Revert
[official-gcc.git] / gcc / dwarf2out.c
blobc61f3d8bd92bcf21e64071c907a647a0c62631c6
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_pubtypes_section;
160 static GTY(()) section *debug_str_section;
161 static GTY(()) section *debug_ranges_section;
162 static GTY(()) section *debug_frame_section;
164 /* How to start an assembler comment. */
165 #ifndef ASM_COMMENT_START
166 #define ASM_COMMENT_START ";#"
167 #endif
169 typedef struct dw_cfi_struct *dw_cfi_ref;
170 typedef struct dw_fde_struct *dw_fde_ref;
171 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173 /* Call frames are described using a sequence of Call Frame
174 Information instructions. The register number, offset
175 and address fields are provided as possible operands;
176 their use is selected by the opcode field. */
178 enum dw_cfi_oprnd_type {
179 dw_cfi_oprnd_unused,
180 dw_cfi_oprnd_reg_num,
181 dw_cfi_oprnd_offset,
182 dw_cfi_oprnd_addr,
183 dw_cfi_oprnd_loc
186 typedef union dw_cfi_oprnd_struct GTY(())
188 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
189 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
190 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
191 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 dw_cfi_oprnd;
195 typedef struct dw_cfi_struct GTY(())
197 dw_cfi_ref dw_cfi_next;
198 enum dwarf_call_frame_info dw_cfi_opc;
199 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
200 dw_cfi_oprnd1;
201 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
202 dw_cfi_oprnd2;
204 dw_cfi_node;
206 /* This is how we define the location of the CFA. We use to handle it
207 as REG + OFFSET all the time, but now it can be more complex.
208 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
209 Instead of passing around REG and OFFSET, we pass a copy
210 of this structure. */
211 typedef struct cfa_loc GTY(())
213 HOST_WIDE_INT offset;
214 HOST_WIDE_INT base_offset;
215 unsigned int reg;
216 int indirect; /* 1 if CFA is accessed via a dereference. */
217 } dw_cfa_location;
219 /* All call frame descriptions (FDE's) in the GCC generated DWARF
220 refer to a single Common Information Entry (CIE), defined at
221 the beginning of the .debug_frame section. This use of a single
222 CIE obviates the need to keep track of multiple CIE's
223 in the DWARF generation routines below. */
225 typedef struct dw_fde_struct GTY(())
227 tree decl;
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 const char *dw_fde_hot_section_label;
232 const char *dw_fde_hot_section_end_label;
233 const char *dw_fde_unlikely_section_label;
234 const char *dw_fde_unlikely_section_end_label;
235 bool dw_fde_switched_sections;
236 dw_cfi_ref dw_fde_cfi;
237 unsigned funcdef_number;
238 unsigned all_throwers_are_sibcalls : 1;
239 unsigned nothrow : 1;
240 unsigned uses_eh_lsda : 1;
242 dw_fde_node;
244 /* Maximum size (in bytes) of an artificially generated label. */
245 #define MAX_ARTIFICIAL_LABEL_BYTES 30
247 /* The size of addresses as they appear in the Dwarf 2 data.
248 Some architectures use word addresses to refer to code locations,
249 but Dwarf 2 info always uses byte addresses. On such machines,
250 Dwarf 2 addresses need to be larger than the architecture's
251 pointers. */
252 #ifndef DWARF2_ADDR_SIZE
253 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
254 #endif
256 /* The size in bytes of a DWARF field indicating an offset or length
257 relative to a debug info section, specified to be 4 bytes in the
258 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
259 as PTR_SIZE. */
261 #ifndef DWARF_OFFSET_SIZE
262 #define DWARF_OFFSET_SIZE 4
263 #endif
265 /* According to the (draft) DWARF 3 specification, the initial length
266 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
267 bytes are 0xffffffff, followed by the length stored in the next 8
268 bytes.
