
8403 tree arg0, arg1, type;
8404 tree tem;
8405 enum machine_mode operand_mode;
8406 int invert = 0;
8407 int unsignedp;
8408 rtx op0, op1;
8409 enum insn_code icode;
8410 rtx subtarget = target;
8411 rtx result, label;
8413 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8414 result at the end. We can't simply invert the test since it would
8415 have already been inverted if it were valid. This case occurs for
8416 some floating-point comparisons. */
8418 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
8419 invert = 1, exp = TREE_OPERAND (exp, 0);
8421 arg0 = TREE_OPERAND (exp, 0);
8422 arg1 = TREE_OPERAND (exp, 1);
8424 /* Don't crash if the comparison was erroneous. */
8425 if (arg0 == error_mark_node || arg1 == error_mark_node)
8426 return const0_rtx;
8428 type = TREE_TYPE (arg0);
8429 operand_mode = TYPE_MODE (type);
8430 unsignedp = TYPE_UNSIGNED (type);
8432 /* We won't bother with BLKmode store-flag operations because it would mean
8433 passing a lot of information to emit_store_flag. */
8434 if (operand_mode == BLKmode)
8435 return 0;
8437 /* We won't bother with store-flag operations involving function pointers
8438 when function pointers must be canonicalized before comparisons. */
8439 #ifdef HAVE_canonicalize_funcptr_for_compare
8440 if (HAVE_canonicalize_funcptr_for_compare
8441 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
8442 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8443 == FUNCTION_TYPE))
8444 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
8445 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8446 == FUNCTION_TYPE))))
8447 return 0;
8448 #endif
8450 STRIP_NOPS (arg0);
8451 STRIP_NOPS (arg1);
8453 /* Get the rtx comparison code to use. We know that EXP is a comparison
8454 operation of some type. Some comparisons against 1 and -1 can be
8455 converted to comparisons with zero. Do so here so that the tests
8456 below will be aware that we have a comparison with zero. These
8457 tests will not catch constants in the first operand, but constants
8458 are rarely passed as the first operand. */
8460 switch (TREE_CODE (exp))
8462 case EQ_EXPR:
8463 code = EQ;
8464 break;
8465 case NE_EXPR:
8466 code = NE;
8467 break;
8468 case LT_EXPR:
8469 if (integer_onep (arg1))
8470 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
8471 else
8472 code = unsignedp ? LTU : LT;
8473 break;
8474 case LE_EXPR:
8475 if (! unsignedp && integer_all_onesp (arg1))
8476 arg1 = integer_zero_node, code = LT;
8477 else
8478 code = unsignedp ? LEU : LE;
8479 break;
8480 case GT_EXPR:
8481 if (! unsignedp && integer_all_onesp (arg1))
8482 arg1 = integer_zero_node, code = GE;
8483 else
8484 code = unsignedp ? GTU : GT;
8485 break;
8486 case GE_EXPR:
8487 if (integer_onep (arg1))
8488 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
8489 else
8490 code = unsignedp ? GEU : GE;
8491 break;
8493 case UNORDERED_EXPR:
8494 code = UNORDERED;
8495 break;
8496 case ORDERED_EXPR:
8497 code = ORDERED;
8498 break;
8499 case UNLT_EXPR:
8500 code = UNLT;
8501 break;
8502 case UNLE_EXPR:
8503 code = UNLE;
8504 break;
8505 case UNGT_EXPR:
8506 code = UNGT;
8507 break;
8508 case UNGE_EXPR:
8509 code = UNGE;
8510 break;
8511 case UNEQ_EXPR:
8512 code = UNEQ;
8513 break;
8514 case LTGT_EXPR:
8515 code = LTGT;
8516 break;
8518 default:
8519 gcc_unreachable ();
8522 /* Put a constant second. */
8523 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
8525 tem = arg0; arg0 = arg1; arg1 = tem;
8526 code = swap_condition (code);
8529 /* If this is an equality or inequality test of a single bit, we can
8530 do this by shifting the bit being tested to the low-order bit and
8531 masking the result with the constant 1. If the condition was EQ,
8532 we xor it with 1. This does not require an scc insn and is faster
8533 than an scc insn even if we have it.
