2013-10-18 Edward Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / libsanitizer / tsan / tsan_rtl.h
blobe939921049a7c253c1085fdd268789627fbfca82
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Main internal TSan header file.
12 // Ground rules:
13 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
14 // function-scope locals)
15 // - All functions/classes/etc reside in namespace __tsan, except for those
16 // declared in tsan_interface.h.
17 // - Platform-specific files should be used instead of ifdefs (*).
18 // - No system headers included in header files (*).
19 // - Platform specific headres included only into platform-specific files (*).
21 // (*) Except when inlining is critical for performance.
22 //===----------------------------------------------------------------------===//
24 #ifndef TSAN_RTL_H
25 #define TSAN_RTL_H
27 #include "sanitizer_common/sanitizer_common.h"
28 #include "sanitizer_common/sanitizer_allocator.h"
29 #include "tsan_clock.h"
30 #include "tsan_defs.h"
31 #include "tsan_flags.h"
32 #include "tsan_sync.h"
33 #include "tsan_trace.h"
34 #include "tsan_vector.h"
35 #include "tsan_report.h"
36 #include "tsan_platform.h"
37 #include "tsan_mutexset.h"
39 #if SANITIZER_WORDSIZE != 64
40 # error "ThreadSanitizer is supported only on 64-bit platforms"
41 #endif
43 namespace __tsan {
45 // Descriptor of user's memory block.
46 struct MBlock {
47 Mutex mtx;
48 uptr size;
49 u32 alloc_tid;
50 u32 alloc_stack_id;
51 SyncVar *head;
53 MBlock()
54 : mtx(MutexTypeMBlock, StatMtxMBlock) {
58 #ifndef TSAN_GO
59 #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
60 const uptr kAllocatorSpace = 0x7d0000000000ULL;
61 #else
62 const uptr kAllocatorSpace = 0x7d0000000000ULL;
63 #endif
64 const uptr kAllocatorSize = 0x10000000000ULL; // 1T.
66 struct TsanMapUnmapCallback {
67 void OnMap(uptr p, uptr size) const { }
68 void OnUnmap(uptr p, uptr size) const {
69 // We are about to unmap a chunk of user memory.
70 // Mark the corresponding shadow memory as not needed.
71 uptr shadow_beg = MemToShadow(p);
72 uptr shadow_end = MemToShadow(p + size);
73 CHECK(IsAligned(shadow_end|shadow_beg, GetPageSizeCached()));
74 FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
78 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
79 DefaultSizeClassMap> PrimaryAllocator;
80 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
81 typedef LargeMmapAllocator<TsanMapUnmapCallback> SecondaryAllocator;
82 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
83 SecondaryAllocator> Allocator;
84 Allocator *allocator();
85 #endif
87 void TsanCheckFailed(const char *file, int line, const char *cond,
88 u64 v1, u64 v2);
90 // FastState (from most significant bit):
91 // ignore : 1
92 // tid : kTidBits
93 // epoch : kClkBits
94 // unused : -
95 // history_size : 3
96 class FastState {
97 public:
98 FastState(u64 tid, u64 epoch) {
99 x_ = tid << kTidShift;
100 x_ |= epoch << kClkShift;
101 DCHECK_EQ(tid, this->tid());
102 DCHECK_EQ(epoch, this->epoch());
103 DCHECK_EQ(GetIgnoreBit(), false);
106 explicit FastState(u64 x)
107 : x_(x) {
110 u64 raw() const {
111 return x_;
114 u64 tid() const {
115 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
116 return res;
119 u64 TidWithIgnore() const {
120 u64 res = x_ >> kTidShift;
121 return res;
124 u64 epoch() const {
125 u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
126 return res;
129 void IncrementEpoch() {
130 u64 old_epoch = epoch();
131 x_ += 1 << kClkShift;
132 DCHECK_EQ(old_epoch + 1, epoch());
133 (void)old_epoch;
136 void SetIgnoreBit() { x_ |= kIgnoreBit; }
137 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
138 bool GetIgnoreBit() const { return (s64)x_ < 0; }
140 void SetHistorySize(int hs) {
141 CHECK_GE(hs, 0);
142 CHECK_LE(hs, 7);
143 x_ = (x_ & ~7) | hs;
146 int GetHistorySize() const {
147 return (int)(x_ & 7);
150 void ClearHistorySize() {
151 x_ &= ~7;
154 u64 GetTracePos() const {
155 const int hs = GetHistorySize();
156 // When hs == 0, the trace consists of 2 parts.
