2012-11-16 Janus Weil <janus@gcc.gnu.org>
[official-gcc.git] / libgfortran / generated / sum_r16.c
blob805e49e03d74bf6fbb0b6cf5ec03e36604374256
1 /* Implementation of the SUM intrinsic
2 Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
31 #if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_REAL_16)
34 extern void sum_r16 (gfc_array_r16 * const restrict,
35 gfc_array_r16 * const restrict, const index_type * const restrict);
36 export_proto(sum_r16);
38 void
39 sum_r16 (gfc_array_r16 * const restrict retarray,
40 gfc_array_r16 * const restrict array,
41 const index_type * const restrict pdim)
43 index_type count[GFC_MAX_DIMENSIONS];
44 index_type extent[GFC_MAX_DIMENSIONS];
45 index_type sstride[GFC_MAX_DIMENSIONS];
46 index_type dstride[GFC_MAX_DIMENSIONS];
47 const GFC_REAL_16 * restrict base;
48 GFC_REAL_16 * restrict dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
54 int continue_loop;
56 /* Make dim zero based to avoid confusion. */
57 dim = (*pdim) - 1;
58 rank = GFC_DESCRIPTOR_RANK (array) - 1;
60 len = GFC_DESCRIPTOR_EXTENT(array,dim);
61 if (len < 0)
62 len = 0;
63 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
65 for (n = 0; n < dim; n++)
67 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
68 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
70 if (extent[n] < 0)
71 extent[n] = 0;
73 for (n = dim; n < rank; n++)
75 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
76 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
78 if (extent[n] < 0)
79 extent[n] = 0;
82 if (retarray->base_addr == NULL)
84 size_t alloc_size, str;
86 for (n = 0; n < rank; n++)
88 if (n == 0)
89 str = 1;
90 else
91 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
93 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
97 retarray->offset = 0;
98 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
100 alloc_size = sizeof (GFC_REAL_16) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
101 * extent[rank-1];
103 retarray->base_addr = xmalloc (alloc_size);
104 if (alloc_size == 0)
106 /* Make sure we have a zero-sized array. */
107 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
108 return;
112 else
114 if (rank != GFC_DESCRIPTOR_RANK (retarray))
115 runtime_error ("rank of return array incorrect in"
116 " SUM intrinsic: is %ld, should be %ld",
117 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
118 (long int) rank);
120 if (unlikely (compile_options.bounds_check))
121 bounds_ifunction_return ((array_t *) retarray, extent,
122 "return value", "SUM");
125 for (n = 0; n < rank; n++)
127 count[n] = 0;
128 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
129 if (extent[n] <= 0)
130 return;
133 base = array->base_addr;
134 dest = retarray->base_addr;
136 continue_loop = 1;
137 while (continue_loop)
139 const GFC_REAL_16 * restrict src;
140 GFC_REAL_16 result;
141 src = base;
144 result = 0;
145 if (len <= 0)
146 *dest = 0;
147 else
149 for (n = 0; n < len; n++, src += delta)
152 result += *src;
155 *dest = result;
158 /* Advance to the next element. */
159 count[0]++;
160 base += sstride[0];
161 dest += dstride[0];
162 n = 0;
163 while (count[n] == extent[n])
165 /* When we get to the end of a dimension, reset it and increment
166 the next dimension. */
167 count[n] = 0;
168 /* We could precalculate these products, but this is a less
169 frequently used path so probably not worth it. */
170 base -= sstride[n] * extent[n];
171 dest -= dstride[n] * extent[n];
172 n++;
173 if (n == rank)
175 /* Break out of the look. */
176 continue_loop = 0;
177 break;
179 else
181 count[n]++;
182 base += sstride[n];
183 dest += dstride[n];
190 extern void msum_r16 (gfc_array_r16 * const restrict,
191 gfc_array_r16 * const restrict, const index_type * const restrict,
192 gfc_array_l1 * const restrict);
193 export_proto(msum_r16);
195 void
196 msum_r16 (gfc_array_r16 * const restrict retarray,
197 gfc_array_r16 * const restrict array,
198 const index_type * const restrict pdim,
199 gfc_array_l1 * const restrict mask)
201 index_type count[GFC_MAX_DIMENSIONS];
202 index_type extent[GFC_MAX_DIMENSIONS];
203 index_type sstride[GFC_MAX_DIMENSIONS];
204 index_type dstride[GFC_MAX_DIMENSIONS];
205 index_type mstride[GFC_MAX_DIMENSIONS];
206 GFC_REAL_16 * restrict dest;
207 const GFC_REAL_16 * restrict base;
208 const GFC_LOGICAL_1 * restrict mbase;
209 int rank;
210 int dim;
211 index_type n;
212 index_type len;
213 index_type delta;
214 index_type mdelta;
215 int mask_kind;
217 dim = (*pdim) - 1;
218 rank = GFC_DESCRIPTOR_RANK (array) - 1;
220 len = GFC_DESCRIPTOR_EXTENT(array,dim);
221 if (len <= 0)
222 return;
224 mbase = mask->base_addr;
226 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
228 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
229 #ifdef HAVE_GFC_LOGICAL_16
230 || mask_kind == 16
231 #endif
233 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
234 else
235 runtime_error ("Funny sized logical array");
237 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
238 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
240 for (n = 0; n < dim; n++)
242 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
243 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
244 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
246 if (extent[n] < 0)
247 extent[n] = 0;
250 for (n = dim; n < rank; n++)
