* cfgloopmanip.c (force_single_succ_latches): Fix missindentation.
[official-gcc.git] / gcc / df.c
blobc151249a197ccf620ce70a07e0241a69be9b2d89
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
4 mhayes@redhat.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA.
24 OVERVIEW:
26 This file provides some dataflow routines for computing reaching defs,
27 upward exposed uses, live variables, def-use chains, and use-def
28 chains. The global dataflow is performed using simple iterative
29 methods with a worklist and could be sped up by ordering the blocks
30 with a depth first search order.
32 A `struct ref' data structure (ref) is allocated for every register
33 reference (def or use) and this records the insn and bb the ref is
34 found within. The refs are linked together in chains of uses and defs
35 for each insn and for each register. Each ref also has a chain field
36 that links all the use refs for a def or all the def refs for a use.
37 This is used to create use-def or def-use chains.
40 USAGE:
42 Here's an example of using the dataflow routines.
44 struct df *df;
46 df = df_init ();
48 df_analyse (df, 0, DF_ALL);
50 df_dump (df, DF_ALL, stderr);
52 df_finish (df);
55 df_init simply creates a poor man's object (df) that needs to be
56 passed to all the dataflow routines. df_finish destroys this
57 object and frees up any allocated memory. DF_ALL says to analyse
58 everything.
60 df_analyse performs the following:
62 1. Records defs and uses by scanning the insns in each basic block
63 or by scanning the insns queued by df_insn_modify.
64 2. Links defs and uses into insn-def and insn-use chains.
65 3. Links defs and uses into reg-def and reg-use chains.
66 4. Assigns LUIDs to each insn (for modified blocks).
67 5. Calculates local reaching definitions.
68 6. Calculates global reaching definitions.
69 7. Creates use-def chains.
70 8. Calculates local reaching uses (upwards exposed uses).
71 9. Calculates global reaching uses.
72 10. Creates def-use chains.
73 11. Calculates local live registers.
74 12. Calculates global live registers.
75 13. Calculates register lifetimes and determines local registers.
78 PHILOSOPHY:
80 Note that the dataflow information is not updated for every newly
81 deleted or created insn. If the dataflow information requires
82 updating then all the changed, new, or deleted insns needs to be
83 marked with df_insn_modify (or df_insns_modify) either directly or
84 indirectly (say through calling df_insn_delete). df_insn_modify
85 marks all the modified insns to get processed the next time df_analyse
86 is called.
88 Beware that tinkering with insns may invalidate the dataflow information.
89 The philosophy behind these routines is that once the dataflow
90 information has been gathered, the user should store what they require
91 before they tinker with any insn. Once a reg is replaced, for example,
92 then the reg-def/reg-use chains will point to the wrong place. Once a
93 whole lot of changes have been made, df_analyse can be called again
94 to update the dataflow information. Currently, this is not very smart
95 with regard to propagating changes to the dataflow so it should not
96 be called very often.
99 DATA STRUCTURES:
101 The basic object is a REF (reference) and this may either be a DEF
102 (definition) or a USE of a register.
104 These are linked into a variety of lists; namely reg-def, reg-use,
105 insn-def, insn-use, def-use, and use-def lists. For example,
106 the reg-def lists contain all the refs that define a given register
107 while the insn-use lists contain all the refs used by an insn.
109 Note that the reg-def and reg-use chains are generally short (except for the
110 hard registers) and thus it is much faster to search these chains
111 rather than searching the def or use bitmaps.
113 If the insns are in SSA form then the reg-def and use-def lists
114 should only contain the single defining ref.
117 TODO:
119 1) Incremental dataflow analysis.
121 Note that if a loop invariant insn is hoisted (or sunk), we do not
122 need to change the def-use or use-def chains. All we have to do is to
123 change the bb field for all the associated defs and uses and to
124 renumber the LUIDs for the original and new basic blocks of the insn.
126 When shadowing loop mems we create new uses and defs for new pseudos
127 so we do not affect the existing dataflow information.
129 My current strategy is to queue up all modified, created, or deleted
130 insns so when df_analyse is called we can easily determine all the new
131 or deleted refs. Currently the global dataflow information is
132 recomputed from scratch but this could be propagated more efficiently.
134 2) Reduced memory requirements.
136 We could operate a pool of ref structures. When a ref is deleted it
137 gets returned to the pool (say by linking on to a chain of free refs).
138 This will require a pair of bitmaps for defs and uses so that we can
139 tell which ones have been changed. Alternatively, we could
140 periodically squeeze the def and use tables and associated bitmaps and
141 renumber the def and use ids.
143 3) Ordering of reg-def and reg-use lists.
145 Should the first entry in the def list be the first def (within a BB)?
146 Similarly, should the first entry in the use list be the last use
147 (within a BB)?
149 4) Working with a sub-CFG.
151 Often the whole CFG does not need to be analyzed, for example,
152 when optimising a loop, only certain registers are of interest.
153 Perhaps there should be a bitmap argument to df_analyse to specify
154 which registers should be analyzed?
157 NOTES:
159 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
160 both a use and a def. These are both marked read/write to show that they
161 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
162 will generate a use of reg 42 followed by a def of reg 42 (both marked
163 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
164 generates a use of reg 41 then a def of reg 41 (both marked read/write),
165 even though reg 41 is decremented before it is used for the memory
166 address in this second example.
168 A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
169 a read-modify write operation. We generate both a use and a def
170 and again mark them read/write.
173 #include "config.h"
174 #include "system.h"
175 #include "coretypes.h"
176 #include "tm.h"
177 #include "rtl.h"
178 #include "tm_p.h"
179 #include "insn-config.h"
180 #include "recog.h"
181 #include "function.h"
182 #include "regs.h"
183 #include "obstack.h"
184 #include "hard-reg-set.h"
185 #include "basic-block.h"
186 #include "sbitmap.h"
187 #include "bitmap.h"
188 #include "df.h"
189 #include "fibheap.h"
191 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
192 do \
194 unsigned int node_; \
195 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, \
196 {(BB) = BASIC_BLOCK (node_); CODE;}); \
198 while (0)
200 static struct obstack df_ref_obstack;
201 static struct df *ddf;
203 static void df_reg_table_realloc PARAMS((struct df *, int));
204 static void df_insn_table_realloc PARAMS((struct df *, unsigned int));
205 static void df_bitmaps_alloc PARAMS((struct df *, int));
206 static void df_bitmaps_free PARAMS((struct df *, int));
207 static void df_free PARAMS((struct df *));
208 static void df_alloc PARAMS((struct df *, int));
210 static rtx df_reg_clobber_gen PARAMS((unsigned int));
211 static rtx df_reg_use_gen PARAMS((unsigned int));
213 static inline struct df_link *df_link_create PARAMS((struct ref *,
214 struct df_link *));
215 static struct df_link *df_ref_unlink PARAMS((struct df_link **, struct ref *));
216 static void df_def_unlink PARAMS((struct df *, struct ref *));
217 static void df_use_unlink PARAMS((struct df *, struct ref *));
218 static void df_insn_refs_unlink PARAMS ((struct df *, basic_block, rtx));
219 #if 0
220 static void df_bb_refs_unlink PARAMS ((struct df *, basic_block));
221 static void df_refs_unlink PARAMS ((struct df *, bitmap));
222 #endif
224 static struct ref *df_ref_create PARAMS((struct df *,
225 rtx, rtx *, rtx,
226 enum df_ref_type, enum df_ref_flags));
227 static void df_ref_record_1 PARAMS((struct df *, rtx, rtx *,
228 rtx, enum df_ref_type,
229 enum df_ref_flags));
230 static void df_ref_record PARAMS((struct df *, rtx, rtx *,
231 rtx, enum df_ref_type,
232 enum df_ref_flags));
233 static void df_def_record_1 PARAMS((struct df *, rtx, basic_block, rtx));
234 static void df_defs_record PARAMS((struct df *, rtx, basic_block, rtx));
235 static void df_uses_record PARAMS((struct df *, rtx *,
236 enum df_ref_type, basic_block, rtx,
237 enum df_ref_flags));
238 static void df_insn_refs_record PARAMS((struct df *, basic_block, rtx));
239 static void df_bb_refs_record PARAMS((struct df *, basic_block));
240 static void df_refs_record PARAMS((struct df *, bitmap));
242 static void df_bb_reg_def_chain_create PARAMS((struct df *, basic_block));
243 static void df_reg_def_chain_create PARAMS((struct df *, bitmap));
244 static void df_bb_reg_use_chain_create PARAMS((struct df *, basic_block));
245 static void df_reg_use_chain_create PARAMS((struct df *, bitmap));
246 static void df_bb_du_chain_create PARAMS((struct df *, basic_block, bitmap));
247 static void df_du_chain_create PARAMS((struct df *, bitmap));
248 static void df_bb_ud_chain_create PARAMS((struct df *, basic_block));
249 static void df_ud_chain_create PARAMS((struct df *, bitmap));
250 static void df_bb_rd_local_compute PARAMS((struct df *, basic_block));
251 static void df_rd_local_compute PARAMS((struct df *, bitmap));
252 static void df_bb_ru_local_compute PARAMS((struct df *, basic_block));
253 static void df_ru_local_compute PARAMS((struct df *, bitmap));
254 static void df_bb_lr_local_compute PARAMS((struct df *, basic_block));
255 static void df_lr_local_compute PARAMS((struct df *, bitmap));
256 static void df_bb_reg_info_compute PARAMS((struct df *, basic_block, bitmap));
257 static void df_reg_info_compute PARAMS((struct df *, bitmap));
259 static int df_bb_luids_set PARAMS((struct df *df, basic_block));
260 static int df_luids_set PARAMS((struct df *df, bitmap));
262 static int df_modified_p PARAMS ((struct df *, bitmap));
263 static int df_refs_queue PARAMS ((struct df *));
264 static int df_refs_process PARAMS ((struct df *));
265 static int df_bb_refs_update PARAMS ((struct df *, basic_block));
266 static int df_refs_update PARAMS ((struct df *));
267 static void df_analyse_1 PARAMS((struct df *, bitmap, int, int));
269 static void df_insns_modify PARAMS((struct df *, basic_block,
270 rtx, rtx));
271 static int df_rtx_mem_replace PARAMS ((rtx *, void *));
272 static int df_rtx_reg_replace PARAMS ((rtx *, void *));
273 void df_refs_reg_replace PARAMS ((struct df *, bitmap,
274 struct df_link *, rtx, rtx));
276 static int df_def_dominates_all_uses_p PARAMS((struct df *, struct ref *def));
277 static int df_def_dominates_uses_p PARAMS((struct df *,
278 struct ref *def, bitmap));
279 static struct ref *df_bb_regno_last_use_find PARAMS((struct df *, basic_block,
280 unsigned int));
281 static struct ref *df_bb_regno_first_def_find PARAMS((struct df *, basic_block,
282 unsigned int));
283 static struct ref *df_bb_insn_regno_last_use_find PARAMS((struct df *,
284 basic_block,
285 rtx, unsigned int));
286 static struct ref *df_bb_insn_regno_first_def_find PARAMS((struct df *,
287 basic_block,
288 rtx, unsigned int));
290 static void df_chain_dump PARAMS((struct df_link *, FILE *file));
291 static void df_chain_dump_regno PARAMS((struct df_link *, FILE *file));
292 static void df_regno_debug PARAMS ((struct df *, unsigned int, FILE *));
293 static void df_ref_debug PARAMS ((struct df *, struct ref *, FILE *));
294 static void df_rd_transfer_function PARAMS ((int, int *, bitmap, bitmap,
295 bitmap, bitmap, void *));
296 static void df_ru_transfer_function PARAMS ((int, int *, bitmap, bitmap,
297 bitmap, bitmap, void *));
298 static void df_lr_transfer_function PARAMS ((int, int *, bitmap, bitmap,
299 bitmap, bitmap, void *));
300 static void hybrid_search_bitmap PARAMS ((basic_block, bitmap *, bitmap *,
301 bitmap *, bitmap *, enum df_flow_dir,
302 enum df_confluence_op,
303 transfer_function_bitmap,
304 sbitmap, sbitmap, void *));
305 static void hybrid_search_sbitmap PARAMS ((basic_block, sbitmap *, sbitmap *,
306 sbitmap *, sbitmap *, enum df_flow_dir,
307 enum df_confluence_op,
308 transfer_function_sbitmap,
309 sbitmap, sbitmap, void *));
310 static inline bool read_modify_subreg_p PARAMS ((rtx));
313 /* Local memory allocation/deallocation routines. */
316 /* Increase the insn info table to have space for at least SIZE + 1
317 elements. */
318 static void
319 df_insn_table_realloc (df, size)