157 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
158 return epoch() & mask;
161 private:
162 friend class Shadow;
163 static const int kTidShift = 64 - kTidBits - 1;
164 static const int kClkShift = kTidShift - kClkBits;
165 static const u64 kIgnoreBit = 1ull << 63;
166 static const u64 kFreedBit = 1ull << 63;
167 u64 x_;
170 // Shadow (from most significant bit):
171 // freed : 1
172 // tid : kTidBits
173 // epoch : kClkBits
174 // is_atomic : 1
175 // is_read : 1
176 // size_log : 2
177 // addr0 : 3
178 class Shadow : public FastState {
179 public:
180 explicit Shadow(u64 x)
181 : FastState(x) {
184 explicit Shadow(const FastState &s)
185 : FastState(s.x_) {
186 ClearHistorySize();
189 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
190 DCHECK_EQ(x_ & 31, 0);
191 DCHECK_LE(addr0, 7);
192 DCHECK_LE(kAccessSizeLog, 3);
193 x_ |= (kAccessSizeLog << 3) | addr0;
194 DCHECK_EQ(kAccessSizeLog, size_log());
195 DCHECK_EQ(addr0, this->addr0());
198 void SetWrite(unsigned kAccessIsWrite) {
199 DCHECK_EQ(x_ & kReadBit, 0);
200 if (!kAccessIsWrite)
201 x_ |= kReadBit;
202 DCHECK_EQ(kAccessIsWrite, IsWrite());
205 void SetAtomic(bool kIsAtomic) {
206 DCHECK(!IsAtomic());
207 if (kIsAtomic)
208 x_ |= kAtomicBit;
209 DCHECK_EQ(IsAtomic(), kIsAtomic);
212 bool IsAtomic() const {
213 return x_ & kAtomicBit;
216 bool IsZero() const {
217 return x_ == 0;
220 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
221 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
222 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
223 return shifted_xor == 0;
226 static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
227 u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
228 return masked_xor == 0;
231 static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
232 unsigned kS2AccessSize) {
233 bool res = false;
234 u64 diff = s1.addr0() - s2.addr0();
235 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
236 // if (s1.addr0() + size1) > s2.addr0()) return true;
237 if (s1.size() > -diff) res = true;
238 } else {
239 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
240 if (kS2AccessSize > diff) res = true;
242 DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
243 DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
244 return res;
247 // The idea behind the offset is as follows.
248 // Consider that we have 8 bool's contained within a single 8-byte block
249 // (mapped to a single shadow "cell"). Now consider that we write to the bools
250 // from a single thread (which we consider the common case).
251 // W/o offsetting each access will have to scan 4 shadow values at average
252 // to find the corresponding shadow value for the bool.
253 // With offsetting we start scanning shadow with the offset so that
254 // each access hits necessary shadow straight off (at least in an expected
255 // optimistic case).
256 // This logic works seamlessly for any layout of user data. For example,
257 // if user data is {int, short, char, char}, then accesses to the int are
258 // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
259 // from a single thread won't need to scan all 8 shadow values.
260 unsigned ComputeSearchOffset() {
261 return x_ & 7;
263 u64 addr0() const { return x_ & 7; }
264 u64 size() const { return 1ull << size_log(); }
265 bool IsWrite() const { return !IsRead(); }
266 bool IsRead() const { return x_ & kReadBit; }
268 // The idea behind the freed bit is as follows.
269 // When the memory is freed (or otherwise unaccessible) we write to the shadow
270 // values with tid/epoch related to the free and the freed bit set.
271 // During memory accesses processing the freed bit is considered
272 // as msb of tid. So any access races with shadow with freed bit set
273 // (it is as if write from a thread with which we never synchronized before).
274 // This allows us to detect accesses to freed memory w/o additional
275 // overheads in memory access processing and at the same time restore
276 // tid/epoch of free.
