* config/i386/i386.md (mmx_pinsrw): Output operands in correct
[official-gcc.git] / gcc / alias.c
blobe9e30ee8744a7b5df8fde54c688815bf1658402f
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "function.h"
28 #include "insn-flags.h"
29 #include "expr.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "cselib.h"
37 #include "splay-tree.h"
38 #include "ggc.h"
40 /* The alias sets assigned to MEMs assist the back-end in determining
41 which MEMs can alias which other MEMs. In general, two MEMs in
42 different alias sets cannot alias each other, with one important
43 exception. Consider something like:
45 struct S {int i; double d; };
47 a store to an `S' can alias something of either type `int' or type
48 `double'. (However, a store to an `int' cannot alias a `double'
49 and vice versa.) We indicate this via a tree structure that looks
50 like:
51 struct S
52 / \
53 / \
54 |/_ _\|
55 int double
57 (The arrows are directed and point downwards.)
58 In this situation we say the alias set for `struct S' is the
59 `superset' and that those for `int' and `double' are `subsets'.
61 To see whether two alias sets can point to the same memory, we must
62 see if either alias set is a subset of the other. We need not trace
63 past immediate decendents, however, since we propagate all
64 grandchildren up one level.
66 Alias set zero is implicitly a superset of all other alias sets.
67 However, this is no actual entry for alias set zero. It is an
68 error to attempt to explicitly construct a subset of zero. */
70 typedef struct alias_set_entry
72 /* The alias set number, as stored in MEM_ALIAS_SET. */
73 HOST_WIDE_INT alias_set;
75 /* The children of the alias set. These are not just the immediate
76 children, but, in fact, all decendents. So, if we have:
78 struct T { struct S s; float f; }
80 continuing our example above, the children here will be all of
81 `int', `double', `float', and `struct S'. */
82 splay_tree children;
84 /* Nonzero if would have a child of zero: this effectively makes this
85 alias set the same as alias set zero. */
86 int has_zero_child;
87 } *alias_set_entry;
89 static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
90 static rtx find_symbolic_term PARAMS ((rtx));
91 static rtx get_addr PARAMS ((rtx));
92 static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
93 HOST_WIDE_INT));
94 static void record_set PARAMS ((rtx, rtx, void *));
95 static rtx find_base_term PARAMS ((rtx));
96 static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
97 enum machine_mode));
98 static rtx find_base_value PARAMS ((rtx));
99 static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
100 static int insert_subset_children PARAMS ((splay_tree_node, void*));
101 static tree find_base_decl PARAMS ((tree));
102 static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
103 static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
104 int (*) (rtx)));
105 static int aliases_everything_p PARAMS ((rtx));
106 static int write_dependence_p PARAMS ((rtx, rtx, int));
107 static int nonlocal_mentioned_p PARAMS ((rtx));
109 static int loop_p PARAMS ((void));
111 /* Set up all info needed to perform alias analysis on memory references. */
113 /* Returns the size in bytes of the mode of X. */
114 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
116 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
117 different alias sets. We ignore alias sets in functions making use
118 of variable arguments because the va_arg macros on some systems are
119 not legal ANSI C. */
120 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
121 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
123 /* Cap the number of passes we make over the insns propagating alias
124 information through set chains. 10 is a completely arbitrary choice. */
125 #define MAX_ALIAS_LOOP_PASSES 10
127 /* reg_base_value[N] gives an address to which register N is related.
128 If all sets after the first add or subtract to the current value
129 or otherwise modify it so it does not point to a different top level
130 object, reg_base_value[N] is equal to the address part of the source
131 of the first set.
133 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
134 expressions represent certain special values: function arguments and
135 the stack, frame, and argument pointers.
137 The contents of an ADDRESS is not normally used, the mode of the
138 ADDRESS determines whether the ADDRESS is a function argument or some
139 other special value. Pointer equality, not rtx_equal_p, determines whether
140 two ADDRESS expressions refer to the same base address.
142 The only use of the contents of an ADDRESS is for determining if the
143 current function performs nonlocal memory memory references for the
144 purposes of marking the function as a constant function. */
146 static rtx *reg_base_value;
147 static rtx *new_reg_base_value;
148 static unsigned int reg_base_value_size; /* size of reg_base_value array */
150 #define REG_BASE_VALUE(X) \
151 (REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
153 /* Vector of known invariant relationships between registers. Set in
154 loop unrolling. Indexed by register number, if nonzero the value
155 is an expression describing this register in terms of another.
157 The length of this array is REG_BASE_VALUE_SIZE.
159 Because this array contains only pseudo registers it has no effect
160 after reload. */
161 static rtx *alias_invariant;
163 /* Vector indexed by N giving the initial (unchanging) value known for
164 pseudo-register N. This array is initialized in
165 init_alias_analysis, and does not change until end_alias_analysis
166 is called. */
167 rtx *reg_known_value;
169 /* Indicates number of valid entries in reg_known_value. */
170 static unsigned int reg_known_value_size;
172 /* Vector recording for each reg_known_value whether it is due to a
173 REG_EQUIV note. Future passes (viz., reload) may replace the
174 pseudo with the equivalent expression and so we account for the
175 dependences that would be introduced if that happens.
177 The REG_EQUIV notes created in assign_parms may mention the arg
178 pointer, and there are explicit insns in the RTL that modify the
179 arg pointer. Thus we must ensure that such insns don't get
180 scheduled across each other because that would invalidate the
181 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
182 wrong, but solving the problem in the scheduler will likely give
183 better code, so we do it here. */
184 char *reg_known_equiv_p;
186 /* True when scanning insns from the start of the rtl to the
187 NOTE_INSN_FUNCTION_BEG note. */
188 static int copying_arguments;
190 /* The splay-tree used to store the various alias set entries. */
191 static splay_tree alias_sets;
193 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
194 such an entry, or NULL otherwise. */
196 static alias_set_entry
197 get_alias_set_entry (alias_set)
198 HOST_WIDE_INT alias_set;
200 splay_tree_node sn
201 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
203 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
206 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
207 the two MEMs cannot alias each other. */
209 static int
210 mems_in_disjoint_alias_sets_p (mem1, mem2)
211 rtx mem1;
212 rtx mem2;
214 alias_set_entry ase;
216 #ifdef ENABLE_CHECKING
217 /* Perform a basic sanity check. Namely, that there are no alias sets
218 if we're not using strict aliasing. This helps to catch bugs
219 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
220 where a MEM is allocated in some way other than by the use of
221 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
222 use alias sets to indicate that spilled registers cannot alias each
223 other, we might need to remove this check. */
224 if (! flag_strict_aliasing
225 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
226 abort ();
227 #endif
229 /* The code used in varargs macros are often not conforming ANSI C,
230 which can trick the compiler into making incorrect aliasing
231 assumptions in these functions. So, we don't use alias sets in
232 such a function. FIXME: This should be moved into the front-end;
233 it is a language-dependent notion, and there's no reason not to
234 still use these checks to handle globals. */
235 if (current_function_stdarg || current_function_varargs)
236 return 0;
238 /* If have no alias set information for one of the MEMs, we have to assume
239 it can alias anything. */
240 if (MEM_ALIAS_SET (mem1) == 0 || MEM_ALIAS_SET (mem2) == 0)
241 return 0;
243 /* If the two alias sets are the same, they may alias. */
244 if (MEM_ALIAS_SET (mem1) == MEM_ALIAS_SET (mem2))
245 return 0;
247 /* See if the first alias set is a subset of the second. */
248 ase = get_alias_set_entry (MEM_ALIAS_SET (mem1));
249 if (ase != 0
250 && (ase->has_zero_child
251 || splay_tree_lookup (ase->children,
252 (splay_tree_key) MEM_ALIAS_SET (mem2))))
253 return 0;
255 /* Now do the same, but with the alias sets reversed. */
256 ase = get_alias_set_entry (MEM_ALIAS_SET (mem2));
257 if (ase != 0
258 && (ase->has_zero_child
259 || splay_tree_lookup (ase->children,
260 (splay_tree_key) MEM_ALIAS_SET (mem1))))
261 return 0;
263 /* The two MEMs are in distinct alias sets, and neither one is the
264 child of the other. Therefore, they cannot alias. */
265 return 1;
268 /* Insert the NODE into the splay tree given by DATA. Used by
269 record_alias_subset via splay_tree_foreach. */
271 static int
272 insert_subset_children (node, data)
273 splay_tree_node node;
274 void *data;
276 splay_tree_insert ((splay_tree) data, node->key, node->value);
278 return 0;
281 /* T is an expression with pointer type. Find the DECL on which this
282 expression is based. (For example, in `a[i]' this would be `a'.)