320 struct df *df;
321 unsigned int size;
323 size++;
324 if (size <= df->insn_size)
325 return;
327 /* Make the table a little larger than requested, so we do not need
328 to enlarge it so often. */
329 size += df->insn_size / 4;
331 df->insns = (struct insn_info *)
332 xrealloc (df->insns, size * sizeof (struct insn_info));
334 memset (df->insns + df->insn_size, 0,
335 (size - df->insn_size) * sizeof (struct insn_info));
337 df->insn_size = size;
339 if (! df->insns_modified)
341 df->insns_modified = BITMAP_XMALLOC ();
342 bitmap_zero (df->insns_modified);
347 /* Increase the reg info table by SIZE more elements. */
348 static void
349 df_reg_table_realloc (df, size)
350 struct df *df;
351 int size;
353 /* Make table 25 percent larger by default. */
354 if (! size)
355 size = df->reg_size / 4;
357 size += df->reg_size;
358 if (size < max_reg_num ())
359 size = max_reg_num ();
361 df->regs = (struct reg_info *)
362 xrealloc (df->regs, size * sizeof (struct reg_info));
364 /* Zero the new entries. */
365 memset (df->regs + df->reg_size, 0,
366 (size - df->reg_size) * sizeof (struct reg_info));
368 df->reg_size = size;
372 /* Allocate bitmaps for each basic block. */
373 static void
374 df_bitmaps_alloc (df, flags)
375 struct df *df;
376 int flags;
378 int dflags = 0;
379 basic_block bb;
381 /* Free the bitmaps if they need resizing. */
382 if ((flags & DF_LR) && df->n_regs < (unsigned int) max_reg_num ())
383 dflags |= DF_LR | DF_RU;
384 if ((flags & DF_RU) && df->n_uses < df->use_id)
385 dflags |= DF_RU;
386 if ((flags & DF_RD) && df->n_defs < df->def_id)
387 dflags |= DF_RD;
389 if (dflags)
390 df_bitmaps_free (df, dflags);
392 df->n_defs = df->def_id;
393 df->n_uses = df->use_id;
395 FOR_EACH_BB (bb)
397 struct bb_info *bb_info = DF_BB_INFO (df, bb);
399 if (flags & DF_RD && ! bb_info->rd_in)
401 /* Allocate bitmaps for reaching definitions. */
402 bb_info->rd_kill = BITMAP_XMALLOC ();
403 bitmap_zero (bb_info->rd_kill);
404 bb_info->rd_gen = BITMAP_XMALLOC ();
405 bitmap_zero (bb_info->rd_gen);
406 bb_info->rd_in = BITMAP_XMALLOC ();
407 bb_info->rd_out = BITMAP_XMALLOC ();
408 bb_info->rd_valid = 0;
411 if (flags & DF_RU && ! bb_info->ru_in)
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info->ru_kill = BITMAP_XMALLOC ();
415 bitmap_zero (bb_info->ru_kill);
416 /* Note the lack of symmetry. */
417 bb_info->ru_gen = BITMAP_XMALLOC ();
418 bitmap_zero (bb_info->ru_gen);
419 bb_info->ru_in = BITMAP_XMALLOC ();
420 bb_info->ru_out = BITMAP_XMALLOC ();
421 bb_info->ru_valid = 0;
424 if (flags & DF_LR && ! bb_info->lr_in)
426 /* Allocate bitmaps for live variables. */
427 bb_info->lr_def = BITMAP_XMALLOC ();
428 bitmap_zero (bb_info->lr_def);
429 bb_info->lr_use = BITMAP_XMALLOC ();
430 bitmap_zero (bb_info->lr_use);
431 bb_info->lr_in = BITMAP_XMALLOC ();
432 bb_info->lr_out = BITMAP_XMALLOC ();
433 bb_info->lr_valid = 0;
439 /* Free bitmaps for each basic block. */
440 static void
441 df_bitmaps_free (df, flags)
442 struct df *df ATTRIBUTE_UNUSED;
443 int flags;
445 basic_block bb;
447 FOR_EACH_BB (bb)
449 struct bb_info *bb_info = DF_BB_INFO (df, bb);
451 if (!bb_info)
452 continue;
454 if ((flags & DF_RD) && bb_info->rd_in)
456 /* Free bitmaps for reaching definitions. */
457 BITMAP_XFREE (bb_info->rd_kill);
458 bb_info->rd_kill = NULL;
459 BITMAP_XFREE (bb_info->rd_gen);
460 bb_info->rd_gen = NULL;
461 BITMAP_XFREE (bb_info->rd_in);
462 bb_info->rd_in = NULL;
463 BITMAP_XFREE (bb_info->rd_out);
464 bb_info->rd_out = NULL;
467 if ((flags & DF_RU) && bb_info->ru_in)
469 /* Free bitmaps for upward exposed uses. */
470 BITMAP_XFREE (bb_info->ru_kill);
471 bb_info->ru_kill = NULL;
472 BITMAP_XFREE (bb_info->ru_gen);
473 bb_info->ru_gen = NULL;
474 BITMAP_XFREE (bb_info->ru_in);
475 bb_info->ru_in = NULL;
476 BITMAP_XFREE (bb_info->ru_out);
477 bb_info->ru_out = NULL;
480 if ((flags & DF_LR) && bb_info->lr_in)
482 /* Free bitmaps for live variables. */
483 BITMAP_XFREE (bb_info->lr_def);
484 bb_info->lr_def = NULL;
485 BITMAP_XFREE (bb_info->lr_use);
486 bb_info->lr_use = NULL;
487 BITMAP_XFREE (bb_info->lr_in);
488 bb_info->lr_in = NULL;
489 BITMAP_XFREE (bb_info->lr_out);
490 bb_info->lr_out = NULL;
493 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
497 /* Allocate and initialize dataflow memory. */
498 static void
499 df_alloc (df, n_regs)
500 struct df *df;
501 int n_regs;
503 int n_insns;
504 basic_block bb;
506 gcc_obstack_init (&df_ref_obstack);
508 /* Perhaps we should use LUIDs to save memory for the insn_refs
509 table. This is only a small saving; a few pointers. */
510 n_insns = get_max_uid () + 1;
512 df->def_id = 0;
513 df->n_defs = 0;
514 /* Approximate number of defs by number of insns. */
515 df->def_size = n_insns;
516 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
518 df->use_id = 0;
519 df->n_uses = 0;
520 /* Approximate number of uses by twice number of insns. */
521 df->use_size = n_insns * 2;
522 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
524 df->n_regs = n_regs;
525 df->n_bbs = last_basic_block;
527 /* Allocate temporary working array used during local dataflow analysis. */
528 df->reg_def_last = xmalloc (df->n_regs * sizeof (struct ref *));
530 df_insn_table_realloc (df, n_insns);
532 df_reg_table_realloc (df, df->n_regs);
534 df->bbs_modified = BITMAP_XMALLOC ();
535 bitmap_zero (df->bbs_modified);
537 df->flags = 0;
539 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
541 df->all_blocks = BITMAP_XMALLOC ();
542 FOR_EACH_BB (bb)
543 bitmap_set_bit (df->all_blocks, bb->index);
547 /* Free all the dataflow info. */
548 static void
549 df_free (df)
550 struct df *df;
552 df_bitmaps_free (df, DF_ALL);
554 if (df->bbs)
555 free (df->bbs);
556 df->bbs = 0;
558 if (df->insns)
559 free (df->insns);
560 df->insns = 0;
561 df->insn_size = 0;
563 if (df->defs)
564 free (df->defs);
565 df->defs = 0;
566 df->def_size = 0;
567 df->def_id = 0;
569 if (df->uses)
570 free (df->uses);
571 df->uses = 0;
572 df->use_size = 0;
573 df->use_id = 0;
575 if (df->regs)
576 free (df->regs);
577 df->regs = 0;
578 df->reg_size = 0;
580 if (df->bbs_modified)
581 BITMAP_XFREE (df->bbs_modified);
582 df->bbs_modified = 0;
584 if (df->insns_modified)
585 BITMAP_XFREE (df->insns_modified);
586 df->insns_modified = 0;
588 BITMAP_XFREE (df->all_blocks);
589 df->all_blocks = 0;
591 obstack_free (&df_ref_obstack, NULL);
594 /* Local miscellaneous routines. */
596 /* Return a USE for register REGNO. */
597 static rtx df_reg_use_gen (regno)
598 unsigned int regno;
600 rtx reg;
601 rtx use;
603 reg = regno_reg_rtx[regno];
605 use = gen_rtx_USE (GET_MODE (reg), reg);
606 return use;
610 /* Return a CLOBBER for register REGNO. */
611 static rtx df_reg_clobber_gen (regno)
612 unsigned int regno;
614 rtx reg;
615 rtx use;
617 reg = regno_reg_rtx[regno];
619 use = gen_rtx_CLOBBER (GET_MODE (reg), reg);
620 return use;
623 /* Local chain manipulation routines. */
625 /* Create a link in a def-use or use-def chain. */
626 static inline struct df_link *
627 df_link_create (ref, next)
628 struct ref *ref;
629 struct df_link *next;
631 struct df_link *link;
633 link = (struct df_link *) obstack_alloc (&df_ref_obstack,
634 sizeof (*link));
635 link->next = next;
636 link->ref = ref;
637 return link;
641 /* Add REF to chain head pointed to by PHEAD. */
642 static struct df_link *
643 df_ref_unlink (phead, ref)
644 struct df_link **phead;
645 struct ref *ref;
647 struct df_link *link = *phead;
649 if (link)
651 if (! link->next)
653 /* Only a single ref. It must be the one we want.
654 If not, the def-use and use-def chains are likely to
655 be inconsistent. */
656 if (link->ref != ref)
657 abort ();
658 /* Now have an empty chain. */
659 *phead = NULL;
661 else
663 /* Multiple refs. One of them must be us. */
664 if (link->ref == ref)
665 *phead = link->next;
666 else
668 /* Follow chain. */
669 for (; link->next; link = link->next)
671 if (link->next->ref == ref)
673 /* Unlink from list. */
674 link->next = link->next->next;
675 return link->next;
681 return link;
685 /* Unlink REF from all def-use/use-def chains, etc. */
687 df_ref_remove (df, ref)
688 struct df *df;
689 struct ref *ref;
691 if (DF_REF_REG_DEF_P (ref))
693 df_def_unlink (df, ref);
694 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
696 else
698 df_use_unlink (df, ref);
699 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
701 return 1;
705 /* Unlink DEF from use-def and reg-def chains. */
706 static void
707 df_def_unlink (df, def)
708 struct df *df ATTRIBUTE_UNUSED;
709 struct ref *def;
711 struct df_link *du_link;
712 unsigned int dregno = DF_REF_REGNO (def);
714 /* Follow def-use chain to find all the uses of this def. */
715 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
717 struct ref *use = du_link->ref;
719 /* Unlink this def from the use-def chain. */
720 df_ref_unlink (&DF_REF_CHAIN (use), def);
722 DF_REF_CHAIN (def) = 0;
724 /* Unlink def from reg-def chain. */
725 df_ref_unlink (&df->regs[dregno].defs, def);
727 df->defs[DF_REF_ID (def)] = 0;
731 /* Unlink use from def-use and reg-use chains. */
732 static void
733 df_use_unlink (df, use)
734 struct df *df ATTRIBUTE_UNUSED;
735 struct ref *use;
737 struct df_link *ud_link;
738 unsigned int uregno = DF_REF_REGNO (use);
740 /* Follow use-def chain to find all the defs of this use. */
741 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
743 struct ref *def = ud_link->ref;
745 /* Unlink this use from the def-use chain. */
746 df_ref_unlink (&DF_REF_CHAIN (def), use);
748 DF_REF_CHAIN (use) = 0;
750 /* Unlink use from reg-use chain. */
751 df_ref_unlink (&df->regs[uregno].uses, use);
753 df->uses[DF_REF_ID (use)] = 0;
756 /* Local routines for recording refs. */
759 /* Create a new ref of type DF_REF_TYPE for register REG at address
760 LOC within INSN of BB. */
761 static struct ref *
762 df_ref_create (df, reg, loc, insn, ref_type, ref_flags)
763 struct df *df;
764 rtx reg;
765 rtx *loc;
766 rtx insn;
767 enum df_ref_type ref_type;
768 enum df_ref_flags ref_flags;
770 struct ref *this_ref;
772 this_ref = (struct ref *) obstack_alloc (&df_ref_obstack,
773 sizeof (*this_ref));
774 DF_REF_REG (this_ref) = reg;
775 DF_REF_LOC (this_ref) = loc;
776 DF_REF_INSN (this_ref) = insn;
777 DF_REF_CHAIN (this_ref) = 0;
778 DF_REF_TYPE (this_ref) = ref_type;
779 DF_REF_FLAGS (this_ref) = ref_flags;
781 if (ref_type == DF_REF_REG_DEF)
783 if (df->def_id >= df->def_size)
785 /* Make table 25 percent larger. */
786 df->def_size += (df->def_size / 4);
787 df->defs = xrealloc (df->defs,
788 df->def_size * sizeof (*df->defs));
790 DF_REF_ID (this_ref) = df->def_id;
791 df->defs[df->def_id++] = this_ref;
793 else
795 if (df->use_id >= df->use_size)
797 /* Make table 25 percent larger. */
798 df->use_size += (df->use_size / 4);
799 df->uses = xrealloc (df->uses,
800 df->use_size * sizeof (*df->uses));
802 DF_REF_ID (this_ref) = df->use_id;
803 df->uses[df->use_id++] = this_ref;
805 return this_ref;
809 /* Create a new reference of type DF_REF_TYPE for a single register REG,
810 used inside the LOC rtx of INSN. */
811 static void
812 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags)
813 struct df *df;
814 rtx reg;
815 rtx *loc;
816 rtx insn;
817 enum df_ref_type ref_type;
818 enum df_ref_flags ref_flags;
820 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
824 /* Create new references of type DF_REF_TYPE for each part of register REG
825 at address LOC within INSN of BB. */
826 static void
827 df_ref_record (df, reg, loc, insn, ref_type, ref_flags)
828 struct df *df;
829 rtx reg;
830 rtx *loc;
831 rtx insn;
832 enum df_ref_type ref_type;
833 enum df_ref_flags ref_flags;
835 unsigned int regno;
837 if (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG)
838 abort ();
840 /* For the reg allocator we are interested in some SUBREG rtx's, but not
841 all. Notably only those representing a word extraction from a multi-word
842 reg. As written in the docu those should have the form
843 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
844 XXX Is that true? We could also use the global word_mode variable. */
845 if (GET_CODE (reg) == SUBREG
846 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
847 || GET_MODE_SIZE (GET_MODE (reg))
848 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
850 loc = &SUBREG_REG (reg);
851 reg = *loc;
854 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
855 if (regno < FIRST_PSEUDO_REGISTER)
857 int i;
858 int endregno;
860 if (! (df->flags & DF_HARD_REGS))
861 return;
863 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
864 for the mode, because we only want to add references to regs, which
865 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
