* config/i386/i386.md (mmx_pinsrw): Output operands in correct
[official-gcc.git] / gcc / expmed.c
blob012a68e8afaeb9164134783cd683a8fe291e172c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000 Free Software Foundation, Inc.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "toplev.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "insn-flags.h"
32 #include "insn-codes.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "real.h"
36 #include "recog.h"
38 static void store_fixed_bit_field PARAMS ((rtx, unsigned HOST_WIDE_INT,
39 unsigned HOST_WIDE_INT,
40 unsigned HOST_WIDE_INT, rtx,
41 unsigned int));
42 static void store_split_bit_field PARAMS ((rtx, unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT, rtx,
44 unsigned int));
45 static rtx extract_fixed_bit_field PARAMS ((enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT,
49 rtx, int, unsigned int));
50 static rtx mask_rtx PARAMS ((enum machine_mode, int,
51 int, int));
52 static rtx lshift_value PARAMS ((enum machine_mode, rtx,
53 int, int));
54 static rtx extract_split_bit_field PARAMS ((rtx, unsigned HOST_WIDE_INT,
55 unsigned HOST_WIDE_INT, int,
56 unsigned int));
57 static void do_cmp_and_jump PARAMS ((rtx, rtx, enum rtx_code,
58 enum machine_mode, rtx));
60 /* Non-zero means divides or modulus operations are relatively cheap for
61 powers of two, so don't use branches; emit the operation instead.
62 Usually, this will mean that the MD file will emit non-branch
63 sequences. */
65 static int sdiv_pow2_cheap, smod_pow2_cheap;
67 #ifndef SLOW_UNALIGNED_ACCESS
68 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
69 #endif
71 /* For compilers that support multiple targets with different word sizes,
72 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
73 is the H8/300(H) compiler. */
75 #ifndef MAX_BITS_PER_WORD
76 #define MAX_BITS_PER_WORD BITS_PER_WORD
77 #endif
79 /* Cost of various pieces of RTL. Note that some of these are indexed by
80 shift count and some by mode. */
81 static int add_cost, negate_cost, zero_cost;
82 static int shift_cost[MAX_BITS_PER_WORD];
83 static int shiftadd_cost[MAX_BITS_PER_WORD];
84 static int shiftsub_cost[MAX_BITS_PER_WORD];
85 static int mul_cost[NUM_MACHINE_MODES];
86 static int div_cost[NUM_MACHINE_MODES];
87 static int mul_widen_cost[NUM_MACHINE_MODES];
88 static int mul_highpart_cost[NUM_MACHINE_MODES];
90 void
91 init_expmed ()
93 /* This is "some random pseudo register" for purposes of calling recog
94 to see what insns exist. */
95 rtx reg = gen_rtx_REG (word_mode, 10000);
96 rtx shift_insn, shiftadd_insn, shiftsub_insn;
97 int dummy;
98 int m;
99 enum machine_mode mode, wider_mode;
101 start_sequence ();
103 reg = gen_rtx_REG (word_mode, 10000);
105 zero_cost = rtx_cost (const0_rtx, 0);
106 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
108 shift_insn = emit_insn (gen_rtx_SET (VOIDmode, reg,
109 gen_rtx_ASHIFT (word_mode, reg,
110 const0_rtx)));
112 shiftadd_insn
113 = emit_insn (gen_rtx_SET (VOIDmode, reg,
114 gen_rtx_PLUS (word_mode,
115 gen_rtx_MULT (word_mode,
116 reg, const0_rtx),
117 reg)));
119 shiftsub_insn
120 = emit_insn (gen_rtx_SET (VOIDmode, reg,
121 gen_rtx_MINUS (word_mode,
122 gen_rtx_MULT (word_mode,
123 reg, const0_rtx),
124 reg)));
126 init_recog ();
128 shift_cost[0] = 0;
129 shiftadd_cost[0] = shiftsub_cost[0] = add_cost;
131 for (m = 1; m < MAX_BITS_PER_WORD; m++)
133 shift_cost[m] = shiftadd_cost[m] = shiftsub_cost[m] = 32000;
135 XEXP (SET_SRC (PATTERN (shift_insn)), 1) = GEN_INT (m);
136 if (recog (PATTERN (shift_insn), shift_insn, &dummy) >= 0)
137 shift_cost[m] = rtx_cost (SET_SRC (PATTERN (shift_insn)), SET);
139 XEXP (XEXP (SET_SRC (PATTERN (shiftadd_insn)), 0), 1)
140 = GEN_INT ((HOST_WIDE_INT) 1 << m);
141 if (recog (PATTERN (shiftadd_insn), shiftadd_insn, &dummy) >= 0)
142 shiftadd_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftadd_insn)), SET);
144 XEXP (XEXP (SET_SRC (PATTERN (shiftsub_insn)), 0), 1)
145 = GEN_INT ((HOST_WIDE_INT) 1 << m);
146 if (recog (PATTERN (shiftsub_insn), shiftsub_insn, &dummy) >= 0)
147 shiftsub_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftsub_insn)), SET);
150 negate_cost = rtx_cost (gen_rtx_NEG (word_mode, reg), SET);
152 sdiv_pow2_cheap
153 = (rtx_cost (gen_rtx_DIV (word_mode, reg, GEN_INT (32)), SET)
154 <= 2 * add_cost);
155 smod_pow2_cheap
156 = (rtx_cost (gen_rtx_MOD (word_mode, reg, GEN_INT (32)), SET)
157 <= 2 * add_cost);
159 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
160 mode != VOIDmode;
161 mode = GET_MODE_WIDER_MODE (mode))
163 reg = gen_rtx_REG (mode, 10000);
164 div_cost[(int) mode] = rtx_cost (gen_rtx_UDIV (mode, reg, reg), SET);
165 mul_cost[(int) mode] = rtx_cost (gen_rtx_MULT (mode, reg, reg), SET);
166 wider_mode = GET_MODE_WIDER_MODE (mode);
167 if (wider_mode != VOIDmode)
169 mul_widen_cost[(int) wider_mode]
170 = rtx_cost (gen_rtx_MULT (wider_mode,
171 gen_rtx_ZERO_EXTEND (wider_mode, reg),
172 gen_rtx_ZERO_EXTEND (wider_mode, reg)),
173 SET);
174 mul_highpart_cost[(int) mode]
175 = rtx_cost (gen_rtx_TRUNCATE
176 (mode,
177 gen_rtx_LSHIFTRT (wider_mode,
178 gen_rtx_MULT (wider_mode,
179 gen_rtx_ZERO_EXTEND
180 (wider_mode, reg),
181 gen_rtx_ZERO_EXTEND
182 (wider_mode, reg)),
183 GEN_INT (GET_MODE_BITSIZE (mode)))),
184 SET);
188 end_sequence ();
191 /* Return an rtx representing minus the value of X.
192 MODE is the intended mode of the result,
193 useful if X is a CONST_INT. */
196 negate_rtx (mode, x)
197 enum machine_mode mode;
198 rtx x;
200 rtx result = simplify_unary_operation (NEG, mode, x, mode);
202 if (result == 0)
203 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
205 return result;
208 /* Generate code to store value from rtx VALUE
209 into a bit-field within structure STR_RTX
210 containing BITSIZE bits starting at bit BITNUM.
211 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
212 ALIGN is the alignment that STR_RTX is known to have.
213 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
215 /* ??? Note that there are two different ideas here for how
216 to determine the size to count bits within, for a register.
217 One is BITS_PER_WORD, and the other is the size of operand 3
218 of the insv pattern.
220 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
221 else, we use the mode of operand 3. */
224 store_bit_field (str_rtx, bitsize, bitnum, fieldmode, value, align, total_size)
225 rtx str_rtx;
226 unsigned HOST_WIDE_INT bitsize;
227 unsigned HOST_WIDE_INT bitnum;
228 enum machine_mode fieldmode;
229 rtx value;
230 unsigned int align;
231 HOST_WIDE_INT total_size;
233 unsigned int unit
234 = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD;
235 unsigned HOST_WIDE_INT offset = bitnum / unit;
236 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
237 register rtx op0 = str_rtx;
238 #ifdef HAVE_insv
239 unsigned HOST_WIDE_INT insv_bitsize;
240 enum machine_mode op_mode;
242 op_mode = insn_data[(int) CODE_FOR_insv].operand[3].mode;
243 if (op_mode == VOIDmode)
244 op_mode = word_mode;
245 insv_bitsize = GET_MODE_BITSIZE (op_mode);
246 #endif
248 /* It is wrong to have align==0, since every object is aligned at
249 least at a bit boundary. This usually means a bug elsewhere. */
250 if (align == 0)
251 abort ();
253 /* Discount the part of the structure before the desired byte.
254 We need to know how many bytes are safe to reference after it. */
255 if (total_size >= 0)
256 total_size -= (bitpos / BIGGEST_ALIGNMENT
257 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
259 while (GET_CODE (op0) == SUBREG)
261 /* The following line once was done only if WORDS_BIG_ENDIAN,
262 but I think that is a mistake. WORDS_BIG_ENDIAN is
263 meaningful at a much higher level; when structures are copied
264 between memory and regs, the higher-numbered regs
265 always get higher addresses. */
266 offset += SUBREG_WORD (op0);
267 /* We used to adjust BITPOS here, but now we do the whole adjustment
268 right after the loop. */
269 op0 = SUBREG_REG (op0);
272 /* If OP0 is a register, BITPOS must count within a word.
273 But as we have it, it counts within whatever size OP0 now has.
274 On a bigendian machine, these are not the same, so convert. */
275 if (BYTES_BIG_ENDIAN
276 && GET_CODE (op0) != MEM
277 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
278 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
280 value = protect_from_queue (value, 0);
282 if (flag_force_mem)
283 value = force_not_mem (value);
285 /* If the target is a register, overwriting the entire object, or storing
286 a full-word or multi-word field can be done with just a SUBREG.
288 If the target is memory, storing any naturally aligned field can be
289 done with a simple store. For targets that support fast unaligned
290 memory, any naturally sized, unit aligned field can be done directly. */
292 if (bitsize == GET_MODE_BITSIZE (fieldmode)
293 && (GET_CODE (op0) != MEM
294 ? (GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
295 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
296 : (! SLOW_UNALIGNED_ACCESS (fieldmode, align)
297 || (offset * BITS_PER_UNIT % bitsize == 0
298 && align % GET_MODE_BITSIZE (fieldmode) == 0)))
299 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0))
301 if (GET_MODE (op0) != fieldmode)
303 if (GET_CODE (op0) == SUBREG)
305 if (GET_MODE (SUBREG_REG (op0)) == fieldmode
306 || GET_MODE_CLASS (fieldmode) == MODE_INT
307 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT)
308 op0 = SUBREG_REG (op0);
309 else
310 /* Else we've got some float mode source being extracted into
311 a different float mode destination -- this combination of
312 subregs results in Severe Tire Damage. */
313 abort ();
315 if (GET_CODE (op0) == REG)
316 op0 = gen_rtx_SUBREG (fieldmode, op0, offset);
317 else
318 op0 = change_address (op0, fieldmode,
319 plus_constant (XEXP (op0, 0), offset));
321 emit_move_insn (op0, value);
322 return value;
325 /* Make sure we are playing with integral modes. Pun with subregs
326 if we aren't. This must come after the entire register case above,
327 since that case is valid for any mode. The following cases are only
328 valid for integral modes. */
330 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
331 if (imode != GET_MODE (op0))
333 if (GET_CODE (op0) == MEM)
334 op0 = change_address (op0, imode, NULL_RTX);
335 else if (imode != BLKmode)
336 op0 = gen_lowpart (imode, op0);
337 else
338 abort ();
342 /* Storing an lsb-aligned field in a register
343 can be done with a movestrict instruction. */
345 if (GET_CODE (op0) != MEM
346 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
347 && bitsize == GET_MODE_BITSIZE (fieldmode)
348 && (movstrict_optab->handlers[(int) fieldmode].insn_code
349 != CODE_FOR_nothing))
351 int icode = movstrict_optab->handlers[(int) fieldmode].insn_code;
353 /* Get appropriate low part of the value being stored. */
354 if (GET_CODE (value) == CONST_INT || GET_CODE (value) == REG)
355 value = gen_lowpart (fieldmode, value);
356 else if (!(GET_CODE (value) == SYMBOL_REF
357 || GET_CODE (value) == LABEL_REF
358 || GET_CODE (value) == CONST))
359 value = convert_to_mode (fieldmode, value, 0);
361 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
362 value = copy_to_mode_reg (fieldmode, value);
364 if (GET_CODE (op0) == SUBREG)
366 if (GET_MODE (SUBREG_REG (op0)) == fieldmode
367 || GET_MODE_CLASS (fieldmode) == MODE_INT
368 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT)
369 op0 = SUBREG_REG (op0);
370 else
371 /* Else we've got some float mode source being extracted into
372 a different float mode destination -- this combination of
373 subregs results in Severe Tire Damage. */
374 abort ();
377 emit_insn (GEN_FCN (icode)
378 (gen_rtx_SUBREG (fieldmode, op0, offset), value));
380 return value;
383 /* Handle fields bigger than a word. */
385 if (bitsize > BITS_PER_WORD)
387 /* Here we transfer the words of the field
388 in the order least significant first.
389 This is because the most significant word is the one which may
390 be less than full.
391 However, only do that if the value is not BLKmode. */
393 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
394 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
395 unsigned int i;
397 /* This is the mode we must force value to, so that there will be enough
398 subwords to extract. Note that fieldmode will often (always?) be
399 VOIDmode, because that is what store_field uses to indicate that this
400 is a bit field, but passing VOIDmode to operand_subword_force will
401 result in an abort. */
402 fieldmode = mode_for_size (nwords * BITS_PER_WORD, MODE_INT, 0);
404 for (i = 0; i < nwords; i++)
406 /* If I is 0, use the low-order word in both field and target;
407 if I is 1, use the next to lowest word; and so on. */
408 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
409 unsigned int bit_offset = (backwards
410 ? MAX ((int) bitsize - ((int) i + 1)
411 * BITS_PER_WORD,
413 : (int) i * BITS_PER_WORD);
415 store_bit_field (op0, MIN (BITS_PER_WORD,
416 bitsize - i * BITS_PER_WORD),
417 bitnum + bit_offset, word_mode,
418 operand_subword_force (value, wordnum,
419 (GET_MODE (value) == VOIDmode
420 ? fieldmode
421 : GET_MODE (value))),
422 align, total_size);
424 return value;
427 /* From here on we can assume that the field to be stored in is
428 a full-word (whatever type that is), since it is shorter than a word. */
430 /* OFFSET is the number of words or bytes (UNIT says which)
431 from STR_RTX to the first word or byte containing part of the field. */
433 if (GET_CODE (op0) != MEM)
435 if (offset != 0
436 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
438 if (GET_CODE (op0) != REG)
440 /* Since this is a destination (lvalue), we can't copy it to a
441 pseudo. We can trivially remove a SUBREG that does not
442 change the size of the operand. Such a SUBREG may have been
443 added above. Otherwise, abort. */
444 if (GET_CODE (op0) == SUBREG
445 && (GET_MODE_SIZE (GET_MODE (op0))
446 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
447 op0 = SUBREG_REG (op0);
448 else
449 abort ();
451 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
452 op0, offset);
454 offset = 0;
456 else
458 op0 = protect_from_queue (op0, 1);
461 /* If VALUE is a floating-point mode, access it as an integer of the
462 corresponding size. This can occur on a machine with 64 bit registers
463 that uses SFmode for float. This can also occur for unaligned float
464 structure fields. */
465 if (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT)
467 if (GET_CODE (value) != REG)
468 value = copy_to_reg (value);
469 value = gen_rtx_SUBREG (word_mode, value, 0);
472 /* Now OFFSET is nonzero only if OP0 is memory
473 and is therefore always measured in bytes. */
475 #ifdef HAVE_insv
476 if (HAVE_insv
477 && GET_MODE (value) != BLKmode
478 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
479 /* Ensure insv's size is wide enough for this field. */
480 && (insv_bitsize >= bitsize)
481 && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
482 && (bitsize + bitpos > insv_bitsize)))
484 int xbitpos = bitpos;
485 rtx value1;
486 rtx xop0 = op0;
487 rtx last = get_last_insn ();
488 rtx pat;
489 enum machine_mode maxmode;
490 int save_volatile_ok = volatile_ok;
492 maxmode = insn_data[(int) CODE_FOR_insv].operand[3].mode;
493 if (maxmode == VOIDmode)
494 maxmode = word_mode;
496 volatile_ok = 1;
498 /* If this machine's insv can only insert into a register, copy OP0
499 into a register and save it back later. */
500 /* This used to check flag_force_mem, but that was a serious
501 de-optimization now that flag_force_mem is enabled by -O2. */
502 if (GET_CODE (op0) == MEM
503 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
504 (op0, VOIDmode)))
506 rtx tempreg;
507 enum machine_mode bestmode;
509 /* Get the mode to use for inserting into this field. If OP0 is
510 BLKmode, get the smallest mode consistent with the alignment. If
511 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
512 mode. Otherwise, use the smallest mode containing the field. */
514 if (GET_MODE (op0) == BLKmode
515 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
516 bestmode
517 = get_best_mode (bitsize, bitnum, align, maxmode,
518 MEM_VOLATILE_P (op0));
519 else
520 bestmode = GET_MODE (op0);
522 if (bestmode == VOIDmode
523 || (SLOW_UNALIGNED_ACCESS (bestmode, align)
524 && GET_MODE_BITSIZE (bestmode) > align))
525 goto insv_loses;
527 /* Adjust address to point to the containing unit of that mode. */
528 unit = GET_MODE_BITSIZE (bestmode);
529 /* Compute offset as multiple of this unit, counting in bytes. */
530 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
531 bitpos = bitnum % unit;
532 op0 = change_address (op0, bestmode,
533 plus_constant (XEXP (op0, 0), offset));
535 /* Fetch that unit, store the bitfield in it, then store
536 the unit. */
537 tempreg = copy_to_reg (op0);
538 store_bit_field (tempreg, bitsize, bitpos, fieldmode, value,
539 align, total_size);
540 emit_move_insn (op0, tempreg);
541 return value;
543 volatile_ok = save_volatile_ok;
545 /* Add OFFSET into OP0's address. */
546 if (GET_CODE (xop0) == MEM)
547 xop0 = change_address (xop0, byte_mode,
548 plus_constant (XEXP (xop0, 0), offset));
550 /* If xop0 is a register, we need it in MAXMODE
551 to make it acceptable to the format of insv. */
552 if (GET_CODE (xop0) == SUBREG)
553 /* We can't just change the mode, because this might clobber op0,
554 and we will need the original value of op0 if insv fails. */
555 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_WORD (xop0));
556 if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
557 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
559 /* On big-endian machines, we count bits from the most significant.
