check.c (gfc_check_atomic, [...]): Use argument for GFC_ISYM_CAF_GET.
[official-gcc.git] / gcc / fortran / trans-types.c
blobbb930f9cdeaaf198aa38a7fbd52c083af578be0c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* trans-types.c -- gfortran backend types */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
35 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
36 #include "tree.h"
37 #include "stor-layout.h"
38 #include "stringpool.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "diagnostic-core.h" /* For fatal_error. */
43 #include "toplev.h" /* For rest_of_decl_compilation. */
44 #include "gfortran.h"
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
74 tree gfc_charlen_type_node;
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
79 bool gfc_real16_is_float128 = false;
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
110 int gfc_index_integer_kind;
112 /* The default kinds of the various types. */
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
137 bool
138 gfc_check_any_c_kind (gfc_typespec *ts)
140 int i;
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return true;
152 return false;
156 static int
157 get_real_kind_from_node (tree type)
159 int i;
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
165 return -4;
168 static int
169 get_int_kind_from_node (tree type)
171 int i;
173 if (!type)
174 return -2;
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
180 return -1;
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
217 gcc_unreachable ();
220 static int
221 get_int_kind_from_name (const char *name)
223 return get_int_kind_from_node (get_typenode_from_name (name));
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
231 gfc_get_int_kind_from_width_isofortranenv (int size)
233 int i;
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
245 return -1;
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
252 gfc_get_real_kind_from_width_isofortranenv (int size)
254 int i;
256 size /= 8;
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
268 return -1;
273 static int
274 get_int_kind_from_width (int size)
276 int i;
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
282 return -2;
285 static int
286 get_int_kind_from_minimal_width (int size)
288 int i;
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
294 return -2;
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
301 void
302 gfc_init_c_interop_kinds (void)
304 int i;
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define NAMED_FUNCTION(a,b,c,d) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = c;
347 #define NAMED_SUBROUTINE(a,b,c,d) \
348 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
350 c_interop_kinds_table[a].value = c;
351 #include "iso-c-binding.def"
355 /* Query the target to determine which machine modes are available for
356 computation. Choose KIND numbers for them. */
358 void
359 gfc_init_kinds (void)
361 unsigned int mode;
362 int i_index, r_index, kind;
363 bool saw_i4 = false, saw_i8 = false;
364 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
366 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
368 int kind, bitsize;
370 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
371 continue;
373 /* The middle end doesn't support constants larger than 2*HWI.
374 Perhaps the target hook shouldn't have accepted these either,
375 but just to be safe... */
376 bitsize = GET_MODE_BITSIZE ((enum machine_mode) mode);
377 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
378 continue;
380 gcc_assert (i_index != MAX_INT_KINDS);
382 /* Let the kind equal the bit size divided by 8. This insulates the
383 programmer from the underlying byte size. */
384 kind = bitsize / 8;
386 if (kind == 4)
387 saw_i4 = true;
388 if (kind == 8)
389 saw_i8 = true;
391 gfc_integer_kinds[i_index].kind = kind;
392 gfc_integer_kinds[i_index].radix = 2;
393 gfc_integer_kinds[i_index].digits = bitsize - 1;
394 gfc_integer_kinds[i_index].bit_size = bitsize;
396 gfc_logical_kinds[i_index].kind = kind;
397 gfc_logical_kinds[i_index].bit_size = bitsize;
399 i_index += 1;
402 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
403 used for large file access. */
405 if (saw_i8)
406 gfc_intio_kind = 8;
407 else
408 gfc_intio_kind = 4;
410 /* If we do not at least have kind = 4, everything is pointless. */
411 gcc_assert(saw_i4);
413 /* Set the maximum integer kind. Used with at least BOZ constants. */
414 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
416 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
418 const struct real_format *fmt =
419 REAL_MODE_FORMAT ((enum machine_mode) mode);
420 int kind;
422 if (fmt == NULL)
423 continue;
424 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
425 continue;
427 /* Only let float, double, long double and __float128 go through.
428 Runtime support for others is not provided, so they would be
429 useless. */
430 if (mode != TYPE_MODE (float_type_node)
431 && (mode != TYPE_MODE (double_type_node))
432 && (mode != TYPE_MODE (long_double_type_node))
433 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
434 && (mode != TFmode)
435 #endif
437 continue;
439 /* Let the kind equal the precision divided by 8, rounding up. Again,
440 this insulates the programmer from the underlying byte size.
442 Also, it effectively deals with IEEE extended formats. There, the
443 total size of the type may equal 16, but it's got 6 bytes of padding
444 and the increased size can get in the way of a real IEEE quad format
445 which may also be supported by the target.
447 We round up so as to handle IA-64 __floatreg (RFmode), which is an
448 82 bit type. Not to be confused with __float80 (XFmode), which is
449 an 80 bit type also supported by IA-64. So XFmode should come out
450 to be kind=10, and RFmode should come out to be kind=11. Egads. */
452 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
454 if (kind == 4)
455 saw_r4 = true;
456 if (kind == 8)
457 saw_r8 = true;
458 if (kind == 10)
459 saw_r10 = true;
460 if (kind == 16)
461 saw_r16 = true;
463 /* Careful we don't stumble a weird internal mode. */
464 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
465 /* Or have too many modes for the allocated space. */
466 gcc_assert (r_index != MAX_REAL_KINDS);
468 gfc_real_kinds[r_index].kind = kind;
469 gfc_real_kinds[r_index].radix = fmt->b;
470 gfc_real_kinds[r_index].digits = fmt->p;
471 gfc_real_kinds[r_index].min_exponent = fmt->emin;
472 gfc_real_kinds[r_index].max_exponent = fmt->emax;
473 if (fmt->pnan < fmt->p)
474 /* This is an IBM extended double format (or the MIPS variant)
475 made up of two IEEE doubles. The value of the long double is
476 the sum of the values of the two parts. The most significant
477 part is required to be the value of the long double rounded
478 to the nearest double. If we use emax of 1024 then we can't
479 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
480 rounding will make the most significant part overflow. */
481 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
482 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
483 r_index += 1;
486 /* Choose the default integer kind. We choose 4 unless the user directs us
487 otherwise. Even if the user specified that the default integer kind is 8,
488 the numeric storage size is not 64 bits. In this case, a warning will be
489 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
491 gfc_numeric_storage_size = 4 * 8;
493 if (gfc_option.flag_default_integer)
495 if (!saw_i8)
496 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
498 gfc_default_integer_kind = 8;
501 else if (gfc_option.flag_integer4_kind == 8)
503 if (!saw_i8)
504 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
506 gfc_default_integer_kind = 8;
508 else if (saw_i4)
510 gfc_default_integer_kind = 4;
512 else
514 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
515 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
518 /* Choose the default real kind. Again, we choose 4 when possible. */
519 if (gfc_option.flag_default_real)
521 if (!saw_r8)
522 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
524 gfc_default_real_kind = 8;
526 else if (gfc_option.flag_real4_kind == 8)
528 if (!saw_r8)
529 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
531 gfc_default_real_kind = 8;
533 else if (gfc_option.flag_real4_kind == 10)
535 if (!saw_r10)
536 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
538 gfc_default_real_kind = 10;
540 else if (gfc_option.flag_real4_kind == 16)
542 if (!saw_r16)
543 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
545 gfc_default_real_kind = 16;
547 else if (saw_r4)
548 gfc_default_real_kind = 4;
549 else
550 gfc_default_real_kind = gfc_real_kinds[0].kind;
552 /* Choose the default double kind. If -fdefault-real and -fdefault-double
553 are specified, we use kind=8, if it's available. If -fdefault-real is
554 specified without -fdefault-double, we use kind=16, if it's available.
555 Otherwise we do not change anything. */
556 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
557 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
559 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
560 gfc_default_double_kind = 8;
561 else if (gfc_option.flag_default_real && saw_r16)
562 gfc_default_double_kind = 16;
563 else if (gfc_option.flag_real8_kind == 4)
565 if (!saw_r4)
566 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
568 gfc_default_double_kind = 4;
570 else if (gfc_option.flag_real8_kind == 10 )
572 if (!saw_r10)
573 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
575 gfc_default_double_kind = 10;
577 else if (gfc_option.flag_real8_kind == 16 )
579 if (!saw_r16)
580 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
582 gfc_default_double_kind = 16;
584 else if (saw_r4 && saw_r8)
585 gfc_default_double_kind = 8;
586 else
588 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
589 real ... occupies two contiguous numeric storage units.
591 Therefore we must be supplied a kind twice as large as we chose
592 for single precision. There are loopholes, in that double
593 precision must *occupy* two storage units, though it doesn't have
594 to *use* two storage units. Which means that you can make this
595 kind artificially wide by padding it. But at present there are
596 no GCC targets for which a two-word type does not exist, so we
597 just let gfc_validate_kind abort and tell us if something breaks. */
599 gfc_default_double_kind
600 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
603 /* The default logical kind is constrained to be the same as the
604 default integer kind. Similarly with complex and real. */
605 gfc_default_logical_kind = gfc_default_integer_kind;
606 gfc_default_complex_kind = gfc_default_real_kind;
608 /* We only have two character kinds: ASCII and UCS-4.