866 reference the whole reg 0 in DI mode (which would also include
867 reg 1, at least, if 0 and 1 are SImode registers). */
868 endregno = HARD_REGNO_NREGS (regno, GET_MODE (reg));
869 if (GET_CODE (reg) == SUBREG)
870 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
871 SUBREG_BYTE (reg), GET_MODE (reg));
872 endregno += regno;
874 for (i = regno; i < endregno; i++)
875 df_ref_record_1 (df, regno_reg_rtx[i],
876 loc, insn, ref_type, ref_flags);
878 else
880 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
885 /* Return non-zero if writes to paradoxical SUBREGs, or SUBREGs which
886 are too narrow, are read-modify-write. */
887 static inline bool
888 read_modify_subreg_p (x)
889 rtx x;
891 unsigned int isize, osize;
892 if (GET_CODE (x) != SUBREG)
893 return false;
894 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
895 osize = GET_MODE_SIZE (GET_MODE (x));
896 if (isize <= osize)
897 return true;
898 if (isize <= UNITS_PER_WORD)
899 return false;
900 if (osize > UNITS_PER_WORD)
901 return false;
902 return true;
906 /* Process all the registers defined in the rtx, X. */
907 static void
908 df_def_record_1 (df, x, bb, insn)
909 struct df *df;
910 rtx x;
911 basic_block bb;
912 rtx insn;
914 rtx *loc = &SET_DEST (x);
915 rtx dst = *loc;
916 enum df_ref_flags flags = 0;
918 /* Some targets place small structures in registers for
919 return values of functions. */
920 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
922 int i;
924 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
925 df_def_record_1 (df, XVECEXP (dst, 0, i), bb, insn);
926 return;
929 #ifdef CLASS_CANNOT_CHANGE_MODE
930 if (GET_CODE (dst) == SUBREG
931 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (dst)),
932 GET_MODE (dst)))
933 flags |= DF_REF_MODE_CHANGE;
934 #endif
936 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
937 be handy for the reg allocator. */
938 while (GET_CODE (dst) == STRICT_LOW_PART
939 || GET_CODE (dst) == ZERO_EXTRACT
940 || GET_CODE (dst) == SIGN_EXTRACT
941 || read_modify_subreg_p (dst))
943 /* Strict low part always contains SUBREG, but we do not want to make
944 it appear outside, as whole register is always considered. */
945 if (GET_CODE (dst) == STRICT_LOW_PART)
947 loc = &XEXP (dst, 0);
948 dst = *loc;
950 #ifdef CLASS_CANNOT_CHANGE_MODE
951 if (GET_CODE (dst) == SUBREG
952 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (dst)),
953 GET_MODE (dst)))
954 flags |= DF_REF_MODE_CHANGE;
955 #endif
956 loc = &XEXP (dst, 0);
957 dst = *loc;
958 flags |= DF_REF_READ_WRITE;
961 if (GET_CODE (dst) == REG
962 || (GET_CODE (dst) == SUBREG && GET_CODE (SUBREG_REG (dst)) == REG))
963 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
967 /* Process all the registers defined in the pattern rtx, X. */
968 static void
969 df_defs_record (df, x, bb, insn)
970 struct df *df;
971 rtx x;
972 basic_block bb;
973 rtx insn;
975 RTX_CODE code = GET_CODE (x);
977 if (code == SET || code == CLOBBER)
979 /* Mark the single def within the pattern. */
980 df_def_record_1 (df, x, bb, insn);
982 else if (code == PARALLEL)
984 int i;
986 /* Mark the multiple defs within the pattern. */
987 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
989 code = GET_CODE (XVECEXP (x, 0, i));
990 if (code == SET || code == CLOBBER)
991 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
997 /* Process all the registers used in the rtx at address LOC. */
998 static void
999 df_uses_record (df, loc, ref_type, bb, insn, flags)
1000 struct df *df;
1001 rtx *loc;
1002 enum df_ref_type ref_type;
1003 basic_block bb;
1004 rtx insn;
1005 enum df_ref_flags flags;
1007 RTX_CODE code;
1008 rtx x;
1009 retry:
1010 x = *loc;
1011 if (!x)
1012 return;
1013 code = GET_CODE (x);
1014 switch (code)
1016 case LABEL_REF:
1017 case SYMBOL_REF:
1018 case CONST_INT:
1019 case CONST:
1020 case CONST_DOUBLE:
1021 case CONST_VECTOR:
1022 case PC:
1023 case CC0:
1024 case ADDR_VEC:
1025 case ADDR_DIFF_VEC:
1026 return;
1028 case CLOBBER:
1029 /* If we are clobbering a MEM, mark any registers inside the address
1030 as being used. */
1031 if (GET_CODE (XEXP (x, 0)) == MEM)
1032 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
1033 DF_REF_REG_MEM_STORE, bb, insn, flags);
1035 /* If we're clobbering a REG then we have a def so ignore. */
1036 return;
1038 case MEM:
1039 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, flags);
1040 return;
1042 case SUBREG:
1043 /* While we're here, optimize this case. */
1045 /* In case the SUBREG is not of a REG, do not optimize. */
1046 if (GET_CODE (SUBREG_REG (x)) != REG)
1048 loc = &SUBREG_REG (x);
1049 df_uses_record (df, loc, ref_type, bb, insn, flags);
1050 return;
1052 #ifdef CLASS_CANNOT_CHANGE_MODE
1053 if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
1054 GET_MODE (SUBREG_REG (x))))
1055 flags |= DF_REF_MODE_CHANGE;
1056 #endif
1058 /* ... Fall through ... */
1060 case REG:
1061 /* See a REG (or SUBREG) other than being set. */
1062 df_ref_record (df, x, loc, insn, ref_type, flags);
1063 return;
1065 case SET:
1067 rtx dst = SET_DEST (x);
1069 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1071 switch (GET_CODE (dst))
1073 enum df_ref_flags use_flags;
1074 case SUBREG:
1075 if (read_modify_subreg_p (dst))
1077 use_flags = DF_REF_READ_WRITE;
1078 #ifdef CLASS_CANNOT_CHANGE_MODE
1079 if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst),
1080 GET_MODE (SUBREG_REG (dst))))
1081 use_flags |= DF_REF_MODE_CHANGE;
1082 #endif
1083 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1084 insn, use_flags);
1085 break;
1087 /* ... FALLTHRU ... */
1088 case REG:
1089 case PARALLEL:
1090 case PC:
1091 case CC0:
1092 break;
1093 case MEM:
1094 df_uses_record (df, &XEXP (dst, 0),
1095 DF_REF_REG_MEM_STORE,
1096 bb, insn, 0);
1097 break;
1098 case STRICT_LOW_PART:
1099 /* A strict_low_part uses the whole REG and not just the SUBREG. */
1100 dst = XEXP (dst, 0);
1101 if (GET_CODE (dst) != SUBREG)
1102 abort ();
1103 use_flags = DF_REF_READ_WRITE;
1104 #ifdef CLASS_CANNOT_CHANGE_MODE
1105 if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst),
1106 GET_MODE (SUBREG_REG (dst))))
1107 use_flags |= DF_REF_MODE_CHANGE;
1108 #endif
1109 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1110 insn, use_flags);
1111 break;
1112 case ZERO_EXTRACT:
1113 case SIGN_EXTRACT:
1114 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1115 DF_REF_READ_WRITE);
1116 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1117 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1118 dst = XEXP (dst, 0);
1119 break;
1120 default:
1121 abort ();
1123 return;
1126 case RETURN:
1127 break;
1129 case ASM_OPERANDS:
1130 case UNSPEC_VOLATILE:
1131 case TRAP_IF:
1132 case ASM_INPUT:
1134 /* Traditional and volatile asm instructions must be considered to use
1135 and clobber all hard registers, all pseudo-registers and all of
1136 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1138 Consider for instance a volatile asm that changes the fpu rounding
1139 mode. An insn should not be moved across this even if it only uses
1140 pseudo-regs because it might give an incorrectly rounded result.
1142 For now, just mark any regs we can find in ASM_OPERANDS as
1143 used. */
1145 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1146 We can not just fall through here since then we would be confused
1147 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1148 traditional asms unlike their normal usage. */
1149 if (code == ASM_OPERANDS)
1151 int j;
1153 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1154 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1155 DF_REF_REG_USE, bb, insn, 0);
1156 return;
1158 break;
1161 case PRE_DEC:
1162 case POST_DEC:
1163 case PRE_INC:
1164 case POST_INC:
1165 case PRE_MODIFY:
1166 case POST_MODIFY:
1167 /* Catch the def of the register being modified. */
1168 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1170 /* ... Fall through to handle uses ... */
1172 default:
1173 break;
1176 /* Recursively scan the operands of this expression. */
1178 const char *fmt = GET_RTX_FORMAT (code);
1179 int i;
1181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1183 if (fmt[i] == 'e')
1185 /* Tail recursive case: save a function call level. */
1186 if (i == 0)
1188 loc = &XEXP (x, 0);
1189 goto retry;
1191 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1193 else if (fmt[i] == 'E')
1195 int j;
1196 for (j = 0; j < XVECLEN (x, i); j++)
1197 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1198 bb, insn, flags);
1205 /* Record all the df within INSN of basic block BB. */
1206 static void
1207 df_insn_refs_record (df, bb, insn)
1208 struct df *df;
1209 basic_block bb;
1210 rtx insn;
1212 int i;
1214 if (INSN_P (insn))
1216 rtx note;
1218 /* Record register defs */
1219 df_defs_record (df, PATTERN (insn), bb, insn);
1221 if (df->flags & DF_EQUIV_NOTES)
1222 for (note = REG_NOTES (insn); note;
1223 note = XEXP (note, 1))
1225 switch (REG_NOTE_KIND (note))
1227 case REG_EQUIV:
1228 case REG_EQUAL:
1229 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1230 bb, insn, 0);
1231 default:
1232 break;
1236 if (GET_CODE (insn) == CALL_INSN)
1238 rtx note;
1239 rtx x;
1241 /* Record the registers used to pass arguments. */
1242 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1243 note = XEXP (note, 1))
1245 if (GET_CODE (XEXP (note, 0)) == USE)
1246 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1247 bb, insn, 0);
1250 /* The stack ptr is used (honorarily) by a CALL insn. */
1251 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1252 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1254 if (df->flags & DF_HARD_REGS)
1256 /* Calls may also reference any of the global registers,
1257 so they are recorded as used. */
1258 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1259 if (global_regs[i])
1261 x = df_reg_use_gen (i);
1262 df_uses_record (df, &SET_DEST (x),
1263 DF_REF_REG_USE, bb, insn, 0);
1268 /* Record the register uses. */
1269 df_uses_record (df, &PATTERN (insn),
1270 DF_REF_REG_USE, bb, insn, 0);
1272 if (GET_CODE (insn) == CALL_INSN)
1274 rtx note;
1276 if (df->flags & DF_HARD_REGS)
1278 /* Kill all registers invalidated by a call. */
1279 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1280 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1282 rtx reg_clob = df_reg_clobber_gen (i);
1283 df_defs_record (df, reg_clob, bb, insn);
1287 /* There may be extra registers to be clobbered. */
1288 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1289 note;
1290 note = XEXP (note, 1))
1291 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1292 df_defs_record (df, XEXP (note, 0), bb, insn);
1298 /* Record all the refs within the basic block BB. */
1299 static void
1300 df_bb_refs_record (df, bb)
1301 struct df *df;
1302 basic_block bb;
1304 rtx insn;
1306 /* Scan the block an insn at a time from beginning to end. */
1307 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1309 if (INSN_P (insn))
1311 /* Record defs within INSN. */
1312 df_insn_refs_record (df, bb, insn);
1314 if (insn == bb->end)
1315 break;
1320 /* Record all the refs in the basic blocks specified by BLOCKS. */
1321 static void
1322 df_refs_record (df, blocks)
1323 struct df *df;
1324 bitmap blocks;
1326 basic_block bb;
1328 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1330 df_bb_refs_record (df, bb);
1334 /* Dataflow analysis routines. */
1337 /* Create reg-def chains for basic block BB. These are a list of
1338 definitions for each register. */
1339 static void
1340 df_bb_reg_def_chain_create (df, bb)
1341 struct df *df;
1342 basic_block bb;
1344 rtx insn;
1346 /* Perhaps the defs should be sorted using a depth first search
1347 of the CFG (or possibly a breadth first search). We currently
1348 scan the basic blocks in reverse order so that the first defs
1349 appear at the start of the chain. */
1351 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1352 insn = PREV_INSN (insn))
1354 struct df_link *link;
1355 unsigned int uid = INSN_UID (insn);
1357 if (! INSN_P (insn))
1358 continue;
1360 for (link = df->insns[uid].defs; link; link = link->next)
1362 struct ref *def = link->ref;
1363 unsigned int dregno = DF_REF_REGNO (def);
1365 /* Do not add ref's to the chain twice, i.e., only add new
1366 refs. XXX the same could be done by testing if the
1367 current insn is a modified (or a new) one. This would be
1368 faster. */
1369 if (DF_REF_ID (def) < df->def_id_save)
1370 continue;
1372 df->regs[dregno].defs
1373 = df_link_create (def, df->regs[dregno].defs);
1379 /* Create reg-def chains for each basic block within BLOCKS. These
1380 are a list of definitions for each register. */