8535 The code to make this transformation was moved into fold_single_bit_test,
8536 so we just call into the folder and expand its result. */
8538 if ((code == NE || code == EQ)
8539 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
8540 && integer_pow2p (TREE_OPERAND (arg0, 1)))
8542 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
8543 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
8544 arg0, arg1, type),
8545 target, VOIDmode, EXPAND_NORMAL);
8548 /* Now see if we are likely to be able to do this. Return if not. */
8549 if (! can_compare_p (code, operand_mode, ccp_store_flag))
8550 return 0;
8552 icode = setcc_gen_code[(int) code];
8553 if (icode == CODE_FOR_nothing
8554 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
8556 /* We can only do this if it is one of the special cases that
8557 can be handled without an scc insn. */
8558 if ((code == LT && integer_zerop (arg1))
8559 || (! only_cheap && code == GE && integer_zerop (arg1)))
8561 else if (BRANCH_COST >= 0
8562 && ! only_cheap && (code == NE || code == EQ)
8563 && TREE_CODE (type) != REAL_TYPE
8564 && ((abs_optab->handlers[(int) operand_mode].insn_code
8565 != CODE_FOR_nothing)
8566 || (ffs_optab->handlers[(int) operand_mode].insn_code
8567 != CODE_FOR_nothing)))
8569 else
8570 return 0;
8573 if (! get_subtarget (target)
8574 || GET_MODE (subtarget) != operand_mode)
8575 subtarget = 0;
8577 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
8579 if (target == 0)
8580 target = gen_reg_rtx (mode);
8582 result = emit_store_flag (target, code, op0, op1,
8583 operand_mode, unsignedp, 1);
8585 if (result)
8587 if (invert)
8588 result = expand_binop (mode, xor_optab, result, const1_rtx,
8589 result, 0, OPTAB_LIB_WIDEN);
8590 return result;
8593 /* If this failed, we have to do this with set/compare/jump/set code. */
8594 if (!REG_P (target)
8595 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
8596 target = gen_reg_rtx (GET_MODE (target));
8598 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
8599 result = compare_from_rtx (op0, op1, code, unsignedp,
8600 operand_mode, NULL_RTX);
8601 if (GET_CODE (result) == CONST_INT)
8602 return (((result == const0_rtx && ! invert)
8603 || (result != const0_rtx && invert))
8604 ? const0_rtx : const1_rtx);
8606 /* The code of RESULT may not match CODE if compare_from_rtx
8607 decided to swap its operands and reverse the original code.
8609 We know that compare_from_rtx returns either a CONST_INT or
8610 a new comparison code, so it is safe to just extract the
8611 code from RESULT. */
8612 code = GET_CODE (result);
8614 label = gen_label_rtx ();
8615 gcc_assert (bcc_gen_fctn[(int) code]);
8617 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
8618 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
8619 emit_label (label);
8621 return target;
8625 /* Stubs in case we haven't got a casesi insn. */
8626 #ifndef HAVE_casesi
8627 # define HAVE_casesi 0
8628 # define gen_casesi(a, b, c, d, e) (0)
8629 # define CODE_FOR_casesi CODE_FOR_nothing
8630 #endif
8632 /* If the machine does not have a case insn that compares the bounds,
8633 this means extra overhead for dispatch tables, which raises the
8634 threshold for using them. */
8635 #ifndef CASE_VALUES_THRESHOLD
8636 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8637 #endif /* CASE_VALUES_THRESHOLD */
8639 unsigned int
8640 case_values_threshold (void)
8642 return CASE_VALUES_THRESHOLD;
8645 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8646 0 otherwise (i.e. if there is no casesi instruction). */
8648 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
8649 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
8651 enum machine_mode index_mode = SImode;
8652 int index_bits = GET_MODE_BITSIZE (index_mode);
8653 rtx op1, op2, index;
8654 enum machine_mode op_mode;
8656 if (! HAVE_casesi)
8657 return 0;
8659 /* Convert the index to SImode. */
8660 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
8662 enum machine_mode omode = TYPE_MODE (index_type);
8663 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
8665 /* We must handle the endpoints in the original mode. */
8666 index_expr = build2 (MINUS_EXPR, index_type,
8667 index_expr, minval);
8668 minval = integer_zero_node;
8669 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
8670 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
8671 omode, 1, default_label);
8672 /* Now we can safely truncate. */
8673 index = convert_to_mode (index_mode, index, 0);
8675 else
8677 if (TYPE_MODE (index_type) != index_mode)
8679 index_expr = convert (lang_hooks.types.type_for_size
8680 (index_bits, 0), index_expr);
8681 index_type = TREE_TYPE (index_expr);
8684 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
8687 do_pending_stack_adjust ();
8689 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
8690 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
8691 (index, op_mode))
8692 index = copy_to_mode_reg (op_mode, index);
8694 op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
8696 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
8697 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
8698 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
8699 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
8700 (op1, op_mode))
8701 op1 = copy_to_mode_reg (op_mode, op1);
8703 op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
8705 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
8706 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
8707 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
8708 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
8709 (op2, op_mode))
8710 op2 = copy_to_mode_reg (op_mode, op2);
8712 emit_jump_insn (gen_casesi (index, op1, op2,
8713 table_label, default_label));
8714 return 1;
8717 /* Attempt to generate a tablejump instruction; same concept. */
8718 #ifndef HAVE_tablejump
8719 #define HAVE_tablejump 0
8720 #define gen_tablejump(x, y) (0)
8721 #endif
8723 /* Subroutine of the next function.
8725 INDEX is the value being switched on, with the lowest value
8726 in the table already subtracted.
8727 MODE is its expected mode (needed if INDEX is constant).
8728 RANGE is the length of the jump table.
8729 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
8731 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
8732 index value is out of range. */
8734 static void
8735 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
8736 rtx default_label)
8738 rtx temp, vector;
8740 if (INTVAL (range) > cfun->max_jumptable_ents)
8741 cfun->max_jumptable_ents = INTVAL (range);
8743 /* Do an unsigned comparison (in the proper mode) between the index
8744 expression and the value which represents the length of the range.