609 ASCII corresponds to a 8-bit integer type, if one is available.
610 UCS-4 corresponds to a 32-bit integer type, if one is available. */
611 i_index = 0;
612 if ((kind = get_int_kind_from_width (8)) > 0)
614 gfc_character_kinds[i_index].kind = kind;
615 gfc_character_kinds[i_index].bit_size = 8;
616 gfc_character_kinds[i_index].name = "ascii";
617 i_index++;
619 if ((kind = get_int_kind_from_width (32)) > 0)
621 gfc_character_kinds[i_index].kind = kind;
622 gfc_character_kinds[i_index].bit_size = 32;
623 gfc_character_kinds[i_index].name = "iso_10646";
624 i_index++;
627 /* Choose the smallest integer kind for our default character. */
628 gfc_default_character_kind = gfc_character_kinds[0].kind;
629 gfc_character_storage_size = gfc_default_character_kind * 8;
631 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
633 /* Pick a kind the same size as the C "int" type. */
634 gfc_c_int_kind = INT_TYPE_SIZE / 8;
636 /* Choose atomic kinds to match C's int. */
637 gfc_atomic_int_kind = gfc_c_int_kind;
638 gfc_atomic_logical_kind = gfc_c_int_kind;
642 /* Make sure that a valid kind is present. Returns an index into the
643 associated kinds array, -1 if the kind is not present. */
645 static int
646 validate_integer (int kind)
648 int i;
650 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
651 if (gfc_integer_kinds[i].kind == kind)
652 return i;
654 return -1;
657 static int
658 validate_real (int kind)
660 int i;
662 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
663 if (gfc_real_kinds[i].kind == kind)
664 return i;
666 return -1;
669 static int
670 validate_logical (int kind)
672 int i;
674 for (i = 0; gfc_logical_kinds[i].kind; i++)
675 if (gfc_logical_kinds[i].kind == kind)
676 return i;
678 return -1;
681 static int
682 validate_character (int kind)
684 int i;
686 for (i = 0; gfc_character_kinds[i].kind; i++)
687 if (gfc_character_kinds[i].kind == kind)
688 return i;
690 return -1;
693 /* Validate a kind given a basic type. The return value is the same
694 for the child functions, with -1 indicating nonexistence of the
695 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
698 gfc_validate_kind (bt type, int kind, bool may_fail)
700 int rc;
702 switch (type)
704 case BT_REAL: /* Fall through */
705 case BT_COMPLEX:
706 rc = validate_real (kind);
707 break;
708 case BT_INTEGER:
709 rc = validate_integer (kind);
710 break;
711 case BT_LOGICAL:
712 rc = validate_logical (kind);
713 break;
714 case BT_CHARACTER:
715 rc = validate_character (kind);
716 break;
718 default:
719 gfc_internal_error ("gfc_validate_kind(): Got bad type");
722 if (rc < 0 && !may_fail)
723 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
725 return rc;
729 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
730 Reuse common type nodes where possible. Recognize if the kind matches up
731 with a C type. This will be used later in determining which routines may
732 be scarfed from libm. */
734 static tree
735 gfc_build_int_type (gfc_integer_info *info)
737 int mode_precision = info->bit_size;
739 if (mode_precision == CHAR_TYPE_SIZE)
740 info->c_char = 1;
741 if (mode_precision == SHORT_TYPE_SIZE)
742 info->c_short = 1;
743 if (mode_precision == INT_TYPE_SIZE)
744 info->c_int = 1;
745 if (mode_precision == LONG_TYPE_SIZE)
746 info->c_long = 1;
747 if (mode_precision == LONG_LONG_TYPE_SIZE)
748 info->c_long_long = 1;
750 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
751 return intQI_type_node;
752 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
753 return intHI_type_node;
754 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
755 return intSI_type_node;
756 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
757 return intDI_type_node;
758 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
759 return intTI_type_node;
761 return make_signed_type (mode_precision);
764 tree
765 gfc_build_uint_type (int size)
767 if (size == CHAR_TYPE_SIZE)
768 return unsigned_char_type_node;
769 if (size == SHORT_TYPE_SIZE)
770 return short_unsigned_type_node;
771 if (size == INT_TYPE_SIZE)
772 return unsigned_type_node;
773 if (size == LONG_TYPE_SIZE)
774 return long_unsigned_type_node;
775 if (size == LONG_LONG_TYPE_SIZE)
776 return long_long_unsigned_type_node;
778 return make_unsigned_type (size);
782 static tree
783 gfc_build_real_type (gfc_real_info *info)
785 int mode_precision = info->mode_precision;
786 tree new_type;
788 if (mode_precision == FLOAT_TYPE_SIZE)
789 info->c_float = 1;
790 if (mode_precision == DOUBLE_TYPE_SIZE)
791 info->c_double = 1;
792 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
793 info->c_long_double = 1;
794 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
796 info->c_float128 = 1;
797 gfc_real16_is_float128 = true;
800 if (TYPE_PRECISION (float_type_node) == mode_precision)
801 return float_type_node;
802 if (TYPE_PRECISION (double_type_node) == mode_precision)
803 return double_type_node;
804 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
805 return long_double_type_node;
807 new_type = make_node (REAL_TYPE);
808 TYPE_PRECISION (new_type) = mode_precision;
809 layout_type (new_type);
810 return new_type;
813 static tree
814 gfc_build_complex_type (tree scalar_type)
816 tree new_type;
818 if (scalar_type == NULL)
819 return NULL;
820 if (scalar_type == float_type_node)
821 return complex_float_type_node;
822 if (scalar_type == double_type_node)
823 return complex_double_type_node;
824 if (scalar_type == long_double_type_node)
825 return complex_long_double_type_node;
827 new_type = make_node (COMPLEX_TYPE);
828 TREE_TYPE (new_type) = scalar_type;
829 layout_type (new_type);
830 return new_type;
833 static tree
834 gfc_build_logical_type (gfc_logical_info *info)
836 int bit_size = info->bit_size;
837 tree new_type;
839 if (bit_size == BOOL_TYPE_SIZE)
841 info->c_bool = 1;
842 return boolean_type_node;
845 new_type = make_unsigned_type (bit_size);
846 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
847 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
848 TYPE_PRECISION (new_type) = 1;
850 return new_type;
854 /* Create the backend type nodes. We map them to their
855 equivalent C type, at least for now. We also give
856 names to the types here, and we push them in the
857 global binding level context.*/
859 void
860 gfc_init_types (void)
862 char name_buf[18];
863 int index;
864 tree type;
865 unsigned n;
867 /* Create and name the types. */
868 #define PUSH_TYPE(name, node) \
869 pushdecl (build_decl (input_location, \
870 TYPE_DECL, get_identifier (name), node))
872 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
874 type = gfc_build_int_type (&gfc_integer_kinds[index]);
875 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
876 if (TYPE_STRING_FLAG (type))
877 type = make_signed_type (gfc_integer_kinds[index].bit_size);
878 gfc_integer_types[index] = type;
879 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
880 gfc_integer_kinds[index].kind);
881 PUSH_TYPE (name_buf, type);
884 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
886 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
887 gfc_logical_types[index] = type;
888 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
889 gfc_logical_kinds[index].kind);
890 PUSH_TYPE (name_buf, type);
893 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
895 type = gfc_build_real_type (&gfc_real_kinds[index]);
896 gfc_real_types[index] = type;
897 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
898 gfc_real_kinds[index].kind);
899 PUSH_TYPE (name_buf, type);
901 if (gfc_real_kinds[index].c_float128)
902 float128_type_node = type;
904 type = gfc_build_complex_type (type);
905 gfc_complex_types[index] = type;
906 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
907 gfc_real_kinds[index].kind);
908 PUSH_TYPE (name_buf, type);
910 if (gfc_real_kinds[index].c_float128)
911 complex_float128_type_node = type;
914 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
916 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
917 type = build_qualified_type (type, TYPE_UNQUALIFIED);
918 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
919 gfc_character_kinds[index].kind);
920 PUSH_TYPE (name_buf, type);
921 gfc_character_types[index] = type;
922 gfc_pcharacter_types[index] = build_pointer_type (type);
924 gfc_character1_type_node = gfc_character_types[0];
926 PUSH_TYPE ("byte", unsigned_char_type_node);
927 PUSH_TYPE ("void", void_type_node);
929 /* DBX debugging output gets upset if these aren't set. */
930 if (!TYPE_NAME (integer_type_node))
931 PUSH_TYPE ("c_integer", integer_type_node);
932 if (!TYPE_NAME (char_type_node))
933 PUSH_TYPE ("c_char", char_type_node);
935 #undef PUSH_TYPE
937 pvoid_type_node = build_pointer_type (void_type_node);
938 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
939 ppvoid_type_node = build_pointer_type (pvoid_type_node);
940 pchar_type_node = build_pointer_type (gfc_character1_type_node);
941 pfunc_type_node
942 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
944 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
945 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
946 since this function is called before gfc_init_constants. */
947 gfc_array_range_type
948 = build_range_type (gfc_array_index_type,
949 build_int_cst (gfc_array_index_type, 0),
950 NULL_TREE);
952 /* The maximum array element size that can be handled is determined
953 by the number of bits available to store this field in the array
954 descriptor. */
956 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
957 gfc_max_array_element_size
958 = wide_int_to_tree (long_unsigned_type_node,
959 wi::mask (n, UNSIGNED,
960 TYPE_PRECISION (long_unsigned_type_node)));
962 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
963 boolean_true_node = build_int_cst (boolean_type_node, 1);
964 boolean_false_node = build_int_cst (boolean_type_node, 0);
966 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
967 gfc_charlen_int_kind = 4;
968 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
971 /* Get the type node for the given type and kind. */
973 tree
974 gfc_get_int_type (int kind)
976 int index = gfc_validate_kind (BT_INTEGER, kind, true);
977 return index < 0 ? 0 : gfc_integer_types[index];
980 tree
981 gfc_get_real_type (int kind)
983 int index = gfc_validate_kind (BT_REAL, kind, true);
984 return index < 0 ? 0 : gfc_real_types[index];
987 tree
988 gfc_get_complex_type (int kind)
990 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
991 return index < 0 ? 0 : gfc_complex_types[index];
994 tree
995 gfc_get_logical_type (int kind)
997 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
998 return index < 0 ? 0 : gfc_logical_types[index];
1001 tree
1002 gfc_get_char_type (int kind)
1004 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1005 return index < 0 ? 0 : gfc_character_types[index];
1008 tree
1009 gfc_get_pchar_type (int kind)
1011 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1012 return index < 0 ? 0 : gfc_pcharacter_types[index];
1016 /* Create a character type with the given kind and length. */
1018 tree
1019 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1021 tree bounds, type;
1023 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1024 type = build_array_type (eltype, bounds);
1025 TYPE_STRING_FLAG (type) = 1;
1027 return type;
1030 tree
1031 gfc_get_character_type_len (int kind, tree len)
1033 gfc_validate_kind (BT_CHARACTER, kind, false);
1034 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1038 /* Get a type node for a character kind. */
1040 tree
1041 gfc_get_character_type (int kind, gfc_charlen * cl)
1043 tree len;
1045 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1047 return gfc_get_character_type_len (kind, len);