560 If the bit field insn does not, we must invert. */
562 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
563 xbitpos = unit - bitsize - xbitpos;
565 /* We have been counting XBITPOS within UNIT.
566 Count instead within the size of the register. */
567 if (BITS_BIG_ENDIAN && GET_CODE (xop0) != MEM)
568 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
570 unit = GET_MODE_BITSIZE (maxmode);
572 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
573 value1 = value;
574 if (GET_MODE (value) != maxmode)
576 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
578 /* Optimization: Don't bother really extending VALUE
579 if it has all the bits we will actually use. However,
580 if we must narrow it, be sure we do it correctly. */
582 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
584 /* Avoid making subreg of a subreg, or of a mem. */
585 if (GET_CODE (value1) != REG)
586 value1 = copy_to_reg (value1);
587 value1 = gen_rtx_SUBREG (maxmode, value1, 0);
589 else
590 value1 = gen_lowpart (maxmode, value1);
592 else if (!CONSTANT_P (value))
593 /* Parse phase is supposed to make VALUE's data type
594 match that of the component reference, which is a type
595 at least as wide as the field; so VALUE should have
596 a mode that corresponds to that type. */
597 abort ();
600 /* If this machine's insv insists on a register,
601 get VALUE1 into a register. */
602 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
603 (value1, maxmode)))
604 value1 = force_reg (maxmode, value1);
606 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
607 if (pat)
608 emit_insn (pat);
609 else
611 delete_insns_since (last);
612 store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align);
615 else
616 insv_loses:
617 #endif
618 /* Insv is not available; store using shifts and boolean ops. */
619 store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align);
620 return value;
623 /* Use shifts and boolean operations to store VALUE
624 into a bit field of width BITSIZE
625 in a memory location specified by OP0 except offset by OFFSET bytes.
626 (OFFSET must be 0 if OP0 is a register.)
627 The field starts at position BITPOS within the byte.
628 (If OP0 is a register, it may be a full word or a narrower mode,
629 but BITPOS still counts within a full word,
630 which is significant on bigendian machines.)
631 STRUCT_ALIGN is the alignment the structure is known to have.
633 Note that protect_from_queue has already been done on OP0 and VALUE. */
635 static void
636 store_fixed_bit_field (op0, offset, bitsize, bitpos, value, struct_align)
637 register rtx op0;
638 unsigned HOST_WIDE_INT offset, bitsize, bitpos;
639 register rtx value;
640 unsigned int struct_align;
642 register enum machine_mode mode;
643 unsigned int total_bits = BITS_PER_WORD;
644 rtx subtarget, temp;
645 int all_zero = 0;
646 int all_one = 0;
648 if (! SLOW_UNALIGNED_ACCESS (word_mode, struct_align))
649 struct_align = BIGGEST_ALIGNMENT;
651 /* There is a case not handled here:
652 a structure with a known alignment of just a halfword
653 and a field split across two aligned halfwords within the structure.
654 Or likewise a structure with a known alignment of just a byte
655 and a field split across two bytes.
656 Such cases are not supposed to be able to occur. */
658 if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
660 if (offset != 0)
661 abort ();
662 /* Special treatment for a bit field split across two registers. */
663 if (bitsize + bitpos > BITS_PER_WORD)
665 store_split_bit_field (op0, bitsize, bitpos,
666 value, BITS_PER_WORD);
667 return;
670 else
672 /* Get the proper mode to use for this field. We want a mode that
673 includes the entire field. If such a mode would be larger than
674 a word, we won't be doing the extraction the normal way. */
676 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
677 struct_align, word_mode,
678 GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0));
680 if (mode == VOIDmode)
682 /* The only way this should occur is if the field spans word
683 boundaries. */
684 store_split_bit_field (op0,
685 bitsize, bitpos + offset * BITS_PER_UNIT,
686 value, struct_align);
687 return;
690 total_bits = GET_MODE_BITSIZE (mode);
692 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
693 be in the range 0 to total_bits-1, and put any excess bytes in
694 OFFSET. */
695 if (bitpos >= total_bits)
697 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
698 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
699 * BITS_PER_UNIT);
702 /* Get ref to an aligned byte, halfword, or word containing the field.
703 Adjust BITPOS to be position within a word,
704 and OFFSET to be the offset of that word.
705 Then alter OP0 to refer to that word. */
706 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
707 offset -= (offset % (total_bits / BITS_PER_UNIT));
708 op0 = change_address (op0, mode,
709 plus_constant (XEXP (op0, 0), offset));
712 mode = GET_MODE (op0);
714 /* Now MODE is either some integral mode for a MEM as OP0,
715 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
716 The bit field is contained entirely within OP0.
717 BITPOS is the starting bit number within OP0.
718 (OP0's mode may actually be narrower than MODE.) */
720 if (BYTES_BIG_ENDIAN)
721 /* BITPOS is the distance between our msb
722 and that of the containing datum.
723 Convert it to the distance from the lsb. */
724 bitpos = total_bits - bitsize - bitpos;
726 /* Now BITPOS is always the distance between our lsb
727 and that of OP0. */
729 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
730 we must first convert its mode to MODE. */
732 if (GET_CODE (value) == CONST_INT)
734 register HOST_WIDE_INT v = INTVAL (value);
736 if (bitsize < HOST_BITS_PER_WIDE_INT)
737 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
739 if (v == 0)
740 all_zero = 1;
741 else if ((bitsize < HOST_BITS_PER_WIDE_INT
742 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
743 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
744 all_one = 1;
746 value = lshift_value (mode, value, bitpos, bitsize);
748 else
750 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
751 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
753 if (GET_MODE (value) != mode)
755 if ((GET_CODE (value) == REG || GET_CODE (value) == SUBREG)
756 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
757 value = gen_lowpart (mode, value);
758 else
759 value = convert_to_mode (mode, value, 1);
762 if (must_and)
763 value = expand_binop (mode, and_optab, value,
764 mask_rtx (mode, 0, bitsize, 0),
765 NULL_RTX, 1, OPTAB_LIB_WIDEN);
766 if (bitpos > 0)
767 value = expand_shift (LSHIFT_EXPR, mode, value,
768 build_int_2 (bitpos, 0), NULL_RTX, 1);
771 /* Now clear the chosen bits in OP0,
772 except that if VALUE is -1 we need not bother. */
774 subtarget = (GET_CODE (op0) == REG || ! flag_force_mem) ? op0 : 0;
776 if (! all_one)
778 temp = expand_binop (mode, and_optab, op0,
779 mask_rtx (mode, bitpos, bitsize, 1),
780 subtarget, 1, OPTAB_LIB_WIDEN);
781 subtarget = temp;
783 else
784 temp = op0;
786 /* Now logical-or VALUE into OP0, unless it is zero. */
788 if (! all_zero)
789 temp = expand_binop (mode, ior_optab, temp, value,
790 subtarget, 1, OPTAB_LIB_WIDEN);
791 if (op0 != temp)
792 emit_move_insn (op0, temp);
795 /* Store a bit field that is split across multiple accessible memory objects.
797 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
798 BITSIZE is the field width; BITPOS the position of its first bit
799 (within the word).
800 VALUE is the value to store.
801 ALIGN is the known alignment of OP0.
802 This is also the size of the memory objects to be used.
804 This does not yet handle fields wider than BITS_PER_WORD. */
806 static void
807 store_split_bit_field (op0, bitsize, bitpos, value, align)
808 rtx op0;
809 unsigned HOST_WIDE_INT bitsize, bitpos;
810 rtx value;
811 unsigned int align;
813 unsigned int unit;
814 unsigned int bitsdone = 0;
816 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
817 much at a time. */
818 if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
819 unit = BITS_PER_WORD;
820 else
821 unit = MIN (align, BITS_PER_WORD);
823 /* If VALUE is a constant other than a CONST_INT, get it into a register in
824 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
825 that VALUE might be a floating-point constant. */
826 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
828 rtx word = gen_lowpart_common (word_mode, value);
830 if (word && (value != word))
831 value = word;
832 else
833 value = gen_lowpart_common (word_mode,
834 force_reg (GET_MODE (value) != VOIDmode
835 ? GET_MODE (value)
836 : word_mode, value));
838 else if (GET_CODE (value) == ADDRESSOF)
839 value = copy_to_reg (value);
841 while (bitsdone < bitsize)
843 unsigned HOST_WIDE_INT thissize;
844 rtx part, word;
845 unsigned HOST_WIDE_INT thispos;
846 unsigned HOST_WIDE_INT offset;
848 offset = (bitpos + bitsdone) / unit;
849 thispos = (bitpos + bitsdone) % unit;
851 /* THISSIZE must not overrun a word boundary. Otherwise,
852 store_fixed_bit_field will call us again, and we will mutually
853 recurse forever. */
854 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
855 thissize = MIN (thissize, unit - thispos);
857 if (BYTES_BIG_ENDIAN)
859 int total_bits;
861 /* We must do an endian conversion exactly the same way as it is
862 done in extract_bit_field, so that the two calls to
863 extract_fixed_bit_field will have comparable arguments. */
864 if (GET_CODE (value) != MEM || GET_MODE (value) == BLKmode)
865 total_bits = BITS_PER_WORD;
866 else
867 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
869 /* Fetch successively less significant portions. */
870 if (GET_CODE (value) == CONST_INT)
871 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
872 >> (bitsize - bitsdone - thissize))
873 & (((HOST_WIDE_INT) 1 << thissize) - 1));
874 else
875 /* The args are chosen so that the last part includes the
876 lsb. Give extract_bit_field the value it needs (with
877 endianness compensation) to fetch the piece we want.
879 ??? We have no idea what the alignment of VALUE is, so
880 we have to use a guess. */
881 part
882 = extract_fixed_bit_field
883 (word_mode, value, 0, thissize,
884 total_bits - bitsize + bitsdone, NULL_RTX, 1,
885 GET_MODE (value) == VOIDmode
886 ? UNITS_PER_WORD
887 : (GET_MODE (value) == BLKmode
888 ? 1 : GET_MODE_ALIGNMENT (GET_MODE (value))));
890 else
892 /* Fetch successively more significant portions. */
893 if (GET_CODE (value) == CONST_INT)
894 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
895 >> bitsdone)
896 & (((HOST_WIDE_INT) 1 << thissize) - 1));
897 else
898 part
899 = extract_fixed_bit_field
900 (word_mode, value, 0, thissize, bitsdone, NULL_RTX, 1,
901 GET_MODE (value) == VOIDmode
902 ? UNITS_PER_WORD
903 : (GET_MODE (value) == BLKmode
904 ? 1 : GET_MODE_ALIGNMENT (GET_MODE (value))));
907 /* If OP0 is a register, then handle OFFSET here.
909 When handling multiword bitfields, extract_bit_field may pass
910 down a word_mode SUBREG of a larger REG for a bitfield that actually
911 crosses a word boundary. Thus, for a SUBREG, we must find
912 the current word starting from the base register. */
913 if (GET_CODE (op0) == SUBREG)
915 word = operand_subword_force (SUBREG_REG (op0),
916 SUBREG_WORD (op0) + offset,
917 GET_MODE (SUBREG_REG (op0)));
918 offset = 0;
920 else if (GET_CODE (op0) == REG)
922 word = operand_subword_force (op0, offset, GET_MODE (op0));
923 offset = 0;
925 else
926 word = op0;
928 /* OFFSET is in UNITs, and UNIT is in bits.
929 store_fixed_bit_field wants offset in bytes. */
930 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT,
931 thissize, thispos, part, align);
932 bitsdone += thissize;
936 /* Generate code to extract a byte-field from STR_RTX
937 containing BITSIZE bits, starting at BITNUM,
938 and put it in TARGET if possible (if TARGET is nonzero).
939 Regardless of TARGET, we return the rtx for where the value is placed.
940 It may be a QUEUED.
942 STR_RTX is the structure containing the byte (a REG or MEM).
943 UNSIGNEDP is nonzero if this is an unsigned bit field.
944 MODE is the natural mode of the field value once extracted.
945 TMODE is the mode the caller would like the value to have;
946 but the value may be returned with type MODE instead.
948 ALIGN is the alignment that STR_RTX is known to have.
949 TOTAL_SIZE is the size in bytes of the containing structure,
950 or -1 if varying.
952 If a TARGET is specified and we can store in it at no extra cost,
953 we do so, and return TARGET.
954 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
955 if they are equally easy. */
958 extract_bit_field (str_rtx, bitsize, bitnum, unsignedp,
959 target, mode, tmode, align, total_size)
960 rtx str_rtx;
961 unsigned HOST_WIDE_INT bitsize;
962 unsigned HOST_WIDE_INT bitnum;
963 int unsignedp;
964 rtx target;
965 enum machine_mode mode, tmode;
966 unsigned int align;
967 HOST_WIDE_INT total_size;
969 unsigned int unit
970 = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD;
971 unsigned HOST_WIDE_INT offset = bitnum / unit;
972 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
973 register rtx op0 = str_rtx;
974 rtx spec_target = target;
975 rtx spec_target_subreg = 0;
976 enum machine_mode int_mode;
977 #ifdef HAVE_extv
978 unsigned HOST_WIDE_INT extv_bitsize;
979 enum machine_mode extv_mode;
980 #endif
981 #ifdef HAVE_extzv
982 unsigned HOST_WIDE_INT extzv_bitsize;
983 enum machine_mode extzv_mode;
984 #endif
986 #ifdef HAVE_extv
987 extv_mode = insn_data[(int) CODE_FOR_extv].operand[0].mode;
988 if (extv_mode == VOIDmode)
989 extv_mode = word_mode;
990 extv_bitsize = GET_MODE_BITSIZE (extv_mode);
991 #endif
993 #ifdef HAVE_extzv
994 extzv_mode = insn_data[(int) CODE_FOR_extzv].operand[0].mode;
995 if (extzv_mode == VOIDmode)
996 extzv_mode = word_mode;
997 extzv_bitsize = GET_MODE_BITSIZE (extzv_mode);
998 #endif
1000 /* Discount the part of the structure before the desired byte.
1001 We need to know how many bytes are safe to reference after it. */
1002 if (total_size >= 0)
1003 total_size -= (bitpos / BIGGEST_ALIGNMENT
1004 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
1006 if (tmode == VOIDmode)
1007 tmode = mode;
1008 while (GET_CODE (op0) == SUBREG)
1010 int outer_size = GET_MODE_BITSIZE (GET_MODE (op0));
1011 int inner_size = GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)));
1013 offset += SUBREG_WORD (op0);
1015 inner_size = MIN (inner_size, BITS_PER_WORD);
1017 if (BYTES_BIG_ENDIAN && (outer_size < inner_size))
1019 bitpos += inner_size - outer_size;
1020 if (bitpos > unit)
1022 offset += (bitpos / unit);
1023 bitpos %= unit;
1027 op0 = SUBREG_REG (op0);
1030 /* Make sure we are playing with integral modes. Pun with subregs
1031 if we aren't. */
1033 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1034 if (imode != GET_MODE (op0))
1036 if (GET_CODE (op0) == MEM)
1037 op0 = change_address (op0, imode, NULL_RTX);
1038 else if (imode != BLKmode)
1039 op0 = gen_lowpart (imode, op0);
1040 else
1041 abort ();
1045 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1046 If that's wrong, the solution is to test for it and set TARGET to 0
1047 if needed. */
1049 /* If OP0 is a register, BITPOS must count within a word.
1050 But as we have it, it counts within whatever size OP0 now has.
1051 On a bigendian machine, these are not the same, so convert. */
1052 if (BYTES_BIG_ENDIAN
1053 && GET_CODE (op0) != MEM
1054 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1055 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1057 /* Extracting a full-word or multi-word value
1058 from a structure in a register or aligned memory.
1059 This can be done with just SUBREG.
1060 So too extracting a subword value in
1061 the least significant part of the register. */
1063 if (((GET_CODE (op0) != MEM
1064 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1065 GET_MODE_BITSIZE (GET_MODE (op0))))
1066 || (GET_CODE (op0) == MEM
1067 && (! SLOW_UNALIGNED_ACCESS (mode, align)
1068 || (offset * BITS_PER_UNIT % bitsize == 0
1069 && align % bitsize == 0))))
1070 && ((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1071 && bitpos % BITS_PER_WORD == 0)
1072 || (mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0) != BLKmode
1073 /* ??? The big endian test here is wrong. This is correct
1074 if the value is in a register, and if mode_for_size is not
1075 the same mode as op0. This causes us to get unnecessarily
1076 inefficient code from the Thumb port when -mbig-endian. */
1077 && (BYTES_BIG_ENDIAN
1078 ? bitpos + bitsize == BITS_PER_WORD
1079 : bitpos == 0))))
1081 enum machine_mode mode1
1082 = (VECTOR_MODE_P (tmode) ? mode
1083 : mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0));
1085 if (mode1 != GET_MODE (op0))
1087 if (GET_CODE (op0) == SUBREG)
1089 if (GET_MODE (SUBREG_REG (op0)) == mode1
1090 || GET_MODE_CLASS (mode1) == MODE_INT
1091 || GET_MODE_CLASS (mode1) == MODE_PARTIAL_INT)
1092 op0 = SUBREG_REG (op0);
1093 else
1094 /* Else we've got some float mode source being extracted into
1095 a different float mode destination -- this combination of
1096 subregs results in Severe Tire Damage. */
1097 abort ();
1099 if (GET_CODE (op0) == REG)
1100 op0 = gen_rtx_SUBREG (mode1, op0, offset);
1101 else
1102 op0 = change_address (op0, mode1,
1103 plus_constant (XEXP (op0, 0), offset));
1105 if (mode1 != mode)
1106 return convert_to_mode (tmode, op0, unsignedp);
1107 return op0;
1110 /* Handle fields bigger than a word. */
1112 if (bitsize > BITS_PER_WORD)
1114 /* Here we transfer the words of the field
1115 in the order least significant first.