270 However, the SGI/MIPS ABI uses an initial length which is equal to
271 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
273 #ifndef DWARF_INITIAL_LENGTH_SIZE
274 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
275 #endif
277 #define DWARF_VERSION 2
279 /* Round SIZE up to the nearest BOUNDARY. */
280 #define DWARF_ROUND(SIZE,BOUNDARY) \
281 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
283 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
284 #ifndef DWARF_CIE_DATA_ALIGNMENT
285 #ifdef STACK_GROWS_DOWNWARD
286 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
287 #else
288 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
289 #endif
290 #endif
292 /* CIE identifier. */
293 #if HOST_BITS_PER_WIDE_INT >= 64
294 #define DWARF_CIE_ID \
295 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
296 #else
297 #define DWARF_CIE_ID DW_CIE_ID
298 #endif
300 /* A pointer to the base of a table that contains frame description
301 information for each routine. */
302 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
304 /* Number of elements currently allocated for fde_table. */
305 static GTY(()) unsigned fde_table_allocated;
307 /* Number of elements in fde_table currently in use. */
308 static GTY(()) unsigned fde_table_in_use;
310 /* Size (in elements) of increments by which we may expand the
311 fde_table. */
312 #define FDE_TABLE_INCREMENT 256
314 /* A list of call frame insns for the CIE. */
315 static GTY(()) dw_cfi_ref cie_cfi_head;
317 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
318 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
319 attribute that accelerates the lookup of the FDE associated
320 with the subprogram. This variable holds the table index of the FDE
321 associated with the current function (body) definition. */
322 static unsigned current_funcdef_fde;
323 #endif
325 struct indirect_string_node GTY(())
327 const char *str;
328 unsigned int refcount;
329 unsigned int form;
330 char *label;
333 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
335 static GTY(()) int dw2_string_counter;
336 static GTY(()) unsigned long dwarf2out_cfi_label_num;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
340 /* Forward declarations for functions defined in this file. */
342 static char *stripattributes (const char *);
343 static const char *dwarf_cfi_name (unsigned);
344 static dw_cfi_ref new_cfi (void);
345 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
346 static void add_fde_cfi (const char *, dw_cfi_ref);
347 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
348 static void lookup_cfa (dw_cfa_location *);
349 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
350 static void initial_return_save (rtx);
351 static HOST_WIDE_INT stack_adjust_offset (rtx);
352 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
353 static void output_call_frame_info (int);
354 static void dwarf2out_stack_adjust (rtx, bool);
355 static void flush_queued_reg_saves (void);
356 static bool clobbers_queued_reg_save (rtx);
357 static void dwarf2out_frame_debug_expr (rtx, const char *);
359 /* Support for complex CFA locations. */
360 static void output_cfa_loc (dw_cfi_ref);
361 static void get_cfa_from_loc_descr (dw_cfa_location *,
362 struct dw_loc_descr_struct *);
363 static struct dw_loc_descr_struct *build_cfa_loc
364 (dw_cfa_location *, HOST_WIDE_INT);
365 static void def_cfa_1 (const char *, dw_cfa_location *);
367 /* How to start an assembler comment. */
368 #ifndef ASM_COMMENT_START
369 #define ASM_COMMENT_START ";#"
370 #endif
372 /* Data and reference forms for relocatable data. */
373 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
374 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
376 #ifndef DEBUG_FRAME_SECTION
377 #define DEBUG_FRAME_SECTION ".debug_frame"
378 #endif
380 #ifndef FUNC_BEGIN_LABEL
381 #define FUNC_BEGIN_LABEL "LFB"
382 #endif
384 #ifndef FUNC_END_LABEL
385 #define FUNC_END_LABEL "LFE"
386 #endif
388 #ifndef FRAME_BEGIN_LABEL
389 #define FRAME_BEGIN_LABEL "Lframe"
390 #endif
391 #define CIE_AFTER_SIZE_LABEL "LSCIE"
392 #define CIE_END_LABEL "LECIE"
393 #define FDE_LABEL "LSFDE"
394 #define FDE_AFTER_SIZE_LABEL "LASFDE"
395 #define FDE_END_LABEL "LEFDE"
396 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
