* cfgloopmanip.c (force_single_succ_latches): Fix missindentation.
[official-gcc.git] / gcc / reload1.c
blobf6498f10e2901b281e2f873115afc7703655f344
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
48 /* This file contains the reload pass of the compiler, which is
49 run after register allocation has been done. It checks that
50 each insn is valid (operands required to be in registers really
51 are in registers of the proper class) and fixes up invalid ones
52 by copying values temporarily into registers for the insns
53 that need them.
55 The results of register allocation are described by the vector
56 reg_renumber; the insns still contain pseudo regs, but reg_renumber
57 can be used to find which hard reg, if any, a pseudo reg is in.
59 The technique we always use is to free up a few hard regs that are
60 called ``reload regs'', and for each place where a pseudo reg
61 must be in a hard reg, copy it temporarily into one of the reload regs.
63 Reload regs are allocated locally for every instruction that needs
64 reloads. When there are pseudos which are allocated to a register that
65 has been chosen as a reload reg, such pseudos must be ``spilled''.
66 This means that they go to other hard regs, or to stack slots if no other
67 available hard regs can be found. Spilling can invalidate more
68 insns, requiring additional need for reloads, so we must keep checking
69 until the process stabilizes.
71 For machines with different classes of registers, we must keep track
72 of the register class needed for each reload, and make sure that
73 we allocate enough reload registers of each class.
75 The file reload.c contains the code that checks one insn for
76 validity and reports the reloads that it needs. This file
77 is in charge of scanning the entire rtl code, accumulating the
78 reload needs, spilling, assigning reload registers to use for
79 fixing up each insn, and generating the new insns to copy values
80 into the reload registers. */
82 #ifndef REGISTER_MOVE_COST
83 #define REGISTER_MOVE_COST(m, x, y) 2
84 #endif
86 #ifndef LOCAL_REGNO
87 #define LOCAL_REGNO(REGNO) 0
88 #endif
90 /* During reload_as_needed, element N contains a REG rtx for the hard reg
91 into which reg N has been reloaded (perhaps for a previous insn). */
92 static rtx *reg_last_reload_reg;
94 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
95 for an output reload that stores into reg N. */
96 static char *reg_has_output_reload;
98 /* Indicates which hard regs are reload-registers for an output reload
99 in the current insn. */
100 static HARD_REG_SET reg_is_output_reload;
102 /* Element N is the constant value to which pseudo reg N is equivalent,
103 or zero if pseudo reg N is not equivalent to a constant.
104 find_reloads looks at this in order to replace pseudo reg N
105 with the constant it stands for. */
106 rtx *reg_equiv_constant;
108 /* Element N is a memory location to which pseudo reg N is equivalent,
109 prior to any register elimination (such as frame pointer to stack
110 pointer). Depending on whether or not it is a valid address, this value
111 is transferred to either reg_equiv_address or reg_equiv_mem. */
112 rtx *reg_equiv_memory_loc;
114 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
115 This is used when the address is not valid as a memory address
116 (because its displacement is too big for the machine.) */
117 rtx *reg_equiv_address;
119 /* Element N is the memory slot to which pseudo reg N is equivalent,
120 or zero if pseudo reg N is not equivalent to a memory slot. */
121 rtx *reg_equiv_mem;
123 /* Widest width in which each pseudo reg is referred to (via subreg). */
124 static unsigned int *reg_max_ref_width;
126 /* Element N is the list of insns that initialized reg N from its equivalent
127 constant or memory slot. */
128 static rtx *reg_equiv_init;
130 /* Vector to remember old contents of reg_renumber before spilling. */
131 static short *reg_old_renumber;
133 /* During reload_as_needed, element N contains the last pseudo regno reloaded
134 into hard register N. If that pseudo reg occupied more than one register,
135 reg_reloaded_contents points to that pseudo for each spill register in
136 use; all of these must remain set for an inheritance to occur. */
137 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
139 /* During reload_as_needed, element N contains the insn for which
140 hard register N was last used. Its contents are significant only
141 when reg_reloaded_valid is set for this register. */
142 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
144 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
145 static HARD_REG_SET reg_reloaded_valid;
146 /* Indicate if the register was dead at the end of the reload.
147 This is only valid if reg_reloaded_contents is set and valid. */
148 static HARD_REG_SET reg_reloaded_dead;
150 /* Number of spill-regs so far; number of valid elements of spill_regs. */
151 static int n_spills;
153 /* In parallel with spill_regs, contains REG rtx's for those regs.
154 Holds the last rtx used for any given reg, or 0 if it has never
155 been used for spilling yet. This rtx is reused, provided it has
156 the proper mode. */
157 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
159 /* In parallel with spill_regs, contains nonzero for a spill reg
160 that was stored after the last time it was used.
161 The precise value is the insn generated to do the store. */
162 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
164 /* This is the register that was stored with spill_reg_store. This is a
165 copy of reload_out / reload_out_reg when the value was stored; if
166 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
167 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
169 /* This table is the inverse mapping of spill_regs:
170 indexed by hard reg number,
171 it contains the position of that reg in spill_regs,
172 or -1 for something that is not in spill_regs.
174 ?!? This is no longer accurate. */
175 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
177 /* This reg set indicates registers that can't be used as spill registers for
178 the currently processed insn. These are the hard registers which are live
179 during the insn, but not allocated to pseudos, as well as fixed
180 registers. */
181 static HARD_REG_SET bad_spill_regs;
183 /* These are the hard registers that can't be used as spill register for any
184 insn. This includes registers used for user variables and registers that
185 we can't eliminate. A register that appears in this set also can't be used
186 to retry register allocation. */
187 static HARD_REG_SET bad_spill_regs_global;
189 /* Describes order of use of registers for reloading
190 of spilled pseudo-registers. `n_spills' is the number of
191 elements that are actually valid; new ones are added at the end.
193 Both spill_regs and spill_reg_order are used on two occasions:
194 once during find_reload_regs, where they keep track of the spill registers
195 for a single insn, but also during reload_as_needed where they show all
196 the registers ever used by reload. For the latter case, the information
197 is calculated during finish_spills. */
198 static short spill_regs[FIRST_PSEUDO_REGISTER];
200 /* This vector of reg sets indicates, for each pseudo, which hard registers
201 may not be used for retrying global allocation because the register was
202 formerly spilled from one of them. If we allowed reallocating a pseudo to
203 a register that it was already allocated to, reload might not
204 terminate. */
205 static HARD_REG_SET *pseudo_previous_regs;
207 /* This vector of reg sets indicates, for each pseudo, which hard
208 registers may not be used for retrying global allocation because they
209 are used as spill registers during one of the insns in which the
210 pseudo is live. */
211 static HARD_REG_SET *pseudo_forbidden_regs;
213 /* All hard regs that have been used as spill registers for any insn are
214 marked in this set. */
215 static HARD_REG_SET used_spill_regs;
217 /* Index of last register assigned as a spill register. We allocate in
218 a round-robin fashion. */
219 static int last_spill_reg;
221 /* Nonzero if indirect addressing is supported on the machine; this means
222 that spilling (REG n) does not require reloading it into a register in
223 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
224 value indicates the level of indirect addressing supported, e.g., two
225 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
226 a hard register. */
227 static char spill_indirect_levels;
229 /* Nonzero if indirect addressing is supported when the innermost MEM is
230 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
231 which these are valid is the same as spill_indirect_levels, above. */
232 char indirect_symref_ok;
234 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
235 char double_reg_address_ok;
237 /* Record the stack slot for each spilled hard register. */
238 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
240 /* Width allocated so far for that stack slot. */
241 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
243 /* Record which pseudos needed to be spilled. */
244 static regset_head spilled_pseudos;
246 /* Used for communication between order_regs_for_reload and count_pseudo.
247 Used to avoid counting one pseudo twice. */
248 static regset_head pseudos_counted;
250 /* First uid used by insns created by reload in this function.
251 Used in find_equiv_reg. */
252 int reload_first_uid;
254 /* Flag set by local-alloc or global-alloc if anything is live in
255 a call-clobbered reg across calls. */
256 int caller_save_needed;
258 /* Set to 1 while reload_as_needed is operating.
259 Required by some machines to handle any generated moves differently. */
260 int reload_in_progress = 0;
262 /* These arrays record the insn_code of insns that may be needed to
263 perform input and output reloads of special objects. They provide a
264 place to pass a scratch register. */
265 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
266 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
268 /* This obstack is used for allocation of rtl during register elimination.
269 The allocated storage can be freed once find_reloads has processed the
270 insn. */
271 struct obstack reload_obstack;
273 /* Points to the beginning of the reload_obstack. All insn_chain structures
274 are allocated first. */
275 char *reload_startobj;
277 /* The point after all insn_chain structures. Used to quickly deallocate
278 memory allocated in copy_reloads during calculate_needs_all_insns. */
279 char *reload_firstobj;
281 /* This points before all local rtl generated by register elimination.
282 Used to quickly free all memory after processing one insn. */
283 static char *reload_insn_firstobj;
285 /* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287 struct insn_chain *reload_insn_chain;
289 #ifdef TREE_CODE
290 extern tree current_function_decl;
291 #else
292 extern union tree_node *current_function_decl;
293 #endif
295 /* List of all insns needing reloads. */
296 static struct insn_chain *insns_need_reload;
298 /* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
303 struct elim_table
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 int initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Nonzero if this elimination can be done. */
309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
310 insns made by reload. */
311 int offset; /* Current offset between the two regs. */
312 int previous_offset; /* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
322 static struct elim_table *reg_eliminate = 0;
324 /* This is an intermediate structure to initialize the table. It has
325 exactly the members provided by ELIMINABLE_REGS. */
326 static const struct elim_table_1
328 const int from;
329 const int to;
330 } reg_eliminate_1[] =
332 /* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
336 #ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338 #else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340 #endif
342 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
344 /* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If nonzero, we use a new copy of each
346 replacement result in any insns encountered. */
347 int num_not_at_initial_offset;
349 /* Count the number of registers that we may be able to eliminate. */
350 static int num_eliminable;
351 /* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353 static int num_eliminable_invariants;
355 /* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the number of the label.
358 The first table is an array of flags that records whether we have yet
359 encountered a label and the second table is an array of arrays, one
360 entry in the latter array for each elimination. */
362 static char *offsets_known_at;
363 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
365 /* Number of labels in the current function. */
367 static int num_labels;
369 static void replace_pseudos_in_call_usage PARAMS ((rtx *,
370 enum machine_mode,
371 rtx));
372 static void maybe_fix_stack_asms PARAMS ((void));
373 static void copy_reloads PARAMS ((struct insn_chain *));
374 static void calculate_needs_all_insns PARAMS ((int));
375 static int find_reg PARAMS ((struct insn_chain *, int));
376 static void find_reload_regs PARAMS ((struct insn_chain *));
377 static void select_reload_regs PARAMS ((void));
378 static void delete_caller_save_insns PARAMS ((void));
380 static void spill_failure PARAMS ((rtx, enum reg_class));
381 static void count_spilled_pseudo PARAMS ((int, int, int));
382 static void delete_dead_insn PARAMS ((rtx));
383 static void alter_reg PARAMS ((int, int));
384 static void set_label_offsets PARAMS ((rtx, rtx, int));
385 static void check_eliminable_occurrences PARAMS ((rtx));
386 static void elimination_effects PARAMS ((rtx, enum machine_mode));
387 static int eliminate_regs_in_insn PARAMS ((rtx, int));
388 static void update_eliminable_offsets PARAMS ((void));
389 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390 static void set_initial_elim_offsets PARAMS ((void));
391 static void verify_initial_elim_offsets PARAMS ((void));
392 static void set_initial_label_offsets PARAMS ((void));
393 static void set_offsets_for_label PARAMS ((rtx));
394 static void init_elim_table PARAMS ((void));
395 static void update_eliminables PARAMS ((HARD_REG_SET *));
396 static void spill_hard_reg PARAMS ((unsigned int, int));
397 static int finish_spills PARAMS ((int));
398 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399 static void scan_paradoxical_subregs PARAMS ((rtx));
400 static void count_pseudo PARAMS ((int));
401 static void order_regs_for_reload PARAMS ((struct insn_chain *));
402 static void reload_as_needed PARAMS ((int));
403 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
405 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411 static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
413 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
414 enum reload_type,
415 rtx, rtx, int, int));
416 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
417 enum reload_type, rtx, rtx,
418 int, int));
419 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
420 enum reload_type));
421 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
422 int));
423 static int conflicts_with_override PARAMS ((rtx));
424 static void failed_reload PARAMS ((rtx, int));
425 static int set_reload_reg PARAMS ((int, int));
426 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
427 static void choose_reload_regs PARAMS ((struct insn_chain *));
428 static void merge_assigned_reloads PARAMS ((rtx));
429 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
430 struct reload *, rtx, int));
431 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
432 struct reload *, int));
433 static void do_input_reload PARAMS ((struct insn_chain *,
434 struct reload *, int));
435 static void do_output_reload PARAMS ((struct insn_chain *,
436 struct reload *, int));
437 static void emit_reload_insns PARAMS ((struct insn_chain *));
438 static void delete_output_reload PARAMS ((rtx, int, int));
439 static void delete_address_reloads PARAMS ((rtx, rtx));
440 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
441 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
442 static void reload_cse_regs_1 PARAMS ((rtx));
443 static int reload_cse_noop_set_p PARAMS ((rtx));
444 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
445 static int reload_cse_simplify_operands PARAMS ((rtx, rtx));
446 static void reload_combine PARAMS ((void));
447 static void reload_combine_note_use PARAMS ((rtx *, rtx));
448 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
449 static void reload_cse_move2add PARAMS ((rtx));
450 static void move2add_note_store PARAMS ((rtx, rtx, void *));
451 #ifdef AUTO_INC_DEC
452 static void add_auto_inc_notes PARAMS ((rtx, rtx));
453 #endif
454 static void copy_eh_notes PARAMS ((rtx, rtx));
455 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
456 HOST_WIDE_INT));
457 static void failed_reload PARAMS ((rtx, int));
458 static int set_reload_reg PARAMS ((int, int));
459 static void reload_cse_simplify PARAMS ((rtx, rtx));
460 void fixup_abnormal_edges PARAMS ((void));
461 extern void dump_needs PARAMS ((struct insn_chain *));
463 /* Initialize the reload pass once per compilation. */
465 void
466 init_reload ()
468 int i;
470 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
471 Set spill_indirect_levels to the number of levels such addressing is
472 permitted, zero if it is not permitted at all. */
474 rtx tem
475 = gen_rtx_MEM (Pmode,
476 gen_rtx_PLUS (Pmode,
477 gen_rtx_REG (Pmode,
478 LAST_VIRTUAL_REGISTER + 1),
479 GEN_INT (4)));
480 spill_indirect_levels = 0;
482 while (memory_address_p (QImode, tem))
484 spill_indirect_levels++;
485 tem = gen_rtx_MEM (Pmode, tem);
488 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
490 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
491 indirect_symref_ok = memory_address_p (QImode, tem);
493 /* See if reg+reg is a valid (and offsettable) address. */
495 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
497 tem = gen_rtx_PLUS (Pmode,
498 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
499 gen_rtx_REG (Pmode, i));
501 /* This way, we make sure that reg+reg is an offsettable address. */
502 tem = plus_constant (tem, 4);
504 if (memory_address_p (QImode, tem))
506 double_reg_address_ok = 1;
507 break;
511 /* Initialize obstack for our rtl allocation. */
512 gcc_obstack_init (&reload_obstack);
513 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
515 INIT_REG_SET (&spilled_pseudos);
516 INIT_REG_SET (&pseudos_counted);
519 /* List of insn chains that are currently unused. */
520 static struct insn_chain *unused_insn_chains = 0;
522 /* Allocate an empty insn_chain structure. */
523 struct insn_chain *
524 new_insn_chain ()
526 struct insn_chain *c;
528 if (unused_insn_chains == 0)
530 c = (struct insn_chain *)
531 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
532 INIT_REG_SET (&c->live_throughout);
533 INIT_REG_SET (&c->dead_or_set);
535 else
537 c = unused_insn_chains;
538 unused_insn_chains = c->next;
540 c->is_caller_save_insn = 0;
541 c->need_operand_change = 0;
542 c->need_reload = 0;
543 c->need_elim = 0;
544 return c;
547 /* Small utility function to set all regs in hard reg set TO which are
548 allocated to pseudos in regset FROM. */
550 void
551 compute_use_by_pseudos (to, from)
552 HARD_REG_SET *to;
553 regset from;
555 unsigned int regno;
557 EXECUTE_IF_SET_IN_REG_SET
558 (from, FIRST_PSEUDO_REGISTER, regno,
560 int r = reg_renumber[regno];
561 int nregs;
563 if (r < 0)
565 /* reload_combine uses the information from
566 BASIC_BLOCK->global_live_at_start, which might still
567 contain registers that have not actually been allocated
568 since they have an equivalence. */
569 if (! reload_completed)
570 abort ();
572 else
574 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
575 while (nregs-- > 0)
576 SET_HARD_REG_BIT (*to, r + nregs);
581 /* Replace all pseudos found in LOC with their corresponding
582 equivalences. */
584 static void
585 replace_pseudos_in_call_usage (loc, mem_mode, usage)
586 rtx *loc;
587 enum machine_mode mem_mode;
588 rtx usage;
590 rtx x = *loc;
591 enum rtx_code code;
592 const char *fmt;
593 int i, j;
595 if (! x)
596 return;
598 code = GET_CODE (x);
599 if (code == REG)
601 unsigned int regno = REGNO (x);
603 if (regno < FIRST_PSEUDO_REGISTER)
604 return;
606 x = eliminate_regs (x, mem_mode, usage);
607 if (x != *loc)
609 *loc = x;
610 replace_pseudos_in_call_usage (loc, mem_mode, usage);
611 return;
614 if (reg_equiv_constant[regno])
615 *loc = reg_equiv_constant[regno];
616 else if (reg_equiv_mem[regno])
617 *loc = reg_equiv_mem[regno];
618 else if (reg_equiv_address[regno])
619 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
620 else if (GET_CODE (regno_reg_rtx[regno]) != REG
621 || REGNO (regno_reg_rtx[regno]) != regno)
622 *loc = regno_reg_rtx[regno];
623 else
624 abort ();
626 return;
628 else if (code == MEM)
630 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
631 return;
634 /* Process each of our operands recursively. */
635 fmt = GET_RTX_FORMAT (code);
636 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
637 if (*fmt == 'e')
638 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
639 else if (*fmt == 'E')
640 for (j = 0; j < XVECLEN (x, i); j++)
641 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
645 /* Global variables used by reload and its subroutines. */
647 /* Set during calculate_needs if an insn needs register elimination. */
648 static int something_needs_elimination;
649 /* Set during calculate_needs if an insn needs an operand changed. */
650 int something_needs_operands_changed;
652 /* Nonzero means we couldn't get enough spill regs. */
653 static int failure;
655 /* Main entry point for the reload pass.
657 FIRST is the first insn of the function being compiled.
659 GLOBAL nonzero means we were called from global_alloc
660 and should attempt to reallocate any pseudoregs that we
661 displace from hard regs we will use for reloads.
662 If GLOBAL is zero, we do not have enough information to do that,
663 so any pseudo reg that is spilled must go to the stack.
665 Return value is nonzero if reload failed
666 and we must not do any more for this function. */
669 reload (first, global)
670 rtx first;
671 int global;
673 int i;
674 rtx insn;
675 struct elim_table *ep;
676 basic_block bb;
678 /* The two pointers used to track the true location of the memory used
679 for label offsets. */
680 char *real_known_ptr = NULL;
681 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
683 /* Make sure even insns with volatile mem refs are recognizable. */
684 init_recog ();
686 failure = 0;
688 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
690 /* Make sure that the last insn in the chain
691 is not something that needs reloading. */
692 emit_note (NULL, NOTE_INSN_DELETED);
694 /* Enable find_equiv_reg to distinguish insns made by reload. */
695 reload_first_uid = get_max_uid ();
697 #ifdef SECONDARY_MEMORY_NEEDED
698 /* Initialize the secondary memory table. */
699 clear_secondary_mem ();
700 #endif
702 /* We don't have a stack slot for any spill reg yet. */
703 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
704 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
706 /* Initialize the save area information for caller-save, in case some
707 are needed. */
708 init_save_areas ();
710 /* Compute which hard registers are now in use
711 as homes for pseudo registers.
712 This is done here rather than (eg) in global_alloc
713 because this point is reached even if not optimizing. */
714 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
715 mark_home_live (i);
717 /* A function that receives a nonlocal goto must save all call-saved
718 registers. */
719 if (current_function_has_nonlocal_label)
720 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
721 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
722 regs_ever_live[i] = 1;
724 /* Find all the pseudo registers that didn't get hard regs
725 but do have known equivalent constants or memory slots.
726 These include parameters (known equivalent to parameter slots)
727 and cse'd or loop-moved constant memory addresses.
729 Record constant equivalents in reg_equiv_constant
730 so they will be substituted by find_reloads.
731 Record memory equivalents in reg_mem_equiv so they can
732 be substituted eventually by altering the REG-rtx's. */
734 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
735 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
736 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
739 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
740 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
741 pseudo_forbidden_regs
742 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
743 pseudo_previous_regs
744 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
746 CLEAR_HARD_REG_SET (bad_spill_regs_global);
748 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
749 Also find all paradoxical subregs and find largest such for each pseudo.
750 On machines with small register classes, record hard registers that
751 are used for user variables. These can never be used for spills.
752 Also look for a "constant" REG_SETJMP. This means that all
753 caller-saved registers must be marked live. */
755 num_eliminable_invariants = 0;
756 for (insn = first; insn; insn = NEXT_INSN (insn))
758 rtx set = single_set (insn);
760 /* We may introduce USEs that we want to remove at the end, so
761 we'll mark them with QImode. Make sure there are no
762 previously-marked insns left by say regmove. */
763 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
764 && GET_MODE (insn) != VOIDmode)
765 PUT_MODE (insn, VOIDmode);
767 if (GET_CODE (insn) == CALL_INSN
768 && find_reg_note (insn, REG_SETJMP, NULL))
769 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
770 if (! call_used_regs[i])
771 regs_ever_live[i] = 1;
773 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
775 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
776 if (note
777 #ifdef LEGITIMATE_PIC_OPERAND_P
778 && (! function_invariant_p (XEXP (note, 0))
779 || ! flag_pic
780 /* A function invariant is often CONSTANT_P but may
781 include a register. We promise to only pass
782 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
783 || (CONSTANT_P (XEXP (note, 0))
784 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
785 #endif
788 rtx x = XEXP (note, 0);
789 i = REGNO (SET_DEST (set));
790 if (i > LAST_VIRTUAL_REGISTER)
792 /* It can happen that a REG_EQUIV note contains a MEM
793 that is not a legitimate memory operand. As later
794 stages of reload assume that all addresses found
795 in the reg_equiv_* arrays were originally legitimate,
796 we ignore such REG_EQUIV notes. */
797 if (memory_operand (x, VOIDmode))
799 /* Always unshare the equivalence, so we can
800 substitute into this insn without touching the
801 equivalence. */
802 reg_equiv_memory_loc[i] = copy_rtx (x);
804 else if (function_invariant_p (x))
806 if (GET_CODE (x) == PLUS)
808 /* This is PLUS of frame pointer and a constant,
809 and might be shared. Unshare it. */
810 reg_equiv_constant[i] = copy_rtx (x);
811 num_eliminable_invariants++;
813 else if (x == frame_pointer_rtx
814 || x == arg_pointer_rtx)
816 reg_equiv_constant[i] = x;
817 num_eliminable_invariants++;
819 else if (LEGITIMATE_CONSTANT_P (x))
820 reg_equiv_constant[i] = x;
821 else
823 reg_equiv_memory_loc[i]
824 = force_const_mem (GET_MODE (SET_DEST (set)), x);
825 if (!reg_equiv_memory_loc[i])
826 continue;
829 else
830 continue;
832 /* If this register is being made equivalent to a MEM
833 and the MEM is not SET_SRC, the equivalencing insn
834 is one with the MEM as a SET_DEST and it occurs later.
835 So don't mark this insn now. */
836 if (GET_CODE (x) != MEM
837 || rtx_equal_p (SET_SRC (set), x))
838 reg_equiv_init[i]
839 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
844 /* If this insn is setting a MEM from a register equivalent to it,
845 this is the equivalencing insn. */
846 else if (set && GET_CODE (SET_DEST (set)) == MEM
847 && GET_CODE (SET_SRC (set)) == REG
848 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
849 && rtx_equal_p (SET_DEST (set),
850 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
851 reg_equiv_init[REGNO (SET_SRC (set))]
852 = gen_rtx_INSN_LIST (VOIDmode, insn,
853 reg_equiv_init[REGNO (SET_SRC (set))]);
855 if (INSN_P (insn))
856 scan_paradoxical_subregs (PATTERN (insn));
859 init_elim_table ();
861 num_labels = max_label_num () - get_first_label_num ();
863 /* Allocate the tables used to store offset information at labels. */
864 /* We used to use alloca here, but the size of what it would try to
865 allocate would occasionally cause it to exceed the stack limit and
866 cause a core dump. */
867 real_known_ptr = xmalloc (num_labels);
868 real_at_ptr
869 = (int (*)[NUM_ELIMINABLE_REGS])
870 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
872 offsets_known_at = real_known_ptr - get_first_label_num ();
873 offsets_at
874 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
876 /* Alter each pseudo-reg rtx to contain its hard reg number.
877 Assign stack slots to the pseudos that lack hard regs or equivalents.
878 Do not touch virtual registers. */
880 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
881 alter_reg (i, -1);
883 /* If we have some registers we think can be eliminated, scan all insns to
884 see if there is an insn that sets one of these registers to something
885 other than itself plus a constant. If so, the register cannot be
886 eliminated. Doing this scan here eliminates an extra pass through the
887 main reload loop in the most common case where register elimination
888 cannot be done. */
889 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
890 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
891 || GET_CODE (insn) == CALL_INSN)
892 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
894 maybe_fix_stack_asms ();
896 insns_need_reload = 0;
897 something_needs_elimination = 0;
899 /* Initialize to -1, which means take the first spill register. */
900 last_spill_reg = -1;
902 /* Spill any hard regs that we know we can't eliminate. */
903 CLEAR_HARD_REG_SET (used_spill_regs);
904 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
905 if (! ep->can_eliminate)
906 spill_hard_reg (ep->from, 1);
908 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
909 if (frame_pointer_needed)
910 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
911 #endif
912 finish_spills (global);
914 /* From now on, we may need to generate moves differently. We may also
915 allow modifications of insns which cause them to not be recognized.
916 Any such modifications will be cleaned up during reload itself. */
917 reload_in_progress = 1;
919 /* This loop scans the entire function each go-round
920 and repeats until one repetition spills no additional hard regs. */
921 for (;;)
923 int something_changed;
924 int did_spill;
926 HOST_WIDE_INT starting_frame_size;
928 /* Round size of stack frame to stack_alignment_needed. This must be done
929 here because the stack size may be a part of the offset computation
930 for register elimination, and there might have been new stack slots
931 created in the last iteration of this loop. */
932 if (cfun->stack_alignment_needed)
933 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
935 starting_frame_size = get_frame_size ();
937 set_initial_elim_offsets ();
938 set_initial_label_offsets ();
940 /* For each pseudo register that has an equivalent location defined,
941 try to eliminate any eliminable registers (such as the frame pointer)
942 assuming initial offsets for the replacement register, which
943 is the normal case.
945 If the resulting location is directly addressable, substitute
946 the MEM we just got directly for the old REG.
948 If it is not addressable but is a constant or the sum of a hard reg
949 and constant, it is probably not addressable because the constant is
950 out of range, in that case record the address; we will generate
951 hairy code to compute the address in a register each time it is
952 needed. Similarly if it is a hard register, but one that is not
953 valid as an address register.
955 If the location is not addressable, but does not have one of the
956 above forms, assign a stack slot. We have to do this to avoid the
957 potential of producing lots of reloads if, e.g., a location involves
958 a pseudo that didn't get a hard register and has an equivalent memory
959 location that also involves a pseudo that didn't get a hard register.
961 Perhaps at some point we will improve reload_when_needed handling
962 so this problem goes away. But that's very hairy. */
964 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
965 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
967 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
969 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
970 XEXP (x, 0)))
971 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
972 else if (CONSTANT_P (XEXP (x, 0))
973 || (GET_CODE (XEXP (x, 0)) == REG
974 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
975 || (GET_CODE (XEXP (x, 0)) == PLUS
976 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
977 && (REGNO (XEXP (XEXP (x, 0), 0))
978 < FIRST_PSEUDO_REGISTER)
979 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
980 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
981 else
983 /* Make a new stack slot. Then indicate that something
984 changed so we go back and recompute offsets for
985 eliminable registers because the allocation of memory
986 below might change some offset. reg_equiv_{mem,address}
987 will be set up for this pseudo on the next pass around
988 the loop. */
989 reg_equiv_memory_loc[i] = 0;
990 reg_equiv_init[i] = 0;
991 alter_reg (i, -1);
995 if (caller_save_needed)
996 setup_save_areas ();
998 /* If we allocated another stack slot, redo elimination bookkeeping. */
999 if (starting_frame_size != get_frame_size ())
1000 continue;
1002 if (caller_save_needed)
1004 save_call_clobbered_regs ();
1005 /* That might have allocated new insn_chain structures. */
1006 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1009 calculate_needs_all_insns (global);
1011 CLEAR_REG_SET (&spilled_pseudos);
1012 did_spill = 0;
1014 something_changed = 0;
1016 /* If we allocated any new memory locations, make another pass
1017 since it might have changed elimination offsets. */
1018 if (starting_frame_size != get_frame_size ())
1019 something_changed = 1;
1022 HARD_REG_SET to_spill;
1023 CLEAR_HARD_REG_SET (to_spill);
1024 update_eliminables (&to_spill);
1025 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1026 if (TEST_HARD_REG_BIT (to_spill, i))
1028 spill_hard_reg (i, 1);
1029 did_spill = 1;
1031 /* Regardless of the state of spills, if we previously had
1032 a register that we thought we could eliminate, but now can
1033 not eliminate, we must run another pass.
1035 Consider pseudos which have an entry in reg_equiv_* which
1036 reference an eliminable register. We must make another pass
1037 to update reg_equiv_* so that we do not substitute in the
1038 old value from when we thought the elimination could be
1039 performed. */
1040 something_changed = 1;
1044 select_reload_regs ();
1045 if (failure)
1046 goto failed;
1048 if (insns_need_reload != 0 || did_spill)
1049 something_changed |= finish_spills (global);
1051 if (! something_changed)
1052 break;
1054 if (caller_save_needed)
1055 delete_caller_save_insns ();
1057 obstack_free (&reload_obstack, reload_firstobj);
1060 /* If global-alloc was run, notify it of any register eliminations we have
1061 done. */
1062 if (global)
1063 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1064 if (ep->can_eliminate)
1065 mark_elimination (ep->from, ep->to);
1067 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1068 If that insn didn't set the register (i.e., it copied the register to
1069 memory), just delete that insn instead of the equivalencing insn plus
1070 anything now dead. If we call delete_dead_insn on that insn, we may
1071 delete the insn that actually sets the register if the register dies
1072 there and that is incorrect. */
1074 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1076 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1078 rtx list;
1079 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1081 rtx equiv_insn = XEXP (list, 0);
1083 /* If we already deleted the insn or if it may trap, we can't
1084 delete it. The latter case shouldn't happen, but can
1085 if an insn has a variable address, gets a REG_EH_REGION
1086 note added to it, and then gets converted into an load
1087 from a constant address. */
1088 if (GET_CODE (equiv_insn) == NOTE
1089 || can_throw_internal (equiv_insn))
1091 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1092 delete_dead_insn (equiv_insn);
1093 else
1095 PUT_CODE (equiv_insn, NOTE);
1096 NOTE_SOURCE_FILE (equiv_insn) = 0;
1097 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1103 /* Use the reload registers where necessary
1104 by generating move instructions to move the must-be-register
1105 values into or out of the reload registers. */
1107 if (insns_need_reload != 0 || something_needs_elimination
1108 || something_needs_operands_changed)
1110 HOST_WIDE_INT old_frame_size = get_frame_size ();
1112 reload_as_needed (global);
1114 if (old_frame_size != get_frame_size ())
1115 abort ();
1117 if (num_eliminable)
1118 verify_initial_elim_offsets ();
1121 /* If we were able to eliminate the frame pointer, show that it is no
1122 longer live at the start of any basic block. If it ls live by
1123 virtue of being in a pseudo, that pseudo will be marked live
1124 and hence the frame pointer will be known to be live via that
1125 pseudo. */
1127 if (! frame_pointer_needed)
1128 FOR_EACH_BB (bb)
1129 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1130 HARD_FRAME_POINTER_REGNUM);
1132 /* Come here (with failure set nonzero) if we can't get enough spill regs
1133 and we decide not to abort about it. */
1134 failed:
1136 CLEAR_REG_SET (&spilled_pseudos);
1137 reload_in_progress = 0;
1139 /* Now eliminate all pseudo regs by modifying them into
1140 their equivalent memory references.
1141 The REG-rtx's for the pseudos are modified in place,
1142 so all insns that used to refer to them now refer to memory.