1116 This is because the most significant word is the one which may
1117 be less than full. */
1119 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1120 unsigned int i;
1122 if (target == 0 || GET_CODE (target) != REG)
1123 target = gen_reg_rtx (mode);
1125 /* Indicate for flow that the entire target reg is being set. */
1126 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1128 for (i = 0; i < nwords; i++)
1130 /* If I is 0, use the low-order word in both field and target;
1131 if I is 1, use the next to lowest word; and so on. */
1132 /* Word number in TARGET to use. */
1133 unsigned int wordnum
1134 = (WORDS_BIG_ENDIAN
1135 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1136 : i);
1137 /* Offset from start of field in OP0. */
1138 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1139 ? MAX (0, ((int) bitsize - ((int) i + 1)
1140 * (int) BITS_PER_WORD))
1141 : (int) i * BITS_PER_WORD);
1142 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1143 rtx result_part
1144 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1145 bitsize - i * BITS_PER_WORD),
1146 bitnum + bit_offset, 1, target_part, mode,
1147 word_mode, align, total_size);
1149 if (target_part == 0)
1150 abort ();
1152 if (result_part != target_part)
1153 emit_move_insn (target_part, result_part);
1156 if (unsignedp)
1158 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1159 need to be zero'd out. */
1160 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1162 unsigned int i, total_words;
1164 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1165 for (i = nwords; i < total_words; i++)
1167 int wordnum = WORDS_BIG_ENDIAN ? total_words - i - 1 : i;
1168 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1169 emit_move_insn (target_part, const0_rtx);
1172 return target;
1175 /* Signed bit field: sign-extend with two arithmetic shifts. */
1176 target = expand_shift (LSHIFT_EXPR, mode, target,
1177 build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
1178 NULL_RTX, 0);
1179 return expand_shift (RSHIFT_EXPR, mode, target,
1180 build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
1181 NULL_RTX, 0);
1184 /* From here on we know the desired field is smaller than a word. */
1186 /* Check if there is a correspondingly-sized integer field, so we can
1187 safely extract it as one size of integer, if necessary; then
1188 truncate or extend to the size that is wanted; then use SUBREGs or
1189 convert_to_mode to get one of the modes we really wanted. */
1191 int_mode = int_mode_for_mode (tmode);
1192 if (int_mode == BLKmode)
1193 int_mode = int_mode_for_mode (mode);
1194 if (int_mode == BLKmode)
1195 abort(); /* Should probably push op0 out to memory and then
1196 do a load. */
1198 /* OFFSET is the number of words or bytes (UNIT says which)
1199 from STR_RTX to the first word or byte containing part of the field. */
1201 if (GET_CODE (op0) != MEM)
1203 if (offset != 0
1204 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1206 if (GET_CODE (op0) != REG)
1207 op0 = copy_to_reg (op0);
1208 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1209 op0, offset);
1211 offset = 0;
1213 else
1215 op0 = protect_from_queue (str_rtx, 1);
1218 /* Now OFFSET is nonzero only for memory operands. */
1220 if (unsignedp)
1222 #ifdef HAVE_extzv
1223 if (HAVE_extzv
1224 && (extzv_bitsize >= bitsize)
1225 && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
1226 && (bitsize + bitpos > extzv_bitsize)))
1228 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1229 rtx bitsize_rtx, bitpos_rtx;
1230 rtx last = get_last_insn ();
1231 rtx xop0 = op0;
1232 rtx xtarget = target;
1233 rtx xspec_target = spec_target;
1234 rtx xspec_target_subreg = spec_target_subreg;
1235 rtx pat;
1236 enum machine_mode maxmode;
1238 maxmode = insn_data[(int) CODE_FOR_extzv].operand[0].mode;
1239 if (maxmode == VOIDmode)
1240 maxmode = word_mode;
1242 if (GET_CODE (xop0) == MEM)
1244 int save_volatile_ok = volatile_ok;
1245 volatile_ok = 1;
1247 /* Is the memory operand acceptable? */
1248 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1249 (xop0, GET_MODE (xop0))))
1251 /* No, load into a reg and extract from there. */
1252 enum machine_mode bestmode;
1254 /* Get the mode to use for inserting into this field. If
1255 OP0 is BLKmode, get the smallest mode consistent with the
1256 alignment. If OP0 is a non-BLKmode object that is no
1257 wider than MAXMODE, use its mode. Otherwise, use the
1258 smallest mode containing the field. */
1260 if (GET_MODE (xop0) == BLKmode
1261 || (GET_MODE_SIZE (GET_MODE (op0))
1262 > GET_MODE_SIZE (maxmode)))
1263 bestmode = get_best_mode (bitsize, bitnum, align, maxmode,
1264 MEM_VOLATILE_P (xop0));
1265 else
1266 bestmode = GET_MODE (xop0);
1268 if (bestmode == VOIDmode
1269 || (SLOW_UNALIGNED_ACCESS (bestmode, align)
1270 && GET_MODE_BITSIZE (bestmode) > align))
1271 goto extzv_loses;
1273 /* Compute offset as multiple of this unit,
1274 counting in bytes. */
1275 unit = GET_MODE_BITSIZE (bestmode);
1276 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1277 xbitpos = bitnum % unit;
1278 xop0 = change_address (xop0, bestmode,
1279 plus_constant (XEXP (xop0, 0),
1280 xoffset));
1281 /* Fetch it to a register in that size. */
1282 xop0 = force_reg (bestmode, xop0);
1284 /* XBITPOS counts within UNIT, which is what is expected. */
1286 else
1287 /* Get ref to first byte containing part of the field. */
1288 xop0 = change_address (xop0, byte_mode,
1289 plus_constant (XEXP (xop0, 0), xoffset));
1291 volatile_ok = save_volatile_ok;
1294 /* If op0 is a register, we need it in MAXMODE (which is usually
1295 SImode). to make it acceptable to the format of extzv. */
1296 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1297 goto extzv_loses;
1298 if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
1299 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1301 /* On big-endian machines, we count bits from the most significant.
1302 If the bit field insn does not, we must invert. */
1303 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1304 xbitpos = unit - bitsize - xbitpos;
1306 /* Now convert from counting within UNIT to counting in MAXMODE. */
1307 if (BITS_BIG_ENDIAN && GET_CODE (xop0) != MEM)
1308 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1310 unit = GET_MODE_BITSIZE (maxmode);
1312 if (xtarget == 0
1313 || (flag_force_mem && GET_CODE (xtarget) == MEM))
1314 xtarget = xspec_target = gen_reg_rtx (tmode);
1316 if (GET_MODE (xtarget) != maxmode)
1318 if (GET_CODE (xtarget) == REG)
1320 int wider = (GET_MODE_SIZE (maxmode)
1321 > GET_MODE_SIZE (GET_MODE (xtarget)));
1322 xtarget = gen_lowpart (maxmode, xtarget);
1323 if (wider)
1324 xspec_target_subreg = xtarget;
1326 else
1327 xtarget = gen_reg_rtx (maxmode);
1330 /* If this machine's extzv insists on a register target,
1331 make sure we have one. */
1332 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1333 (xtarget, maxmode)))
1334 xtarget = gen_reg_rtx (maxmode);
1336 bitsize_rtx = GEN_INT (bitsize);
1337 bitpos_rtx = GEN_INT (xbitpos);
1339 pat = gen_extzv (protect_from_queue (xtarget, 1),
1340 xop0, bitsize_rtx, bitpos_rtx);
1341 if (pat)
1343 emit_insn (pat);
1344 target = xtarget;
1345 spec_target = xspec_target;
1346 spec_target_subreg = xspec_target_subreg;
1348 else
1350 delete_insns_since (last);
1351 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1352 bitpos, target, 1, align);
1355 else
1356 extzv_loses:
1357 #endif
1358 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1359 bitpos, target, 1, align);
1361 else
1363 #ifdef HAVE_extv
1364 if (HAVE_extv
1365 && (extv_bitsize >= bitsize)
1366 && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
1367 && (bitsize + bitpos > extv_bitsize)))
1369 int xbitpos = bitpos, xoffset = offset;
1370 rtx bitsize_rtx, bitpos_rtx;
1371 rtx last = get_last_insn ();
1372 rtx xop0 = op0, xtarget = target;
1373 rtx xspec_target = spec_target;
1374 rtx xspec_target_subreg = spec_target_subreg;
1375 rtx pat;
1376 enum machine_mode maxmode;
1378 maxmode = insn_data[(int) CODE_FOR_extv].operand[0].mode;
1379 if (maxmode == VOIDmode)
1380 maxmode = word_mode;
1382 if (GET_CODE (xop0) == MEM)
1384 /* Is the memory operand acceptable? */
1385 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1386 (xop0, GET_MODE (xop0))))
1388 /* No, load into a reg and extract from there. */
1389 enum machine_mode bestmode;
1391 /* Get the mode to use for inserting into this field. If
1392 OP0 is BLKmode, get the smallest mode consistent with the
1393 alignment. If OP0 is a non-BLKmode object that is no
1394 wider than MAXMODE, use its mode. Otherwise, use the
1395 smallest mode containing the field. */
1397 if (GET_MODE (xop0) == BLKmode
1398 || (GET_MODE_SIZE (GET_MODE (op0))
1399 > GET_MODE_SIZE (maxmode)))
1400 bestmode = get_best_mode (bitsize, bitnum, align, maxmode,
1401 MEM_VOLATILE_P (xop0));
1402 else
1403 bestmode = GET_MODE (xop0);
1405 if (bestmode == VOIDmode
1406 || (SLOW_UNALIGNED_ACCESS (bestmode, align)
1407 && GET_MODE_BITSIZE (bestmode) > align))
1408 goto extv_loses;
1410 /* Compute offset as multiple of this unit,
1411 counting in bytes. */
1412 unit = GET_MODE_BITSIZE (bestmode);
1413 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1414 xbitpos = bitnum % unit;
1415 xop0 = change_address (xop0, bestmode,
1416 plus_constant (XEXP (xop0, 0),
1417 xoffset));
1418 /* Fetch it to a register in that size. */
1419 xop0 = force_reg (bestmode, xop0);
1421 /* XBITPOS counts within UNIT, which is what is expected. */
1423 else
1424 /* Get ref to first byte containing part of the field. */
1425 xop0 = change_address (xop0, byte_mode,
1426 plus_constant (XEXP (xop0, 0), xoffset));
1429 /* If op0 is a register, we need it in MAXMODE (which is usually
1430 SImode) to make it acceptable to the format of extv. */
1431 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1432 goto extv_loses;
1433 if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
1434 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1436 /* On big-endian machines, we count bits from the most significant.
1437 If the bit field insn does not, we must invert. */
1438 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1439 xbitpos = unit - bitsize - xbitpos;
1441 /* XBITPOS counts within a size of UNIT.
1442 Adjust to count within a size of MAXMODE. */
1443 if (BITS_BIG_ENDIAN && GET_CODE (xop0) != MEM)
1444 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1446 unit = GET_MODE_BITSIZE (maxmode);
1448 if (xtarget == 0
1449 || (flag_force_mem && GET_CODE (xtarget) == MEM))
1450 xtarget = xspec_target = gen_reg_rtx (tmode);
1452 if (GET_MODE (xtarget) != maxmode)
1454 if (GET_CODE (xtarget) == REG)
1456 int wider = (GET_MODE_SIZE (maxmode)
1457 > GET_MODE_SIZE (GET_MODE (xtarget)));
1458 xtarget = gen_lowpart (maxmode, xtarget);
1459 if (wider)
1460 xspec_target_subreg = xtarget;
1462 else
1463 xtarget = gen_reg_rtx (maxmode);
1466 /* If this machine's extv insists on a register target,
1467 make sure we have one. */
1468 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1469 (xtarget, maxmode)))
1470 xtarget = gen_reg_rtx (maxmode);
1472 bitsize_rtx = GEN_INT (bitsize);
1473 bitpos_rtx = GEN_INT (xbitpos);
1475 pat = gen_extv (protect_from_queue (xtarget, 1),
1476 xop0, bitsize_rtx, bitpos_rtx);
1477 if (pat)
1479 emit_insn (pat);
1480 target = xtarget;
1481 spec_target = xspec_target;
1482 spec_target_subreg = xspec_target_subreg;
1484 else
1486 delete_insns_since (last);
1487 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1488 bitpos, target, 0, align);
1491 else
1492 extv_loses:
1493 #endif
1494 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1495 bitpos, target, 0, align);
1497 if (target == spec_target)
1498 return target;
1499 if (target == spec_target_subreg)
1500 return spec_target;
1501 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1503 /* If the target mode is floating-point, first convert to the
1504 integer mode of that size and then access it as a floating-point
1505 value via a SUBREG. */
1506 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1508 target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode),
1509 MODE_INT, 0),
1510 target, unsignedp);
1511 if (GET_CODE (target) != REG)
1512 target = copy_to_reg (target);
1513 return gen_rtx_SUBREG (tmode, target, 0);
1515 else
1516 return convert_to_mode (tmode, target, unsignedp);
1518 return target;
1521 /* Extract a bit field using shifts and boolean operations
1522 Returns an rtx to represent the value.
1523 OP0 addresses a register (word) or memory (byte).
1524 BITPOS says which bit within the word or byte the bit field starts in.
1525 OFFSET says how many bytes farther the bit field starts;
1526 it is 0 if OP0 is a register.
1527 BITSIZE says how many bits long the bit field is.
1528 (If OP0 is a register, it may be narrower than a full word,
1529 but BITPOS still counts within a full word,
1530 which is significant on bigendian machines.)
1532 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1533 If TARGET is nonzero, attempts to store the value there
1534 and return TARGET, but this is not guaranteed.
1535 If TARGET is not used, create a pseudo-reg of mode TMODE for the value.
1537 ALIGN is the alignment that STR_RTX is known to have. */
1539 static rtx
1540 extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
1541 target, unsignedp, align)
1542 enum machine_mode tmode;
1543 register rtx op0, target;
1544 unsigned HOST_WIDE_INT offset, bitsize, bitpos;
1545 int unsignedp;
1546 unsigned int align;
1548 unsigned int total_bits = BITS_PER_WORD;
1549 enum machine_mode mode;
1551 if (GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
1553 /* Special treatment for a bit field split across two registers. */
1554 if (bitsize + bitpos > BITS_PER_WORD)
1555 return extract_split_bit_field (op0, bitsize, bitpos,
1556 unsignedp, align);
1558 else
1560 /* Get the proper mode to use for this field. We want a mode that
1561 includes the entire field. If such a mode would be larger than
1562 a word, we won't be doing the extraction the normal way. */
1564 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT, align,
1565 word_mode,
1566 GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0));
1568 if (mode == VOIDmode)
1569 /* The only way this should occur is if the field spans word
1570 boundaries. */
1571 return extract_split_bit_field (op0, bitsize,
1572 bitpos + offset * BITS_PER_UNIT,
1573 unsignedp, align);
1575 total_bits = GET_MODE_BITSIZE (mode);
1577 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1578 be in the range 0 to total_bits-1, and put any excess bytes in
1579 OFFSET. */
1580 if (bitpos >= total_bits)
1582 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1583 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1584 * BITS_PER_UNIT);
1587 /* Get ref to an aligned byte, halfword, or word containing the field.
1588 Adjust BITPOS to be position within a word,
1589 and OFFSET to be the offset of that word.
1590 Then alter OP0 to refer to that word. */
1591 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1592 offset -= (offset % (total_bits / BITS_PER_UNIT));
1593 op0 = change_address (op0, mode,
1594 plus_constant (XEXP (op0, 0), offset));
1597 mode = GET_MODE (op0);
1599 if (BYTES_BIG_ENDIAN)
1601 /* BITPOS is the distance between our msb and that of OP0.
1602 Convert it to the distance from the lsb. */
1604 bitpos = total_bits - bitsize - bitpos;
1607 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1608 We have reduced the big-endian case to the little-endian case. */
1610 if (unsignedp)
1612 if (bitpos)
1614 /* If the field does not already start at the lsb,
1615 shift it so it does. */
1616 tree amount = build_int_2 (bitpos, 0);
1617 /* Maybe propagate the target for the shift. */
1618 /* But not if we will return it--could confuse integrate.c. */
1619 rtx subtarget = (target != 0 && GET_CODE (target) == REG
1620 && !REG_FUNCTION_VALUE_P (target)
1621 ? target : 0);
1622 if (tmode != mode) subtarget = 0;
1623 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1625 /* Convert the value to the desired mode. */
1626 if (mode != tmode)
1627 op0 = convert_to_mode (tmode, op0, 1);
1629 /* Unless the msb of the field used to be the msb when we shifted,
1630 mask out the upper bits. */
1632 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize
1633 #if 0
1634 #ifdef SLOW_ZERO_EXTEND
1635 /* Always generate an `and' if
1636 we just zero-extended op0 and SLOW_ZERO_EXTEND, since it
1637 will combine fruitfully with the zero-extend. */
1638 || tmode != mode
1639 #endif
1640 #endif
1642 return expand_binop (GET_MODE (op0), and_optab, op0,
1643 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1644 target, 1, OPTAB_LIB_WIDEN);
1645 return op0;
1648 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1649 then arithmetic-shift its lsb to the lsb of the word. */
1650 op0 = force_reg (mode, op0);
1651 if (mode != tmode)
1652 target = 0;
1654 /* Find the narrowest integer mode that contains the field. */
1656 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1657 mode = GET_MODE_WIDER_MODE (mode))
1658 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1660 op0 = convert_to_mode (mode, op0, 0);
1661 break;
1664 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1666 tree amount = build_int_2 (GET_MODE_BITSIZE (mode) - (bitsize + bitpos), 0);
1667 /* Maybe propagate the target for the shift. */
1668 /* But not if we will return the result--could confuse integrate.c. */
1669 rtx subtarget = (target != 0 && GET_CODE (target) == REG
1670 && ! REG_FUNCTION_VALUE_P (target)
1671 ? target : 0);
1672 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1675 return expand_shift (RSHIFT_EXPR, mode, op0,
1676 build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
1677 target, 0);
1680 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1681 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1682 complement of that if COMPLEMENT. The mask is truncated if
1683 necessary to the width of mode MODE. The mask is zero-extended if
1684 BITSIZE+BITPOS is too small for MODE. */
1686 static rtx
1687 mask_rtx (mode, bitpos, bitsize, complement)
1688 enum machine_mode mode;
1689 int bitpos, bitsize, complement;
1691 HOST_WIDE_INT masklow, maskhigh;
1693 if (bitpos < HOST_BITS_PER_WIDE_INT)
1694 masklow = (HOST_WIDE_INT) -1 << bitpos;
1695 else
1696 masklow = 0;
1698 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1699 masklow &= ((unsigned HOST_WIDE_INT) -1
1700 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1702 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1703 maskhigh = -1;
1704 else
1705 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1707 if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1708 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1709 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1710 else
1711 maskhigh = 0;
1713 if (complement)
1715 maskhigh = ~maskhigh;
1716 masklow = ~masklow;
1719 return immed_double_const (masklow, maskhigh, mode);
1722 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1723 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1725 static rtx
1726 lshift_value (mode, value, bitpos, bitsize)
1727 enum machine_mode mode;
1728 rtx value;
1729 int bitpos, bitsize;
1731 unsigned HOST_WIDE_INT v = INTVAL (value);
1732 HOST_WIDE_INT low, high;
1734 if (bitsize < HOST_BITS_PER_WIDE_INT)
1735 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1737 if (bitpos < HOST_BITS_PER_WIDE_INT)
1739 low = v << bitpos;
1740 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1742 else
1744 low = 0;
1745 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1748 return immed_double_const (low, high, mode);
1751 /* Extract a bit field that is split across two words
1752 and return an RTX for the result.