1381 static void
1382 df_reg_def_chain_create (df, blocks)
1383 struct df *df;
1384 bitmap blocks;
1386 basic_block bb;
1388 FOR_EACH_BB_IN_BITMAP/*_REV*/ (blocks, 0, bb,
1390 df_bb_reg_def_chain_create (df, bb);
1395 /* Create reg-use chains for basic block BB. These are a list of uses
1396 for each register. */
1397 static void
1398 df_bb_reg_use_chain_create (df, bb)
1399 struct df *df;
1400 basic_block bb;
1402 rtx insn;
1404 /* Scan in forward order so that the last uses appear at the start
1405 of the chain. */
1407 for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
1408 insn = NEXT_INSN (insn))
1410 struct df_link *link;
1411 unsigned int uid = INSN_UID (insn);
1413 if (! INSN_P (insn))
1414 continue;
1416 for (link = df->insns[uid].uses; link; link = link->next)
1418 struct ref *use = link->ref;
1419 unsigned int uregno = DF_REF_REGNO (use);
1421 /* Do not add ref's to the chain twice, i.e., only add new
1422 refs. XXX the same could be done by testing if the
1423 current insn is a modified (or a new) one. This would be
1424 faster. */
1425 if (DF_REF_ID (use) < df->use_id_save)
1426 continue;
1428 df->regs[uregno].uses
1429 = df_link_create (use, df->regs[uregno].uses);
1435 /* Create reg-use chains for each basic block within BLOCKS. These
1436 are a list of uses for each register. */
1437 static void
1438 df_reg_use_chain_create (df, blocks)
1439 struct df *df;
1440 bitmap blocks;
1442 basic_block bb;
1444 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1446 df_bb_reg_use_chain_create (df, bb);
1451 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1452 static void
1453 df_bb_du_chain_create (df, bb, ru)
1454 struct df *df;
1455 basic_block bb;
1456 bitmap ru;
1458 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1459 rtx insn;
1461 bitmap_copy (ru, bb_info->ru_out);
1463 /* For each def in BB create a linked list (chain) of uses
1464 reached from the def. */
1465 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1466 insn = PREV_INSN (insn))
1468 struct df_link *def_link;
1469 struct df_link *use_link;
1470 unsigned int uid = INSN_UID (insn);
1472 if (! INSN_P (insn))
1473 continue;
1475 /* For each def in insn... */
1476 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1478 struct ref *def = def_link->ref;
1479 unsigned int dregno = DF_REF_REGNO (def);
1481 DF_REF_CHAIN (def) = 0;
1483 /* While the reg-use chains are not essential, it
1484 is _much_ faster to search these short lists rather
1485 than all the reaching uses, especially for large functions. */
1486 for (use_link = df->regs[dregno].uses; use_link;
1487 use_link = use_link->next)
1489 struct ref *use = use_link->ref;
1491 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1493 DF_REF_CHAIN (def)
1494 = df_link_create (use, DF_REF_CHAIN (def));
1496 bitmap_clear_bit (ru, DF_REF_ID (use));
1501 /* For each use in insn... */
1502 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1504 struct ref *use = use_link->ref;
1505 bitmap_set_bit (ru, DF_REF_ID (use));
1511 /* Create def-use chains from reaching use bitmaps for basic blocks
1512 in BLOCKS. */
1513 static void
1514 df_du_chain_create (df, blocks)
1515 struct df *df;
1516 bitmap blocks;
1518 bitmap ru;
1519 basic_block bb;
1521 ru = BITMAP_XMALLOC ();
1523 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1525 df_bb_du_chain_create (df, bb, ru);
1528 BITMAP_XFREE (ru);
1532 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1533 static void
1534 df_bb_ud_chain_create (df, bb)
1535 struct df *df;
1536 basic_block bb;
1538 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1539 struct ref **reg_def_last = df->reg_def_last;
1540 rtx insn;
1542 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1544 /* For each use in BB create a linked list (chain) of defs
1545 that reach the use. */
1546 for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
1547 insn = NEXT_INSN (insn))
1549 unsigned int uid = INSN_UID (insn);
1550 struct df_link *use_link;
1551 struct df_link *def_link;
1553 if (! INSN_P (insn))
1554 continue;
1556 /* For each use in insn... */
1557 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1559 struct ref *use = use_link->ref;
1560 unsigned int regno = DF_REF_REGNO (use);
1562 DF_REF_CHAIN (use) = 0;
1564 /* Has regno been defined in this BB yet? If so, use
1565 the last def as the single entry for the use-def
1566 chain for this use. Otherwise, we need to add all
1567 the defs using this regno that reach the start of
1568 this BB. */
1569 if (reg_def_last[regno])
1571 DF_REF_CHAIN (use)
1572 = df_link_create (reg_def_last[regno], 0);
1574 else
1576 /* While the reg-def chains are not essential, it is
1577 _much_ faster to search these short lists rather than
1578 all the reaching defs, especially for large
1579 functions. */
1580 for (def_link = df->regs[regno].defs; def_link;
1581 def_link = def_link->next)
1583 struct ref *def = def_link->ref;
1585 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1587 DF_REF_CHAIN (use)
1588 = df_link_create (def, DF_REF_CHAIN (use));
1595 /* For each def in insn... record the last def of each reg. */
1596 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1598 struct ref *def = def_link->ref;
1599 int dregno = DF_REF_REGNO (def);
1601 reg_def_last[dregno] = def;
1607 /* Create use-def chains from reaching def bitmaps for basic blocks
1608 within BLOCKS. */
1609 static void
1610 df_ud_chain_create (df, blocks)
1611 struct df *df;
1612 bitmap blocks;
1614 basic_block bb;
1616 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1618 df_bb_ud_chain_create (df, bb);
1624 static void
1625 df_rd_transfer_function (bb, changed, in, out, gen, kill, data)
1626 int bb ATTRIBUTE_UNUSED;
1627 int *changed;
1628 bitmap in, out, gen, kill;
1629 void *data ATTRIBUTE_UNUSED;
1631 *changed = bitmap_union_of_diff (out, gen, in, kill);
1635 static void
1636 df_ru_transfer_function (bb, changed, in, out, gen, kill, data)
1637 int bb ATTRIBUTE_UNUSED;
1638 int *changed;
1639 bitmap in, out, gen, kill;
1640 void *data ATTRIBUTE_UNUSED;
1642 *changed = bitmap_union_of_diff (in, gen, out, kill);
1646 static void
1647 df_lr_transfer_function (bb, changed, in, out, use, def, data)
1648 int bb ATTRIBUTE_UNUSED;
1649 int *changed;
1650 bitmap in, out, use, def;
1651 void *data ATTRIBUTE_UNUSED;
1653 *changed = bitmap_union_of_diff (in, use, out, def);
1657 /* Compute local reaching def info for basic block BB. */
1658 static void
1659 df_bb_rd_local_compute (df, bb)
1660 struct df *df;
1661 basic_block bb;
1663 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1664 rtx insn;
1666 for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
1667 insn = NEXT_INSN (insn))
1669 unsigned int uid = INSN_UID (insn);
1670 struct df_link *def_link;
1672 if (! INSN_P (insn))
1673 continue;
1675 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1677 struct ref *def = def_link->ref;
1678 unsigned int regno = DF_REF_REGNO (def);
1679 struct df_link *def2_link;
1681 for (def2_link = df->regs[regno].defs; def2_link;
1682 def2_link = def2_link->next)
1684 struct ref *def2 = def2_link->ref;
1686 /* Add all defs of this reg to the set of kills. This
1687 is greedy since many of these defs will not actually
1688 be killed by this BB but it keeps things a lot
1689 simpler. */
1690 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1692 /* Zap from the set of gens for this BB. */
1693 bitmap_clear_bit (bb_info->rd_gen, DF_REF_ID (def2));
1696 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1700 bb_info->rd_valid = 1;
1704 /* Compute local reaching def info for each basic block within BLOCKS. */
1705 static void
1706 df_rd_local_compute (df, blocks)
1707 struct df *df;
1708 bitmap blocks;
1710 basic_block bb;
1712 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1714 df_bb_rd_local_compute (df, bb);
1719 /* Compute local reaching use (upward exposed use) info for basic
1720 block BB. */
1721 static void
1722 df_bb_ru_local_compute (df, bb)
1723 struct df *df;
1724 basic_block bb;
1726 /* This is much more tricky than computing reaching defs. With
1727 reaching defs, defs get killed by other defs. With upwards
1728 exposed uses, these get killed by defs with the same regno. */
1730 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1731 rtx insn;
1734 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1735 insn = PREV_INSN (insn))
1737 unsigned int uid = INSN_UID (insn);
1738 struct df_link *def_link;
1739 struct df_link *use_link;
1741 if (! INSN_P (insn))
1742 continue;
1744 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1746 struct ref *def = def_link->ref;
1747 unsigned int dregno = DF_REF_REGNO (def);
1749 for (use_link = df->regs[dregno].uses; use_link;
1750 use_link = use_link->next)
1752 struct ref *use = use_link->ref;
1754 /* Add all uses of this reg to the set of kills. This
1755 is greedy since many of these uses will not actually
1756 be killed by this BB but it keeps things a lot
1757 simpler. */
1758 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1760 /* Zap from the set of gens for this BB. */
1761 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1765 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1767 struct ref *use = use_link->ref;
1768 /* Add use to set of gens in this BB. */
1769 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1772 bb_info->ru_valid = 1;
1776 /* Compute local reaching use (upward exposed use) info for each basic
1777 block within BLOCKS. */
1778 static void
1779 df_ru_local_compute (df, blocks)
1780 struct df *df;
1781 bitmap blocks;
1783 basic_block bb;
1785 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1787 df_bb_ru_local_compute (df, bb);
1792 /* Compute local live variable info for basic block BB. */
1793 static void
1794 df_bb_lr_local_compute (df, bb)
1795 struct df *df;
1796 basic_block bb;
1798 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1799 rtx insn;
1801 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1802 insn = PREV_INSN (insn))
1804 unsigned int uid = INSN_UID (insn);
1805 struct df_link *link;
1807 if (! INSN_P (insn))
1808 continue;
1810 for (link = df->insns[uid].defs; link; link = link->next)
1812 struct ref *def = link->ref;
1813 unsigned int dregno = DF_REF_REGNO (def);
1815 /* Add def to set of defs in this BB. */
1816 bitmap_set_bit (bb_info->lr_def, dregno);
1818 bitmap_clear_bit (bb_info->lr_use, dregno);
1821 for (link = df->insns[uid].uses; link; link = link->next)
1823 struct ref *use = link->ref;
1824 /* Add use to set of uses in this BB. */
1825 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1828 bb_info->lr_valid = 1;
1832 /* Compute local live variable info for each basic block within BLOCKS. */
1833 static void
1834 df_lr_local_compute (df, blocks)
1835 struct df *df;
1836 bitmap blocks;
1838 basic_block bb;
1840 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1842 df_bb_lr_local_compute (df, bb);
1847 /* Compute register info: lifetime, bb, and number of defs and uses
1848 for basic block BB. */
1849 static void
1850 df_bb_reg_info_compute (df, bb, live)
1851 struct df *df;
1852 basic_block bb;
1853 bitmap live;
1855 struct reg_info *reg_info = df->regs;
1856 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1857 rtx insn;
1859 bitmap_copy (live, bb_info->lr_out);
1861 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1862 insn = PREV_INSN (insn))
1864 unsigned int uid = INSN_UID (insn);
1865 unsigned int regno;
1866 struct df_link *link;
1868 if (! INSN_P (insn))
1869 continue;
1871 for (link = df->insns[uid].defs; link; link = link->next)
1873 struct ref *def = link->ref;
1874 unsigned int dregno = DF_REF_REGNO (def);
1876 /* Kill this register. */
1877 bitmap_clear_bit (live, dregno);
1878 reg_info[dregno].n_defs++;
1881 for (link = df->insns[uid].uses; link; link = link->next)
1883 struct ref *use = link->ref;
1884 unsigned int uregno = DF_REF_REGNO (use);
1886 /* This register is now live. */
1887 bitmap_set_bit (live, uregno);
1888 reg_info[uregno].n_uses++;
1891 /* Increment lifetimes of all live registers. */
1892 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno,
1894 reg_info[regno].lifetime++;
1900 /* Compute register info: lifetime, bb, and number of defs and uses. */
1901 static void
1902 df_reg_info_compute (df, blocks)
1903 struct df *df;
1904 bitmap blocks;
1906 basic_block bb;
1907 bitmap live;
1909 live = BITMAP_XMALLOC ();
1911 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1913 df_bb_reg_info_compute (df, bb, live);
1916 BITMAP_XFREE (live);
1920 /* Assign LUIDs for BB. */
1921 static int
1922 df_bb_luids_set (df, bb)
1923 struct df *df;
1924 basic_block bb;
1926 rtx insn;
1927 int luid = 0;