1144 For a reg that has a reg_equiv_address, all those insns
1145 were changed by reloading so that no insns refer to it any longer;
1146 but the DECL_RTL of a variable decl may refer to it,
1147 and if so this causes the debugging info to mention the variable. */
1149 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1151 rtx addr = 0;
1153 if (reg_equiv_mem[i])
1154 addr = XEXP (reg_equiv_mem[i], 0);
1156 if (reg_equiv_address[i])
1157 addr = reg_equiv_address[i];
1159 if (addr)
1161 if (reg_renumber[i] < 0)
1163 rtx reg = regno_reg_rtx[i];
1165 REG_USERVAR_P (reg) = 0;
1166 PUT_CODE (reg, MEM);
1167 XEXP (reg, 0) = addr;
1168 if (reg_equiv_memory_loc[i])
1169 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1170 else
1172 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1173 = MEM_SCALAR_P (reg) = 0;
1174 MEM_ATTRS (reg) = 0;
1177 else if (reg_equiv_mem[i])
1178 XEXP (reg_equiv_mem[i], 0) = addr;
1182 /* We must set reload_completed now since the cleanup_subreg_operands call
1183 below will re-recognize each insn and reload may have generated insns
1184 which are only valid during and after reload. */
1185 reload_completed = 1;
1187 /* Make a pass over all the insns and delete all USEs which we inserted
1188 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1189 notes. Delete all CLOBBER insns, except those that refer to the return
1190 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1191 from misarranging variable-array code, and simplify (subreg (reg))
1192 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1193 are no longer useful or accurate. Strip and regenerate REG_INC notes
1194 that may have been moved around. */
1196 for (insn = first; insn; insn = NEXT_INSN (insn))
1197 if (INSN_P (insn))
1199 rtx *pnote;
1201 if (GET_CODE (insn) == CALL_INSN)
1202 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1203 VOIDmode,
1204 CALL_INSN_FUNCTION_USAGE (insn));
1206 if ((GET_CODE (PATTERN (insn)) == USE
1207 /* We mark with QImode USEs introduced by reload itself. */
1208 && (GET_MODE (insn) == QImode
1209 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1210 || (GET_CODE (PATTERN (insn)) == CLOBBER
1211 && (GET_CODE (XEXP (PATTERN (insn), 0)) != MEM
1212 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1213 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1214 && XEXP (XEXP (PATTERN (insn), 0), 0)
1215 != stack_pointer_rtx))
1216 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1217 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1219 delete_insn (insn);
1220 continue;
1223 pnote = &REG_NOTES (insn);
1224 while (*pnote != 0)
1226 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1227 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1228 || REG_NOTE_KIND (*pnote) == REG_INC
1229 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1230 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1231 *pnote = XEXP (*pnote, 1);
1232 else
1233 pnote = &XEXP (*pnote, 1);
1236 #ifdef AUTO_INC_DEC
1237 add_auto_inc_notes (insn, PATTERN (insn));
1238 #endif
1240 /* And simplify (subreg (reg)) if it appears as an operand. */
1241 cleanup_subreg_operands (insn);
1244 /* If we are doing stack checking, give a warning if this function's
1245 frame size is larger than we expect. */
1246 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1248 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1249 static int verbose_warned = 0;
1251 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1252 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1253 size += UNITS_PER_WORD;
1255 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1257 warning ("frame size too large for reliable stack checking");
1258 if (! verbose_warned)
1260 warning ("try reducing the number of local variables");
1261 verbose_warned = 1;
1266 /* Indicate that we no longer have known memory locations or constants. */
1267 if (reg_equiv_constant)
1268 free (reg_equiv_constant);
1269 reg_equiv_constant = 0;
1270 if (reg_equiv_memory_loc)
1271 free (reg_equiv_memory_loc);
1272 reg_equiv_memory_loc = 0;
1274 if (real_known_ptr)
1275 free (real_known_ptr);
1276 if (real_at_ptr)
1277 free (real_at_ptr);
1279 free (reg_equiv_mem);
1280 free (reg_equiv_init);
1281 free (reg_equiv_address);
1282 free (reg_max_ref_width);
1283 free (reg_old_renumber);
1284 free (pseudo_previous_regs);
1285 free (pseudo_forbidden_regs);
1287 CLEAR_HARD_REG_SET (used_spill_regs);
1288 for (i = 0; i < n_spills; i++)
1289 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1291 /* Free all the insn_chain structures at once. */
1292 obstack_free (&reload_obstack, reload_startobj);
1293 unused_insn_chains = 0;
1294 fixup_abnormal_edges ();
1296 /* Replacing pseudos with their memory equivalents might have
1297 created shared rtx. Subsequent passes would get confused
1298 by this, so unshare everything here. */
1299 unshare_all_rtl_again (first);
1301 return failure;
1304 /* Yet another special case. Unfortunately, reg-stack forces people to
1305 write incorrect clobbers in asm statements. These clobbers must not
1306 cause the register to appear in bad_spill_regs, otherwise we'll call
1307 fatal_insn later. We clear the corresponding regnos in the live
1308 register sets to avoid this.
1309 The whole thing is rather sick, I'm afraid. */
1311 static void
1312 maybe_fix_stack_asms ()
1314 #ifdef STACK_REGS
1315 const char *constraints[MAX_RECOG_OPERANDS];
1316 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1317 struct insn_chain *chain;
1319 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1321 int i, noperands;
1322 HARD_REG_SET clobbered, allowed;
1323 rtx pat;
1325 if (! INSN_P (chain->insn)
1326 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1327 continue;
1328 pat = PATTERN (chain->insn);
1329 if (GET_CODE (pat) != PARALLEL)
1330 continue;
1332 CLEAR_HARD_REG_SET (clobbered);
1333 CLEAR_HARD_REG_SET (allowed);
1335 /* First, make a mask of all stack regs that are clobbered. */
1336 for (i = 0; i < XVECLEN (pat, 0); i++)
1338 rtx t = XVECEXP (pat, 0, i);
1339 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1340 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1343 /* Get the operand values and constraints out of the insn. */
1344 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1345 constraints, operand_mode);
1347 /* For every operand, see what registers are allowed. */
1348 for (i = 0; i < noperands; i++)
1350 const char *p = constraints[i];
1351 /* For every alternative, we compute the class of registers allowed
1352 for reloading in CLS, and merge its contents into the reg set
1353 ALLOWED. */
1354 int cls = (int) NO_REGS;
1356 for (;;)
1358 char c = *p;
1360 if (c == '\0' || c == ',' || c == '#')
1362 /* End of one alternative - mark the regs in the current
1363 class, and reset the class. */
1364 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1365 cls = NO_REGS;
1366 p++;
1367 if (c == '#')
1368 do {
1369 c = *p++;
1370 } while (c != '\0' && c != ',');
1371 if (c == '\0')
1372 break;
1373 continue;
1376 switch (c)
1378 case '=': case '+': case '*': case '%': case '?': case '!':
1379 case '0': case '1': case '2': case '3': case '4': case 'm':
1380 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1381 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1382 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1383 case 'P':
1384 break;
1386 case 'p':
1387 cls = (int) reg_class_subunion[cls]
1388 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1389 break;
1391 case 'g':
1392 case 'r':
1393 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1394 break;
1396 default:
1397 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1398 cls = (int) reg_class_subunion[cls]
1399 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1400 else
1401 cls = (int) reg_class_subunion[cls]
1402 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1404 p += CONSTRAINT_LEN (c, p);
1407 /* Those of the registers which are clobbered, but allowed by the
1408 constraints, must be usable as reload registers. So clear them
1409 out of the life information. */
1410 AND_HARD_REG_SET (allowed, clobbered);
1411 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1412 if (TEST_HARD_REG_BIT (allowed, i))
1414 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1415 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1419 #endif
1422 /* Copy the global variables n_reloads and rld into the corresponding elts
1423 of CHAIN. */
1424 static void
1425 copy_reloads (chain)
1426 struct insn_chain *chain;
1428 chain->n_reloads = n_reloads;
1429 chain->rld
1430 = (struct reload *) obstack_alloc (&reload_obstack,
1431 n_reloads * sizeof (struct reload));
1432 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1433 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1436 /* Walk the chain of insns, and determine for each whether it needs reloads
1437 and/or eliminations. Build the corresponding insns_need_reload list, and
1438 set something_needs_elimination as appropriate. */
1439 static void
1440 calculate_needs_all_insns (global)
1441 int global;
1443 struct insn_chain **pprev_reload = &insns_need_reload;
1444 struct insn_chain *chain, *next = 0;
1446 something_needs_elimination = 0;
1448 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1449 for (chain = reload_insn_chain; chain != 0; chain = next)
1451 rtx insn = chain->insn;
1453 next = chain->next;
1455 /* Clear out the shortcuts. */
1456 chain->n_reloads = 0;
1457 chain->need_elim = 0;
1458 chain->need_reload = 0;
1459 chain->need_operand_change = 0;
1461 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1462 include REG_LABEL), we need to see what effects this has on the
1463 known offsets at labels. */
1465 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1466 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1467 set_label_offsets (insn, insn, 0);
1469 if (INSN_P (insn))
1471 rtx old_body = PATTERN (insn);
1472 int old_code = INSN_CODE (insn);
1473 rtx old_notes = REG_NOTES (insn);
1474 int did_elimination = 0;
1475 int operands_changed = 0;
1476 rtx set = single_set (insn);
1478 /* Skip insns that only set an equivalence. */
1479 if (set && GET_CODE (SET_DEST (set)) == REG
1480 && reg_renumber[REGNO (SET_DEST (set))] < 0
1481 && reg_equiv_constant[REGNO (SET_DEST (set))])
1482 continue;
1484 /* If needed, eliminate any eliminable registers. */
1485 if (num_eliminable || num_eliminable_invariants)
1486 did_elimination = eliminate_regs_in_insn (insn, 0);
1488 /* Analyze the instruction. */
1489 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1490 global, spill_reg_order);
1492 /* If a no-op set needs more than one reload, this is likely
1493 to be something that needs input address reloads. We
1494 can't get rid of this cleanly later, and it is of no use
1495 anyway, so discard it now.
1496 We only do this when expensive_optimizations is enabled,
1497 since this complements reload inheritance / output
1498 reload deletion, and it can make debugging harder. */
1499 if (flag_expensive_optimizations && n_reloads > 1)
1501 rtx set = single_set (insn);
1502 if (set
1503 && SET_SRC (set) == SET_DEST (set)
1504 && GET_CODE (SET_SRC (set)) == REG
1505 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1507 delete_insn (insn);
1508 /* Delete it from the reload chain. */
1509 if (chain->prev)
1510 chain->prev->next = next;
1511 else
1512 reload_insn_chain = next;
1513 if (next)
1514 next->prev = chain->prev;
1515 chain->next = unused_insn_chains;
1516 unused_insn_chains = chain;
1517 continue;
1520 if (num_eliminable)
1521 update_eliminable_offsets ();
1523 /* Remember for later shortcuts which insns had any reloads or
1524 register eliminations. */
1525 chain->need_elim = did_elimination;
1526 chain->need_reload = n_reloads > 0;
1527 chain->need_operand_change = operands_changed;
1529 /* Discard any register replacements done. */
1530 if (did_elimination)
1532 obstack_free (&reload_obstack, reload_insn_firstobj);
1533 PATTERN (insn) = old_body;
1534 INSN_CODE (insn) = old_code;
1535 REG_NOTES (insn) = old_notes;
1536 something_needs_elimination = 1;
1539 something_needs_operands_changed |= operands_changed;
1541 if (n_reloads != 0)
1543 copy_reloads (chain);
1544 *pprev_reload = chain;
1545 pprev_reload = &chain->next_need_reload;
1549 *pprev_reload = 0;
1552 /* Comparison function for qsort to decide which of two reloads
1553 should be handled first. *P1 and *P2 are the reload numbers. */
1555 static int
1556 reload_reg_class_lower (r1p, r2p)
1557 const PTR r1p;
1558 const PTR r2p;
1560 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1561 int t;
1563 /* Consider required reloads before optional ones. */
1564 t = rld[r1].optional - rld[r2].optional;
1565 if (t != 0)
1566 return t;
1568 /* Count all solitary classes before non-solitary ones. */
1569 t = ((reg_class_size[(int) rld[r2].class] == 1)
1570 - (reg_class_size[(int) rld[r1].class] == 1));
1571 if (t != 0)
1572 return t;
1574 /* Aside from solitaires, consider all multi-reg groups first. */
1575 t = rld[r2].nregs - rld[r1].nregs;
1576 if (t != 0)
1577 return t;
1579 /* Consider reloads in order of increasing reg-class number. */
1580 t = (int) rld[r1].class - (int) rld[r2].class;
1581 if (t != 0)
1582 return t;
1584 /* If reloads are equally urgent, sort by reload number,
1585 so that the results of qsort leave nothing to chance. */
1586 return r1 - r2;
1589 /* The cost of spilling each hard reg. */
1590 static int spill_cost[FIRST_PSEUDO_REGISTER];
1592 /* When spilling multiple hard registers, we use SPILL_COST for the first
1593 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1594 only the first hard reg for a multi-reg pseudo. */
1595 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1597 /* Update the spill cost arrays, considering that pseudo REG is live. */
1599 static void
1600 count_pseudo (reg)
1601 int reg;
1603 int freq = REG_FREQ (reg);
1604 int r = reg_renumber[reg];
1605 int nregs;
1607 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1608 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1609 return;
1611 SET_REGNO_REG_SET (&pseudos_counted, reg);
1613 if (r < 0)
1614 abort ();
1616 spill_add_cost[r] += freq;
1618 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1619 while (nregs-- > 0)
1620 spill_cost[r + nregs] += freq;
1623 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1624 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1626 static void
1627 order_regs_for_reload (chain)
1628 struct insn_chain *chain;
1630 int i;
1631 HARD_REG_SET used_by_pseudos;
1632 HARD_REG_SET used_by_pseudos2;
1634 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1636 memset (spill_cost, 0, sizeof spill_cost);
1637 memset (spill_add_cost, 0, sizeof spill_add_cost);
1639 /* Count number of uses of each hard reg by pseudo regs allocated to it
1640 and then order them by decreasing use. First exclude hard registers
1641 that are live in or across this insn. */
1643 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1644 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1645 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1646 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1648 /* Now find out which pseudos are allocated to it, and update
1649 hard_reg_n_uses. */
1650 CLEAR_REG_SET (&pseudos_counted);
1652 EXECUTE_IF_SET_IN_REG_SET
1653 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1655 count_pseudo (i);
1657 EXECUTE_IF_SET_IN_REG_SET
1658 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1660 count_pseudo (i);
1662 CLEAR_REG_SET (&pseudos_counted);
1665 /* Vector of reload-numbers showing the order in which the reloads should
1666 be processed. */
1667 static short reload_order[MAX_RELOADS];
1669 /* This is used to keep track of the spill regs used in one insn. */
1670 static HARD_REG_SET used_spill_regs_local;
1672 /* We decided to spill hard register SPILLED, which has a size of
1673 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1674 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1675 update SPILL_COST/SPILL_ADD_COST. */
1677 static void
1678 count_spilled_pseudo (spilled, spilled_nregs, reg)
1679 int spilled, spilled_nregs, reg;
1681 int r = reg_renumber[reg];
1682 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1684 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1685 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1686 return;
1688 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1690 spill_add_cost[r] -= REG_FREQ (reg);
1691 while (nregs-- > 0)
1692 spill_cost[r + nregs] -= REG_FREQ (reg);
1695 /* Find reload register to use for reload number ORDER. */
1697 static int
1698 find_reg (chain, order)
1699 struct insn_chain *chain;
1700 int order;
1702 int rnum = reload_order[order];
1703 struct reload *rl = rld + rnum;
1704 int best_cost = INT_MAX;
1705 int best_reg = -1;
1706 unsigned int i, j;
1707 int k;
1708 HARD_REG_SET not_usable;
1709 HARD_REG_SET used_by_other_reload;
1711 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1712 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1713 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1715 CLEAR_HARD_REG_SET (used_by_other_reload);
1716 for (k = 0; k < order; k++)
1718 int other = reload_order[k];
1720 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1721 for (j = 0; j < rld[other].nregs; j++)
1722 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1725 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1727 unsigned int regno = i;
1729 if (! TEST_HARD_REG_BIT (not_usable, regno)
1730 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1731 && HARD_REGNO_MODE_OK (regno, rl->mode))
1733 int this_cost = spill_cost[regno];
1734 int ok = 1;
1735 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1737 for (j = 1; j < this_nregs; j++)
1739 this_cost += spill_add_cost[regno + j];
1740 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1741 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1742 ok = 0;
1744 if (! ok)
1745 continue;
1746 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1747 this_cost--;
1748 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1749 this_cost--;
1750 if (this_cost < best_cost
1751 /* Among registers with equal cost, prefer caller-saved ones, or
1752 use REG_ALLOC_ORDER if it is defined. */
1753 || (this_cost == best_cost
1754 #ifdef REG_ALLOC_ORDER
1755 && (inv_reg_alloc_order[regno]
1756 < inv_reg_alloc_order[best_reg])
1757 #else
1758 && call_used_regs[regno]
1759 && ! call_used_regs[best_reg]
1760 #endif
1763 best_reg = regno;
1764 best_cost = this_cost;
1768 if (best_reg == -1)
1769 return 0;
1771 if (rtl_dump_file)
1772 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1774 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1775 rl->regno = best_reg;
1777 EXECUTE_IF_SET_IN_REG_SET
1778 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1780 count_spilled_pseudo (best_reg, rl->nregs, j);
1783 EXECUTE_IF_SET_IN_REG_SET
1784 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1786 count_spilled_pseudo (best_reg, rl->nregs, j);
1789 for (i = 0; i < rl->nregs; i++)
1791 if (spill_cost[best_reg + i] != 0
1792 || spill_add_cost[best_reg + i] != 0)
1793 abort ();
1794 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1796 return 1;
1799 /* Find more reload regs to satisfy the remaining need of an insn, which
1800 is given by CHAIN.
1801 Do it by ascending class number, since otherwise a reg
1802 might be spilled for a big class and might fail to count
1803 for a smaller class even though it belongs to that class. */
1805 static void
1806 find_reload_regs (chain)
1807 struct insn_chain *chain;
1809 int i;
1811 /* In order to be certain of getting the registers we need,
1812 we must sort the reloads into order of increasing register class.
1813 Then our grabbing of reload registers will parallel the process
1814 that provided the reload registers. */
1815 for (i = 0; i < chain->n_reloads; i++)
1817 /* Show whether this reload already has a hard reg. */
1818 if (chain->rld[i].reg_rtx)
1820 int regno = REGNO (chain->rld[i].reg_rtx);
1821 chain->rld[i].regno = regno;
1822 chain->rld[i].nregs
1823 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1825 else
1826 chain->rld[i].regno = -1;
1827 reload_order[i] = i;
1830 n_reloads = chain->n_reloads;
1831 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1833 CLEAR_HARD_REG_SET (used_spill_regs_local);
1835 if (rtl_dump_file)
1836 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1838 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1840 /* Compute the order of preference for hard registers to spill. */
1842 order_regs_for_reload (chain);
1844 for (i = 0; i < n_reloads; i++)
1846 int r = reload_order[i];
1848 /* Ignore reloads that got marked inoperative. */
1849 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1850 && ! rld[r].optional
1851 && rld[r].regno == -1)
1852 if (! find_reg (chain, i))
1854 spill_failure (chain->insn, rld[r].class);
1855 failure = 1;
1856 return;
1860 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1861 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1863 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1866 static void
1867 select_reload_regs ()
1869 struct insn_chain *chain;
1871 /* Try to satisfy the needs for each insn. */
1872 for (chain = insns_need_reload; chain != 0;
1873 chain = chain->next_need_reload)
1874 find_reload_regs (chain);
1877 /* Delete all insns that were inserted by emit_caller_save_insns during
1878 this iteration. */
1879 static void
1880 delete_caller_save_insns ()
1882 struct insn_chain *c = reload_insn_chain;
1884 while (c != 0)
1886 while (c != 0 && c->is_caller_save_insn)
1888 struct insn_chain *next = c->next;
1889 rtx insn = c->insn;
1891 if (c == reload_insn_chain)
1892 reload_insn_chain = next;
1893 delete_insn (insn);
1895 if (next)
1896 next->prev = c->prev;
1897 if (c->prev)
1898 c->prev->next = next;
1899 c->next = unused_insn_chains;
1900 unused_insn_chains = c;
1901 c = next;
1903 if (c != 0)
1904 c = c->next;
1908 /* Handle the failure to find a register to spill.
1909 INSN should be one of the insns which needed this particular spill reg. */
1911 static void
1912 spill_failure (insn, class)
1913 rtx insn;
1914 enum reg_class class;
1916 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1917 if (asm_noperands (PATTERN (insn)) >= 0)
1918 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1919 reg_class_names[class]);
1920 else
1922 error ("unable to find a register to spill in class `%s'",
1923 reg_class_names[class]);
1924 fatal_insn ("this is the insn:", insn);
1928 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1929 data that is dead in INSN. */
1931 static void
1932 delete_dead_insn (insn)
1933 rtx insn;
1935 rtx prev = prev_real_insn (insn);
1936 rtx prev_dest;
1938 /* If the previous insn sets a register that dies in our insn, delete it
1939 too. */
1940 if (prev && GET_CODE (PATTERN (prev)) == SET
1941 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1942 && reg_mentioned_p (prev_dest, PATTERN (insn))
1943 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1944 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1945 delete_dead_insn (prev);
1947 PUT_CODE (insn, NOTE);
1948 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1949 NOTE_SOURCE_FILE (insn) = 0;
1952 /* Modify the home of pseudo-reg I.
1953 The new home is present in reg_renumber[I].
1955 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1956 or it may be -1, meaning there is none or it is not relevant.
1957 This is used so that all pseudos spilled from a given hard reg
1958 can share one stack slot. */
1960 static void
1961 alter_reg (i, from_reg)
1962 int i;
1963 int from_reg;
1965 /* When outputting an inline function, this can happen
1966 for a reg that isn't actually used. */
1967 if (regno_reg_rtx[i] == 0)
1968 return;
1970 /* If the reg got changed to a MEM at rtl-generation time,
1971 ignore it. */
1972 if (GET_CODE (regno_reg_rtx[i]) != REG)
1973 return;
1975 /* Modify the reg-rtx to contain the new hard reg
1976 number or else to contain its pseudo reg number. */
1977 REGNO (regno_reg_rtx[i])
1978 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1980 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1981 allocate a stack slot for it. */
1983 if (reg_renumber[i] < 0
1984 && REG_N_REFS (i) > 0
1985 && reg_equiv_constant[i] == 0
1986 && reg_equiv_memory_loc[i] == 0)
1988 rtx x;
1989 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1990 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1991 int adjust = 0;
1993 /* Each pseudo reg has an inherent size which comes from its own mode,
1994 and a total size which provides room for paradoxical subregs
1995 which refer to the pseudo reg in wider modes.
1997 We can use a slot already allocated if it provides both
1998 enough inherent space and enough total space.
1999 Otherwise, we allocate a new slot, making sure that it has no less
2000 inherent space, and no less total space, then the previous slot. */
2001 if (from_reg == -1)
2003 /* No known place to spill from => no slot to reuse. */
2004 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
2005 inherent_size == total_size ? 0 : -1);
2006 if (BYTES_BIG_ENDIAN)
2007 /* Cancel the big-endian correction done in assign_stack_local.
2008 Get the address of the beginning of the slot.
2009 This is so we can do a big-endian correction unconditionally
2010 below. */
2011 adjust = inherent_size - total_size;
2013 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
2015 /* Nothing can alias this slot except this pseudo. */
2016 set_mem_alias_set (x, new_alias_set ());
2019 /* Reuse a stack slot if possible. */
2020 else if (spill_stack_slot[from_reg] != 0
2021 && spill_stack_slot_width[from_reg] >= total_size
2022 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2023 >= inherent_size))
2024 x = spill_stack_slot[from_reg];
2026 /* Allocate a bigger slot. */
2027 else
2029 /* Compute maximum size needed, both for inherent size
2030 and for total size. */
2031 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2032 rtx stack_slot;
2034 if (spill_stack_slot[from_reg])
2036 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2037 > inherent_size)
2038 mode = GET_MODE (spill_stack_slot[from_reg]);
2039 if (spill_stack_slot_width[from_reg] > total_size)
2040 total_size = spill_stack_slot_width[from_reg];
2043 /* Make a slot with that size. */
2044 x = assign_stack_local (mode, total_size,
2045 inherent_size == total_size ? 0 : -1);
2046 stack_slot = x;
2048 /* All pseudos mapped to this slot can alias each other. */
2049 if (spill_stack_slot[from_reg])
2050 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2051 else
2052 set_mem_alias_set (x, new_alias_set ());
2054 if (BYTES_BIG_ENDIAN)
2056 /* Cancel the big-endian correction done in assign_stack_local.
2057 Get the address of the beginning of the slot.
2058 This is so we can do a big-endian correction unconditionally
2059 below. */
2060 adjust = GET_MODE_SIZE (mode) - total_size;
2061 if (adjust)
2062 stack_slot
2063 = adjust_address_nv (x, mode_for_size (total_size
2064 * BITS_PER_UNIT,
2065 MODE_INT, 1),
2066 adjust);
2069 spill_stack_slot[from_reg] = stack_slot;
2070 spill_stack_slot_width[from_reg] = total_size;
2073 /* On a big endian machine, the "address" of the slot
2074 is the address of the low part that fits its inherent mode. */
2075 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2076 adjust += (total_size - inherent_size);
2078 /* If we have any adjustment to make, or if the stack slot is the
2079 wrong mode, make a new stack slot. */
2080 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2082 /* If we have a decl for the original register, set it for the
2083 memory. If this is a shared MEM, make a copy. */
2084 if (REG_EXPR (regno_reg_rtx[i])
2085 && TREE_CODE_CLASS (TREE_CODE (REG_EXPR (regno_reg_rtx[i]))) == 'd')
2087 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2089 /* We can do this only for the DECLs home pseudo, not for
2090 any copies of it, since otherwise when the stack slot
2091 is reused, nonoverlapping_memrefs_p might think they
2092 cannot overlap. */
2093 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2095 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2096 x = copy_rtx (x);
2098 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2102 /* Save the stack slot for later. */
2103 reg_equiv_memory_loc[i] = x;
2107 /* Mark the slots in regs_ever_live for the hard regs
2108 used by pseudo-reg number REGNO. */
2110 void
2111 mark_home_live (regno)
2112 int regno;
2114 int i, lim;
2116 i = reg_renumber[regno];
2117 if (i < 0)
2118 return;
2119 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2120 while (i < lim)
2121 regs_ever_live[i++] = 1;
2124 /* This function handles the tracking of elimination offsets around branches.
2126 X is a piece of RTL being scanned.
2128 INSN is the insn that it came from, if any.
2130 INITIAL_P is nonzero if we are to set the offset to be the initial
2131 offset and zero if we are setting the offset of the label to be the
2132 current offset. */
2134 static void
2135 set_label_offsets (x, insn, initial_p)
2136 rtx x;
2137 rtx insn;
2138 int initial_p;
2140 enum rtx_code code = GET_CODE (x);
2141 rtx tem;
2142 unsigned int i;
2143 struct elim_table *p;
2145 switch (code)
2147 case LABEL_REF:
2148 if (LABEL_REF_NONLOCAL_P (x))
2149 return;
2151 x = XEXP (x, 0);
2153 /* ... fall through ... */
2155 case CODE_LABEL:
2156 /* If we know nothing about this label, set the desired offsets. Note
2157 that this sets the offset at a label to be the offset before a label
2158 if we don't know anything about the label. This is not correct for
2159 the label after a BARRIER, but is the best guess we can make. If
2160 we guessed wrong, we will suppress an elimination that might have
2161 been possible had we been able to guess correctly. */
2163 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2165 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2166 offsets_at[CODE_LABEL_NUMBER (x)][i]
2167 = (initial_p ? reg_eliminate[i].initial_offset
2168 : reg_eliminate[i].offset);
2169 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2172 /* Otherwise, if this is the definition of a label and it is
2173 preceded by a BARRIER, set our offsets to the known offset of
2174 that label. */
2176 else if (x == insn
2177 && (tem = prev_nonnote_insn (insn)) != 0
2178 && GET_CODE (tem) == BARRIER)
2179 set_offsets_for_label (insn);
2180 else
2181 /* If neither of the above cases is true, compare each offset
2182 with those previously recorded and suppress any eliminations
2183 where the offsets disagree. */
2185 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2186 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2187 != (initial_p ? reg_eliminate[i].initial_offset
2188 : reg_eliminate[i].offset))
2189 reg_eliminate[i].can_eliminate = 0;
2191 return;
2193 case JUMP_INSN:
2194 set_label_offsets (PATTERN (insn), insn, initial_p);
2196 /* ... fall through ... */
2198 case INSN:
2199 case CALL_INSN:
2200 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2201 and hence must have all eliminations at their initial offsets. */
2202 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2203 if (REG_NOTE_KIND (tem) == REG_LABEL)
2204 set_label_offsets (XEXP (tem, 0), insn, 1);
2205 return;
2207 case PARALLEL:
2208 case ADDR_VEC:
2209 case ADDR_DIFF_VEC:
2210 /* Each of the labels in the parallel or address vector must be
2211 at their initial offsets. We want the first field for PARALLEL
2212 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2214 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2215 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2216 insn, initial_p);
2217 return;
2219 case SET:
2220 /* We only care about setting PC. If the source is not RETURN,
2221 IF_THEN_ELSE, or a label, disable any eliminations not at
2222 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2223 isn't one of those possibilities. For branches to a label,
2224 call ourselves recursively.
2226 Note that this can disable elimination unnecessarily when we have
2227 a non-local goto since it will look like a non-constant jump to
2228 someplace in the current function. This isn't a significant
2229 problem since such jumps will normally be when all elimination
2230 pairs are back to their initial offsets. */
2232 if (SET_DEST (x) != pc_rtx)
2233 return;
2235 switch (GET_CODE (SET_SRC (x)))
2237 case PC:
2238 case RETURN:
2239 return;
2241 case LABEL_REF:
2242 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2243 return;
2245 case IF_THEN_ELSE:
2246 tem = XEXP (SET_SRC (x), 1);
2247 if (GET_CODE (tem) == LABEL_REF)
2248 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2249 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2250 break;
2252 tem = XEXP (SET_SRC (x), 2);
2253 if (GET_CODE (tem) == LABEL_REF)
2254 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2255 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2256 break;
2257 return;
2259 default:
2260 break;
2263 /* If we reach here, all eliminations must be at their initial
2264 offset because we are doing a jump to a variable address. */
2265 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2266 if (p->offset != p->initial_offset)
2267 p->can_eliminate = 0;
2268 break;
2270 default:
2271 break;
2275 /* Scan X and replace any eliminable registers (such as fp) with a
2276 replacement (such as sp), plus an offset.
2278 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2279 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2280 MEM, we are allowed to replace a sum of a register and the constant zero
2281 with the register, which we cannot do outside a MEM. In addition, we need
2282 to record the fact that a register is referenced outside a MEM.
2284 If INSN is an insn, it is the insn containing X. If we replace a REG
2285 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2286 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2287 the REG is being modified.
2289 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2290 That's used when we eliminate in expressions stored in notes.
2291 This means, do not set ref_outside_mem even if the reference
2292 is outside of MEMs.
2294 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2295 replacements done assuming all offsets are at their initial values. If
2296 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2297 encounter, return the actual location so that find_reloads will do
2298 the proper thing. */
2301 eliminate_regs (x, mem_mode, insn)
2302 rtx x;
2303 enum machine_mode mem_mode;
2304 rtx insn;
2306 enum rtx_code code = GET_CODE (x);
2307 struct elim_table *ep;
2308 int regno;
2309 rtx new;
2310 int i, j;
2311 const char *fmt;
2312 int copied = 0;
2314 if (! current_function_decl)
2315 return x;
2317 switch (code)
2319 case CONST_INT:
2320 case CONST_DOUBLE:
2321 case CONST_VECTOR:
2322 case CONST:
2323 case SYMBOL_REF:
2324 case CODE_LABEL:
2325 case PC:
2326 case CC0:
2327 case ASM_INPUT:
2328 case ADDR_VEC:
2329 case ADDR_DIFF_VEC:
2330 case RETURN:
2331 return x;
2333 case ADDRESSOF:
2334 /* This is only for the benefit of the debugging backends, which call
2335 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2336 removed after CSE. */
2337 new = eliminate_regs (XEXP (x, 0), 0, insn);
2338 if (GET_CODE (new) == MEM)
2339 return XEXP (new, 0);
2340 return x;
2342 case REG:
2343 regno = REGNO (x);
2345 /* First handle the case where we encounter a bare register that
2346 is eliminable. Replace it with a PLUS. */
2347 if (regno < FIRST_PSEUDO_REGISTER)
2349 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2350 ep++)
2351 if (ep->from_rtx == x && ep->can_eliminate)
2352 return plus_constant (ep->to_rtx, ep->previous_offset);
2355 else if (reg_renumber && reg_renumber[regno] < 0
2356 && reg_equiv_constant && reg_equiv_constant[regno]
2357 && ! CONSTANT_P (reg_equiv_constant[regno]))
2358 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2359 mem_mode, insn);
2360 return x;
2362 /* You might think handling MINUS in a manner similar to PLUS is a
2363 good idea. It is not. It has been tried multiple times and every
2364 time the change has had to have been reverted.
2366 Other parts of reload know a PLUS is special (gen_reload for example)
2367 and require special code to handle code a reloaded PLUS operand.
2369 Also consider backends where the flags register is clobbered by a
2370 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2371 lea instruction comes to mind). If we try to reload a MINUS, we
2372 may kill the flags register that was holding a useful value.
2374 So, please before trying to handle MINUS, consider reload as a
2375 whole instead of this little section as well as the backend issues. */
2376 case PLUS:
2377 /* If this is the sum of an eliminable register and a constant, rework
2378 the sum. */
2379 if (GET_CODE (XEXP (x, 0)) == REG
2380 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2381 && CONSTANT_P (XEXP (x, 1)))
2383 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2384 ep++)
2385 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2387 /* The only time we want to replace a PLUS with a REG (this
2388 occurs when the constant operand of the PLUS is the negative
2389 of the offset) is when we are inside a MEM. We won't want
2390 to do so at other times because that would change the
2391 structure of the insn in a way that reload can't handle.
2392 We special-case the commonest situation in
2393 eliminate_regs_in_insn, so just replace a PLUS with a
2394 PLUS here, unless inside a MEM. */
2395 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2396 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2397 return ep->to_rtx;
2398 else
2399 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2400 plus_constant (XEXP (x, 1),
2401 ep->previous_offset));
2404 /* If the register is not eliminable, we are done since the other
2405 operand is a constant. */
2406 return x;
2409 /* If this is part of an address, we want to bring any constant to the
2410 outermost PLUS. We will do this by doing register replacement in
2411 our operands and seeing if a constant shows up in one of them.