1754 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1755 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1756 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
1758 ALIGN is the known alignment of OP0. This is also the size of the
1759 memory objects to be used. */
1761 static rtx
1762 extract_split_bit_field (op0, bitsize, bitpos, unsignedp, align)
1763 rtx op0;
1764 unsigned HOST_WIDE_INT bitsize, bitpos;
1765 int unsignedp;
1766 unsigned int align;
1768 unsigned int unit;
1769 unsigned int bitsdone = 0;
1770 rtx result = NULL_RTX;
1771 int first = 1;
1773 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1774 much at a time. */
1775 if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
1776 unit = BITS_PER_WORD;
1777 else
1778 unit = MIN (align, BITS_PER_WORD);
1780 while (bitsdone < bitsize)
1782 unsigned HOST_WIDE_INT thissize;
1783 rtx part, word;
1784 unsigned HOST_WIDE_INT thispos;
1785 unsigned HOST_WIDE_INT offset;
1787 offset = (bitpos + bitsdone) / unit;
1788 thispos = (bitpos + bitsdone) % unit;
1790 /* THISSIZE must not overrun a word boundary. Otherwise,
1791 extract_fixed_bit_field will call us again, and we will mutually
1792 recurse forever. */
1793 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1794 thissize = MIN (thissize, unit - thispos);
1796 /* If OP0 is a register, then handle OFFSET here.
1798 When handling multiword bitfields, extract_bit_field may pass
1799 down a word_mode SUBREG of a larger REG for a bitfield that actually
1800 crosses a word boundary. Thus, for a SUBREG, we must find
1801 the current word starting from the base register. */
1802 if (GET_CODE (op0) == SUBREG)
1804 word = operand_subword_force (SUBREG_REG (op0),
1805 SUBREG_WORD (op0) + offset,
1806 GET_MODE (SUBREG_REG (op0)));
1807 offset = 0;
1809 else if (GET_CODE (op0) == REG)
1811 word = operand_subword_force (op0, offset, GET_MODE (op0));
1812 offset = 0;
1814 else
1815 word = op0;
1817 /* Extract the parts in bit-counting order,
1818 whose meaning is determined by BYTES_PER_UNIT.
1819 OFFSET is in UNITs, and UNIT is in bits.
1820 extract_fixed_bit_field wants offset in bytes. */
1821 part = extract_fixed_bit_field (word_mode, word,
1822 offset * unit / BITS_PER_UNIT,
1823 thissize, thispos, 0, 1, align);
1824 bitsdone += thissize;
1826 /* Shift this part into place for the result. */
1827 if (BYTES_BIG_ENDIAN)
1829 if (bitsize != bitsdone)
1830 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1831 build_int_2 (bitsize - bitsdone, 0), 0, 1);
1833 else
1835 if (bitsdone != thissize)
1836 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1837 build_int_2 (bitsdone - thissize, 0), 0, 1);
1840 if (first)
1841 result = part;
1842 else
1843 /* Combine the parts with bitwise or. This works
1844 because we extracted each part as an unsigned bit field. */
1845 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1846 OPTAB_LIB_WIDEN);
1848 first = 0;
1851 /* Unsigned bit field: we are done. */
1852 if (unsignedp)
1853 return result;
1854 /* Signed bit field: sign-extend with two arithmetic shifts. */
1855 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1856 build_int_2 (BITS_PER_WORD - bitsize, 0),
1857 NULL_RTX, 0);
1858 return expand_shift (RSHIFT_EXPR, word_mode, result,
1859 build_int_2 (BITS_PER_WORD - bitsize, 0), NULL_RTX, 0);
1862 /* Add INC into TARGET. */
1864 void
1865 expand_inc (target, inc)
1866 rtx target, inc;
1868 rtx value = expand_binop (GET_MODE (target), add_optab,
1869 target, inc,
1870 target, 0, OPTAB_LIB_WIDEN);
1871 if (value != target)
1872 emit_move_insn (target, value);
1875 /* Subtract DEC from TARGET. */
1877 void
1878 expand_dec (target, dec)
1879 rtx target, dec;
1881 rtx value = expand_binop (GET_MODE (target), sub_optab,
1882 target, dec,
1883 target, 0, OPTAB_LIB_WIDEN);
1884 if (value != target)
1885 emit_move_insn (target, value);
1888 /* Output a shift instruction for expression code CODE,
1889 with SHIFTED being the rtx for the value to shift,
1890 and AMOUNT the tree for the amount to shift by.
1891 Store the result in the rtx TARGET, if that is convenient.
1892 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
1893 Return the rtx for where the value is. */
1896 expand_shift (code, mode, shifted, amount, target, unsignedp)
1897 enum tree_code code;
1898 register enum machine_mode mode;
1899 rtx shifted;
1900 tree amount;
1901 register rtx target;
1902 int unsignedp;
1904 register rtx op1, temp = 0;
1905 register int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
1906 register int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
1907 int try;
1909 /* Previously detected shift-counts computed by NEGATE_EXPR
1910 and shifted in the other direction; but that does not work
1911 on all machines. */
1913 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
1915 #ifdef SHIFT_COUNT_TRUNCATED
1916 if (SHIFT_COUNT_TRUNCATED)
1918 if (GET_CODE (op1) == CONST_INT
1919 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
1920 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
1921 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
1922 % GET_MODE_BITSIZE (mode));
1923 else if (GET_CODE (op1) == SUBREG
1924 && SUBREG_WORD (op1) == 0)
1925 op1 = SUBREG_REG (op1);
1927 #endif
1929 if (op1 == const0_rtx)
1930 return shifted;
1932 for (try = 0; temp == 0 && try < 3; try++)
1934 enum optab_methods methods;
1936 if (try == 0)
1937 methods = OPTAB_DIRECT;
1938 else if (try == 1)
1939 methods = OPTAB_WIDEN;
1940 else
1941 methods = OPTAB_LIB_WIDEN;
1943 if (rotate)
1945 /* Widening does not work for rotation. */
1946 if (methods == OPTAB_WIDEN)
1947 continue;
1948 else if (methods == OPTAB_LIB_WIDEN)
1950 /* If we have been unable to open-code this by a rotation,
1951 do it as the IOR of two shifts. I.e., to rotate A
1952 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
1953 where C is the bitsize of A.
1955 It is theoretically possible that the target machine might
1956 not be able to perform either shift and hence we would
1957 be making two libcalls rather than just the one for the
1958 shift (similarly if IOR could not be done). We will allow
1959 this extremely unlikely lossage to avoid complicating the
1960 code below. */
1962 rtx subtarget = target == shifted ? 0 : target;
1963 rtx temp1;
1964 tree type = TREE_TYPE (amount);
1965 tree new_amount = make_tree (type, op1);
1966 tree other_amount
1967 = fold (build (MINUS_EXPR, type,
1968 convert (type,
1969 build_int_2 (GET_MODE_BITSIZE (mode),
1970 0)),
1971 amount));
1973 shifted = force_reg (mode, shifted);
1975 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
1976 mode, shifted, new_amount, subtarget, 1);
1977 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
1978 mode, shifted, other_amount, 0, 1);
1979 return expand_binop (mode, ior_optab, temp, temp1, target,
1980 unsignedp, methods);
1983 temp = expand_binop (mode,
1984 left ? rotl_optab : rotr_optab,
1985 shifted, op1, target, unsignedp, methods);
1987 /* If we don't have the rotate, but we are rotating by a constant
1988 that is in range, try a rotate in the opposite direction. */
1990 if (temp == 0 && GET_CODE (op1) == CONST_INT
1991 && INTVAL (op1) > 0 && INTVAL (op1) < GET_MODE_BITSIZE (mode))
1992 temp = expand_binop (mode,
1993 left ? rotr_optab : rotl_optab,
1994 shifted,
1995 GEN_INT (GET_MODE_BITSIZE (mode)
1996 - INTVAL (op1)),
1997 target, unsignedp, methods);
1999 else if (unsignedp)
2000 temp = expand_binop (mode,
2001 left ? ashl_optab : lshr_optab,
2002 shifted, op1, target, unsignedp, methods);
2004 /* Do arithmetic shifts.
2005 Also, if we are going to widen the operand, we can just as well
2006 use an arithmetic right-shift instead of a logical one. */
2007 if (temp == 0 && ! rotate
2008 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2010 enum optab_methods methods1 = methods;
2012 /* If trying to widen a log shift to an arithmetic shift,
2013 don't accept an arithmetic shift of the same size. */
2014 if (unsignedp)
2015 methods1 = OPTAB_MUST_WIDEN;
2017 /* Arithmetic shift */
2019 temp = expand_binop (mode,
2020 left ? ashl_optab : ashr_optab,
2021 shifted, op1, target, unsignedp, methods1);
2024 /* We used to try extzv here for logical right shifts, but that was
2025 only useful for one machine, the VAX, and caused poor code
2026 generation there for lshrdi3, so the code was deleted and a
2027 define_expand for lshrsi3 was added to vax.md. */
2030 if (temp == 0)
2031 abort ();
2032 return temp;
2035 enum alg_code { alg_zero, alg_m, alg_shift,
2036 alg_add_t_m2, alg_sub_t_m2,
2037 alg_add_factor, alg_sub_factor,
2038 alg_add_t2_m, alg_sub_t2_m,
2039 alg_add, alg_subtract, alg_factor, alg_shiftop };
2041 /* This structure records a sequence of operations.
2042 `ops' is the number of operations recorded.
2043 `cost' is their total cost.
2044 The operations are stored in `op' and the corresponding
2045 logarithms of the integer coefficients in `log'.
2047 These are the operations:
2048 alg_zero total := 0;
2049 alg_m total := multiplicand;
2050 alg_shift total := total * coeff
2051 alg_add_t_m2 total := total + multiplicand * coeff;
2052 alg_sub_t_m2 total := total - multiplicand * coeff;
2053 alg_add_factor total := total * coeff + total;
2054 alg_sub_factor total := total * coeff - total;
2055 alg_add_t2_m total := total * coeff + multiplicand;
2056 alg_sub_t2_m total := total * coeff - multiplicand;
2058 The first operand must be either alg_zero or alg_m. */
2060 struct algorithm
2062 short cost;
2063 short ops;
2064 /* The size of the OP and LOG fields are not directly related to the
2065 word size, but the worst-case algorithms will be if we have few
2066 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2067 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2068 in total wordsize operations. */
2069 enum alg_code op[MAX_BITS_PER_WORD];
2070 char log[MAX_BITS_PER_WORD];
2073 static void synth_mult PARAMS ((struct algorithm *,
2074 unsigned HOST_WIDE_INT,
2075 int));
2076 static unsigned HOST_WIDE_INT choose_multiplier PARAMS ((unsigned HOST_WIDE_INT,
2077 int, int,
2078 unsigned HOST_WIDE_INT *,
2079 int *, int *));
2080 static unsigned HOST_WIDE_INT invert_mod2n PARAMS ((unsigned HOST_WIDE_INT,
2081 int));
2082 /* Compute and return the best algorithm for multiplying by T.
2083 The algorithm must cost less than cost_limit
2084 If retval.cost >= COST_LIMIT, no algorithm was found and all
2085 other field of the returned struct are undefined. */
2087 static void
2088 synth_mult (alg_out, t, cost_limit)
2089 struct algorithm *alg_out;
2090 unsigned HOST_WIDE_INT t;
2091 int cost_limit;
2093 int m;
2094 struct algorithm *alg_in, *best_alg;
2095 int cost;
2096 unsigned HOST_WIDE_INT q;
2098 /* Indicate that no algorithm is yet found. If no algorithm
2099 is found, this value will be returned and indicate failure. */
2100 alg_out->cost = cost_limit;
2102 if (cost_limit <= 0)
2103 return;
2105 /* t == 1 can be done in zero cost. */
2106 if (t == 1)
2108 alg_out->ops = 1;
2109 alg_out->cost = 0;
2110 alg_out->op[0] = alg_m;
2111 return;
2114 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2115 fail now. */
2116 if (t == 0)
2118 if (zero_cost >= cost_limit)
2119 return;
2120 else
2122 alg_out->ops = 1;
2123 alg_out->cost = zero_cost;
2124 alg_out->op[0] = alg_zero;
2125 return;
2129 /* We'll be needing a couple extra algorithm structures now. */
2131 alg_in = (struct algorithm *)alloca (sizeof (struct algorithm));
2132 best_alg = (struct algorithm *)alloca (sizeof (struct algorithm));
2134 /* If we have a group of zero bits at the low-order part of T, try
2135 multiplying by the remaining bits and then doing a shift. */
2137 if ((t & 1) == 0)
2139 m = floor_log2 (t & -t); /* m = number of low zero bits */
2140 q = t >> m;
2141 cost = shift_cost[m];
2142 synth_mult (alg_in, q, cost_limit - cost);
2144 cost += alg_in->cost;
2145 if (cost < cost_limit)
2147 struct algorithm *x;
2148 x = alg_in, alg_in = best_alg, best_alg = x;
2149 best_alg->log[best_alg->ops] = m;
2150 best_alg->op[best_alg->ops] = alg_shift;
2151 cost_limit = cost;
2155 /* If we have an odd number, add or subtract one. */
2156 if ((t & 1) != 0)
2158 unsigned HOST_WIDE_INT w;
2160 for (w = 1; (w & t) != 0; w <<= 1)
2162 /* If T was -1, then W will be zero after the loop. This is another
2163 case where T ends with ...111. Handling this with (T + 1) and
2164 subtract 1 produces slightly better code and results in algorithm
2165 selection much faster than treating it like the ...0111 case
2166 below. */
2167 if (w == 0
2168 || (w > 2
2169 /* Reject the case where t is 3.
2170 Thus we prefer addition in that case. */
2171 && t != 3))
2173 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2175 cost = add_cost;
2176 synth_mult (alg_in, t + 1, cost_limit - cost);
2178 cost += alg_in->cost;
2179 if (cost < cost_limit)
2181 struct algorithm *x;
2182 x = alg_in, alg_in = best_alg, best_alg = x;
2183 best_alg->log[best_alg->ops] = 0;
2184 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2185 cost_limit = cost;
2188 else
2190 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2192 cost = add_cost;
2193 synth_mult (alg_in, t - 1, cost_limit - cost);
2195 cost += alg_in->cost;
2196 if (cost < cost_limit)
2198 struct algorithm *x;
2199 x = alg_in, alg_in = best_alg, best_alg = x;
2200 best_alg->log[best_alg->ops] = 0;
2201 best_alg->op[best_alg->ops] = alg_add_t_m2;
2202 cost_limit = cost;
2207 /* Look for factors of t of the form
2208 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2209 If we find such a factor, we can multiply by t using an algorithm that
2210 multiplies by q, shift the result by m and add/subtract it to itself.
2212 We search for large factors first and loop down, even if large factors
2213 are less probable than small; if we find a large factor we will find a
2214 good sequence quickly, and therefore be able to prune (by decreasing
2215 COST_LIMIT) the search. */
2217 for (m = floor_log2 (t - 1); m >= 2; m--)
2219 unsigned HOST_WIDE_INT d;
2221 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2222 if (t % d == 0 && t > d)
2224 cost = MIN (shiftadd_cost[m], add_cost + shift_cost[m]);
2225 synth_mult (alg_in, t / d, cost_limit - cost);
2227 cost += alg_in->cost;
2228 if (cost < cost_limit)
2230 struct algorithm *x;
2231 x = alg_in, alg_in = best_alg, best_alg = x;
2232 best_alg->log[best_alg->ops] = m;
2233 best_alg->op[best_alg->ops] = alg_add_factor;
2234 cost_limit = cost;
2236 /* Other factors will have been taken care of in the recursion. */
2237 break;
2240 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2241 if (t % d == 0 && t > d)
2243 cost = MIN (shiftsub_cost[m], add_cost + shift_cost[m]);
2244 synth_mult (alg_in, t / d, cost_limit - cost);
2246 cost += alg_in->cost;
2247 if (cost < cost_limit)
2249 struct algorithm *x;
2250 x = alg_in, alg_in = best_alg, best_alg = x;
2251 best_alg->log[best_alg->ops] = m;
2252 best_alg->op[best_alg->ops] = alg_sub_factor;
2253 cost_limit = cost;
2255 break;
2259 /* Try shift-and-add (load effective address) instructions,
2260 i.e. do a*3, a*5, a*9. */
2261 if ((t & 1) != 0)
2263 q = t - 1;
2264 q = q & -q;
2265 m = exact_log2 (q);
2266 if (m >= 0)
2268 cost = shiftadd_cost[m];
2269 synth_mult (alg_in, (t - 1) >> m, cost_limit - cost);
2271 cost += alg_in->cost;
2272 if (cost < cost_limit)
2274 struct algorithm *x;
2275 x = alg_in, alg_in = best_alg, best_alg = x;
2276 best_alg->log[best_alg->ops] = m;
2277 best_alg->op[best_alg->ops] = alg_add_t2_m;
2278 cost_limit = cost;
2282 q = t + 1;
2283 q = q & -q;
2284 m = exact_log2 (q);
2285 if (m >= 0)
2287 cost = shiftsub_cost[m];
2288 synth_mult (alg_in, (t + 1) >> m, cost_limit - cost);
2290 cost += alg_in->cost;
2291 if (cost < cost_limit)
2293 struct algorithm *x;
2294 x = alg_in, alg_in = best_alg, best_alg = x;
2295 best_alg->log[best_alg->ops] = m;
2296 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2297 cost_limit = cost;
2302 /* If cost_limit has not decreased since we stored it in alg_out->cost,
2303 we have not found any algorithm. */
2304 if (cost_limit == alg_out->cost)
2305 return;
2307 /* If we are getting a too long sequence for `struct algorithm'
2308 to record, make this search fail. */
2309 if (best_alg->ops == MAX_BITS_PER_WORD)
2310 return;
2312 /* Copy the algorithm from temporary space to the space at alg_out.