397 #define LINE_NUMBER_END_LABEL "LELT"
398 #define LN_PROLOG_AS_LABEL "LASLTP"
399 #define LN_PROLOG_END_LABEL "LELTP"
400 #define DIE_LABEL_PREFIX "DW"
402 /* The DWARF 2 CFA column which tracks the return address. Normally this
403 is the column for PC, or the first column after all of the hard
404 registers. */
405 #ifndef DWARF_FRAME_RETURN_COLUMN
406 #ifdef PC_REGNUM
407 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
408 #else
409 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
410 #endif
411 #endif
413 /* The mapping from gcc register number to DWARF 2 CFA column number. By
414 default, we just provide columns for all registers. */
415 #ifndef DWARF_FRAME_REGNUM
416 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
417 #endif
419 /* Hook used by __throw. */
422 expand_builtin_dwarf_sp_column (void)
424 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
425 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
428 /* Return a pointer to a copy of the section string name S with all
429 attributes stripped off, and an asterisk prepended (for assemble_name). */
431 static inline char *
432 stripattributes (const char *s)
434 char *stripped = XNEWVEC (char, strlen (s) + 2);
435 char *p = stripped;
437 *p++ = '*';
439 while (*s && *s != ',')
440 *p++ = *s++;
442 *p = '\0';
443 return stripped;
446 /* Generate code to initialize the register size table. */
448 void
449 expand_builtin_init_dwarf_reg_sizes (tree address)
451 unsigned int i;
452 enum machine_mode mode = TYPE_MODE (char_type_node);
453 rtx addr = expand_normal (address);
454 rtx mem = gen_rtx_MEM (BLKmode, addr);
455 bool wrote_return_column = false;
457 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
459 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
461 if (rnum < DWARF_FRAME_REGISTERS)
463 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
464 enum machine_mode save_mode = reg_raw_mode[i];
465 HOST_WIDE_INT size;
467 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
468 save_mode = choose_hard_reg_mode (i, 1, true);
469 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
471 if (save_mode == VOIDmode)
472 continue;
473 wrote_return_column = true;
475 size = GET_MODE_SIZE (save_mode);
476 if (offset < 0)
477 continue;
479 emit_move_insn (adjust_address (mem, mode, offset),
480 gen_int_mode (size, mode));
484 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
485 gcc_assert (wrote_return_column);
486 i = DWARF_ALT_FRAME_RETURN_COLUMN;
487 wrote_return_column = false;
488 #else
489 i = DWARF_FRAME_RETURN_COLUMN;
490 #endif
492 if (! wrote_return_column)
494 enum machine_mode save_mode = Pmode;
495 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
496 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
497 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
501 /* Convert a DWARF call frame info. operation to its string name */
503 static const char *
504 dwarf_cfi_name (unsigned int cfi_opc)
506 switch (cfi_opc)
508 case DW_CFA_advance_loc:
509 return "DW_CFA_advance_loc";
510 case DW_CFA_offset:
511 return "DW_CFA_offset";
512 case DW_CFA_restore:
513 return "DW_CFA_restore";
514 case DW_CFA_nop:
515 return "DW_CFA_nop";
516 case DW_CFA_set_loc:
517 return "DW_CFA_set_loc";
518 case DW_CFA_advance_loc1:
519 return "DW_CFA_advance_loc1";
520 case DW_CFA_advance_loc2:
521 return "DW_CFA_advance_loc2";
522 case DW_CFA_advance_loc4:
523 return "DW_CFA_advance_loc4";
524 case DW_CFA_offset_extended:
525 return "DW_CFA_offset_extended";
526 case DW_CFA_restore_extended:
527 return "DW_CFA_restore_extended";
528 case DW_CFA_undefined:
529 return "DW_CFA_undefined";
530 case DW_CFA_same_value:
531 return "DW_CFA_same_value";
532 case DW_CFA_register:
533 return "DW_CFA_register";
534 case DW_CFA_remember_state:
535 return "DW_CFA_remember_state";
536 case DW_CFA_restore_state:
537 return "DW_CFA_restore_state";
538 case DW_CFA_def_cfa:
539 return "DW_CFA_def_cfa";
540 case DW_CFA_def_cfa_register:
541 return "DW_CFA_def_cfa_register";
542 case DW_CFA_def_cfa_offset:
543 return "DW_CFA_def_cfa_offset";
545 /* DWARF 3 */
546 case DW_CFA_def_cfa_expression:
547 return "DW_CFA_def_cfa_expression";
548 case DW_CFA_expression:
549 return "DW_CFA_expression";
550 case DW_CFA_offset_extended_sf:
551 return "DW_CFA_offset_extended_sf";
552 case DW_CFA_def_cfa_sf:
553 return "DW_CFA_def_cfa_sf";
554 case DW_CFA_def_cfa_offset_sf:
555 return "DW_CFA_def_cfa_offset_sf";
557 /* SGI/MIPS specific */
558 case DW_CFA_MIPS_advance_loc8:
559 return "DW_CFA_MIPS_advance_loc8";
561 /* GNU extensions */
562 case DW_CFA_GNU_window_save:
563 return "DW_CFA_GNU_window_save";
564 case DW_CFA_GNU_args_size:
565 return "DW_CFA_GNU_args_size";
566 case DW_CFA_GNU_negative_offset_extended:
567 return "DW_CFA_GNU_negative_offset_extended";
569 default:
570 return "DW_CFA_<unknown>";
574 /* Return a pointer to a newly allocated Call Frame Instruction. */
576 static inline dw_cfi_ref
577 new_cfi (void)
579 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
581 cfi->dw_cfi_next = NULL;
582 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
583 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
585 return cfi;
588 /* Add a Call Frame Instruction to list of instructions. */
590 static inline void
591 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
593 dw_cfi_ref *p;
595 /* Find the end of the chain. */
596 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
599 *p = cfi;
602 /* Generate a new label for the CFI info to refer to. */
604 char *
605 dwarf2out_cfi_label (void)
607 static char label[20];
609 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
610 ASM_OUTPUT_LABEL (asm_out_file, label);
611 return label;
614 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
615 or to the CIE if LABEL is NULL. */
617 static void
618 add_fde_cfi (const char *label, dw_cfi_ref cfi)
620 if (label)
622 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
624 if (*label == 0)
625 label = dwarf2out_cfi_label ();
627 if (fde->dw_fde_current_label == NULL
628 || strcmp (label, fde->dw_fde_current_label) != 0)
630 dw_cfi_ref xcfi;
632 label = xstrdup (label);
634 /* Set the location counter to the new label. */
635 xcfi = new_cfi ();
636 /* If we have a current label, advance from there, otherwise
637 set the location directly using set_loc. */
638 xcfi->dw_cfi_opc = fde->dw_fde_current_label
639 ? DW_CFA_advance_loc4
640 : DW_CFA_set_loc;
641 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642 add_cfi (&fde->dw_fde_cfi, xcfi);
644 fde->dw_fde_current_label = label;
647 add_cfi (&fde->dw_fde_cfi, cfi);
650 else
651 add_cfi (&cie_cfi_head, cfi);
654 /* Subroutine of lookup_cfa. */
656 static void
657 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
659 switch (cfi->dw_cfi_opc)
661 case DW_CFA_def_cfa_offset:
662 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
663 break;
664 case DW_CFA_def_cfa_offset_sf:
665 loc->offset
666 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
667 break;
668 case DW_CFA_def_cfa_register:
669 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
670 break;
671 case DW_CFA_def_cfa:
672 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
673 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
674 break;
675 case DW_CFA_def_cfa_sf:
676 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
677 loc->offset
678 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
679 break;
680 case DW_CFA_def_cfa_expression:
681 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
682 break;
683 default:
684 break;
688 /* Find the previous value for the CFA. */
690 static void
691 lookup_cfa (dw_cfa_location *loc)
693 dw_cfi_ref cfi;
695 loc->reg = INVALID_REGNUM;
696 loc->offset = 0;
697 loc->indirect = 0;
698 loc->base_offset = 0;
700 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
701 lookup_cfa_1 (cfi, loc);
703 if (fde_table_in_use)
705 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
706 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
707 lookup_cfa_1 (cfi, loc);
711 /* The current rule for calculating the DWARF2 canonical frame address. */
712 static dw_cfa_location cfa;
714 /* The register used for saving registers to the stack, and its offset
715 from the CFA. */
716 static dw_cfa_location cfa_store;
718 /* The running total of the size of arguments pushed onto the stack. */
719 static HOST_WIDE_INT args_size;
721 /* The last args_size we actually output. */
722 static HOST_WIDE_INT old_args_size;
724 /* Entry point to update the canonical frame address (CFA).