8745 Since we just finished subtracting the lower bound of the range
8746 from the index expression, this comparison allows us to simultaneously
8747 check that the original index expression value is both greater than
8748 or equal to the minimum value of the range and less than or equal to
8749 the maximum value of the range. */
8751 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
8752 default_label);
8754 /* If index is in range, it must fit in Pmode.
8755 Convert to Pmode so we can index with it. */
8756 if (mode != Pmode)
8757 index = convert_to_mode (Pmode, index, 1);
8759 /* Don't let a MEM slip through, because then INDEX that comes
8760 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
8761 and break_out_memory_refs will go to work on it and mess it up. */
8762 #ifdef PIC_CASE_VECTOR_ADDRESS
8763 if (flag_pic && !REG_P (index))
8764 index = copy_to_mode_reg (Pmode, index);
8765 #endif
8767 /* If flag_force_addr were to affect this address
8768 it could interfere with the tricky assumptions made
8769 about addresses that contain label-refs,
8770 which may be valid only very near the tablejump itself. */
8771 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
8772 GET_MODE_SIZE, because this indicates how large insns are. The other
8773 uses should all be Pmode, because they are addresses. This code
8774 could fail if addresses and insns are not the same size. */
8775 index = gen_rtx_PLUS (Pmode,
8776 gen_rtx_MULT (Pmode, index,
8777 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
8778 gen_rtx_LABEL_REF (Pmode, table_label));
8779 #ifdef PIC_CASE_VECTOR_ADDRESS
8780 if (flag_pic)
8781 index = PIC_CASE_VECTOR_ADDRESS (index);
8782 else
8783 #endif
8784 index = memory_address_noforce (CASE_VECTOR_MODE, index);
8785 temp = gen_reg_rtx (CASE_VECTOR_MODE);
8786 vector = gen_const_mem (CASE_VECTOR_MODE, index);
8787 convert_move (temp, vector, 0);
8789 emit_jump_insn (gen_tablejump (temp, table_label));
8791 /* If we are generating PIC code or if the table is PC-relative, the
8792 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
8793 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
8794 emit_barrier ();
8798 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
8799 rtx table_label, rtx default_label)
8801 rtx index;
8803 if (! HAVE_tablejump)
8804 return 0;
8806 index_expr = fold (build2 (MINUS_EXPR, index_type,
8807 convert (index_type, index_expr),
8808 convert (index_type, minval)));
8809 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
8810 do_pending_stack_adjust ();
8812 do_tablejump (index, TYPE_MODE (index_type),
8813 convert_modes (TYPE_MODE (index_type),
8814 TYPE_MODE (TREE_TYPE (range)),
8815 expand_expr (range, NULL_RTX,
8816 VOIDmode, 0),
8817 TYPE_UNSIGNED (TREE_TYPE (range))),
8818 table_label, default_label);
8819 return 1;
8822 /* Nonzero if the mode is a valid vector mode for this architecture.
8823 This returns nonzero even if there is no hardware support for the
8824 vector mode, but we can emulate with narrower modes. */
8827 vector_mode_valid_p (enum machine_mode mode)
8829 enum mode_class class = GET_MODE_CLASS (mode);
8830 enum machine_mode innermode;
8832 /* Doh! What's going on? */
8833 if (class != MODE_VECTOR_INT
8834 && class != MODE_VECTOR_FLOAT)
8835 return 0;
8837 /* Hardware support. Woo hoo! */
8838 if (targetm.vector_mode_supported_p (mode))
8839 return 1;
8841 innermode = GET_MODE_INNER (mode);
8843 /* We should probably return 1 if requesting V4DI and we have no DI,
8844 but we have V2DI, but this is probably very unlikely. */
8846 /* If we have support for the inner mode, we can safely emulate it.
8847 We may not have V2DI, but me can emulate with a pair of DIs. */
8848 return targetm.scalar_mode_supported_p (innermode);
8851 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
8852 static rtx
8853 const_vector_from_tree (tree exp)
8855 rtvec v;
8856 int units, i;
8857 tree link, elt;
8858 enum machine_mode inner, mode;
8860 mode = TYPE_MODE (TREE_TYPE (exp));
8862 if (initializer_zerop (exp))
8863 return CONST0_RTX (mode);
8865 units = GET_MODE_NUNITS (mode);
8866 inner = GET_MODE_INNER (mode);
8868 v = rtvec_alloc (units);
8870 link = TREE_VECTOR_CST_ELTS (exp);
8871 for (i = 0; link; link = TREE_CHAIN (link), ++i)
8873 elt = TREE_VALUE (link);
8875 if (TREE_CODE (elt) == REAL_CST)
8876 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
8877 inner);
8878 else
8879 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
8880 TREE_INT_CST_HIGH (elt),
8881 inner);
8884 /* Initialize remaining elements to 0. */
8885 for (; i < units; ++i)
8886 RTVEC_ELT (v, i) = CONST0_RTX (inner);
8888 return gen_rtx_CONST_VECTOR (mode, v);
8890 #include "gt-expr.h"