2313 We avoid using structure assignment because the majority of
2314 best_alg is normally undefined, and this is a critical function. */
2315 alg_out->ops = best_alg->ops + 1;
2316 alg_out->cost = cost_limit;
2317 bcopy ((char *) best_alg->op, (char *) alg_out->op,
2318 alg_out->ops * sizeof *alg_out->op);
2319 bcopy ((char *) best_alg->log, (char *) alg_out->log,
2320 alg_out->ops * sizeof *alg_out->log);
2323 /* Perform a multiplication and return an rtx for the result.
2324 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
2325 TARGET is a suggestion for where to store the result (an rtx).
2327 We check specially for a constant integer as OP1.
2328 If you want this check for OP0 as well, then before calling
2329 you should swap the two operands if OP0 would be constant. */
2332 expand_mult (mode, op0, op1, target, unsignedp)
2333 enum machine_mode mode;
2334 register rtx op0, op1, target;
2335 int unsignedp;
2337 rtx const_op1 = op1;
2339 /* synth_mult does an `unsigned int' multiply. As long as the mode is
2340 less than or equal in size to `unsigned int' this doesn't matter.
2341 If the mode is larger than `unsigned int', then synth_mult works only
2342 if the constant value exactly fits in an `unsigned int' without any
2343 truncation. This means that multiplying by negative values does
2344 not work; results are off by 2^32 on a 32 bit machine. */
2346 /* If we are multiplying in DImode, it may still be a win
2347 to try to work with shifts and adds. */
2348 if (GET_CODE (op1) == CONST_DOUBLE
2349 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
2350 && HOST_BITS_PER_INT >= BITS_PER_WORD
2351 && CONST_DOUBLE_HIGH (op1) == 0)
2352 const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
2353 else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
2354 && GET_CODE (op1) == CONST_INT
2355 && INTVAL (op1) < 0)
2356 const_op1 = 0;
2358 /* We used to test optimize here, on the grounds that it's better to
2359 produce a smaller program when -O is not used.
2360 But this causes such a terrible slowdown sometimes
2361 that it seems better to use synth_mult always. */
2363 if (const_op1 && GET_CODE (const_op1) == CONST_INT
2364 && (unsignedp || ! flag_trapv))
2366 struct algorithm alg;
2367 struct algorithm alg2;
2368 HOST_WIDE_INT val = INTVAL (op1);
2369 HOST_WIDE_INT val_so_far;
2370 rtx insn;
2371 int mult_cost;
2372 enum {basic_variant, negate_variant, add_variant} variant = basic_variant;
2374 /* Try to do the computation three ways: multiply by the negative of OP1
2375 and then negate, do the multiplication directly, or do multiplication
2376 by OP1 - 1. */
2378 mult_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
2379 mult_cost = MIN (12 * add_cost, mult_cost);
2381 synth_mult (&alg, val, mult_cost);
2383 /* This works only if the inverted value actually fits in an
2384 `unsigned int' */
2385 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2387 synth_mult (&alg2, - val,
2388 (alg.cost < mult_cost ? alg.cost : mult_cost) - negate_cost);
2389 if (alg2.cost + negate_cost < alg.cost)
2390 alg = alg2, variant = negate_variant;
2393 /* This proves very useful for division-by-constant. */
2394 synth_mult (&alg2, val - 1,
2395 (alg.cost < mult_cost ? alg.cost : mult_cost) - add_cost);
2396 if (alg2.cost + add_cost < alg.cost)
2397 alg = alg2, variant = add_variant;
2399 if (alg.cost < mult_cost)
2401 /* We found something cheaper than a multiply insn. */
2402 int opno;
2403 rtx accum, tem;
2405 op0 = protect_from_queue (op0, 0);
2407 /* Avoid referencing memory over and over.
2408 For speed, but also for correctness when mem is volatile. */
2409 if (GET_CODE (op0) == MEM)
2410 op0 = force_reg (mode, op0);
2412 /* ACCUM starts out either as OP0 or as a zero, depending on
2413 the first operation. */
2415 if (alg.op[0] == alg_zero)
2417 accum = copy_to_mode_reg (mode, const0_rtx);
2418 val_so_far = 0;
2420 else if (alg.op[0] == alg_m)
2422 accum = copy_to_mode_reg (mode, op0);
2423 val_so_far = 1;
2425 else
2426 abort ();
2428 for (opno = 1; opno < alg.ops; opno++)
2430 int log = alg.log[opno];
2431 int preserve = preserve_subexpressions_p ();
2432 rtx shift_subtarget = preserve ? 0 : accum;
2433 rtx add_target
2434 = (opno == alg.ops - 1 && target != 0 && variant != add_variant
2435 && ! preserve)
2436 ? target : 0;
2437 rtx accum_target = preserve ? 0 : accum;
2439 switch (alg.op[opno])
2441 case alg_shift:
2442 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2443 build_int_2 (log, 0), NULL_RTX, 0);
2444 val_so_far <<= log;
2445 break;
2447 case alg_add_t_m2:
2448 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2449 build_int_2 (log, 0), NULL_RTX, 0);
2450 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2451 add_target
2452 ? add_target : accum_target);
2453 val_so_far += (HOST_WIDE_INT) 1 << log;
2454 break;
2456 case alg_sub_t_m2:
2457 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2458 build_int_2 (log, 0), NULL_RTX, 0);
2459 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2460 add_target
2461 ? add_target : accum_target);
2462 val_so_far -= (HOST_WIDE_INT) 1 << log;
2463 break;
2465 case alg_add_t2_m:
2466 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2467 build_int_2 (log, 0), shift_subtarget,
2469 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2470 add_target
2471 ? add_target : accum_target);
2472 val_so_far = (val_so_far << log) + 1;
2473 break;
2475 case alg_sub_t2_m:
2476 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2477 build_int_2 (log, 0), shift_subtarget,
2479 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2480 add_target
2481 ? add_target : accum_target);
2482 val_so_far = (val_so_far << log) - 1;
2483 break;
2485 case alg_add_factor:
2486 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2487 build_int_2 (log, 0), NULL_RTX, 0);
2488 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2489 add_target
2490 ? add_target : accum_target);
2491 val_so_far += val_so_far << log;
2492 break;
2494 case alg_sub_factor:
2495 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2496 build_int_2 (log, 0), NULL_RTX, 0);
2497 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2498 (add_target ? add_target
2499 : preserve ? 0 : tem));
2500 val_so_far = (val_so_far << log) - val_so_far;
2501 break;
2503 default:
2504 abort ();
2507 /* Write a REG_EQUAL note on the last insn so that we can cse
2508 multiplication sequences. */
2510 insn = get_last_insn ();
2511 set_unique_reg_note (insn,
2512 REG_EQUAL,
2513 gen_rtx_MULT (mode, op0,
2514 GEN_INT (val_so_far)));
2517 if (variant == negate_variant)
2519 val_so_far = - val_so_far;
2520 accum = expand_unop (mode, neg_optab, accum, target, 0);
2522 else if (variant == add_variant)
2524 val_so_far = val_so_far + 1;
2525 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2528 if (val != val_so_far)
2529 abort ();
2531 return accum;
2535 /* This used to use umul_optab if unsigned, but for non-widening multiply
2536 there is no difference between signed and unsigned. */
2537 op0 = expand_binop (mode,
2538 ! unsignedp
2539 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
2540 ? smulv_optab : smul_optab,
2541 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
2542 if (op0 == 0)
2543 abort ();
2544 return op0;
2547 /* Return the smallest n such that 2**n >= X. */
2550 ceil_log2 (x)
2551 unsigned HOST_WIDE_INT x;
2553 return floor_log2 (x - 1) + 1;
2556 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
2557 replace division by D, and put the least significant N bits of the result
2558 in *MULTIPLIER_PTR and return the most significant bit.
2560 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
2561 needed precision is in PRECISION (should be <= N).
2563 PRECISION should be as small as possible so this function can choose
2564 multiplier more freely.
2566 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
2567 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
2569 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
2570 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
2572 static
2573 unsigned HOST_WIDE_INT
2574 choose_multiplier (d, n, precision, multiplier_ptr, post_shift_ptr, lgup_ptr)
2575 unsigned HOST_WIDE_INT d;
2576 int n;
2577 int precision;
2578 unsigned HOST_WIDE_INT *multiplier_ptr;
2579 int *post_shift_ptr;
2580 int *lgup_ptr;
2582 HOST_WIDE_INT mhigh_hi, mlow_hi;
2583 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
2584 int lgup, post_shift;
2585 int pow, pow2;
2586 unsigned HOST_WIDE_INT nl, dummy1;
2587 HOST_WIDE_INT nh, dummy2;
2589 /* lgup = ceil(log2(divisor)); */
2590 lgup = ceil_log2 (d);
2592 if (lgup > n)
2593 abort ();
2595 pow = n + lgup;
2596 pow2 = n + lgup - precision;
2598 if (pow == 2 * HOST_BITS_PER_WIDE_INT)
2600 /* We could handle this with some effort, but this case is much better
2601 handled directly with a scc insn, so rely on caller using that. */
2602 abort ();
2605 /* mlow = 2^(N + lgup)/d */
2606 if (pow >= HOST_BITS_PER_WIDE_INT)
2608 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
2609 nl = 0;
2611 else
2613 nh = 0;
2614 nl = (unsigned HOST_WIDE_INT) 1 << pow;
2616 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
2617 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
2619 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
2620 if (pow2 >= HOST_BITS_PER_WIDE_INT)
2621 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
2622 else
2623 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
2624 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
2625 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
2627 if (mhigh_hi && nh - d >= d)
2628 abort ();
2629 if (mhigh_hi > 1 || mlow_hi > 1)
2630 abort ();
2631 /* assert that mlow < mhigh. */
2632 if (! (mlow_hi < mhigh_hi || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo)))
2633 abort();
2635 /* If precision == N, then mlow, mhigh exceed 2^N
2636 (but they do not exceed 2^(N+1)). */
2638 /* Reduce to lowest terms */
2639 for (post_shift = lgup; post_shift > 0; post_shift--)
2641 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
2642 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
2643 if (ml_lo >= mh_lo)
2644 break;
2646 mlow_hi = 0;
2647 mlow_lo = ml_lo;
2648 mhigh_hi = 0;
2649 mhigh_lo = mh_lo;
2652 *post_shift_ptr = post_shift;
2653 *lgup_ptr = lgup;
2654 if (n < HOST_BITS_PER_WIDE_INT)
2656 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
2657 *multiplier_ptr = mhigh_lo & mask;
2658 return mhigh_lo >= mask;
2660 else
2662 *multiplier_ptr = mhigh_lo;
2663 return mhigh_hi;
2667 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
2668 congruent to 1 (mod 2**N). */
2670 static unsigned HOST_WIDE_INT
2671 invert_mod2n (x, n)
2672 unsigned HOST_WIDE_INT x;
2673 int n;
2675 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
2677 /* The algorithm notes that the choice y = x satisfies
2678 x*y == 1 mod 2^3, since x is assumed odd.
2679 Each iteration doubles the number of bits of significance in y. */
2681 unsigned HOST_WIDE_INT mask;
2682 unsigned HOST_WIDE_INT y = x;
2683 int nbit = 3;
2685 mask = (n == HOST_BITS_PER_WIDE_INT
2686 ? ~(unsigned HOST_WIDE_INT) 0
2687 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
2689 while (nbit < n)
2691 y = y * (2 - x*y) & mask; /* Modulo 2^N */
2692 nbit *= 2;
2694 return y;
2697 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
2698 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
2699 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
2700 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
2701 become signed.
2703 The result is put in TARGET if that is convenient.
2705 MODE is the mode of operation. */
2708 expand_mult_highpart_adjust (mode, adj_operand, op0, op1, target, unsignedp)
2709 enum machine_mode mode;
2710 register rtx adj_operand, op0, op1, target;
2711 int unsignedp;
2713 rtx tem;
2714 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
2716 tem = expand_shift (RSHIFT_EXPR, mode, op0,
2717 build_int_2 (GET_MODE_BITSIZE (mode) - 1, 0),
2718 NULL_RTX, 0);
2719 tem = expand_and (tem, op1, NULL_RTX);
2720 adj_operand
2721 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
2722 adj_operand);
2724 tem = expand_shift (RSHIFT_EXPR, mode, op1,
2725 build_int_2 (GET_MODE_BITSIZE (mode) - 1, 0),
2726 NULL_RTX, 0);
2727 tem = expand_and (tem, op0, NULL_RTX);
2728 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
2729 target);
2731 return target;
2734 /* Emit code to multiply OP0 and CNST1, putting the high half of the result
2735 in TARGET if that is convenient, and return where the result is. If the
2736 operation can not be performed, 0 is returned.
2738 MODE is the mode of operation and result.
2740 UNSIGNEDP nonzero means unsigned multiply.
2742 MAX_COST is the total allowed cost for the expanded RTL. */
2745 expand_mult_highpart (mode, op0, cnst1, target, unsignedp, max_cost)
2746 enum machine_mode mode;
2747 register rtx op0, target;
2748 unsigned HOST_WIDE_INT cnst1;
2749 int unsignedp;
2750 int max_cost;
2752 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
2753 optab mul_highpart_optab;
2754 optab moptab;
2755 rtx tem;
2756 int size = GET_MODE_BITSIZE (mode);
2757 rtx op1, wide_op1;
2759 /* We can't support modes wider than HOST_BITS_PER_INT. */
2760 if (size > HOST_BITS_PER_WIDE_INT)
2761 abort ();
2763 op1 = GEN_INT (cnst1);
2765 if (GET_MODE_BITSIZE (wider_mode) <= HOST_BITS_PER_INT)
2766 wide_op1 = op1;
2767 else
2768 wide_op1
2769 = immed_double_const (cnst1,
2770 (unsignedp
2771 ? (HOST_WIDE_INT) 0
2772 : -(cnst1 >> (HOST_BITS_PER_WIDE_INT - 1))),
2773 wider_mode);
2775 /* expand_mult handles constant multiplication of word_mode
2776 or narrower. It does a poor job for large modes. */
2777 if (size < BITS_PER_WORD
2778 && mul_cost[(int) wider_mode] + shift_cost[size-1] < max_cost)
2780 /* We have to do this, since expand_binop doesn't do conversion for
2781 multiply. Maybe change expand_binop to handle widening multiply? */
2782 op0 = convert_to_mode (wider_mode, op0, unsignedp);
2784 /* We know that this can't have signed overflow, so pretend this is
2785 an unsigned multiply. */
2786 tem = expand_mult (wider_mode, op0, wide_op1, NULL_RTX, 0);
2787 tem = expand_shift (RSHIFT_EXPR, wider_mode, tem,
2788 build_int_2 (size, 0), NULL_RTX, 1);
2789 return convert_modes (mode, wider_mode, tem, unsignedp);
2792 if (target == 0)
2793 target = gen_reg_rtx (mode);
2795 /* Firstly, try using a multiplication insn that only generates the needed
2796 high part of the product, and in the sign flavor of unsignedp. */
2797 if (mul_highpart_cost[(int) mode] < max_cost)
2799 mul_highpart_optab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
2800 target = expand_binop (mode, mul_highpart_optab,
2801 op0, op1, target, unsignedp, OPTAB_DIRECT);
2802 if (target)
2803 return target;
2806 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
2807 Need to adjust the result after the multiplication. */
2808 if (mul_highpart_cost[(int) mode] + 2 * shift_cost[size-1] + 4 * add_cost < max_cost)
2810 mul_highpart_optab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
2811 target = expand_binop (mode, mul_highpart_optab,
2812 op0, op1, target, unsignedp, OPTAB_DIRECT);
2813 if (target)
2814 /* We used the wrong signedness. Adjust the result. */
2815 return expand_mult_highpart_adjust (mode, target, op0,
2816 op1, target, unsignedp);
2819 /* Try widening multiplication. */
2820 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
2821 if (moptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
2822 && mul_widen_cost[(int) wider_mode] < max_cost)
2824 op1 = force_reg (mode, op1);
2825 goto try;
2828 /* Try widening the mode and perform a non-widening multiplication. */
2829 moptab = smul_optab;
2830 if (smul_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
2831 && mul_cost[(int) wider_mode] + shift_cost[size-1] < max_cost)
2833 op1 = wide_op1;
2834 goto try;
2837 /* Try widening multiplication of opposite signedness, and adjust. */
2838 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
2839 if (moptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
2840 && (mul_widen_cost[(int) wider_mode]
2841 + 2 * shift_cost[size-1] + 4 * add_cost < max_cost))
2843 rtx regop1 = force_reg (mode, op1);
2844 tem = expand_binop (wider_mode, moptab, op0, regop1,
2845 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
2846 if (tem != 0)
2848 /* Extract the high half of the just generated product. */
2849 tem = expand_shift (RSHIFT_EXPR, wider_mode, tem,
2850 build_int_2 (size, 0), NULL_RTX, 1);
2851 tem = convert_modes (mode, wider_mode, tem, unsignedp);
2852 /* We used the wrong signedness. Adjust the result. */
2853 return expand_mult_highpart_adjust (mode, tem, op0, op1,
2854 target, unsignedp);
2858 return 0;
2860 try:
2861 /* Pass NULL_RTX as target since TARGET has wrong mode. */
2862 tem = expand_binop (wider_mode, moptab, op0, op1,
2863 NULL_RTX, unsignedp, OPTAB_WIDEN);
2864 if (tem == 0)
2865 return 0;
2867 /* Extract the high half of the just generated product. */
2868 if (mode == word_mode)
2870 return gen_highpart (mode, tem);
2872 else
2874 tem = expand_shift (RSHIFT_EXPR, wider_mode, tem,
2875 build_int_2 (size, 0), NULL_RTX, 1);
2876 return convert_modes (mode, wider_mode, tem, unsignedp);
2880 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
2881 if that is convenient, and returning where the result is.
2882 You may request either the quotient or the remainder as the result;
2883 specify REM_FLAG nonzero to get the remainder.
2885 CODE is the expression code for which kind of division this is;
2886 it controls how rounding is done. MODE is the machine mode to use.
2887 UNSIGNEDP nonzero means do unsigned division. */
2889 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
2890 and then correct it by or'ing in missing high bits
2891 if result of ANDI is nonzero.
2892 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
2893 This could optimize to a bfexts instruction.
2894 But C doesn't use these operations, so their optimizations are
2895 left for later. */
2896 /* ??? For modulo, we don't actually need the highpart of the first product,
2897 the low part will do nicely. And for small divisors, the second multiply
2898 can also be a low-part only multiply or even be completely left out.
2899 E.g. to calculate the remainder of a division by 3 with a 32 bit
2900 multiply, multiply with 0x55555556 and extract the upper two bits;
2901 the result is exact for inputs up to 0x1fffffff.