2413 Note that there is no risk of modifying the structure of the insn,
2414 since we only get called for its operands, thus we are either
2415 modifying the address inside a MEM, or something like an address
2416 operand of a load-address insn. */
2419 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2420 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2422 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2424 /* If one side is a PLUS and the other side is a pseudo that
2425 didn't get a hard register but has a reg_equiv_constant,
2426 we must replace the constant here since it may no longer
2427 be in the position of any operand. */
2428 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2429 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2430 && reg_renumber[REGNO (new1)] < 0
2431 && reg_equiv_constant != 0
2432 && reg_equiv_constant[REGNO (new1)] != 0)
2433 new1 = reg_equiv_constant[REGNO (new1)];
2434 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2435 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2436 && reg_renumber[REGNO (new0)] < 0
2437 && reg_equiv_constant[REGNO (new0)] != 0)
2438 new0 = reg_equiv_constant[REGNO (new0)];
2440 new = form_sum (new0, new1);
2442 /* As above, if we are not inside a MEM we do not want to
2443 turn a PLUS into something else. We might try to do so here
2444 for an addition of 0 if we aren't optimizing. */
2445 if (! mem_mode && GET_CODE (new) != PLUS)
2446 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2447 else
2448 return new;
2451 return x;
2453 case MULT:
2454 /* If this is the product of an eliminable register and a
2455 constant, apply the distribute law and move the constant out
2456 so that we have (plus (mult ..) ..). This is needed in order
2457 to keep load-address insns valid. This case is pathological.
2458 We ignore the possibility of overflow here. */
2459 if (GET_CODE (XEXP (x, 0)) == REG
2460 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2461 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2462 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2463 ep++)
2464 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2466 if (! mem_mode
2467 /* Refs inside notes don't count for this purpose. */
2468 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2469 || GET_CODE (insn) == INSN_LIST)))
2470 ep->ref_outside_mem = 1;
2472 return
2473 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2474 ep->previous_offset * INTVAL (XEXP (x, 1)));
2477 /* ... fall through ... */
2479 case CALL:
2480 case COMPARE:
2481 /* See comments before PLUS about handling MINUS. */
2482 case MINUS:
2483 case DIV: case UDIV:
2484 case MOD: case UMOD:
2485 case AND: case IOR: case XOR:
2486 case ROTATERT: case ROTATE:
2487 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2488 case NE: case EQ:
2489 case GE: case GT: case GEU: case GTU:
2490 case LE: case LT: case LEU: case LTU:
2492 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2493 rtx new1
2494 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2496 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2497 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2499 return x;
2501 case EXPR_LIST:
2502 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2503 if (XEXP (x, 0))
2505 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2506 if (new != XEXP (x, 0))
2508 /* If this is a REG_DEAD note, it is not valid anymore.
2509 Using the eliminated version could result in creating a
2510 REG_DEAD note for the stack or frame pointer. */
2511 if (GET_MODE (x) == REG_DEAD)
2512 return (XEXP (x, 1)
2513 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2514 : NULL_RTX);
2516 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2520 /* ... fall through ... */
2522 case INSN_LIST:
2523 /* Now do eliminations in the rest of the chain. If this was
2524 an EXPR_LIST, this might result in allocating more memory than is
2525 strictly needed, but it simplifies the code. */
2526 if (XEXP (x, 1))
2528 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2529 if (new != XEXP (x, 1))
2530 return
2531 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2533 return x;
2535 case PRE_INC:
2536 case POST_INC:
2537 case PRE_DEC:
2538 case POST_DEC:
2539 case STRICT_LOW_PART:
2540 case NEG: case NOT:
2541 case SIGN_EXTEND: case ZERO_EXTEND:
2542 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2543 case FLOAT: case FIX:
2544 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2545 case ABS:
2546 case SQRT:
2547 case FFS:
2548 case CLZ:
2549 case CTZ:
2550 case POPCOUNT:
2551 case PARITY:
2552 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2553 if (new != XEXP (x, 0))
2554 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2555 return x;
2557 case SUBREG:
2558 /* Similar to above processing, but preserve SUBREG_BYTE.
2559 Convert (subreg (mem)) to (mem) if not paradoxical.
2560 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2561 pseudo didn't get a hard reg, we must replace this with the
2562 eliminated version of the memory location because push_reloads
2563 may do the replacement in certain circumstances. */
2564 if (GET_CODE (SUBREG_REG (x)) == REG
2565 && (GET_MODE_SIZE (GET_MODE (x))
2566 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2567 && reg_equiv_memory_loc != 0
2568 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2570 new = SUBREG_REG (x);
2572 else
2573 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2575 if (new != SUBREG_REG (x))
2577 int x_size = GET_MODE_SIZE (GET_MODE (x));
2578 int new_size = GET_MODE_SIZE (GET_MODE (new));
2580 if (GET_CODE (new) == MEM
2581 && ((x_size < new_size
2582 #ifdef WORD_REGISTER_OPERATIONS
2583 /* On these machines, combine can create rtl of the form
2584 (set (subreg:m1 (reg:m2 R) 0) ...)
2585 where m1 < m2, and expects something interesting to
2586 happen to the entire word. Moreover, it will use the
2587 (reg:m2 R) later, expecting all bits to be preserved.
2588 So if the number of words is the same, preserve the
2589 subreg so that push_reloads can see it. */
2590 && ! ((x_size - 1) / UNITS_PER_WORD
2591 == (new_size -1 ) / UNITS_PER_WORD)
2592 #endif
2594 || x_size == new_size)
2596 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2597 else
2598 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2601 return x;
2603 case MEM:
2604 /* This is only for the benefit of the debugging backends, which call
2605 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2606 removed after CSE. */
2607 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2608 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2610 /* Our only special processing is to pass the mode of the MEM to our
2611 recursive call and copy the flags. While we are here, handle this
2612 case more efficiently. */
2613 return
2614 replace_equiv_address_nv (x,
2615 eliminate_regs (XEXP (x, 0),
2616 GET_MODE (x), insn));
2618 case USE:
2619 /* Handle insn_list USE that a call to a pure function may generate. */
2620 new = eliminate_regs (XEXP (x, 0), 0, insn);
2621 if (new != XEXP (x, 0))
2622 return gen_rtx_USE (GET_MODE (x), new);
2623 return x;
2625 case CLOBBER:
2626 case ASM_OPERANDS:
2627 case SET:
2628 abort ();
2630 default:
2631 break;
2634 /* Process each of our operands recursively. If any have changed, make a
2635 copy of the rtx. */
2636 fmt = GET_RTX_FORMAT (code);
2637 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2639 if (*fmt == 'e')
2641 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2642 if (new != XEXP (x, i) && ! copied)
2644 rtx new_x = rtx_alloc (code);
2645 memcpy (new_x, x,
2646 (sizeof (*new_x) - sizeof (new_x->fld)
2647 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2648 x = new_x;
2649 copied = 1;
2651 XEXP (x, i) = new;
2653 else if (*fmt == 'E')
2655 int copied_vec = 0;
2656 for (j = 0; j < XVECLEN (x, i); j++)
2658 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2659 if (new != XVECEXP (x, i, j) && ! copied_vec)
2661 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2662 XVEC (x, i)->elem);
2663 if (! copied)
2665 rtx new_x = rtx_alloc (code);
2666 memcpy (new_x, x,
2667 (sizeof (*new_x) - sizeof (new_x->fld)
2668 + (sizeof (new_x->fld[0])
2669 * GET_RTX_LENGTH (code))));
2670 x = new_x;
2671 copied = 1;
2673 XVEC (x, i) = new_v;
2674 copied_vec = 1;
2676 XVECEXP (x, i, j) = new;
2681 return x;
2684 /* Scan rtx X for modifications of elimination target registers. Update
2685 the table of eliminables to reflect the changed state. MEM_MODE is
2686 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2688 static void
2689 elimination_effects (x, mem_mode)
2690 rtx x;
2691 enum machine_mode mem_mode;
2694 enum rtx_code code = GET_CODE (x);
2695 struct elim_table *ep;
2696 int regno;
2697 int i, j;
2698 const char *fmt;
2700 switch (code)
2702 case CONST_INT:
2703 case CONST_DOUBLE:
2704 case CONST_VECTOR:
2705 case CONST:
2706 case SYMBOL_REF:
2707 case CODE_LABEL:
2708 case PC:
2709 case CC0:
2710 case ASM_INPUT:
2711 case ADDR_VEC:
2712 case ADDR_DIFF_VEC:
2713 case RETURN:
2714 return;
2716 case ADDRESSOF:
2717 abort ();
2719 case REG:
2720 regno = REGNO (x);
2722 /* First handle the case where we encounter a bare register that
2723 is eliminable. Replace it with a PLUS. */
2724 if (regno < FIRST_PSEUDO_REGISTER)
2726 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2727 ep++)
2728 if (ep->from_rtx == x && ep->can_eliminate)
2730 if (! mem_mode)
2731 ep->ref_outside_mem = 1;
2732 return;
2736 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2737 && reg_equiv_constant[regno]
2738 && ! function_invariant_p (reg_equiv_constant[regno]))
2739 elimination_effects (reg_equiv_constant[regno], mem_mode);
2740 return;
2742 case PRE_INC:
2743 case POST_INC:
2744 case PRE_DEC:
2745 case POST_DEC:
2746 case POST_MODIFY:
2747 case PRE_MODIFY:
2748 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2749 if (ep->to_rtx == XEXP (x, 0))
2751 int size = GET_MODE_SIZE (mem_mode);
2753 /* If more bytes than MEM_MODE are pushed, account for them. */
2754 #ifdef PUSH_ROUNDING
2755 if (ep->to_rtx == stack_pointer_rtx)
2756 size = PUSH_ROUNDING (size);
2757 #endif
2758 if (code == PRE_DEC || code == POST_DEC)
2759 ep->offset += size;
2760 else if (code == PRE_INC || code == POST_INC)
2761 ep->offset -= size;
2762 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2763 && GET_CODE (XEXP (x, 1)) == PLUS
2764 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2765 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2766 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2769 /* These two aren't unary operators. */
2770 if (code == POST_MODIFY || code == PRE_MODIFY)
2771 break;
2773 /* Fall through to generic unary operation case. */
2774 case STRICT_LOW_PART:
2775 case NEG: case NOT:
2776 case SIGN_EXTEND: case ZERO_EXTEND:
2777 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2778 case FLOAT: case FIX:
2779 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2780 case ABS:
2781 case SQRT:
2782 case FFS:
2783 case CLZ:
2784 case CTZ:
2785 case POPCOUNT:
2786 case PARITY:
2787 elimination_effects (XEXP (x, 0), mem_mode);
2788 return;
2790 case SUBREG:
2791 if (GET_CODE (SUBREG_REG (x)) == REG
2792 && (GET_MODE_SIZE (GET_MODE (x))
2793 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2794 && reg_equiv_memory_loc != 0
2795 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2796 return;
2798 elimination_effects (SUBREG_REG (x), mem_mode);
2799 return;
2801 case USE:
2802 /* If using a register that is the source of an eliminate we still
2803 think can be performed, note it cannot be performed since we don't
2804 know how this register is used. */
2805 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2806 if (ep->from_rtx == XEXP (x, 0))
2807 ep->can_eliminate = 0;
2809 elimination_effects (XEXP (x, 0), mem_mode);
2810 return;
2812 case CLOBBER:
2813 /* If clobbering a register that is the replacement register for an
2814 elimination we still think can be performed, note that it cannot
2815 be performed. Otherwise, we need not be concerned about it. */
2816 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2817 if (ep->to_rtx == XEXP (x, 0))
2818 ep->can_eliminate = 0;
2820 elimination_effects (XEXP (x, 0), mem_mode);
2821 return;
2823 case SET:
2824 /* Check for setting a register that we know about. */
2825 if (GET_CODE (SET_DEST (x)) == REG)
2827 /* See if this is setting the replacement register for an
2828 elimination.
2830 If DEST is the hard frame pointer, we do nothing because we
2831 assume that all assignments to the frame pointer are for
2832 non-local gotos and are being done at a time when they are valid
2833 and do not disturb anything else. Some machines want to
2834 eliminate a fake argument pointer (or even a fake frame pointer)
2835 with either the real frame or the stack pointer. Assignments to
2836 the hard frame pointer must not prevent this elimination. */
2838 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2839 ep++)
2840 if (ep->to_rtx == SET_DEST (x)
2841 && SET_DEST (x) != hard_frame_pointer_rtx)
2843 /* If it is being incremented, adjust the offset. Otherwise,
2844 this elimination can't be done. */
2845 rtx src = SET_SRC (x);
2847 if (GET_CODE (src) == PLUS
2848 && XEXP (src, 0) == SET_DEST (x)
2849 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2850 ep->offset -= INTVAL (XEXP (src, 1));
2851 else
2852 ep->can_eliminate = 0;
2856 elimination_effects (SET_DEST (x), 0);
2857 elimination_effects (SET_SRC (x), 0);
2858 return;
2860 case MEM:
2861 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2862 abort ();
2864 /* Our only special processing is to pass the mode of the MEM to our
2865 recursive call. */
2866 elimination_effects (XEXP (x, 0), GET_MODE (x));
2867 return;
2869 default:
2870 break;
2873 fmt = GET_RTX_FORMAT (code);
2874 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2876 if (*fmt == 'e')
2877 elimination_effects (XEXP (x, i), mem_mode);
2878 else if (*fmt == 'E')
2879 for (j = 0; j < XVECLEN (x, i); j++)
2880 elimination_effects (XVECEXP (x, i, j), mem_mode);
2884 /* Descend through rtx X and verify that no references to eliminable registers
2885 remain. If any do remain, mark the involved register as not
2886 eliminable. */
2888 static void
2889 check_eliminable_occurrences (x)
2890 rtx x;
2892 const char *fmt;
2893 int i;
2894 enum rtx_code code;
2896 if (x == 0)
2897 return;
2899 code = GET_CODE (x);
2901 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2903 struct elim_table *ep;
2905 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2906 if (ep->from_rtx == x && ep->can_eliminate)
2907 ep->can_eliminate = 0;
2908 return;
2911 fmt = GET_RTX_FORMAT (code);
2912 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2914 if (*fmt == 'e')
2915 check_eliminable_occurrences (XEXP (x, i));
2916 else if (*fmt == 'E')
2918 int j;
2919 for (j = 0; j < XVECLEN (x, i); j++)
2920 check_eliminable_occurrences (XVECEXP (x, i, j));
2925 /* Scan INSN and eliminate all eliminable registers in it.
2927 If REPLACE is nonzero, do the replacement destructively. Also
2928 delete the insn as dead it if it is setting an eliminable register.
2930 If REPLACE is zero, do all our allocations in reload_obstack.
2932 If no eliminations were done and this insn doesn't require any elimination
2933 processing (these are not identical conditions: it might be updating sp,
2934 but not referencing fp; this needs to be seen during reload_as_needed so
2935 that the offset between fp and sp can be taken into consideration), zero
2936 is returned. Otherwise, 1 is returned. */
2938 static int
2939 eliminate_regs_in_insn (insn, replace)
2940 rtx insn;
2941 int replace;
2943 int icode = recog_memoized (insn);
2944 rtx old_body = PATTERN (insn);
2945 int insn_is_asm = asm_noperands (old_body) >= 0;
2946 rtx old_set = single_set (insn);
2947 rtx new_body;
2948 int val = 0;
2949 int i;
2950 rtx substed_operand[MAX_RECOG_OPERANDS];
2951 rtx orig_operand[MAX_RECOG_OPERANDS];
2952 struct elim_table *ep;
2954 if (! insn_is_asm && icode < 0)
2956 if (GET_CODE (PATTERN (insn)) == USE
2957 || GET_CODE (PATTERN (insn)) == CLOBBER
2958 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2959 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2960 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2961 return 0;
2962 abort ();
2965 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2966 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2968 /* Check for setting an eliminable register. */
2969 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2970 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2972 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2973 /* If this is setting the frame pointer register to the
2974 hardware frame pointer register and this is an elimination
2975 that will be done (tested above), this insn is really
2976 adjusting the frame pointer downward to compensate for
2977 the adjustment done before a nonlocal goto. */
2978 if (ep->from == FRAME_POINTER_REGNUM
2979 && ep->to == HARD_FRAME_POINTER_REGNUM)
2981 rtx base = SET_SRC (old_set);
2982 rtx base_insn = insn;
2983 int offset = 0;
2985 while (base != ep->to_rtx)
2987 rtx prev_insn, prev_set;
2989 if (GET_CODE (base) == PLUS
2990 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2992 offset += INTVAL (XEXP (base, 1));
2993 base = XEXP (base, 0);
2995 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2996 && (prev_set = single_set (prev_insn)) != 0
2997 && rtx_equal_p (SET_DEST (prev_set), base))
2999 base = SET_SRC (prev_set);
3000 base_insn = prev_insn;
3002 else
3003 break;
3006 if (base == ep->to_rtx)
3008 rtx src
3009 = plus_constant (ep->to_rtx, offset - ep->offset);
3011 new_body = old_body;
3012 if (! replace)
3014 new_body = copy_insn (old_body);
3015 if (REG_NOTES (insn))
3016 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3018 PATTERN (insn) = new_body;
3019 old_set = single_set (insn);
3021 /* First see if this insn remains valid when we
3022 make the change. If not, keep the INSN_CODE
3023 the same and let reload fit it up. */
3024 validate_change (insn, &SET_SRC (old_set), src, 1);
3025 validate_change (insn, &SET_DEST (old_set),
3026 ep->to_rtx, 1);
3027 if (! apply_change_group ())
3029 SET_SRC (old_set) = src;
3030 SET_DEST (old_set) = ep->to_rtx;
3033 val = 1;
3034 goto done;
3037 #endif
3039 /* In this case this insn isn't serving a useful purpose. We
3040 will delete it in reload_as_needed once we know that this
3041 elimination is, in fact, being done.
3043 If REPLACE isn't set, we can't delete this insn, but needn't
3044 process it since it won't be used unless something changes. */
3045 if (replace)
3047 delete_dead_insn (insn);
3048 return 1;
3050 val = 1;
3051 goto done;
3055 /* We allow one special case which happens to work on all machines we
3056 currently support: a single set with the source being a PLUS of an
3057 eliminable register and a constant. */
3058 if (old_set
3059 && GET_CODE (SET_DEST (old_set)) == REG
3060 && GET_CODE (SET_SRC (old_set)) == PLUS
3061 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3062 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3063 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3065 rtx reg = XEXP (SET_SRC (old_set), 0);
3066 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3068 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3069 if (ep->from_rtx == reg && ep->can_eliminate)
3071 offset += ep->offset;
3073 if (offset == 0)
3075 int num_clobbers;
3076 /* We assume here that if we need a PARALLEL with
3077 CLOBBERs for this assignment, we can do with the
3078 MATCH_SCRATCHes that add_clobbers allocates.
3079 There's not much we can do if that doesn't work. */
3080 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3081 SET_DEST (old_set),
3082 ep->to_rtx);
3083 num_clobbers = 0;
3084 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3085 if (num_clobbers)
3087 rtvec vec = rtvec_alloc (num_clobbers + 1);
3089 vec->elem[0] = PATTERN (insn);
3090 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3091 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3093 if (INSN_CODE (insn) < 0)
3094 abort ();
3096 else
3098 new_body = old_body;
3099 if (! replace)
3101 new_body = copy_insn (old_body);
3102 if (REG_NOTES (insn))
3103 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3105 PATTERN (insn) = new_body;
3106 old_set = single_set (insn);
3108 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3109 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3111 val = 1;
3112 /* This can't have an effect on elimination offsets, so skip right
3113 to the end. */
3114 goto done;
3118 /* Determine the effects of this insn on elimination offsets. */
3119 elimination_effects (old_body, 0);
3121 /* Eliminate all eliminable registers occurring in operands that
3122 can be handled by reload. */
3123 extract_insn (insn);
3124 for (i = 0; i < recog_data.n_operands; i++)
3126 orig_operand[i] = recog_data.operand[i];
3127 substed_operand[i] = recog_data.operand[i];
3129 /* For an asm statement, every operand is eliminable. */
3130 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3132 /* Check for setting a register that we know about. */
3133 if (recog_data.operand_type[i] != OP_IN
3134 && GET_CODE (orig_operand[i]) == REG)
3136 /* If we are assigning to a register that can be eliminated, it
3137 must be as part of a PARALLEL, since the code above handles
3138 single SETs. We must indicate that we can no longer
3139 eliminate this reg. */
3140 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3141 ep++)
3142 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3143 ep->can_eliminate = 0;
3146 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3147 replace ? insn : NULL_RTX);
3148 if (substed_operand[i] != orig_operand[i])
3149 val = 1;
3150 /* Terminate the search in check_eliminable_occurrences at
3151 this point. */
3152 *recog_data.operand_loc[i] = 0;
3154 /* If an output operand changed from a REG to a MEM and INSN is an
3155 insn, write a CLOBBER insn. */
3156 if (recog_data.operand_type[i] != OP_IN
3157 && GET_CODE (orig_operand[i]) == REG
3158 && GET_CODE (substed_operand[i]) == MEM
3159 && replace)
3160 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3161 insn);
3165 for (i = 0; i < recog_data.n_dups; i++)
3166 *recog_data.dup_loc[i]
3167 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3169 /* If any eliminable remain, they aren't eliminable anymore. */
3170 check_eliminable_occurrences (old_body);
3172 /* Substitute the operands; the new values are in the substed_operand
3173 array. */
3174 for (i = 0; i < recog_data.n_operands; i++)
3175 *recog_data.operand_loc[i] = substed_operand[i];
3176 for (i = 0; i < recog_data.n_dups; i++)
3177 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3179 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3180 re-recognize the insn. We do this in case we had a simple addition
3181 but now can do this as a load-address. This saves an insn in this
3182 common case.
3183 If re-recognition fails, the old insn code number will still be used,
3184 and some register operands may have changed into PLUS expressions.
3185 These will be handled by find_reloads by loading them into a register
3186 again. */
3188 if (val)
3190 /* If we aren't replacing things permanently and we changed something,
3191 make another copy to ensure that all the RTL is new. Otherwise
3192 things can go wrong if find_reload swaps commutative operands
3193 and one is inside RTL that has been copied while the other is not. */
3194 new_body = old_body;
3195 if (! replace)
3197 new_body = copy_insn (old_body);
3198 if (REG_NOTES (insn))
3199 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3201 PATTERN (insn) = new_body;
3203 /* If we had a move insn but now we don't, rerecognize it. This will
3204 cause spurious re-recognition if the old move had a PARALLEL since
3205 the new one still will, but we can't call single_set without
3206 having put NEW_BODY into the insn and the re-recognition won't
3207 hurt in this rare case. */
3208 /* ??? Why this huge if statement - why don't we just rerecognize the
3209 thing always? */
3210 if (! insn_is_asm
3211 && old_set != 0
3212 && ((GET_CODE (SET_SRC (old_set)) == REG
3213 && (GET_CODE (new_body) != SET
3214 || GET_CODE (SET_SRC (new_body)) != REG))
3215 /* If this was a load from or store to memory, compare
3216 the MEM in recog_data.operand to the one in the insn.
3217 If they are not equal, then rerecognize the insn. */
3218 || (old_set != 0
3219 && ((GET_CODE (SET_SRC (old_set)) == MEM
3220 && SET_SRC (old_set) != recog_data.operand[1])
3221 || (GET_CODE (SET_DEST (old_set)) == MEM
3222 && SET_DEST (old_set) != recog_data.operand[0])))
3223 /* If this was an add insn before, rerecognize. */
3224 || GET_CODE (SET_SRC (old_set)) == PLUS))
3226 int new_icode = recog (PATTERN (insn), insn, 0);
3227 if (new_icode < 0)
3228 INSN_CODE (insn) = icode;
3232 /* Restore the old body. If there were any changes to it, we made a copy
3233 of it while the changes were still in place, so we'll correctly return
3234 a modified insn below. */
3235 if (! replace)
3237 /* Restore the old body. */
3238 for (i = 0; i < recog_data.n_operands; i++)
3239 *recog_data.operand_loc[i] = orig_operand[i];
3240 for (i = 0; i < recog_data.n_dups; i++)
3241 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3244 /* Update all elimination pairs to reflect the status after the current
3245 insn. The changes we make were determined by the earlier call to
3246 elimination_effects.
3248 We also detect cases where register elimination cannot be done,
3249 namely, if a register would be both changed and referenced outside a MEM
3250 in the resulting insn since such an insn is often undefined and, even if
3251 not, we cannot know what meaning will be given to it. Note that it is
3252 valid to have a register used in an address in an insn that changes it
3253 (presumably with a pre- or post-increment or decrement).
3255 If anything changes, return nonzero. */
3257 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3259 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3260 ep->can_eliminate = 0;
3262 ep->ref_outside_mem = 0;
3264 if (ep->previous_offset != ep->offset)
3265 val = 1;
3268 done:
3269 /* If we changed something, perform elimination in REG_NOTES. This is
3270 needed even when REPLACE is zero because a REG_DEAD note might refer
3271 to a register that we eliminate and could cause a different number
3272 of spill registers to be needed in the final reload pass than in
3273 the pre-passes. */
3274 if (val && REG_NOTES (insn) != 0)
3275 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3277 return val;
3280 /* Loop through all elimination pairs.
3281 Recalculate the number not at initial offset.
3283 Compute the maximum offset (minimum offset if the stack does not
3284 grow downward) for each elimination pair. */
3286 static void
3287 update_eliminable_offsets ()
3289 struct elim_table *ep;
3291 num_not_at_initial_offset = 0;
3292 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3294 ep->previous_offset = ep->offset;
3295 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3296 num_not_at_initial_offset++;
3300 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3301 replacement we currently believe is valid, mark it as not eliminable if X
3302 modifies DEST in any way other than by adding a constant integer to it.
3304 If DEST is the frame pointer, we do nothing because we assume that
3305 all assignments to the hard frame pointer are nonlocal gotos and are being
3306 done at a time when they are valid and do not disturb anything else.
3307 Some machines want to eliminate a fake argument pointer with either the
3308 frame or stack pointer. Assignments to the hard frame pointer must not
3309 prevent this elimination.
3311 Called via note_stores from reload before starting its passes to scan
3312 the insns of the function. */
3314 static void
3315 mark_not_eliminable (dest, x, data)
3316 rtx dest;
3317 rtx x;
3318 void *data ATTRIBUTE_UNUSED;
3320 unsigned int i;
3322 /* A SUBREG of a hard register here is just changing its mode. We should
3323 not see a SUBREG of an eliminable hard register, but check just in
3324 case. */
3325 if (GET_CODE (dest) == SUBREG)
3326 dest = SUBREG_REG (dest);
3328 if (dest == hard_frame_pointer_rtx)
3329 return;
3331 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3332 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3333 && (GET_CODE (x) != SET
3334 || GET_CODE (SET_SRC (x)) != PLUS
3335 || XEXP (SET_SRC (x), 0) != dest
3336 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3338 reg_eliminate[i].can_eliminate_previous
3339 = reg_eliminate[i].can_eliminate = 0;
3340 num_eliminable--;
3344 /* Verify that the initial elimination offsets did not change since the
3345 last call to set_initial_elim_offsets. This is used to catch cases
3346 where something illegal happened during reload_as_needed that could
3347 cause incorrect code to be generated if we did not check for it. */
3349 static void
3350 verify_initial_elim_offsets ()
3352 int t;
3354 #ifdef ELIMINABLE_REGS
3355 struct elim_table *ep;
3357 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3359 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3360 if (t != ep->initial_offset)
3361 abort ();
3363 #else
3364 INITIAL_FRAME_POINTER_OFFSET (t);
3365 if (t != reg_eliminate[0].initial_offset)
3366 abort ();
3367 #endif
3370 /* Reset all offsets on eliminable registers to their initial values. */
3372 static void
3373 set_initial_elim_offsets ()
3375 struct elim_table *ep = reg_eliminate;
3377 #ifdef ELIMINABLE_REGS
3378 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3380 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3381 ep->previous_offset = ep->offset = ep->initial_offset;
3383 #else
3384 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3385 ep->previous_offset = ep->offset = ep->initial_offset;
3386 #endif
3388 num_not_at_initial_offset = 0;
3391 /* Initialize the known label offsets.
3392 Set a known offset for each forced label to be at the initial offset
3393 of each elimination. We do this because we assume that all
3394 computed jumps occur from a location where each elimination is
3395 at its initial offset.
3396 For all other labels, show that we don't know the offsets. */
3398 static void
3399 set_initial_label_offsets ()
3401 rtx x;
3402 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3404 for (x = forced_labels; x; x = XEXP (x, 1))
3405 if (XEXP (x, 0))
3406 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3409 /* Set all elimination offsets to the known values for the code label given
3410 by INSN. */
3412 static void
3413 set_offsets_for_label (insn)
3414 rtx insn;
3416 unsigned int i;
3417 int label_nr = CODE_LABEL_NUMBER (insn);
3418 struct elim_table *ep;
3420 num_not_at_initial_offset = 0;
3421 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3423 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3424 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3425 num_not_at_initial_offset++;
3429 /* See if anything that happened changes which eliminations are valid.
3430 For example, on the SPARC, whether or not the frame pointer can
3431 be eliminated can depend on what registers have been used. We need
3432 not check some conditions again (such as flag_omit_frame_pointer)
3433 since they can't have changed. */
3435 static void
3436 update_eliminables (pset)
3437 HARD_REG_SET *pset;
3439 int previous_frame_pointer_needed = frame_pointer_needed;
3440 struct elim_table *ep;
3442 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3443 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3444 #ifdef ELIMINABLE_REGS
3445 || ! CAN_ELIMINATE (ep->from, ep->to)
3446 #endif
3448 ep->can_eliminate = 0;
3450 /* Look for the case where we have discovered that we can't replace
3451 register A with register B and that means that we will now be
3452 trying to replace register A with register C. This means we can
3453 no longer replace register C with register B and we need to disable
3454 such an elimination, if it exists. This occurs often with A == ap,
3455 B == sp, and C == fp. */
3457 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3459 struct elim_table *op;
3460 int new_to = -1;
3462 if (! ep->can_eliminate && ep->can_eliminate_previous)
3464 /* Find the current elimination for ep->from, if there is a
3465 new one. */
3466 for (op = reg_eliminate;
3467 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3468 if (op->from == ep->from && op->can_eliminate)
3470 new_to = op->to;
3471 break;
3474 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3475 disable it. */
3476 for (op = reg_eliminate;
3477 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3478 if (op->from == new_to && op->to == ep->to)
3479 op->can_eliminate = 0;
3483 /* See if any registers that we thought we could eliminate the previous
3484 time are no longer eliminable. If so, something has changed and we
3485 must spill the register. Also, recompute the number of eliminable
3486 registers and see if the frame pointer is needed; it is if there is
3487 no elimination of the frame pointer that we can perform. */
3489 frame_pointer_needed = 1;
3490 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3492 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3493 && ep->to != HARD_FRAME_POINTER_REGNUM)
3494 frame_pointer_needed = 0;
3496 if (! ep->can_eliminate && ep->can_eliminate_previous)
3498 ep->can_eliminate_previous = 0;
3499 SET_HARD_REG_BIT (*pset, ep->from);
3500 num_eliminable--;
3504 /* If we didn't need a frame pointer last time, but we do now, spill
3505 the hard frame pointer. */
3506 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3507 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3510 /* Initialize the table of registers to eliminate. */
3512 static void
3513 init_elim_table ()
3515 struct elim_table *ep;
3516 #ifdef ELIMINABLE_REGS
3517 const struct elim_table_1 *ep1;
3518 #endif
3520 if (!reg_eliminate)
3521 reg_eliminate = (struct elim_table *)
3522 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3524 /* Does this function require a frame pointer? */
3526 frame_pointer_needed = (! flag_omit_frame_pointer
3527 #ifdef EXIT_IGNORE_STACK
3528 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3529 and restore sp for alloca. So we can't eliminate
3530 the frame pointer in that case. At some point,
3531 we should improve this by emitting the
3532 sp-adjusting insns for this case. */
3533 || (current_function_calls_alloca
3534 && EXIT_IGNORE_STACK)
3535 #endif
3536 || FRAME_POINTER_REQUIRED);
3538 num_eliminable = 0;
3540 #ifdef ELIMINABLE_REGS
3541 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3542 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3544 ep->from = ep1->from;
3545 ep->to = ep1->to;
3546 ep->can_eliminate = ep->can_eliminate_previous
3547 = (CAN_ELIMINATE (ep->from, ep->to)
3548 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3550 #else
3551 reg_eliminate[0].from = reg_eliminate_1[0].from;
3552 reg_eliminate[0].to = reg_eliminate_1[0].to;
3553 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3554 = ! frame_pointer_needed;
3555 #endif
3557 /* Count the number of eliminable registers and build the FROM and TO
3558 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3559 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3560 We depend on this. */
3561 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3563 num_eliminable += ep->can_eliminate;
3564 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3565 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3569 /* Kick all pseudos out of hard register REGNO.
3571 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3572 because we found we can't eliminate some register. In the case, no pseudos
3573 are allowed to be in the register, even if they are only in a block that
3574 doesn't require spill registers, unlike the case when we are spilling this
3575 hard reg to produce another spill register.
3577 Return nonzero if any pseudos needed to be kicked out. */
3579 static void
3580 spill_hard_reg (regno, cant_eliminate)
3581 unsigned int regno;
3582 int cant_eliminate;
3584 int i;
3586 if (cant_eliminate)
3588 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3589 regs_ever_live[regno] = 1;
3592 /* Spill every pseudo reg that was allocated to this reg
3593 or to something that overlaps this reg. */
3595 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3596 if (reg_renumber[i] >= 0
3597 && (unsigned int) reg_renumber[i] <= regno
3598 && ((unsigned int) reg_renumber[i]
3599 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3600 PSEUDO_REGNO_MODE (i))
3601 > regno))
3602 SET_REGNO_REG_SET (&spilled_pseudos, i);
3605 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3606 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3608 static void
3609 ior_hard_reg_set (set1, set2)
3610 HARD_REG_SET *set1, *set2;
3612 IOR_HARD_REG_SET (*set1, *set2);
3615 /* After find_reload_regs has been run for all insn that need reloads,
3616 and/or spill_hard_regs was called, this function is used to actually
3617 spill pseudo registers and try to reallocate them. It also sets up the
3618 spill_regs array for use by choose_reload_regs. */
3620 static int
3621 finish_spills (global)
3622 int global;
3624 struct insn_chain *chain;
3625 int something_changed = 0;
3626 int i;
3628 /* Build the spill_regs array for the function. */
3629 /* If there are some registers still to eliminate and one of the spill regs
3630 wasn't ever used before, additional stack space may have to be
3631 allocated to store this register. Thus, we may have changed the offset
3632 between the stack and frame pointers, so mark that something has changed.