283 If there is no such DECL, or a unique decl cannot be determined,
284 NULL_TREE is retured. */
286 static tree
287 find_base_decl (t)
288 tree t;
290 tree d0, d1, d2;
292 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
293 return 0;
295 /* If this is a declaration, return it. */
296 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
297 return t;
299 /* Handle general expressions. It would be nice to deal with
300 COMPONENT_REFs here. If we could tell that `a' and `b' were the
301 same, then `a->f' and `b->f' are also the same. */
302 switch (TREE_CODE_CLASS (TREE_CODE (t)))
304 case '1':
305 return find_base_decl (TREE_OPERAND (t, 0));
307 case '2':
308 /* Return 0 if found in neither or both are the same. */
309 d0 = find_base_decl (TREE_OPERAND (t, 0));
310 d1 = find_base_decl (TREE_OPERAND (t, 1));
311 if (d0 == d1)
312 return d0;
313 else if (d0 == 0)
314 return d1;
315 else if (d1 == 0)
316 return d0;
317 else
318 return 0;
320 case '3':
321 d0 = find_base_decl (TREE_OPERAND (t, 0));
322 d1 = find_base_decl (TREE_OPERAND (t, 1));
323 d0 = find_base_decl (TREE_OPERAND (t, 0));
324 d2 = find_base_decl (TREE_OPERAND (t, 2));
326 /* Set any nonzero values from the last, then from the first. */
327 if (d1 == 0) d1 = d2;
328 if (d0 == 0) d0 = d1;
329 if (d1 == 0) d1 = d0;
330 if (d2 == 0) d2 = d1;
332 /* At this point all are nonzero or all are zero. If all three are the
333 same, return it. Otherwise, return zero. */
334 return (d0 == d1 && d1 == d2) ? d0 : 0;
336 default:
337 return 0;
341 /* Return the alias set for T, which may be either a type or an
342 expression. Call language-specific routine for help, if needed. */
344 HOST_WIDE_INT
345 get_alias_set (t)
346 tree t;
348 tree orig_t;
349 HOST_WIDE_INT set;
351 /* If we're not doing any alias analysis, just assume everything
352 aliases everything else. Also return 0 if this or its type is
353 an error. */
354 if (! flag_strict_aliasing || t == error_mark_node
355 || (! TYPE_P (t)
356 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
357 return 0;
359 /* We can be passed either an expression or a type. This and the
360 language-specific routine may make mutually-recursive calls to
361 each other to figure out what to do. At each juncture, we see if
362 this is a tree that the language may need to handle specially.
363 First handle things that aren't types and start by removing nops
364 since we care only about the actual object. */
365 if (! TYPE_P (t))
367 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
368 || TREE_CODE (t) == NON_LVALUE_EXPR)
369 t = TREE_OPERAND (t, 0);
371 /* Now give the language a chance to do something but record what we
372 gave it this time. */
373 orig_t = t;
374 if ((set = lang_get_alias_set (t)) != -1)
375 return set;
377 /* Now loop the same way as get_inner_reference and get the alias
378 set to use. Pick up the outermost object that we could have
379 a pointer to. */
380 while (1)
382 /* Unnamed bitfields are not an addressable object. */
383 if (TREE_CODE (t) == BIT_FIELD_REF)
385 else if (TREE_CODE (t) == COMPONENT_REF)
387 if (! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
388 /* Stop at an adressable decl. */
389 break;
391 else if (TREE_CODE (t) == ARRAY_REF)
393 if (! TYPE_NONALIASED_COMPONENT
394 (TREE_TYPE (TREE_OPERAND (t, 0))))
395 /* Stop at an addresssable array element. */
396 break;
398 else if (TREE_CODE (t) != NON_LVALUE_EXPR
399 && ! ((TREE_CODE (t) == NOP_EXPR
400 || TREE_CODE (t) == CONVERT_EXPR)
401 && (TYPE_MODE (TREE_TYPE (t))
402 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (t, 0))))))
403 /* Stop if not one of above and not mode-preserving conversion. */
404 break;
406 t = TREE_OPERAND (t, 0);
409 if (TREE_CODE (t) == INDIRECT_REF)
411 /* Check for accesses through restrict-qualified pointers. */
412 tree decl = find_base_decl (TREE_OPERAND (t, 0));
414 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
415 /* We use the alias set indicated in the declaration. */
416 return DECL_POINTER_ALIAS_SET (decl);
418 /* If we have an INDIRECT_REF via a void pointer, we don't
419 know anything about what that might alias. */
420 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE)
421 return 0;
424 /* Give the language another chance to do something special. */
425 if (orig_t != t
426 && (set = lang_get_alias_set (t)) != -1)
427 return set;
429 /* Now all we care about is the type. */
430 t = TREE_TYPE (t);
433 /* Variant qualifiers don't affect the alias set, so get the main
434 variant. If this is a type with a known alias set, return it. */
435 t = TYPE_MAIN_VARIANT (t);
436 if (TYPE_P (t) && TYPE_ALIAS_SET_KNOWN_P (t))
437 return TYPE_ALIAS_SET (t);
439 /* See if the language has special handling for this type. */
440 if ((set = lang_get_alias_set (t)) != -1)
442 /* If the alias set is now known, we are done. */
443 if (TYPE_ALIAS_SET_KNOWN_P (t))
444 return TYPE_ALIAS_SET (t);
447 /* There are no objects of FUNCTION_TYPE, so there's no point in
448 using up an alias set for them. (There are, of course, pointers
449 and references to functions, but that's different.) */
450 else if (TREE_CODE (t) == FUNCTION_TYPE)
451 set = 0;
452 else
453 /* Otherwise make a new alias set for this type. */
454 set = new_alias_set ();
456 TYPE_ALIAS_SET (t) = set;
458 /* If this is an aggregate type, we must record any component aliasing
459 information. */
460 if (AGGREGATE_TYPE_P (t))
461 record_component_aliases (t);
463 return set;
466 /* Return a brand-new alias set. */
468 HOST_WIDE_INT
469 new_alias_set ()
471 static HOST_WIDE_INT last_alias_set;
473 if (flag_strict_aliasing)
474 return ++last_alias_set;
475 else
476 return 0;
479 /* Indicate that things in SUBSET can alias things in SUPERSET, but
480 not vice versa. For example, in C, a store to an `int' can alias a
481 structure containing an `int', but not vice versa. Here, the
482 structure would be the SUPERSET and `int' the SUBSET. This
483 function should be called only once per SUPERSET/SUBSET pair.