1050 /* Covert a basic type. This will be an array for character types. */
1052 tree
1053 gfc_typenode_for_spec (gfc_typespec * spec)
1055 tree basetype;
1057 switch (spec->type)
1059 case BT_UNKNOWN:
1060 gcc_unreachable ();
1062 case BT_INTEGER:
1063 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1064 has been resolved. This is done so we can convert C_PTR and
1065 C_FUNPTR to simple variables that get translated to (void *). */
1066 if (spec->f90_type == BT_VOID)
1068 if (spec->u.derived
1069 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1070 basetype = ptr_type_node;
1071 else
1072 basetype = pfunc_type_node;
1074 else
1075 basetype = gfc_get_int_type (spec->kind);
1076 break;
1078 case BT_REAL:
1079 basetype = gfc_get_real_type (spec->kind);
1080 break;
1082 case BT_COMPLEX:
1083 basetype = gfc_get_complex_type (spec->kind);
1084 break;
1086 case BT_LOGICAL:
1087 basetype = gfc_get_logical_type (spec->kind);
1088 break;
1090 case BT_CHARACTER:
1091 #if 0
1092 if (spec->deferred)
1093 basetype = gfc_get_character_type (spec->kind, NULL);
1094 else
1095 #endif
1096 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1097 break;
1099 case BT_HOLLERITH:
1100 /* Since this cannot be used, return a length one character. */
1101 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1102 gfc_index_one_node);
1103 break;
1105 case BT_DERIVED:
1106 case BT_CLASS:
1107 basetype = gfc_get_derived_type (spec->u.derived);
1109 if (spec->type == BT_CLASS)
1110 GFC_CLASS_TYPE_P (basetype) = 1;
1112 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1113 type and kind to fit a (void *) and the basetype returned was a
1114 ptr_type_node. We need to pass up this new information to the
1115 symbol that was declared of type C_PTR or C_FUNPTR. */
1116 if (spec->u.derived->ts.f90_type == BT_VOID)
1118 spec->type = BT_INTEGER;
1119 spec->kind = gfc_index_integer_kind;
1120 spec->f90_type = BT_VOID;
1122 break;
1123 case BT_VOID:
1124 case BT_ASSUMED:
1125 /* This is for the second arg to c_f_pointer and c_f_procpointer
1126 of the iso_c_binding module, to accept any ptr type. */
1127 basetype = ptr_type_node;
1128 if (spec->f90_type == BT_VOID)
1130 if (spec->u.derived
1131 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1132 basetype = ptr_type_node;
1133 else
1134 basetype = pfunc_type_node;
1136 break;
1137 default:
1138 gcc_unreachable ();
1140 return basetype;
1143 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1145 static tree
1146 gfc_conv_array_bound (gfc_expr * expr)
1148 /* If expr is an integer constant, return that. */
1149 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1150 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1152 /* Otherwise return NULL. */
1153 return NULL_TREE;
1156 tree
1157 gfc_get_element_type (tree type)
1159 tree element;
1161 if (GFC_ARRAY_TYPE_P (type))
1163 if (TREE_CODE (type) == POINTER_TYPE)
1164 type = TREE_TYPE (type);
1165 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1167 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1168 element = type;
1170 else
1172 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1173 element = TREE_TYPE (type);
1176 else
1178 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1179 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1181 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1182 element = TREE_TYPE (element);
1184 /* For arrays, which are not scalar coarrays. */
1185 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1186 element = TREE_TYPE (element);
1189 return element;
1192 /* Build an array. This function is called from gfc_sym_type().
1193 Actually returns array descriptor type.
1195 Format of array descriptors is as follows:
1197 struct gfc_array_descriptor
1199 array *data
1200 index offset;
1201 index dtype;
1202 struct descriptor_dimension dimension[N_DIM];
1205 struct descriptor_dimension
1207 index stride;
1208 index lbound;
1209 index ubound;
1212 Translation code should use gfc_conv_descriptor_* rather than
1213 accessing the descriptor directly. Any changes to the array
1214 descriptor type will require changes in gfc_conv_descriptor_* and
1215 gfc_build_array_initializer.
1217 This is represented internally as a RECORD_TYPE. The index nodes
1218 are gfc_array_index_type and the data node is a pointer to the
1219 data. See below for the handling of character types.
1221 The dtype member is formatted as follows:
1222 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1223 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1224 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1226 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1227 this generated poor code for assumed/deferred size arrays. These
1228 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1229 of the GENERIC grammar. Also, there is no way to explicitly set
1230 the array stride, so all data must be packed(1). I've tried to
1231 mark all the functions which would require modification with a GCC
1232 ARRAYS comment.
1234 The data component points to the first element in the array. The
1235 offset field is the position of the origin of the array (i.e. element
1236 (0, 0 ...)). This may be outside the bounds of the array.
1238 An element is accessed by
1239 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1240 This gives good performance as the computation does not involve the
1241 bounds of the array. For packed arrays, this is optimized further
1242 by substituting the known strides.
1244 This system has one problem: all array bounds must be within 2^31
1245 elements of the origin (2^63 on 64-bit machines). For example
1246 integer, dimension (80000:90000, 80000:90000, 2) :: array
1247 may not work properly on 32-bit machines because 80000*80000 >
1248 2^31, so the calculation for stride2 would overflow. This may
1249 still work, but I haven't checked, and it relies on the overflow
1250 doing the right thing.
1252 The way to fix this problem is to access elements as follows:
1253 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1254 Obviously this is much slower. I will make this a compile time
1255 option, something like -fsmall-array-offsets. Mixing code compiled
1256 with and without this switch will work.
1258 (1) This can be worked around by modifying the upper bound of the
1259 previous dimension. This requires extra fields in the descriptor
1260 (both real_ubound and fake_ubound). */
1263 /* Returns true if the array sym does not require a descriptor. */
1266 gfc_is_nodesc_array (gfc_symbol * sym)
1268 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1270 /* We only want local arrays. */
1271 if (sym->attr.pointer || sym->attr.allocatable)
1272 return 0;
1274 /* We want a descriptor for associate-name arrays that do not have an
1275 explicitly known shape already. */
1276 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1277 return 0;
1279 if (sym->attr.dummy)
1280 return sym->as->type != AS_ASSUMED_SHAPE
1281 && sym->as->type != AS_ASSUMED_RANK;
1283 if (sym->attr.result || sym->attr.function)
1284 return 0;
1286 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1288 return 1;
1292 /* Create an array descriptor type. */
1294 static tree
1295 gfc_build_array_type (tree type, gfc_array_spec * as,
1296 enum gfc_array_kind akind, bool restricted,
1297 bool contiguous)
1299 tree lbound[GFC_MAX_DIMENSIONS];
1300 tree ubound[GFC_MAX_DIMENSIONS];
1301 int n, corank;
1303 /* Assumed-shape arrays do not have codimension information stored in the
1304 descriptor. */
1305 corank = as->corank;
1306 if (as->type == AS_ASSUMED_SHAPE ||
1307 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1308 corank = 0;
1310 if (as->type == AS_ASSUMED_RANK)
1311 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1313 lbound[n] = NULL_TREE;
1314 ubound[n] = NULL_TREE;
1317 for (n = 0; n < as->rank; n++)
1319 /* Create expressions for the known bounds of the array. */
1320 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1321 lbound[n] = gfc_index_one_node;
1322 else
1323 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1324 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1327 for (n = as->rank; n < as->rank + corank; n++)
1329 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1330 lbound[n] = gfc_index_one_node;
1331 else
1332 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1334 if (n < as->rank + corank - 1)
1335 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1338 if (as->type == AS_ASSUMED_SHAPE)
1339 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1340 : GFC_ARRAY_ASSUMED_SHAPE;
1341 else if (as->type == AS_ASSUMED_RANK)
1342 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1343 : GFC_ARRAY_ASSUMED_RANK;
1344 return gfc_get_array_type_bounds (type, as->rank == -1
1345 ? GFC_MAX_DIMENSIONS : as->rank,
1346 corank, lbound,
1347 ubound, 0, akind, restricted);
1350 /* Returns the struct descriptor_dimension type. */
1352 static tree
1353 gfc_get_desc_dim_type (void)
1355 tree type;
1356 tree decl, *chain = NULL;
1358 if (gfc_desc_dim_type)
1359 return gfc_desc_dim_type;
1361 /* Build the type node. */
1362 type = make_node (RECORD_TYPE);
1364 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1365 TYPE_PACKED (type) = 1;
1367 /* Consists of the stride, lbound and ubound members. */
1368 decl = gfc_add_field_to_struct_1 (type,
1369 get_identifier ("stride"),
1370 gfc_array_index_type, &chain);
1371 TREE_NO_WARNING (decl) = 1;
1373 decl = gfc_add_field_to_struct_1 (type,
1374 get_identifier ("lbound"),
1375 gfc_array_index_type, &chain);
1376 TREE_NO_WARNING (decl) = 1;
1378 decl = gfc_add_field_to_struct_1 (type,
1379 get_identifier ("ubound"),
1380 gfc_array_index_type, &chain);
1381 TREE_NO_WARNING (decl) = 1;
1383 /* Finish off the type. */
1384 gfc_finish_type (type);
1385 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1387 gfc_desc_dim_type = type;
1388 return type;
1392 /* Return the DTYPE for an array. This describes the type and type parameters
1393 of the array. */
1394 /* TODO: Only call this when the value is actually used, and make all the
1395 unknown cases abort. */
1397 tree
1398 gfc_get_dtype (tree type)
1400 tree size;
1401 int n;
1402 HOST_WIDE_INT i;
1403 tree tmp;
1404 tree dtype;
1405 tree etype;
1406 int rank;
1408 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1410 if (GFC_TYPE_ARRAY_DTYPE (type))
1411 return GFC_TYPE_ARRAY_DTYPE (type);
1413 rank = GFC_TYPE_ARRAY_RANK (type);
1414 etype = gfc_get_element_type (type);
1416 switch (TREE_CODE (etype))
1418 case INTEGER_TYPE:
1419 n = BT_INTEGER;
1420 break;
1422 case BOOLEAN_TYPE:
1423 n = BT_LOGICAL;
1424 break;
1426 case REAL_TYPE:
1427 n = BT_REAL;
1428 break;
1430 case COMPLEX_TYPE:
1431 n = BT_COMPLEX;
1432 break;
1434 /* We will never have arrays of arrays. */
1435 case RECORD_TYPE:
1436 n = BT_DERIVED;
1437 break;
1439 case ARRAY_TYPE:
1440 n = BT_CHARACTER;
1441 break;
1443 case POINTER_TYPE:
1444 n = BT_ASSUMED;
1445 break;
1447 default:
1448 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1449 /* We can strange array types for temporary arrays. */
1450 return gfc_index_zero_node;
1453 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1454 size = TYPE_SIZE_UNIT (etype);
1456 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1457 if (size && INTEGER_CST_P (size))
1459 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1460 gfc_fatal_error ("Array element size too big at %C");
1462 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1464 dtype = build_int_cst (gfc_array_index_type, i);
1466 if (size && !INTEGER_CST_P (size))
1468 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1469 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1470 gfc_array_index_type,