725 LABEL is passed to add_fde_cfi. The value of CFA is now to be
726 calculated from REG+OFFSET. */
728 void
729 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
731 dw_cfa_location loc;
732 loc.indirect = 0;
733 loc.base_offset = 0;
734 loc.reg = reg;
735 loc.offset = offset;
736 def_cfa_1 (label, &loc);
739 /* Determine if two dw_cfa_location structures define the same data. */
741 static bool
742 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
744 return (loc1->reg == loc2->reg
745 && loc1->offset == loc2->offset
746 && loc1->indirect == loc2->indirect
747 && (loc1->indirect == 0
748 || loc1->base_offset == loc2->base_offset));
751 /* This routine does the actual work. The CFA is now calculated from
752 the dw_cfa_location structure. */
754 static void
755 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
757 dw_cfi_ref cfi;
758 dw_cfa_location old_cfa, loc;
760 cfa = *loc_p;
761 loc = *loc_p;
763 if (cfa_store.reg == loc.reg && loc.indirect == 0)
764 cfa_store.offset = loc.offset;
766 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
767 lookup_cfa (&old_cfa);
769 /* If nothing changed, no need to issue any call frame instructions. */
770 if (cfa_equal_p (&loc, &old_cfa))
771 return;
773 cfi = new_cfi ();
775 if (loc.reg == old_cfa.reg && !loc.indirect)
777 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
778 the CFA register did not change but the offset did. */
779 if (loc.offset < 0)
781 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
782 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
784 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
785 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
787 else
789 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
790 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
794 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
795 else if (loc.offset == old_cfa.offset
796 && old_cfa.reg != INVALID_REGNUM
797 && !loc.indirect)
799 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
800 indicating the CFA register has changed to <register> but the
801 offset has not changed. */
802 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
805 #endif
807 else if (loc.indirect == 0)
809 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
810 indicating the CFA register has changed to <register> with
811 the specified offset. */
812 if (loc.offset < 0)
814 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
815 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
817 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
818 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
819 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
821 else
823 cfi->dw_cfi_opc = DW_CFA_def_cfa;
824 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
825 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
828 else
830 /* Construct a DW_CFA_def_cfa_expression instruction to
831 calculate the CFA using a full location expression since no
832 register-offset pair is available. */
833 struct dw_loc_descr_struct *loc_list;
835 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
836 loc_list = build_cfa_loc (&loc, 0);
837 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
840 add_fde_cfi (label, cfi);
843 /* Add the CFI for saving a register. REG is the CFA column number.
844 LABEL is passed to add_fde_cfi.
845 If SREG is -1, the register is saved at OFFSET from the CFA;
846 otherwise it is saved in SREG. */
848 static void
849 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
851 dw_cfi_ref cfi = new_cfi ();
853 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
855 if (sreg == INVALID_REGNUM)
857 if (reg & ~0x3f)
858 /* The register number won't fit in 6 bits, so we have to use
859 the long form. */
860 cfi->dw_cfi_opc = DW_CFA_offset_extended;
861 else
862 cfi->dw_cfi_opc = DW_CFA_offset;
864 #ifdef ENABLE_CHECKING
866 /* If we get an offset that is not a multiple of
867 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
868 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
869 description. */
870 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
872 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
874 #endif
875 offset /= DWARF_CIE_DATA_ALIGNMENT;
876 if (offset < 0)
877 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
879 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
881 else if (sreg == reg)
882 cfi->dw_cfi_opc = DW_CFA_same_value;
883 else
885 cfi->dw_cfi_opc = DW_CFA_register;
886 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
889 add_fde_cfi (label, cfi);
892 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
893 This CFI tells the unwinder that it needs to restore the window registers
894 from the previous frame's window save area.