485 It is illegal for SUPERSET to be zero; everything is implicitly a
486 subset of alias set zero. */
488 void
489 record_alias_subset (superset, subset)
490 HOST_WIDE_INT superset;
491 HOST_WIDE_INT subset;
493 alias_set_entry superset_entry;
494 alias_set_entry subset_entry;
496 if (superset == 0)
497 abort ();
499 superset_entry = get_alias_set_entry (superset);
500 if (superset_entry == 0)
502 /* Create an entry for the SUPERSET, so that we have a place to
503 attach the SUBSET. */
504 superset_entry
505 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
506 superset_entry->alias_set = superset;
507 superset_entry->children
508 = splay_tree_new (splay_tree_compare_ints, 0, 0);
509 superset_entry->has_zero_child = 0;
510 splay_tree_insert (alias_sets, (splay_tree_key) superset,
511 (splay_tree_value) superset_entry);
514 if (subset == 0)
515 superset_entry->has_zero_child = 1;
516 else
518 subset_entry = get_alias_set_entry (subset);
519 /* If there is an entry for the subset, enter all of its children
520 (if they are not already present) as children of the SUPERSET. */
521 if (subset_entry)
523 if (subset_entry->has_zero_child)
524 superset_entry->has_zero_child = 1;
526 splay_tree_foreach (subset_entry->children, insert_subset_children,
527 superset_entry->children);
530 /* Enter the SUBSET itself as a child of the SUPERSET. */
531 splay_tree_insert (superset_entry->children,
532 (splay_tree_key) subset, 0);
536 /* Record that component types of TYPE, if any, are part of that type for
537 aliasing purposes. For record types, we only record component types
538 for fields that are marked addressable. For array types, we always
539 record the component types, so the front end should not call this
540 function if the individual component aren't addressable. */
542 void
543 record_component_aliases (type)
544 tree type;
546 HOST_WIDE_INT superset = get_alias_set (type);
547 tree field;
549 if (superset == 0)
550 return;
552 switch (TREE_CODE (type))
554 case ARRAY_TYPE:
555 if (! TYPE_NONALIASED_COMPONENT (type))
556 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
557 break;
559 case RECORD_TYPE:
560 case UNION_TYPE:
561 case QUAL_UNION_TYPE:
562 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
563 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
564 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
565 break;
567 default:
568 break;
572 /* Allocate an alias set for use in storing and reading from the varargs
573 spill area. */
575 HOST_WIDE_INT
576 get_varargs_alias_set ()
578 static HOST_WIDE_INT set = -1;
580 if (set == -1)
581 set = new_alias_set ();
583 return set;
586 /* Likewise, but used for the fixed portions of the frame, e.g., register
587 save areas. */
589 HOST_WIDE_INT
590 get_frame_alias_set ()
592 static HOST_WIDE_INT set = -1;
594 if (set == -1)
595 set = new_alias_set ();
597 return set;
600 /* Inside SRC, the source of a SET, find a base address. */
602 static rtx
603 find_base_value (src)
604 register rtx src;
606 switch (GET_CODE (src))
608 case SYMBOL_REF:
609 case LABEL_REF:
610 return src;
612 case REG:
613 /* At the start of a function, argument registers have known base
614 values which may be lost later. Returning an ADDRESS
615 expression here allows optimization based on argument values
616 even when the argument registers are used for other purposes. */
617 if (REGNO (src) < FIRST_PSEUDO_REGISTER && copying_arguments)
618 return new_reg_base_value[REGNO (src)];
620 /* If a pseudo has a known base value, return it. Do not do this
621 for hard regs since it can result in a circular dependency
622 chain for registers which have values at function entry.
624 The test above is not sufficient because the scheduler may move
625 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
626 if (REGNO (src) >= FIRST_PSEUDO_REGISTER
627 && (unsigned) REGNO (src) < reg_base_value_size
628 && reg_base_value[REGNO (src)])
629 return reg_base_value[REGNO (src)];
631 return src;
633 case MEM:
634 /* Check for an argument passed in memory. Only record in the
635 copying-arguments block; it is too hard to track changes
636 otherwise. */
637 if (copying_arguments
638 && (XEXP (src, 0) == arg_pointer_rtx
639 || (GET_CODE (XEXP (src, 0)) == PLUS
640 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
641 return gen_rtx_ADDRESS (VOIDmode, src);
642 return 0;
644 case CONST:
645 src = XEXP (src, 0);
646 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
647 break;
649 /* ... fall through ... */
651 case PLUS:
652 case MINUS:
654 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
656 /* If either operand is a REG, then see if we already have
657 a known value for it. */
658 if (GET_CODE (src_0) == REG)
660 temp = find_base_value (src_0);
661 if (temp != 0)
662 src_0 = temp;
665 if (GET_CODE (src_1) == REG)
667 temp = find_base_value (src_1);
668 if (temp!= 0)
669 src_1 = temp;
672 /* Guess which operand is the base address:
673 If either operand is a symbol, then it is the base. If
674 either operand is a CONST_INT, then the other is the base. */
675 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
676 return find_base_value (src_0);
677 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
678 return find_base_value (src_1);
680 /* This might not be necessary anymore:
681 If either operand is a REG that is a known pointer, then it
682 is the base. */
683 else if (GET_CODE (src_0) == REG && REGNO_POINTER_FLAG (REGNO (src_0)))
684 return find_base_value (src_0);
685 else if (GET_CODE (src_1) == REG && REGNO_POINTER_FLAG (REGNO (src_1)))
686 return find_base_value (src_1);
688 return 0;
691 case LO_SUM:
692 /* The standard form is (lo_sum reg sym) so look only at the
693 second operand. */
694 return find_base_value (XEXP (src, 1));
696 case AND:
697 /* If the second operand is constant set the base
698 address to the first operand. */
699 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
700 return find_base_value (XEXP (src, 0));
701 return 0;
703 case ZERO_EXTEND:
704 case SIGN_EXTEND: /* used for NT/Alpha pointers */
705 case HIGH:
706 return find_base_value (XEXP (src, 0));
708 default:
709 break;
712 return 0;
715 /* Called from init_alias_analysis indirectly through note_stores. */
717 /* While scanning insns to find base values, reg_seen[N] is nonzero if
718 register N has been set in this function. */
719 static char *reg_seen;
721 /* Addresses which are known not to alias anything else are identified
722 by a unique integer. */
723 static int unique_id;
725 static void
726 record_set (dest, set, data)
727 rtx dest, set;
728 void *data ATTRIBUTE_UNUSED;
730 register unsigned regno;
731 rtx src;
733 if (GET_CODE (dest) != REG)
734 return;
736 regno = REGNO (dest);
738 if (regno >= reg_base_value_size)
739 abort ();
741 if (set)
743 /* A CLOBBER wipes out any old value but does not prevent a previously
744 unset register from acquiring a base address (i.e. reg_seen is not
745 set). */
746 if (GET_CODE (set) == CLOBBER)
748 new_reg_base_value[regno] = 0;
749 return;
751 src = SET_SRC (set);
753 else
755 if (reg_seen[regno])
757 new_reg_base_value[regno] = 0;
758 return;
760 reg_seen[regno] = 1;
761 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
762 GEN_INT (unique_id++));
763 return;
766 /* This is not the first set. If the new value is not related to the
767 old value, forget the base value. Note that the following code is
768 not detected:
769 extern int x, y; int *p = &x; p += (&y-&x);
770 ANSI C does not allow computing the difference of addresses
771 of distinct top level objects. */
772 if (new_reg_base_value[regno])
773 switch (GET_CODE (src))
775 case LO_SUM:
776 case PLUS:
777 case MINUS:
778 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
779 new_reg_base_value[regno] = 0;
780 break;
781 case AND:
782 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
783 new_reg_base_value[regno] = 0;
784 break;
785 default:
786 new_reg_base_value[regno] = 0;
787 break;
789 /* If this is the first set of a register, record the value. */
790 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
791 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
792 new_reg_base_value[regno] = find_base_value (src);
794 reg_seen[regno] = 1;
797 /* Called from loop optimization when a new pseudo-register is
798 created. It indicates that REGNO is being set to VAL. f INVARIANT
799 is true then this value also describes an invariant relationship
800 which can be used to deduce that two registers with unknown values
801 are different. */
803 void
804 record_base_value (regno, val, invariant)
805 unsigned int regno;
806 rtx val;
807 int invariant;
809 if (regno >= reg_base_value_size)
810 return;
812 if (invariant && alias_invariant)
813 alias_invariant[regno] = val;
815 if (GET_CODE (val) == REG)
817 if (REGNO (val) < reg_base_value_size)
818 reg_base_value[regno] = reg_base_value[REGNO (val)];
820 return;
823 reg_base_value[regno] = find_base_value (val);
826 /* Returns a canonical version of X, from the point of view alias
827 analysis. (For example, if X is a MEM whose address is a register,
828 and the register has a known value (say a SYMBOL_REF), then a MEM
829 whose address is the SYMBOL_REF is returned.) */
832 canon_rtx (x)
833 rtx x;
835 /* Recursively look for equivalences. */
836 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
837 && REGNO (x) < reg_known_value_size)
838 return reg_known_value[REGNO (x)] == x
839 ? x : canon_rtx (reg_known_value[REGNO (x)]);
840 else if (GET_CODE (x) == PLUS)
842 rtx x0 = canon_rtx (XEXP (x, 0));
843 rtx x1 = canon_rtx (XEXP (x, 1));
845 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
847 /* We can tolerate LO_SUMs being offset here; these
848 rtl are used for nothing other than comparisons. */
849 if (GET_CODE (x0) == CONST_INT)
850 return plus_constant_for_output (x1, INTVAL (x0));
851 else if (GET_CODE (x1) == CONST_INT)
852 return plus_constant_for_output (x0, INTVAL (x1));
853 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
857 /* This gives us much better alias analysis when called from
858 the loop optimizer. Note we want to leave the original
859 MEM alone, but need to return the canonicalized MEM with
860 all the flags with their original values. */
861 else if (GET_CODE (x) == MEM)
863 rtx addr = canon_rtx (XEXP (x, 0));
865 if (addr != XEXP (x, 0))
867 rtx new = gen_rtx_MEM (GET_MODE (x), addr);
869 MEM_COPY_ATTRIBUTES (new, x);
870 x = new;
873 return x;
876 /* Return 1 if X and Y are identical-looking rtx's.