1929 /* The LUIDs are monotonically increasing for each basic block. */
1931 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1933 if (INSN_P (insn))
1934 DF_INSN_LUID (df, insn) = luid++;
1935 DF_INSN_LUID (df, insn) = luid;
1937 if (insn == bb->end)
1938 break;
1940 return luid;
1944 /* Assign LUIDs for each basic block within BLOCKS. */
1945 static int
1946 df_luids_set (df, blocks)
1947 struct df *df;
1948 bitmap blocks;
1950 basic_block bb;
1951 int total = 0;
1953 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1955 total += df_bb_luids_set (df, bb);
1957 return total;
1961 /* Perform dataflow analysis using existing DF structure for blocks
1962 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1963 static void
1964 df_analyse_1 (df, blocks, flags, update)
1965 struct df *df;
1966 bitmap blocks;
1967 int flags;
1968 int update;
1970 int aflags;
1971 int dflags;
1972 int i;
1973 basic_block bb;
1975 dflags = 0;
1976 aflags = flags;
1977 if (flags & DF_UD_CHAIN)
1978 aflags |= DF_RD | DF_RD_CHAIN;
1980 if (flags & DF_DU_CHAIN)
1981 aflags |= DF_RU;
1983 if (flags & DF_RU)
1984 aflags |= DF_RU_CHAIN;
1986 if (flags & DF_REG_INFO)
1987 aflags |= DF_LR;
1989 if (! blocks)
1990 blocks = df->all_blocks;
1992 df->flags = flags;
1993 if (update)
1995 df_refs_update (df);
1996 /* More fine grained incremental dataflow analysis would be
1997 nice. For now recompute the whole shebang for the
1998 modified blocks. */
1999 #if 0
2000 df_refs_unlink (df, blocks);
2001 #endif
2002 /* All the def-use, use-def chains can be potentially
2003 modified by changes in one block. The size of the
2004 bitmaps can also change. */
2006 else
2008 /* Scan the function for all register defs and uses. */
2009 df_refs_queue (df);
2010 df_refs_record (df, blocks);
2012 /* Link all the new defs and uses to the insns. */
2013 df_refs_process (df);
2016 /* Allocate the bitmaps now the total number of defs and uses are
2017 known. If the number of defs or uses have changed, then
2018 these bitmaps need to be reallocated. */
2019 df_bitmaps_alloc (df, aflags);
2021 /* Set the LUIDs for each specified basic block. */
2022 df_luids_set (df, blocks);
2024 /* Recreate reg-def and reg-use chains from scratch so that first
2025 def is at the head of the reg-def chain and the last use is at
2026 the head of the reg-use chain. This is only important for
2027 regs local to a basic block as it speeds up searching. */
2028 if (aflags & DF_RD_CHAIN)
2030 df_reg_def_chain_create (df, blocks);
2033 if (aflags & DF_RU_CHAIN)
2035 df_reg_use_chain_create (df, blocks);
2038 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
2039 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
2040 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
2041 df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
2042 df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
2043 df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
2045 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2046 flow_reverse_top_sort_order_compute (df->rts_order);
2047 for (i = 0; i < n_basic_blocks; i++)
2049 df->inverse_dfs_map[df->dfs_order[i]] = i;
2050 df->inverse_rc_map[df->rc_order[i]] = i;
2051 df->inverse_rts_map[df->rts_order[i]] = i;
2053 if (aflags & DF_RD)
2055 /* Compute the sets of gens and kills for the defs of each bb. */
2056 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2058 bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
2059 bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
2060 bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
2061 bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
2062 FOR_EACH_BB (bb)
2064 in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2065 out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2066 gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2067 kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2069 iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
2070 DF_FORWARD, DF_UNION, df_rd_transfer_function,
2071 df->inverse_rc_map, NULL);
2072 free (in);
2073 free (out);
2074 free (gen);
2075 free (kill);
2079 if (aflags & DF_UD_CHAIN)
2081 /* Create use-def chains. */
2082 df_ud_chain_create (df, df->all_blocks);
2084 if (! (flags & DF_RD))
2085 dflags |= DF_RD;
2088 if (aflags & DF_RU)
2090 /* Compute the sets of gens and kills for the upwards exposed
2091 uses in each bb. */
2092 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2094 bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
2095 bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
2096 bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
2097 bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
2098 FOR_EACH_BB (bb)
2100 in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2101 out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2102 gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2103 kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2105 iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
2106 DF_BACKWARD, DF_UNION, df_ru_transfer_function,
2107 df->inverse_rts_map, NULL);
2108 free (in);
2109 free (out);
2110 free (gen);
2111 free (kill);
2115 if (aflags & DF_DU_CHAIN)
2117 /* Create def-use chains. */
2118 df_du_chain_create (df, df->all_blocks);
2120 if (! (flags & DF_RU))
2121 dflags |= DF_RU;
2124 /* Free up bitmaps that are no longer required. */
2125 if (dflags)
2126 df_bitmaps_free (df, dflags);
2128 if (aflags & DF_LR)
2130 /* Compute the sets of defs and uses of live variables. */
2131 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2133 bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
2134 bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
2135 bitmap *use = xmalloc (sizeof (bitmap) * last_basic_block);
2136 bitmap *def = xmalloc (sizeof (bitmap) * last_basic_block);
2137 FOR_EACH_BB (bb)
2139 in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2140 out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2141 use[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2142 def[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2144 iterative_dataflow_bitmap (in, out, use, def, df->all_blocks,
2145 DF_BACKWARD, DF_UNION, df_lr_transfer_function,
2146 df->inverse_rts_map, NULL);
2147 free (in);
2148 free (out);
2149 free (use);
2150 free (def);
2154 if (aflags & DF_REG_INFO)
2156 df_reg_info_compute (df, df->all_blocks);
2158 free (df->dfs_order);
2159 free (df->rc_order);
2160 free (df->rts_order);
2161 free (df->inverse_rc_map);
2162 free (df->inverse_dfs_map);
2163 free (df->inverse_rts_map);
2167 /* Initialize dataflow analysis. */
2168 struct df *
2169 df_init ()
2171 struct df *df;
2173 df = xcalloc (1, sizeof (struct df));
2175 /* Squirrel away a global for debugging. */
2176 ddf = df;
2178 return df;
2182 /* Start queuing refs. */
2183 static int
2184 df_refs_queue (df)
2185 struct df *df;
2187 df->def_id_save = df->def_id;
2188 df->use_id_save = df->use_id;
2189 /* ???? Perhaps we should save current obstack state so that we can
2190 unwind it. */
2191 return 0;
2195 /* Process queued refs. */
2196 static int
2197 df_refs_process (df)
2198 struct df *df;
2200 unsigned int i;
2202 /* Build new insn-def chains. */
2203 for (i = df->def_id_save; i != df->def_id; i++)
2205 struct ref *def = df->defs[i];
2206 unsigned int uid = DF_REF_INSN_UID (def);
2208 /* Add def to head of def list for INSN. */
2209 df->insns[uid].defs
2210 = df_link_create (def, df->insns[uid].defs);
2213 /* Build new insn-use chains. */
2214 for (i = df->use_id_save; i != df->use_id; i++)
2216 struct ref *use = df->uses[i];
2217 unsigned int uid = DF_REF_INSN_UID (use);
2219 /* Add use to head of use list for INSN. */
2220 df->insns[uid].uses
2221 = df_link_create (use, df->insns[uid].uses);
2223 return 0;
2227 /* Update refs for basic block BB. */
2228 static int
2229 df_bb_refs_update (df, bb)
2230 struct df *df;
2231 basic_block bb;
2233 rtx insn;
2234 int count = 0;
2236 /* While we have to scan the chain of insns for this BB, we do not
2237 need to allocate and queue a long chain of BB/INSN pairs. Using
2238 a bitmap for insns_modified saves memory and avoids queuing
2239 duplicates. */
2241 for (insn = bb->head; ; insn = NEXT_INSN (insn))
2243 unsigned int uid;
2245 uid = INSN_UID (insn);
2247 if (bitmap_bit_p (df->insns_modified, uid))
2249 /* Delete any allocated refs of this insn. MPH, FIXME. */
2250 df_insn_refs_unlink (df, bb, insn);
2252 /* Scan the insn for refs. */
2253 df_insn_refs_record (df, bb, insn);
2255 count++;
2257 if (insn == bb->end)
2258 break;
2260 return count;
2264 /* Process all the modified/deleted insns that were queued. */
2265 static int
2266 df_refs_update (df)
2267 struct df *df;
2269 basic_block bb;
2270 int count = 0;
2272 if ((unsigned int) max_reg_num () >= df->reg_size)
2273 df_reg_table_realloc (df, 0);
2275 df_refs_queue (df);
2277 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2279 count += df_bb_refs_update (df, bb);
2282 df_refs_process (df);
2283 return count;
2287 /* Return nonzero if any of the requested blocks in the bitmap
2288 BLOCKS have been modified. */
2289 static int
2290 df_modified_p (df, blocks)
2291 struct df *df;
2292 bitmap blocks;
2294 int update = 0;
2295 basic_block bb;
2297 if (!df->n_bbs)
2298 return 0;
2300 FOR_EACH_BB (bb)
2301 if (bitmap_bit_p (df->bbs_modified, bb->index)
2302 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2304 update = 1;
2305 break;
2308 return update;
2312 /* Analyze dataflow info for the basic blocks specified by the bitmap
2313 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2314 modified blocks if BLOCKS is -1. */
2316 df_analyse (df, blocks, flags)
2317 struct df *df;
2318 bitmap blocks;
2319 int flags;
2321 int update;
2323 /* We could deal with additional basic blocks being created by
2324 rescanning everything again. */
2325 if (df->n_bbs && df->n_bbs != (unsigned int) last_basic_block)
2326 abort ();
2328 update = df_modified_p (df, blocks);
2329 if (update || (flags != df->flags))
2331 if (! blocks)
2333 if (df->n_bbs)
2335 /* Recompute everything from scratch. */
2336 df_free (df);
2338 /* Allocate and initialize data structures. */
2339 df_alloc (df, max_reg_num ());
2340 df_analyse_1 (df, 0, flags, 0);
2341 update = 1;
2343 else
2345 if (blocks == (bitmap) -1)
2346 blocks = df->bbs_modified;
2348 if (! df->n_bbs)
2349 abort ();
2351 df_analyse_1 (df, blocks, flags, 1);
2352 bitmap_zero (df->bbs_modified);
2353 bitmap_zero (df->insns_modified);
2356 return update;
2360 /* Free all the dataflow info and the DF structure. */
2361 void
2362 df_finish (df)
2363 struct df *df;
2365 df_free (df);
2366 free (df);
2370 /* Unlink INSN from its reference information. */
2371 static void
2372 df_insn_refs_unlink (df, bb, insn)
2373 struct df *df;
2374 basic_block bb ATTRIBUTE_UNUSED;
2375 rtx insn;
2377 struct df_link *link;
2378 unsigned int uid;
2380 uid = INSN_UID (insn);
2382 /* Unlink all refs defined by this insn. */
2383 for (link = df->insns[uid].defs; link; link = link->next)
2384 df_def_unlink (df, link->ref);
2386 /* Unlink all refs used by this insn. */
2387 for (link = df->insns[uid].uses; link; link = link->next)
2388 df_use_unlink (df, link->ref);
2390 df->insns[uid].defs = 0;
2391 df->insns[uid].uses = 0;
2395 #if 0
2396 /* Unlink all the insns within BB from their reference information. */
2397 static void
2398 df_bb_refs_unlink (df, bb)
2399 struct df *df;
2400 basic_block bb;
2402 rtx insn;
2404 /* Scan the block an insn at a time from beginning to end. */
2405 for (insn = bb->head; ; insn = NEXT_INSN (insn))
2407 if (INSN_P (insn))
2409 /* Unlink refs for INSN. */
2410 df_insn_refs_unlink (df, bb, insn);
2412 if (insn == bb->end)
2413 break;
2418 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2419 Not currently used. */
2420 static void
2421 df_refs_unlink (df, blocks)
2422 struct df *df;
2423 bitmap blocks;
2425 basic_block bb;
2427 if (blocks)
2429 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2431 df_bb_refs_unlink (df, bb);
2434 else
2436 FOR_EACH_BB (bb)
2437 df_bb_refs_unlink (df, bb);
2440 #endif
2442 /* Functions to modify insns. */
2445 /* Delete INSN and all its reference information. */
2447 df_insn_delete (df, bb, insn)
2448 struct df *df;
2449 basic_block bb ATTRIBUTE_UNUSED;
2450 rtx insn;
2452 /* If the insn is a jump, we should perhaps call delete_insn to
2453 handle the JUMP_LABEL? */
2455 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2456 if (insn == bb->head)
2457 abort ();
2459 /* Delete the insn. */
2460 delete_insn (insn);
2462 df_insn_modify (df, bb, insn);
2464 return NEXT_INSN (insn);
2468 /* Mark that INSN within BB may have changed (created/modified/deleted).