277 void MarkAsFreed() {
278 x_ |= kFreedBit;
281 bool IsFreed() const {
282 return x_ & kFreedBit;
285 bool GetFreedAndReset() {
286 bool res = x_ & kFreedBit;
287 x_ &= ~kFreedBit;
288 return res;
291 bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
292 // analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
293 bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
294 | (kIsAtomic << kAtomicShift));
295 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
296 return v;
299 bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
300 bool v = ((x_ >> kReadShift) & 3)
301 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
302 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
303 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
304 return v;
307 bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
308 bool v = ((x_ >> kReadShift) & 3)
309 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
310 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
311 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
312 return v;
315 private:
316 static const u64 kReadShift = 5;
317 static const u64 kReadBit = 1ull << kReadShift;
318 static const u64 kAtomicShift = 6;
319 static const u64 kAtomicBit = 1ull << kAtomicShift;
321 u64 size_log() const { return (x_ >> 3) & 3; }
323 static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
324 if (s1.addr0() == s2.addr0()) return true;
325 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
326 return true;
327 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
328 return true;
329 return false;
333 struct SignalContext;
335 // This struct is stored in TLS.
336 struct ThreadState {
337 FastState fast_state;
338 // Synch epoch represents the threads's epoch before the last synchronization
339 // action. It allows to reduce number of shadow state updates.
340 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
341 // if we are processing write to X from the same thread at epoch=200,
342 // we do nothing, because both writes happen in the same 'synch epoch'.
343 // That is, if another memory access does not race with the former write,
344 // it does not race with the latter as well.
345 // QUESTION: can we can squeeze this into ThreadState::Fast?
346 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
347 // taken by epoch between synchs.
348 // This way we can save one load from tls.
349 u64 fast_synch_epoch;
350 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
351 // We do not distinguish beteween ignoring reads and writes
352 // for better performance.
353 int ignore_reads_and_writes;
354 uptr *shadow_stack_pos;
355 u64 *racy_shadow_addr;
356 u64 racy_state[2];
357 Trace trace;
358 #ifndef TSAN_GO
359 // C/C++ uses embed shadow stack of fixed size.
360 uptr shadow_stack[kShadowStackSize];
361 #else
362 // Go uses satellite shadow stack with dynamic size.
363 uptr *shadow_stack;
364 uptr *shadow_stack_end;
365 #endif
366 MutexSet mset;
367 ThreadClock clock;
368 #ifndef TSAN_GO
369 AllocatorCache alloc_cache;
370 #endif
371 u64 stat[StatCnt];
372 const int tid;
373 const int unique_id;
374 int in_rtl;
375 bool in_symbolizer;
376 bool is_alive;
377 bool is_freeing;
378 const uptr stk_addr;
379 const uptr stk_size;
380 const uptr tls_addr;
381 const uptr tls_size;
383 DeadlockDetector deadlock_detector;
385 bool in_signal_handler;
386 SignalContext *signal_ctx;
388 #ifndef TSAN_GO
389 u32 last_sleep_stack_id;
390 ThreadClock last_sleep_clock;
391 #endif
393 // Set in regions of runtime that must be signal-safe and fork-safe.
394 // If set, malloc must not be called.
395 int nomalloc;
397 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
398 uptr stk_addr, uptr stk_size,
399 uptr tls_addr, uptr tls_size);
402 Context *CTX();
404 #ifndef TSAN_GO
405 extern THREADLOCAL char cur_thread_placeholder[];
406 INLINE ThreadState *cur_thread() {
407 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
409 #endif
411 enum ThreadStatus {
412 ThreadStatusInvalid, // Non-existent thread, data is invalid.
413 ThreadStatusCreated, // Created but not yet running.
414 ThreadStatusRunning, // The thread is currently running.
415 ThreadStatusFinished, // Joinable thread is finished but not yet joined.
416 ThreadStatusDead // Joined, but some info (trace) is still alive.
419 // An info about a thread that is hold for some time after its termination.
420 struct ThreadDeadInfo {
421 Trace trace;
424 struct ThreadContext {
425 const int tid;
426 int unique_id; // Non-rolling thread id.
427 uptr os_id; // pid
428 uptr user_id; // Some opaque user thread id (e.g. pthread_t).