1471 fold_convert (gfc_array_index_type, size), tmp);
1472 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1473 tmp, dtype);
1475 /* If we don't know the size we leave it as zero. This should never happen
1476 for anything that is actually used. */
1477 /* TODO: Check this is actually true, particularly when repacking
1478 assumed size parameters. */
1480 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1481 return dtype;
1485 /* Build an array type for use without a descriptor, packed according
1486 to the value of PACKED. */
1488 tree
1489 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1490 bool restricted)
1492 tree range;
1493 tree type;
1494 tree tmp;
1495 int n;
1496 int known_stride;
1497 int known_offset;
1498 mpz_t offset;
1499 mpz_t stride;
1500 mpz_t delta;
1501 gfc_expr *expr;
1503 mpz_init_set_ui (offset, 0);
1504 mpz_init_set_ui (stride, 1);
1505 mpz_init (delta);
1507 /* We don't use build_array_type because this does not include include
1508 lang-specific information (i.e. the bounds of the array) when checking
1509 for duplicates. */
1510 if (as->rank)
1511 type = make_node (ARRAY_TYPE);
1512 else
1513 type = build_variant_type_copy (etype);
1515 GFC_ARRAY_TYPE_P (type) = 1;
1516 TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
1518 known_stride = (packed != PACKED_NO);
1519 known_offset = 1;
1520 for (n = 0; n < as->rank; n++)
1522 /* Fill in the stride and bound components of the type. */
1523 if (known_stride)
1524 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1525 else
1526 tmp = NULL_TREE;
1527 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1529 expr = as->lower[n];
1530 if (expr->expr_type == EXPR_CONSTANT)
1532 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1533 gfc_index_integer_kind);
1535 else
1537 known_stride = 0;
1538 tmp = NULL_TREE;
1540 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1542 if (known_stride)
1544 /* Calculate the offset. */
1545 mpz_mul (delta, stride, as->lower[n]->value.integer);
1546 mpz_sub (offset, offset, delta);
1548 else
1549 known_offset = 0;
1551 expr = as->upper[n];
1552 if (expr && expr->expr_type == EXPR_CONSTANT)
1554 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1555 gfc_index_integer_kind);
1557 else
1559 tmp = NULL_TREE;
1560 known_stride = 0;
1562 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1564 if (known_stride)
1566 /* Calculate the stride. */
1567 mpz_sub (delta, as->upper[n]->value.integer,
1568 as->lower[n]->value.integer);
1569 mpz_add_ui (delta, delta, 1);
1570 mpz_mul (stride, stride, delta);
1573 /* Only the first stride is known for partial packed arrays. */
1574 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1575 known_stride = 0;
1577 for (n = as->rank; n < as->rank + as->corank; n++)
1579 expr = as->lower[n];
1580 if (expr->expr_type == EXPR_CONSTANT)
1581 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1582 gfc_index_integer_kind);
1583 else
1584 tmp = NULL_TREE;
1585 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1587 expr = as->upper[n];
1588 if (expr && expr->expr_type == EXPR_CONSTANT)
1589 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1590 gfc_index_integer_kind);
1591 else
1592 tmp = NULL_TREE;
1593 if (n < as->rank + as->corank - 1)
1594 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1597 if (known_offset)
1599 GFC_TYPE_ARRAY_OFFSET (type) =
1600 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1602 else
1603 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1605 if (known_stride)
1607 GFC_TYPE_ARRAY_SIZE (type) =
1608 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1610 else
1611 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1613 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1614 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1615 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1616 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1617 NULL_TREE);
1618 /* TODO: use main type if it is unbounded. */
1619 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1620 build_pointer_type (build_array_type (etype, range));
1621 if (restricted)
1622 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1623 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1624 TYPE_QUAL_RESTRICT);
1626 if (as->rank == 0)
1628 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1630 type = build_pointer_type (type);
1632 if (restricted)
1633 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1635 GFC_ARRAY_TYPE_P (type) = 1;
1636 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1639 return type;
1642 if (known_stride)
1644 mpz_sub_ui (stride, stride, 1);
1645 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1647 else
1648 range = NULL_TREE;
1650 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1651 TYPE_DOMAIN (type) = range;
1653 build_pointer_type (etype);
1654 TREE_TYPE (type) = etype;
1656 layout_type (type);
1658 mpz_clear (offset);
1659 mpz_clear (stride);
1660 mpz_clear (delta);
1662 /* Represent packed arrays as multi-dimensional if they have rank >
1663 1 and with proper bounds, instead of flat arrays. This makes for
1664 better debug info. */
1665 if (known_offset)
1667 tree gtype = etype, rtype, type_decl;
1669 for (n = as->rank - 1; n >= 0; n--)
1671 rtype = build_range_type (gfc_array_index_type,
1672 GFC_TYPE_ARRAY_LBOUND (type, n),
1673 GFC_TYPE_ARRAY_UBOUND (type, n));
1674 gtype = build_array_type (gtype, rtype);
1676 TYPE_NAME (type) = type_decl = build_decl (input_location,
1677 TYPE_DECL, NULL, gtype);
1678 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1681 if (packed != PACKED_STATIC || !known_stride
1682 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1684 /* For dummy arrays and automatic (heap allocated) arrays we
1685 want a pointer to the array. */
1686 type = build_pointer_type (type);
1687 if (restricted)
1688 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1689 GFC_ARRAY_TYPE_P (type) = 1;
1690 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1692 return type;
1696 /* Return or create the base type for an array descriptor. */
1698 static tree
1699 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1700 enum gfc_array_kind akind)
1702 tree fat_type, decl, arraytype, *chain = NULL;
1703 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1704 int idx;
1706 /* Assumed-rank array. */
1707 if (dimen == -1)
1708 dimen = GFC_MAX_DIMENSIONS;
1710 idx = 2 * (codimen + dimen) + restricted;
1712 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1714 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1716 if (gfc_array_descriptor_base_caf[idx])
1717 return gfc_array_descriptor_base_caf[idx];
1719 else if (gfc_array_descriptor_base[idx])
1720 return gfc_array_descriptor_base[idx];
1722 /* Build the type node. */
1723 fat_type = make_node (RECORD_TYPE);
1725 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1726 TYPE_NAME (fat_type) = get_identifier (name);
1727 TYPE_NAMELESS (fat_type) = 1;
1729 /* Add the data member as the first element of the descriptor. */
1730 decl = gfc_add_field_to_struct_1 (fat_type,
1731 get_identifier ("data"),
1732 (restricted
1733 ? prvoid_type_node
1734 : ptr_type_node), &chain);
1736 /* Add the base component. */
1737 decl = gfc_add_field_to_struct_1 (fat_type,
1738 get_identifier ("offset"),
1739 gfc_array_index_type, &chain);
1740 TREE_NO_WARNING (decl) = 1;
1742 /* Add the dtype component. */
1743 decl = gfc_add_field_to_struct_1 (fat_type,
1744 get_identifier ("dtype"),
1745 gfc_array_index_type, &chain);
1746 TREE_NO_WARNING (decl) = 1;
1748 /* Build the array type for the stride and bound components. */
1749 if (dimen + codimen > 0)
1751 arraytype =
1752 build_array_type (gfc_get_desc_dim_type (),
1753 build_range_type (gfc_array_index_type,
1754 gfc_index_zero_node,
1755 gfc_rank_cst[codimen + dimen - 1]));
1757 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1758 arraytype, &chain);
1759 TREE_NO_WARNING (decl) = 1;
1762 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1763 && akind == GFC_ARRAY_ALLOCATABLE)
1765 decl = gfc_add_field_to_struct_1 (fat_type,
1766 get_identifier ("token"),
1767 prvoid_type_node, &chain);
1768 TREE_NO_WARNING (decl) = 1;
1771 /* Finish off the type. */
1772 gfc_finish_type (fat_type);
1773 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1775 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1776 && akind == GFC_ARRAY_ALLOCATABLE)
1777 gfc_array_descriptor_base_caf[idx] = fat_type;
1778 else
1779 gfc_array_descriptor_base[idx] = fat_type;
1781 return fat_type;
1785 /* Build an array (descriptor) type with given bounds. */
1787 tree
1788 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1789 tree * ubound, int packed,
1790 enum gfc_array_kind akind, bool restricted)
1792 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1793 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1794 const char *type_name;
1795 int n;
1797 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1798 fat_type = build_distinct_type_copy (base_type);
1799 /* Make sure that nontarget and target array type have the same canonical
1800 type (and same stub decl for debug info). */
1801 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1802 TYPE_CANONICAL (fat_type) = base_type;
1803 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1805 tmp = TYPE_NAME (etype);
1806 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1807 tmp = DECL_NAME (tmp);
1808 if (tmp)
1809 type_name = IDENTIFIER_POINTER (tmp);
1810 else
1811 type_name = "unknown";
1812 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1813 GFC_MAX_SYMBOL_LEN, type_name);
1814 TYPE_NAME (fat_type) = get_identifier (name);
1815 TYPE_NAMELESS (fat_type) = 1;
1817 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1818 TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
1820 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1821 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1822 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1823 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1825 /* Build an array descriptor record type. */
1826 if (packed != 0)
1827 stride = gfc_index_one_node;
1828 else
1829 stride = NULL_TREE;
1830 for (n = 0; n < dimen + codimen; n++)
1832 if (n < dimen)
1833 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1835 if (lbound)
1836 lower = lbound[n];
1837 else
1838 lower = NULL_TREE;
1840 if (lower != NULL_TREE)
1842 if (INTEGER_CST_P (lower))
1843 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1844 else
1845 lower = NULL_TREE;
1848 if (codimen && n == dimen + codimen - 1)
1849 break;
1851 upper = ubound[n];
1852 if (upper != NULL_TREE)
1854 if (INTEGER_CST_P (upper))
1855 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1856 else
1857 upper = NULL_TREE;
1860 if (n >= dimen)
1861 continue;
1863 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1865 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1866 gfc_array_index_type, upper, lower);
1867 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1868 gfc_array_index_type, tmp,
1869 gfc_index_one_node);
1870 stride = fold_build2_loc (input_location, MULT_EXPR,
1871 gfc_array_index_type, tmp, stride);
1872 /* Check the folding worked. */
1873 gcc_assert (INTEGER_CST_P (stride));
1875 else
1876 stride = NULL_TREE;
1878 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1880 /* TODO: known offsets for descriptors. */
1881 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1883 if (dimen == 0)
1885 arraytype = build_pointer_type (etype);
1886 if (restricted)
1887 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1889 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1890 return fat_type;
1893 /* We define data as an array with the correct size if possible.