2902 The input range can be reduced by using cross-sum rules.
2903 For odd divisors >= 3, the following table gives right shift counts
2904 so that if an number is shifted by an integer multiple of the given
2905 amount, the remainder stays the same:
2906 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
2907 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
2908 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
2909 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
2910 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
2912 Cross-sum rules for even numbers can be derived by leaving as many bits
2913 to the right alone as the divisor has zeros to the right.
2914 E.g. if x is an unsigned 32 bit number:
2915 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
2918 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
2921 expand_divmod (rem_flag, code, mode, op0, op1, target, unsignedp)
2922 int rem_flag;
2923 enum tree_code code;
2924 enum machine_mode mode;
2925 register rtx op0, op1, target;
2926 int unsignedp;
2928 enum machine_mode compute_mode;
2929 register rtx tquotient;
2930 rtx quotient = 0, remainder = 0;
2931 rtx last;
2932 int size;
2933 rtx insn, set;
2934 optab optab1, optab2;
2935 int op1_is_constant, op1_is_pow2;
2936 int max_cost, extra_cost;
2937 static HOST_WIDE_INT last_div_const = 0;
2939 op1_is_constant = GET_CODE (op1) == CONST_INT;
2940 op1_is_pow2 = (op1_is_constant
2941 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
2942 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1))))));
2945 This is the structure of expand_divmod:
2947 First comes code to fix up the operands so we can perform the operations
2948 correctly and efficiently.
2950 Second comes a switch statement with code specific for each rounding mode.
2951 For some special operands this code emits all RTL for the desired
2952 operation, for other cases, it generates only a quotient and stores it in
2953 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
2954 to indicate that it has not done anything.
2956 Last comes code that finishes the operation. If QUOTIENT is set and
2957 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
2958 QUOTIENT is not set, it is computed using trunc rounding.
2960 We try to generate special code for division and remainder when OP1 is a
2961 constant. If |OP1| = 2**n we can use shifts and some other fast
2962 operations. For other values of OP1, we compute a carefully selected
2963 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
2964 by m.
2966 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
2967 half of the product. Different strategies for generating the product are
2968 implemented in expand_mult_highpart.
2970 If what we actually want is the remainder, we generate that by another
2971 by-constant multiplication and a subtraction. */
2973 /* We shouldn't be called with OP1 == const1_rtx, but some of the
2974 code below will malfunction if we are, so check here and handle
2975 the special case if so. */
2976 if (op1 == const1_rtx)
2977 return rem_flag ? const0_rtx : op0;
2979 /* When dividing by -1, we could get an overflow.
2980 negv_optab can handle overflows. */
2981 if (! unsignedp && op1 == constm1_rtx)
2983 if (rem_flag)
2984 return const0_rtx;
2985 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
2986 ? negv_optab : neg_optab, op0, target, 0);
2989 if (target
2990 /* Don't use the function value register as a target
2991 since we have to read it as well as write it,
2992 and function-inlining gets confused by this. */
2993 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
2994 /* Don't clobber an operand while doing a multi-step calculation. */
2995 || ((rem_flag || op1_is_constant)
2996 && (reg_mentioned_p (target, op0)
2997 || (GET_CODE (op0) == MEM && GET_CODE (target) == MEM)))
2998 || reg_mentioned_p (target, op1)
2999 || (GET_CODE (op1) == MEM && GET_CODE (target) == MEM)))
3000 target = 0;
3002 /* Get the mode in which to perform this computation. Normally it will
3003 be MODE, but sometimes we can't do the desired operation in MODE.
3004 If so, pick a wider mode in which we can do the operation. Convert
3005 to that mode at the start to avoid repeated conversions.
3007 First see what operations we need. These depend on the expression
3008 we are evaluating. (We assume that divxx3 insns exist under the
3009 same conditions that modxx3 insns and that these insns don't normally
3010 fail. If these assumptions are not correct, we may generate less
3011 efficient code in some cases.)
3013 Then see if we find a mode in which we can open-code that operation
3014 (either a division, modulus, or shift). Finally, check for the smallest
3015 mode for which we can do the operation with a library call. */
3017 /* We might want to refine this now that we have division-by-constant
3018 optimization. Since expand_mult_highpart tries so many variants, it is
3019 not straightforward to generalize this. Maybe we should make an array
3020 of possible modes in init_expmed? Save this for GCC 2.7. */
3022 optab1 = (op1_is_pow2 ? (unsignedp ? lshr_optab : ashr_optab)
3023 : (unsignedp ? udiv_optab : sdiv_optab));
3024 optab2 = (op1_is_pow2 ? optab1 : (unsignedp ? udivmod_optab : sdivmod_optab));
3026 for (compute_mode = mode; compute_mode != VOIDmode;
3027 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3028 if (optab1->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing
3029 || optab2->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing)
3030 break;
3032 if (compute_mode == VOIDmode)
3033 for (compute_mode = mode; compute_mode != VOIDmode;
3034 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3035 if (optab1->handlers[(int) compute_mode].libfunc
3036 || optab2->handlers[(int) compute_mode].libfunc)
3037 break;
3039 /* If we still couldn't find a mode, use MODE, but we'll probably abort
3040 in expand_binop. */
3041 if (compute_mode == VOIDmode)
3042 compute_mode = mode;
3044 if (target && GET_MODE (target) == compute_mode)
3045 tquotient = target;
3046 else
3047 tquotient = gen_reg_rtx (compute_mode);
3049 size = GET_MODE_BITSIZE (compute_mode);
3050 #if 0
3051 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3052 (mode), and thereby get better code when OP1 is a constant. Do that
3053 later. It will require going over all usages of SIZE below. */
3054 size = GET_MODE_BITSIZE (mode);
3055 #endif
3057 /* Only deduct something for a REM if the last divide done was
3058 for a different constant. Then set the constant of the last
3059 divide. */
3060 max_cost = div_cost[(int) compute_mode]
3061 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3062 && INTVAL (op1) == last_div_const)
3063 ? mul_cost[(int) compute_mode] + add_cost : 0);
3065 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3067 /* Now convert to the best mode to use. */
3068 if (compute_mode != mode)
3070 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3071 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3073 /* convert_modes may have placed op1 into a register, so we
3074 must recompute the following. */
3075 op1_is_constant = GET_CODE (op1) == CONST_INT;
3076 op1_is_pow2 = (op1_is_constant
3077 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3078 || (! unsignedp
3079 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3082 /* If one of the operands is a volatile MEM, copy it into a register. */
3084 if (GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0))
3085 op0 = force_reg (compute_mode, op0);
3086 if (GET_CODE (op1) == MEM && MEM_VOLATILE_P (op1))
3087 op1 = force_reg (compute_mode, op1);
3089 /* If we need the remainder or if OP1 is constant, we need to
3090 put OP0 in a register in case it has any queued subexpressions. */
3091 if (rem_flag || op1_is_constant)
3092 op0 = force_reg (compute_mode, op0);
3094 last = get_last_insn ();
3096 /* Promote floor rounding to trunc rounding for unsigned operations. */
3097 if (unsignedp)
3099 if (code == FLOOR_DIV_EXPR)
3100 code = TRUNC_DIV_EXPR;
3101 if (code == FLOOR_MOD_EXPR)
3102 code = TRUNC_MOD_EXPR;
3103 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3104 code = TRUNC_DIV_EXPR;
3107 if (op1 != const0_rtx)
3108 switch (code)
3110 case TRUNC_MOD_EXPR:
3111 case TRUNC_DIV_EXPR:
3112 if (op1_is_constant)
3114 if (unsignedp)
3116 unsigned HOST_WIDE_INT mh, ml;
3117 int pre_shift, post_shift;
3118 int dummy;
3119 unsigned HOST_WIDE_INT d = INTVAL (op1);
3121 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3123 pre_shift = floor_log2 (d);
3124 if (rem_flag)
3126 remainder
3127 = expand_binop (compute_mode, and_optab, op0,
3128 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3129 remainder, 1,
3130 OPTAB_LIB_WIDEN);
3131 if (remainder)
3132 return gen_lowpart (mode, remainder);
3134 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3135 build_int_2 (pre_shift, 0),
3136 tquotient, 1);
3138 else if (size <= HOST_BITS_PER_WIDE_INT)
3140 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3142 /* Most significant bit of divisor is set; emit an scc
3143 insn. */
3144 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3145 compute_mode, 1, 1);
3146 if (quotient == 0)
3147 goto fail1;
3149 else
3151 /* Find a suitable multiplier and right shift count
3152 instead of multiplying with D. */
3154 mh = choose_multiplier (d, size, size,
3155 &ml, &post_shift, &dummy);
3157 /* If the suggested multiplier is more than SIZE bits,
3158 we can do better for even divisors, using an
3159 initial right shift. */
3160 if (mh != 0 && (d & 1) == 0)
3162 pre_shift = floor_log2 (d & -d);
3163 mh = choose_multiplier (d >> pre_shift, size,
3164 size - pre_shift,
3165 &ml, &post_shift, &dummy);
3166 if (mh)
3167 abort ();
3169 else
3170 pre_shift = 0;
3172 if (mh != 0)
3174 rtx t1, t2, t3, t4;
3176 extra_cost = (shift_cost[post_shift - 1]
3177 + shift_cost[1] + 2 * add_cost);
3178 t1 = expand_mult_highpart (compute_mode, op0, ml,
3179 NULL_RTX, 1,
3180 max_cost - extra_cost);
3181 if (t1 == 0)
3182 goto fail1;
3183 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3184 op0, t1),
3185 NULL_RTX);
3186 t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
3187 build_int_2 (1, 0), NULL_RTX,1);
3188 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3189 t1, t3),
3190 NULL_RTX);
3191 quotient
3192 = expand_shift (RSHIFT_EXPR, compute_mode, t4,
3193 build_int_2 (post_shift - 1, 0),
3194 tquotient, 1);
3196 else
3198 rtx t1, t2;
3200 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3201 build_int_2 (pre_shift, 0),
3202 NULL_RTX, 1);
3203 extra_cost = (shift_cost[pre_shift]
3204 + shift_cost[post_shift]);
3205 t2 = expand_mult_highpart (compute_mode, t1, ml,
3206 NULL_RTX, 1,
3207 max_cost - extra_cost);
3208 if (t2 == 0)
3209 goto fail1;
3210 quotient
3211 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
3212 build_int_2 (post_shift, 0),
3213 tquotient, 1);
3217 else /* Too wide mode to use tricky code */
3218 break;
3220 insn = get_last_insn ();
3221 if (insn != last
3222 && (set = single_set (insn)) != 0
3223 && SET_DEST (set) == quotient)
3224 set_unique_reg_note (insn,
3225 REG_EQUAL,
3226 gen_rtx_UDIV (compute_mode, op0, op1));
3228 else /* TRUNC_DIV, signed */
3230 unsigned HOST_WIDE_INT ml;
3231 int lgup, post_shift;
3232 HOST_WIDE_INT d = INTVAL (op1);
3233 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
3235 /* n rem d = n rem -d */
3236 if (rem_flag && d < 0)
3238 d = abs_d;
3239 op1 = GEN_INT (abs_d);
3242 if (d == 1)
3243 quotient = op0;
3244 else if (d == -1)
3245 quotient = expand_unop (compute_mode, neg_optab, op0,
3246 tquotient, 0);
3247 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
3249 /* This case is not handled correctly below. */
3250 quotient = emit_store_flag (tquotient, EQ, op0, op1,
3251 compute_mode, 1, 1);
3252 if (quotient == 0)
3253 goto fail1;
3255 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
3256 && (rem_flag ? smod_pow2_cheap : sdiv_pow2_cheap))
3258 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
3260 lgup = floor_log2 (abs_d);
3261 if (BRANCH_COST < 1 || (abs_d != 2 && BRANCH_COST < 3))
3263 rtx label = gen_label_rtx ();
3264 rtx t1;
3266 t1 = copy_to_mode_reg (compute_mode, op0);
3267 do_cmp_and_jump (t1, const0_rtx, GE,
3268 compute_mode, label);
3269 expand_inc (t1, GEN_INT (abs_d - 1));
3270 emit_label (label);
3271 quotient = expand_shift (RSHIFT_EXPR, compute_mode, t1,
3272 build_int_2 (lgup, 0),
3273 tquotient, 0);
3275 else
3277 rtx t1, t2, t3;
3278 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3279 build_int_2 (size - 1, 0),
3280 NULL_RTX, 0);
3281 t2 = expand_shift (RSHIFT_EXPR, compute_mode, t1,
3282 build_int_2 (size - lgup, 0),
3283 NULL_RTX, 1);
3284 t3 = force_operand (gen_rtx_PLUS (compute_mode,
3285 op0, t2),
3286 NULL_RTX);
3287 quotient = expand_shift (RSHIFT_EXPR, compute_mode, t3,
3288 build_int_2 (lgup, 0),
3289 tquotient, 0);
3292 /* We have computed OP0 / abs(OP1). If OP1 is negative, negate
3293 the quotient. */
3294 if (d < 0)
3296 insn = get_last_insn ();
3297 if (insn != last
3298 && (set = single_set (insn)) != 0
3299 && SET_DEST (set) == quotient
3300 && abs_d < ((unsigned HOST_WIDE_INT) 1
3301 << (HOST_BITS_PER_WIDE_INT - 1)))
3302 set_unique_reg_note (insn,
3303 REG_EQUAL,
3304 gen_rtx_DIV (compute_mode,
3305 op0,
3306 GEN_INT (abs_d)));
3308 quotient = expand_unop (compute_mode, neg_optab,
3309 quotient, quotient, 0);
3312 else if (size <= HOST_BITS_PER_WIDE_INT)
3314 choose_multiplier (abs_d, size, size - 1,
3315 &ml, &post_shift, &lgup);
3316 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
3318 rtx t1, t2, t3;
3320 extra_cost = (shift_cost[post_shift]
3321 + shift_cost[size - 1] + add_cost);
3322 t1 = expand_mult_highpart (compute_mode, op0, ml,
3323 NULL_RTX, 0,
3324 max_cost - extra_cost);
3325 if (t1 == 0)
3326 goto fail1;
3327 t2 = expand_shift (RSHIFT_EXPR, compute_mode, t1,
3328 build_int_2 (post_shift, 0), NULL_RTX, 0);
3329 t3 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3330 build_int_2 (size - 1, 0), NULL_RTX, 0);
3331 if (d < 0)
3332 quotient
3333 = force_operand (gen_rtx_MINUS (compute_mode,
3334 t3, t2),
3335 tquotient);
3336 else
3337 quotient
3338 = force_operand (gen_rtx_MINUS (compute_mode,
3339 t2, t3),
3340 tquotient);
3342 else
3344 rtx t1, t2, t3, t4;
3346 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
3347 extra_cost = (shift_cost[post_shift]
3348 + shift_cost[size - 1] + 2 * add_cost);
3349 t1 = expand_mult_highpart (compute_mode, op0, ml,
3350 NULL_RTX, 0,
3351 max_cost - extra_cost);
3352 if (t1 == 0)
3353 goto fail1;
3354 t2 = force_operand (gen_rtx_PLUS (compute_mode,
3355 t1, op0),
3356 NULL_RTX);
3357 t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
3358 build_int_2 (post_shift, 0),
3359 NULL_RTX, 0);
3360 t4 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3361 build_int_2 (size - 1, 0),
3362 NULL_RTX, 0);
3363 if (d < 0)
3364 quotient
3365 = force_operand (gen_rtx_MINUS (compute_mode,
3366 t4, t3),
3367 tquotient);
3368 else
3369 quotient
3370 = force_operand (gen_rtx_MINUS (compute_mode,
3371 t3, t4),
3372 tquotient);
3375 else /* Too wide mode to use tricky code */
3376 break;
3378 insn = get_last_insn ();
3379 if (insn != last
3380 && (set = single_set (insn)) != 0
3381 && SET_DEST (set) == quotient)
3382 set_unique_reg_note (insn,
3383 REG_EQUAL,
3384 gen_rtx_DIV (compute_mode, op0, op1));
3386 break;
3388 fail1:
3389 delete_insns_since (last);
3390 break;
3392 case FLOOR_DIV_EXPR:
3393 case FLOOR_MOD_EXPR:
3394 /* We will come here only for signed operations. */
3395 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
3397 unsigned HOST_WIDE_INT mh, ml;
3398 int pre_shift, lgup, post_shift;
3399 HOST_WIDE_INT d = INTVAL (op1);
3401 if (d > 0)
3403 /* We could just as easily deal with negative constants here,
3404 but it does not seem worth the trouble for GCC 2.6. */
3405 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3407 pre_shift = floor_log2 (d);
3408 if (rem_flag)
3410 remainder = expand_binop (compute_mode, and_optab, op0,
3411 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3412 remainder, 0, OPTAB_LIB_WIDEN);
3413 if (remainder)
3414 return gen_lowpart (mode, remainder);
3416 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3417 build_int_2 (pre_shift, 0),
3418 tquotient, 0);
3420 else
3422 rtx t1, t2, t3, t4;
3424 mh = choose_multiplier (d, size, size - 1,
3425 &ml, &post_shift, &lgup);
3426 if (mh)
3427 abort ();
3429 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3430 build_int_2 (size - 1, 0), NULL_RTX, 0);
3431 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
3432 NULL_RTX, 0, OPTAB_WIDEN);
3433 extra_cost = (shift_cost[post_shift]
3434 + shift_cost[size - 1] + 2 * add_cost);
3435 t3 = expand_mult_highpart (compute_mode, t2, ml,
3436 NULL_RTX, 1,
3437 max_cost - extra_cost);
3438 if (t3 != 0)
3440 t4 = expand_shift (RSHIFT_EXPR, compute_mode, t3,
3441 build_int_2 (post_shift, 0),
3442 NULL_RTX, 1);
3443 quotient = expand_binop (compute_mode, xor_optab,
3444 t4, t1, tquotient, 0,
3445 OPTAB_WIDEN);
3449 else
3451 rtx nsign, t1, t2, t3, t4;
3452 t1 = force_operand (gen_rtx_PLUS (compute_mode,
3453 op0, constm1_rtx), NULL_RTX);
3454 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
3455 0, OPTAB_WIDEN);
3456 nsign = expand_shift (RSHIFT_EXPR, compute_mode, t2,
3457 build_int_2 (size - 1, 0), NULL_RTX, 0);
3458 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
3459 NULL_RTX);
3460 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
3461 NULL_RTX, 0);
3462 if (t4)
3464 rtx t5;
3465 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
3466 NULL_RTX, 0);
3467 quotient = force_operand (gen_rtx_PLUS (compute_mode,
3468 t4, t5),
3469 tquotient);
3474 if (quotient != 0)
3475 break;
3476 delete_insns_since (last);
3478 /* Try using an instruction that produces both the quotient and
3479 remainder, using truncation. We can easily compensate the quotient
3480 or remainder to get floor rounding, once we have the remainder.