896 ??? Perhaps we should note in the CIE where windows are saved (instead of
897 assuming 0(cfa)) and what registers are in the window. */
899 void
900 dwarf2out_window_save (const char *label)
902 dw_cfi_ref cfi = new_cfi ();
904 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
905 add_fde_cfi (label, cfi);
908 /* Add a CFI to update the running total of the size of arguments
909 pushed onto the stack. */
911 void
912 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
914 dw_cfi_ref cfi;
916 if (size == old_args_size)
917 return;
919 old_args_size = size;
921 cfi = new_cfi ();
922 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
923 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
924 add_fde_cfi (label, cfi);
927 /* Entry point for saving a register to the stack. REG is the GCC register
928 number. LABEL and OFFSET are passed to reg_save. */
930 void
931 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
933 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
936 /* Entry point for saving the return address in the stack.
937 LABEL and OFFSET are passed to reg_save. */
939 void
940 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
942 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
945 /* Entry point for saving the return address in a register.
946 LABEL and SREG are passed to reg_save. */
948 void
949 dwarf2out_return_reg (const char *label, unsigned int sreg)
951 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
954 /* Record the initial position of the return address. RTL is
955 INCOMING_RETURN_ADDR_RTX. */
957 static void
958 initial_return_save (rtx rtl)
960 unsigned int reg = INVALID_REGNUM;
961 HOST_WIDE_INT offset = 0;
963 switch (GET_CODE (rtl))
965 case REG:
966 /* RA is in a register. */
967 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
968 break;
970 case MEM:
971 /* RA is on the stack. */
972 rtl = XEXP (rtl, 0);
973 switch (GET_CODE (rtl))
975 case REG:
976 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
977 offset = 0;
978 break;
980 case PLUS:
981 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
982 offset = INTVAL (XEXP (rtl, 1));
983 break;
985 case MINUS:
986 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
987 offset = -INTVAL (XEXP (rtl, 1));
988 break;
990 default:
991 gcc_unreachable ();
994 break;
996 case PLUS:
997 /* The return address is at some offset from any value we can
998 actually load. For instance, on the SPARC it is in %i7+8. Just
999 ignore the offset for now; it doesn't matter for unwinding frames. */
1000 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1001 initial_return_save (XEXP (rtl, 0));
1002 return;
1004 default:
1005 gcc_unreachable ();
1008 if (reg != DWARF_FRAME_RETURN_COLUMN)
1009 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1012 /* Given a SET, calculate the amount of stack adjustment it
1013 contains. */
1015 static HOST_WIDE_INT
1016 stack_adjust_offset (rtx pattern)
1018 rtx src = SET_SRC (pattern);
1019 rtx dest = SET_DEST (pattern);
1020 HOST_WIDE_INT offset = 0;
1021 enum rtx_code code;
1023 if (dest == stack_pointer_rtx)
1025 /* (set (reg sp) (plus (reg sp) (const_int))) */
1026 code = GET_CODE (src);
1027 if (! (code == PLUS || code == MINUS)
1028 || XEXP (src, 0) != stack_pointer_rtx
1029 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1030 return 0;
1032 offset = INTVAL (XEXP (src, 1));
1033 if (code == PLUS)
1034 offset = -offset;
1036 else if (MEM_P (dest))
1038 /* (set (mem (pre_dec (reg sp))) (foo)) */
1039 src = XEXP (dest, 0);
1040 code = GET_CODE (src);
1042 switch (code)
1044 case PRE_MODIFY:
1045 case POST_MODIFY:
1046 if (XEXP (src, 0) == stack_pointer_rtx)
1048 rtx val = XEXP (XEXP (src, 1), 1);
1049 /* We handle only adjustments by constant amount. */