1894 Much better than doing pointer arithmetic. */
1895 if (stride)
1896 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1897 int_const_binop (MINUS_EXPR, stride,
1898 build_int_cst (TREE_TYPE (stride), 1)));
1899 else
1900 rtype = gfc_array_range_type;
1901 arraytype = build_array_type (etype, rtype);
1902 arraytype = build_pointer_type (arraytype);
1903 if (restricted)
1904 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1905 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1907 /* This will generate the base declarations we need to emit debug
1908 information for this type. FIXME: there must be a better way to
1909 avoid divergence between compilations with and without debug
1910 information. */
1912 struct array_descr_info info;
1913 gfc_get_array_descr_info (fat_type, &info);
1914 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1917 return fat_type;
1920 /* Build a pointer type. This function is called from gfc_sym_type(). */
1922 static tree
1923 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1925 /* Array pointer types aren't actually pointers. */
1926 if (sym->attr.dimension)
1927 return type;
1928 else
1929 return build_pointer_type (type);
1932 static tree gfc_nonrestricted_type (tree t);
1933 /* Given two record or union type nodes TO and FROM, ensure
1934 that all fields in FROM have a corresponding field in TO,
1935 their type being nonrestrict variants. This accepts a TO
1936 node that already has a prefix of the fields in FROM. */
1937 static void
1938 mirror_fields (tree to, tree from)
1940 tree fto, ffrom;
1941 tree *chain;
1943 /* Forward to the end of TOs fields. */
1944 fto = TYPE_FIELDS (to);
1945 ffrom = TYPE_FIELDS (from);
1946 chain = &TYPE_FIELDS (to);
1947 while (fto)
1949 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1950 chain = &DECL_CHAIN (fto);
1951 fto = DECL_CHAIN (fto);
1952 ffrom = DECL_CHAIN (ffrom);
1955 /* Now add all fields remaining in FROM (starting with ffrom). */
1956 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1958 tree newfield = copy_node (ffrom);
1959 DECL_CONTEXT (newfield) = to;
1960 /* The store to DECL_CHAIN might seem redundant with the
1961 stores to *chain, but not clearing it here would mean
1962 leaving a chain into the old fields. If ever
1963 our called functions would look at them confusion
1964 will arise. */
1965 DECL_CHAIN (newfield) = NULL_TREE;
1966 *chain = newfield;
1967 chain = &DECL_CHAIN (newfield);
1969 if (TREE_CODE (ffrom) == FIELD_DECL)
1971 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1972 TREE_TYPE (newfield) = elemtype;
1975 *chain = NULL_TREE;
1978 /* Given a type T, returns a different type of the same structure,
1979 except that all types it refers to (recursively) are always
1980 non-restrict qualified types. */
1981 static tree
1982 gfc_nonrestricted_type (tree t)
1984 tree ret = t;
1986 /* If the type isn't laid out yet, don't copy it. If something
1987 needs it for real it should wait until the type got finished. */
1988 if (!TYPE_SIZE (t))
1989 return t;
1991 if (!TYPE_LANG_SPECIFIC (t))
1992 TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
1993 /* If we're dealing with this very node already further up
1994 the call chain (recursion via pointers and struct members)
1995 we haven't yet determined if we really need a new type node.
1996 Assume we don't, return T itself. */
1997 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
1998 return t;
2000 /* If we have calculated this all already, just return it. */
2001 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2002 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2004 /* Mark this type. */
2005 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2007 switch (TREE_CODE (t))
2009 default:
2010 break;
2012 case POINTER_TYPE:
2013 case REFERENCE_TYPE:
2015 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2016 if (totype == TREE_TYPE (t))
2017 ret = t;
2018 else if (TREE_CODE (t) == POINTER_TYPE)
2019 ret = build_pointer_type (totype);
2020 else
2021 ret = build_reference_type (totype);
2022 ret = build_qualified_type (ret,
2023 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2025 break;
2027 case ARRAY_TYPE:
2029 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2030 if (elemtype == TREE_TYPE (t))
2031 ret = t;
2032 else
2034 ret = build_variant_type_copy (t);
2035 TREE_TYPE (ret) = elemtype;
2036 if (TYPE_LANG_SPECIFIC (t)
2037 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2039 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2040 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2041 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2043 TYPE_LANG_SPECIFIC (ret)
2044 = ggc_cleared_alloc<struct lang_type> ();
2045 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2046 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2051 break;
2053 case RECORD_TYPE:
2054 case UNION_TYPE:
2055 case QUAL_UNION_TYPE:
2057 tree field;
2058 /* First determine if we need a new type at all.
2059 Careful, the two calls to gfc_nonrestricted_type per field
2060 might return different values. That happens exactly when
2061 one of the fields reaches back to this very record type
2062 (via pointers). The first calls will assume that we don't
2063 need to copy T (see the error_mark_node marking). If there
2064 are any reasons for copying T apart from having to copy T,
2065 we'll indeed copy it, and the second calls to
2066 gfc_nonrestricted_type will use that new node if they
2067 reach back to T. */
2068 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2069 if (TREE_CODE (field) == FIELD_DECL)
2071 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2072 if (elemtype != TREE_TYPE (field))
2073 break;
2075 if (!field)
2076 break;
2077 ret = build_variant_type_copy (t);
2078 TYPE_FIELDS (ret) = NULL_TREE;
2080 /* Here we make sure that as soon as we know we have to copy
2081 T, that also fields reaching back to us will use the new
2082 copy. It's okay if that copy still contains the old fields,
2083 we won't look at them. */
2084 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2085 mirror_fields (ret, t);
2087 break;
2090 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2091 return ret;
2095 /* Return the type for a symbol. Special handling is required for character
2096 types to get the correct level of indirection.
2097 For functions return the return type.
2098 For subroutines return void_type_node.
2099 Calling this multiple times for the same symbol should be avoided,
2100 especially for character and array types. */
2102 tree
2103 gfc_sym_type (gfc_symbol * sym)
2105 tree type;
2106 int byref;
2107 bool restricted;
2109 /* Procedure Pointers inside COMMON blocks. */
2110 if (sym->attr.proc_pointer && sym->attr.in_common)
2112 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2113 sym->attr.proc_pointer = 0;
2114 type = build_pointer_type (gfc_get_function_type (sym));
2115 sym->attr.proc_pointer = 1;
2116 return type;
2119 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2120 return void_type_node;
2122 /* In the case of a function the fake result variable may have a
2123 type different from the function type, so don't return early in
2124 that case. */
2125 if (sym->backend_decl && !sym->attr.function)
2126 return TREE_TYPE (sym->backend_decl);
2128 if (sym->ts.type == BT_CHARACTER
2129 && ((sym->attr.function && sym->attr.is_bind_c)
2130 || (sym->attr.result
2131 && sym->ns->proc_name
2132 && sym->ns->proc_name->attr.is_bind_c)))
2133 type = gfc_character1_type_node;
2134 else
2135 type = gfc_typenode_for_spec (&sym->ts);
2137 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2138 byref = 1;
2139 else
2140 byref = 0;
2142 restricted = !sym->attr.target && !sym->attr.pointer
2143 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2144 if (!restricted)
2145 type = gfc_nonrestricted_type (type);
2147 if (sym->attr.dimension || sym->attr.codimension)
2149 if (gfc_is_nodesc_array (sym))
2151 /* If this is a character argument of unknown length, just use the
2152 base type. */
2153 if (sym->ts.type != BT_CHARACTER
2154 || !(sym->attr.dummy || sym->attr.function)
2155 || sym->ts.u.cl->backend_decl)
2157 type = gfc_get_nodesc_array_type (type, sym->as,
2158 byref ? PACKED_FULL
2159 : PACKED_STATIC,
2160 restricted);
2161 byref = 0;
2164 else
2166 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2167 if (sym->attr.pointer)
2168 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2169 : GFC_ARRAY_POINTER;
2170 else if (sym->attr.allocatable)
2171 akind = GFC_ARRAY_ALLOCATABLE;
2172 type = gfc_build_array_type (type, sym->as, akind, restricted,
2173 sym->attr.contiguous);
2176 else
2178 if (sym->attr.allocatable || sym->attr.pointer
2179 || gfc_is_associate_pointer (sym))
2180 type = gfc_build_pointer_type (sym, type);
2183 /* We currently pass all parameters by reference.