878 We use the data in reg_known_value above to see if two registers with
879 different numbers are, in fact, equivalent. */
881 static int
882 rtx_equal_for_memref_p (x, y)
883 rtx x, y;
885 register int i;
886 register int j;
887 register enum rtx_code code;
888 register const char *fmt;
890 if (x == 0 && y == 0)
891 return 1;
892 if (x == 0 || y == 0)
893 return 0;
895 x = canon_rtx (x);
896 y = canon_rtx (y);
898 if (x == y)
899 return 1;
901 code = GET_CODE (x);
902 /* Rtx's of different codes cannot be equal. */
903 if (code != GET_CODE (y))
904 return 0;
906 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
907 (REG:SI x) and (REG:HI x) are NOT equivalent. */
909 if (GET_MODE (x) != GET_MODE (y))
910 return 0;
912 /* Some RTL can be compared without a recursive examination. */
913 switch (code)
915 case REG:
916 return REGNO (x) == REGNO (y);
918 case LABEL_REF:
919 return XEXP (x, 0) == XEXP (y, 0);
921 case SYMBOL_REF:
922 return XSTR (x, 0) == XSTR (y, 0);
924 case CONST_INT:
925 case CONST_DOUBLE:
926 /* There's no need to compare the contents of CONST_DOUBLEs or
927 CONST_INTs because pointer equality is a good enough
928 comparison for these nodes. */
929 return 0;
931 case ADDRESSOF:
932 return (REGNO (XEXP (x, 0)) == REGNO (XEXP (y, 0))
933 && XINT (x, 1) == XINT (y, 1));
935 default:
936 break;
939 /* For commutative operations, the RTX match if the operand match in any
940 order. Also handle the simple binary and unary cases without a loop. */
941 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
942 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
943 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
944 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
945 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
946 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
947 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
948 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
949 else if (GET_RTX_CLASS (code) == '1')
950 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
952 /* Compare the elements. If any pair of corresponding elements
953 fail to match, return 0 for the whole things.
955 Limit cases to types which actually appear in addresses. */
957 fmt = GET_RTX_FORMAT (code);
958 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
960 switch (fmt[i])
962 case 'i':
963 if (XINT (x, i) != XINT (y, i))
964 return 0;
965 break;
967 case 'E':
968 /* Two vectors must have the same length. */
969 if (XVECLEN (x, i) != XVECLEN (y, i))
970 return 0;
972 /* And the corresponding elements must match. */
973 for (j = 0; j < XVECLEN (x, i); j++)
974 if (rtx_equal_for_memref_p (XVECEXP (x, i, j),
975 XVECEXP (y, i, j)) == 0)
976 return 0;
977 break;
979 case 'e':
980 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
981 return 0;
982 break;
984 /* This can happen for an asm which clobbers memory. */
985 case '0':
986 break;
988 /* It is believed that rtx's at this level will never
989 contain anything but integers and other rtx's,
990 except for within LABEL_REFs and SYMBOL_REFs. */
991 default:
992 abort ();
995 return 1;
998 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
999 X and return it, or return 0 if none found. */
1001 static rtx
1002 find_symbolic_term (x)
1003 rtx x;
1005 register int i;
1006 register enum rtx_code code;
1007 register const char *fmt;
1009 code = GET_CODE (x);
1010 if (code == SYMBOL_REF || code == LABEL_REF)
1011 return x;
1012 if (GET_RTX_CLASS (code) == 'o')
1013 return 0;
1015 fmt = GET_RTX_FORMAT (code);
1016 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1018 rtx t;
1020 if (fmt[i] == 'e')
1022 t = find_symbolic_term (XEXP (x, i));
1023 if (t != 0)
1024 return t;
1026 else if (fmt[i] == 'E')
1027 break;
1029 return 0;
1032 static rtx
1033 find_base_term (x)
1034 register rtx x;
1036 cselib_val *val;
1037 struct elt_loc_list *l;
1039 #if defined (FIND_BASE_TERM)
1040 /* Try machine-dependent ways to find the base term. */
1041 x = FIND_BASE_TERM (x);
1042 #endif
1044 switch (GET_CODE (x))
1046 case REG:
1047 return REG_BASE_VALUE (x);
1049 case ZERO_EXTEND:
1050 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1051 case HIGH:
1052 case PRE_INC:
1053 case PRE_DEC:
1054 case POST_INC:
1055 case POST_DEC:
1056 return find_base_term (XEXP (x, 0));
1058 case VALUE:
1059 val = CSELIB_VAL_PTR (x);
1060 for (l = val->locs; l; l = l->next)
1061 if ((x = find_base_term (l->loc)) != 0)
1062 return x;
1063 return 0;
1065 case CONST:
1066 x = XEXP (x, 0);
1067 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1068 return 0;
1069 /* fall through */
1070 case LO_SUM:
1071 case PLUS:
1072 case MINUS:
1074 rtx tmp1 = XEXP (x, 0);
1075 rtx tmp2 = XEXP (x, 1);
1077 /* This is a litle bit tricky since we have to determine which of
1078 the two operands represents the real base address. Otherwise this
1079 routine may return the index register instead of the base register.
1081 That may cause us to believe no aliasing was possible, when in
1082 fact aliasing is possible.