1050 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1051 && GET_CODE (val) == CONST_INT);
1052 offset = -INTVAL (val);
1053 break;
1055 return 0;
1057 case PRE_DEC:
1058 case POST_DEC:
1059 if (XEXP (src, 0) == stack_pointer_rtx)
1061 offset = GET_MODE_SIZE (GET_MODE (dest));
1062 break;
1064 return 0;
1066 case PRE_INC:
1067 case POST_INC:
1068 if (XEXP (src, 0) == stack_pointer_rtx)
1070 offset = -GET_MODE_SIZE (GET_MODE (dest));
1071 break;
1073 return 0;
1075 default:
1076 return 0;
1079 else
1080 return 0;
1082 return offset;
1085 /* Check INSN to see if it looks like a push or a stack adjustment, and
1086 make a note of it if it does. EH uses this information to find out how
1087 much extra space it needs to pop off the stack. */
1089 static void
1090 dwarf2out_stack_adjust (rtx insn, bool after_p)
1092 HOST_WIDE_INT offset;
1093 const char *label;
1094 int i;
1096 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1097 with this function. Proper support would require all frame-related
1098 insns to be marked, and to be able to handle saving state around
1099 epilogues textually in the middle of the function. */
1100 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1101 return;
1103 /* If only calls can throw, and we have a frame pointer,
1104 save up adjustments until we see the CALL_INSN. */
1105 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1107 if (CALL_P (insn) && !after_p)
1109 /* Extract the size of the args from the CALL rtx itself. */
1110 insn = PATTERN (insn);
1111 if (GET_CODE (insn) == PARALLEL)
1112 insn = XVECEXP (insn, 0, 0);
1113 if (GET_CODE (insn) == SET)
1114 insn = SET_SRC (insn);
1115 gcc_assert (GET_CODE (insn) == CALL);
1116 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1118 return;
1121 if (CALL_P (insn) && !after_p)
1123 if (!flag_asynchronous_unwind_tables)
1124 dwarf2out_args_size ("", args_size);
1125 return;
1127 else if (BARRIER_P (insn))
1129 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1130 the compiler will have already emitted a stack adjustment, but
1131 doesn't bother for calls to noreturn functions. */
1132 #ifdef STACK_GROWS_DOWNWARD
1133 offset = -args_size;
1134 #else
1135 offset = args_size;
1136 #endif
1138 else if (GET_CODE (PATTERN (insn)) == SET)
1139 offset = stack_adjust_offset (PATTERN (insn));
1140 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1141 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1143 /* There may be stack adjustments inside compound insns. Search
1144 for them. */
1145 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1146 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1147 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1149 else
1150 return;
1152 if (offset == 0)
1153 return;
1155 if (cfa.reg == STACK_POINTER_REGNUM)
1156 cfa.offset += offset;
1158 #ifndef STACK_GROWS_DOWNWARD
1159 offset = -offset;
1160 #endif
1162 args_size += offset;
1163 if (args_size < 0)
1164 args_size = 0;
1166 label = dwarf2out_cfi_label ();
1167 def_cfa_1 (label, &cfa);
1168 if (flag_asynchronous_unwind_tables)
1169 dwarf2out_args_size (label, args_size);
1172 #endif
1174 /* We delay emitting a register save until either (a) we reach the end
1175 of the prologue or (b) the register is clobbered. This clusters
1176 register saves so that there are fewer pc advances. */
1178 struct queued_reg_save GTY(())
1180 struct queued_reg_save *next;
1181 rtx reg;
1182 HOST_WIDE_INT cfa_offset;
1183 rtx saved_reg;
1186 static GTY(()) struct queued_reg_save *queued_reg_saves;
1188 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1189 struct reg_saved_in_data GTY(()) {
1190 rtx orig_reg;
1191 rtx saved_in_reg;
1194 /* A list of registers saved in other registers.