2184 See f95_get_function_decl. For dummy function parameters return the
2185 function type. */
2186 if (byref)
2188 /* We must use pointer types for potentially absent variables. The
2189 optimizers assume a reference type argument is never NULL. */
2190 if (sym->attr.optional
2191 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2192 type = build_pointer_type (type);
2193 else
2195 type = build_reference_type (type);
2196 if (restricted)
2197 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2201 return (type);
2204 /* Layout and output debug info for a record type. */
2206 void
2207 gfc_finish_type (tree type)
2209 tree decl;
2211 decl = build_decl (input_location,
2212 TYPE_DECL, NULL_TREE, type);
2213 TYPE_STUB_DECL (type) = decl;
2214 layout_type (type);
2215 rest_of_type_compilation (type, 1);
2216 rest_of_decl_compilation (decl, 1, 0);
2219 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2220 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2221 to the end of the field list pointed to by *CHAIN.
2223 Returns a pointer to the new field. */
2225 static tree
2226 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2228 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2230 DECL_CONTEXT (decl) = context;
2231 DECL_CHAIN (decl) = NULL_TREE;
2232 if (TYPE_FIELDS (context) == NULL_TREE)
2233 TYPE_FIELDS (context) = decl;
2234 if (chain != NULL)
2236 if (*chain != NULL)
2237 **chain = decl;
2238 *chain = &DECL_CHAIN (decl);
2241 return decl;
2244 /* Like `gfc_add_field_to_struct_1', but adds alignment
2245 information. */
2247 tree
2248 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2250 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2252 DECL_INITIAL (decl) = 0;
2253 DECL_ALIGN (decl) = 0;
2254 DECL_USER_ALIGN (decl) = 0;
2256 return decl;
2260 /* Copy the backend_decl and component backend_decls if
2261 the two derived type symbols are "equal", as described
2262 in 4.4.2 and resolved by gfc_compare_derived_types. */
2265 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2266 bool from_gsym)
2268 gfc_component *to_cm;
2269 gfc_component *from_cm;
2271 if (from == to)
2272 return 1;
2274 if (from->backend_decl == NULL
2275 || !gfc_compare_derived_types (from, to))
2276 return 0;
2278 to->backend_decl = from->backend_decl;
2280 to_cm = to->components;
2281 from_cm = from->components;
2283 /* Copy the component declarations. If a component is itself
2284 a derived type, we need a copy of its component declarations.
2285 This is done by recursing into gfc_get_derived_type and
2286 ensures that the component's component declarations have
2287 been built. If it is a character, we need the character
2288 length, as well. */
2289 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2291 to_cm->backend_decl = from_cm->backend_decl;
2292 if (from_cm->ts.type == BT_DERIVED
2293 && (!from_cm->attr.pointer || from_gsym))
2294 gfc_get_derived_type (to_cm->ts.u.derived);
2295 else if (from_cm->ts.type == BT_CLASS
2296 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2297 gfc_get_derived_type (to_cm->ts.u.derived);
2298 else if (from_cm->ts.type == BT_CHARACTER)
2299 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2302 return 1;
2306 /* Build a tree node for a procedure pointer component. */
2308 tree
2309 gfc_get_ppc_type (gfc_component* c)
2311 tree t;
2313 /* Explicit interface. */
2314 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2315 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2317 /* Implicit interface (only return value may be known). */
2318 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2319 t = gfc_typenode_for_spec (&c->ts);
2320 else
2321 t = void_type_node;
2323 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2327 /* Build a tree node for a derived type. If there are equal
2328 derived types, with different local names, these are built
2329 at the same time. If an equal derived type has been built
2330 in a parent namespace, this is used. */
2332 tree
2333 gfc_get_derived_type (gfc_symbol * derived)
2335 tree typenode = NULL, field = NULL, field_type = NULL;
2336 tree canonical = NULL_TREE;
2337 tree *chain = NULL;
2338 bool got_canonical = false;
2339 bool unlimited_entity = false;
2340 gfc_component *c;
2341 gfc_dt_list *dt;
2342 gfc_namespace *ns;
2344 if (derived->attr.unlimited_polymorphic)
2345 return ptr_type_node;
2347 if (derived && derived->attr.flavor == FL_PROCEDURE
2348 && derived->attr.generic)
2349 derived = gfc_find_dt_in_generic (derived);
2351 /* See if it's one of the iso_c_binding derived types. */
2352 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2354 if (derived->backend_decl)
2355 return derived->backend_decl;
2357 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2358 derived->backend_decl = ptr_type_node;
2359 else
2360 derived->backend_decl = pfunc_type_node;
2362 derived->ts.kind = gfc_index_integer_kind;
2363 derived->ts.type = BT_INTEGER;
2364 /* Set the f90_type to BT_VOID as a way to recognize something of type
2365 BT_INTEGER that needs to fit a void * for the purpose of the
2366 iso_c_binding derived types. */
2367 derived->ts.f90_type = BT_VOID;
2369 return derived->backend_decl;
2372 /* If use associated, use the module type for this one. */
2373 if (derived->backend_decl == NULL
2374 && derived->attr.use_assoc
2375 && derived->module
2376 && gfc_get_module_backend_decl (derived))
2377 goto copy_derived_types;
2379 /* The derived types from an earlier namespace can be used as the
2380 canonical type. */
2381 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2382 && gfc_global_ns_list)
2384 for (ns = gfc_global_ns_list;
2385 ns->translated && !got_canonical;
2386 ns = ns->sibling)
2388 dt = ns->derived_types;
2389 for (; dt && !canonical; dt = dt->next)
2391 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2392 if (derived->backend_decl)
2393 got_canonical = true;
2398 /* Store up the canonical type to be added to this one. */
2399 if (got_canonical)
2401 if (TYPE_CANONICAL (derived->backend_decl))
2402 canonical = TYPE_CANONICAL (derived->backend_decl);
2403 else
2404 canonical = derived->backend_decl;
2406 derived->backend_decl = NULL_TREE;
2409 /* derived->backend_decl != 0 means we saw it before, but its
2410 components' backend_decl may have not been built. */
2411 if (derived->backend_decl)
2413 /* Its components' backend_decl have been built or we are
2414 seeing recursion through the formal arglist of a procedure
2415 pointer component. */
2416 if (TYPE_FIELDS (derived->backend_decl)
2417 || derived->attr.proc_pointer_comp)
2418 return derived->backend_decl;
2419 else
2420 typenode = derived->backend_decl;
2422 else
2424 /* We see this derived type first time, so build the type node. */
2425 typenode = make_node (RECORD_TYPE);
2426 TYPE_NAME (typenode) = get_identifier (derived->name);
2427 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2428 derived->backend_decl = typenode;
2431 if (derived->components
2432 && derived->components->ts.type == BT_DERIVED
2433 && strcmp (derived->components->name, "_data") == 0
2434 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2435 unlimited_entity = true;
2437 /* Go through the derived type components, building them as
2438 necessary. The reason for doing this now is that it is
2439 possible to recurse back to this derived type through a
2440 pointer component (PR24092). If this happens, the fields
2441 will be built and so we can return the type. */
2442 for (c = derived->components; c; c = c->next)
2444 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2445 continue;
2447 if ((!c->attr.pointer && !c->attr.proc_pointer)
2448 || c->ts.u.derived->backend_decl == NULL)
2449 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2451 if (c->ts.u.derived->attr.is_iso_c)
2453 /* Need to copy the modified ts from the derived type. The
2454 typespec was modified because C_PTR/C_FUNPTR are translated
2455 into (void *) from derived types. */
2456 c->ts.type = c->ts.u.derived->ts.type;
2457 c->ts.kind = c->ts.u.derived->ts.kind;
2458 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2459 if (c->initializer)
2461 c->initializer->ts.type = c->ts.type;
2462 c->initializer->ts.kind = c->ts.kind;
2463 c->initializer->ts.f90_type = c->ts.f90_type;
2464 c->initializer->expr_type = EXPR_NULL;
2469 if (TYPE_FIELDS (derived->backend_decl))
2470 return derived->backend_decl;
2472 /* Build the type member list. Install the newly created RECORD_TYPE
2473 node as DECL_CONTEXT of each FIELD_DECL. */
2474 for (c = derived->components; c; c = c->next)
2476 if (c->attr.proc_pointer)
2477 field_type = gfc_get_ppc_type (c);
2478 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2479 field_type = c->ts.u.derived->backend_decl;
2480 else
2482 if (c->ts.type == BT_CHARACTER && !c->ts.deferred)
2484 /* Evaluate the string length. */
2485 gfc_conv_const_charlen (c->ts.u.cl);
2486 gcc_assert (c->ts.u.cl->backend_decl);
2488 else if (c->ts.type == BT_CHARACTER)
2489 c->ts.u.cl->backend_decl
2490 = build_int_cst (gfc_charlen_type_node, 0);
2492 field_type = gfc_typenode_for_spec (&c->ts);
2495 /* This returns an array descriptor type. Initialization may be
2496 required. */
2497 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2499 if (c->attr.pointer || c->attr.allocatable)
2501 enum gfc_array_kind akind;
2502 if (c->attr.pointer)
2503 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2504 : GFC_ARRAY_POINTER;
2505 else
2506 akind = GFC_ARRAY_ALLOCATABLE;
2507 /* Pointers to arrays aren't actually pointer types. The
2508 descriptors are separate, but the data is common. */
2509 field_type = gfc_build_array_type (field_type, c->as, akind,
2510 !c->attr.target
2511 && !c->attr.pointer,
2512 c->attr.contiguous);
2514 else
2515 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2516 PACKED_STATIC,
2517 !c->attr.target);
2519 else if ((c->attr.pointer || c->attr.allocatable)
2520 && !c->attr.proc_pointer
2521 && !(unlimited_entity && c == derived->components))
2522 field_type = build_pointer_type (field_type);
2524 if (c->attr.pointer)
2525 field_type = gfc_nonrestricted_type (field_type);
2527 /* vtype fields can point to different types to the base type. */
2528 if (c->ts.type == BT_DERIVED
2529 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2530 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2531 ptr_mode, true);
2533 /* Ensure that the CLASS language specific flag is set. */
2534 if (c->ts.type == BT_CLASS)
2536 if (POINTER_TYPE_P (field_type))
2537 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2538 else
2539 GFC_CLASS_TYPE_P (field_type) = 1;
2542 field = gfc_add_field_to_struct (typenode,
2543 get_identifier (c->name),
2544 field_type, &chain);
2545 if (c->loc.lb)
2546 gfc_set_decl_location (field, &c->loc);
2547 else if (derived->declared_at.lb)
2548 gfc_set_decl_location (field, &derived->declared_at);
2550 gfc_finish_decl_attrs (field, &c->attr);
2552 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2554 gcc_assert (field);
2555 if (!c->backend_decl)
2556 c->backend_decl = field;
2559 /* Now lay out the derived type, including the fields. */
2560 if (canonical)
2561 TYPE_CANONICAL (typenode) = canonical;
2563 gfc_finish_type (typenode);
2564 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2565 if (derived->module && derived->ns->proc_name
2566 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2568 if (derived->ns->proc_name->backend_decl
2569 && TREE_CODE (derived->ns->proc_name->backend_decl)
2570 == NAMESPACE_DECL)
2572 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2573 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2574 = derived->ns->proc_name->backend_decl;
2578 derived->backend_decl = typenode;
2580 copy_derived_types:
2582 for (dt = gfc_derived_types; dt; dt = dt->next)
2583 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2585 return derived->backend_decl;
2590 gfc_return_by_reference (gfc_symbol * sym)
2592 if (!sym->attr.function)
2593 return 0;
2595 if (sym->attr.dimension)
2596 return 1;
2598 if (sym->ts.type == BT_CHARACTER
2599 && !sym->attr.is_bind_c
2600 && (!sym->attr.result
2601 || !sym->ns->proc_name
2602 || !sym->ns->proc_name->attr.is_bind_c))
2603 return 1;
2605 /* Possibly return complex numbers by reference for g77 compatibility.