1084 We use a few simple tests to guess the base register. Additional
1085 tests can certainly be added. For example, if one of the operands
1086 is a shift or multiply, then it must be the index register and the
1087 other operand is the base register. */
1089 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1090 return find_base_term (tmp2);
1092 /* If either operand is known to be a pointer, then use it
1093 to determine the base term. */
1094 if (REG_P (tmp1) && REGNO_POINTER_FLAG (REGNO (tmp1)))
1095 return find_base_term (tmp1);
1097 if (REG_P (tmp2) && REGNO_POINTER_FLAG (REGNO (tmp2)))
1098 return find_base_term (tmp2);
1100 /* Neither operand was known to be a pointer. Go ahead and find the
1101 base term for both operands. */
1102 tmp1 = find_base_term (tmp1);
1103 tmp2 = find_base_term (tmp2);
1105 /* If either base term is named object or a special address
1106 (like an argument or stack reference), then use it for the
1107 base term. */
1108 if (tmp1 != 0
1109 && (GET_CODE (tmp1) == SYMBOL_REF
1110 || GET_CODE (tmp1) == LABEL_REF
1111 || (GET_CODE (tmp1) == ADDRESS
1112 && GET_MODE (tmp1) != VOIDmode)))
1113 return tmp1;
1115 if (tmp2 != 0
1116 && (GET_CODE (tmp2) == SYMBOL_REF
1117 || GET_CODE (tmp2) == LABEL_REF
1118 || (GET_CODE (tmp2) == ADDRESS
1119 && GET_MODE (tmp2) != VOIDmode)))
1120 return tmp2;
1122 /* We could not determine which of the two operands was the
1123 base register and which was the index. So we can determine
1124 nothing from the base alias check. */
1125 return 0;
1128 case AND:
1129 if (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT)
1130 return REG_BASE_VALUE (XEXP (x, 0));
1131 return 0;
1133 case SYMBOL_REF:
1134 case LABEL_REF:
1135 return x;
1137 case ADDRESSOF:
1138 return REG_BASE_VALUE (frame_pointer_rtx);
1140 default:
1141 return 0;
1145 /* Return 0 if the addresses X and Y are known to point to different
1146 objects, 1 if they might be pointers to the same object. */
1148 static int
1149 base_alias_check (x, y, x_mode, y_mode)
1150 rtx x, y;
1151 enum machine_mode x_mode, y_mode;
1153 rtx x_base = find_base_term (x);
1154 rtx y_base = find_base_term (y);
1156 /* If the address itself has no known base see if a known equivalent
1157 value has one. If either address still has no known base, nothing
1158 is known about aliasing. */
1159 if (x_base == 0)
1161 rtx x_c;
1163 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1164 return 1;
1166 x_base = find_base_term (x_c);
1167 if (x_base == 0)
1168 return 1;
1171 if (y_base == 0)
1173 rtx y_c;
1174 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1175 return 1;
1177 y_base = find_base_term (y_c);
1178 if (y_base == 0)
1179 return 1;
1182 /* If the base addresses are equal nothing is known about aliasing. */
1183 if (rtx_equal_p (x_base, y_base))
1184 return 1;
1186 /* The base addresses of the read and write are different expressions.
1187 If they are both symbols and they are not accessed via AND, there is
1188 no conflict. We can bring knowledge of object alignment into play
1189 here. For example, on alpha, "char a, b;" can alias one another,
1190 though "char a; long b;" cannot. */
1191 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1193 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1194 return 1;
1195 if (GET_CODE (x) == AND
1196 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1197 || GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1198 return 1;
1199 if (GET_CODE (y) == AND
1200 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1201 || GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1202 return 1;
1203 /* Differing symbols never alias. */
1204 return 0;
1207 /* If one address is a stack reference there can be no alias:
1208 stack references using different base registers do not alias,
1209 a stack reference can not alias a parameter, and a stack reference
1210 can not alias a global. */
1211 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1212 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1213 return 0;
1215 if (! flag_argument_noalias)
1216 return 1;
1218 if (flag_argument_noalias > 1)
1219 return 0;
1221 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1222 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1225 /* Convert the address X into something we can use. This is done by returning
1226 it unchanged unless it is a value; in the latter case we call cselib to get
1227 a more useful rtx. */
1229 static rtx
1230 get_addr (x)
1231 rtx x;
1233 cselib_val *v;
1234 struct elt_loc_list *l;
1236 if (GET_CODE (x) != VALUE)
1237 return x;
1238 v = CSELIB_VAL_PTR (x);
1239 for (l = v->locs; l; l = l->next)
1240 if (CONSTANT_P (l->loc))
1241 return l->loc;
1242 for (l = v->locs; l; l = l->next)
1243 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1244 return l->loc;
1245 if (v->locs)
1246 return v->locs->loc;
1247 return x;
1250 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1251 where SIZE is the size in bytes of the memory reference. If ADDR
1252 is not modified by the memory reference then ADDR is returned. */
1255 addr_side_effect_eval (addr, size, n_refs)
1256 rtx addr;
1257 int size;
1258 int n_refs;
1260 int offset = 0;
1262 switch (GET_CODE (addr))
1264 case PRE_INC:
1265 offset = (n_refs + 1) * size;
1266 break;
1267 case PRE_DEC:
1268 offset = -(n_refs + 1) * size;
1269 break;
1270 case POST_INC:
1271 offset = n_refs * size;
1272 break;
1273 case POST_DEC:
1274 offset = -n_refs * size;
1275 break;
1277 default:
1278 return addr;
1281 if (offset)
1282 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
1283 else
1284 addr = XEXP (addr, 0);
1286 return addr;
1289 /* Return nonzero if X and Y (memory addresses) could reference the
1290 same location in memory. C is an offset accumulator. When
1291 C is nonzero, we are testing aliases between X and Y + C.
1292 XSIZE is the size in bytes of the X reference,
1293 similarly YSIZE is the size in bytes for Y.
1295 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1296 referenced (the reference was BLKmode), so make the most pessimistic
1297 assumptions.
1299 If XSIZE or YSIZE is negative, we may access memory outside the object
1300 being referenced as a side effect. This can happen when using AND to
1301 align memory references, as is done on the Alpha.
1303 Nice to notice that varying addresses cannot conflict with fp if no
1304 local variables had their addresses taken, but that's too hard now. */
1306 static int
1307 memrefs_conflict_p (xsize, x, ysize, y, c)
1308 register rtx x, y;
1309 int xsize, ysize;
1310 HOST_WIDE_INT c;
1312 if (GET_CODE (x) == VALUE)
1313 x = get_addr (x);
1314 if (GET_CODE (y) == VALUE)
1315 y = get_addr (y);
1316 if (GET_CODE (x) == HIGH)
1317 x = XEXP (x, 0);
1318 else if (GET_CODE (x) == LO_SUM)
1319 x = XEXP (x, 1);
1320 else
1321 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
1322 if (GET_CODE (y) == HIGH)
1323 y = XEXP (y, 0);
1324 else if (GET_CODE (y) == LO_SUM)
1325 y = XEXP (y, 1);
1326 else
1327 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
1329 if (rtx_equal_for_memref_p (x, y))
1331 if (xsize <= 0 || ysize <= 0)
1332 return 1;
1333 if (c >= 0 && xsize > c)
1334 return 1;
1335 if (c < 0 && ysize+c > 0)
1336 return 1;
1337 return 0;
1340 /* This code used to check for conflicts involving stack references and
1341 globals but the base address alias code now handles these cases. */
1343 if (GET_CODE (x) == PLUS)
1345 /* The fact that X is canonicalized means that this
1346 PLUS rtx is canonicalized. */
1347 rtx x0 = XEXP (x, 0);
1348 rtx x1 = XEXP (x, 1);
1350 if (GET_CODE (y) == PLUS)
1352 /* The fact that Y is canonicalized means that this
1353 PLUS rtx is canonicalized. */
1354 rtx y0 = XEXP (y, 0);