3481 Notice that we compute also the final remainder value here,
3482 and return the result right away. */
3483 if (target == 0 || GET_MODE (target) != compute_mode)
3484 target = gen_reg_rtx (compute_mode);
3486 if (rem_flag)
3488 remainder
3489 = GET_CODE (target) == REG ? target : gen_reg_rtx (compute_mode);
3490 quotient = gen_reg_rtx (compute_mode);
3492 else
3494 quotient
3495 = GET_CODE (target) == REG ? target : gen_reg_rtx (compute_mode);
3496 remainder = gen_reg_rtx (compute_mode);
3499 if (expand_twoval_binop (sdivmod_optab, op0, op1,
3500 quotient, remainder, 0))
3502 /* This could be computed with a branch-less sequence.
3503 Save that for later. */
3504 rtx tem;
3505 rtx label = gen_label_rtx ();
3506 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
3507 tem = expand_binop (compute_mode, xor_optab, op0, op1,
3508 NULL_RTX, 0, OPTAB_WIDEN);
3509 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
3510 expand_dec (quotient, const1_rtx);
3511 expand_inc (remainder, op1);
3512 emit_label (label);
3513 return gen_lowpart (mode, rem_flag ? remainder : quotient);
3516 /* No luck with division elimination or divmod. Have to do it
3517 by conditionally adjusting op0 *and* the result. */
3519 rtx label1, label2, label3, label4, label5;
3520 rtx adjusted_op0;
3521 rtx tem;
3523 quotient = gen_reg_rtx (compute_mode);
3524 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
3525 label1 = gen_label_rtx ();
3526 label2 = gen_label_rtx ();
3527 label3 = gen_label_rtx ();
3528 label4 = gen_label_rtx ();
3529 label5 = gen_label_rtx ();
3530 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
3531 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
3532 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
3533 quotient, 0, OPTAB_LIB_WIDEN);
3534 if (tem != quotient)
3535 emit_move_insn (quotient, tem);
3536 emit_jump_insn (gen_jump (label5));
3537 emit_barrier ();
3538 emit_label (label1);
3539 expand_inc (adjusted_op0, const1_rtx);
3540 emit_jump_insn (gen_jump (label4));
3541 emit_barrier ();
3542 emit_label (label2);
3543 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
3544 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
3545 quotient, 0, OPTAB_LIB_WIDEN);
3546 if (tem != quotient)
3547 emit_move_insn (quotient, tem);
3548 emit_jump_insn (gen_jump (label5));
3549 emit_barrier ();
3550 emit_label (label3);
3551 expand_dec (adjusted_op0, const1_rtx);
3552 emit_label (label4);
3553 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
3554 quotient, 0, OPTAB_LIB_WIDEN);
3555 if (tem != quotient)
3556 emit_move_insn (quotient, tem);
3557 expand_dec (quotient, const1_rtx);
3558 emit_label (label5);
3560 break;
3562 case CEIL_DIV_EXPR:
3563 case CEIL_MOD_EXPR:
3564 if (unsignedp)
3566 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
3568 rtx t1, t2, t3;
3569 unsigned HOST_WIDE_INT d = INTVAL (op1);
3570 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3571 build_int_2 (floor_log2 (d), 0),
3572 tquotient, 1);
3573 t2 = expand_binop (compute_mode, and_optab, op0,
3574 GEN_INT (d - 1),
3575 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3576 t3 = gen_reg_rtx (compute_mode);
3577 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
3578 compute_mode, 1, 1);
3579 if (t3 == 0)
3581 rtx lab;
3582 lab = gen_label_rtx ();
3583 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
3584 expand_inc (t1, const1_rtx);
3585 emit_label (lab);
3586 quotient = t1;
3588 else
3589 quotient = force_operand (gen_rtx_PLUS (compute_mode,
3590 t1, t3),
3591 tquotient);
3592 break;
3595 /* Try using an instruction that produces both the quotient and
3596 remainder, using truncation. We can easily compensate the
3597 quotient or remainder to get ceiling rounding, once we have the
3598 remainder. Notice that we compute also the final remainder
3599 value here, and return the result right away. */
3600 if (target == 0 || GET_MODE (target) != compute_mode)
3601 target = gen_reg_rtx (compute_mode);
3603 if (rem_flag)
3605 remainder = (GET_CODE (target) == REG
3606 ? target : gen_reg_rtx (compute_mode));
3607 quotient = gen_reg_rtx (compute_mode);
3609 else
3611 quotient = (GET_CODE (target) == REG
3612 ? target : gen_reg_rtx (compute_mode));
3613 remainder = gen_reg_rtx (compute_mode);
3616 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
3617 remainder, 1))
3619 /* This could be computed with a branch-less sequence.
3620 Save that for later. */
3621 rtx label = gen_label_rtx ();
3622 do_cmp_and_jump (remainder, const0_rtx, EQ,
3623 compute_mode, label);
3624 expand_inc (quotient, const1_rtx);
3625 expand_dec (remainder, op1);
3626 emit_label (label);
3627 return gen_lowpart (mode, rem_flag ? remainder : quotient);
3630 /* No luck with division elimination or divmod. Have to do it
3631 by conditionally adjusting op0 *and* the result. */
3633 rtx label1, label2;
3634 rtx adjusted_op0, tem;
3636 quotient = gen_reg_rtx (compute_mode);
3637 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
3638 label1 = gen_label_rtx ();
3639 label2 = gen_label_rtx ();
3640 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
3641 compute_mode, label1);
3642 emit_move_insn (quotient, const0_rtx);
3643 emit_jump_insn (gen_jump (label2));
3644 emit_barrier ();
3645 emit_label (label1);
3646 expand_dec (adjusted_op0, const1_rtx);
3647 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
3648 quotient, 1, OPTAB_LIB_WIDEN);
3649 if (tem != quotient)
3650 emit_move_insn (quotient, tem);
3651 expand_inc (quotient, const1_rtx);
3652 emit_label (label2);
3655 else /* signed */
3657 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3658 && INTVAL (op1) >= 0)
3660 /* This is extremely similar to the code for the unsigned case
3661 above. For 2.7 we should merge these variants, but for
3662 2.6.1 I don't want to touch the code for unsigned since that
3663 get used in C. The signed case will only be used by other
3664 languages (Ada). */
3666 rtx t1, t2, t3;
3667 unsigned HOST_WIDE_INT d = INTVAL (op1);
3668 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3669 build_int_2 (floor_log2 (d), 0),
3670 tquotient, 0);
3671 t2 = expand_binop (compute_mode, and_optab, op0,
3672 GEN_INT (d - 1),
3673 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3674 t3 = gen_reg_rtx (compute_mode);
3675 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
3676 compute_mode, 1, 1);
3677 if (t3 == 0)
3679 rtx lab;
3680 lab = gen_label_rtx ();
3681 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
3682 expand_inc (t1, const1_rtx);
3683 emit_label (lab);
3684 quotient = t1;
3686 else
3687 quotient = force_operand (gen_rtx_PLUS (compute_mode,
3688 t1, t3),
3689 tquotient);
3690 break;
3693 /* Try using an instruction that produces both the quotient and
3694 remainder, using truncation. We can easily compensate the
3695 quotient or remainder to get ceiling rounding, once we have the
3696 remainder. Notice that we compute also the final remainder
3697 value here, and return the result right away. */
3698 if (target == 0 || GET_MODE (target) != compute_mode)
3699 target = gen_reg_rtx (compute_mode);
3700 if (rem_flag)
3702 remainder= (GET_CODE (target) == REG
3703 ? target : gen_reg_rtx (compute_mode));
3704 quotient = gen_reg_rtx (compute_mode);
3706 else
3708 quotient = (GET_CODE (target) == REG
3709 ? target : gen_reg_rtx (compute_mode));
3710 remainder = gen_reg_rtx (compute_mode);
3713 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
3714 remainder, 0))
3716 /* This could be computed with a branch-less sequence.
3717 Save that for later. */
3718 rtx tem;
3719 rtx label = gen_label_rtx ();
3720 do_cmp_and_jump (remainder, const0_rtx, EQ,
3721 compute_mode, label);
3722 tem = expand_binop (compute_mode, xor_optab, op0, op1,
3723 NULL_RTX, 0, OPTAB_WIDEN);
3724 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
3725 expand_inc (quotient, const1_rtx);
3726 expand_dec (remainder, op1);
3727 emit_label (label);
3728 return gen_lowpart (mode, rem_flag ? remainder : quotient);
3731 /* No luck with division elimination or divmod. Have to do it
3732 by conditionally adjusting op0 *and* the result. */
3734 rtx label1, label2, label3, label4, label5;
3735 rtx adjusted_op0;
3736 rtx tem;
3738 quotient = gen_reg_rtx (compute_mode);
3739 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
3740 label1 = gen_label_rtx ();
3741 label2 = gen_label_rtx ();
3742 label3 = gen_label_rtx ();
3743 label4 = gen_label_rtx ();
3744 label5 = gen_label_rtx ();
3745 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
3746 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
3747 compute_mode, label1);
3748 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
3749 quotient, 0, OPTAB_LIB_WIDEN);
3750 if (tem != quotient)
3751 emit_move_insn (quotient, tem);
3752 emit_jump_insn (gen_jump (label5));
3753 emit_barrier ();
3754 emit_label (label1);
3755 expand_dec (adjusted_op0, const1_rtx);
3756 emit_jump_insn (gen_jump (label4));
3757 emit_barrier ();
3758 emit_label (label2);
3759 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
3760 compute_mode, label3);
3761 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
3762 quotient, 0, OPTAB_LIB_WIDEN);
3763 if (tem != quotient)
3764 emit_move_insn (quotient, tem);
3765 emit_jump_insn (gen_jump (label5));
3766 emit_barrier ();
3767 emit_label (label3);
3768 expand_inc (adjusted_op0, const1_rtx);
3769 emit_label (label4);
3770 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
3771 quotient, 0, OPTAB_LIB_WIDEN);
3772 if (tem != quotient)
3773 emit_move_insn (quotient, tem);
3774 expand_inc (quotient, const1_rtx);
3775 emit_label (label5);
3778 break;
3780 case EXACT_DIV_EXPR:
3781 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
3783 HOST_WIDE_INT d = INTVAL (op1);
3784 unsigned HOST_WIDE_INT ml;
3785 int pre_shift;
3786 rtx t1;
3788 pre_shift = floor_log2 (d & -d);
3789 ml = invert_mod2n (d >> pre_shift, size);
3790 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3791 build_int_2 (pre_shift, 0), NULL_RTX, unsignedp);
3792 quotient = expand_mult (compute_mode, t1, GEN_INT (ml), NULL_RTX,
3795 insn = get_last_insn ();
3796 set_unique_reg_note (insn,
3797 REG_EQUAL,
3798 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
3799 compute_mode,
3800 op0, op1));
3802 break;
3804 case ROUND_DIV_EXPR:
3805 case ROUND_MOD_EXPR:
3806 if (unsignedp)
3808 rtx tem;
3809 rtx label;
3810 label = gen_label_rtx ();
3811 quotient = gen_reg_rtx (compute_mode);
3812 remainder = gen_reg_rtx (compute_mode);
3813 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
3815 rtx tem;
3816 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
3817 quotient, 1, OPTAB_LIB_WIDEN);
3818 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
3819 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
3820 remainder, 1, OPTAB_LIB_WIDEN);
3822 tem = plus_constant (op1, -1);
3823 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
3824 build_int_2 (1, 0), NULL_RTX, 1);
3825 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
3826 expand_inc (quotient, const1_rtx);
3827 expand_dec (remainder, op1);
3828 emit_label (label);
3830 else
3832 rtx abs_rem, abs_op1, tem, mask;
3833 rtx label;
3834 label = gen_label_rtx ();
3835 quotient = gen_reg_rtx (compute_mode);
3836 remainder = gen_reg_rtx (compute_mode);
3837 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
3839 rtx tem;
3840 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
3841 quotient, 0, OPTAB_LIB_WIDEN);
3842 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
3843 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
3844 remainder, 0, OPTAB_LIB_WIDEN);
3846 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
3847 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
3848 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
3849 build_int_2 (1, 0), NULL_RTX, 1);
3850 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
3851 tem = expand_binop (compute_mode, xor_optab, op0, op1,
3852 NULL_RTX, 0, OPTAB_WIDEN);
3853 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
3854 build_int_2 (size - 1, 0), NULL_RTX, 0);
3855 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
3856 NULL_RTX, 0, OPTAB_WIDEN);
3857 tem = expand_binop (compute_mode, sub_optab, tem, mask,
3858 NULL_RTX, 0, OPTAB_WIDEN);
3859 expand_inc (quotient, tem);
3860 tem = expand_binop (compute_mode, xor_optab, mask, op1,
3861 NULL_RTX, 0, OPTAB_WIDEN);
3862 tem = expand_binop (compute_mode, sub_optab, tem, mask,
3863 NULL_RTX, 0, OPTAB_WIDEN);
3864 expand_dec (remainder, tem);
3865 emit_label (label);
3867 return gen_lowpart (mode, rem_flag ? remainder : quotient);
3869 default:
3870 abort ();
3873 if (quotient == 0)
3875 if (target && GET_MODE (target) != compute_mode)
3876 target = 0;
3878 if (rem_flag)
3880 /* Try to produce the remainder without producing the quotient.
3881 If we seem to have a divmod patten that does not require widening,
3882 don't try windening here. We should really have an WIDEN argument
3883 to expand_twoval_binop, since what we'd really like to do here is
3884 1) try a mod insn in compute_mode
3885 2) try a divmod insn in compute_mode
3886 3) try a div insn in compute_mode and multiply-subtract to get
3887 remainder
3888 4) try the same things with widening allowed. */
3889 remainder
3890 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
3891 op0, op1, target,
3892 unsignedp,
3893 ((optab2->handlers[(int) compute_mode].insn_code
3894 != CODE_FOR_nothing)
3895 ? OPTAB_DIRECT : OPTAB_WIDEN));
3896 if (remainder == 0)
3898 /* No luck there. Can we do remainder and divide at once
3899 without a library call? */
3900 remainder = gen_reg_rtx (compute_mode);
3901 if (! expand_twoval_binop ((unsignedp
3902 ? udivmod_optab
3903 : sdivmod_optab),
3904 op0, op1,
3905 NULL_RTX, remainder, unsignedp))
3906 remainder = 0;
3909 if (remainder)
3910 return gen_lowpart (mode, remainder);
3913 /* Produce the quotient. Try a quotient insn, but not a library call.
3914 If we have a divmod in this mode, use it in preference to widening
3915 the div (for this test we assume it will not fail). Note that optab2
3916 is set to the one of the two optabs that the call below will use. */
3917 quotient
3918 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
3919 op0, op1, rem_flag ? NULL_RTX : target,
3920 unsignedp,
3921 ((optab2->handlers[(int) compute_mode].insn_code
3922 != CODE_FOR_nothing)
3923 ? OPTAB_DIRECT : OPTAB_WIDEN));
3925 if (quotient == 0)
3927 /* No luck there. Try a quotient-and-remainder insn,
3928 keeping the quotient alone. */
3929 quotient = gen_reg_rtx (compute_mode);
3930 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
3931 op0, op1,
3932 quotient, NULL_RTX, unsignedp))
3934 quotient = 0;
3935 if (! rem_flag)
3936 /* Still no luck. If we are not computing the remainder,
3937 use a library call for the quotient. */
3938 quotient = sign_expand_binop (compute_mode,
3939 udiv_optab, sdiv_optab,
3940 op0, op1, target,
3941 unsignedp, OPTAB_LIB_WIDEN);
3946 if (rem_flag)
3948 if (target && GET_MODE (target) != compute_mode)
3949 target = 0;
3951 if (quotient == 0)
3952 /* No divide instruction either. Use library for remainder. */
3953 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
3954 op0, op1, target,
3955 unsignedp, OPTAB_LIB_WIDEN);
3956 else
3958 /* We divided. Now finish doing X - Y * (X / Y). */
3959 remainder = expand_mult (compute_mode, quotient, op1,
3960 NULL_RTX, unsignedp);
3961 remainder = expand_binop (compute_mode, sub_optab, op0,
3962 remainder, target, unsignedp,
3963 OPTAB_LIB_WIDEN);
3967 return gen_lowpart (mode, rem_flag ? remainder : quotient);
3970 /* Return a tree node with data type TYPE, describing the value of X.
3971 Usually this is an RTL_EXPR, if there is no obvious better choice.
3972 X may be an expression, however we only support those expressions
3973 generated by loop.c. */
3975 tree
3976 make_tree (type, x)
3977 tree type;
3978 rtx x;
3980 tree t;
3982 switch (GET_CODE (x))
3984 case CONST_INT:
3985 t = build_int_2 (INTVAL (x),
3986 (TREE_UNSIGNED (type)
3987 && (GET_MODE_BITSIZE (TYPE_MODE (type)) < HOST_BITS_PER_WIDE_INT))
3988 || INTVAL (x) >= 0 ? 0 : -1);
3989 TREE_TYPE (t) = type;
3990 return t;
3992 case CONST_DOUBLE:
3993 if (GET_MODE (x) == VOIDmode)
3995 t = build_int_2 (CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
3996 TREE_TYPE (t) = type;
3998 else
4000 REAL_VALUE_TYPE d;
4002 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4003 t = build_real (type, d);
4006 return t;
4008 case PLUS:
4009 return fold (build (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4010 make_tree (type, XEXP (x, 1))));
4012 case MINUS:
4013 return fold (build (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4014 make_tree (type, XEXP (x, 1))));
4016 case NEG:
4017 return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
4019 case MULT:
4020 return fold (build (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4021 make_tree (type, XEXP (x, 1))));
4023 case ASHIFT:
4024 return fold (build (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4025 make_tree (type, XEXP (x, 1))));
4027 case LSHIFTRT:
4028 return fold (convert (type,
4029 build (RSHIFT_EXPR, unsigned_type (type),
4030 make_tree (unsigned_type (type),
4031 XEXP (x, 0)),
4032 make_tree (type, XEXP (x, 1)))));
4034 case ASHIFTRT:
4035 return fold (convert (type,
4036 build (RSHIFT_EXPR, signed_type (type),
4037 make_tree (signed_type (type), XEXP (x, 0)),
4038 make_tree (type, XEXP (x, 1)))));
4040 case DIV:
4041 if (TREE_CODE (type) != REAL_TYPE)
4042 t = signed_type (type);
4043 else
4044 t = type;
4046 return fold (convert (type,
4047 build (TRUNC_DIV_EXPR, t,
4048 make_tree (t, XEXP (x, 0)),
4049 make_tree (t, XEXP (x, 1)))));
4050 case UDIV:
4051 t = unsigned_type (type);
4052 return fold (convert (type,
4053 build (TRUNC_DIV_EXPR, t,
4054 make_tree (t, XEXP (x, 0)),
4055 make_tree (t, XEXP (x, 1)))));
4056 default:
4057 t = make_node (RTL_EXPR);
4058 TREE_TYPE (t) = type;
4059 RTL_EXPR_RTL (t) = x;
4060 /* There are no insns to be output
4061 when this rtl_expr is used. */
4062 RTL_EXPR_SEQUENCE (t) = 0;
4063 return t;
4067 /* Return an rtx representing the value of X * MULT + ADD.