3634 One might think that we need only set VAL to 1 if this is a call-used
3635 register. However, the set of registers that must be saved by the
3636 prologue is not identical to the call-used set. For example, the
3637 register used by the call insn for the return PC is a call-used register,
3638 but must be saved by the prologue. */
3640 n_spills = 0;
3641 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3642 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3644 spill_reg_order[i] = n_spills;
3645 spill_regs[n_spills++] = i;
3646 if (num_eliminable && ! regs_ever_live[i])
3647 something_changed = 1;
3648 regs_ever_live[i] = 1;
3650 else
3651 spill_reg_order[i] = -1;
3653 EXECUTE_IF_SET_IN_REG_SET
3654 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3656 /* Record the current hard register the pseudo is allocated to in
3657 pseudo_previous_regs so we avoid reallocating it to the same
3658 hard reg in a later pass. */
3659 if (reg_renumber[i] < 0)
3660 abort ();
3662 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3663 /* Mark it as no longer having a hard register home. */
3664 reg_renumber[i] = -1;
3665 /* We will need to scan everything again. */
3666 something_changed = 1;
3669 /* Retry global register allocation if possible. */
3670 if (global)
3672 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3673 /* For every insn that needs reloads, set the registers used as spill
3674 regs in pseudo_forbidden_regs for every pseudo live across the
3675 insn. */
3676 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3678 EXECUTE_IF_SET_IN_REG_SET
3679 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3681 ior_hard_reg_set (pseudo_forbidden_regs + i,
3682 &chain->used_spill_regs);
3684 EXECUTE_IF_SET_IN_REG_SET
3685 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3687 ior_hard_reg_set (pseudo_forbidden_regs + i,
3688 &chain->used_spill_regs);
3692 /* Retry allocating the spilled pseudos. For each reg, merge the
3693 various reg sets that indicate which hard regs can't be used,
3694 and call retry_global_alloc.
3695 We change spill_pseudos here to only contain pseudos that did not
3696 get a new hard register. */
3697 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3698 if (reg_old_renumber[i] != reg_renumber[i])
3700 HARD_REG_SET forbidden;
3701 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3702 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3703 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3704 retry_global_alloc (i, forbidden);
3705 if (reg_renumber[i] >= 0)
3706 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3710 /* Fix up the register information in the insn chain.
3711 This involves deleting those of the spilled pseudos which did not get
3712 a new hard register home from the live_{before,after} sets. */
3713 for (chain = reload_insn_chain; chain; chain = chain->next)
3715 HARD_REG_SET used_by_pseudos;
3716 HARD_REG_SET used_by_pseudos2;
3718 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3719 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3721 /* Mark any unallocated hard regs as available for spills. That
3722 makes inheritance work somewhat better. */
3723 if (chain->need_reload)
3725 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3726 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3727 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3729 /* Save the old value for the sanity test below. */
3730 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3732 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3733 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3734 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3735 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3737 /* Make sure we only enlarge the set. */
3738 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3739 abort ();
3740 ok:;
3744 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3745 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3747 int regno = reg_renumber[i];
3748 if (reg_old_renumber[i] == regno)
3749 continue;
3751 alter_reg (i, reg_old_renumber[i]);
3752 reg_old_renumber[i] = regno;
3753 if (rtl_dump_file)
3755 if (regno == -1)
3756 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3757 else
3758 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3759 i, reg_renumber[i]);
3763 return something_changed;
3766 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3767 Also mark any hard registers used to store user variables as
3768 forbidden from being used for spill registers. */
3770 static void
3771 scan_paradoxical_subregs (x)
3772 rtx x;
3774 int i;
3775 const char *fmt;
3776 enum rtx_code code = GET_CODE (x);
3778 switch (code)
3780 case REG:
3781 #if 0
3782 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3783 && REG_USERVAR_P (x))
3784 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3785 #endif
3786 return;
3788 case CONST_INT:
3789 case CONST:
3790 case SYMBOL_REF:
3791 case LABEL_REF:
3792 case CONST_DOUBLE:
3793 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3794 case CC0:
3795 case PC:
3796 case USE:
3797 case CLOBBER:
3798 return;
3800 case SUBREG:
3801 if (GET_CODE (SUBREG_REG (x)) == REG
3802 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3803 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3804 = GET_MODE_SIZE (GET_MODE (x));
3805 return;
3807 default:
3808 break;
3811 fmt = GET_RTX_FORMAT (code);
3812 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3814 if (fmt[i] == 'e')
3815 scan_paradoxical_subregs (XEXP (x, i));
3816 else if (fmt[i] == 'E')
3818 int j;
3819 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3820 scan_paradoxical_subregs (XVECEXP (x, i, j));
3825 /* Reload pseudo-registers into hard regs around each insn as needed.
3826 Additional register load insns are output before the insn that needs it
3827 and perhaps store insns after insns that modify the reloaded pseudo reg.
3829 reg_last_reload_reg and reg_reloaded_contents keep track of
3830 which registers are already available in reload registers.
3831 We update these for the reloads that we perform,
3832 as the insns are scanned. */
3834 static void
3835 reload_as_needed (live_known)
3836 int live_known;
3838 struct insn_chain *chain;
3839 #if defined (AUTO_INC_DEC)
3840 int i;
3841 #endif
3842 rtx x;
3844 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3845 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3846 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3847 reg_has_output_reload = (char *) xmalloc (max_regno);
3848 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3850 set_initial_elim_offsets ();
3852 for (chain = reload_insn_chain; chain; chain = chain->next)
3854 rtx prev = 0;
3855 rtx insn = chain->insn;
3856 rtx old_next = NEXT_INSN (insn);
3858 /* If we pass a label, copy the offsets from the label information
3859 into the current offsets of each elimination. */
3860 if (GET_CODE (insn) == CODE_LABEL)
3861 set_offsets_for_label (insn);
3863 else if (INSN_P (insn))
3865 rtx oldpat = copy_rtx (PATTERN (insn));
3867 /* If this is a USE and CLOBBER of a MEM, ensure that any
3868 references to eliminable registers have been removed. */
3870 if ((GET_CODE (PATTERN (insn)) == USE
3871 || GET_CODE (PATTERN (insn)) == CLOBBER)
3872 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3873 XEXP (XEXP (PATTERN (insn), 0), 0)
3874 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3875 GET_MODE (XEXP (PATTERN (insn), 0)),
3876 NULL_RTX);
3878 /* If we need to do register elimination processing, do so.
3879 This might delete the insn, in which case we are done. */
3880 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3882 eliminate_regs_in_insn (insn, 1);
3883 if (GET_CODE (insn) == NOTE)
3885 update_eliminable_offsets ();
3886 continue;
3890 /* If need_elim is nonzero but need_reload is zero, one might think
3891 that we could simply set n_reloads to 0. However, find_reloads
3892 could have done some manipulation of the insn (such as swapping
3893 commutative operands), and these manipulations are lost during
3894 the first pass for every insn that needs register elimination.
3895 So the actions of find_reloads must be redone here. */
3897 if (! chain->need_elim && ! chain->need_reload
3898 && ! chain->need_operand_change)
3899 n_reloads = 0;
3900 /* First find the pseudo regs that must be reloaded for this insn.
3901 This info is returned in the tables reload_... (see reload.h).
3902 Also modify the body of INSN by substituting RELOAD
3903 rtx's for those pseudo regs. */
3904 else
3906 memset (reg_has_output_reload, 0, max_regno);
3907 CLEAR_HARD_REG_SET (reg_is_output_reload);
3909 find_reloads (insn, 1, spill_indirect_levels, live_known,
3910 spill_reg_order);
3913 if (n_reloads > 0)
3915 rtx next = NEXT_INSN (insn);
3916 rtx p;
3918 prev = PREV_INSN (insn);
3920 /* Now compute which reload regs to reload them into. Perhaps
3921 reusing reload regs from previous insns, or else output
3922 load insns to reload them. Maybe output store insns too.
3923 Record the choices of reload reg in reload_reg_rtx. */
3924 choose_reload_regs (chain);
3926 /* Merge any reloads that we didn't combine for fear of
3927 increasing the number of spill registers needed but now
3928 discover can be safely merged. */
3929 if (SMALL_REGISTER_CLASSES)
3930 merge_assigned_reloads (insn);
3932 /* Generate the insns to reload operands into or out of
3933 their reload regs. */
3934 emit_reload_insns (chain);
3936 /* Substitute the chosen reload regs from reload_reg_rtx
3937 into the insn's body (or perhaps into the bodies of other
3938 load and store insn that we just made for reloading
3939 and that we moved the structure into). */
3940 subst_reloads (insn);
3942 /* If this was an ASM, make sure that all the reload insns
3943 we have generated are valid. If not, give an error
3944 and delete them. */
3946 if (asm_noperands (PATTERN (insn)) >= 0)
3947 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3948 if (p != insn && INSN_P (p)
3949 && (recog_memoized (p) < 0
3950 || (extract_insn (p), ! constrain_operands (1))))
3952 error_for_asm (insn,
3953 "`asm' operand requires impossible reload");
3954 delete_insn (p);
3958 if (num_eliminable && chain->need_elim)
3959 update_eliminable_offsets ();
3961 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3962 is no longer validly lying around to save a future reload.
3963 Note that this does not detect pseudos that were reloaded
3964 for this insn in order to be stored in
3965 (obeying register constraints). That is correct; such reload
3966 registers ARE still valid. */
3967 note_stores (oldpat, forget_old_reloads_1, NULL);
3969 /* There may have been CLOBBER insns placed after INSN. So scan
3970 between INSN and NEXT and use them to forget old reloads. */
3971 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3972 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3973 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3975 #ifdef AUTO_INC_DEC
3976 /* Likewise for regs altered by auto-increment in this insn.
3977 REG_INC notes have been changed by reloading:
3978 find_reloads_address_1 records substitutions for them,
3979 which have been performed by subst_reloads above. */
3980 for (i = n_reloads - 1; i >= 0; i--)
3982 rtx in_reg = rld[i].in_reg;
3983 if (in_reg)
3985 enum rtx_code code = GET_CODE (in_reg);
3986 /* PRE_INC / PRE_DEC will have the reload register ending up
3987 with the same value as the stack slot, but that doesn't
3988 hold true for POST_INC / POST_DEC. Either we have to
3989 convert the memory access to a true POST_INC / POST_DEC,
3990 or we can't use the reload register for inheritance. */
3991 if ((code == POST_INC || code == POST_DEC)
3992 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3993 REGNO (rld[i].reg_rtx))
3994 /* Make sure it is the inc/dec pseudo, and not
3995 some other (e.g. output operand) pseudo. */
3996 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3997 == REGNO (XEXP (in_reg, 0))))
4000 rtx reload_reg = rld[i].reg_rtx;
4001 enum machine_mode mode = GET_MODE (reload_reg);
4002 int n = 0;
4003 rtx p;
4005 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4007 /* We really want to ignore REG_INC notes here, so
4008 use PATTERN (p) as argument to reg_set_p . */
4009 if (reg_set_p (reload_reg, PATTERN (p)))
4010 break;
4011 n = count_occurrences (PATTERN (p), reload_reg, 0);
4012 if (! n)
4013 continue;
4014 if (n == 1)
4016 n = validate_replace_rtx (reload_reg,
4017 gen_rtx (code, mode,
4018 reload_reg),
4021 /* We must also verify that the constraints
4022 are met after the replacement. */
4023 extract_insn (p);
4024 if (n)
4025 n = constrain_operands (1);
4026 else
4027 break;
4029 /* If the constraints were not met, then
4030 undo the replacement. */
4031 if (!n)
4033 validate_replace_rtx (gen_rtx (code, mode,
4034 reload_reg),
4035 reload_reg, p);
4036 break;
4040 break;
4042 if (n == 1)
4044 REG_NOTES (p)
4045 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4046 REG_NOTES (p));
4047 /* Mark this as having an output reload so that the
4048 REG_INC processing code below won't invalidate
4049 the reload for inheritance. */
4050 SET_HARD_REG_BIT (reg_is_output_reload,
4051 REGNO (reload_reg));
4052 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4054 else
4055 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4056 NULL);
4058 else if ((code == PRE_INC || code == PRE_DEC)
4059 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4060 REGNO (rld[i].reg_rtx))
4061 /* Make sure it is the inc/dec pseudo, and not
4062 some other (e.g. output operand) pseudo. */
4063 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4064 == REGNO (XEXP (in_reg, 0))))
4066 SET_HARD_REG_BIT (reg_is_output_reload,
4067 REGNO (rld[i].reg_rtx));
4068 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4072 /* If a pseudo that got a hard register is auto-incremented,
4073 we must purge records of copying it into pseudos without
4074 hard registers. */
4075 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4076 if (REG_NOTE_KIND (x) == REG_INC)
4078 /* See if this pseudo reg was reloaded in this insn.
4079 If so, its last-reload info is still valid
4080 because it is based on this insn's reload. */
4081 for (i = 0; i < n_reloads; i++)
4082 if (rld[i].out == XEXP (x, 0))
4083 break;
4085 if (i == n_reloads)
4086 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4088 #endif
4090 /* A reload reg's contents are unknown after a label. */
4091 if (GET_CODE (insn) == CODE_LABEL)
4092 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4094 /* Don't assume a reload reg is still good after a call insn
4095 if it is a call-used reg. */
4096 else if (GET_CODE (insn) == CALL_INSN)
4097 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4100 /* Clean up. */
4101 free (reg_last_reload_reg);
4102 free (reg_has_output_reload);
4105 /* Discard all record of any value reloaded from X,
4106 or reloaded in X from someplace else;
4107 unless X is an output reload reg of the current insn.
4109 X may be a hard reg (the reload reg)
4110 or it may be a pseudo reg that was reloaded from. */
4112 static void
4113 forget_old_reloads_1 (x, ignored, data)
4114 rtx x;
4115 rtx ignored ATTRIBUTE_UNUSED;
4116 void *data ATTRIBUTE_UNUSED;
4118 unsigned int regno;
4119 unsigned int nr;
4121 /* note_stores does give us subregs of hard regs,
4122 subreg_regno_offset will abort if it is not a hard reg. */
4123 while (GET_CODE (x) == SUBREG)
4125 /* We ignore the subreg offset when calculating the regno,
4126 because we are using the entire underlying hard register
4127 below. */
4128 x = SUBREG_REG (x);
4131 if (GET_CODE (x) != REG)
4132 return;
4134 regno = REGNO (x);
4136 if (regno >= FIRST_PSEUDO_REGISTER)
4137 nr = 1;
4138 else
4140 unsigned int i;
4142 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4143 /* Storing into a spilled-reg invalidates its contents.
4144 This can happen if a block-local pseudo is allocated to that reg
4145 and it wasn't spilled because this block's total need is 0.
4146 Then some insn might have an optional reload and use this reg. */
4147 for (i = 0; i < nr; i++)
4148 /* But don't do this if the reg actually serves as an output
4149 reload reg in the current instruction. */
4150 if (n_reloads == 0
4151 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4153 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4154 spill_reg_store[regno + i] = 0;
4158 /* Since value of X has changed,
4159 forget any value previously copied from it. */
4161 while (nr-- > 0)
4162 /* But don't forget a copy if this is the output reload
4163 that establishes the copy's validity. */
4164 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4165 reg_last_reload_reg[regno + nr] = 0;
4168 /* The following HARD_REG_SETs indicate when each hard register is
4169 used for a reload of various parts of the current insn. */
4171 /* If reg is unavailable for all reloads. */
4172 static HARD_REG_SET reload_reg_unavailable;
4173 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4174 static HARD_REG_SET reload_reg_used;
4175 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4176 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4177 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4178 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4179 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4180 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4181 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4182 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4183 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4184 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4185 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4186 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4187 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4188 static HARD_REG_SET reload_reg_used_in_op_addr;
4189 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4190 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4191 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4192 static HARD_REG_SET reload_reg_used_in_insn;
4193 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4194 static HARD_REG_SET reload_reg_used_in_other_addr;
4196 /* If reg is in use as a reload reg for any sort of reload. */
4197 static HARD_REG_SET reload_reg_used_at_all;
4199 /* If reg is use as an inherited reload. We just mark the first register
4200 in the group. */
4201 static HARD_REG_SET reload_reg_used_for_inherit;
4203 /* Records which hard regs are used in any way, either as explicit use or
4204 by being allocated to a pseudo during any point of the current insn. */
4205 static HARD_REG_SET reg_used_in_insn;
4207 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4208 TYPE. MODE is used to indicate how many consecutive regs are
4209 actually used. */
4211 static void
4212 mark_reload_reg_in_use (regno, opnum, type, mode)
4213 unsigned int regno;
4214 int opnum;
4215 enum reload_type type;
4216 enum machine_mode mode;
4218 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4219 unsigned int i;
4221 for (i = regno; i < nregs + regno; i++)
4223 switch (type)
4225 case RELOAD_OTHER:
4226 SET_HARD_REG_BIT (reload_reg_used, i);
4227 break;
4229 case RELOAD_FOR_INPUT_ADDRESS:
4230 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4231 break;
4233 case RELOAD_FOR_INPADDR_ADDRESS:
4234 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4235 break;
4237 case RELOAD_FOR_OUTPUT_ADDRESS:
4238 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4239 break;
4241 case RELOAD_FOR_OUTADDR_ADDRESS:
4242 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4243 break;
4245 case RELOAD_FOR_OPERAND_ADDRESS:
4246 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4247 break;
4249 case RELOAD_FOR_OPADDR_ADDR:
4250 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4251 break;
4253 case RELOAD_FOR_OTHER_ADDRESS:
4254 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4255 break;
4257 case RELOAD_FOR_INPUT:
4258 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4259 break;
4261 case RELOAD_FOR_OUTPUT:
4262 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4263 break;
4265 case RELOAD_FOR_INSN:
4266 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4267 break;
4270 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4274 /* Similarly, but show REGNO is no longer in use for a reload. */
4276 static void
4277 clear_reload_reg_in_use (regno, opnum, type, mode)
4278 unsigned int regno;
4279 int opnum;
4280 enum reload_type type;
4281 enum machine_mode mode;
4283 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4284 unsigned int start_regno, end_regno, r;
4285 int i;
4286 /* A complication is that for some reload types, inheritance might
4287 allow multiple reloads of the same types to share a reload register.
4288 We set check_opnum if we have to check only reloads with the same
4289 operand number, and check_any if we have to check all reloads. */
4290 int check_opnum = 0;
4291 int check_any = 0;
4292 HARD_REG_SET *used_in_set;
4294 switch (type)
4296 case RELOAD_OTHER:
4297 used_in_set = &reload_reg_used;
4298 break;
4300 case RELOAD_FOR_INPUT_ADDRESS:
4301 used_in_set = &reload_reg_used_in_input_addr[opnum];
4302 break;
4304 case RELOAD_FOR_INPADDR_ADDRESS:
4305 check_opnum = 1;
4306 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4307 break;
4309 case RELOAD_FOR_OUTPUT_ADDRESS:
4310 used_in_set = &reload_reg_used_in_output_addr[opnum];
4311 break;
4313 case RELOAD_FOR_OUTADDR_ADDRESS:
4314 check_opnum = 1;
4315 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4316 break;
4318 case RELOAD_FOR_OPERAND_ADDRESS:
4319 used_in_set = &reload_reg_used_in_op_addr;
4320 break;
4322 case RELOAD_FOR_OPADDR_ADDR:
4323 check_any = 1;
4324 used_in_set = &reload_reg_used_in_op_addr_reload;
4325 break;
4327 case RELOAD_FOR_OTHER_ADDRESS:
4328 used_in_set = &reload_reg_used_in_other_addr;
4329 check_any = 1;
4330 break;
4332 case RELOAD_FOR_INPUT:
4333 used_in_set = &reload_reg_used_in_input[opnum];
4334 break;
4336 case RELOAD_FOR_OUTPUT:
4337 used_in_set = &reload_reg_used_in_output[opnum];
4338 break;
4340 case RELOAD_FOR_INSN:
4341 used_in_set = &reload_reg_used_in_insn;
4342 break;
4343 default:
4344 abort ();
4346 /* We resolve conflicts with remaining reloads of the same type by
4347 excluding the intervals of reload registers by them from the
4348 interval of freed reload registers. Since we only keep track of
4349 one set of interval bounds, we might have to exclude somewhat
4350 more than what would be necessary if we used a HARD_REG_SET here.
4351 But this should only happen very infrequently, so there should
4352 be no reason to worry about it. */
4354 start_regno = regno;
4355 end_regno = regno + nregs;
4356 if (check_opnum || check_any)
4358 for (i = n_reloads - 1; i >= 0; i--)
4360 if (rld[i].when_needed == type
4361 && (check_any || rld[i].opnum == opnum)
4362 && rld[i].reg_rtx)
4364 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4365 unsigned int conflict_end
4366 = (conflict_start
4367 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4369 /* If there is an overlap with the first to-be-freed register,
4370 adjust the interval start. */
4371 if (conflict_start <= start_regno && conflict_end > start_regno)
4372 start_regno = conflict_end;
4373 /* Otherwise, if there is a conflict with one of the other
4374 to-be-freed registers, adjust the interval end. */
4375 if (conflict_start > start_regno && conflict_start < end_regno)
4376 end_regno = conflict_start;
4381 for (r = start_regno; r < end_regno; r++)
4382 CLEAR_HARD_REG_BIT (*used_in_set, r);
4385 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4386 specified by OPNUM and TYPE. */
4388 static int
4389 reload_reg_free_p (regno, opnum, type)
4390 unsigned int regno;
4391 int opnum;
4392 enum reload_type type;
4394 int i;
4396 /* In use for a RELOAD_OTHER means it's not available for anything. */
4397 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4398 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4399 return 0;
4401 switch (type)
4403 case RELOAD_OTHER:
4404 /* In use for anything means we can't use it for RELOAD_OTHER. */
4405 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4406 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4407 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4408 return 0;
4410 for (i = 0; i < reload_n_operands; i++)
4411 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4412 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4413 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4414 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4415 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4416 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4417 return 0;
4419 return 1;
4421 case RELOAD_FOR_INPUT:
4422 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4423 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4424 return 0;
4426 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4427 return 0;
4429 /* If it is used for some other input, can't use it. */
4430 for (i = 0; i < reload_n_operands; i++)
4431 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4432 return 0;
4434 /* If it is used in a later operand's address, can't use it. */
4435 for (i = opnum + 1; i < reload_n_operands; i++)
4436 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4437 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4438 return 0;
4440 return 1;
4442 case RELOAD_FOR_INPUT_ADDRESS:
4443 /* Can't use a register if it is used for an input address for this
4444 operand or used as an input in an earlier one. */
4445 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4446 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4447 return 0;
4449 for (i = 0; i < opnum; i++)
4450 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4451 return 0;
4453 return 1;
4455 case RELOAD_FOR_INPADDR_ADDRESS:
4456 /* Can't use a register if it is used for an input address
4457 for this operand or used as an input in an earlier
4458 one. */
4459 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4460 return 0;
4462 for (i = 0; i < opnum; i++)
4463 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4464 return 0;
4466 return 1;
4468 case RELOAD_FOR_OUTPUT_ADDRESS:
4469 /* Can't use a register if it is used for an output address for this
4470 operand or used as an output in this or a later operand. Note
4471 that multiple output operands are emitted in reverse order, so
4472 the conflicting ones are those with lower indices. */
4473 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4474 return 0;
4476 for (i = 0; i <= opnum; i++)
4477 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4478 return 0;
4480 return 1;
4482 case RELOAD_FOR_OUTADDR_ADDRESS:
4483 /* Can't use a register if it is used for an output address
4484 for this operand or used as an output in this or a
4485 later operand. Note that multiple output operands are
4486 emitted in reverse order, so the conflicting ones are
4487 those with lower indices. */
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4489 return 0;
4491 for (i = 0; i <= opnum; i++)
4492 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4493 return 0;
4495 return 1;
4497 case RELOAD_FOR_OPERAND_ADDRESS:
4498 for (i = 0; i < reload_n_operands; i++)
4499 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4500 return 0;
4502 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4503 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4505 case RELOAD_FOR_OPADDR_ADDR:
4506 for (i = 0; i < reload_n_operands; i++)
4507 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4508 return 0;
4510 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4512 case RELOAD_FOR_OUTPUT:
4513 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4514 outputs, or an operand address for this or an earlier output.
4515 Note that multiple output operands are emitted in reverse order,
4516 so the conflicting ones are those with higher indices. */
4517 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4518 return 0;
4520 for (i = 0; i < reload_n_operands; i++)
4521 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4522 return 0;
4524 for (i = opnum; i < reload_n_operands; i++)
4525 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4526 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4527 return 0;
4529 return 1;
4531 case RELOAD_FOR_INSN:
4532 for (i = 0; i < reload_n_operands; i++)
4533 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4534 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4535 return 0;
4537 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4538 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4540 case RELOAD_FOR_OTHER_ADDRESS:
4541 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4543 abort ();
4546 /* Return 1 if the value in reload reg REGNO, as used by a reload
4547 needed for the part of the insn specified by OPNUM and TYPE,
4548 is still available in REGNO at the end of the insn.
4550 We can assume that the reload reg was already tested for availability
4551 at the time it is needed, and we should not check this again,
4552 in case the reg has already been marked in use. */
4554 static int
4555 reload_reg_reaches_end_p (regno, opnum, type)
4556 unsigned int regno;
4557 int opnum;
4558 enum reload_type type;
4560 int i;
4562 switch (type)
4564 case RELOAD_OTHER:
4565 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4566 its value must reach the end. */
4567 return 1;
4569 /* If this use is for part of the insn,
4570 its value reaches if no subsequent part uses the same register.
4571 Just like the above function, don't try to do this with lots
4572 of fallthroughs. */
4574 case RELOAD_FOR_OTHER_ADDRESS:
4575 /* Here we check for everything else, since these don't conflict
4576 with anything else and everything comes later. */
4578 for (i = 0; i < reload_n_operands; i++)
4579 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4580 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4581 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4582 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4583 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4584 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4585 return 0;
4587 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4588 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4589 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4591 case RELOAD_FOR_INPUT_ADDRESS:
4592 case RELOAD_FOR_INPADDR_ADDRESS:
4593 /* Similar, except that we check only for this and subsequent inputs
4594 and the address of only subsequent inputs and we do not need
4595 to check for RELOAD_OTHER objects since they are known not to
4596 conflict. */
4598 for (i = opnum; i < reload_n_operands; i++)
4599 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4600 return 0;
4602 for (i = opnum + 1; i < reload_n_operands; i++)
4603 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4604 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4605 return 0;
4607 for (i = 0; i < reload_n_operands; i++)
4608 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4609 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4610 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4611 return 0;
4613 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4614 return 0;
4616 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4617 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4618 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4620 case RELOAD_FOR_INPUT:
4621 /* Similar to input address, except we start at the next operand for
4622 both input and input address and we do not check for
4623 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4624 would conflict. */
4626 for (i = opnum + 1; i < reload_n_operands; i++)
4627 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4628 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4629 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4630 return 0;
4632 /* ... fall through ... */
4634 case RELOAD_FOR_OPERAND_ADDRESS:
4635 /* Check outputs and their addresses. */
4637 for (i = 0; i < reload_n_operands; i++)
4638 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4639 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4640 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4641 return 0;
4643 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4645 case RELOAD_FOR_OPADDR_ADDR:
4646 for (i = 0; i < reload_n_operands; i++)
4647 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4648 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4649 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4650 return 0;
4652 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4653 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4654 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4656 case RELOAD_FOR_INSN:
4657 /* These conflict with other outputs with RELOAD_OTHER. So
4658 we need only check for output addresses. */
4660 opnum = reload_n_operands;
4662 /* ... fall through ... */
4664 case RELOAD_FOR_OUTPUT:
4665 case RELOAD_FOR_OUTPUT_ADDRESS:
4666 case RELOAD_FOR_OUTADDR_ADDRESS:
4667 /* We already know these can't conflict with a later output. So the
4668 only thing to check are later output addresses.
4669 Note that multiple output operands are emitted in reverse order,
4670 so the conflicting ones are those with lower indices. */
4671 for (i = 0; i < opnum; i++)
4672 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4673 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4674 return 0;
4676 return 1;
4679 abort ();
4682 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4683 Return 0 otherwise.
4685 This function uses the same algorithm as reload_reg_free_p above. */
4688 reloads_conflict (r1, r2)
4689 int r1, r2;
4691 enum reload_type r1_type = rld[r1].when_needed;
4692 enum reload_type r2_type = rld[r2].when_needed;
4693 int r1_opnum = rld[r1].opnum;
4694 int r2_opnum = rld[r2].opnum;
4696 /* RELOAD_OTHER conflicts with everything. */
4697 if (r2_type == RELOAD_OTHER)
4698 return 1;
4700 /* Otherwise, check conflicts differently for each type. */
4702 switch (r1_type)
4704 case RELOAD_FOR_INPUT:
4705 return (r2_type == RELOAD_FOR_INSN
4706 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4707 || r2_type == RELOAD_FOR_OPADDR_ADDR
4708 || r2_type == RELOAD_FOR_INPUT
4709 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4710 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4711 && r2_opnum > r1_opnum));
4713 case RELOAD_FOR_INPUT_ADDRESS:
4714 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4715 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4717 case RELOAD_FOR_INPADDR_ADDRESS:
4718 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4719 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4721 case RELOAD_FOR_OUTPUT_ADDRESS:
4722 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4723 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4725 case RELOAD_FOR_OUTADDR_ADDRESS:
4726 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4727 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4729 case RELOAD_FOR_OPERAND_ADDRESS:
4730 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4731 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4733 case RELOAD_FOR_OPADDR_ADDR:
4734 return (r2_type == RELOAD_FOR_INPUT
4735 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4737 case RELOAD_FOR_OUTPUT:
4738 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4739 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4740 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4741 && r2_opnum >= r1_opnum));
4743 case RELOAD_FOR_INSN:
4744 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4745 || r2_type == RELOAD_FOR_INSN
4746 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4748 case RELOAD_FOR_OTHER_ADDRESS:
4749 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4751 case RELOAD_OTHER:
4752 return 1;
4754 default:
4755 abort ();
4759 /* Indexed by reload number, 1 if incoming value
4760 inherited from previous insns. */
4761 char reload_inherited[MAX_RELOADS];
4763 /* For an inherited reload, this is the insn the reload was inherited from,
4764 if we know it. Otherwise, this is 0. */
4765 rtx reload_inheritance_insn[MAX_RELOADS];
4767 /* If nonzero, this is a place to get the value of the reload,
4768 rather than using reload_in. */
4769 rtx reload_override_in[MAX_RELOADS];
4771 /* For each reload, the hard register number of the register used,
4772 or -1 if we did not need a register for this reload. */
4773 int reload_spill_index[MAX_RELOADS];
4775 /* Subroutine of free_for_value_p, used to check a single register.
4776 START_REGNO is the starting regno of the full reload register
4777 (possibly comprising multiple hard registers) that we are considering. */
4779 static int
4780 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4781 reloadnum, ignore_address_reloads)
4782 int start_regno, regno;
4783 int opnum;
4784 enum reload_type type;
4785 rtx value, out;
4786 int reloadnum;
4787 int ignore_address_reloads;
4789 int time1;
4790 /* Set if we see an input reload that must not share its reload register
4791 with any new earlyclobber, but might otherwise share the reload
4792 register with an output or input-output reload. */
4793 int check_earlyclobber = 0;
4794 int i;
4795 int copy = 0;
4797 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4798 return 0;
4800 if (out == const0_rtx)
4802 copy = 1;
4803 out = NULL_RTX;
4806 /* We use some pseudo 'time' value to check if the lifetimes of the
4807 new register use would overlap with the one of a previous reload
4808 that is not read-only or uses a different value.
4809 The 'time' used doesn't have to be linear in any shape or form, just
4810 monotonic.
4811 Some reload types use different 'buckets' for each operand.
4812 So there are MAX_RECOG_OPERANDS different time values for each
4813 such reload type.
4814 We compute TIME1 as the time when the register for the prospective
4815 new reload ceases to be live, and TIME2 for each existing
4816 reload as the time when that the reload register of that reload
4817 becomes live.