1355 rtx y1 = XEXP (y, 1);
1357 if (rtx_equal_for_memref_p (x1, y1))
1358 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1359 if (rtx_equal_for_memref_p (x0, y0))
1360 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1361 if (GET_CODE (x1) == CONST_INT)
1363 if (GET_CODE (y1) == CONST_INT)
1364 return memrefs_conflict_p (xsize, x0, ysize, y0,
1365 c - INTVAL (x1) + INTVAL (y1));
1366 else
1367 return memrefs_conflict_p (xsize, x0, ysize, y,
1368 c - INTVAL (x1));
1370 else if (GET_CODE (y1) == CONST_INT)
1371 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1373 return 1;
1375 else if (GET_CODE (x1) == CONST_INT)
1376 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1378 else if (GET_CODE (y) == PLUS)
1380 /* The fact that Y is canonicalized means that this
1381 PLUS rtx is canonicalized. */
1382 rtx y0 = XEXP (y, 0);
1383 rtx y1 = XEXP (y, 1);
1385 if (GET_CODE (y1) == CONST_INT)
1386 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1387 else
1388 return 1;
1391 if (GET_CODE (x) == GET_CODE (y))
1392 switch (GET_CODE (x))
1394 case MULT:
1396 /* Handle cases where we expect the second operands to be the
1397 same, and check only whether the first operand would conflict
1398 or not. */
1399 rtx x0, y0;
1400 rtx x1 = canon_rtx (XEXP (x, 1));
1401 rtx y1 = canon_rtx (XEXP (y, 1));
1402 if (! rtx_equal_for_memref_p (x1, y1))
1403 return 1;
1404 x0 = canon_rtx (XEXP (x, 0));
1405 y0 = canon_rtx (XEXP (y, 0));
1406 if (rtx_equal_for_memref_p (x0, y0))
1407 return (xsize == 0 || ysize == 0
1408 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1410 /* Can't properly adjust our sizes. */
1411 if (GET_CODE (x1) != CONST_INT)
1412 return 1;
1413 xsize /= INTVAL (x1);
1414 ysize /= INTVAL (x1);
1415 c /= INTVAL (x1);
1416 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1419 case REG:
1420 /* Are these registers known not to be equal? */
1421 if (alias_invariant)
1423 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1424 rtx i_x, i_y; /* invariant relationships of X and Y */
1426 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1427 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1429 if (i_x == 0 && i_y == 0)
1430 break;
1432 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1433 ysize, i_y ? i_y : y, c))
1434 return 0;
1436 break;
1438 default:
1439 break;
1442 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1443 as an access with indeterminate size. Assume that references
1444 besides AND are aligned, so if the size of the other reference is
1445 at least as large as the alignment, assume no other overlap. */
1446 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1448 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1449 xsize = -1;
1450 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1452 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1454 /* ??? If we are indexing far enough into the array/structure, we
1455 may yet be able to determine that we can not overlap. But we
1456 also need to that we are far enough from the end not to overlap
1457 a following reference, so we do nothing with that for now. */
1458 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1459 ysize = -1;
1460 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
1463 if (GET_CODE (x) == ADDRESSOF)
1465 if (y == frame_pointer_rtx
1466 || GET_CODE (y) == ADDRESSOF)
1467 return xsize <= 0 || ysize <= 0;
1469 if (GET_CODE (y) == ADDRESSOF)
1471 if (x == frame_pointer_rtx)
1472 return xsize <= 0 || ysize <= 0;
1475 if (CONSTANT_P (x))
1477 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1479 c += (INTVAL (y) - INTVAL (x));
1480 return (xsize <= 0 || ysize <= 0
1481 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1484 if (GET_CODE (x) == CONST)
1486 if (GET_CODE (y) == CONST)
1487 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1488 ysize, canon_rtx (XEXP (y, 0)), c);
1489 else
1490 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1491 ysize, y, c);
1493 if (GET_CODE (y) == CONST)
1494 return memrefs_conflict_p (xsize, x, ysize,
1495 canon_rtx (XEXP (y, 0)), c);
1497 if (CONSTANT_P (y))
1498 return (xsize <= 0 || ysize <= 0
1499 || (rtx_equal_for_memref_p (x, y)
1500 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1502 return 1;
1504 return 1;
1507 /* Functions to compute memory dependencies.
1509 Since we process the insns in execution order, we can build tables
1510 to keep track of what registers are fixed (and not aliased), what registers
1511 are varying in known ways, and what registers are varying in unknown
1512 ways.
1514 If both memory references are volatile, then there must always be a
1515 dependence between the two references, since their order can not be
1516 changed. A volatile and non-volatile reference can be interchanged
1517 though.
1519 A MEM_IN_STRUCT reference at a non-AND varying address can never
1520 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1521 also must allow AND addresses, because they may generate accesses
1522 outside the object being referenced. This is used to generate
1523 aligned addresses from unaligned addresses, for instance, the alpha
1524 storeqi_unaligned pattern. */
1526 /* Read dependence: X is read after read in MEM takes place. There can
1527 only be a dependence here if both reads are volatile. */
1530 read_dependence (mem, x)
1531 rtx mem;
1532 rtx x;
1534 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1537 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1538 MEM2 is a reference to a structure at a varying address, or returns
1539 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1540 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1541 to decide whether or not an address may vary; it should return
1542 nonzero whenever variation is possible.
1543 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1545 static rtx
1546 fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1547 rtx mem1, mem2;
1548 rtx mem1_addr, mem2_addr;
1549 int (*varies_p) PARAMS ((rtx));
1551 if (! flag_strict_aliasing)
1552 return NULL_RTX;
1554 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1555 && !varies_p (mem1_addr) && varies_p (mem2_addr))
1556 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1557 varying address. */
1558 return mem1;
1560 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1561 && varies_p (mem1_addr) && !varies_p (mem2_addr))
1562 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1563 varying address. */
1564 return mem2;
1566 return NULL_RTX;
1569 /* Returns nonzero if something about the mode or address format MEM1
1570 indicates that it might well alias *anything*. */
1572 static int
1573 aliases_everything_p (mem)
1574 rtx mem;
1576 if (GET_CODE (XEXP (mem, 0)) == AND)
1577 /* If the address is an AND, its very hard to know at what it is
1578 actually pointing. */
1579 return 1;
1581 return 0;
1584 /* True dependence: X is read after store in MEM takes place. */
1587 true_dependence (mem, mem_mode, x, varies)
1588 rtx mem;
1589 enum machine_mode mem_mode;
1590 rtx x;
1591 int (*varies) PARAMS ((rtx));
1593 register rtx x_addr, mem_addr;
1594 rtx base;
1596 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1597 return 1;
1599 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1600 return 0;
1602 /* Unchanging memory can't conflict with non-unchanging memory.
1603 A non-unchanging read can conflict with a non-unchanging write.
1604 An unchanging read can conflict with an unchanging write since
1605 there may be a single store to this address to initialize it.
1606 Note that an unchanging store can conflict with a non-unchanging read
1607 since we have to make conservative assumptions when we have a
1608 record with readonly fields and we are copying the whole thing.