429 ThreadState *thr;
430 ThreadStatus status;
431 bool detached;
432 int reuse_count;
433 SyncClock sync;
434 // Epoch at which the thread had started.
435 // If we see an event from the thread stamped by an older epoch,
436 // the event is from a dead thread that shared tid with this thread.
437 u64 epoch0;
438 u64 epoch1;
439 StackTrace creation_stack;
440 int creation_tid;
441 ThreadDeadInfo *dead_info;
442 ThreadContext *dead_next; // In dead thread list.
443 char *name; // As annotated by user.
445 explicit ThreadContext(int tid);
448 struct RacyStacks {
449 MD5Hash hash[2];
450 bool operator==(const RacyStacks &other) const {
451 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
452 return true;
453 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
454 return true;
455 return false;
459 struct RacyAddress {
460 uptr addr_min;
461 uptr addr_max;
464 struct FiredSuppression {
465 ReportType type;
466 uptr pc;
469 struct Context {
470 Context();
472 bool initialized;
474 SyncTab synctab;
476 Mutex report_mtx;
477 int nreported;
478 int nmissed_expected;
480 Mutex thread_mtx;
481 unsigned thread_seq;
482 unsigned unique_thread_seq;
483 int alive_threads;
484 int max_alive_threads;
485 ThreadContext *threads[kMaxTid];
486 int dead_list_size;
487 ThreadContext* dead_list_head;
488 ThreadContext* dead_list_tail;
490 Vector<RacyStacks> racy_stacks;
491 Vector<RacyAddress> racy_addresses;
492 Vector<FiredSuppression> fired_suppressions;
494 Flags flags;
496 u64 stat[StatCnt];
497 u64 int_alloc_cnt[MBlockTypeCount];
498 u64 int_alloc_siz[MBlockTypeCount];
501 class ScopedInRtl {
502 public:
503 ScopedInRtl();
504 ~ScopedInRtl();
505 private:
506 ThreadState*thr_;
507 int in_rtl_;
508 int errno_;
511 class ScopedReport {
512 public:
513 explicit ScopedReport(ReportType typ);
514 ~ScopedReport();
516 void AddStack(const StackTrace *stack);
517 void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
518 const MutexSet *mset);
519 void AddThread(const ThreadContext *tctx);
520 void AddMutex(const SyncVar *s);
521 void AddLocation(uptr addr, uptr size);
522 void AddSleep(u32 stack_id);
524 const ReportDesc *GetReport() const;
526 private:
527 Context *ctx_;
528 ReportDesc *rep_;
530 void AddMutex(u64 id);
532 ScopedReport(const ScopedReport&);
533 void operator = (const ScopedReport&);
536 void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
538 void StatAggregate(u64 *dst, u64 *src);
539 void StatOutput(u64 *stat);
540 void ALWAYS_INLINE INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
541 if (kCollectStats)
542 thr->stat[typ] += n;
545 void MapShadow(uptr addr, uptr size);
546 void MapThreadTrace(uptr addr, uptr size);
547 void InitializeShadowMemory();
548 void InitializeInterceptors();
549 void InitializeDynamicAnnotations();
551 void ReportRace(ThreadState *thr);
552 bool OutputReport(Context *ctx,
553 const ScopedReport &srep,
554 const ReportStack *suppress_stack1 = 0,
555 const ReportStack *suppress_stack2 = 0);
556 bool IsFiredSuppression(Context *ctx,
557 const ScopedReport &srep,
558 const StackTrace &trace);
559 bool IsExpectedReport(uptr addr, uptr size);
560 bool FrameIsInternal(const ReportStack *frame);
561 ReportStack *SkipTsanInternalFrames(ReportStack *ent);
563 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
564 # define DPrintf Printf
565 #else
566 # define DPrintf(...)
567 #endif
569 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
570 # define DPrintf2 Printf
571 #else
572 # define DPrintf2(...)