4818 Where there is little to be gained by exact lifetime calculations,
4819 we just make conservative assumptions, i.e. a longer lifetime;
4820 this is done in the 'default:' cases. */
4821 switch (type)
4823 case RELOAD_FOR_OTHER_ADDRESS:
4824 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4825 time1 = copy ? 0 : 1;
4826 break;
4827 case RELOAD_OTHER:
4828 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4829 break;
4830 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4831 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4832 respectively, to the time values for these, we get distinct time
4833 values. To get distinct time values for each operand, we have to
4834 multiply opnum by at least three. We round that up to four because
4835 multiply by four is often cheaper. */
4836 case RELOAD_FOR_INPADDR_ADDRESS:
4837 time1 = opnum * 4 + 2;
4838 break;
4839 case RELOAD_FOR_INPUT_ADDRESS:
4840 time1 = opnum * 4 + 3;
4841 break;
4842 case RELOAD_FOR_INPUT:
4843 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4844 executes (inclusive). */
4845 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4846 break;
4847 case RELOAD_FOR_OPADDR_ADDR:
4848 /* opnum * 4 + 4
4849 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4850 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4851 break;
4852 case RELOAD_FOR_OPERAND_ADDRESS:
4853 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4854 is executed. */
4855 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4856 break;
4857 case RELOAD_FOR_OUTADDR_ADDRESS:
4858 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4859 break;
4860 case RELOAD_FOR_OUTPUT_ADDRESS:
4861 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4862 break;
4863 default:
4864 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4867 for (i = 0; i < n_reloads; i++)
4869 rtx reg = rld[i].reg_rtx;
4870 if (reg && GET_CODE (reg) == REG
4871 && ((unsigned) regno - true_regnum (reg)
4872 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4873 && i != reloadnum)
4875 rtx other_input = rld[i].in;
4877 /* If the other reload loads the same input value, that
4878 will not cause a conflict only if it's loading it into
4879 the same register. */
4880 if (true_regnum (reg) != start_regno)
4881 other_input = NULL_RTX;
4882 if (! other_input || ! rtx_equal_p (other_input, value)
4883 || rld[i].out || out)
4885 int time2;
4886 switch (rld[i].when_needed)
4888 case RELOAD_FOR_OTHER_ADDRESS:
4889 time2 = 0;
4890 break;
4891 case RELOAD_FOR_INPADDR_ADDRESS:
4892 /* find_reloads makes sure that a
4893 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4894 by at most one - the first -
4895 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4896 address reload is inherited, the address address reload
4897 goes away, so we can ignore this conflict. */
4898 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4899 && ignore_address_reloads
4900 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4901 Then the address address is still needed to store
4902 back the new address. */
4903 && ! rld[reloadnum].out)
4904 continue;
4905 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4906 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4907 reloads go away. */
4908 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4909 && ignore_address_reloads
4910 /* Unless we are reloading an auto_inc expression. */
4911 && ! rld[reloadnum].out)
4912 continue;
4913 time2 = rld[i].opnum * 4 + 2;
4914 break;
4915 case RELOAD_FOR_INPUT_ADDRESS:
4916 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4917 && ignore_address_reloads
4918 && ! rld[reloadnum].out)
4919 continue;
4920 time2 = rld[i].opnum * 4 + 3;
4921 break;
4922 case RELOAD_FOR_INPUT:
4923 time2 = rld[i].opnum * 4 + 4;
4924 check_earlyclobber = 1;
4925 break;
4926 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4927 == MAX_RECOG_OPERAND * 4 */
4928 case RELOAD_FOR_OPADDR_ADDR:
4929 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4930 && ignore_address_reloads
4931 && ! rld[reloadnum].out)
4932 continue;
4933 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4934 break;
4935 case RELOAD_FOR_OPERAND_ADDRESS:
4936 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4937 check_earlyclobber = 1;
4938 break;
4939 case RELOAD_FOR_INSN:
4940 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4941 break;
4942 case RELOAD_FOR_OUTPUT:
4943 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4944 instruction is executed. */
4945 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4946 break;
4947 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4948 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4949 value. */
4950 case RELOAD_FOR_OUTADDR_ADDRESS:
4951 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4952 && ignore_address_reloads
4953 && ! rld[reloadnum].out)
4954 continue;
4955 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4956 break;
4957 case RELOAD_FOR_OUTPUT_ADDRESS:
4958 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4959 break;
4960 case RELOAD_OTHER:
4961 /* If there is no conflict in the input part, handle this
4962 like an output reload. */
4963 if (! rld[i].in || rtx_equal_p (other_input, value))
4965 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4966 /* Earlyclobbered outputs must conflict with inputs. */
4967 if (earlyclobber_operand_p (rld[i].out))
4968 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4970 break;
4972 time2 = 1;
4973 /* RELOAD_OTHER might be live beyond instruction execution,
4974 but this is not obvious when we set time2 = 1. So check
4975 here if there might be a problem with the new reload
4976 clobbering the register used by the RELOAD_OTHER. */
4977 if (out)
4978 return 0;
4979 break;
4980 default:
4981 return 0;
4983 if ((time1 >= time2
4984 && (! rld[i].in || rld[i].out
4985 || ! rtx_equal_p (other_input, value)))
4986 || (out && rld[reloadnum].out_reg
4987 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4988 return 0;
4993 /* Earlyclobbered outputs must conflict with inputs. */
4994 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4995 return 0;
4997 return 1;
5000 /* Return 1 if the value in reload reg REGNO, as used by a reload
5001 needed for the part of the insn specified by OPNUM and TYPE,
5002 may be used to load VALUE into it.
5004 MODE is the mode in which the register is used, this is needed to
5005 determine how many hard regs to test.
5007 Other read-only reloads with the same value do not conflict
5008 unless OUT is nonzero and these other reloads have to live while
5009 output reloads live.
5010 If OUT is CONST0_RTX, this is a special case: it means that the
5011 test should not be for using register REGNO as reload register, but
5012 for copying from register REGNO into the reload register.
5014 RELOADNUM is the number of the reload we want to load this value for;
5015 a reload does not conflict with itself.
5017 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5018 reloads that load an address for the very reload we are considering.
5020 The caller has to make sure that there is no conflict with the return
5021 register. */
5023 static int
5024 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
5025 ignore_address_reloads)
5026 int regno;
5027 enum machine_mode mode;
5028 int opnum;
5029 enum reload_type type;
5030 rtx value, out;
5031 int reloadnum;
5032 int ignore_address_reloads;
5034 int nregs = HARD_REGNO_NREGS (regno, mode);
5035 while (nregs-- > 0)
5036 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5037 value, out, reloadnum,
5038 ignore_address_reloads))
5039 return 0;
5040 return 1;
5043 /* Determine whether the reload reg X overlaps any rtx'es used for
5044 overriding inheritance. Return nonzero if so. */
5046 static int
5047 conflicts_with_override (x)
5048 rtx x;
5050 int i;
5051 for (i = 0; i < n_reloads; i++)
5052 if (reload_override_in[i]
5053 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5054 return 1;
5055 return 0;
5058 /* Give an error message saying we failed to find a reload for INSN,
5059 and clear out reload R. */
5060 static void
5061 failed_reload (insn, r)
5062 rtx insn;
5063 int r;
5065 if (asm_noperands (PATTERN (insn)) < 0)
5066 /* It's the compiler's fault. */
5067 fatal_insn ("could not find a spill register", insn);
5069 /* It's the user's fault; the operand's mode and constraint
5070 don't match. Disable this reload so we don't crash in final. */
5071 error_for_asm (insn,
5072 "`asm' operand constraint incompatible with operand size");
5073 rld[r].in = 0;
5074 rld[r].out = 0;
5075 rld[r].reg_rtx = 0;
5076 rld[r].optional = 1;
5077 rld[r].secondary_p = 1;
5080 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5081 for reload R. If it's valid, get an rtx for it. Return nonzero if
5082 successful. */
5083 static int
5084 set_reload_reg (i, r)
5085 int i, r;
5087 int regno;
5088 rtx reg = spill_reg_rtx[i];
5090 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5091 spill_reg_rtx[i] = reg
5092 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5094 regno = true_regnum (reg);
5096 /* Detect when the reload reg can't hold the reload mode.
5097 This used to be one `if', but Sequent compiler can't handle that. */
5098 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5100 enum machine_mode test_mode = VOIDmode;
5101 if (rld[r].in)
5102 test_mode = GET_MODE (rld[r].in);
5103 /* If rld[r].in has VOIDmode, it means we will load it
5104 in whatever mode the reload reg has: to wit, rld[r].mode.
5105 We have already tested that for validity. */
5106 /* Aside from that, we need to test that the expressions
5107 to reload from or into have modes which are valid for this
5108 reload register. Otherwise the reload insns would be invalid. */
5109 if (! (rld[r].in != 0 && test_mode != VOIDmode
5110 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5111 if (! (rld[r].out != 0
5112 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5114 /* The reg is OK. */
5115 last_spill_reg = i;
5117 /* Mark as in use for this insn the reload regs we use
5118 for this. */
5119 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5120 rld[r].when_needed, rld[r].mode);
5122 rld[r].reg_rtx = reg;
5123 reload_spill_index[r] = spill_regs[i];
5124 return 1;
5127 return 0;
5130 /* Find a spill register to use as a reload register for reload R.
5131 LAST_RELOAD is nonzero if this is the last reload for the insn being
5132 processed.
5134 Set rld[R].reg_rtx to the register allocated.
5136 We return 1 if successful, or 0 if we couldn't find a spill reg and
5137 we didn't change anything. */
5139 static int
5140 allocate_reload_reg (chain, r, last_reload)
5141 struct insn_chain *chain ATTRIBUTE_UNUSED;
5142 int r;
5143 int last_reload;
5145 int i, pass, count;
5147 /* If we put this reload ahead, thinking it is a group,
5148 then insist on finding a group. Otherwise we can grab a
5149 reg that some other reload needs.
5150 (That can happen when we have a 68000 DATA_OR_FP_REG
5151 which is a group of data regs or one fp reg.)
5152 We need not be so restrictive if there are no more reloads
5153 for this insn.
5155 ??? Really it would be nicer to have smarter handling
5156 for that kind of reg class, where a problem like this is normal.
5157 Perhaps those classes should be avoided for reloading
5158 by use of more alternatives. */
5160 int force_group = rld[r].nregs > 1 && ! last_reload;
5162 /* If we want a single register and haven't yet found one,
5163 take any reg in the right class and not in use.
5164 If we want a consecutive group, here is where we look for it.
5166 We use two passes so we can first look for reload regs to
5167 reuse, which are already in use for other reloads in this insn,
5168 and only then use additional registers.
5169 I think that maximizing reuse is needed to make sure we don't
5170 run out of reload regs. Suppose we have three reloads, and
5171 reloads A and B can share regs. These need two regs.
5172 Suppose A and B are given different regs.
5173 That leaves none for C. */
5174 for (pass = 0; pass < 2; pass++)
5176 /* I is the index in spill_regs.
5177 We advance it round-robin between insns to use all spill regs
5178 equally, so that inherited reloads have a chance
5179 of leapfrogging each other. */
5181 i = last_spill_reg;
5183 for (count = 0; count < n_spills; count++)
5185 int class = (int) rld[r].class;
5186 int regnum;
5188 i++;
5189 if (i >= n_spills)
5190 i -= n_spills;
5191 regnum = spill_regs[i];
5193 if ((reload_reg_free_p (regnum, rld[r].opnum,
5194 rld[r].when_needed)
5195 || (rld[r].in
5196 /* We check reload_reg_used to make sure we
5197 don't clobber the return register. */
5198 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5199 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5200 rld[r].when_needed, rld[r].in,
5201 rld[r].out, r, 1)))
5202 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5203 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5204 /* Look first for regs to share, then for unshared. But
5205 don't share regs used for inherited reloads; they are
5206 the ones we want to preserve. */
5207 && (pass
5208 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5209 regnum)
5210 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5211 regnum))))
5213 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5214 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5215 (on 68000) got us two FP regs. If NR is 1,
5216 we would reject both of them. */
5217 if (force_group)
5218 nr = rld[r].nregs;
5219 /* If we need only one reg, we have already won. */
5220 if (nr == 1)
5222 /* But reject a single reg if we demand a group. */
5223 if (force_group)
5224 continue;
5225 break;
5227 /* Otherwise check that as many consecutive regs as we need
5228 are available here. */
5229 while (nr > 1)
5231 int regno = regnum + nr - 1;
5232 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5233 && spill_reg_order[regno] >= 0
5234 && reload_reg_free_p (regno, rld[r].opnum,
5235 rld[r].when_needed)))
5236 break;
5237 nr--;
5239 if (nr == 1)
5240 break;
5244 /* If we found something on pass 1, omit pass 2. */
5245 if (count < n_spills)
5246 break;
5249 /* We should have found a spill register by now. */
5250 if (count >= n_spills)
5251 return 0;
5253 /* I is the index in SPILL_REG_RTX of the reload register we are to
5254 allocate. Get an rtx for it and find its register number. */
5256 return set_reload_reg (i, r);
5259 /* Initialize all the tables needed to allocate reload registers.
5260 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5261 is the array we use to restore the reg_rtx field for every reload. */
5263 static void
5264 choose_reload_regs_init (chain, save_reload_reg_rtx)
5265 struct insn_chain *chain;
5266 rtx *save_reload_reg_rtx;
5268 int i;
5270 for (i = 0; i < n_reloads; i++)
5271 rld[i].reg_rtx = save_reload_reg_rtx[i];
5273 memset (reload_inherited, 0, MAX_RELOADS);
5274 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5275 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5277 CLEAR_HARD_REG_SET (reload_reg_used);
5278 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5279 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5280 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5281 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5282 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5284 CLEAR_HARD_REG_SET (reg_used_in_insn);
5286 HARD_REG_SET tmp;
5287 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5288 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5289 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5290 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5291 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5292 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5295 for (i = 0; i < reload_n_operands; i++)
5297 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5298 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5299 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5300 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5301 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5302 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5305 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5307 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5309 for (i = 0; i < n_reloads; i++)
5310 /* If we have already decided to use a certain register,
5311 don't use it in another way. */
5312 if (rld[i].reg_rtx)
5313 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5314 rld[i].when_needed, rld[i].mode);
5317 /* Assign hard reg targets for the pseudo-registers we must reload
5318 into hard regs for this insn.
5319 Also output the instructions to copy them in and out of the hard regs.
5321 For machines with register classes, we are responsible for
5322 finding a reload reg in the proper class. */
5324 static void
5325 choose_reload_regs (chain)
5326 struct insn_chain *chain;
5328 rtx insn = chain->insn;
5329 int i, j;
5330 unsigned int max_group_size = 1;
5331 enum reg_class group_class = NO_REGS;
5332 int pass, win, inheritance;
5334 rtx save_reload_reg_rtx[MAX_RELOADS];
5336 /* In order to be certain of getting the registers we need,
5337 we must sort the reloads into order of increasing register class.
5338 Then our grabbing of reload registers will parallel the process
5339 that provided the reload registers.
5341 Also note whether any of the reloads wants a consecutive group of regs.
5342 If so, record the maximum size of the group desired and what
5343 register class contains all the groups needed by this insn. */
5345 for (j = 0; j < n_reloads; j++)
5347 reload_order[j] = j;
5348 reload_spill_index[j] = -1;
5350 if (rld[j].nregs > 1)
5352 max_group_size = MAX (rld[j].nregs, max_group_size);
5353 group_class
5354 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5357 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5360 if (n_reloads > 1)
5361 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5363 /* If -O, try first with inheritance, then turning it off.
5364 If not -O, don't do inheritance.
5365 Using inheritance when not optimizing leads to paradoxes
5366 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5367 because one side of the comparison might be inherited. */
5368 win = 0;
5369 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5371 choose_reload_regs_init (chain, save_reload_reg_rtx);
5373 /* Process the reloads in order of preference just found.
5374 Beyond this point, subregs can be found in reload_reg_rtx.
5376 This used to look for an existing reloaded home for all of the
5377 reloads, and only then perform any new reloads. But that could lose
5378 if the reloads were done out of reg-class order because a later
5379 reload with a looser constraint might have an old home in a register
5380 needed by an earlier reload with a tighter constraint.
5382 To solve this, we make two passes over the reloads, in the order
5383 described above. In the first pass we try to inherit a reload
5384 from a previous insn. If there is a later reload that needs a
5385 class that is a proper subset of the class being processed, we must
5386 also allocate a spill register during the first pass.
5388 Then make a second pass over the reloads to allocate any reloads
5389 that haven't been given registers yet. */
5391 for (j = 0; j < n_reloads; j++)
5393 int r = reload_order[j];
5394 rtx search_equiv = NULL_RTX;
5396 /* Ignore reloads that got marked inoperative. */
5397 if (rld[r].out == 0 && rld[r].in == 0
5398 && ! rld[r].secondary_p)
5399 continue;
5401 /* If find_reloads chose to use reload_in or reload_out as a reload
5402 register, we don't need to chose one. Otherwise, try even if it
5403 found one since we might save an insn if we find the value lying
5404 around.
5405 Try also when reload_in is a pseudo without a hard reg. */
5406 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5407 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5408 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5409 && GET_CODE (rld[r].in) != MEM
5410 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5411 continue;
5413 #if 0 /* No longer needed for correct operation.
5414 It might give better code, or might not; worth an experiment? */
5415 /* If this is an optional reload, we can't inherit from earlier insns
5416 until we are sure that any non-optional reloads have been allocated.
5417 The following code takes advantage of the fact that optional reloads
5418 are at the end of reload_order. */
5419 if (rld[r].optional != 0)
5420 for (i = 0; i < j; i++)
5421 if ((rld[reload_order[i]].out != 0
5422 || rld[reload_order[i]].in != 0
5423 || rld[reload_order[i]].secondary_p)
5424 && ! rld[reload_order[i]].optional
5425 && rld[reload_order[i]].reg_rtx == 0)
5426 allocate_reload_reg (chain, reload_order[i], 0);
5427 #endif
5429 /* First see if this pseudo is already available as reloaded
5430 for a previous insn. We cannot try to inherit for reloads
5431 that are smaller than the maximum number of registers needed
5432 for groups unless the register we would allocate cannot be used
5433 for the groups.
5435 We could check here to see if this is a secondary reload for
5436 an object that is already in a register of the desired class.
5437 This would avoid the need for the secondary reload register.
5438 But this is complex because we can't easily determine what
5439 objects might want to be loaded via this reload. So let a
5440 register be allocated here. In `emit_reload_insns' we suppress
5441 one of the loads in the case described above. */
5443 if (inheritance)
5445 int byte = 0;
5446 int regno = -1;
5447 enum machine_mode mode = VOIDmode;
5449 if (rld[r].in == 0)
5451 else if (GET_CODE (rld[r].in) == REG)
5453 regno = REGNO (rld[r].in);
5454 mode = GET_MODE (rld[r].in);
5456 else if (GET_CODE (rld[r].in_reg) == REG)
5458 regno = REGNO (rld[r].in_reg);
5459 mode = GET_MODE (rld[r].in_reg);
5461 else if (GET_CODE (rld[r].in_reg) == SUBREG
5462 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5464 byte = SUBREG_BYTE (rld[r].in_reg);
5465 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5466 if (regno < FIRST_PSEUDO_REGISTER)
5467 regno = subreg_regno (rld[r].in_reg);
5468 mode = GET_MODE (rld[r].in_reg);
5470 #ifdef AUTO_INC_DEC
5471 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5472 || GET_CODE (rld[r].in_reg) == PRE_DEC
5473 || GET_CODE (rld[r].in_reg) == POST_INC
5474 || GET_CODE (rld[r].in_reg) == POST_DEC)
5475 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5477 regno = REGNO (XEXP (rld[r].in_reg, 0));
5478 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5479 rld[r].out = rld[r].in;
5481 #endif
5482 #if 0
5483 /* This won't work, since REGNO can be a pseudo reg number.
5484 Also, it takes much more hair to keep track of all the things
5485 that can invalidate an inherited reload of part of a pseudoreg. */
5486 else if (GET_CODE (rld[r].in) == SUBREG
5487 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5488 regno = subreg_regno (rld[r].in);
5489 #endif
5491 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5493 enum reg_class class = rld[r].class, last_class;
5494 rtx last_reg = reg_last_reload_reg[regno];
5495 enum machine_mode need_mode;
5497 i = REGNO (last_reg);
5498 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5499 last_class = REGNO_REG_CLASS (i);
5501 if (byte == 0)
5502 need_mode = mode;
5503 else
5504 need_mode
5505 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5506 GET_MODE_CLASS (mode));
5508 if (
5509 #ifdef CANNOT_CHANGE_MODE_CLASS
5510 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5511 need_mode)
5513 #endif
5514 (GET_MODE_SIZE (GET_MODE (last_reg))
5515 >= GET_MODE_SIZE (need_mode))
5516 #ifdef CANNOT_CHANGE_MODE_CLASS
5518 #endif
5519 && reg_reloaded_contents[i] == regno
5520 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5521 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5522 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5523 /* Even if we can't use this register as a reload
5524 register, we might use it for reload_override_in,
5525 if copying it to the desired class is cheap
5526 enough. */
5527 || ((REGISTER_MOVE_COST (mode, last_class, class)
5528 < MEMORY_MOVE_COST (mode, class, 1))
5529 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5530 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5531 last_reg)
5532 == NO_REGS)
5533 #endif
5534 #ifdef SECONDARY_MEMORY_NEEDED
5535 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5536 mode)
5537 #endif
5540 && (rld[r].nregs == max_group_size
5541 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5543 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5544 rld[r].when_needed, rld[r].in,
5545 const0_rtx, r, 1))
5547 /* If a group is needed, verify that all the subsequent
5548 registers still have their values intact. */
5549 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5550 int k;
5552 for (k = 1; k < nr; k++)
5553 if (reg_reloaded_contents[i + k] != regno
5554 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5555 break;
5557 if (k == nr)
5559 int i1;
5560 int bad_for_class;
5562 last_reg = (GET_MODE (last_reg) == mode
5563 ? last_reg : gen_rtx_REG (mode, i));
5565 bad_for_class = 0;
5566 for (k = 0; k < nr; k++)
5567 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5568 i+k);
5570 /* We found a register that contains the
5571 value we need. If this register is the
5572 same as an `earlyclobber' operand of the
5573 current insn, just mark it as a place to
5574 reload from since we can't use it as the
5575 reload register itself. */
5577 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5578 if (reg_overlap_mentioned_for_reload_p
5579 (reg_last_reload_reg[regno],
5580 reload_earlyclobbers[i1]))
5581 break;
5583 if (i1 != n_earlyclobbers
5584 || ! (free_for_value_p (i, rld[r].mode,
5585 rld[r].opnum,
5586 rld[r].when_needed, rld[r].in,
5587 rld[r].out, r, 1))
5588 /* Don't use it if we'd clobber a pseudo reg. */
5589 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5590 && rld[r].out
5591 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5592 /* Don't clobber the frame pointer. */
5593 || (i == HARD_FRAME_POINTER_REGNUM
5594 && frame_pointer_needed
5595 && rld[r].out)
5596 /* Don't really use the inherited spill reg
5597 if we need it wider than we've got it. */
5598 || (GET_MODE_SIZE (rld[r].mode)
5599 > GET_MODE_SIZE (mode))
5600 || bad_for_class
5602 /* If find_reloads chose reload_out as reload
5603 register, stay with it - that leaves the
5604 inherited register for subsequent reloads. */
5605 || (rld[r].out && rld[r].reg_rtx
5606 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5608 if (! rld[r].optional)
5610 reload_override_in[r] = last_reg;
5611 reload_inheritance_insn[r]
5612 = reg_reloaded_insn[i];
5615 else
5617 int k;
5618 /* We can use this as a reload reg. */
5619 /* Mark the register as in use for this part of
5620 the insn. */
5621 mark_reload_reg_in_use (i,
5622 rld[r].opnum,
5623 rld[r].when_needed,
5624 rld[r].mode);
5625 rld[r].reg_rtx = last_reg;
5626 reload_inherited[r] = 1;
5627 reload_inheritance_insn[r]
5628 = reg_reloaded_insn[i];
5629 reload_spill_index[r] = i;
5630 for (k = 0; k < nr; k++)
5631 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5632 i + k);
5639 /* Here's another way to see if the value is already lying around. */
5640 if (inheritance
5641 && rld[r].in != 0
5642 && ! reload_inherited[r]
5643 && rld[r].out == 0
5644 && (CONSTANT_P (rld[r].in)
5645 || GET_CODE (rld[r].in) == PLUS
5646 || GET_CODE (rld[r].in) == REG
5647 || GET_CODE (rld[r].in) == MEM)
5648 && (rld[r].nregs == max_group_size
5649 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5650 search_equiv = rld[r].in;
5651 /* If this is an output reload from a simple move insn, look
5652 if an equivalence for the input is available. */
5653 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5655 rtx set = single_set (insn);
5657 if (set
5658 && rtx_equal_p (rld[r].out, SET_DEST (set))
5659 && CONSTANT_P (SET_SRC (set)))
5660 search_equiv = SET_SRC (set);
5663 if (search_equiv)
5665 rtx equiv
5666 = find_equiv_reg (search_equiv, insn, rld[r].class,
5667 -1, NULL, 0, rld[r].mode);
5668 int regno = 0;
5670 if (equiv != 0)
5672 if (GET_CODE (equiv) == REG)
5673 regno = REGNO (equiv);
5674 else if (GET_CODE (equiv) == SUBREG)
5676 /* This must be a SUBREG of a hard register.
5677 Make a new REG since this might be used in an
5678 address and not all machines support SUBREGs
5679 there. */
5680 regno = subreg_regno (equiv);
5681 equiv = gen_rtx_REG (rld[r].mode, regno);
5683 else
5684 abort ();
5687 /* If we found a spill reg, reject it unless it is free
5688 and of the desired class. */
5689 if (equiv != 0
5690 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5691 && ! free_for_value_p (regno, rld[r].mode,
5692 rld[r].opnum, rld[r].when_needed,
5693 rld[r].in, rld[r].out, r, 1))
5694 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5695 regno)))
5696 equiv = 0;
5698 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5699 equiv = 0;
5701 /* We found a register that contains the value we need.
5702 If this register is the same as an `earlyclobber' operand
5703 of the current insn, just mark it as a place to reload from
5704 since we can't use it as the reload register itself. */
5706 if (equiv != 0)
5707 for (i = 0; i < n_earlyclobbers; i++)
5708 if (reg_overlap_mentioned_for_reload_p (equiv,
5709 reload_earlyclobbers[i]))
5711 if (! rld[r].optional)
5712 reload_override_in[r] = equiv;
5713 equiv = 0;
5714 break;
5717 /* If the equiv register we have found is explicitly clobbered
5718 in the current insn, it depends on the reload type if we
5719 can use it, use it for reload_override_in, or not at all.
5720 In particular, we then can't use EQUIV for a
5721 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5723 if (equiv != 0)
5725 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5726 switch (rld[r].when_needed)
5728 case RELOAD_FOR_OTHER_ADDRESS:
5729 case RELOAD_FOR_INPADDR_ADDRESS:
5730 case RELOAD_FOR_INPUT_ADDRESS:
5731 case RELOAD_FOR_OPADDR_ADDR:
5732 break;
5733 case RELOAD_OTHER:
5734 case RELOAD_FOR_INPUT:
5735 case RELOAD_FOR_OPERAND_ADDRESS:
5736 if (! rld[r].optional)
5737 reload_override_in[r] = equiv;
5738 /* Fall through. */
5739 default:
5740 equiv = 0;
5741 break;
5743 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5744 switch (rld[r].when_needed)
5746 case RELOAD_FOR_OTHER_ADDRESS:
5747 case RELOAD_FOR_INPADDR_ADDRESS:
5748 case RELOAD_FOR_INPUT_ADDRESS:
5749 case RELOAD_FOR_OPADDR_ADDR:
5750 case RELOAD_FOR_OPERAND_ADDRESS:
5751 case RELOAD_FOR_INPUT:
5752 break;
5753 case RELOAD_OTHER:
5754 if (! rld[r].optional)
5755 reload_override_in[r] = equiv;
5756 /* Fall through. */
5757 default:
5758 equiv = 0;
5759 break;
5763 /* If we found an equivalent reg, say no code need be generated
5764 to load it, and use it as our reload reg. */
5765 if (equiv != 0
5766 && (regno != HARD_FRAME_POINTER_REGNUM
5767 || !frame_pointer_needed))
5769 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5770 int k;
5771 rld[r].reg_rtx = equiv;
5772 reload_inherited[r] = 1;
5774 /* If reg_reloaded_valid is not set for this register,
5775 there might be a stale spill_reg_store lying around.
5776 We must clear it, since otherwise emit_reload_insns
5777 might delete the store. */
5778 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5779 spill_reg_store[regno] = NULL_RTX;
5780 /* If any of the hard registers in EQUIV are spill
5781 registers, mark them as in use for this insn. */
5782 for (k = 0; k < nr; k++)
5784 i = spill_reg_order[regno + k];
5785 if (i >= 0)
5787 mark_reload_reg_in_use (regno, rld[r].opnum,
5788 rld[r].when_needed,
5789 rld[r].mode);
5790 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5791 regno + k);
5797 /* If we found a register to use already, or if this is an optional
5798 reload, we are done. */
5799 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5800 continue;
5802 #if 0
5803 /* No longer needed for correct operation. Might or might
5804 not give better code on the average. Want to experiment? */
5806 /* See if there is a later reload that has a class different from our
5807 class that intersects our class or that requires less register
5808 than our reload. If so, we must allocate a register to this
5809 reload now, since that reload might inherit a previous reload
5810 and take the only available register in our class. Don't do this
5811 for optional reloads since they will force all previous reloads
5812 to be allocated. Also don't do this for reloads that have been
5813 turned off. */
5815 for (i = j + 1; i < n_reloads; i++)
5817 int s = reload_order[i];
5819 if ((rld[s].in == 0 && rld[s].out == 0
5820 && ! rld[s].secondary_p)
5821 || rld[s].optional)
5822 continue;
5824 if ((rld[s].class != rld[r].class
5825 && reg_classes_intersect_p (rld[r].class,
5826 rld[s].class))
5827 || rld[s].nregs < rld[r].nregs)
5828 break;
5831 if (i == n_reloads)
5832 continue;
5834 allocate_reload_reg (chain, r, j == n_reloads - 1);
5835 #endif
5838 /* Now allocate reload registers for anything non-optional that
5839 didn't get one yet. */
5840 for (j = 0; j < n_reloads; j++)
5842 int r = reload_order[j];
5844 /* Ignore reloads that got marked inoperative. */
5845 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5846 continue;
5848 /* Skip reloads that already have a register allocated or are
5849 optional. */
5850 if (rld[r].reg_rtx != 0 || rld[r].optional)
5851 continue;
5853 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5854 break;
5857 /* If that loop got all the way, we have won. */
5858 if (j == n_reloads)
5860 win = 1;
5861 break;
5864 /* Loop around and try without any inheritance. */
5867 if (! win)
5869 /* First undo everything done by the failed attempt
5870 to allocate with inheritance. */
5871 choose_reload_regs_init (chain, save_reload_reg_rtx);
5873 /* Some sanity tests to verify that the reloads found in the first
5874 pass are identical to the ones we have now. */
5875 if (chain->n_reloads != n_reloads)
5876 abort ();
5878 for (i = 0; i < n_reloads; i++)
5880 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5881 continue;
5882 if (chain->rld[i].when_needed != rld[i].when_needed)
5883 abort ();
5884 for (j = 0; j < n_spills; j++)
5885 if (spill_regs[j] == chain->rld[i].regno)
5886 if (! set_reload_reg (j, i))
5887 failed_reload (chain->insn, i);
5891 /* If we thought we could inherit a reload, because it seemed that
5892 nothing else wanted the same reload register earlier in the insn,
5893 verify that assumption, now that all reloads have been assigned.
5894 Likewise for reloads where reload_override_in has been set. */
5896 /* If doing expensive optimizations, do one preliminary pass that doesn't
5897 cancel any inheritance, but removes reloads that have been needed only
5898 for reloads that we know can be inherited. */
5899 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5901 for (j = 0; j < n_reloads; j++)
5903 int r = reload_order[j];
5904 rtx check_reg;
5905 if (reload_inherited[r] && rld[r].reg_rtx)
5906 check_reg = rld[r].reg_rtx;
5907 else if (reload_override_in[r]
5908 && (GET_CODE (reload_override_in[r]) == REG
5909 || GET_CODE (reload_override_in[r]) == SUBREG))
5910 check_reg = reload_override_in[r];
5911 else
5912 continue;
5913 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5914 rld[r].opnum, rld[r].when_needed, rld[r].in,
5915 (reload_inherited[r]
5916 ? rld[r].out : const0_rtx),
5917 r, 1))
5919 if (pass)
5920 continue;
5921 reload_inherited[r] = 0;
5922 reload_override_in[r] = 0;
5924 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5925 reload_override_in, then we do not need its related
5926 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5927 likewise for other reload types.
5928 We handle this by removing a reload when its only replacement
5929 is mentioned in reload_in of the reload we are going to inherit.
5930 A special case are auto_inc expressions; even if the input is
5931 inherited, we still need the address for the output. We can
5932 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5933 If we succeeded removing some reload and we are doing a preliminary
5934 pass just to remove such reloads, make another pass, since the
5935 removal of one reload might allow us to inherit another one. */
5936 else if (rld[r].in
5937 && rld[r].out != rld[r].in
5938 && remove_address_replacements (rld[r].in) && pass)
5939 pass = 2;
5943 /* Now that reload_override_in is known valid,
5944 actually override reload_in. */
5945 for (j = 0; j < n_reloads; j++)
5946 if (reload_override_in[j])
5947 rld[j].in = reload_override_in[j];
5949 /* If this reload won't be done because it has been canceled or is
5950 optional and not inherited, clear reload_reg_rtx so other
5951 routines (such as subst_reloads) don't get confused. */
5952 for (j = 0; j < n_reloads; j++)
5953 if (rld[j].reg_rtx != 0
5954 && ((rld[j].optional && ! reload_inherited[j])
5955 || (rld[j].in == 0 && rld[j].out == 0
5956 && ! rld[j].secondary_p)))
5958 int regno = true_regnum (rld[j].reg_rtx);
5960 if (spill_reg_order[regno] >= 0)
5961 clear_reload_reg_in_use (regno, rld[j].opnum,
5962 rld[j].when_needed, rld[j].mode);
5963 rld[j].reg_rtx = 0;
5964 reload_spill_index[j] = -1;
5967 /* Record which pseudos and which spill regs have output reloads. */
5968 for (j = 0; j < n_reloads; j++)
5970 int r = reload_order[j];
5972 i = reload_spill_index[r];
5974 /* I is nonneg if this reload uses a register.
5975 If rld[r].reg_rtx is 0, this is an optional reload
5976 that we opted to ignore. */
5977 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5978 && rld[r].reg_rtx != 0)
5980 int nregno = REGNO (rld[r].out_reg);
5981 int nr = 1;
5983 if (nregno < FIRST_PSEUDO_REGISTER)
5984 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5986 while (--nr >= 0)
5987 reg_has_output_reload[nregno + nr] = 1;
5989 if (i >= 0)
5991 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5992 while (--nr >= 0)
5993 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5996 if (rld[r].when_needed != RELOAD_OTHER
5997 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5998 && rld[r].when_needed != RELOAD_FOR_INSN)
5999 abort ();
6004 /* Deallocate the reload register for reload R. This is called from
6005 remove_address_replacements. */
6007 void
6008 deallocate_reload_reg (r)
6009 int r;
6011 int regno;
6013 if (! rld[r].reg_rtx)
6014 return;
6015 regno = true_regnum (rld[r].reg_rtx);
6016 rld[r].reg_rtx = 0;
6017 if (spill_reg_order[regno] >= 0)
6018 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6019 rld[r].mode);
6020 reload_spill_index[r] = -1;
6023 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6024 reloads of the same item for fear that we might not have enough reload
6025 registers. However, normally they will get the same reload register
6026 and hence actually need not be loaded twice.