1609 Just fall through to the code below to resolve potential conflicts.
1610 This won't handle all cases optimally, but the possible performance
1611 loss should be negligible. */
1612 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
1613 return 0;
1615 if (mem_mode == VOIDmode)
1616 mem_mode = GET_MODE (mem);
1618 x_addr = get_addr (XEXP (x, 0));
1619 mem_addr = get_addr (XEXP (mem, 0));
1621 base = find_base_term (x_addr);
1622 if (base && (GET_CODE (base) == LABEL_REF
1623 || (GET_CODE (base) == SYMBOL_REF
1624 && CONSTANT_POOL_ADDRESS_P (base))))
1625 return 0;
1627 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1628 return 0;
1630 x_addr = canon_rtx (x_addr);
1631 mem_addr = canon_rtx (mem_addr);
1633 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
1634 SIZE_FOR_MODE (x), x_addr, 0))
1635 return 0;
1637 if (aliases_everything_p (x))
1638 return 1;
1640 /* We cannot use aliases_everyting_p to test MEM, since we must look
1641 at MEM_MODE, rather than GET_MODE (MEM). */
1642 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
1643 return 1;
1645 /* In true_dependence we also allow BLKmode to alias anything. Why
1646 don't we do this in anti_dependence and output_dependence? */
1647 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
1648 return 1;
1650 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
1651 varies);
1654 /* Returns non-zero if a write to X might alias a previous read from
1655 (or, if WRITEP is non-zero, a write to) MEM. */
1657 static int
1658 write_dependence_p (mem, x, writep)
1659 rtx mem;
1660 rtx x;
1661 int writep;
1663 rtx x_addr, mem_addr;
1664 rtx fixed_scalar;
1665 rtx base;
1667 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1668 return 1;
1670 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1671 return 0;
1673 /* Unchanging memory can't conflict with non-unchanging memory. */
1674 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
1675 return 0;
1677 /* If MEM is an unchanging read, then it can't possibly conflict with
1678 the store to X, because there is at most one store to MEM, and it must
1679 have occurred somewhere before MEM. */
1680 if (! writep && RTX_UNCHANGING_P (mem))
1681 return 0;
1683 x_addr = get_addr (XEXP (x, 0));
1684 mem_addr = get_addr (XEXP (mem, 0));
1686 if (! writep)
1688 base = find_base_term (mem_addr);
1689 if (base && (GET_CODE (base) == LABEL_REF
1690 || (GET_CODE (base) == SYMBOL_REF
1691 && CONSTANT_POOL_ADDRESS_P (base))))
1692 return 0;
1695 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
1696 GET_MODE (mem)))
1697 return 0;
1699 x_addr = canon_rtx (x_addr);
1700 mem_addr = canon_rtx (mem_addr);
1702 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
1703 SIZE_FOR_MODE (x), x_addr, 0))
1704 return 0;
1706 fixed_scalar
1707 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
1708 rtx_addr_varies_p);
1710 return (!(fixed_scalar == mem && !aliases_everything_p (x))
1711 && !(fixed_scalar == x && !aliases_everything_p (mem)));
1714 /* Anti dependence: X is written after read in MEM takes place. */
1717 anti_dependence (mem, x)
1718 rtx mem;
1719 rtx x;
1721 return write_dependence_p (mem, x, /*writep=*/0);
1724 /* Output dependence: X is written after store in MEM takes place. */
1727 output_dependence (mem, x)
1728 register rtx mem;
1729 register rtx x;
1731 return write_dependence_p (mem, x, /*writep=*/1);
1734 /* Returns non-zero if X mentions something which is not
1735 local to the function and is not constant. */
1737 static int
1738 nonlocal_mentioned_p (x)
1739 rtx x;
1741 rtx base;
1742 register RTX_CODE code;
1743 int regno;
1745 code = GET_CODE (x);
1747 if (GET_RTX_CLASS (code) == 'i')
1749 /* Constant functions can be constant if they don't use
1750 scratch memory used to mark function w/o side effects. */
1751 if (code == CALL_INSN && CONST_CALL_P (x))
1753 x = CALL_INSN_FUNCTION_USAGE (x);
1754 if (x == 0)
1755 return 0;
1757 else
1758 x = PATTERN (x);
1759 code = GET_CODE (x);
1762 switch (code)
1764 case SUBREG:
1765 if (GET_CODE (SUBREG_REG (x)) == REG)
1767 /* Global registers are not local. */
1768 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
1769 && global_regs[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)])
1770 return 1;
1771 return 0;
1773 break;
1775 case REG:
1776 regno = REGNO (x);
1777 /* Global registers are not local. */
1778 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1779 return 1;
1780 return 0;
1782 case SCRATCH:
1783 case PC:
1784 case CC0:
1785 case CONST_INT:
1786 case CONST_DOUBLE:
1787 case CONST:
1788 case LABEL_REF:
1789 return 0;
1791 case SYMBOL_REF:
1792 /* Constants in the function's constants pool are constant. */
1793 if (CONSTANT_POOL_ADDRESS_P (x))
1794 return 0;
1795 return 1;
1797 case CALL:
1798 /* Non-constant calls and recursion are not local. */
1799 return 1;
1801 case MEM:
1802 /* Be overly conservative and consider any volatile memory
1803 reference as not local. */
1804 if (MEM_VOLATILE_P (x))
1805 return 1;
1806 base = find_base_term (XEXP (x, 0));
1807 if (base)
1809 /* A Pmode ADDRESS could be a reference via the structure value
1810 address or static chain. Such memory references are nonlocal.
1812 Thus, we have to examine the contents of the ADDRESS to find
1813 out if this is a local reference or not. */
1814 if (GET_CODE (base) == ADDRESS
1815 && GET_MODE (base) == Pmode
1816 && (XEXP (base, 0) == stack_pointer_rtx
1817 || XEXP (base, 0) == arg_pointer_rtx
1818 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1819 || XEXP (base, 0) == hard_frame_pointer_rtx
1820 #endif
1821 || XEXP (base, 0) == frame_pointer_rtx))
1822 return 0;
1823 /* Constants in the function's constant pool are constant. */
1824 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
1825 return 0;
1827 return 1;
1829 case UNSPEC_VOLATILE:
1830 case ASM_INPUT:
1831 return 1;
1833 case ASM_OPERANDS:
1834 if (MEM_VOLATILE_P (x))
1835 return 1;
1837 /* FALLTHROUGH */
1839 default:
1840 break;
1843 /* Recursively scan the operands of this expression. */
1846 register const char *fmt = GET_RTX_FORMAT (code);
1847 register int i;
1849 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1851 if (fmt[i] == 'e' && XEXP (x, i))
1853 if (nonlocal_mentioned_p (XEXP (x, i)))
1854 return 1;
1856 else if (fmt[i] == 'E')
1858 register int j;
1859 for (j = 0; j < XVECLEN (x, i); j++)
1860 if (nonlocal_mentioned_p (XVECEXP (x, i, j)))
1861 return 1;
1866 return 0;
1869 /* Return non-zero if a loop (natural or otherwise) is present.
1870 Inspired by Depth_First_Search_PP described in:
1872 Advanced Compiler Design and Implementation
1873 Steven Muchnick
1874 Morgan Kaufmann, 1997
1876 and heavily borrowed from flow_depth_first_order_compute. */
1878 static int
1879 loop_p ()
1881 edge *stack;
1882 int *pre;
1883 int *post;
1884 int sp;
1885 int prenum = 1;
1886 int postnum = 1;
1887 sbitmap visited;
1889 /* Allocate the preorder and postorder number arrays. */
1890 pre = (int *) xcalloc (n_basic_blocks, sizeof (int));
1891 post = (int *) xcalloc (n_basic_blocks, sizeof (int));
1893 /* Allocate stack for back-tracking up CFG. */
1894 stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
1895 sp = 0;
1897 /* Allocate bitmap to track nodes that have been visited. */
1898 visited = sbitmap_alloc (n_basic_blocks);
1900 /* None of the nodes in the CFG have been visited yet. */
1901 sbitmap_zero (visited);
1903 /* Push the first edge on to the stack. */
1904 stack[sp++] = ENTRY_BLOCK_PTR->succ;
1906 while (sp)
1908 edge e;
1909 basic_block src;
1910 basic_block dest;
1912 /* Look at the edge on the top of the stack. */
1913 e = stack[sp - 1];
1914 src = e->src;
1915 dest = e->dest;
1917 /* Check if the edge destination has been visited yet. */
1918 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
1920 /* Mark that we have visited the destination. */
1921 SET_BIT (visited, dest->index);
1923 pre[dest->index] = prenum++;
1925 if (dest->succ)
1927 /* Since the DEST node has been visited for the first
1928 time, check its successors. */
1929 stack[sp++] = dest->succ;
1931 else
1932 post[dest->index] = postnum++;
1934 else
1936 if (dest != EXIT_BLOCK_PTR
1937 && pre[src->index] >= pre[dest->index]
1938 && post[dest->index] == 0)
1939 break;
1941 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
1942 post[src->index] = postnum++;
1944 if (e->succ_next)
1945 stack[sp - 1] = e->succ_next;
1946 else
1947 sp--;
1951 free (pre);
1952 free (post);
1953 free (stack);
1954 sbitmap_free (visited);
1956 return sp;
1959 /* Mark the function if it is constant. */
1961 void
1962 mark_constant_function ()
1964 rtx insn;
1965 int nonlocal_mentioned;
1967 if (TREE_PUBLIC (current_function_decl)
1968 || TREE_READONLY (current_function_decl)
1969 || DECL_IS_PURE (current_function_decl)