4068 TARGET is a suggestion for where to store the result (an rtx).
4069 MODE is the machine mode for the computation.
4070 X and MULT must have mode MODE. ADD may have a different mode.
4071 So can X (defaults to same as MODE).
4072 UNSIGNEDP is non-zero to do unsigned multiplication.
4073 This may emit insns. */
4076 expand_mult_add (x, target, mult, add, mode, unsignedp)
4077 rtx x, target, mult, add;
4078 enum machine_mode mode;
4079 int unsignedp;
4081 tree type = type_for_mode (mode, unsignedp);
4082 tree add_type = (GET_MODE (add) == VOIDmode
4083 ? type : type_for_mode (GET_MODE (add), unsignedp));
4084 tree result = fold (build (PLUS_EXPR, type,
4085 fold (build (MULT_EXPR, type,
4086 make_tree (type, x),
4087 make_tree (type, mult))),
4088 make_tree (add_type, add)));
4090 return expand_expr (result, target, VOIDmode, 0);
4093 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4094 and returning TARGET.
4096 If TARGET is 0, a pseudo-register or constant is returned. */
4099 expand_and (op0, op1, target)
4100 rtx op0, op1, target;
4102 enum machine_mode mode = VOIDmode;
4103 rtx tem;
4105 if (GET_MODE (op0) != VOIDmode)
4106 mode = GET_MODE (op0);
4107 else if (GET_MODE (op1) != VOIDmode)
4108 mode = GET_MODE (op1);
4110 if (mode != VOIDmode)
4111 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
4112 else if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT)
4113 tem = GEN_INT (INTVAL (op0) & INTVAL (op1));
4114 else
4115 abort ();
4117 if (target == 0)
4118 target = tem;
4119 else if (tem != target)
4120 emit_move_insn (target, tem);
4121 return target;
4124 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
4125 and storing in TARGET. Normally return TARGET.
4126 Return 0 if that cannot be done.
4128 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
4129 it is VOIDmode, they cannot both be CONST_INT.
4131 UNSIGNEDP is for the case where we have to widen the operands
4132 to perform the operation. It says to use zero-extension.
4134 NORMALIZEP is 1 if we should convert the result to be either zero
4135 or one. Normalize is -1 if we should convert the result to be
4136 either zero or -1. If NORMALIZEP is zero, the result will be left
4137 "raw" out of the scc insn. */
4140 emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep)
4141 rtx target;
4142 enum rtx_code code;
4143 rtx op0, op1;
4144 enum machine_mode mode;
4145 int unsignedp;
4146 int normalizep;
4148 rtx subtarget;
4149 enum insn_code icode;
4150 enum machine_mode compare_mode;
4151 enum machine_mode target_mode = GET_MODE (target);
4152 rtx tem;
4153 rtx last = get_last_insn ();
4154 rtx pattern, comparison;
4156 if (unsignedp)
4157 code = unsigned_condition (code);
4159 /* If one operand is constant, make it the second one. Only do this
4160 if the other operand is not constant as well. */
4162 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
4163 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
4165 tem = op0;
4166 op0 = op1;
4167 op1 = tem;
4168 code = swap_condition (code);
4171 if (mode == VOIDmode)
4172 mode = GET_MODE (op0);
4174 /* For some comparisons with 1 and -1, we can convert this to
4175 comparisons with zero. This will often produce more opportunities for
4176 store-flag insns. */
4178 switch (code)
4180 case LT:
4181 if (op1 == const1_rtx)
4182 op1 = const0_rtx, code = LE;
4183 break;
4184 case LE:
4185 if (op1 == constm1_rtx)
4186 op1 = const0_rtx, code = LT;
4187 break;
4188 case GE:
4189 if (op1 == const1_rtx)
4190 op1 = const0_rtx, code = GT;
4191 break;
4192 case GT:
4193 if (op1 == constm1_rtx)
4194 op1 = const0_rtx, code = GE;
4195 break;
4196 case GEU:
4197 if (op1 == const1_rtx)
4198 op1 = const0_rtx, code = NE;
4199 break;
4200 case LTU:
4201 if (op1 == const1_rtx)
4202 op1 = const0_rtx, code = EQ;
4203 break;
4204 default:
4205 break;
4208 /* If we are comparing a double-word integer with zero, we can convert
4209 the comparison into one involving a single word. */
4210 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
4211 && GET_MODE_CLASS (mode) == MODE_INT
4212 && op1 == const0_rtx)
4214 if (code == EQ || code == NE)
4216 /* Do a logical OR of the two words and compare the result. */
4217 rtx op0h = gen_highpart (word_mode, op0);
4218 rtx op0l = gen_lowpart (word_mode, op0);
4219 rtx op0both = expand_binop (word_mode, ior_optab, op0h, op0l,
4220 NULL_RTX, unsignedp, OPTAB_DIRECT);
4221 if (op0both != 0)
4222 return emit_store_flag (target, code, op0both, op1, word_mode,
4223 unsignedp, normalizep);
4225 else if (code == LT || code == GE)
4226 /* If testing the sign bit, can just test on high word. */
4227 return emit_store_flag (target, code, gen_highpart (word_mode, op0),
4228 op1, word_mode, unsignedp, normalizep);
4231 /* From now on, we won't change CODE, so set ICODE now. */
4232 icode = setcc_gen_code[(int) code];
4234 /* If this is A < 0 or A >= 0, we can do this by taking the ones
4235 complement of A (for GE) and shifting the sign bit to the low bit. */
4236 if (op1 == const0_rtx && (code == LT || code == GE)
4237 && GET_MODE_CLASS (mode) == MODE_INT
4238 && (normalizep || STORE_FLAG_VALUE == 1
4239 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4240 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4241 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
4243 subtarget = target;
4245 /* If the result is to be wider than OP0, it is best to convert it
4246 first. If it is to be narrower, it is *incorrect* to convert it
4247 first. */
4248 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
4250 op0 = protect_from_queue (op0, 0);
4251 op0 = convert_modes (target_mode, mode, op0, 0);
4252 mode = target_mode;
4255 if (target_mode != mode)
4256 subtarget = 0;
4258 if (code == GE)
4259 op0 = expand_unop (mode, one_cmpl_optab, op0,
4260 ((STORE_FLAG_VALUE == 1 || normalizep)
4261 ? 0 : subtarget), 0);
4263 if (STORE_FLAG_VALUE == 1 || normalizep)
4264 /* If we are supposed to produce a 0/1 value, we want to do
4265 a logical shift from the sign bit to the low-order bit; for
4266 a -1/0 value, we do an arithmetic shift. */
4267 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
4268 size_int (GET_MODE_BITSIZE (mode) - 1),
4269 subtarget, normalizep != -1);
4271 if (mode != target_mode)
4272 op0 = convert_modes (target_mode, mode, op0, 0);
4274 return op0;
4277 if (icode != CODE_FOR_nothing)
4279 insn_operand_predicate_fn pred;
4281 /* We think we may be able to do this with a scc insn. Emit the
4282 comparison and then the scc insn.
4284 compare_from_rtx may call emit_queue, which would be deleted below
4285 if the scc insn fails. So call it ourselves before setting LAST.
4286 Likewise for do_pending_stack_adjust. */
4288 emit_queue ();
4289 do_pending_stack_adjust ();
4290 last = get_last_insn ();
4292 comparison
4293 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX, 0);
4294 if (GET_CODE (comparison) == CONST_INT)
4295 return (comparison == const0_rtx ? const0_rtx
4296 : normalizep == 1 ? const1_rtx
4297 : normalizep == -1 ? constm1_rtx
4298 : const_true_rtx);
4300 /* If the code of COMPARISON doesn't match CODE, something is
4301 wrong; we can no longer be sure that we have the operation.
4302 We could handle this case, but it should not happen. */
4304 if (GET_CODE (comparison) != code)
4305 abort ();
4307 /* Get a reference to the target in the proper mode for this insn. */
4308 compare_mode = insn_data[(int) icode].operand[0].mode;
4309 subtarget = target;
4310 pred = insn_data[(int) icode].operand[0].predicate;
4311 if (preserve_subexpressions_p ()
4312 || ! (*pred) (subtarget, compare_mode))
4313 subtarget = gen_reg_rtx (compare_mode);
4315 pattern = GEN_FCN (icode) (subtarget);
4316 if (pattern)
4318 emit_insn (pattern);
4320 /* If we are converting to a wider mode, first convert to
4321 TARGET_MODE, then normalize. This produces better combining
4322 opportunities on machines that have a SIGN_EXTRACT when we are
4323 testing a single bit. This mostly benefits the 68k.
4325 If STORE_FLAG_VALUE does not have the sign bit set when
4326 interpreted in COMPARE_MODE, we can do this conversion as
4327 unsigned, which is usually more efficient. */
4328 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
4330 convert_move (target, subtarget,
4331 (GET_MODE_BITSIZE (compare_mode)
4332 <= HOST_BITS_PER_WIDE_INT)
4333 && 0 == (STORE_FLAG_VALUE
4334 & ((HOST_WIDE_INT) 1
4335 << (GET_MODE_BITSIZE (compare_mode) -1))));
4336 op0 = target;
4337 compare_mode = target_mode;
4339 else
4340 op0 = subtarget;
4342 /* If we want to keep subexpressions around, don't reuse our
4343 last target. */
4345 if (preserve_subexpressions_p ())
4346 subtarget = 0;
4348 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
4349 we don't have to do anything. */
4350 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
4352 /* STORE_FLAG_VALUE might be the most negative number, so write
4353 the comparison this way to avoid a compiler-time warning. */
4354 else if (- normalizep == STORE_FLAG_VALUE)
4355 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
4357 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
4358 makes it hard to use a value of just the sign bit due to
4359 ANSI integer constant typing rules. */
4360 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
4361 && (STORE_FLAG_VALUE
4362 & ((HOST_WIDE_INT) 1
4363 << (GET_MODE_BITSIZE (compare_mode) - 1))))
4364 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
4365 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
4366 subtarget, normalizep == 1);
4367 else if (STORE_FLAG_VALUE & 1)
4369 op0 = expand_and (op0, const1_rtx, subtarget);
4370 if (normalizep == -1)
4371 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
4373 else
4374 abort ();
4376 /* If we were converting to a smaller mode, do the
4377 conversion now. */
4378 if (target_mode != compare_mode)
4380 convert_move (target, op0, 0);
4381 return target;
4383 else
4384 return op0;
4388 delete_insns_since (last);
4390 /* If expensive optimizations, use different pseudo registers for each
4391 insn, instead of reusing the same pseudo. This leads to better CSE,
4392 but slows down the compiler, since there are more pseudos */
4393 subtarget = (!flag_expensive_optimizations
4394 && (target_mode == mode)) ? target : NULL_RTX;
4396 /* If we reached here, we can't do this with a scc insn. However, there
4397 are some comparisons that can be done directly. For example, if
4398 this is an equality comparison of integers, we can try to exclusive-or
4399 (or subtract) the two operands and use a recursive call to try the
4400 comparison with zero. Don't do any of these cases if branches are
4401 very cheap. */
4403 if (BRANCH_COST > 0
4404 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
4405 && op1 != const0_rtx)
4407 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
4408 OPTAB_WIDEN);
4410 if (tem == 0)
4411 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
4412 OPTAB_WIDEN);
4413 if (tem != 0)
4414 tem = emit_store_flag (target, code, tem, const0_rtx,
4415 mode, unsignedp, normalizep);
4416 if (tem == 0)
4417 delete_insns_since (last);
4418 return tem;
4421 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
4422 the constant zero. Reject all other comparisons at this point. Only
4423 do LE and GT if branches are expensive since they are expensive on
4424 2-operand machines. */
4426 if (BRANCH_COST == 0
4427 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
4428 || (code != EQ && code != NE
4429 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
4430 return 0;
4432 /* See what we need to return. We can only return a 1, -1, or the
4433 sign bit. */
4435 if (normalizep == 0)
4437 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4438 normalizep = STORE_FLAG_VALUE;
4440 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4441 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4442 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
4444 else
4445 return 0;
4448 /* Try to put the result of the comparison in the sign bit. Assume we can't
4449 do the necessary operation below. */
4451 tem = 0;
4453 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
4454 the sign bit set. */
4456 if (code == LE)
4458 /* This is destructive, so SUBTARGET can't be OP0. */
4459 if (rtx_equal_p (subtarget, op0))
4460 subtarget = 0;
4462 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
4463 OPTAB_WIDEN);
4464 if (tem)
4465 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
4466 OPTAB_WIDEN);
4469 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
4470 number of bits in the mode of OP0, minus one. */
4472 if (code == GT)
4474 if (rtx_equal_p (subtarget, op0))
4475 subtarget = 0;
4477 tem = expand_shift (RSHIFT_EXPR, mode, op0,
4478 size_int (GET_MODE_BITSIZE (mode) - 1),
4479 subtarget, 0);
4480 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
4481 OPTAB_WIDEN);
4484 if (code == EQ || code == NE)
4486 /* For EQ or NE, one way to do the comparison is to apply an operation
4487 that converts the operand into a positive number if it is non-zero
4488 or zero if it was originally zero. Then, for EQ, we subtract 1 and
4489 for NE we negate. This puts the result in the sign bit. Then we
4490 normalize with a shift, if needed.
4492 Two operations that can do the above actions are ABS and FFS, so try
4493 them. If that doesn't work, and MODE is smaller than a full word,
4494 we can use zero-extension to the wider mode (an unsigned conversion)
4495 as the operation. */
4497 /* Note that ABS doesn't yield a positive number for INT_MIN, but
4498 that is compensated by the subsequent overflow when subtracting
4499 one / negating. */
4501 if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
4502 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
4503 else if (ffs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
4504 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
4505 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4507 op0 = protect_from_queue (op0, 0);
4508 tem = convert_modes (word_mode, mode, op0, 1);
4509 mode = word_mode;
4512 if (tem != 0)
4514 if (code == EQ)
4515 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
4516 0, OPTAB_WIDEN);
4517 else
4518 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
4521 /* If we couldn't do it that way, for NE we can "or" the two's complement
4522 of the value with itself. For EQ, we take the one's complement of
4523 that "or", which is an extra insn, so we only handle EQ if branches
4524 are expensive. */
4526 if (tem == 0 && (code == NE || BRANCH_COST > 1))
4528 if (rtx_equal_p (subtarget, op0))
4529 subtarget = 0;
4531 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
4532 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
4533 OPTAB_WIDEN);
4535 if (tem && code == EQ)
4536 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
4540 if (tem && normalizep)
4541 tem = expand_shift (RSHIFT_EXPR, mode, tem,
4542 size_int (GET_MODE_BITSIZE (mode) - 1),
4543 subtarget, normalizep == 1);
4545 if (tem)
4547 if (GET_MODE (tem) != target_mode)
4549 convert_move (target, tem, 0);
4550 tem = target;
4552 else if (!subtarget)
4554 emit_move_insn (target, tem);
4555 tem = target;
4558 else
4559 delete_insns_since (last);
4561 return tem;
4564 /* Like emit_store_flag, but always succeeds. */
4567 emit_store_flag_force (target, code, op0, op1, mode, unsignedp, normalizep)
4568 rtx target;
4569 enum rtx_code code;
4570 rtx op0, op1;
4571 enum machine_mode mode;
4572 int unsignedp;
4573 int normalizep;
4575 rtx tem, label;
4577 /* First see if emit_store_flag can do the job. */
4578 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
4579 if (tem != 0)
4580 return tem;
4582 if (normalizep == 0)
4583 normalizep = 1;
4585 /* If this failed, we have to do this with set/compare/jump/set code. */
4587 if (GET_CODE (target) != REG
4588 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
4589 target = gen_reg_rtx (GET_MODE (target));
4591 emit_move_insn (target, const1_rtx);
4592 label = gen_label_rtx ();
4593 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, 0,
4594 NULL_RTX, label);
4596 emit_move_insn (target, const0_rtx);
4597 emit_label (label);
4599 return target;
4602 /* Perform possibly multi-word comparison and conditional jump to LABEL
4603 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
4605 The algorithm is based on the code in expr.c:do_jump.
4607 Note that this does not perform a general comparison. Only variants
4608 generated within expmed.c are correctly handled, others abort (but could
4609 be handled if needed). */
4611 static void
4612 do_cmp_and_jump (arg1, arg2, op, mode, label)
4613 rtx arg1, arg2, label;
4614 enum rtx_code op;
4615 enum machine_mode mode;
4617 /* If this mode is an integer too wide to compare properly,
4618 compare word by word. Rely on cse to optimize constant cases. */
4620 if (GET_MODE_CLASS (mode) == MODE_INT
4621 && ! can_compare_p (op, mode, ccp_jump))
4623 rtx label2 = gen_label_rtx ();
4625 switch (op)
4627 case LTU:
4628 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
4629 break;
4631 case LEU:
4632 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
4633 break;
4635 case LT:
4636 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
4637 break;
4639 case GT:
4640 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
4641 break;
4643 case GE:
4644 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
4645 break;
4647 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
4648 that's the only equality operations we do */
4649 case EQ:
4650 if (arg2 != const0_rtx || mode != GET_MODE(arg1))
4651 abort();
4652 do_jump_by_parts_equality_rtx (arg1, label2, label);
4653 break;
4655 case NE:
4656 if (arg2 != const0_rtx || mode != GET_MODE(arg1))
4657 abort();
4658 do_jump_by_parts_equality_rtx (arg1, label, label2);
4659 break;
4661 default:
4662 abort();
4665 emit_label (label2);
4667 else
4669 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, 0, label);