252 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
253 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
254 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
256 if (extent[n] < 0)
257 extent[n] = 0;
260 if (retarray->base_addr == NULL)
262 size_t alloc_size, str;
264 for (n = 0; n < rank; n++)
266 if (n == 0)
267 str = 1;
268 else
269 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
271 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
275 alloc_size = sizeof (GFC_REAL_16) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
276 * extent[rank-1];
278 retarray->offset = 0;
279 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
281 if (alloc_size == 0)
283 /* Make sure we have a zero-sized array. */
284 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
285 return;
287 else
288 retarray->base_addr = xmalloc (alloc_size);
291 else
293 if (rank != GFC_DESCRIPTOR_RANK (retarray))
294 runtime_error ("rank of return array incorrect in SUM intrinsic");
296 if (unlikely (compile_options.bounds_check))
298 bounds_ifunction_return ((array_t *) retarray, extent,
299 "return value", "SUM");
300 bounds_equal_extents ((array_t *) mask, (array_t *) array,
301 "MASK argument", "SUM");
305 for (n = 0; n < rank; n++)
307 count[n] = 0;
308 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
309 if (extent[n] <= 0)
310 return;
313 dest = retarray->base_addr;
314 base = array->base_addr;
316 while (base)
318 const GFC_REAL_16 * restrict src;
319 const GFC_LOGICAL_1 * restrict msrc;
320 GFC_REAL_16 result;
321 src = base;
322 msrc = mbase;
325 result = 0;
326 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
329 if (*msrc)
330 result += *src;
332 *dest = result;
334 /* Advance to the next element. */
335 count[0]++;
336 base += sstride[0];
337 mbase += mstride[0];
338 dest += dstride[0];
339 n = 0;
340 while (count[n] == extent[n])
342 /* When we get to the end of a dimension, reset it and increment
343 the next dimension. */
344 count[n] = 0;
345 /* We could precalculate these products, but this is a less
346 frequently used path so probably not worth it. */
347 base -= sstride[n] * extent[n];
348 mbase -= mstride[n] * extent[n];
349 dest -= dstride[n] * extent[n];
350 n++;
351 if (n == rank)
353 /* Break out of the look. */
354 base = NULL;
355 break;
357 else
359 count[n]++;
360 base += sstride[n];
361 mbase += mstride[n];
362 dest += dstride[n];
369 extern void ssum_r16 (gfc_array_r16 * const restrict,
370 gfc_array_r16 * const restrict, const index_type * const restrict,
371 GFC_LOGICAL_4 *);
372 export_proto(ssum_r16);
374 void
375 ssum_r16 (gfc_array_r16 * const restrict retarray,
376 gfc_array_r16 * const restrict array,
377 const index_type * const restrict pdim,
378 GFC_LOGICAL_4 * mask)
380 index_type count[GFC_MAX_DIMENSIONS];
381 index_type extent[GFC_MAX_DIMENSIONS];
382 index_type dstride[GFC_MAX_DIMENSIONS];
383 GFC_REAL_16 * restrict dest;
384 index_type rank;
385 index_type n;
386 index_type dim;
389 if (*mask)
391 sum_r16 (retarray, array, pdim);
392 return;
394 /* Make dim zero based to avoid confusion. */
395 dim = (*pdim) - 1;
396 rank = GFC_DESCRIPTOR_RANK (array) - 1;
398 for (n = 0; n < dim; n++)
400 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
402 if (extent[n] <= 0)
403 extent[n] = 0;
406 for (n = dim; n < rank; n++)
408 extent[n] =
409 GFC_DESCRIPTOR_EXTENT(array,n + 1);
411 if (extent[n] <= 0)
412 extent[n] = 0;
415 if (retarray->base_addr == NULL)
417 size_t alloc_size, str;
419 for (n = 0; n < rank; n++)
421 if (n == 0)
422 str = 1;
423 else
424 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
426 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
430 retarray->offset = 0;
431 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
433 alloc_size = sizeof (GFC_REAL_16) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
434 * extent[rank-1];
436 if (alloc_size == 0)
438 /* Make sure we have a zero-sized array. */
439 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
440 return;
442 else
443 retarray->base_addr = xmalloc (alloc_size);
445 else
447 if (rank != GFC_DESCRIPTOR_RANK (retarray))
448 runtime_error ("rank of return array incorrect in"
449 " SUM intrinsic: is %ld, should be %ld",
450 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
451 (long int) rank);
453 if (unlikely (compile_options.bounds_check))
455 for (n=0; n < rank; n++)
457 index_type ret_extent;
459 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
460 if (extent[n] != ret_extent)
461 runtime_error ("Incorrect extent in return value of"
462 " SUM intrinsic in dimension %ld:"
463 " is %ld, should be %ld", (long int) n + 1,
464 (long int) ret_extent, (long int) extent[n]);
469 for (n = 0; n < rank; n++)
471 count[n] = 0;
472 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
475 dest = retarray->base_addr;
477 while(1)
479 *dest = 0;
480 count[0]++;
481 dest += dstride[0];
482 n = 0;
483 while (count[n] == extent[n])
485 /* When we get to the end of a dimension, reset it and increment
486 the next dimension. */
487 count[n] = 0;
488 /* We could precalculate these products, but this is a less
489 frequently used path so probably not worth it. */
490 dest -= dstride[n] * extent[n];
491 n++;
492 if (n == rank)
493 return;
494 else
496 count[n]++;
497 dest += dstride[n];
503 #endif