573 #endif
575 u32 CurrentStackId(ThreadState *thr, uptr pc);
576 void PrintCurrentStack(ThreadState *thr, uptr pc);
577 void PrintCurrentStackSlow(); // uses libunwind
579 void Initialize(ThreadState *thr);
580 int Finalize(ThreadState *thr);
582 SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
583 bool write_lock, bool create);
584 SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
586 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
587 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
588 void MemoryAccessImpl(ThreadState *thr, uptr addr,
589 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
590 u64 *shadow_mem, Shadow cur);
591 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
592 uptr size, bool is_write);
593 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
594 uptr size, uptr step, bool is_write);
596 const int kSizeLog1 = 0;
597 const int kSizeLog2 = 1;
598 const int kSizeLog4 = 2;
599 const int kSizeLog8 = 3;
601 void ALWAYS_INLINE INLINE MemoryRead(ThreadState *thr, uptr pc,
602 uptr addr, int kAccessSizeLog) {
603 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
606 void ALWAYS_INLINE INLINE MemoryWrite(ThreadState *thr, uptr pc,
607 uptr addr, int kAccessSizeLog) {
608 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
611 void ALWAYS_INLINE INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
612 uptr addr, int kAccessSizeLog) {
613 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
616 void ALWAYS_INLINE INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
617 uptr addr, int kAccessSizeLog) {
618 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
621 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
622 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
623 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
624 void IgnoreCtl(ThreadState *thr, bool write, bool begin);
626 void FuncEntry(ThreadState *thr, uptr pc);
627 void FuncExit(ThreadState *thr);
629 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
630 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
631 void ThreadFinish(ThreadState *thr);
632 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
633 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
634 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
635 void ThreadFinalize(ThreadState *thr);
636 void ThreadSetName(ThreadState *thr, const char *name);
637 int ThreadCount(ThreadState *thr);
638 void ProcessPendingSignals(ThreadState *thr);
640 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
641 bool rw, bool recursive, bool linker_init);
642 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
643 void MutexLock(ThreadState *thr, uptr pc, uptr addr);
644 void MutexUnlock(ThreadState *thr, uptr pc, uptr addr);
645 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr);
646 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
647 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
649 void Acquire(ThreadState *thr, uptr pc, uptr addr);
650 void AcquireGlobal(ThreadState *thr, uptr pc);
651 void Release(ThreadState *thr, uptr pc, uptr addr);
652 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
653 void AfterSleep(ThreadState *thr, uptr pc);
655 // The hacky call uses custom calling convention and an assembly thunk.
656 // It is considerably faster that a normal call for the caller
657 // if it is not executed (it is intended for slow paths from hot functions).
658 // The trick is that the call preserves all registers and the compiler
659 // does not treat it as a call.
660 // If it does not work for you, use normal call.
661 #if TSAN_DEBUG == 0
662 // The caller may not create the stack frame for itself at all,
663 // so we create a reserve stack frame for it (1024b must be enough).
664 #define HACKY_CALL(f) \
665 __asm__ __volatile__("sub $1024, %%rsp;" \
666 "/*.cfi_adjust_cfa_offset 1024;*/" \
667 ".hidden " #f "_thunk;" \
668 "call " #f "_thunk;" \
669 "add $1024, %%rsp;" \
670 "/*.cfi_adjust_cfa_offset -1024;*/" \
671 ::: "memory", "cc");
672 #else
673 #define HACKY_CALL(f) f()
674 #endif
676 void TraceSwitch(ThreadState *thr);
677 uptr TraceTopPC(ThreadState *thr);
678 uptr TraceSize();
679 uptr TraceParts();
681 extern "C" void __tsan_trace_switch();
682 void ALWAYS_INLINE INLINE TraceAddEvent(ThreadState *thr, FastState fs,
683 EventType typ, u64 addr) {
684 DCHECK_GE((int)typ, 0);
685 DCHECK_LE((int)typ, 7);
686 DCHECK_EQ(GetLsb(addr, 61), addr);
687 StatInc(thr, StatEvents);
688 u64 pos = fs.GetTracePos();
689 if (UNLIKELY((pos % kTracePartSize) == 0)) {
690 #ifndef TSAN_GO
691 HACKY_CALL(__tsan_trace_switch);
692 #else
693 TraceSwitch(thr);
694 #endif
696 Event *trace = (Event*)GetThreadTrace(fs.tid());
697 Event *evp = &trace[pos];
698 Event ev = (u64)addr | ((u64)typ << 61);
699 *evp = ev;
702 } // namespace __tsan
704 #endif // TSAN_RTL_H