1970 || TREE_THIS_VOLATILE (current_function_decl)
1971 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode)
1972 return;
1974 /* A loop might not return which counts as a side effect. */
1975 if (loop_p ())
1976 return;
1978 nonlocal_mentioned = 0;
1980 init_alias_analysis ();
1982 /* Determine if this is a constant function. */
1984 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1985 if (INSN_P (insn) && nonlocal_mentioned_p (insn))
1987 nonlocal_mentioned = 1;
1988 break;
1991 end_alias_analysis ();
1993 /* Mark the function. */
1995 if (! nonlocal_mentioned)
1996 TREE_READONLY (current_function_decl) = 1;
2000 static HARD_REG_SET argument_registers;
2002 void
2003 init_alias_once ()
2005 register int i;
2007 #ifndef OUTGOING_REGNO
2008 #define OUTGOING_REGNO(N) N
2009 #endif
2010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2011 /* Check whether this register can hold an incoming pointer
2012 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2013 numbers, so translate if necessary due to register windows. */
2014 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2015 && HARD_REGNO_MODE_OK (i, Pmode))
2016 SET_HARD_REG_BIT (argument_registers, i);
2018 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2021 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2022 array. */
2024 void
2025 init_alias_analysis ()
2027 int maxreg = max_reg_num ();
2028 int changed, pass;
2029 register int i;
2030 register unsigned int ui;
2031 register rtx insn;
2033 reg_known_value_size = maxreg;
2035 reg_known_value
2036 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2037 - FIRST_PSEUDO_REGISTER;
2038 reg_known_equiv_p
2039 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2040 - FIRST_PSEUDO_REGISTER;
2042 /* Overallocate reg_base_value to allow some growth during loop
2043 optimization. Loop unrolling can create a large number of
2044 registers. */
2045 reg_base_value_size = maxreg * 2;
2046 reg_base_value = (rtx *) xcalloc (reg_base_value_size, sizeof (rtx));
2047 ggc_add_rtx_root (reg_base_value, reg_base_value_size);
2049 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2050 reg_seen = (char *) xmalloc (reg_base_value_size);
2051 if (! reload_completed && flag_unroll_loops)
2053 /* ??? Why are we realloc'ing if we're just going to zero it? */
2054 alias_invariant = (rtx *)xrealloc (alias_invariant,
2055 reg_base_value_size * sizeof (rtx));
2056 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2060 /* The basic idea is that each pass through this loop will use the
2061 "constant" information from the previous pass to propagate alias
2062 information through another level of assignments.
2064 This could get expensive if the assignment chains are long. Maybe
2065 we should throttle the number of iterations, possibly based on
2066 the optimization level or flag_expensive_optimizations.
2068 We could propagate more information in the first pass by making use
2069 of REG_N_SETS to determine immediately that the alias information
2070 for a pseudo is "constant".
2072 A program with an uninitialized variable can cause an infinite loop
2073 here. Instead of doing a full dataflow analysis to detect such problems
2074 we just cap the number of iterations for the loop.
2076 The state of the arrays for the set chain in question does not matter
2077 since the program has undefined behavior. */
2079 pass = 0;
2082 /* Assume nothing will change this iteration of the loop. */
2083 changed = 0;
2085 /* We want to assign the same IDs each iteration of this loop, so
2086 start counting from zero each iteration of the loop. */
2087 unique_id = 0;
2089 /* We're at the start of the funtion each iteration through the
2090 loop, so we're copying arguments. */
2091 copying_arguments = 1;
2093 /* Wipe the potential alias information clean for this pass. */
2094 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2096 /* Wipe the reg_seen array clean. */
2097 memset ((char *) reg_seen, 0, reg_base_value_size);
2099 /* Mark all hard registers which may contain an address.
2100 The stack, frame and argument pointers may contain an address.
2101 An argument register which can hold a Pmode value may contain
2102 an address even if it is not in BASE_REGS.
2104 The address expression is VOIDmode for an argument and
2105 Pmode for other registers. */
2107 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2108 if (TEST_HARD_REG_BIT (argument_registers, i))
2109 new_reg_base_value[i] = gen_rtx_ADDRESS (VOIDmode,
2110 gen_rtx_REG (Pmode, i));
2112 new_reg_base_value[STACK_POINTER_REGNUM]
2113 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2114 new_reg_base_value[ARG_POINTER_REGNUM]
2115 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2116 new_reg_base_value[FRAME_POINTER_REGNUM]
2117 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2118 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2119 new_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2120 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2121 #endif
2123 /* Walk the insns adding values to the new_reg_base_value array. */
2124 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2126 if (INSN_P (insn))
2128 rtx note, set;
2130 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2131 /* The prologue/epilouge insns are not threaded onto the
2132 insn chain until after reload has completed. Thus,
2133 there is no sense wasting time checking if INSN is in
2134 the prologue/epilogue until after reload has completed. */
2135 if (reload_completed
2136 && prologue_epilogue_contains (insn))
2137 continue;
2138 #endif
2140 /* If this insn has a noalias note, process it, Otherwise,
2141 scan for sets. A simple set will have no side effects
2142 which could change the base value of any other register. */
2144 if (GET_CODE (PATTERN (insn)) == SET
2145 && REG_NOTES (insn) != 0
2146 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2147 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2148 else
2149 note_stores (PATTERN (insn), record_set, NULL);
2151 set = single_set (insn);
2153 if (set != 0
2154 && GET_CODE (SET_DEST (set)) == REG
2155 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2156 && REG_NOTES (insn) != 0
2157 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2158 && REG_N_SETS (REGNO (SET_DEST (set))) == 1)
2159 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2160 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2161 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2163 int regno = REGNO (SET_DEST (set));
2164 reg_known_value[regno] = XEXP (note, 0);
2165 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2168 else if (GET_CODE (insn) == NOTE
2169 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2170 copying_arguments = 0;
2173 /* Now propagate values from new_reg_base_value to reg_base_value. */
2174 for (ui = 0; ui < reg_base_value_size; ui++)
2176 if (new_reg_base_value[ui]
2177 && new_reg_base_value[ui] != reg_base_value[ui]
2178 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2180 reg_base_value[ui] = new_reg_base_value[ui];
2181 changed = 1;
2185 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2187 /* Fill in the remaining entries. */
2188 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2189 if (reg_known_value[i] == 0)
2190 reg_known_value[i] = regno_reg_rtx[i];
2192 /* Simplify the reg_base_value array so that no register refers to
2193 another register, except to special registers indirectly through
2194 ADDRESS expressions.
2196 In theory this loop can take as long as O(registers^2), but unless
2197 there are very long dependency chains it will run in close to linear
2198 time.
2200 This loop may not be needed any longer now that the main loop does
2201 a better job at propagating alias information. */
2202 pass = 0;
2205 changed = 0;
2206 pass++;
2207 for (ui = 0; ui < reg_base_value_size; ui++)
2209 rtx base = reg_base_value[ui];
2210 if (base && GET_CODE (base) == REG)
2212 unsigned int base_regno = REGNO (base);
2213 if (base_regno == ui) /* register set from itself */
2214 reg_base_value[ui] = 0;
2215 else
2216 reg_base_value[ui] = reg_base_value[base_regno];
2217 changed = 1;
2221 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2223 /* Clean up. */
2224 free (new_reg_base_value);
2225 new_reg_base_value = 0;
2226 free (reg_seen);
2227 reg_seen = 0;
2230 void
2231 end_alias_analysis ()
2233 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2234 reg_known_value = 0;
2235 reg_known_value_size = 0;
2236 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2237 reg_known_equiv_p = 0;
2238 if (reg_base_value)
2240 ggc_del_root (reg_base_value);
2241 free (reg_base_value);
2242 reg_base_value = 0;
2244 reg_base_value_size = 0;
2245 if (alias_invariant)
2247 free (alias_invariant);
2248 alias_invariant = 0;