2469 This may be called multiple times for the same insn. There is no
2470 harm calling this function if the insn wasn't changed; it will just
2471 slow down the rescanning of refs. */
2472 void
2473 df_insn_modify (df, bb, insn)
2474 struct df *df;
2475 basic_block bb;
2476 rtx insn;
2478 unsigned int uid;
2480 uid = INSN_UID (insn);
2481 if (uid >= df->insn_size)
2482 df_insn_table_realloc (df, uid);
2484 bitmap_set_bit (df->bbs_modified, bb->index);
2485 bitmap_set_bit (df->insns_modified, uid);
2487 /* For incremental updating on the fly, perhaps we could make a copy
2488 of all the refs of the original insn and turn them into
2489 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2490 the original refs. If validate_change fails then these anti-refs
2491 will just get ignored. */
2495 typedef struct replace_args
2497 rtx match;
2498 rtx replacement;
2499 rtx insn;
2500 int modified;
2501 } replace_args;
2504 /* Replace mem pointed to by PX with its associated pseudo register.
2505 DATA is actually a pointer to a structure describing the
2506 instruction currently being scanned and the MEM we are currently
2507 replacing. */
2508 static int
2509 df_rtx_mem_replace (px, data)
2510 rtx *px;
2511 void *data;
2513 replace_args *args = (replace_args *) data;
2514 rtx mem = *px;
2516 if (mem == NULL_RTX)
2517 return 0;
2519 switch (GET_CODE (mem))
2521 case MEM:
2522 break;
2524 case CONST_DOUBLE:
2525 /* We're not interested in the MEM associated with a
2526 CONST_DOUBLE, so there's no need to traverse into one. */
2527 return -1;
2529 default:
2530 /* This is not a MEM. */
2531 return 0;
2534 if (!rtx_equal_p (args->match, mem))
2535 /* This is not the MEM we are currently replacing. */
2536 return 0;
2538 /* Actually replace the MEM. */
2539 validate_change (args->insn, px, args->replacement, 1);
2540 args->modified++;
2542 return 0;
2547 df_insn_mem_replace (df, bb, insn, mem, reg)
2548 struct df *df;
2549 basic_block bb;
2550 rtx insn;
2551 rtx mem;
2552 rtx reg;
2554 replace_args args;
2556 args.insn = insn;
2557 args.match = mem;
2558 args.replacement = reg;
2559 args.modified = 0;
2561 /* Search and replace all matching mems within insn. */
2562 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2564 if (args.modified)
2565 df_insn_modify (df, bb, insn);
2567 /* ???? FIXME. We may have a new def or one or more new uses of REG
2568 in INSN. REG should be a new pseudo so it won't affect the
2569 dataflow information that we currently have. We should add
2570 the new uses and defs to INSN and then recreate the chains
2571 when df_analyse is called. */
2572 return args.modified;
2576 /* Replace one register with another. Called through for_each_rtx; PX
2577 points to the rtx being scanned. DATA is actually a pointer to a
2578 structure of arguments. */
2579 static int
2580 df_rtx_reg_replace (px, data)
2581 rtx *px;
2582 void *data;
2584 rtx x = *px;
2585 replace_args *args = (replace_args *) data;
2587 if (x == NULL_RTX)
2588 return 0;
2590 if (x == args->match)
2592 validate_change (args->insn, px, args->replacement, 1);
2593 args->modified++;
2596 return 0;
2600 /* Replace the reg within every ref on CHAIN that is within the set
2601 BLOCKS of basic blocks with NEWREG. Also update the regs within
2602 REG_NOTES. */
2603 void
2604 df_refs_reg_replace (df, blocks, chain, oldreg, newreg)
2605 struct df *df;
2606 bitmap blocks;
2607 struct df_link *chain;
2608 rtx oldreg;
2609 rtx newreg;
2611 struct df_link *link;
2612 replace_args args;
2614 if (! blocks)
2615 blocks = df->all_blocks;
2617 args.match = oldreg;
2618 args.replacement = newreg;
2619 args.modified = 0;
2621 for (link = chain; link; link = link->next)
2623 struct ref *ref = link->ref;
2624 rtx insn = DF_REF_INSN (ref);
2626 if (! INSN_P (insn))
2627 continue;
2629 if (bitmap_bit_p (blocks, DF_REF_BBNO (ref)))
2631 df_ref_reg_replace (df, ref, oldreg, newreg);
2633 /* Replace occurrences of the reg within the REG_NOTES. */
2634 if ((! link->next || DF_REF_INSN (ref)
2635 != DF_REF_INSN (link->next->ref))
2636 && REG_NOTES (insn))
2638 args.insn = insn;
2639 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2642 else
2644 /* Temporary check to ensure that we have a grip on which
2645 regs should be replaced. */
2646 abort ();
2652 /* Replace all occurrences of register OLDREG with register NEWREG in
2653 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2654 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2655 routine expects the reg-use and reg-def chains to be valid. */
2657 df_reg_replace (df, blocks, oldreg, newreg)
2658 struct df *df;
2659 bitmap blocks;
2660 rtx oldreg;
2661 rtx newreg;
2663 unsigned int oldregno = REGNO (oldreg);
2665 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2666 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2667 return 1;
2671 /* Try replacing the reg within REF with NEWREG. Do not modify
2672 def-use/use-def chains. */
2674 df_ref_reg_replace (df, ref, oldreg, newreg)
2675 struct df *df;
2676 struct ref *ref;
2677 rtx oldreg;
2678 rtx newreg;
2680 /* Check that insn was deleted by being converted into a NOTE. If
2681 so ignore this insn. */
2682 if (! INSN_P (DF_REF_INSN (ref)))
2683 return 0;
2685 if (oldreg && oldreg != DF_REF_REG (ref))
2686 abort ();
2688 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2689 return 0;
2691 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2692 return 1;
2696 struct ref*
2697 df_bb_def_use_swap (df, bb, def_insn, use_insn, regno)
2698 struct df * df;
2699 basic_block bb;
2700 rtx def_insn;
2701 rtx use_insn;
2702 unsigned int regno;
2704 struct ref *def;
2705 struct ref *use;
2706 int def_uid;
2707 int use_uid;
2708 struct df_link *link;
2710 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2711 if (! def)
2712 return 0;
2714 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2715 if (! use)
2716 return 0;
2718 /* The USE no longer exists. */
2719 use_uid = INSN_UID (use_insn);
2720 df_use_unlink (df, use);
2721 df_ref_unlink (&df->insns[use_uid].uses, use);
2723 /* The DEF requires shifting so remove it from DEF_INSN
2724 and add it to USE_INSN by reusing LINK. */
2725 def_uid = INSN_UID (def_insn);
2726 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2727 link->ref = def;
2728 link->next = df->insns[use_uid].defs;
2729 df->insns[use_uid].defs = link;
2731 #if 0
2732 link = df_ref_unlink (&df->regs[regno].defs, def);
2733 link->ref = def;
2734 link->next = df->regs[regno].defs;
2735 df->insns[regno].defs = link;
2736 #endif
2738 DF_REF_INSN (def) = use_insn;
2739 return def;
2743 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2744 insns must be processed by this routine. */
2745 static void
2746 df_insns_modify (df, bb, first_insn, last_insn)
2747 struct df *df;
2748 basic_block bb;
2749 rtx first_insn;
2750 rtx last_insn;
2752 rtx insn;
2754 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2756 unsigned int uid;
2758 /* A non-const call should not have slipped through the net. If
2759 it does, we need to create a new basic block. Ouch. The
2760 same applies for a label. */
2761 if ((GET_CODE (insn) == CALL_INSN
2762 && ! CONST_OR_PURE_CALL_P (insn))
2763 || GET_CODE (insn) == CODE_LABEL)
2764 abort ();
2766 uid = INSN_UID (insn);
2768 if (uid >= df->insn_size)
2769 df_insn_table_realloc (df, uid);
2771 df_insn_modify (df, bb, insn);
2773 if (insn == last_insn)
2774 break;
2779 /* Emit PATTERN before INSN within BB. */
2781 df_pattern_emit_before (df, pattern, bb, insn)
2782 struct df *df ATTRIBUTE_UNUSED;
2783 rtx pattern;
2784 basic_block bb;
2785 rtx insn;
2787 rtx ret_insn;
2788 rtx prev_insn = PREV_INSN (insn);
2790 /* We should not be inserting before the start of the block. */
2791 if (insn == bb->head)
2792 abort ();
2793 ret_insn = emit_insn_before (pattern, insn);
2794 if (ret_insn == insn)
2795 return ret_insn;
2797 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2798 return ret_insn;
2802 /* Emit PATTERN after INSN within BB. */
2804 df_pattern_emit_after (df, pattern, bb, insn)
2805 struct df *df;
2806 rtx pattern;
2807 basic_block bb;
2808 rtx insn;
2810 rtx ret_insn;
2812 ret_insn = emit_insn_after (pattern, insn);
2813 if (ret_insn == insn)
2814 return ret_insn;
2816 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2817 return ret_insn;
2821 /* Emit jump PATTERN after INSN within BB. */
2823 df_jump_pattern_emit_after (df, pattern, bb, insn)
2824 struct df *df;
2825 rtx pattern;
2826 basic_block bb;
2827 rtx insn;
2829 rtx ret_insn;
2831 ret_insn = emit_jump_insn_after (pattern, insn);
2832 if (ret_insn == insn)
2833 return ret_insn;
2835 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2836 return ret_insn;
2840 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2842 This function should only be used to move loop invariant insns
2843 out of a loop where it has been proven that the def-use info
2844 will still be valid. */
2846 df_insn_move_before (df, bb, insn, before_bb, before_insn)
2847 struct df *df;
2848 basic_block bb;
2849 rtx insn;
2850 basic_block before_bb;
2851 rtx before_insn;
2853 struct df_link *link;
2854 unsigned int uid;
2856 if (! bb)
2857 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2859 uid = INSN_UID (insn);
2861 /* Change bb for all df defined and used by this insn. */
2862 for (link = df->insns[uid].defs; link; link = link->next)
2863 DF_REF_BB (link->ref) = before_bb;
2864 for (link = df->insns[uid].uses; link; link = link->next)
2865 DF_REF_BB (link->ref) = before_bb;
2867 /* The lifetimes of the registers used in this insn will be reduced
2868 while the lifetimes of the registers defined in this insn
2869 are likely to be increased. */
2871 /* ???? Perhaps all the insns moved should be stored on a list
2872 which df_analyse removes when it recalculates data flow. */
2874 return emit_insn_before (insn, before_insn);
2877 /* Functions to query dataflow information. */
2881 df_insn_regno_def_p (df, bb, insn, regno)
2882 struct df *df;
2883 basic_block bb ATTRIBUTE_UNUSED;
2884 rtx insn;
2885 unsigned int regno;
2887 unsigned int uid;
2888 struct df_link *link;
2890 uid = INSN_UID (insn);
2892 for (link = df->insns[uid].defs; link; link = link->next)
2894 struct ref *def = link->ref;
2896 if (DF_REF_REGNO (def) == regno)
2897 return 1;
2900 return 0;
2904 static int
2905 df_def_dominates_all_uses_p (df, def)
2906 struct df *df ATTRIBUTE_UNUSED;
2907 struct ref *def;
2909 struct df_link *du_link;
2911 /* Follow def-use chain to find all the uses of this def. */
2912 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
2914 struct ref *use = du_link->ref;
2915 struct df_link *ud_link;
2917 /* Follow use-def chain to check all the defs for this use. */
2918 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
2919 if (ud_link->ref != def)
2920 return 0;
2922 return 1;
2927 df_insn_dominates_all_uses_p (df, bb, insn)
2928 struct df *df;
2929 basic_block bb ATTRIBUTE_UNUSED;
2930 rtx insn;
2932 unsigned int uid;
2933 struct df_link *link;
2935 uid = INSN_UID (insn);
2937 for (link = df->insns[uid].defs; link; link = link->next)
2939 struct ref *def = link->ref;
2941 if (! df_def_dominates_all_uses_p (df, def))
2942 return 0;
2945 return 1;
2949 /* Return nonzero if all DF dominates all the uses within the bitmap
2950 BLOCKS. */
2951 static int
2952 df_def_dominates_uses_p (df, def, blocks)
2953 struct df *df ATTRIBUTE_UNUSED;
2954 struct ref *def;
2955 bitmap blocks;
2957 struct df_link *du_link;
2959 /* Follow def-use chain to find all the uses of this def. */
2960 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
2962 struct ref *use = du_link->ref;
2963 struct df_link *ud_link;
2965 /* Only worry about the uses within BLOCKS. For example,
2966 consider a register defined within a loop that is live at the
2967 loop exits. */
