Revert
[official-gcc.git] / libgfortran / generated / matmul_l8.c
blob76dee0a48d7fc9e710ee5e05a220980797c32a5d
1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
36 #if defined (HAVE_GFC_LOGICAL_8)
38 /* Dimensions: retarray(x,y) a(x, count) b(count,y).
39 Either a or b can be rank 1. In this case x or y is 1. */
41 extern void matmul_l8 (gfc_array_l8 * const restrict,
42 gfc_array_l4 * const restrict, gfc_array_l4 * const restrict);
43 export_proto(matmul_l8);
45 void
46 matmul_l8 (gfc_array_l8 * const restrict retarray,
47 gfc_array_l4 * const restrict a, gfc_array_l4 * const restrict b)
49 const GFC_INTEGER_4 * restrict abase;
50 const GFC_INTEGER_4 * restrict bbase;
51 GFC_LOGICAL_8 * restrict dest;
52 index_type rxstride;
53 index_type rystride;
54 index_type xcount;
55 index_type ycount;
56 index_type xstride;
57 index_type ystride;
58 index_type x;
59 index_type y;
61 const GFC_INTEGER_4 * restrict pa;
62 const GFC_INTEGER_4 * restrict pb;
63 index_type astride;
64 index_type bstride;
65 index_type count;
66 index_type n;
68 assert (GFC_DESCRIPTOR_RANK (a) == 2
69 || GFC_DESCRIPTOR_RANK (b) == 2);
71 if (retarray->data == NULL)
73 if (GFC_DESCRIPTOR_RANK (a) == 1)
75 retarray->dim[0].lbound = 0;
76 retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
77 retarray->dim[0].stride = 1;
79 else if (GFC_DESCRIPTOR_RANK (b) == 1)
81 retarray->dim[0].lbound = 0;
82 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
83 retarray->dim[0].stride = 1;
85 else
87 retarray->dim[0].lbound = 0;
88 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
89 retarray->dim[0].stride = 1;
91 retarray->dim[1].lbound = 0;
92 retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
93 retarray->dim[1].stride = retarray->dim[0].ubound+1;
96 retarray->data
97 = internal_malloc_size (sizeof (GFC_LOGICAL_8) * size0 ((array_t *) retarray));
98 retarray->offset = 0;
101 abase = a->data;
102 if (GFC_DESCRIPTOR_SIZE (a) != 4)
104 assert (GFC_DESCRIPTOR_SIZE (a) == 8);
105 abase = GFOR_POINTER_L8_TO_L4 (abase);
107 bbase = b->data;
108 if (GFC_DESCRIPTOR_SIZE (b) != 4)
110 assert (GFC_DESCRIPTOR_SIZE (b) == 8);
111 bbase = GFOR_POINTER_L8_TO_L4 (bbase);
113 dest = retarray->data;
116 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
118 rxstride = retarray->dim[0].stride;
119 rystride = rxstride;
121 else
123 rxstride = retarray->dim[0].stride;
124 rystride = retarray->dim[1].stride;
127 /* If we have rank 1 parameters, zero the absent stride, and set the size to
128 one. */
129 if (GFC_DESCRIPTOR_RANK (a) == 1)
131 astride = a->dim[0].stride;
132 count = a->dim[0].ubound + 1 - a->dim[0].lbound;
133 xstride = 0;
134 rxstride = 0;
135 xcount = 1;
137 else
139 astride = a->dim[1].stride;
140 count = a->dim[1].ubound + 1 - a->dim[1].lbound;
141 xstride = a->dim[0].stride;
142 xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
144 if (GFC_DESCRIPTOR_RANK (b) == 1)
146 bstride = b->dim[0].stride;
147 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
148 ystride = 0;
149 rystride = 0;
150 ycount = 1;
152 else
154 bstride = b->dim[0].stride;
155 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
156 ystride = b->dim[1].stride;
157 ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
160 for (y = 0; y < ycount; y++)
162 for (x = 0; x < xcount; x++)
164 /* Do the summation for this element. For real and integer types
165 this is the same as DOT_PRODUCT. For complex types we use do
166 a*b, not conjg(a)*b. */
167 pa = abase;
168 pb = bbase;
169 *dest = 0;
171 for (n = 0; n < count; n++)
173 if (*pa && *pb)
175 *dest = 1;
176 break;
178 pa += astride;
179 pb += bstride;
182 dest += rxstride;
183 abase += xstride;
185 abase -= xstride * xcount;
186 bbase += ystride;
187 dest += rystride - (rxstride * xcount);
191 #endif