6028 Here we check for the most common case of this phenomenon: when we have
6029 a number of reloads for the same object, each of which were allocated
6030 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6031 reload, and is not modified in the insn itself. If we find such,
6032 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6033 This will not increase the number of spill registers needed and will
6034 prevent redundant code. */
6036 static void
6037 merge_assigned_reloads (insn)
6038 rtx insn;
6040 int i, j;
6042 /* Scan all the reloads looking for ones that only load values and
6043 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6044 assigned and not modified by INSN. */
6046 for (i = 0; i < n_reloads; i++)
6048 int conflicting_input = 0;
6049 int max_input_address_opnum = -1;
6050 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6052 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6053 || rld[i].out != 0 || rld[i].reg_rtx == 0
6054 || reg_set_p (rld[i].reg_rtx, insn))
6055 continue;
6057 /* Look at all other reloads. Ensure that the only use of this
6058 reload_reg_rtx is in a reload that just loads the same value
6059 as we do. Note that any secondary reloads must be of the identical
6060 class since the values, modes, and result registers are the
6061 same, so we need not do anything with any secondary reloads. */
6063 for (j = 0; j < n_reloads; j++)
6065 if (i == j || rld[j].reg_rtx == 0
6066 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6067 rld[i].reg_rtx))
6068 continue;
6070 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6071 && rld[j].opnum > max_input_address_opnum)
6072 max_input_address_opnum = rld[j].opnum;
6074 /* If the reload regs aren't exactly the same (e.g, different modes)
6075 or if the values are different, we can't merge this reload.
6076 But if it is an input reload, we might still merge
6077 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6079 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6080 || rld[j].out != 0 || rld[j].in == 0
6081 || ! rtx_equal_p (rld[i].in, rld[j].in))
6083 if (rld[j].when_needed != RELOAD_FOR_INPUT
6084 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6085 || rld[i].opnum > rld[j].opnum)
6086 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6087 break;
6088 conflicting_input = 1;
6089 if (min_conflicting_input_opnum > rld[j].opnum)
6090 min_conflicting_input_opnum = rld[j].opnum;
6094 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6095 we, in fact, found any matching reloads. */
6097 if (j == n_reloads
6098 && max_input_address_opnum <= min_conflicting_input_opnum)
6100 for (j = 0; j < n_reloads; j++)
6101 if (i != j && rld[j].reg_rtx != 0
6102 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6103 && (! conflicting_input
6104 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6105 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6107 rld[i].when_needed = RELOAD_OTHER;
6108 rld[j].in = 0;
6109 reload_spill_index[j] = -1;
6110 transfer_replacements (i, j);
6113 /* If this is now RELOAD_OTHER, look for any reloads that load
6114 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6115 if they were for inputs, RELOAD_OTHER for outputs. Note that
6116 this test is equivalent to looking for reloads for this operand
6117 number. */
6118 /* We must take special care when there are two or more reloads to
6119 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6120 same value or a part of it; we must not change its type if there
6121 is a conflicting input. */
6123 if (rld[i].when_needed == RELOAD_OTHER)
6124 for (j = 0; j < n_reloads; j++)
6125 if (rld[j].in != 0
6126 && rld[j].when_needed != RELOAD_OTHER
6127 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6128 && (! conflicting_input
6129 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6130 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6131 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6132 rld[i].in))
6134 int k;
6136 rld[j].when_needed
6137 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6138 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6139 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6141 /* Check to see if we accidentally converted two reloads
6142 that use the same reload register to the same type.
6143 If so, the resulting code won't work, so abort. */
6144 if (rld[j].reg_rtx)
6145 for (k = 0; k < j; k++)
6146 if (rld[k].in != 0 && rld[k].reg_rtx != 0
6147 && rld[k].when_needed == rld[j].when_needed
6148 && rtx_equal_p (rld[k].reg_rtx, rld[j].reg_rtx))
6149 abort ();
6155 /* These arrays are filled by emit_reload_insns and its subroutines. */
6156 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6157 static rtx other_input_address_reload_insns = 0;
6158 static rtx other_input_reload_insns = 0;
6159 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6160 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6161 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6162 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6163 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6164 static rtx operand_reload_insns = 0;
6165 static rtx other_operand_reload_insns = 0;
6166 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6168 /* Values to be put in spill_reg_store are put here first. */
6169 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6170 static HARD_REG_SET reg_reloaded_died;
6172 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6173 has the number J. OLD contains the value to be used as input. */
6175 static void
6176 emit_input_reload_insns (chain, rl, old, j)
6177 struct insn_chain *chain;
6178 struct reload *rl;
6179 rtx old;
6180 int j;
6182 rtx insn = chain->insn;
6183 rtx reloadreg = rl->reg_rtx;
6184 rtx oldequiv_reg = 0;
6185 rtx oldequiv = 0;
6186 int special = 0;
6187 enum machine_mode mode;
6188 rtx *where;
6190 /* Determine the mode to reload in.
6191 This is very tricky because we have three to choose from.
6192 There is the mode the insn operand wants (rl->inmode).
6193 There is the mode of the reload register RELOADREG.
6194 There is the intrinsic mode of the operand, which we could find
6195 by stripping some SUBREGs.
6196 It turns out that RELOADREG's mode is irrelevant:
6197 we can change that arbitrarily.
6199 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6200 then the reload reg may not support QImode moves, so use SImode.
6201 If foo is in memory due to spilling a pseudo reg, this is safe,
6202 because the QImode value is in the least significant part of a
6203 slot big enough for a SImode. If foo is some other sort of
6204 memory reference, then it is impossible to reload this case,
6205 so previous passes had better make sure this never happens.
6207 Then consider a one-word union which has SImode and one of its
6208 members is a float, being fetched as (SUBREG:SF union:SI).
6209 We must fetch that as SFmode because we could be loading into
6210 a float-only register. In this case OLD's mode is correct.
6212 Consider an immediate integer: it has VOIDmode. Here we need
6213 to get a mode from something else.
6215 In some cases, there is a fourth mode, the operand's
6216 containing mode. If the insn specifies a containing mode for
6217 this operand, it overrides all others.
6219 I am not sure whether the algorithm here is always right,
6220 but it does the right things in those cases. */
6222 mode = GET_MODE (old);
6223 if (mode == VOIDmode)
6224 mode = rl->inmode;
6226 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6227 /* If we need a secondary register for this operation, see if
6228 the value is already in a register in that class. Don't
6229 do this if the secondary register will be used as a scratch
6230 register. */
6232 if (rl->secondary_in_reload >= 0
6233 && rl->secondary_in_icode == CODE_FOR_nothing
6234 && optimize)
6235 oldequiv
6236 = find_equiv_reg (old, insn,
6237 rld[rl->secondary_in_reload].class,
6238 -1, NULL, 0, mode);
6239 #endif
6241 /* If reloading from memory, see if there is a register
6242 that already holds the same value. If so, reload from there.
6243 We can pass 0 as the reload_reg_p argument because
6244 any other reload has either already been emitted,
6245 in which case find_equiv_reg will see the reload-insn,
6246 or has yet to be emitted, in which case it doesn't matter
6247 because we will use this equiv reg right away. */
6249 if (oldequiv == 0 && optimize
6250 && (GET_CODE (old) == MEM
6251 || (GET_CODE (old) == REG
6252 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6253 && reg_renumber[REGNO (old)] < 0)))
6254 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6256 if (oldequiv)
6258 unsigned int regno = true_regnum (oldequiv);
6260 /* Don't use OLDEQUIV if any other reload changes it at an
6261 earlier stage of this insn or at this stage. */
6262 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6263 rl->in, const0_rtx, j, 0))
6264 oldequiv = 0;
6266 /* If it is no cheaper to copy from OLDEQUIV into the
6267 reload register than it would be to move from memory,
6268 don't use it. Likewise, if we need a secondary register
6269 or memory. */
6271 if (oldequiv != 0
6272 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6273 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6274 rl->class)
6275 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6276 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6277 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6278 mode, oldequiv)
6279 != NO_REGS)
6280 #endif
6281 #ifdef SECONDARY_MEMORY_NEEDED
6282 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6283 rl->class,
6284 mode)
6285 #endif
6287 oldequiv = 0;
6290 /* delete_output_reload is only invoked properly if old contains
6291 the original pseudo register. Since this is replaced with a
6292 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6293 find the pseudo in RELOAD_IN_REG. */
6294 if (oldequiv == 0
6295 && reload_override_in[j]
6296 && GET_CODE (rl->in_reg) == REG)
6298 oldequiv = old;
6299 old = rl->in_reg;
6301 if (oldequiv == 0)
6302 oldequiv = old;
6303 else if (GET_CODE (oldequiv) == REG)
6304 oldequiv_reg = oldequiv;
6305 else if (GET_CODE (oldequiv) == SUBREG)
6306 oldequiv_reg = SUBREG_REG (oldequiv);
6308 /* If we are reloading from a register that was recently stored in
6309 with an output-reload, see if we can prove there was
6310 actually no need to store the old value in it. */
6312 if (optimize && GET_CODE (oldequiv) == REG
6313 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6314 && spill_reg_store[REGNO (oldequiv)]
6315 && GET_CODE (old) == REG
6316 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6317 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6318 rl->out_reg)))
6319 delete_output_reload (insn, j, REGNO (oldequiv));
6321 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6322 then load RELOADREG from OLDEQUIV. Note that we cannot use
6323 gen_lowpart_common since it can do the wrong thing when
6324 RELOADREG has a multi-word mode. Note that RELOADREG
6325 must always be a REG here. */
6327 if (GET_MODE (reloadreg) != mode)
6328 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6329 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6330 oldequiv = SUBREG_REG (oldequiv);
6331 if (GET_MODE (oldequiv) != VOIDmode
6332 && mode != GET_MODE (oldequiv))
6333 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6335 /* Switch to the right place to emit the reload insns. */
6336 switch (rl->when_needed)
6338 case RELOAD_OTHER:
6339 where = &other_input_reload_insns;
6340 break;
6341 case RELOAD_FOR_INPUT:
6342 where = &input_reload_insns[rl->opnum];
6343 break;
6344 case RELOAD_FOR_INPUT_ADDRESS:
6345 where = &input_address_reload_insns[rl->opnum];
6346 break;
6347 case RELOAD_FOR_INPADDR_ADDRESS:
6348 where = &inpaddr_address_reload_insns[rl->opnum];
6349 break;
6350 case RELOAD_FOR_OUTPUT_ADDRESS:
6351 where = &output_address_reload_insns[rl->opnum];
6352 break;
6353 case RELOAD_FOR_OUTADDR_ADDRESS:
6354 where = &outaddr_address_reload_insns[rl->opnum];
6355 break;
6356 case RELOAD_FOR_OPERAND_ADDRESS:
6357 where = &operand_reload_insns;
6358 break;
6359 case RELOAD_FOR_OPADDR_ADDR:
6360 where = &other_operand_reload_insns;
6361 break;
6362 case RELOAD_FOR_OTHER_ADDRESS:
6363 where = &other_input_address_reload_insns;
6364 break;
6365 default:
6366 abort ();
6369 push_to_sequence (*where);
6371 /* Auto-increment addresses must be reloaded in a special way. */
6372 if (rl->out && ! rl->out_reg)
6374 /* We are not going to bother supporting the case where a
6375 incremented register can't be copied directly from
6376 OLDEQUIV since this seems highly unlikely. */
6377 if (rl->secondary_in_reload >= 0)
6378 abort ();
6380 if (reload_inherited[j])
6381 oldequiv = reloadreg;
6383 old = XEXP (rl->in_reg, 0);
6385 if (optimize && GET_CODE (oldequiv) == REG
6386 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6387 && spill_reg_store[REGNO (oldequiv)]
6388 && GET_CODE (old) == REG
6389 && (dead_or_set_p (insn,
6390 spill_reg_stored_to[REGNO (oldequiv)])
6391 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6392 old)))
6393 delete_output_reload (insn, j, REGNO (oldequiv));
6395 /* Prevent normal processing of this reload. */
6396 special = 1;
6397 /* Output a special code sequence for this case. */
6398 new_spill_reg_store[REGNO (reloadreg)]
6399 = inc_for_reload (reloadreg, oldequiv, rl->out,
6400 rl->inc);
6403 /* If we are reloading a pseudo-register that was set by the previous
6404 insn, see if we can get rid of that pseudo-register entirely
6405 by redirecting the previous insn into our reload register. */
6407 else if (optimize && GET_CODE (old) == REG
6408 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6409 && dead_or_set_p (insn, old)
6410 /* This is unsafe if some other reload
6411 uses the same reg first. */
6412 && ! conflicts_with_override (reloadreg)
6413 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6414 rl->when_needed, old, rl->out, j, 0))
6416 rtx temp = PREV_INSN (insn);
6417 while (temp && GET_CODE (temp) == NOTE)
6418 temp = PREV_INSN (temp);
6419 if (temp
6420 && GET_CODE (temp) == INSN
6421 && GET_CODE (PATTERN (temp)) == SET
6422 && SET_DEST (PATTERN (temp)) == old
6423 /* Make sure we can access insn_operand_constraint. */
6424 && asm_noperands (PATTERN (temp)) < 0
6425 /* This is unsafe if operand occurs more than once in current
6426 insn. Perhaps some occurrences aren't reloaded. */
6427 && count_occurrences (PATTERN (insn), old, 0) == 1)
6429 rtx old = SET_DEST (PATTERN (temp));
6430 /* Store into the reload register instead of the pseudo. */
6431 SET_DEST (PATTERN (temp)) = reloadreg;
6433 /* Verify that resulting insn is valid. */
6434 extract_insn (temp);
6435 if (constrain_operands (1))
6437 /* If the previous insn is an output reload, the source is
6438 a reload register, and its spill_reg_store entry will
6439 contain the previous destination. This is now
6440 invalid. */
6441 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6442 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6444 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6445 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6448 /* If these are the only uses of the pseudo reg,
6449 pretend for GDB it lives in the reload reg we used. */
6450 if (REG_N_DEATHS (REGNO (old)) == 1
6451 && REG_N_SETS (REGNO (old)) == 1)
6453 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6454 alter_reg (REGNO (old), -1);
6456 special = 1;
6458 else
6460 SET_DEST (PATTERN (temp)) = old;
6465 /* We can't do that, so output an insn to load RELOADREG. */
6467 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6468 /* If we have a secondary reload, pick up the secondary register
6469 and icode, if any. If OLDEQUIV and OLD are different or
6470 if this is an in-out reload, recompute whether or not we
6471 still need a secondary register and what the icode should
6472 be. If we still need a secondary register and the class or
6473 icode is different, go back to reloading from OLD if using
6474 OLDEQUIV means that we got the wrong type of register. We
6475 cannot have different class or icode due to an in-out reload
6476 because we don't make such reloads when both the input and
6477 output need secondary reload registers. */
6479 if (! special && rl->secondary_in_reload >= 0)
6481 rtx second_reload_reg = 0;
6482 int secondary_reload = rl->secondary_in_reload;
6483 rtx real_oldequiv = oldequiv;
6484 rtx real_old = old;
6485 rtx tmp;
6486 enum insn_code icode;
6488 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6489 and similarly for OLD.
6490 See comments in get_secondary_reload in reload.c. */
6491 /* If it is a pseudo that cannot be replaced with its
6492 equivalent MEM, we must fall back to reload_in, which
6493 will have all the necessary substitutions registered.
6494 Likewise for a pseudo that can't be replaced with its
6495 equivalent constant.
6497 Take extra care for subregs of such pseudos. Note that
6498 we cannot use reg_equiv_mem in this case because it is
6499 not in the right mode. */
6501 tmp = oldequiv;
6502 if (GET_CODE (tmp) == SUBREG)
6503 tmp = SUBREG_REG (tmp);
6504 if (GET_CODE (tmp) == REG
6505 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6506 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6507 || reg_equiv_constant[REGNO (tmp)] != 0))
6509 if (! reg_equiv_mem[REGNO (tmp)]
6510 || num_not_at_initial_offset
6511 || GET_CODE (oldequiv) == SUBREG)
6512 real_oldequiv = rl->in;
6513 else
6514 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6517 tmp = old;
6518 if (GET_CODE (tmp) == SUBREG)
6519 tmp = SUBREG_REG (tmp);
6520 if (GET_CODE (tmp) == REG
6521 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6522 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6523 || reg_equiv_constant[REGNO (tmp)] != 0))
6525 if (! reg_equiv_mem[REGNO (tmp)]
6526 || num_not_at_initial_offset
6527 || GET_CODE (old) == SUBREG)
6528 real_old = rl->in;
6529 else
6530 real_old = reg_equiv_mem[REGNO (tmp)];
6533 second_reload_reg = rld[secondary_reload].reg_rtx;
6534 icode = rl->secondary_in_icode;
6536 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6537 || (rl->in != 0 && rl->out != 0))
6539 enum reg_class new_class
6540 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6541 mode, real_oldequiv);
6543 if (new_class == NO_REGS)
6544 second_reload_reg = 0;
6545 else
6547 enum insn_code new_icode;
6548 enum machine_mode new_mode;
6550 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6551 REGNO (second_reload_reg)))
6552 oldequiv = old, real_oldequiv = real_old;
6553 else
6555 new_icode = reload_in_optab[(int) mode];
6556 if (new_icode != CODE_FOR_nothing
6557 && ((insn_data[(int) new_icode].operand[0].predicate
6558 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6559 (reloadreg, mode)))
6560 || (insn_data[(int) new_icode].operand[1].predicate
6561 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6562 (real_oldequiv, mode)))))
6563 new_icode = CODE_FOR_nothing;
6565 if (new_icode == CODE_FOR_nothing)
6566 new_mode = mode;
6567 else
6568 new_mode = insn_data[(int) new_icode].operand[2].mode;
6570 if (GET_MODE (second_reload_reg) != new_mode)
6572 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6573 new_mode))
6574 oldequiv = old, real_oldequiv = real_old;
6575 else
6576 second_reload_reg
6577 = gen_rtx_REG (new_mode,
6578 REGNO (second_reload_reg));
6584 /* If we still need a secondary reload register, check
6585 to see if it is being used as a scratch or intermediate
6586 register and generate code appropriately. If we need
6587 a scratch register, use REAL_OLDEQUIV since the form of
6588 the insn may depend on the actual address if it is
6589 a MEM. */
6591 if (second_reload_reg)
6593 if (icode != CODE_FOR_nothing)
6595 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6596 second_reload_reg));
6597 special = 1;
6599 else
6601 /* See if we need a scratch register to load the
6602 intermediate register (a tertiary reload). */
6603 enum insn_code tertiary_icode
6604 = rld[secondary_reload].secondary_in_icode;
6606 if (tertiary_icode != CODE_FOR_nothing)
6608 rtx third_reload_reg
6609 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6611 emit_insn ((GEN_FCN (tertiary_icode)
6612 (second_reload_reg, real_oldequiv,
6613 third_reload_reg)));
6615 else
6616 gen_reload (second_reload_reg, real_oldequiv,
6617 rl->opnum,
6618 rl->when_needed);
6620 oldequiv = second_reload_reg;
6624 #endif
6626 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6628 rtx real_oldequiv = oldequiv;
6630 if ((GET_CODE (oldequiv) == REG
6631 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6632 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6633 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6634 || (GET_CODE (oldequiv) == SUBREG
6635 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6636 && (REGNO (SUBREG_REG (oldequiv))
6637 >= FIRST_PSEUDO_REGISTER)
6638 && ((reg_equiv_memory_loc
6639 [REGNO (SUBREG_REG (oldequiv))] != 0)
6640 || (reg_equiv_constant
6641 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6642 || (CONSTANT_P (oldequiv)
6643 && (PREFERRED_RELOAD_CLASS (oldequiv,
6644 REGNO_REG_CLASS (REGNO (reloadreg)))
6645 == NO_REGS)))
6646 real_oldequiv = rl->in;
6647 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6648 rl->when_needed);
6651 if (flag_non_call_exceptions)
6652 copy_eh_notes (insn, get_insns ());
6654 /* End this sequence. */
6655 *where = get_insns ();
6656 end_sequence ();
6658 /* Update reload_override_in so that delete_address_reloads_1
6659 can see the actual register usage. */
6660 if (oldequiv_reg)
6661 reload_override_in[j] = oldequiv;
6664 /* Generate insns to for the output reload RL, which is for the insn described
6665 by CHAIN and has the number J. */
6666 static void
6667 emit_output_reload_insns (chain, rl, j)
6668 struct insn_chain *chain;
6669 struct reload *rl;
6670 int j;
6672 rtx reloadreg = rl->reg_rtx;
6673 rtx insn = chain->insn;
6674 int special = 0;
6675 rtx old = rl->out;
6676 enum machine_mode mode = GET_MODE (old);
6677 rtx p;
6679 if (rl->when_needed == RELOAD_OTHER)
6680 start_sequence ();
6681 else
6682 push_to_sequence (output_reload_insns[rl->opnum]);
6684 /* Determine the mode to reload in.
6685 See comments above (for input reloading). */
6687 if (mode == VOIDmode)
6689 /* VOIDmode should never happen for an output. */
6690 if (asm_noperands (PATTERN (insn)) < 0)
6691 /* It's the compiler's fault. */
6692 fatal_insn ("VOIDmode on an output", insn);
6693 error_for_asm (insn, "output operand is constant in `asm'");
6694 /* Prevent crash--use something we know is valid. */
6695 mode = word_mode;
6696 old = gen_rtx_REG (mode, REGNO (reloadreg));
6699 if (GET_MODE (reloadreg) != mode)
6700 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6702 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6704 /* If we need two reload regs, set RELOADREG to the intermediate
6705 one, since it will be stored into OLD. We might need a secondary
6706 register only for an input reload, so check again here. */
6708 if (rl->secondary_out_reload >= 0)
6710 rtx real_old = old;
6712 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6713 && reg_equiv_mem[REGNO (old)] != 0)
6714 real_old = reg_equiv_mem[REGNO (old)];
6716 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6717 mode, real_old)
6718 != NO_REGS))
6720 rtx second_reloadreg = reloadreg;
6721 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6723 /* See if RELOADREG is to be used as a scratch register
6724 or as an intermediate register. */
6725 if (rl->secondary_out_icode != CODE_FOR_nothing)
6727 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6728 (real_old, second_reloadreg, reloadreg)));
6729 special = 1;
6731 else
6733 /* See if we need both a scratch and intermediate reload
6734 register. */
6736 int secondary_reload = rl->secondary_out_reload;
6737 enum insn_code tertiary_icode
6738 = rld[secondary_reload].secondary_out_icode;
6740 if (GET_MODE (reloadreg) != mode)
6741 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6743 if (tertiary_icode != CODE_FOR_nothing)
6745 rtx third_reloadreg
6746 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6747 rtx tem;
6749 /* Copy primary reload reg to secondary reload reg.
6750 (Note that these have been swapped above, then
6751 secondary reload reg to OLD using our insn.) */
6753 /* If REAL_OLD is a paradoxical SUBREG, remove it
6754 and try to put the opposite SUBREG on
6755 RELOADREG. */
6756 if (GET_CODE (real_old) == SUBREG
6757 && (GET_MODE_SIZE (GET_MODE (real_old))
6758 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6759 && 0 != (tem = gen_lowpart_common
6760 (GET_MODE (SUBREG_REG (real_old)),
6761 reloadreg)))
6762 real_old = SUBREG_REG (real_old), reloadreg = tem;
6764 gen_reload (reloadreg, second_reloadreg,
6765 rl->opnum, rl->when_needed);
6766 emit_insn ((GEN_FCN (tertiary_icode)
6767 (real_old, reloadreg, third_reloadreg)));
6768 special = 1;
6771 else
6772 /* Copy between the reload regs here and then to
6773 OUT later. */
6775 gen_reload (reloadreg, second_reloadreg,
6776 rl->opnum, rl->when_needed);
6780 #endif
6782 /* Output the last reload insn. */
6783 if (! special)
6785 rtx set;
6787 /* Don't output the last reload if OLD is not the dest of
6788 INSN and is in the src and is clobbered by INSN. */
6789 if (! flag_expensive_optimizations
6790 || GET_CODE (old) != REG
6791 || !(set = single_set (insn))
6792 || rtx_equal_p (old, SET_DEST (set))
6793 || !reg_mentioned_p (old, SET_SRC (set))
6794 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6795 gen_reload (old, reloadreg, rl->opnum,
6796 rl->when_needed);
6799 /* Look at all insns we emitted, just to be safe. */
6800 for (p = get_insns (); p; p = NEXT_INSN (p))
6801 if (INSN_P (p))
6803 rtx pat = PATTERN (p);
6805 /* If this output reload doesn't come from a spill reg,
6806 clear any memory of reloaded copies of the pseudo reg.
6807 If this output reload comes from a spill reg,
6808 reg_has_output_reload will make this do nothing. */
6809 note_stores (pat, forget_old_reloads_1, NULL);
6811 if (reg_mentioned_p (rl->reg_rtx, pat))
6813 rtx set = single_set (insn);
6814 if (reload_spill_index[j] < 0
6815 && set
6816 && SET_SRC (set) == rl->reg_rtx)
6818 int src = REGNO (SET_SRC (set));
6820 reload_spill_index[j] = src;
6821 SET_HARD_REG_BIT (reg_is_output_reload, src);
6822 if (find_regno_note (insn, REG_DEAD, src))
6823 SET_HARD_REG_BIT (reg_reloaded_died, src);
6825 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6827 int s = rl->secondary_out_reload;
6828 set = single_set (p);
6829 /* If this reload copies only to the secondary reload
6830 register, the secondary reload does the actual
6831 store. */
6832 if (s >= 0 && set == NULL_RTX)
6833 /* We can't tell what function the secondary reload
6834 has and where the actual store to the pseudo is
6835 made; leave new_spill_reg_store alone. */
6837 else if (s >= 0
6838 && SET_SRC (set) == rl->reg_rtx
6839 && SET_DEST (set) == rld[s].reg_rtx)
6841 /* Usually the next instruction will be the
6842 secondary reload insn; if we can confirm
6843 that it is, setting new_spill_reg_store to
6844 that insn will allow an extra optimization. */
6845 rtx s_reg = rld[s].reg_rtx;
6846 rtx next = NEXT_INSN (p);
6847 rld[s].out = rl->out;
6848 rld[s].out_reg = rl->out_reg;
6849 set = single_set (next);
6850 if (set && SET_SRC (set) == s_reg
6851 && ! new_spill_reg_store[REGNO (s_reg)])
6853 SET_HARD_REG_BIT (reg_is_output_reload,
6854 REGNO (s_reg));
6855 new_spill_reg_store[REGNO (s_reg)] = next;
6858 else
6859 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6864 if (rl->when_needed == RELOAD_OTHER)
6866 emit_insn (other_output_reload_insns[rl->opnum]);
6867 other_output_reload_insns[rl->opnum] = get_insns ();
6869 else
6870 output_reload_insns[rl->opnum] = get_insns ();
6872 if (flag_non_call_exceptions)
6873 copy_eh_notes (insn, get_insns ());
6875 end_sequence ();
6878 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6879 and has the number J. */
6880 static void
6881 do_input_reload (chain, rl, j)
6882 struct insn_chain *chain;
6883 struct reload *rl;
6884 int j;
6886 rtx insn = chain->insn;
6887 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6888 ? rl->in_reg : rl->in);
6890 if (old != 0
6891 /* AUTO_INC reloads need to be handled even if inherited. We got an
6892 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6893 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6894 && ! rtx_equal_p (rl->reg_rtx, old)
6895 && rl->reg_rtx != 0)
6896 emit_input_reload_insns (chain, rld + j, old, j);
6898 /* When inheriting a wider reload, we have a MEM in rl->in,
6899 e.g. inheriting a SImode output reload for
6900 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6901 if (optimize && reload_inherited[j] && rl->in
6902 && GET_CODE (rl->in) == MEM
6903 && GET_CODE (rl->in_reg) == MEM
6904 && reload_spill_index[j] >= 0
6905 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6906 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6908 /* If we are reloading a register that was recently stored in with an
6909 output-reload, see if we can prove there was
6910 actually no need to store the old value in it. */
6912 if (optimize
6913 && (reload_inherited[j] || reload_override_in[j])
6914 && rl->reg_rtx
6915 && GET_CODE (rl->reg_rtx) == REG
6916 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6917 #if 0
6918 /* There doesn't seem to be any reason to restrict this to pseudos
6919 and doing so loses in the case where we are copying from a
6920 register of the wrong class. */
6921 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6922 >= FIRST_PSEUDO_REGISTER)
6923 #endif
6924 /* The insn might have already some references to stackslots
6925 replaced by MEMs, while reload_out_reg still names the
6926 original pseudo. */
6927 && (dead_or_set_p (insn,
6928 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6929 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6930 rl->out_reg)))
6931 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6934 /* Do output reloading for reload RL, which is for the insn described by
6935 CHAIN and has the number J.
6936 ??? At some point we need to support handling output reloads of
6937 JUMP_INSNs or insns that set cc0. */
6938 static void
6939 do_output_reload (chain, rl, j)
6940 struct insn_chain *chain;
6941 struct reload *rl;
6942 int j;
6944 rtx note, old;
6945 rtx insn = chain->insn;
6946 /* If this is an output reload that stores something that is
6947 not loaded in this same reload, see if we can eliminate a previous
6948 store. */
6949 rtx pseudo = rl->out_reg;
6951 if (pseudo
6952 && optimize
6953 && GET_CODE (pseudo) == REG
6954 && ! rtx_equal_p (rl->in_reg, pseudo)
6955 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6956 && reg_last_reload_reg[REGNO (pseudo)])
6958 int pseudo_no = REGNO (pseudo);
6959 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6961 /* We don't need to test full validity of last_regno for
6962 inherit here; we only want to know if the store actually
6963 matches the pseudo. */
6964 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6965 && reg_reloaded_contents[last_regno] == pseudo_no
6966 && spill_reg_store[last_regno]
6967 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6968 delete_output_reload (insn, j, last_regno);
6971 old = rl->out_reg;
6972 if (old == 0
6973 || rl->reg_rtx == old
6974 || rl->reg_rtx == 0)
6975 return;
6977 /* An output operand that dies right away does need a reload,
6978 but need not be copied from it. Show the new location in the
6979 REG_UNUSED note. */
6980 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6981 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6983 XEXP (note, 0) = rl->reg_rtx;
6984 return;
6986 /* Likewise for a SUBREG of an operand that dies. */
6987 else if (GET_CODE (old) == SUBREG
6988 && GET_CODE (SUBREG_REG (old)) == REG
6989 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6990 SUBREG_REG (old))))
6992 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6993 rl->reg_rtx);
6994 return;
6996 else if (GET_CODE (old) == SCRATCH)
6997 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6998 but we don't want to make an output reload. */
6999 return;
7001 /* If is a JUMP_INSN, we can't support output reloads yet. */
7002 if (GET_CODE (insn) == JUMP_INSN)
7003 abort ();
7005 emit_output_reload_insns (chain, rld + j, j);
7008 /* Output insns to reload values in and out of the chosen reload regs. */
7010 static void
7011 emit_reload_insns (chain)
7012 struct insn_chain *chain;
7014 rtx insn = chain->insn;
7016 int j;
7018 CLEAR_HARD_REG_SET (reg_reloaded_died);
7020 for (j = 0; j < reload_n_operands; j++)
7021 input_reload_insns[j] = input_address_reload_insns[j]
7022 = inpaddr_address_reload_insns[j]
7023 = output_reload_insns[j] = output_address_reload_insns[j]
7024 = outaddr_address_reload_insns[j]
7025 = other_output_reload_insns[j] = 0;
7026 other_input_address_reload_insns = 0;
7027 other_input_reload_insns = 0;
7028 operand_reload_insns = 0;
7029 other_operand_reload_insns = 0;
7031 /* Dump reloads into the dump file. */
7032 if (rtl_dump_file)
7034 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7035 debug_reload_to_stream (rtl_dump_file);
7038 /* Now output the instructions to copy the data into and out of the
7039 reload registers. Do these in the order that the reloads were reported,
7040 since reloads of base and index registers precede reloads of operands
7041 and the operands may need the base and index registers reloaded. */
7043 for (j = 0; j < n_reloads; j++)
7045 if (rld[j].reg_rtx
7046 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7047 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7049 do_input_reload (chain, rld + j, j);
7050 do_output_reload (chain, rld + j, j);
7053 /* Now write all the insns we made for reloads in the order expected by
7054 the allocation functions. Prior to the insn being reloaded, we write
7055 the following reloads:
7057 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7059 RELOAD_OTHER reloads.
7061 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7062 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7063 RELOAD_FOR_INPUT reload for the operand.
7065 RELOAD_FOR_OPADDR_ADDRS reloads.
7067 RELOAD_FOR_OPERAND_ADDRESS reloads.
7069 After the insn being reloaded, we write the following:
7071 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7072 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7073 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7074 reloads for the operand. The RELOAD_OTHER output reloads are
7075 output in descending order by reload number. */
7077 emit_insn_before (other_input_address_reload_insns, insn);
7078 emit_insn_before (other_input_reload_insns, insn);
7080 for (j = 0; j < reload_n_operands; j++)
7082 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7083 emit_insn_before (input_address_reload_insns[j], insn);
7084 emit_insn_before (input_reload_insns[j], insn);
7087 emit_insn_before (other_operand_reload_insns, insn);
7088 emit_insn_before (operand_reload_insns, insn);
7090 for (j = 0; j < reload_n_operands; j++)
7092 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7093 x = emit_insn_after (output_address_reload_insns[j], x);
7094 x = emit_insn_after (output_reload_insns[j], x);
7095 emit_insn_after (other_output_reload_insns[j], x);
7098 /* For all the spill regs newly reloaded in this instruction,
7099 record what they were reloaded from, so subsequent instructions
7100 can inherit the reloads.
7102 Update spill_reg_store for the reloads of this insn.
7103 Copy the elements that were updated in the loop above. */
7105 for (j = 0; j < n_reloads; j++)
7107 int r = reload_order[j];
7108 int i = reload_spill_index[r];
7110 /* If this is a non-inherited input reload from a pseudo, we must
7111 clear any memory of a previous store to the same pseudo. Only do
7112 something if there will not be an output reload for the pseudo
7113 being reloaded. */
7114 if (rld[r].in_reg != 0
7115 && ! (reload_inherited[r] || reload_override_in[r]))
7117 rtx reg = rld[r].in_reg;
7119 if (GET_CODE (reg) == SUBREG)
7120 reg = SUBREG_REG (reg);
7122 if (GET_CODE (reg) == REG
7123 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7124 && ! reg_has_output_reload[REGNO (reg)])
7126 int nregno = REGNO (reg);
7128 if (reg_last_reload_reg[nregno])
7130 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7132 if (reg_reloaded_contents[last_regno] == nregno)
7133 spill_reg_store[last_regno] = 0;
7138 /* I is nonneg if this reload used a register.