2968 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
2970 /* Follow use-def chain to check all the defs for this use. */
2971 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
2972 if (ud_link->ref != def)
2973 return 0;
2976 return 1;
2980 /* Return nonzero if all the defs of INSN within BB dominates
2981 all the corresponding uses. */
2983 df_insn_dominates_uses_p (df, bb, insn, blocks)
2984 struct df *df;
2985 basic_block bb ATTRIBUTE_UNUSED;
2986 rtx insn;
2987 bitmap blocks;
2989 unsigned int uid;
2990 struct df_link *link;
2992 uid = INSN_UID (insn);
2994 for (link = df->insns[uid].defs; link; link = link->next)
2996 struct ref *def = link->ref;
2998 /* Only consider the defs within BLOCKS. */
2999 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
3000 && ! df_def_dominates_uses_p (df, def, blocks))
3001 return 0;
3003 return 1;
3007 /* Return the basic block that REG referenced in or NULL if referenced
3008 in multiple basic blocks. */
3009 basic_block
3010 df_regno_bb (df, regno)
3011 struct df *df;
3012 unsigned int regno;
3014 struct df_link *defs = df->regs[regno].defs;
3015 struct df_link *uses = df->regs[regno].uses;
3016 struct ref *def = defs ? defs->ref : 0;
3017 struct ref *use = uses ? uses->ref : 0;
3018 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3019 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3021 /* Compare blocks of first def and last use. ???? FIXME. What if
3022 the reg-def and reg-use lists are not correctly ordered. */
3023 return bb_def == bb_use ? bb_def : 0;
3027 /* Return nonzero if REG used in multiple basic blocks. */
3029 df_reg_global_p (df, reg)
3030 struct df *df;
3031 rtx reg;
3033 return df_regno_bb (df, REGNO (reg)) != 0;
3037 /* Return total lifetime (in insns) of REG. */
3039 df_reg_lifetime (df, reg)
3040 struct df *df;
3041 rtx reg;
3043 return df->regs[REGNO (reg)].lifetime;
3047 /* Return nonzero if REG live at start of BB. */
3049 df_bb_reg_live_start_p (df, bb, reg)
3050 struct df *df ATTRIBUTE_UNUSED;
3051 basic_block bb;
3052 rtx reg;
3054 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3056 #ifdef ENABLE_CHECKING
3057 if (! bb_info->lr_in)
3058 abort ();
3059 #endif
3061 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3065 /* Return nonzero if REG live at end of BB. */
3067 df_bb_reg_live_end_p (df, bb, reg)
3068 struct df *df ATTRIBUTE_UNUSED;
3069 basic_block bb;
3070 rtx reg;
3072 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3074 #ifdef ENABLE_CHECKING
3075 if (! bb_info->lr_in)
3076 abort ();
3077 #endif
3079 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3083 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3084 after life of REG2, or 0, if the lives overlap. */
3086 df_bb_regs_lives_compare (df, bb, reg1, reg2)
3087 struct df *df;
3088 basic_block bb;
3089 rtx reg1;
3090 rtx reg2;
3092 unsigned int regno1 = REGNO (reg1);
3093 unsigned int regno2 = REGNO (reg2);
3094 struct ref *def1;
3095 struct ref *use1;
3096 struct ref *def2;
3097 struct ref *use2;
3100 /* The regs must be local to BB. */
3101 if (df_regno_bb (df, regno1) != bb
3102 || df_regno_bb (df, regno2) != bb)
3103 abort ();
3105 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3106 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3108 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3109 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3110 return -1;
3112 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3113 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3115 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3116 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3117 return 1;
3119 return 0;
3123 /* Return last use of REGNO within BB. */
3124 static struct ref *
3125 df_bb_regno_last_use_find (df, bb, regno)
3126 struct df * df;
3127 basic_block bb ATTRIBUTE_UNUSED;
3128 unsigned int regno;
3130 struct df_link *link;
3132 /* This assumes that the reg-use list is ordered such that for any
3133 BB, the last use is found first. However, since the BBs are not
3134 ordered, the first use in the chain is not necessarily the last
3135 use in the function. */
3136 for (link = df->regs[regno].uses; link; link = link->next)
3138 struct ref *use = link->ref;
3140 if (DF_REF_BB (use) == bb)
3141 return use;
3143 return 0;
3147 /* Return first def of REGNO within BB. */
3148 static struct ref *
3149 df_bb_regno_first_def_find (df, bb, regno)
3150 struct df * df;
3151 basic_block bb ATTRIBUTE_UNUSED;
3152 unsigned int regno;
3154 struct df_link *link;
3156 /* This assumes that the reg-def list is ordered such that for any
3157 BB, the first def is found first. However, since the BBs are not
3158 ordered, the first def in the chain is not necessarily the first
3159 def in the function. */
3160 for (link = df->regs[regno].defs; link; link = link->next)
3162 struct ref *def = link->ref;
3164 if (DF_REF_BB (def) == bb)
3165 return def;
3167 return 0;
3171 /* Return first use of REGNO inside INSN within BB. */
3172 static struct ref *
3173 df_bb_insn_regno_last_use_find (df, bb, insn, regno)
3174 struct df * df;
3175 basic_block bb ATTRIBUTE_UNUSED;
3176 rtx insn;
3177 unsigned int regno;
3179 unsigned int uid;
3180 struct df_link *link;
3182 uid = INSN_UID (insn);
3184 for (link = df->insns[uid].uses; link; link = link->next)
3186 struct ref *use = link->ref;
3188 if (DF_REF_REGNO (use) == regno)
3189 return use;
3192 return 0;
3196 /* Return first def of REGNO inside INSN within BB. */
3197 static struct ref *
3198 df_bb_insn_regno_first_def_find (df, bb, insn, regno)
3199 struct df * df;
3200 basic_block bb ATTRIBUTE_UNUSED;
3201 rtx insn;
3202 unsigned int regno;
3204 unsigned int uid;
3205 struct df_link *link;
3207 uid = INSN_UID (insn);
3209 for (link = df->insns[uid].defs; link; link = link->next)
3211 struct ref *def = link->ref;
3213 if (DF_REF_REGNO (def) == regno)
3214 return def;
3217 return 0;
3221 /* Return insn using REG if the BB contains only a single
3222 use and def of REG. */
3224 df_bb_single_def_use_insn_find (df, bb, insn, reg)
3225 struct df * df;
3226 basic_block bb;
3227 rtx insn;
3228 rtx reg;
3230 struct ref *def;
3231 struct ref *use;
3232 struct df_link *du_link;
3234 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3236 if (! def)
3237 abort ();
3239 du_link = DF_REF_CHAIN (def);
3241 if (! du_link)
3242 return NULL_RTX;
3244 use = du_link->ref;
3246 /* Check if def is dead. */
3247 if (! use)
3248 return NULL_RTX;
3250 /* Check for multiple uses. */
3251 if (du_link->next)
3252 return NULL_RTX;
3254 return DF_REF_INSN (use);
3257 /* Functions for debugging/dumping dataflow information. */
3260 /* Dump a def-use or use-def chain for REF to FILE. */
3261 static void
3262 df_chain_dump (link, file)
3263 struct df_link *link;
3264 FILE *file;
3266 fprintf (file, "{ ");
3267 for (; link; link = link->next)
3269 fprintf (file, "%c%d ",
3270 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3271 DF_REF_ID (link->ref));
3273 fprintf (file, "}");
3277 /* Dump a chain of refs with the associated regno. */
3278 static void
3279 df_chain_dump_regno (link, file)
3280 struct df_link *link;
3281 FILE *file;
3283 fprintf (file, "{ ");
3284 for (; link; link = link->next)
3286 fprintf (file, "%c%d(%d) ",
3287 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3288 DF_REF_ID (link->ref),
3289 DF_REF_REGNO (link->ref));
3291 fprintf (file, "}");
3295 /* Dump dataflow info. */
3296 void
3297 df_dump (df, flags, file)
3298 struct df *df;
3299 int flags;
3300 FILE *file;
3302 unsigned int j;
3303 basic_block bb;
3305 if (! df || ! file)
3306 return;
3308 fprintf (file, "\nDataflow summary:\n");
3309 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3310 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3312 if (flags & DF_RD)
3314 basic_block bb;
3316 fprintf (file, "Reaching defs:\n");
3317 FOR_EACH_BB (bb)
3319 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3321 if (! bb_info->rd_in)
3322 continue;
3324 fprintf (file, "bb %d in \t", bb->index);
3325 dump_bitmap (file, bb_info->rd_in);
3326 fprintf (file, "bb %d gen \t", bb->index);
3327 dump_bitmap (file, bb_info->rd_gen);
3328 fprintf (file, "bb %d kill\t", bb->index);
3329 dump_bitmap (file, bb_info->rd_kill);
3330 fprintf (file, "bb %d out \t", bb->index);
3331 dump_bitmap (file, bb_info->rd_out);
3335 if (flags & DF_UD_CHAIN)
3337 fprintf (file, "Use-def chains:\n");
3338 for (j = 0; j < df->n_defs; j++)
3340 if (df->defs[j])
3342 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3343 j, DF_REF_BBNO (df->defs[j]),
3344 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3345 DF_REF_INSN_UID (df->defs[j]),
3346 DF_REF_REGNO (df->defs[j]));
3347 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3348 fprintf (file, "read/write ");
3349 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3350 fprintf (file, "\n");
3355 if (flags & DF_RU)
3357 fprintf (file, "Reaching uses:\n");
3358 FOR_EACH_BB (bb)
3360 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3362 if (! bb_info->ru_in)
3363 continue;
3365 fprintf (file, "bb %d in \t", bb->index);
3366 dump_bitmap (file, bb_info->ru_in);
3367 fprintf (file, "bb %d gen \t", bb->index);
3368 dump_bitmap (file, bb_info->ru_gen);
3369 fprintf (file, "bb %d kill\t", bb->index);
3370 dump_bitmap (file, bb_info->ru_kill);
3371 fprintf (file, "bb %d out \t", bb->index);
3372 dump_bitmap (file, bb_info->ru_out);
3376 if (flags & DF_DU_CHAIN)
3378 fprintf (file, "Def-use chains:\n");
3379 for (j = 0; j < df->n_uses; j++)
3381 if (df->uses[j])
3383 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3384 j, DF_REF_BBNO (df->uses[j]),
3385 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3386 DF_REF_INSN_UID (df->uses[j]),
3387 DF_REF_REGNO (df->uses[j]));
3388 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3389 fprintf (file, "read/write ");
3390 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3391 fprintf (file, "\n");
3396 if (flags & DF_LR)
3398 fprintf (file, "Live regs:\n");
3399 FOR_EACH_BB (bb)
3401 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3403 if (! bb_info->lr_in)
3404 continue;
3406 fprintf (file, "bb %d in \t", bb->index);
3407 dump_bitmap (file, bb_info->lr_in);
3408 fprintf (file, "bb %d use \t", bb->index);
3409 dump_bitmap (file, bb_info->lr_use);
3410 fprintf (file, "bb %d def \t", bb->index);
3411 dump_bitmap (file, bb_info->lr_def);
3412 fprintf (file, "bb %d out \t", bb->index);
3413 dump_bitmap (file, bb_info->lr_out);
3417 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3419 struct reg_info *reg_info = df->regs;
3421 fprintf (file, "Register info:\n");
3422 for (j = 0; j < df->n_regs; j++)
3424 if (((flags & DF_REG_INFO)
3425 && (reg_info[j].n_uses || reg_info[j].n_defs))
3426 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3427 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3429 fprintf (file, "reg %d", j);
3430 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3432 basic_block bb = df_regno_bb (df, j);
3434 if (bb)
3435 fprintf (file, " bb %d", bb->index);
3436 else
3437 fprintf (file, " bb ?");
3439 if (flags & DF_REG_INFO)
3441 fprintf (file, " life %d", reg_info[j].lifetime);
3444 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3446 fprintf (file, " defs ");
3447 if (flags & DF_REG_INFO)
3448 fprintf (file, "%d ", reg_info[j].n_defs);
3449 if (flags & DF_RD_CHAIN)
3450 df_chain_dump (reg_info[j].defs, file);
3453 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3455 fprintf (file, " uses ");
3456 if (flags & DF_REG_INFO)
3457 fprintf (file, "%d ", reg_info[j].n_uses);
3458 if (flags & DF_RU_CHAIN)
3459 df_chain_dump (reg_info[j].uses, file);
3462 fprintf (file, "\n");
3466 fprintf (file, "\n");
3470 void
3471 df_insn_debug (df, insn, file)
3472 struct df *df;
3473 rtx insn;
3474 FILE *file;
3476 unsigned int uid;
3477 int bbi;