2606 We don't do this for calls to intrinsics (as the library uses the
2607 -fno-f2c calling convention), nor for calls to functions which always
2608 require an explicit interface, as no compatibility problems can
2609 arise there. */
2610 if (gfc_option.flag_f2c
2611 && sym->ts.type == BT_COMPLEX
2612 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2613 return 1;
2615 return 0;
2618 static tree
2619 gfc_get_mixed_entry_union (gfc_namespace *ns)
2621 tree type;
2622 tree *chain = NULL;
2623 char name[GFC_MAX_SYMBOL_LEN + 1];
2624 gfc_entry_list *el, *el2;
2626 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2627 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2629 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2631 /* Build the type node. */
2632 type = make_node (UNION_TYPE);
2634 TYPE_NAME (type) = get_identifier (name);
2636 for (el = ns->entries; el; el = el->next)
2638 /* Search for duplicates. */
2639 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2640 if (el2->sym->result == el->sym->result)
2641 break;
2643 if (el == el2)
2644 gfc_add_field_to_struct_1 (type,
2645 get_identifier (el->sym->result->name),
2646 gfc_sym_type (el->sym->result), &chain);
2649 /* Finish off the type. */
2650 gfc_finish_type (type);
2651 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2652 return type;
2655 /* Create a "fn spec" based on the formal arguments;
2656 cf. create_function_arglist. */
2658 static tree
2659 create_fn_spec (gfc_symbol *sym, tree fntype)
2661 char spec[150];
2662 size_t spec_len;
2663 gfc_formal_arglist *f;
2664 tree tmp;
2666 memset (&spec, 0, sizeof (spec));
2667 spec[0] = '.';
2668 spec_len = 1;
2670 if (sym->attr.entry_master)
2671 spec[spec_len++] = 'R';
2672 if (gfc_return_by_reference (sym))
2674 gfc_symbol *result = sym->result ? sym->result : sym;
2676 if (result->attr.pointer || sym->attr.proc_pointer)
2677 spec[spec_len++] = '.';
2678 else
2679 spec[spec_len++] = 'w';
2680 if (sym->ts.type == BT_CHARACTER)
2681 spec[spec_len++] = 'R';
2684 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2685 if (spec_len < sizeof (spec))
2687 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2688 || f->sym->attr.external || f->sym->attr.cray_pointer
2689 || (f->sym->ts.type == BT_DERIVED
2690 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2691 || f->sym->ts.u.derived->attr.pointer_comp))
2692 || (f->sym->ts.type == BT_CLASS
2693 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2694 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2695 spec[spec_len++] = '.';
2696 else if (f->sym->attr.intent == INTENT_IN)
2697 spec[spec_len++] = 'r';
2698 else if (f->sym)
2699 spec[spec_len++] = 'w';
2702 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2703 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2704 return build_type_attribute_variant (fntype, tmp);
2708 tree
2709 gfc_get_function_type (gfc_symbol * sym)
2711 tree type;
2712 vec<tree, va_gc> *typelist = NULL;
2713 gfc_formal_arglist *f;
2714 gfc_symbol *arg;
2715 int alternate_return = 0;
2716 bool is_varargs = true;
2718 /* Make sure this symbol is a function, a subroutine or the main
2719 program. */
2720 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2721 || sym->attr.flavor == FL_PROGRAM);
2723 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2724 so that they can be detected here and handled further down. */
2725 if (sym->backend_decl == NULL)
2726 sym->backend_decl = error_mark_node;
2727 else if (sym->backend_decl == error_mark_node)
2728 goto arg_type_list_done;
2729 else if (sym->attr.proc_pointer)
2730 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2731 else
2732 return TREE_TYPE (sym->backend_decl);
2734 if (sym->attr.entry_master)
2735 /* Additional parameter for selecting an entry point. */
2736 vec_safe_push (typelist, gfc_array_index_type);
2738 if (sym->result)
2739 arg = sym->result;
2740 else
2741 arg = sym;
2743 if (arg->ts.type == BT_CHARACTER)
2744 gfc_conv_const_charlen (arg->ts.u.cl);
2746 /* Some functions we use an extra parameter for the return value. */
2747 if (gfc_return_by_reference (sym))
2749 type = gfc_sym_type (arg);
2750 if (arg->ts.type == BT_COMPLEX
2751 || arg->attr.dimension
2752 || arg->ts.type == BT_CHARACTER)
2753 type = build_reference_type (type);
2755 vec_safe_push (typelist, type);
2756 if (arg->ts.type == BT_CHARACTER)
2758 if (!arg->ts.deferred)
2759 /* Transfer by value. */
2760 vec_safe_push (typelist, gfc_charlen_type_node);
2761 else
2762 /* Deferred character lengths are transferred by reference
2763 so that the value can be returned. */
2764 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2768 /* Build the argument types for the function. */
2769 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2771 arg = f->sym;
2772 if (arg)
2774 /* Evaluate constant character lengths here so that they can be
2775 included in the type. */
2776 if (arg->ts.type == BT_CHARACTER)
2777 gfc_conv_const_charlen (arg->ts.u.cl);
2779 if (arg->attr.flavor == FL_PROCEDURE)
2781 type = gfc_get_function_type (arg);
2782 type = build_pointer_type (type);
2784 else
2785 type = gfc_sym_type (arg);
2787 /* Parameter Passing Convention
2789 We currently pass all parameters by reference.
2790 Parameters with INTENT(IN) could be passed by value.
2791 The problem arises if a function is called via an implicit
2792 prototype. In this situation the INTENT is not known.
2793 For this reason all parameters to global functions must be
2794 passed by reference. Passing by value would potentially
2795 generate bad code. Worse there would be no way of telling that
2796 this code was bad, except that it would give incorrect results.