7139 If rld[r].reg_rtx is 0, this is an optional reload
7140 that we opted to ignore. */
7142 if (i >= 0 && rld[r].reg_rtx != 0)
7144 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7145 int k;
7146 int part_reaches_end = 0;
7147 int all_reaches_end = 1;
7149 /* For a multi register reload, we need to check if all or part
7150 of the value lives to the end. */
7151 for (k = 0; k < nr; k++)
7153 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7154 rld[r].when_needed))
7155 part_reaches_end = 1;
7156 else
7157 all_reaches_end = 0;
7160 /* Ignore reloads that don't reach the end of the insn in
7161 entirety. */
7162 if (all_reaches_end)
7164 /* First, clear out memory of what used to be in this spill reg.
7165 If consecutive registers are used, clear them all. */
7167 for (k = 0; k < nr; k++)
7168 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7170 /* Maybe the spill reg contains a copy of reload_out. */
7171 if (rld[r].out != 0
7172 && (GET_CODE (rld[r].out) == REG
7173 #ifdef AUTO_INC_DEC
7174 || ! rld[r].out_reg
7175 #endif
7176 || GET_CODE (rld[r].out_reg) == REG))
7178 rtx out = (GET_CODE (rld[r].out) == REG
7179 ? rld[r].out
7180 : rld[r].out_reg
7181 ? rld[r].out_reg
7182 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7183 int nregno = REGNO (out);
7184 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7185 : HARD_REGNO_NREGS (nregno,
7186 GET_MODE (rld[r].reg_rtx)));
7188 spill_reg_store[i] = new_spill_reg_store[i];
7189 spill_reg_stored_to[i] = out;
7190 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7192 /* If NREGNO is a hard register, it may occupy more than
7193 one register. If it does, say what is in the
7194 rest of the registers assuming that both registers
7195 agree on how many words the object takes. If not,
7196 invalidate the subsequent registers. */
7198 if (nregno < FIRST_PSEUDO_REGISTER)
7199 for (k = 1; k < nnr; k++)
7200 reg_last_reload_reg[nregno + k]
7201 = (nr == nnr
7202 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7203 : 0);
7205 /* Now do the inverse operation. */
7206 for (k = 0; k < nr; k++)
7208 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7209 reg_reloaded_contents[i + k]
7210 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7211 ? nregno
7212 : nregno + k);
7213 reg_reloaded_insn[i + k] = insn;
7214 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7218 /* Maybe the spill reg contains a copy of reload_in. Only do
7219 something if there will not be an output reload for
7220 the register being reloaded. */
7221 else if (rld[r].out_reg == 0
7222 && rld[r].in != 0
7223 && ((GET_CODE (rld[r].in) == REG
7224 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7225 && ! reg_has_output_reload[REGNO (rld[r].in)])
7226 || (GET_CODE (rld[r].in_reg) == REG
7227 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7228 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7230 int nregno;
7231 int nnr;
7233 if (GET_CODE (rld[r].in) == REG
7234 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7235 nregno = REGNO (rld[r].in);
7236 else if (GET_CODE (rld[r].in_reg) == REG)
7237 nregno = REGNO (rld[r].in_reg);
7238 else
7239 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7241 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7242 : HARD_REGNO_NREGS (nregno,
7243 GET_MODE (rld[r].reg_rtx)));
7245 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7247 if (nregno < FIRST_PSEUDO_REGISTER)
7248 for (k = 1; k < nnr; k++)
7249 reg_last_reload_reg[nregno + k]
7250 = (nr == nnr
7251 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7252 : 0);
7254 /* Unless we inherited this reload, show we haven't
7255 recently done a store.
7256 Previous stores of inherited auto_inc expressions
7257 also have to be discarded. */
7258 if (! reload_inherited[r]
7259 || (rld[r].out && ! rld[r].out_reg))
7260 spill_reg_store[i] = 0;
7262 for (k = 0; k < nr; k++)
7264 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7265 reg_reloaded_contents[i + k]
7266 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7267 ? nregno
7268 : nregno + k);
7269 reg_reloaded_insn[i + k] = insn;
7270 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7275 /* However, if part of the reload reaches the end, then we must
7276 invalidate the old info for the part that survives to the end. */
7277 else if (part_reaches_end)
7279 for (k = 0; k < nr; k++)
7280 if (reload_reg_reaches_end_p (i + k,
7281 rld[r].opnum,
7282 rld[r].when_needed))
7283 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7287 /* The following if-statement was #if 0'd in 1.34 (or before...).
7288 It's reenabled in 1.35 because supposedly nothing else
7289 deals with this problem. */
7291 /* If a register gets output-reloaded from a non-spill register,
7292 that invalidates any previous reloaded copy of it.
7293 But forget_old_reloads_1 won't get to see it, because
7294 it thinks only about the original insn. So invalidate it here. */
7295 if (i < 0 && rld[r].out != 0
7296 && (GET_CODE (rld[r].out) == REG
7297 || (GET_CODE (rld[r].out) == MEM
7298 && GET_CODE (rld[r].out_reg) == REG)))
7300 rtx out = (GET_CODE (rld[r].out) == REG
7301 ? rld[r].out : rld[r].out_reg);
7302 int nregno = REGNO (out);
7303 if (nregno >= FIRST_PSEUDO_REGISTER)
7305 rtx src_reg, store_insn = NULL_RTX;
7307 reg_last_reload_reg[nregno] = 0;
7309 /* If we can find a hard register that is stored, record
7310 the storing insn so that we may delete this insn with
7311 delete_output_reload. */
7312 src_reg = rld[r].reg_rtx;
7314 /* If this is an optional reload, try to find the source reg
7315 from an input reload. */
7316 if (! src_reg)
7318 rtx set = single_set (insn);
7319 if (set && SET_DEST (set) == rld[r].out)
7321 int k;
7323 src_reg = SET_SRC (set);
7324 store_insn = insn;
7325 for (k = 0; k < n_reloads; k++)
7327 if (rld[k].in == src_reg)
7329 src_reg = rld[k].reg_rtx;
7330 break;
7335 else
7336 store_insn = new_spill_reg_store[REGNO (src_reg)];
7337 if (src_reg && GET_CODE (src_reg) == REG
7338 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7340 int src_regno = REGNO (src_reg);
7341 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7342 /* The place where to find a death note varies with
7343 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7344 necessarily checked exactly in the code that moves
7345 notes, so just check both locations. */
7346 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7347 if (! note && store_insn)
7348 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7349 while (nr-- > 0)
7351 spill_reg_store[src_regno + nr] = store_insn;
7352 spill_reg_stored_to[src_regno + nr] = out;
7353 reg_reloaded_contents[src_regno + nr] = nregno;
7354 reg_reloaded_insn[src_regno + nr] = store_insn;
7355 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7356 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7357 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7358 if (note)
7359 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7360 else
7361 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7363 reg_last_reload_reg[nregno] = src_reg;
7366 else
7368 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7370 while (num_regs-- > 0)
7371 reg_last_reload_reg[nregno + num_regs] = 0;
7375 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7378 /* Emit code to perform a reload from IN (which may be a reload register) to
7379 OUT (which may also be a reload register). IN or OUT is from operand
7380 OPNUM with reload type TYPE.
7382 Returns first insn emitted. */
7385 gen_reload (out, in, opnum, type)
7386 rtx out;
7387 rtx in;
7388 int opnum;
7389 enum reload_type type;
7391 rtx last = get_last_insn ();
7392 rtx tem;
7394 /* If IN is a paradoxical SUBREG, remove it and try to put the
7395 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7396 if (GET_CODE (in) == SUBREG
7397 && (GET_MODE_SIZE (GET_MODE (in))
7398 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7399 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7400 in = SUBREG_REG (in), out = tem;
7401 else if (GET_CODE (out) == SUBREG
7402 && (GET_MODE_SIZE (GET_MODE (out))
7403 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7404 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7405 out = SUBREG_REG (out), in = tem;
7407 /* How to do this reload can get quite tricky. Normally, we are being
7408 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7409 register that didn't get a hard register. In that case we can just
7410 call emit_move_insn.
7412 We can also be asked to reload a PLUS that adds a register or a MEM to
7413 another register, constant or MEM. This can occur during frame pointer
7414 elimination and while reloading addresses. This case is handled by
7415 trying to emit a single insn to perform the add. If it is not valid,
7416 we use a two insn sequence.
7418 Finally, we could be called to handle an 'o' constraint by putting
7419 an address into a register. In that case, we first try to do this
7420 with a named pattern of "reload_load_address". If no such pattern
7421 exists, we just emit a SET insn and hope for the best (it will normally
7422 be valid on machines that use 'o').
7424 This entire process is made complex because reload will never
7425 process the insns we generate here and so we must ensure that
7426 they will fit their constraints and also by the fact that parts of
7427 IN might be being reloaded separately and replaced with spill registers.
7428 Because of this, we are, in some sense, just guessing the right approach
7429 here. The one listed above seems to work.
7431 ??? At some point, this whole thing needs to be rethought. */
7433 if (GET_CODE (in) == PLUS
7434 && (GET_CODE (XEXP (in, 0)) == REG
7435 || GET_CODE (XEXP (in, 0)) == SUBREG
7436 || GET_CODE (XEXP (in, 0)) == MEM)
7437 && (GET_CODE (XEXP (in, 1)) == REG
7438 || GET_CODE (XEXP (in, 1)) == SUBREG
7439 || CONSTANT_P (XEXP (in, 1))
7440 || GET_CODE (XEXP (in, 1)) == MEM))
7442 /* We need to compute the sum of a register or a MEM and another
7443 register, constant, or MEM, and put it into the reload
7444 register. The best possible way of doing this is if the machine
7445 has a three-operand ADD insn that accepts the required operands.
7447 The simplest approach is to try to generate such an insn and see if it
7448 is recognized and matches its constraints. If so, it can be used.
7450 It might be better not to actually emit the insn unless it is valid,
7451 but we need to pass the insn as an operand to `recog' and
7452 `extract_insn' and it is simpler to emit and then delete the insn if
7453 not valid than to dummy things up. */
7455 rtx op0, op1, tem, insn;
7456 int code;
7458 op0 = find_replacement (&XEXP (in, 0));
7459 op1 = find_replacement (&XEXP (in, 1));
7461 /* Since constraint checking is strict, commutativity won't be
7462 checked, so we need to do that here to avoid spurious failure
7463 if the add instruction is two-address and the second operand
7464 of the add is the same as the reload reg, which is frequently
7465 the case. If the insn would be A = B + A, rearrange it so
7466 it will be A = A + B as constrain_operands expects. */
7468 if (GET_CODE (XEXP (in, 1)) == REG
7469 && REGNO (out) == REGNO (XEXP (in, 1)))
7470 tem = op0, op0 = op1, op1 = tem;
7472 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7473 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7475 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7476 code = recog_memoized (insn);
7478 if (code >= 0)
7480 extract_insn (insn);
7481 /* We want constrain operands to treat this insn strictly in
7482 its validity determination, i.e., the way it would after reload
7483 has completed. */
7484 if (constrain_operands (1))
7485 return insn;
7488 delete_insns_since (last);
7490 /* If that failed, we must use a conservative two-insn sequence.
7492 Use a move to copy one operand into the reload register. Prefer
7493 to reload a constant, MEM or pseudo since the move patterns can
7494 handle an arbitrary operand. If OP1 is not a constant, MEM or
7495 pseudo and OP1 is not a valid operand for an add instruction, then
7496 reload OP1.
7498 After reloading one of the operands into the reload register, add
7499 the reload register to the output register.
7501 If there is another way to do this for a specific machine, a
7502 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7503 we emit below. */
7505 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7507 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7508 || (GET_CODE (op1) == REG
7509 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7510 || (code != CODE_FOR_nothing
7511 && ! ((*insn_data[code].operand[2].predicate)
7512 (op1, insn_data[code].operand[2].mode))))
7513 tem = op0, op0 = op1, op1 = tem;
7515 gen_reload (out, op0, opnum, type);
7517 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7518 This fixes a problem on the 32K where the stack pointer cannot
7519 be used as an operand of an add insn. */
7521 if (rtx_equal_p (op0, op1))
7522 op1 = out;
7524 insn = emit_insn (gen_add2_insn (out, op1));
7526 /* If that failed, copy the address register to the reload register.
7527 Then add the constant to the reload register. */
7529 code = recog_memoized (insn);
7531 if (code >= 0)
7533 extract_insn (insn);
7534 /* We want constrain operands to treat this insn strictly in
7535 its validity determination, i.e., the way it would after reload
7536 has completed. */
7537 if (constrain_operands (1))
7539 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7540 REG_NOTES (insn)
7541 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7542 return insn;
7546 delete_insns_since (last);
7548 gen_reload (out, op1, opnum, type);
7549 insn = emit_insn (gen_add2_insn (out, op0));
7550 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7553 #ifdef SECONDARY_MEMORY_NEEDED
7554 /* If we need a memory location to do the move, do it that way. */
7555 else if ((GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
7556 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7557 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
7558 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7559 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7560 REGNO_REG_CLASS (reg_or_subregno (out)),
7561 GET_MODE (out)))
7563 /* Get the memory to use and rewrite both registers to its mode. */
7564 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7566 if (GET_MODE (loc) != GET_MODE (out))
7567 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7569 if (GET_MODE (loc) != GET_MODE (in))
7570 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7572 gen_reload (loc, in, opnum, type);
7573 gen_reload (out, loc, opnum, type);
7575 #endif
7577 /* If IN is a simple operand, use gen_move_insn. */
7578 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7579 emit_insn (gen_move_insn (out, in));
7581 #ifdef HAVE_reload_load_address
7582 else if (HAVE_reload_load_address)
7583 emit_insn (gen_reload_load_address (out, in));
7584 #endif
7586 /* Otherwise, just write (set OUT IN) and hope for the best. */
7587 else
7588 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7590 /* Return the first insn emitted.
7591 We can not just return get_last_insn, because there may have
7592 been multiple instructions emitted. Also note that gen_move_insn may
7593 emit more than one insn itself, so we can not assume that there is one
7594 insn emitted per emit_insn_before call. */
7596 return last ? NEXT_INSN (last) : get_insns ();
7599 /* Delete a previously made output-reload whose result we now believe
7600 is not needed. First we double-check.
7602 INSN is the insn now being processed.
7603 LAST_RELOAD_REG is the hard register number for which we want to delete
7604 the last output reload.
7605 J is the reload-number that originally used REG. The caller has made
7606 certain that reload J doesn't use REG any longer for input. */
7608 static void
7609 delete_output_reload (insn, j, last_reload_reg)
7610 rtx insn;
7611 int j;
7612 int last_reload_reg;
7614 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7615 rtx reg = spill_reg_stored_to[last_reload_reg];
7616 int k;
7617 int n_occurrences;
7618 int n_inherited = 0;
7619 rtx i1;
7620 rtx substed;
7622 /* It is possible that this reload has been only used to set another reload
7623 we eliminated earlier and thus deleted this instruction too. */
7624 if (INSN_DELETED_P (output_reload_insn))
7625 return;
7627 /* Get the raw pseudo-register referred to. */
7629 while (GET_CODE (reg) == SUBREG)
7630 reg = SUBREG_REG (reg);
7631 substed = reg_equiv_memory_loc[REGNO (reg)];
7633 /* This is unsafe if the operand occurs more often in the current
7634 insn than it is inherited. */
7635 for (k = n_reloads - 1; k >= 0; k--)
7637 rtx reg2 = rld[k].in;
7638 if (! reg2)
7639 continue;
7640 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7641 reg2 = rld[k].in_reg;
7642 #ifdef AUTO_INC_DEC
7643 if (rld[k].out && ! rld[k].out_reg)
7644 reg2 = XEXP (rld[k].in_reg, 0);
7645 #endif
7646 while (GET_CODE (reg2) == SUBREG)
7647 reg2 = SUBREG_REG (reg2);
7648 if (rtx_equal_p (reg2, reg))
7650 if (reload_inherited[k] || reload_override_in[k] || k == j)
7652 n_inherited++;
7653 reg2 = rld[k].out_reg;
7654 if (! reg2)
7655 continue;
7656 while (GET_CODE (reg2) == SUBREG)
7657 reg2 = XEXP (reg2, 0);
7658 if (rtx_equal_p (reg2, reg))
7659 n_inherited++;
7661 else
7662 return;
7665 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7666 if (substed)
7667 n_occurrences += count_occurrences (PATTERN (insn),
7668 eliminate_regs (substed, 0,
7669 NULL_RTX), 0);
7670 if (n_occurrences > n_inherited)
7671 return;
7673 /* If the pseudo-reg we are reloading is no longer referenced
7674 anywhere between the store into it and here,
7675 and no jumps or labels intervene, then the value can get
7676 here through the reload reg alone.
7677 Otherwise, give up--return. */
7678 for (i1 = NEXT_INSN (output_reload_insn);
7679 i1 != insn; i1 = NEXT_INSN (i1))
7681 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7682 return;
7683 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7684 && reg_mentioned_p (reg, PATTERN (i1)))
7686 /* If this is USE in front of INSN, we only have to check that
7687 there are no more references than accounted for by inheritance. */
7688 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7690 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7691 i1 = NEXT_INSN (i1);
7693 if (n_occurrences <= n_inherited && i1 == insn)
7694 break;
7695 return;
7699 /* We will be deleting the insn. Remove the spill reg information. */
7700 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7702 spill_reg_store[last_reload_reg + k] = 0;
7703 spill_reg_stored_to[last_reload_reg + k] = 0;
7706 /* The caller has already checked that REG dies or is set in INSN.
7707 It has also checked that we are optimizing, and thus some
7708 inaccuracies in the debugging information are acceptable.
7709 So we could just delete output_reload_insn. But in some cases
7710 we can improve the debugging information without sacrificing
7711 optimization - maybe even improving the code: See if the pseudo
7712 reg has been completely replaced with reload regs. If so, delete
7713 the store insn and forget we had a stack slot for the pseudo. */
7714 if (rld[j].out != rld[j].in
7715 && REG_N_DEATHS (REGNO (reg)) == 1
7716 && REG_N_SETS (REGNO (reg)) == 1
7717 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7718 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7720 rtx i2;
7722 /* We know that it was used only between here and the beginning of
7723 the current basic block. (We also know that the last use before
7724 INSN was the output reload we are thinking of deleting, but never
7725 mind that.) Search that range; see if any ref remains. */
7726 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7728 rtx set = single_set (i2);
7730 /* Uses which just store in the pseudo don't count,
7731 since if they are the only uses, they are dead. */
7732 if (set != 0 && SET_DEST (set) == reg)
7733 continue;
7734 if (GET_CODE (i2) == CODE_LABEL
7735 || GET_CODE (i2) == JUMP_INSN)
7736 break;
7737 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7738 && reg_mentioned_p (reg, PATTERN (i2)))
7740 /* Some other ref remains; just delete the output reload we
7741 know to be dead. */
7742 delete_address_reloads (output_reload_insn, insn);
7743 delete_insn (output_reload_insn);
7744 return;
7748 /* Delete the now-dead stores into this pseudo. Note that this
7749 loop also takes care of deleting output_reload_insn. */
7750 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7752 rtx set = single_set (i2);
7754 if (set != 0 && SET_DEST (set) == reg)
7756 delete_address_reloads (i2, insn);
7757 delete_insn (i2);
7759 if (GET_CODE (i2) == CODE_LABEL
7760 || GET_CODE (i2) == JUMP_INSN)
7761 break;
7764 /* For the debugging info, say the pseudo lives in this reload reg. */
7765 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7766 alter_reg (REGNO (reg), -1);
7768 else
7770 delete_address_reloads (output_reload_insn, insn);
7771 delete_insn (output_reload_insn);
7775 /* We are going to delete DEAD_INSN. Recursively delete loads of
7776 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7777 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7778 static void
7779 delete_address_reloads (dead_insn, current_insn)
7780 rtx dead_insn, current_insn;
7782 rtx set = single_set (dead_insn);
7783 rtx set2, dst, prev, next;
7784 if (set)
7786 rtx dst = SET_DEST (set);
7787 if (GET_CODE (dst) == MEM)
7788 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7790 /* If we deleted the store from a reloaded post_{in,de}c expression,
7791 we can delete the matching adds. */
7792 prev = PREV_INSN (dead_insn);
7793 next = NEXT_INSN (dead_insn);
7794 if (! prev || ! next)
7795 return;
7796 set = single_set (next);
7797 set2 = single_set (prev);
7798 if (! set || ! set2
7799 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7800 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7801 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7802 return;
7803 dst = SET_DEST (set);
7804 if (! rtx_equal_p (dst, SET_DEST (set2))
7805 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7806 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7807 || (INTVAL (XEXP (SET_SRC (set), 1))
7808 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7809 return;
7810 delete_related_insns (prev);
7811 delete_related_insns (next);
7814 /* Subfunction of delete_address_reloads: process registers found in X. */
7815 static void
7816 delete_address_reloads_1 (dead_insn, x, current_insn)
7817 rtx dead_insn, x, current_insn;
7819 rtx prev, set, dst, i2;
7820 int i, j;
7821 enum rtx_code code = GET_CODE (x);
7823 if (code != REG)
7825 const char *fmt = GET_RTX_FORMAT (code);
7826 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7828 if (fmt[i] == 'e')
7829 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7830 else if (fmt[i] == 'E')
7832 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7833 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7834 current_insn);
7837 return;
7840 if (spill_reg_order[REGNO (x)] < 0)
7841 return;
7843 /* Scan backwards for the insn that sets x. This might be a way back due
7844 to inheritance. */
7845 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7847 code = GET_CODE (prev);
7848 if (code == CODE_LABEL || code == JUMP_INSN)
7849 return;
7850 if (GET_RTX_CLASS (code) != 'i')
7851 continue;
7852 if (reg_set_p (x, PATTERN (prev)))
7853 break;
7854 if (reg_referenced_p (x, PATTERN (prev)))
7855 return;
7857 if (! prev || INSN_UID (prev) < reload_first_uid)
7858 return;
7859 /* Check that PREV only sets the reload register. */
7860 set = single_set (prev);
7861 if (! set)
7862 return;
7863 dst = SET_DEST (set);
7864 if (GET_CODE (dst) != REG
7865 || ! rtx_equal_p (dst, x))
7866 return;
7867 if (! reg_set_p (dst, PATTERN (dead_insn)))
7869 /* Check if DST was used in a later insn -
7870 it might have been inherited. */
7871 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7873 if (GET_CODE (i2) == CODE_LABEL)
7874 break;
7875 if (! INSN_P (i2))
7876 continue;
7877 if (reg_referenced_p (dst, PATTERN (i2)))
7879 /* If there is a reference to the register in the current insn,
7880 it might be loaded in a non-inherited reload. If no other
7881 reload uses it, that means the register is set before
7882 referenced. */
7883 if (i2 == current_insn)
7885 for (j = n_reloads - 1; j >= 0; j--)
7886 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7887 || reload_override_in[j] == dst)
7888 return;
7889 for (j = n_reloads - 1; j >= 0; j--)
7890 if (rld[j].in && rld[j].reg_rtx == dst)
7891 break;
7892 if (j >= 0)
7893 break;
7895 return;
7897 if (GET_CODE (i2) == JUMP_INSN)
7898 break;
7899 /* If DST is still live at CURRENT_INSN, check if it is used for
7900 any reload. Note that even if CURRENT_INSN sets DST, we still
7901 have to check the reloads. */
7902 if (i2 == current_insn)
7904 for (j = n_reloads - 1; j >= 0; j--)
7905 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7906 || reload_override_in[j] == dst)
7907 return;
7908 /* ??? We can't finish the loop here, because dst might be
7909 allocated to a pseudo in this block if no reload in this
7910 block needs any of the classes containing DST - see
7911 spill_hard_reg. There is no easy way to tell this, so we
7912 have to scan till the end of the basic block. */
7914 if (reg_set_p (dst, PATTERN (i2)))
7915 break;
7918 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7919 reg_reloaded_contents[REGNO (dst)] = -1;
7920 delete_insn (prev);
7923 /* Output reload-insns to reload VALUE into RELOADREG.
7924 VALUE is an autoincrement or autodecrement RTX whose operand
7925 is a register or memory location;
7926 so reloading involves incrementing that location.
7927 IN is either identical to VALUE, or some cheaper place to reload from.
7929 INC_AMOUNT is the number to increment or decrement by (always positive).
7930 This cannot be deduced from VALUE.
7932 Return the instruction that stores into RELOADREG. */
7934 static rtx
7935 inc_for_reload (reloadreg, in, value, inc_amount)
7936 rtx reloadreg;
7937 rtx in, value;
7938 int inc_amount;
7940 /* REG or MEM to be copied and incremented. */
7941 rtx incloc = XEXP (value, 0);
7942 /* Nonzero if increment after copying. */
7943 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7944 rtx last;
7945 rtx inc;
7946 rtx add_insn;
7947 int code;
7948 rtx store;
7949 rtx real_in = in == value ? XEXP (in, 0) : in;
7951 /* No hard register is equivalent to this register after
7952 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7953 we could inc/dec that register as well (maybe even using it for
7954 the source), but I'm not sure it's worth worrying about. */
7955 if (GET_CODE (incloc) == REG)
7956 reg_last_reload_reg[REGNO (incloc)] = 0;
7958 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7959 inc_amount = -inc_amount;
7961 inc = GEN_INT (inc_amount);
7963 /* If this is post-increment, first copy the location to the reload reg. */
7964 if (post && real_in != reloadreg)
7965 emit_insn (gen_move_insn (reloadreg, real_in));
7967 if (in == value)
7969 /* See if we can directly increment INCLOC. Use a method similar to
7970 that in gen_reload. */
7972 last = get_last_insn ();
7973 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7974 gen_rtx_PLUS (GET_MODE (incloc),
7975 incloc, inc)));
7977 code = recog_memoized (add_insn);
7978 if (code >= 0)
7980 extract_insn (add_insn);
7981 if (constrain_operands (1))
7983 /* If this is a pre-increment and we have incremented the value
7984 where it lives, copy the incremented value to RELOADREG to
7985 be used as an address. */
7987 if (! post)
7988 emit_insn (gen_move_insn (reloadreg, incloc));
7990 return add_insn;
7993 delete_insns_since (last);
7996 /* If couldn't do the increment directly, must increment in RELOADREG.
7997 The way we do this depends on whether this is pre- or post-increment.
7998 For pre-increment, copy INCLOC to the reload register, increment it
7999 there, then save back. */
8001 if (! post)
8003 if (in != reloadreg)
8004 emit_insn (gen_move_insn (reloadreg, real_in));
8005 emit_insn (gen_add2_insn (reloadreg, inc));
8006 store = emit_insn (gen_move_insn (incloc, reloadreg));
8008 else
8010 /* Postincrement.
8011 Because this might be a jump insn or a compare, and because RELOADREG
8012 may not be available after the insn in an input reload, we must do
8013 the incrementation before the insn being reloaded for.
8015 We have already copied IN to RELOADREG. Increment the copy in
8016 RELOADREG, save that back, then decrement RELOADREG so it has
8017 the original value. */
8019 emit_insn (gen_add2_insn (reloadreg, inc));
8020 store = emit_insn (gen_move_insn (incloc, reloadreg));
8021 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
8024 return store;
8028 /* See whether a single set SET is a noop. */
8029 static int
8030 reload_cse_noop_set_p (set)
8031 rtx set;
8033 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8036 /* Try to simplify INSN. */
8037 static void
8038 reload_cse_simplify (insn, testreg)
8039 rtx insn;
8040 rtx testreg;
8042 rtx body = PATTERN (insn);
8044 if (GET_CODE (body) == SET)
8046 int count = 0;
8048 /* Simplify even if we may think it is a no-op.
8049 We may think a memory load of a value smaller than WORD_SIZE
8050 is redundant because we haven't taken into account possible
8051 implicit extension. reload_cse_simplify_set() will bring
8052 this out, so it's safer to simplify before we delete. */
8053 count += reload_cse_simplify_set (body, insn);
8055 if (!count && reload_cse_noop_set_p (body))
8057 rtx value = SET_DEST (body);
8058 if (REG_P (value)
8059 && ! REG_FUNCTION_VALUE_P (value))
8060 value = 0;
8061 delete_insn_and_edges (insn);
8062 return;
8065 if (count > 0)
8066 apply_change_group ();
8067 else
8068 reload_cse_simplify_operands (insn, testreg);
8070 else if (GET_CODE (body) == PARALLEL)
8072 int i;
8073 int count = 0;
8074 rtx value = NULL_RTX;
8076 /* If every action in a PARALLEL is a noop, we can delete
8077 the entire PARALLEL. */
8078 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8080 rtx part = XVECEXP (body, 0, i);
8081 if (GET_CODE (part) == SET)
8083 if (! reload_cse_noop_set_p (part))
8084 break;
8085 if (REG_P (SET_DEST (part))
8086 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
8088 if (value)
8089 break;
8090 value = SET_DEST (part);
8093 else if (GET_CODE (part) != CLOBBER)
8094 break;
8097 if (i < 0)
8099 delete_insn_and_edges (insn);
8100 /* We're done with this insn. */
8101 return;
8104 /* It's not a no-op, but we can try to simplify it. */
8105 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8106 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8107 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8109 if (count > 0)
8110 apply_change_group ();
8111 else
8112 reload_cse_simplify_operands (insn, testreg);
8116 /* Do a very simple CSE pass over the hard registers.
8118 This function detects no-op moves where we happened to assign two
8119 different pseudo-registers to the same hard register, and then
8120 copied one to the other. Reload will generate a useless
8121 instruction copying a register to itself.
8123 This function also detects cases where we load a value from memory
8124 into two different registers, and (if memory is more expensive than
8125 registers) changes it to simply copy the first register into the
8126 second register.
8128 Another optimization is performed that scans the operands of each
8129 instruction to see whether the value is already available in a
8130 hard register. It then replaces the operand with the hard register
8131 if possible, much like an optional reload would. */
8133 static void
8134 reload_cse_regs_1 (first)
8135 rtx first;
8137 rtx insn;
8138 rtx testreg = gen_rtx_REG (VOIDmode, -1);
8140 cselib_init ();
8141 init_alias_analysis ();
8143 for (insn = first; insn; insn = NEXT_INSN (insn))
8145 if (INSN_P (insn))
8146 reload_cse_simplify (insn, testreg);
8148 cselib_process_insn (insn);
8151 /* Clean up. */
8152 end_alias_analysis ();
8153 cselib_finish ();
8156 /* Call cse / combine like post-reload optimization phases.
8157 FIRST is the first instruction. */
8158 void
8159 reload_cse_regs (first)
8160 rtx first;
8162 reload_cse_regs_1 (first);
8163 reload_combine ();
8164 reload_cse_move2add (first);
8165 if (flag_expensive_optimizations)
8166 reload_cse_regs_1 (first);
8169 /* Try to simplify a single SET instruction. SET is the set pattern.
8170 INSN is the instruction it came from.
8171 This function only handles one case: if we set a register to a value
8172 which is not a register, we try to find that value in some other register
8173 and change the set into a register copy. */
8175 static int
8176 reload_cse_simplify_set (set, insn)
8177 rtx set;
8178 rtx insn;
8180 int did_change = 0;
8181 int dreg;
8182 rtx src;
8183 enum reg_class dclass;
8184 int old_cost;
8185 cselib_val *val;
8186 struct elt_loc_list *l;
8187 #ifdef LOAD_EXTEND_OP
8188 enum rtx_code extend_op = NIL;
8189 #endif
8191 dreg = true_regnum (SET_DEST (set));
8192 if (dreg < 0)
8193 return 0;
8195 src = SET_SRC (set);
8196 if (side_effects_p (src) || true_regnum (src) >= 0)
8197 return 0;
8199 dclass = REGNO_REG_CLASS (dreg);
8201 #ifdef LOAD_EXTEND_OP
8202 /* When replacing a memory with a register, we need to honor assumptions
8203 that combine made wrt the contents of sign bits. We'll do this by
8204 generating an extend instruction instead of a reg->reg copy. Thus
8205 the destination must be a register that we can widen. */
8206 if (GET_CODE (src) == MEM
8207 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8208 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8209 && GET_CODE (SET_DEST (set)) != REG)
8210 return 0;
8211 #endif
8213 /* If memory loads are cheaper than register copies, don't change them. */
8214 if (GET_CODE (src) == MEM)
8215 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8216 else if (CONSTANT_P (src))
8217 old_cost = rtx_cost (src, SET);
8218 else if (GET_CODE (src) == REG)
8219 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8220 REGNO_REG_CLASS (REGNO (src)), dclass);
8221 else
8222 /* ??? */
8223 old_cost = rtx_cost (src, SET);
8225 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8226 if (! val)
8227 return 0;
8228 for (l = val->locs; l; l = l->next)
8230 rtx this_rtx = l->loc;
8231 int this_cost;
8233 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8235 #ifdef LOAD_EXTEND_OP
8236 if (extend_op != NIL)
8238 HOST_WIDE_INT this_val;
8240 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8241 constants, such as SYMBOL_REF, cannot be extended. */
8242 if (GET_CODE (this_rtx) != CONST_INT)
8243 continue;
8245 this_val = INTVAL (this_rtx);
8246 switch (extend_op)
8248 case ZERO_EXTEND:
8249 this_val &= GET_MODE_MASK (GET_MODE (src));
8250 break;
8251 case SIGN_EXTEND:
8252 /* ??? In theory we're already extended. */
8253 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8254 break;
8255 default:
8256 abort ();
8258 this_rtx = GEN_INT (this_val);
8260 #endif
8261 this_cost = rtx_cost (this_rtx, SET);
8263 else if (GET_CODE (this_rtx) == REG)
8265 #ifdef LOAD_EXTEND_OP
8266 if (extend_op != NIL)
8268 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8269 this_cost = rtx_cost (this_rtx, SET);
8271 else
8272 #endif
8273 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8274 REGNO_REG_CLASS (REGNO (this_rtx)),
8275 dclass);
8277 else
8278 continue;
8280 /* If equal costs, prefer registers over anything else. That
8281 tends to lead to smaller instructions on some machines. */
8282 if (this_cost < old_cost
8283 || (this_cost == old_cost
8284 && GET_CODE (this_rtx) == REG
8285 && GET_CODE (SET_SRC (set)) != REG))
8287 #ifdef LOAD_EXTEND_OP
8288 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8289 && extend_op != NIL)
8291 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8292 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8293 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8295 #endif
8297 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8298 old_cost = this_cost, did_change = 1;
8302 return did_change;
8305 /* Try to replace operands in INSN with equivalent values that are already
8306 in registers. This can be viewed as optional reloading.