3479 uid = INSN_UID (insn);
3480 if (uid >= df->insn_size)
3481 return;
3483 if (df->insns[uid].defs)
3484 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3485 else if (df->insns[uid].uses)
3486 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3487 else
3488 bbi = -1;
3490 fprintf (file, "insn %d bb %d luid %d defs ",
3491 uid, bbi, DF_INSN_LUID (df, insn));
3492 df_chain_dump (df->insns[uid].defs, file);
3493 fprintf (file, " uses ");
3494 df_chain_dump (df->insns[uid].uses, file);
3495 fprintf (file, "\n");
3499 void
3500 df_insn_debug_regno (df, insn, file)
3501 struct df *df;
3502 rtx insn;
3503 FILE *file;
3505 unsigned int uid;
3506 int bbi;
3508 uid = INSN_UID (insn);
3509 if (uid >= df->insn_size)
3510 return;
3512 if (df->insns[uid].defs)
3513 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3514 else if (df->insns[uid].uses)
3515 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3516 else
3517 bbi = -1;
3519 fprintf (file, "insn %d bb %d luid %d defs ",
3520 uid, bbi, DF_INSN_LUID (df, insn));
3521 df_chain_dump_regno (df->insns[uid].defs, file);
3522 fprintf (file, " uses ");
3523 df_chain_dump_regno (df->insns[uid].uses, file);
3524 fprintf (file, "\n");
3528 static void
3529 df_regno_debug (df, regno, file)
3530 struct df *df;
3531 unsigned int regno;
3532 FILE *file;
3534 if (regno >= df->reg_size)
3535 return;
3537 fprintf (file, "reg %d life %d defs ",
3538 regno, df->regs[regno].lifetime);
3539 df_chain_dump (df->regs[regno].defs, file);
3540 fprintf (file, " uses ");
3541 df_chain_dump (df->regs[regno].uses, file);
3542 fprintf (file, "\n");
3546 static void
3547 df_ref_debug (df, ref, file)
3548 struct df *df;
3549 struct ref *ref;
3550 FILE *file;
3552 fprintf (file, "%c%d ",
3553 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3554 DF_REF_ID (ref));
3555 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3556 DF_REF_REGNO (ref),
3557 DF_REF_BBNO (ref),
3558 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3559 INSN_UID (DF_REF_INSN (ref)));
3560 df_chain_dump (DF_REF_CHAIN (ref), file);
3561 fprintf (file, "\n");
3564 /* Functions for debugging from GDB. */
3566 void
3567 debug_df_insn (insn)
3568 rtx insn;
3570 df_insn_debug (ddf, insn, stderr);
3571 debug_rtx (insn);
3575 void
3576 debug_df_reg (reg)
3577 rtx reg;
3579 df_regno_debug (ddf, REGNO (reg), stderr);
3583 void
3584 debug_df_regno (regno)
3585 unsigned int regno;
3587 df_regno_debug (ddf, regno, stderr);
3591 void
3592 debug_df_ref (ref)
3593 struct ref *ref;
3595 df_ref_debug (ddf, ref, stderr);
3599 void
3600 debug_df_defno (defno)
3601 unsigned int defno;
3603 df_ref_debug (ddf, ddf->defs[defno], stderr);
3607 void
3608 debug_df_useno (defno)
3609 unsigned int defno;
3611 df_ref_debug (ddf, ddf->uses[defno], stderr);
3615 void
3616 debug_df_chain (link)
3617 struct df_link *link;
3619 df_chain_dump (link, stderr);
3620 fputc ('\n', stderr);
3624 /* Hybrid search algorithm from "Implementation Techniques for
3625 Efficient Data-Flow Analysis of Large Programs". */
3626 static void
3627 hybrid_search_bitmap (block, in, out, gen, kill, dir,
3628 conf_op, transfun, visited, pending,
3629 data)
3630 basic_block block;
3631 bitmap *in, *out, *gen, *kill;
3632 enum df_flow_dir dir;
3633 enum df_confluence_op conf_op;
3634 transfer_function_bitmap transfun;
3635 sbitmap visited;
3636 sbitmap pending;
3637 void *data;
3639 int changed;
3640 int i = block->index;
3641 edge e;
3642 basic_block bb = block;
3644 SET_BIT (visited, block->index);
3645 if (TEST_BIT (pending, block->index))
3647 if (dir == DF_FORWARD)
3649 /* Calculate <conf_op> of predecessor_outs. */
3650 bitmap_zero (in[i]);
3651 for (e = bb->pred; e != 0; e = e->pred_next)
3653 if (e->src == ENTRY_BLOCK_PTR)
3654 continue;
3655 switch (conf_op)
3657 case DF_UNION:
3658 bitmap_a_or_b (in[i], in[i], out[e->src->index]);
3659 break;
3660 case DF_INTERSECTION:
3661 bitmap_a_and_b (in[i], in[i], out[e->src->index]);
3662 break;
3666 else
3668 /* Calculate <conf_op> of successor ins. */
3669 bitmap_zero (out[i]);
3670 for (e = bb->succ; e != 0; e = e->succ_next)
3672 if (e->dest == EXIT_BLOCK_PTR)
3673 continue;
3674 switch (conf_op)
3676 case DF_UNION:
3677 bitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3678 break;
3679 case DF_INTERSECTION:
3680 bitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3681 break;
3685 /* Common part */
3686 (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3687 RESET_BIT (pending, i);
3688 if (changed)
3690 if (dir == DF_FORWARD)
3692 for (e = bb->succ; e != 0; e = e->succ_next)
3694 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3695 continue;
3696 SET_BIT (pending, e->dest->index);
3699 else
3701 for (e = bb->pred; e != 0; e = e->pred_next)
3703 if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3704 continue;
3705 SET_BIT (pending, e->src->index);
3710 if (dir == DF_FORWARD)
3712 for (e = bb->succ; e != 0; e = e->succ_next)
3714 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3715 continue;
3716 if (!TEST_BIT (visited, e->dest->index))
3717 hybrid_search_bitmap (e->dest, in, out, gen, kill, dir,
3718 conf_op, transfun, visited, pending,
3719 data);
3722 else
3724 for (e = bb->pred; e != 0; e = e->pred_next)
3726 if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3727 continue;
3728 if (!TEST_BIT (visited, e->src->index))
3729 hybrid_search_bitmap (e->src, in, out, gen, kill, dir,
3730 conf_op, transfun, visited, pending,
3731 data);
3737 /* Hybrid search for sbitmaps, rather than bitmaps. */
3738 static void
3739 hybrid_search_sbitmap (block, in, out, gen, kill, dir,
3740 conf_op, transfun, visited, pending,
3741 data)
3742 basic_block block;
3743 sbitmap *in, *out, *gen, *kill;
3744 enum df_flow_dir dir;
3745 enum df_confluence_op conf_op;
3746 transfer_function_sbitmap transfun;
3747 sbitmap visited;
3748 sbitmap pending;
3749 void *data;
3751 int changed;
3752 int i = block->index;
3753 edge e;
3754 basic_block bb = block;
3756 SET_BIT (visited, block->index);
3757 if (TEST_BIT (pending, block->index))
3759 if (dir == DF_FORWARD)
3761 /* Calculate <conf_op> of predecessor_outs. */
3762 sbitmap_zero (in[i]);
3763 for (e = bb->pred; e != 0; e = e->pred_next)
3765 if (e->src == ENTRY_BLOCK_PTR)
3766 continue;
3767 switch (conf_op)
3769 case DF_UNION:
3770 sbitmap_a_or_b (in[i], in[i], out[e->src->index]);
3771 break;
3772 case DF_INTERSECTION:
3773 sbitmap_a_and_b (in[i], in[i], out[e->src->index]);
3774 break;
3778 else
3780 /* Calculate <conf_op> of successor ins. */
3781 sbitmap_zero (out[i]);
3782 for (e = bb->succ; e != 0; e = e->succ_next)
3784 if (e->dest == EXIT_BLOCK_PTR)
3785 continue;
3786 switch (conf_op)
3788 case DF_UNION:
3789 sbitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3790 break;
3791 case DF_INTERSECTION:
3792 sbitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3793 break;
3797 /* Common part. */
3798 (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3799 RESET_BIT (pending, i);
3800 if (changed)
3802 if (dir == DF_FORWARD)
3804 for (e = bb->succ; e != 0; e = e->succ_next)
3806 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3807 continue;
3808 SET_BIT (pending, e->dest->index);
3811 else
3813 for (e = bb->pred; e != 0; e = e->pred_next)
3815 if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3816 continue;
3817 SET_BIT (pending, e->src->index);
3822 if (dir == DF_FORWARD)
3824 for (e = bb->succ; e != 0; e = e->succ_next)
3826 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3827 continue;
3828 if (!TEST_BIT (visited, e->dest->index))
3829 hybrid_search_sbitmap (e->dest, in, out, gen, kill, dir,
3830 conf_op, transfun, visited, pending,
3831 data);
3834 else
3836 for (e = bb->pred; e != 0; e = e->pred_next)
3838 if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3839 continue;
3840 if (!TEST_BIT (visited, e->src->index))
3841 hybrid_search_sbitmap (e->src, in, out, gen, kill, dir,
3842 conf_op, transfun, visited, pending,
3843 data);
3849 /* gen = GEN set.
3850 kill = KILL set.
3851 in, out = Filled in by function.
3852 blocks = Blocks to analyze.
3853 dir = Dataflow direction.
3854 conf_op = Confluence operation.
3855 transfun = Transfer function.
3856 order = Order to iterate in. (Should map block numbers -> order)
3857 data = Whatever you want. It's passed to the transfer function.
3859 This function will perform iterative bitvector dataflow, producing
3860 the in and out sets. Even if you only want to perform it for a
3861 small number of blocks, the vectors for in and out must be large
3862 enough for *all* blocks, because changing one block might affect
3863 others. However, it'll only put what you say to analyze on the
3864 initial worklist.
3866 For forward problems, you probably want to pass in a mapping of
3867 block number to rc_order (like df->inverse_rc_map).
3869 void
3870 iterative_dataflow_sbitmap (in, out, gen, kill, blocks,
3871 dir, conf_op, transfun, order, data)
3872 sbitmap *in, *out, *gen, *kill;
3873 bitmap blocks;
3874 enum df_flow_dir dir;
3875 enum df_confluence_op conf_op;
3876 transfer_function_sbitmap transfun;
3877 int *order;
3878 void *data;
3880 int i;
3881 fibheap_t worklist;
3882 basic_block bb;
3883 sbitmap visited, pending;
3885 pending = sbitmap_alloc (last_basic_block);
3886 visited = sbitmap_alloc (last_basic_block);
3887 sbitmap_zero (pending);
3888 sbitmap_zero (visited);
3889 worklist = fibheap_new ();
3891 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3893 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3894 SET_BIT (pending, i);
3895 if (dir == DF_FORWARD)
3896 sbitmap_copy (out[i], gen[i]);
3897 else
3898 sbitmap_copy (in[i], gen[i]);
3901 while (sbitmap_first_set_bit (pending) != -1)
3903 while (!fibheap_empty (worklist))
3905 i = (size_t) fibheap_extract_min (worklist);
3906 bb = BASIC_BLOCK (i);
3907 if (!TEST_BIT (visited, bb->index))
3908 hybrid_search_sbitmap (bb, in, out, gen, kill, dir,
3909 conf_op, transfun, visited, pending, data);
3912 if (sbitmap_first_set_bit (pending) != -1)
3914 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3916 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3918 sbitmap_zero (visited);
3920 else
3922 break;
3926 sbitmap_free (pending);
3927 sbitmap_free (visited);
3928 fibheap_delete (worklist);
3932 /* Exactly the same as iterative_dataflow_sbitmap, except it works on
3933 bitmaps instead. */
3934 void
3935 iterative_dataflow_bitmap (in, out, gen, kill, blocks,
3936 dir, conf_op, transfun, order, data)
3937 bitmap *in, *out, *gen, *kill;
3938 bitmap blocks;
3939 enum df_flow_dir dir;
3940 enum df_confluence_op conf_op;
3941 transfer_function_bitmap transfun;
3942 int *order;
3943 void *data;
3945 int i;
3946 fibheap_t worklist;
3947 basic_block bb;
3948 sbitmap visited, pending;
3950 pending = sbitmap_alloc (last_basic_block);
3951 visited = sbitmap_alloc (last_basic_block);
3952 sbitmap_zero (pending);
3953 sbitmap_zero (visited);
3954 worklist = fibheap_new ();
3956 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3958 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3959 SET_BIT (pending, i);
3960 if (dir == DF_FORWARD)
3961 bitmap_copy (out[i], gen[i]);
3962 else
3963 bitmap_copy (in[i], gen[i]);
3966 while (sbitmap_first_set_bit (pending) != -1)
3968 while (!fibheap_empty (worklist))
3970 i = (size_t) fibheap_extract_min (worklist);
3971 bb = BASIC_BLOCK (i);
3972 if (!TEST_BIT (visited, bb->index))
3973 hybrid_search_bitmap (bb, in, out, gen, kill, dir,
3974 conf_op, transfun, visited, pending, data);
3977 if (sbitmap_first_set_bit (pending) != -1)
3979 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3981 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3983 sbitmap_zero (visited);
3985 else
3987 break;
3990 sbitmap_free (pending);
3991 sbitmap_free (visited);
3992 fibheap_delete (worklist);