2798 Contained procedures could pass by value as these are never
2799 used without an explicit interface, and cannot be passed as
2800 actual parameters for a dummy procedure. */
2802 vec_safe_push (typelist, type);
2804 else
2806 if (sym->attr.subroutine)
2807 alternate_return = 1;
2811 /* Add hidden string length parameters. */
2812 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2814 arg = f->sym;
2815 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2817 if (!arg->ts.deferred)
2818 /* Transfer by value. */
2819 type = gfc_charlen_type_node;
2820 else
2821 /* Deferred character lengths are transferred by reference
2822 so that the value can be returned. */
2823 type = build_pointer_type (gfc_charlen_type_node);
2825 vec_safe_push (typelist, type);
2829 if (!vec_safe_is_empty (typelist)
2830 || sym->attr.is_main_program
2831 || sym->attr.if_source != IFSRC_UNKNOWN)
2832 is_varargs = false;
2834 if (sym->backend_decl == error_mark_node)
2835 sym->backend_decl = NULL_TREE;
2837 arg_type_list_done:
2839 if (alternate_return)
2840 type = integer_type_node;
2841 else if (!sym->attr.function || gfc_return_by_reference (sym))
2842 type = void_type_node;
2843 else if (sym->attr.mixed_entry_master)
2844 type = gfc_get_mixed_entry_union (sym->ns);
2845 else if (gfc_option.flag_f2c
2846 && sym->ts.type == BT_REAL
2847 && sym->ts.kind == gfc_default_real_kind
2848 && !sym->attr.always_explicit)
2850 /* Special case: f2c calling conventions require that (scalar)
2851 default REAL functions return the C type double instead. f2c
2852 compatibility is only an issue with functions that don't
2853 require an explicit interface, as only these could be
2854 implemented in Fortran 77. */
2855 sym->ts.kind = gfc_default_double_kind;
2856 type = gfc_typenode_for_spec (&sym->ts);
2857 sym->ts.kind = gfc_default_real_kind;
2859 else if (sym->result && sym->result->attr.proc_pointer)
2860 /* Procedure pointer return values. */
2862 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2864 /* Unset proc_pointer as gfc_get_function_type
2865 is called recursively. */
2866 sym->result->attr.proc_pointer = 0;
2867 type = build_pointer_type (gfc_get_function_type (sym->result));
2868 sym->result->attr.proc_pointer = 1;
2870 else
2871 type = gfc_sym_type (sym->result);
2873 else
2874 type = gfc_sym_type (sym);
2876 if (is_varargs)
2877 type = build_varargs_function_type_vec (type, typelist);
2878 else
2879 type = build_function_type_vec (type, typelist);
2880 type = create_fn_spec (sym, type);
2882 return type;
2885 /* Language hooks for middle-end access to type nodes. */
2887 /* Return an integer type with BITS bits of precision,
2888 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2890 tree
2891 gfc_type_for_size (unsigned bits, int unsignedp)
2893 if (!unsignedp)
2895 int i;
2896 for (i = 0; i <= MAX_INT_KINDS; ++i)
2898 tree type = gfc_integer_types[i];
2899 if (type && bits == TYPE_PRECISION (type))
2900 return type;
2903 /* Handle TImode as a special case because it is used by some backends
2904 (e.g. ARM) even though it is not available for normal use. */
2905 #if HOST_BITS_PER_WIDE_INT >= 64
2906 if (bits == TYPE_PRECISION (intTI_type_node))
2907 return intTI_type_node;
2908 #endif
2910 if (bits <= TYPE_PRECISION (intQI_type_node))
2911 return intQI_type_node;
2912 if (bits <= TYPE_PRECISION (intHI_type_node))
2913 return intHI_type_node;
2914 if (bits <= TYPE_PRECISION (intSI_type_node))
2915 return intSI_type_node;
2916 if (bits <= TYPE_PRECISION (intDI_type_node))
2917 return intDI_type_node;
2918 if (bits <= TYPE_PRECISION (intTI_type_node))
2919 return intTI_type_node;
2921 else
2923 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2924 return unsigned_intQI_type_node;
2925 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2926 return unsigned_intHI_type_node;
2927 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2928 return unsigned_intSI_type_node;
2929 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2930 return unsigned_intDI_type_node;
2931 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2932 return unsigned_intTI_type_node;
2935 return NULL_TREE;
2938 /* Return a data type that has machine mode MODE. If the mode is an
2939 integer, then UNSIGNEDP selects between signed and unsigned types. */
2941 tree
2942 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2944 int i;
2945 tree *base;
2947 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2948 base = gfc_real_types;
2949 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2950 base = gfc_complex_types;
2951 else if (SCALAR_INT_MODE_P (mode))
2953 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2954 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2956 else if (VECTOR_MODE_P (mode))
2958 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2959 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2960 if (inner_type != NULL_TREE)
2961 return build_vector_type_for_mode (inner_type, mode);
2962 return NULL_TREE;
2964 else
2965 return NULL_TREE;
2967 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2969 tree type = base[i];
2970 if (type && mode == TYPE_MODE (type))
2971 return type;
2974 return NULL_TREE;
2977 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2978 in that case. */
2980 bool
2981 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2983 int rank, dim;
2984 bool indirect = false;
2985 tree etype, ptype, field, t, base_decl;
2986 tree data_off, dim_off, dim_size, elem_size;
2987 tree lower_suboff, upper_suboff, stride_suboff;
2989 if (! GFC_DESCRIPTOR_TYPE_P (type))
2991 if (! POINTER_TYPE_P (type))
2992 return false;
2993 type = TREE_TYPE (type);
2994 if (! GFC_DESCRIPTOR_TYPE_P (type))
2995 return false;
2996 indirect = true;
2999 rank = GFC_TYPE_ARRAY_RANK (type);
3000 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3001 return false;
3003 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3004 gcc_assert (POINTER_TYPE_P (etype));
3005 etype = TREE_TYPE (etype);
3007 /* If the type is not a scalar coarray. */
3008 if (TREE_CODE (etype) == ARRAY_TYPE)
3009 etype = TREE_TYPE (etype);
3011 /* Can't handle variable sized elements yet. */
3012 if (int_size_in_bytes (etype) <= 0)
3013 return false;
3014 /* Nor non-constant lower bounds in assumed shape arrays. */
3015 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3016 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3018 for (dim = 0; dim < rank; dim++)
3019 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3020 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3021 return false;
3024 memset (info, '\0', sizeof (*info));
3025 info->ndimensions = rank;
3026 info->element_type = etype;
3027 ptype = build_pointer_type (gfc_array_index_type);
3028 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3029 if (!base_decl)
3031 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
3032 indirect ? build_pointer_type (ptype) : ptype);
3033 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3035 info->base_decl = base_decl;
3036 if (indirect)
3037 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3039 if (GFC_TYPE_ARRAY_SPAN (type))
3040 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3041 else
3042 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3043 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3044 data_off = byte_position (field);
3045 field = DECL_CHAIN (field);
3046 field = DECL_CHAIN (field);
3047 field = DECL_CHAIN (field);
3048 dim_off = byte_position (field);
3049 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3050 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3051 stride_suboff = byte_position (field);
3052 field = DECL_CHAIN (field);
3053 lower_suboff = byte_position (field);
3054 field = DECL_CHAIN (field);
3055 upper_suboff = byte_position (field);
3057 t = base_decl;
3058 if (!integer_zerop (data_off))
3059 t = fold_build_pointer_plus (t, data_off);
3060 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3061 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3062 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3063 info->allocated = build2 (NE_EXPR, boolean_type_node,
3064 info->data_location, null_pointer_node);
3065 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3066 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3067 info->associated = build2 (NE_EXPR, boolean_type_node,
3068 info->data_location, null_pointer_node);
3070 for (dim = 0; dim < rank; dim++)
3072 t = fold_build_pointer_plus (base_decl,
3073 size_binop (PLUS_EXPR,
3074 dim_off, lower_suboff));
3075 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3076 info->dimen[dim].lower_bound = t;
3077 t = fold_build_pointer_plus (base_decl,
3078 size_binop (PLUS_EXPR,
3079 dim_off, upper_suboff));
3080 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3081 info->dimen[dim].upper_bound = t;
3082 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3083 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3085 /* Assumed shape arrays have known lower bounds. */
3086 info->dimen[dim].upper_bound
3087 = build2 (MINUS_EXPR, gfc_array_index_type,
3088 info->dimen[dim].upper_bound,
3089 info->dimen[dim].lower_bound);
3090 info->dimen[dim].lower_bound
3091 = fold_convert (gfc_array_index_type,
3092 GFC_TYPE_ARRAY_LBOUND (type, dim));
3093 info->dimen[dim].upper_bound
3094 = build2 (PLUS_EXPR, gfc_array_index_type,
3095 info->dimen[dim].lower_bound,
3096 info->dimen[dim].upper_bound);
3098 t = fold_build_pointer_plus (base_decl,
3099 size_binop (PLUS_EXPR,
3100 dim_off, stride_suboff));
3101 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3102 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3103 info->dimen[dim].stride = t;
3104 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3107 return true;
3111 /* Create a type to handle vector subscripts for coarray library calls. It
3112 has the form:
3113 struct caf_vector_t {
3114 size_t nvec; // size of the vector
3115 union {
3116 struct {
3117 void *vector;
3118 int kind;
3119 } v;
3120 struct {
3121 ptrdiff_t lower_bound;
3122 ptrdiff_t upper_bound;
3123 ptrdiff_t stride;
3124 } triplet;
3125 } u;
3127 where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3128 size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
3130 tree
3131 gfc_get_caf_vector_type (int dim)
3133 static tree vector_types[GFC_MAX_DIMENSIONS];
3134 static tree vec_type = NULL_TREE;
3135 tree triplet_struct_type, vect_struct_type, union_type, tmp, *chain;
3137 if (vector_types[dim-1] != NULL_TREE)
3138 return vector_types[dim-1];
3140 if (vec_type == NULL_TREE)
3142 chain = 0;
3143 vect_struct_type = make_node (RECORD_TYPE);
3144 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3145 get_identifier ("vector"),
3146 pvoid_type_node, &chain);
3147 TREE_NO_WARNING (tmp) = 1;
3148 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3149 get_identifier ("kind"),
3150 integer_type_node, &chain);
3151 TREE_NO_WARNING (tmp) = 1;
3152 gfc_finish_type (vect_struct_type);
3154 chain = 0;
3155 triplet_struct_type = make_node (RECORD_TYPE);
3156 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3157 get_identifier ("lower_bound"),
3158 gfc_array_index_type, &chain);
3159 TREE_NO_WARNING (tmp) = 1;
3160 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3161 get_identifier ("upper_bound"),
3162 gfc_array_index_type, &chain);
3163 TREE_NO_WARNING (tmp) = 1;
3164 tmp = gfc_add_field_to_struct_1 (triplet_struct_type, get_identifier ("stride"),
3165 gfc_array_index_type, &chain);
3166 TREE_NO_WARNING (tmp) = 1;
3167 gfc_finish_type (triplet_struct_type);
3169 chain = 0;
3170 union_type = make_node (UNION_TYPE);
3171 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3172 vect_struct_type, &chain);
3173 TREE_NO_WARNING (tmp) = 1;
3174 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("triplet"),
3175 triplet_struct_type, &chain);
3176 TREE_NO_WARNING (tmp) = 1;
3177 gfc_finish_type (union_type);
3179 chain = 0;
3180 vec_type = make_node (RECORD_TYPE);
3181 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("nvec"),
3182 size_type_node, &chain);
3183 TREE_NO_WARNING (tmp) = 1;
3184 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("u"),
3185 union_type, &chain);
3186 TREE_NO_WARNING (tmp) = 1;
3187 gfc_finish_type (vec_type);
3188 TYPE_NAME (vec_type) = get_identifier ("caf_vector_t");
3191 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3192 gfc_rank_cst[dim-1]);
3193 vector_types[dim-1] = build_array_type (vec_type, tmp);
3194 return vector_types[dim-1];
3197 #include "gt-fortran-trans-types.h"