8308 For each non-register operand in the insn, see if any hard regs are
8309 known to be equivalent to that operand. Record the alternatives which
8310 can accept these hard registers. Among all alternatives, select the
8311 ones which are better or equal to the one currently matching, where
8312 "better" is in terms of '?' and '!' constraints. Among the remaining
8313 alternatives, select the one which replaces most operands with
8314 hard registers. */
8316 static int
8317 reload_cse_simplify_operands (insn, testreg)
8318 rtx insn;
8319 rtx testreg;
8321 int i, j;
8323 /* For each operand, all registers that are equivalent to it. */
8324 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8326 const char *constraints[MAX_RECOG_OPERANDS];
8328 /* Vector recording how bad an alternative is. */
8329 int *alternative_reject;
8330 /* Vector recording how many registers can be introduced by choosing
8331 this alternative. */
8332 int *alternative_nregs;
8333 /* Array of vectors recording, for each operand and each alternative,
8334 which hard register to substitute, or -1 if the operand should be
8335 left as it is. */
8336 int *op_alt_regno[MAX_RECOG_OPERANDS];
8337 /* Array of alternatives, sorted in order of decreasing desirability. */
8338 int *alternative_order;
8340 extract_insn (insn);
8342 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8343 return 0;
8345 /* Figure out which alternative currently matches. */
8346 if (! constrain_operands (1))
8347 fatal_insn_not_found (insn);
8349 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8350 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8351 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8352 memset ((char *) alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8353 memset ((char *) alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8355 /* For each operand, find out which regs are equivalent. */
8356 for (i = 0; i < recog_data.n_operands; i++)
8358 cselib_val *v;
8359 struct elt_loc_list *l;
8361 CLEAR_HARD_REG_SET (equiv_regs[i]);
8363 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8364 right, so avoid the problem here. Likewise if we have a constant
8365 and the insn pattern doesn't tell us the mode we need. */
8366 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8367 || (CONSTANT_P (recog_data.operand[i])
8368 && recog_data.operand_mode[i] == VOIDmode))
8369 continue;
8371 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8372 if (! v)
8373 continue;
8375 for (l = v->locs; l; l = l->next)
8376 if (GET_CODE (l->loc) == REG)
8377 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8380 for (i = 0; i < recog_data.n_operands; i++)
8382 enum machine_mode mode;
8383 int regno;
8384 const char *p;
8386 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8387 for (j = 0; j < recog_data.n_alternatives; j++)
8388 op_alt_regno[i][j] = -1;
8390 p = constraints[i] = recog_data.constraints[i];
8391 mode = recog_data.operand_mode[i];
8393 /* Add the reject values for each alternative given by the constraints
8394 for this operand. */
8395 j = 0;
8396 while (*p != '\0')
8398 char c = *p++;
8399 if (c == ',')
8400 j++;
8401 else if (c == '?')
8402 alternative_reject[j] += 3;
8403 else if (c == '!')
8404 alternative_reject[j] += 300;
8407 /* We won't change operands which are already registers. We
8408 also don't want to modify output operands. */
8409 regno = true_regnum (recog_data.operand[i]);
8410 if (regno >= 0
8411 || constraints[i][0] == '='
8412 || constraints[i][0] == '+')
8413 continue;
8415 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8417 int class = (int) NO_REGS;
8419 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8420 continue;
8422 REGNO (testreg) = regno;
8423 PUT_MODE (testreg, mode);
8425 /* We found a register equal to this operand. Now look for all
8426 alternatives that can accept this register and have not been
8427 assigned a register they can use yet. */
8428 j = 0;
8429 p = constraints[i];
8430 for (;;)
8432 char c = *p;
8434 switch (c)
8436 case '=': case '+': case '?':
8437 case '#': case '&': case '!':
8438 case '*': case '%':
8439 case '0': case '1': case '2': case '3': case '4':
8440 case '5': case '6': case '7': case '8': case '9':
8441 case 'm': case '<': case '>': case 'V': case 'o':
8442 case 'E': case 'F': case 'G': case 'H':
8443 case 's': case 'i': case 'n':
8444 case 'I': case 'J': case 'K': case 'L':
8445 case 'M': case 'N': case 'O': case 'P':
8446 case 'p': case 'X':
8447 /* These don't say anything we care about. */
8448 break;
8450 case 'g': case 'r':
8451 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8452 break;
8454 default:
8455 class
8456 = (reg_class_subunion
8457 [(int) class]
8458 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
8459 break;
8461 case ',': case '\0':
8462 /* See if REGNO fits this alternative, and set it up as the
8463 replacement register if we don't have one for this
8464 alternative yet and the operand being replaced is not
8465 a cheap CONST_INT. */
8466 if (op_alt_regno[i][j] == -1
8467 && reg_fits_class_p (testreg, class, 0, mode)
8468 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8469 || (rtx_cost (recog_data.operand[i], SET)
8470 > rtx_cost (testreg, SET))))
8472 alternative_nregs[j]++;
8473 op_alt_regno[i][j] = regno;
8475 j++;
8476 break;
8478 p += CONSTRAINT_LEN (c, p);
8480 if (c == '\0')
8481 break;
8486 /* Record all alternatives which are better or equal to the currently
8487 matching one in the alternative_order array. */
8488 for (i = j = 0; i < recog_data.n_alternatives; i++)
8489 if (alternative_reject[i] <= alternative_reject[which_alternative])
8490 alternative_order[j++] = i;
8491 recog_data.n_alternatives = j;
8493 /* Sort it. Given a small number of alternatives, a dumb algorithm
8494 won't hurt too much. */
8495 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8497 int best = i;
8498 int best_reject = alternative_reject[alternative_order[i]];
8499 int best_nregs = alternative_nregs[alternative_order[i]];
8500 int tmp;
8502 for (j = i + 1; j < recog_data.n_alternatives; j++)
8504 int this_reject = alternative_reject[alternative_order[j]];
8505 int this_nregs = alternative_nregs[alternative_order[j]];
8507 if (this_reject < best_reject
8508 || (this_reject == best_reject && this_nregs < best_nregs))
8510 best = j;
8511 best_reject = this_reject;
8512 best_nregs = this_nregs;
8516 tmp = alternative_order[best];
8517 alternative_order[best] = alternative_order[i];
8518 alternative_order[i] = tmp;
8521 /* Substitute the operands as determined by op_alt_regno for the best
8522 alternative. */
8523 j = alternative_order[0];
8525 for (i = 0; i < recog_data.n_operands; i++)
8527 enum machine_mode mode = recog_data.operand_mode[i];
8528 if (op_alt_regno[i][j] == -1)
8529 continue;
8531 validate_change (insn, recog_data.operand_loc[i],
8532 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8535 for (i = recog_data.n_dups - 1; i >= 0; i--)
8537 int op = recog_data.dup_num[i];
8538 enum machine_mode mode = recog_data.operand_mode[op];
8540 if (op_alt_regno[op][j] == -1)
8541 continue;
8543 validate_change (insn, recog_data.dup_loc[i],
8544 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8547 return apply_change_group ();
8550 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8551 addressing now.
8552 This code might also be useful when reload gave up on reg+reg addressing
8553 because of clashes between the return register and INDEX_REG_CLASS. */
8555 /* The maximum number of uses of a register we can keep track of to
8556 replace them with reg+reg addressing. */
8557 #define RELOAD_COMBINE_MAX_USES 6
8559 /* INSN is the insn where a register has ben used, and USEP points to the
8560 location of the register within the rtl. */
8561 struct reg_use { rtx insn, *usep; };
8563 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8564 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8565 indicates where it becomes live again.
8566 Otherwise, USE_INDEX is the index of the last encountered use of the
8567 register (which is first among these we have seen since we scan backwards),
8568 OFFSET contains the constant offset that is added to the register in
8569 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8570 last, of these uses.
8571 STORE_RUID is always meaningful if we only want to use a value in a
8572 register in a different place: it denotes the next insn in the insn
8573 stream (i.e. the last encountered) that sets or clobbers the register. */
8574 static struct
8576 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8577 int use_index;
8578 rtx offset;
8579 int store_ruid;
8580 int use_ruid;
8581 } reg_state[FIRST_PSEUDO_REGISTER];
8583 /* Reverse linear uid. This is increased in reload_combine while scanning
8584 the instructions from last to first. It is used to set last_label_ruid
8585 and the store_ruid / use_ruid fields in reg_state. */
8586 static int reload_combine_ruid;
8588 #define LABEL_LIVE(LABEL) \
8589 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8591 static void
8592 reload_combine ()
8594 rtx insn, set;
8595 int first_index_reg = -1;
8596 int last_index_reg = 0;
8597 int i;
8598 basic_block bb;
8599 unsigned int r;
8600 int last_label_ruid;
8601 int min_labelno, n_labels;
8602 HARD_REG_SET ever_live_at_start, *label_live;
8604 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
8605 reload has already used it where appropriate, so there is no use in
8606 trying to generate it now. */
8607 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8608 return;
8610 /* To avoid wasting too much time later searching for an index register,
8611 determine the minimum and maximum index register numbers. */
8612 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8613 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8615 if (first_index_reg == -1)
8616 first_index_reg = r;
8618 last_index_reg = r;
8621 /* If no index register is available, we can quit now. */
8622 if (first_index_reg == -1)
8623 return;
8625 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8626 information is a bit fuzzy immediately after reload, but it's
8627 still good enough to determine which registers are live at a jump
8628 destination. */
8629 min_labelno = get_first_label_num ();
8630 n_labels = max_label_num () - min_labelno;
8631 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8632 CLEAR_HARD_REG_SET (ever_live_at_start);
8634 FOR_EACH_BB_REVERSE (bb)
8636 insn = bb->head;
8637 if (GET_CODE (insn) == CODE_LABEL)
8639 HARD_REG_SET live;
8641 REG_SET_TO_HARD_REG_SET (live,
8642 bb->global_live_at_start);
8643 compute_use_by_pseudos (&live,
8644 bb->global_live_at_start);
8645 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8646 IOR_HARD_REG_SET (ever_live_at_start, live);
8650 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8651 last_label_ruid = reload_combine_ruid = 0;
8652 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8654 reg_state[r].store_ruid = reload_combine_ruid;
8655 if (fixed_regs[r])
8656 reg_state[r].use_index = -1;
8657 else
8658 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8661 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8663 rtx note;
8665 /* We cannot do our optimization across labels. Invalidating all the use
8666 information we have would be costly, so we just note where the label
8667 is and then later disable any optimization that would cross it. */
8668 if (GET_CODE (insn) == CODE_LABEL)
8669 last_label_ruid = reload_combine_ruid;
8670 else if (GET_CODE (insn) == BARRIER)
8671 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8672 if (! fixed_regs[r])
8673 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8675 if (! INSN_P (insn))
8676 continue;
8678 reload_combine_ruid++;
8680 /* Look for (set (REGX) (CONST_INT))
8681 (set (REGX) (PLUS (REGX) (REGY)))
8683 ... (MEM (REGX)) ...
8684 and convert it to
8685 (set (REGZ) (CONST_INT))
8687 ... (MEM (PLUS (REGZ) (REGY)))... .
8689 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8690 and that we know all uses of REGX before it dies. */
8691 set = single_set (insn);
8692 if (set != NULL_RTX
8693 && GET_CODE (SET_DEST (set)) == REG
8694 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8695 GET_MODE (SET_DEST (set)))
8696 == 1)
8697 && GET_CODE (SET_SRC (set)) == PLUS
8698 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8699 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8700 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8702 rtx reg = SET_DEST (set);
8703 rtx plus = SET_SRC (set);
8704 rtx base = XEXP (plus, 1);
8705 rtx prev = prev_nonnote_insn (insn);
8706 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8707 unsigned int regno = REGNO (reg);
8708 rtx const_reg = NULL_RTX;
8709 rtx reg_sum = NULL_RTX;
8711 /* Now, we need an index register.
8712 We'll set index_reg to this index register, const_reg to the
8713 register that is to be loaded with the constant
8714 (denoted as REGZ in the substitution illustration above),
8715 and reg_sum to the register-register that we want to use to
8716 substitute uses of REG (typically in MEMs) with.
8717 First check REG and BASE for being index registers;
8718 we can use them even if they are not dead. */
8719 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8720 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8721 REGNO (base)))
8723 const_reg = reg;
8724 reg_sum = plus;
8726 else
8728 /* Otherwise, look for a free index register. Since we have
8729 checked above that neiter REG nor BASE are index registers,
8730 if we find anything at all, it will be different from these
8731 two registers. */
8732 for (i = first_index_reg; i <= last_index_reg; i++)
8734 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8736 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8737 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8738 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8740 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8742 const_reg = index_reg;
8743 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8744 break;
8749 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8750 (REGY), i.e. BASE, is not clobbered before the last use we'll
8751 create. */
8752 if (prev_set != 0
8753 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8754 && rtx_equal_p (SET_DEST (prev_set), reg)
8755 && reg_state[regno].use_index >= 0
8756 && (reg_state[REGNO (base)].store_ruid
8757 <= reg_state[regno].use_ruid)
8758 && reg_sum != 0)
8760 int i;
8762 /* Change destination register and, if necessary, the
8763 constant value in PREV, the constant loading instruction. */
8764 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8765 if (reg_state[regno].offset != const0_rtx)
8766 validate_change (prev,
8767 &SET_SRC (prev_set),
8768 GEN_INT (INTVAL (SET_SRC (prev_set))
8769 + INTVAL (reg_state[regno].offset)),
8772 /* Now for every use of REG that we have recorded, replace REG
8773 with REG_SUM. */
8774 for (i = reg_state[regno].use_index;
8775 i < RELOAD_COMBINE_MAX_USES; i++)
8776 validate_change (reg_state[regno].reg_use[i].insn,
8777 reg_state[regno].reg_use[i].usep,
8778 /* Each change must have its own
8779 replacement. */
8780 copy_rtx (reg_sum), 1);
8782 if (apply_change_group ())
8784 rtx *np;
8786 /* Delete the reg-reg addition. */
8787 delete_insn (insn);
8789 if (reg_state[regno].offset != const0_rtx)
8790 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8791 are now invalid. */
8792 for (np = &REG_NOTES (prev); *np;)
8794 if (REG_NOTE_KIND (*np) == REG_EQUAL
8795 || REG_NOTE_KIND (*np) == REG_EQUIV)
8796 *np = XEXP (*np, 1);
8797 else
8798 np = &XEXP (*np, 1);
8801 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8802 reg_state[REGNO (const_reg)].store_ruid
8803 = reload_combine_ruid;
8804 continue;
8809 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8811 if (GET_CODE (insn) == CALL_INSN)
8813 rtx link;
8815 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8816 if (call_used_regs[r])
8818 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8819 reg_state[r].store_ruid = reload_combine_ruid;
8822 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8823 link = XEXP (link, 1))
8825 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8826 if (GET_CODE (usage_rtx) == REG)
8828 unsigned int i;
8829 unsigned int start_reg = REGNO (usage_rtx);
8830 unsigned int num_regs =
8831 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8832 unsigned int end_reg = start_reg + num_regs - 1;
8833 for (i = start_reg; i <= end_reg; i++)
8834 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8836 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8837 reg_state[i].store_ruid = reload_combine_ruid;
8839 else
8840 reg_state[i].use_index = -1;
8845 else if (GET_CODE (insn) == JUMP_INSN
8846 && GET_CODE (PATTERN (insn)) != RETURN)
8848 /* Non-spill registers might be used at the call destination in
8849 some unknown fashion, so we have to mark the unknown use. */
8850 HARD_REG_SET *live;
8852 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8853 && JUMP_LABEL (insn))
8854 live = &LABEL_LIVE (JUMP_LABEL (insn));
8855 else
8856 live = &ever_live_at_start;
8858 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8859 if (TEST_HARD_REG_BIT (*live, i))
8860 reg_state[i].use_index = -1;
8863 reload_combine_note_use (&PATTERN (insn), insn);
8864 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8866 if (REG_NOTE_KIND (note) == REG_INC
8867 && GET_CODE (XEXP (note, 0)) == REG)
8869 int regno = REGNO (XEXP (note, 0));
8871 reg_state[regno].store_ruid = reload_combine_ruid;
8872 reg_state[regno].use_index = -1;
8877 free (label_live);
8880 /* Check if DST is a register or a subreg of a register; if it is,
8881 update reg_state[regno].store_ruid and reg_state[regno].use_index
8882 accordingly. Called via note_stores from reload_combine. */
8884 static void
8885 reload_combine_note_store (dst, set, data)
8886 rtx dst, set;
8887 void *data ATTRIBUTE_UNUSED;
8889 int regno = 0;
8890 int i;
8891 enum machine_mode mode = GET_MODE (dst);
8893 if (GET_CODE (dst) == SUBREG)
8895 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8896 GET_MODE (SUBREG_REG (dst)),
8897 SUBREG_BYTE (dst),
8898 GET_MODE (dst));
8899 dst = SUBREG_REG (dst);
8901 if (GET_CODE (dst) != REG)
8902 return;
8903 regno += REGNO (dst);
8905 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8906 careful with registers / register parts that are not full words.
8908 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8909 if (GET_CODE (set) != SET
8910 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8911 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8912 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8914 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8916 reg_state[i].use_index = -1;
8917 reg_state[i].store_ruid = reload_combine_ruid;
8920 else
8922 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8924 reg_state[i].store_ruid = reload_combine_ruid;
8925 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8930 /* XP points to a piece of rtl that has to be checked for any uses of
8931 registers.
8932 *XP is the pattern of INSN, or a part of it.
8933 Called from reload_combine, and recursively by itself. */
8934 static void
8935 reload_combine_note_use (xp, insn)
8936 rtx *xp, insn;
8938 rtx x = *xp;
8939 enum rtx_code code = x->code;
8940 const char *fmt;
8941 int i, j;
8942 rtx offset = const0_rtx; /* For the REG case below. */
8944 switch (code)
8946 case SET:
8947 if (GET_CODE (SET_DEST (x)) == REG)
8949 reload_combine_note_use (&SET_SRC (x), insn);
8950 return;
8952 break;
8954 case USE:
8955 /* If this is the USE of a return value, we can't change it. */
8956 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8958 /* Mark the return register as used in an unknown fashion. */
8959 rtx reg = XEXP (x, 0);
8960 int regno = REGNO (reg);
8961 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8963 while (--nregs >= 0)
8964 reg_state[regno + nregs].use_index = -1;
8965 return;
8967 break;
8969 case CLOBBER:
8970 if (GET_CODE (SET_DEST (x)) == REG)
8972 /* No spurious CLOBBERs of pseudo registers may remain. */
8973 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8974 abort ();
8975 return;
8977 break;
8979 case PLUS:
8980 /* We are interested in (plus (reg) (const_int)) . */
8981 if (GET_CODE (XEXP (x, 0)) != REG
8982 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8983 break;
8984 offset = XEXP (x, 1);
8985 x = XEXP (x, 0);
8986 /* Fall through. */
8987 case REG:
8989 int regno = REGNO (x);
8990 int use_index;
8991 int nregs;
8993 /* No spurious USEs of pseudo registers may remain. */
8994 if (regno >= FIRST_PSEUDO_REGISTER)
8995 abort ();
8997 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8999 /* We can't substitute into multi-hard-reg uses. */
9000 if (nregs > 1)
9002 while (--nregs >= 0)
9003 reg_state[regno + nregs].use_index = -1;
9004 return;
9007 /* If this register is already used in some unknown fashion, we
9008 can't do anything.
9009 If we decrement the index from zero to -1, we can't store more
9010 uses, so this register becomes used in an unknown fashion. */
9011 use_index = --reg_state[regno].use_index;
9012 if (use_index < 0)
9013 return;
9015 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9017 /* We have found another use for a register that is already
9018 used later. Check if the offsets match; if not, mark the
9019 register as used in an unknown fashion. */
9020 if (! rtx_equal_p (offset, reg_state[regno].offset))
9022 reg_state[regno].use_index = -1;
9023 return;
9026 else
9028 /* This is the first use of this register we have seen since we
9029 marked it as dead. */
9030 reg_state[regno].offset = offset;
9031 reg_state[regno].use_ruid = reload_combine_ruid;
9033 reg_state[regno].reg_use[use_index].insn = insn;
9034 reg_state[regno].reg_use[use_index].usep = xp;
9035 return;
9038 default:
9039 break;
9042 /* Recursively process the components of X. */
9043 fmt = GET_RTX_FORMAT (code);
9044 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9046 if (fmt[i] == 'e')
9047 reload_combine_note_use (&XEXP (x, i), insn);
9048 else if (fmt[i] == 'E')
9050 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9051 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9056 /* See if we can reduce the cost of a constant by replacing a move
9057 with an add. We track situations in which a register is set to a
9058 constant or to a register plus a constant. */
9059 /* We cannot do our optimization across labels. Invalidating all the
9060 information about register contents we have would be costly, so we
9061 use move2add_last_label_luid to note where the label is and then
9062 later disable any optimization that would cross it.
9063 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9064 reg_set_luid[n] is greater than last_label_luid[n] . */
9065 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9067 /* If reg_base_reg[n] is negative, register n has been set to
9068 reg_offset[n] in mode reg_mode[n] .
9069 If reg_base_reg[n] is non-negative, register n has been set to the
9070 sum of reg_offset[n] and the value of register reg_base_reg[n]
9071 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9072 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9073 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9074 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9076 /* move2add_luid is linearly increased while scanning the instructions
9077 from first to last. It is used to set reg_set_luid in
9078 reload_cse_move2add and move2add_note_store. */
9079 static int move2add_luid;
9081 /* move2add_last_label_luid is set whenever a label is found. Labels
9082 invalidate all previously collected reg_offset data. */
9083 static int move2add_last_label_luid;
9085 /* Generate a CONST_INT and force it in the range of MODE. */
9087 static HOST_WIDE_INT
9088 sext_for_mode (mode, value)
9089 enum machine_mode mode;
9090 HOST_WIDE_INT value;
9092 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9093 int width = GET_MODE_BITSIZE (mode);
9095 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9096 sign extend it. */
9097 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9098 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9099 cval |= (HOST_WIDE_INT) -1 << width;
9101 return cval;
9104 /* ??? We don't know how zero / sign extension is handled, hence we
9105 can't go from a narrower to a wider mode. */
9106 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9107 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9108 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9109 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9110 GET_MODE_BITSIZE (INMODE))))
9112 static void
9113 reload_cse_move2add (first)
9114 rtx first;
9116 int i;
9117 rtx insn;
9119 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9120 reg_set_luid[i] = 0;
9122 move2add_last_label_luid = 0;
9123 move2add_luid = 2;
9124 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9126 rtx pat, note;
9128 if (GET_CODE (insn) == CODE_LABEL)
9130 move2add_last_label_luid = move2add_luid;
9131 /* We're going to increment move2add_luid twice after a
9132 label, so that we can use move2add_last_label_luid + 1 as
9133 the luid for constants. */
9134 move2add_luid++;
9135 continue;
9137 if (! INSN_P (insn))
9138 continue;
9139 pat = PATTERN (insn);
9140 /* For simplicity, we only perform this optimization on
9141 straightforward SETs. */
9142 if (GET_CODE (pat) == SET
9143 && GET_CODE (SET_DEST (pat)) == REG)
9145 rtx reg = SET_DEST (pat);
9146 int regno = REGNO (reg);
9147 rtx src = SET_SRC (pat);
9149 /* Check if we have valid information on the contents of this
9150 register in the mode of REG. */
9151 if (reg_set_luid[regno] > move2add_last_label_luid
9152 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9154 /* Try to transform (set (REGX) (CONST_INT A))
9156 (set (REGX) (CONST_INT B))
9158 (set (REGX) (CONST_INT A))
9160 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9162 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9164 int success = 0;
9165 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9166 INTVAL (src)
9167 - reg_offset[regno]));
9168 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9169 use (set (reg) (reg)) instead.
9170 We don't delete this insn, nor do we convert it into a
9171 note, to avoid losing register notes or the return
9172 value flag. jump2 already knows how to get rid of
9173 no-op moves. */
9174 if (new_src == const0_rtx)
9175 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9176 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9177 && have_add2_insn (reg, new_src))
9178 success = validate_change (insn, &PATTERN (insn),
9179 gen_add2_insn (reg, new_src), 0);
9180 reg_set_luid[regno] = move2add_luid;
9181 reg_mode[regno] = GET_MODE (reg);
9182 reg_offset[regno] = INTVAL (src);
9183 continue;
9186 /* Try to transform (set (REGX) (REGY))
9187 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9189 (set (REGX) (REGY))
9190 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9192 (REGX) (REGY))
9193 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9195 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9196 else if (GET_CODE (src) == REG
9197 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9198 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9199 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9200 reg_mode[REGNO (src)]))
9202 rtx next = next_nonnote_insn (insn);
9203 rtx set = NULL_RTX;
9204 if (next)
9205 set = single_set (next);
9206 if (set
9207 && SET_DEST (set) == reg
9208 && GET_CODE (SET_SRC (set)) == PLUS
9209 && XEXP (SET_SRC (set), 0) == reg
9210 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9212 rtx src3 = XEXP (SET_SRC (set), 1);
9213 HOST_WIDE_INT added_offset = INTVAL (src3);
9214 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9215 HOST_WIDE_INT regno_offset = reg_offset[regno];
9216 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9217 added_offset
9218 + base_offset
9219 - regno_offset));
9220 int success = 0;
9222 if (new_src == const0_rtx)
9223 /* See above why we create (set (reg) (reg)) here. */
9224 success
9225 = validate_change (next, &SET_SRC (set), reg, 0);
9226 else if ((rtx_cost (new_src, PLUS)
9227 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9228 && have_add2_insn (reg, new_src))
9229 success
9230 = validate_change (next, &PATTERN (next),
9231 gen_add2_insn (reg, new_src), 0);
9232 if (success)
9233 delete_insn (insn);
9234 insn = next;
9235 reg_mode[regno] = GET_MODE (reg);
9236 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9237 added_offset
9238 + base_offset);
9239 continue;
9245 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9247 if (REG_NOTE_KIND (note) == REG_INC
9248 && GET_CODE (XEXP (note, 0)) == REG)
9250 /* Reset the information about this register. */
9251 int regno = REGNO (XEXP (note, 0));
9252 if (regno < FIRST_PSEUDO_REGISTER)
9253 reg_set_luid[regno] = 0;
9256 note_stores (PATTERN (insn), move2add_note_store, NULL);
9257 /* If this is a CALL_INSN, all call used registers are stored with
9258 unknown values. */
9259 if (GET_CODE (insn) == CALL_INSN)
9261 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9263 if (call_used_regs[i])
9264 /* Reset the information about this register. */
9265 reg_set_luid[i] = 0;
9271 /* SET is a SET or CLOBBER that sets DST.
9272 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9273 Called from reload_cse_move2add via note_stores. */
9275 static void
9276 move2add_note_store (dst, set, data)
9277 rtx dst, set;
9278 void *data ATTRIBUTE_UNUSED;
9280 unsigned int regno = 0;
9281 unsigned int i;
9282 enum machine_mode mode = GET_MODE (dst);
9284 if (GET_CODE (dst) == SUBREG)
9286 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9287 GET_MODE (SUBREG_REG (dst)),
9288 SUBREG_BYTE (dst),
9289 GET_MODE (dst));
9290 dst = SUBREG_REG (dst);
9293 /* Some targets do argument pushes without adding REG_INC notes. */
9295 if (GET_CODE (dst) == MEM)
9297 dst = XEXP (dst, 0);
9298 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9299 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9300 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9301 return;
9303 if (GET_CODE (dst) != REG)
9304 return;
9306 regno += REGNO (dst);
9308 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9309 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9310 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9311 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9313 rtx src = SET_SRC (set);
9314 rtx base_reg;
9315 HOST_WIDE_INT offset;
9316 int base_regno;
9317 /* This may be different from mode, if SET_DEST (set) is a
9318 SUBREG. */
9319 enum machine_mode dst_mode = GET_MODE (dst);
9321 switch (GET_CODE (src))
9323 case PLUS:
9324 if (GET_CODE (XEXP (src, 0)) == REG)
9326 base_reg = XEXP (src, 0);
9328 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9329 offset = INTVAL (XEXP (src, 1));
9330 else if (GET_CODE (XEXP (src, 1)) == REG
9331 && (reg_set_luid[REGNO (XEXP (src, 1))]
9332 > move2add_last_label_luid)
9333 && (MODES_OK_FOR_MOVE2ADD
9334 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9336 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9337 offset = reg_offset[REGNO (XEXP (src, 1))];
9338 /* Maybe the first register is known to be a
9339 constant. */
9340 else if (reg_set_luid[REGNO (base_reg)]
9341 > move2add_last_label_luid
9342 && (MODES_OK_FOR_MOVE2ADD
9343 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9344 && reg_base_reg[REGNO (base_reg)] < 0)
9346 offset = reg_offset[REGNO (base_reg)];
9347 base_reg = XEXP (src, 1);
9349 else
9350 goto invalidate;
9352 else
9353 goto invalidate;
9355 break;
9358 goto invalidate;
9360 case REG:
9361 base_reg = src;
9362 offset = 0;
9363 break;
9365 case CONST_INT:
9366 /* Start tracking the register as a constant. */
9367 reg_base_reg[regno] = -1;
9368 reg_offset[regno] = INTVAL (SET_SRC (set));
9369 /* We assign the same luid to all registers set to constants. */
9370 reg_set_luid[regno] = move2add_last_label_luid + 1;
9371 reg_mode[regno] = mode;
9372 return;
9374 default:
9375 invalidate:
9376 /* Invalidate the contents of the register. */
9377 reg_set_luid[regno] = 0;
9378 return;
9381 base_regno = REGNO (base_reg);
9382 /* If information about the base register is not valid, set it
9383 up as a new base register, pretending its value is known
9384 starting from the current insn. */
9385 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9387 reg_base_reg[base_regno] = base_regno;
9388 reg_offset[base_regno] = 0;
9389 reg_set_luid[base_regno] = move2add_luid;
9390 reg_mode[base_regno] = mode;
9392 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9393 reg_mode[base_regno]))
9394 goto invalidate;
9396 reg_mode[regno] = mode;
9398 /* Copy base information from our base register. */
9399 reg_set_luid[regno] = reg_set_luid[base_regno];
9400 reg_base_reg[regno] = reg_base_reg[base_regno];
9402 /* Compute the sum of the offsets or constants. */
9403 reg_offset[regno] = sext_for_mode (dst_mode,
9404 offset
9405 + reg_offset[base_regno]);
9407 else
9409 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9411 for (i = regno; i < endregno; i++)
9412 /* Reset the information about this register. */
9413 reg_set_luid[i] = 0;
9417 #ifdef AUTO_INC_DEC
9418 static void
9419 add_auto_inc_notes (insn, x)
9420 rtx insn;
9421 rtx x;
9423 enum rtx_code code = GET_CODE (x);
9424 const char *fmt;
9425 int i, j;
9427 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9429 REG_NOTES (insn)
9430 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9431 return;
9434 /* Scan all the operand sub-expressions. */
9435 fmt = GET_RTX_FORMAT (code);
9436 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9438 if (fmt[i] == 'e')
9439 add_auto_inc_notes (insn, XEXP (x, i));
9440 else if (fmt[i] == 'E')
9441 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9442 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9445 #endif
9447 /* Copy EH notes from an insn to its reloads. */
9448 static void
9449 copy_eh_notes (insn, x)
9450 rtx insn;
9451 rtx x;
9453 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9454 if (eh_note)
9456 for (; x != 0; x = NEXT_INSN (x))
9458 if (may_trap_p (PATTERN (x)))
9459 REG_NOTES (x)
9460 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9461 REG_NOTES (x));
9466 /* This is used by reload pass, that does emit some instructions after
9467 abnormal calls moving basic block end, but in fact it wants to emit
9468 them on the edge. Looks for abnormal call edges, find backward the
9469 proper call and fix the damage.
9471 Similar handle instructions throwing exceptions internally. */
9472 void
9473 fixup_abnormal_edges ()
9475 bool inserted = false;
9476 basic_block bb;
9478 FOR_EACH_BB (bb)
9480 edge e;
9482 /* Look for cases we are interested in - calls or instructions causing
9483 exceptions. */
9484 for (e = bb->succ; e; e = e->succ_next)
9486 if (e->flags & EDGE_ABNORMAL_CALL)
9487 break;
9488 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9489 == (EDGE_ABNORMAL | EDGE_EH))
9490 break;
9492 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9494 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9495 rtx next;
9496 for (e = bb->succ; e; e = e->succ_next)
9497 if (e->flags & EDGE_FALLTHRU)
9498 break;
9499 /* Get past the new insns generated. Allow notes, as the insns may
9500 be already deleted. */
9501 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9502 && !can_throw_internal (insn)
9503 && insn != bb->head)
9504 insn = PREV_INSN (insn);
9505 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9506 abort ();
9507 bb->end = insn;
9508 inserted = true;
9509 insn = NEXT_INSN (insn);
9510 while (insn && insn != stop)
9512 next = NEXT_INSN (insn);
9513 if (INSN_P (insn))
9515 delete_insn (insn);
9517 /* Sometimes there's still the return value USE.
9518 If it's placed after a trapping call (i.e. that
9519 call is the last insn anyway), we have no fallthru
9520 edge. Simply delete this use and don't try to insert
9521 on the non-existent edge. */
9522 if (GET_CODE (PATTERN (insn)) != USE)
9524 /* We're not deleting it, we're moving it. */
9525 INSN_DELETED_P (insn) = 0;
9526 PREV_INSN (insn) = NULL_RTX;
9527 NEXT_INSN (insn) = NULL_RTX;
9529 insert_insn_on_edge (insn, e);
9532 insn = next;
9536 if (inserted)
9537 commit_edge_insertions ();