2012-11-16 Janus Weil <janus@gcc.gnu.org>
[official-gcc.git] / libgfortran / generated / matmul_l8.c
blobba18cbacf4b73b896ed0ae9be5dba96218a8b6e7
1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002, 2005, 2006, 2007, 2009, 2012 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
31 #if defined (HAVE_GFC_LOGICAL_8)
33 /* Dimensions: retarray(x,y) a(x, count) b(count,y).
34 Either a or b can be rank 1. In this case x or y is 1. */
36 extern void matmul_l8 (gfc_array_l8 * const restrict,
37 gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
38 export_proto(matmul_l8);
40 void
41 matmul_l8 (gfc_array_l8 * const restrict retarray,
42 gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
44 const GFC_LOGICAL_1 * restrict abase;
45 const GFC_LOGICAL_1 * restrict bbase;
46 GFC_LOGICAL_8 * restrict dest;
47 index_type rxstride;
48 index_type rystride;
49 index_type xcount;
50 index_type ycount;
51 index_type xstride;
52 index_type ystride;
53 index_type x;
54 index_type y;
55 int a_kind;
56 int b_kind;
58 const GFC_LOGICAL_1 * restrict pa;
59 const GFC_LOGICAL_1 * restrict pb;
60 index_type astride;
61 index_type bstride;
62 index_type count;
63 index_type n;
65 assert (GFC_DESCRIPTOR_RANK (a) == 2
66 || GFC_DESCRIPTOR_RANK (b) == 2);
68 if (retarray->base_addr == NULL)
70 if (GFC_DESCRIPTOR_RANK (a) == 1)
72 GFC_DIMENSION_SET(retarray->dim[0], 0,
73 GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
75 else if (GFC_DESCRIPTOR_RANK (b) == 1)
77 GFC_DIMENSION_SET(retarray->dim[0], 0,
78 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
80 else
82 GFC_DIMENSION_SET(retarray->dim[0], 0,
83 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
85 GFC_DIMENSION_SET(retarray->dim[1], 0,
86 GFC_DESCRIPTOR_EXTENT(b,1) - 1,
87 GFC_DESCRIPTOR_EXTENT(retarray,0));
90 retarray->base_addr
91 = xmalloc (sizeof (GFC_LOGICAL_8) * size0 ((array_t *) retarray));
92 retarray->offset = 0;
94 else if (unlikely (compile_options.bounds_check))
96 index_type ret_extent, arg_extent;
98 if (GFC_DESCRIPTOR_RANK (a) == 1)
100 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
101 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
102 if (arg_extent != ret_extent)
103 runtime_error ("Incorrect extent in return array in"
104 " MATMUL intrinsic: is %ld, should be %ld",
105 (long int) ret_extent, (long int) arg_extent);
107 else if (GFC_DESCRIPTOR_RANK (b) == 1)
109 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
110 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
111 if (arg_extent != ret_extent)
112 runtime_error ("Incorrect extent in return array in"
113 " MATMUL intrinsic: is %ld, should be %ld",
114 (long int) ret_extent, (long int) arg_extent);
116 else
118 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
119 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
120 if (arg_extent != ret_extent)
121 runtime_error ("Incorrect extent in return array in"
122 " MATMUL intrinsic for dimension 1:"
123 " is %ld, should be %ld",
124 (long int) ret_extent, (long int) arg_extent);
126 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
127 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
128 if (arg_extent != ret_extent)
129 runtime_error ("Incorrect extent in return array in"
130 " MATMUL intrinsic for dimension 2:"
131 " is %ld, should be %ld",
132 (long int) ret_extent, (long int) arg_extent);
136 abase = a->base_addr;
137 a_kind = GFC_DESCRIPTOR_SIZE (a);
139 if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
140 #ifdef HAVE_GFC_LOGICAL_16
141 || a_kind == 16
142 #endif
144 abase = GFOR_POINTER_TO_L1 (abase, a_kind);
145 else
146 internal_error (NULL, "Funny sized logical array");
148 bbase = b->base_addr;
149 b_kind = GFC_DESCRIPTOR_SIZE (b);
151 if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
152 #ifdef HAVE_GFC_LOGICAL_16
153 || b_kind == 16
154 #endif
156 bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
157 else
158 internal_error (NULL, "Funny sized logical array");
160 dest = retarray->base_addr;
163 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
165 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
166 rystride = rxstride;
168 else
170 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
171 rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
174 /* If we have rank 1 parameters, zero the absent stride, and set the size to
175 one. */
176 if (GFC_DESCRIPTOR_RANK (a) == 1)
178 astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
179 count = GFC_DESCRIPTOR_EXTENT(a,0);
180 xstride = 0;
181 rxstride = 0;
182 xcount = 1;
184 else
186 astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1);
187 count = GFC_DESCRIPTOR_EXTENT(a,1);
188 xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
189 xcount = GFC_DESCRIPTOR_EXTENT(a,0);
191 if (GFC_DESCRIPTOR_RANK (b) == 1)
193 bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
194 assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
195 ystride = 0;
196 rystride = 0;
197 ycount = 1;
199 else
201 bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
202 assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
203 ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1);
204 ycount = GFC_DESCRIPTOR_EXTENT(b,1);
207 for (y = 0; y < ycount; y++)
209 for (x = 0; x < xcount; x++)
211 /* Do the summation for this element. For real and integer types
212 this is the same as DOT_PRODUCT. For complex types we use do
213 a*b, not conjg(a)*b. */
214 pa = abase;
215 pb = bbase;
216 *dest = 0;
218 for (n = 0; n < count; n++)
220 if (*pa && *pb)
222 *dest = 1;
223 break;
225 pa += astride;
226 pb += bstride;
229 dest += rxstride;
230 abase += xstride;
232 abase -= xstride * xcount;
233 bbase += ystride;
234 dest += rystride - (rxstride * xcount);
238 #endif