1195 The list intentionally has a small maximum capacity of 4; if your
1196 port needs more than that, you might consider implementing a
1197 more efficient data structure. */
1198 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1199 static GTY(()) size_t num_regs_saved_in_regs;
1201 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1202 static const char *last_reg_save_label;
1204 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1205 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1207 static void
1208 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1210 struct queued_reg_save *q;
1212 /* Duplicates waste space, but it's also necessary to remove them
1213 for correctness, since the queue gets output in reverse
1214 order. */
1215 for (q = queued_reg_saves; q != NULL; q = q->next)
1216 if (REGNO (q->reg) == REGNO (reg))
1217 break;
1219 if (q == NULL)
1221 q = ggc_alloc (sizeof (*q));
1222 q->next = queued_reg_saves;
1223 queued_reg_saves = q;
1226 q->reg = reg;
1227 q->cfa_offset = offset;
1228 q->saved_reg = sreg;
1230 last_reg_save_label = label;
1233 /* Output all the entries in QUEUED_REG_SAVES. */
1235 static void
1236 flush_queued_reg_saves (void)
1238 struct queued_reg_save *q;
1240 for (q = queued_reg_saves; q; q = q->next)
1242 size_t i;
1243 unsigned int reg, sreg;
1245 for (i = 0; i < num_regs_saved_in_regs; i++)
1246 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1247 break;
1248 if (q->saved_reg && i == num_regs_saved_in_regs)
1250 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1251 num_regs_saved_in_regs++;
1253 if (i != num_regs_saved_in_regs)
1255 regs_saved_in_regs[i].orig_reg = q->reg;
1256 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1259 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1260 if (q->saved_reg)
1261 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1262 else
1263 sreg = INVALID_REGNUM;
1264 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1267 queued_reg_saves = NULL;
1268 last_reg_save_label = NULL;
1271 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1272 location for? Or, does it clobber a register which we've previously
1273 said that some other register is saved in, and for which we now
1274 have a new location for? */
1276 static bool
1277 clobbers_queued_reg_save (rtx insn)
1279 struct queued_reg_save *q;
1281 for (q = queued_reg_saves; q; q = q->next)
1283 size_t i;
1284 if (modified_in_p (q->reg, insn))
1285 return true;
1286 for (i = 0; i < num_regs_saved_in_regs; i++)
1287 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1288 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1289 return true;
1292 return false;
1295 /* Entry point for saving the first register into the second. */
1297 void
1298 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1300 size_t i;
1301 unsigned int regno, sregno;
1303 for (i = 0; i < num_regs_saved_in_regs; i++)
1304 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1305 break;
1306 if (i == num_regs_saved_in_regs)
1308 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1309 num_regs_saved_in_regs++;
1311 regs_saved_in_regs[i].orig_reg = reg;
1312 regs_saved_in_regs[i].saved_in_reg = sreg;
1314 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1315 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1316 reg_save (label, regno, sregno, 0);
1319 /* What register, if any, is currently saved in REG? */
1321 static rtx
1322 reg_saved_in (rtx reg)
1324 unsigned int regn = REGNO (reg);
1325 size_t i;
1326 struct queued_reg_save *q;
1328 for (q = queued_reg_saves; q; q = q->next)
1329 if (q->saved_reg && regn == REGNO (q->saved_reg))
1330 return q->reg;
1332 for (i = 0; i < num_regs_saved_in_regs; i++)
1333 if (regs_saved_in_regs[i].saved_in_reg
1334 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1335 return regs_saved_in_regs[i].orig_reg;
1337 return NULL_RTX;
1341 /* A temporary register holding an integral value used in adjusting SP
1342 or setting up the store_reg. The "offset" field holds the integer
1343 value, not an offset. */
1344 static dw_cfa_location cfa_temp;
1346 /* Record call frame debugging information for an expression EXPR,
1347 which either sets SP or FP (adjusting how we calculate the frame
1348 address) or saves a register to the stack or another register.
1349 LABEL indicates the address of EXPR.
1351 This function encodes a state machine mapping rtxes to actions on
1352 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1353 users need not read the source code.
1355 The High-Level Picture
1357 Changes in the register we use to calculate the CFA: Currently we
1358 assume that if you copy the CFA register into another register, we
1359 should take the other one as the new CFA register; this seems to
1360 work pretty well. If it's wrong for some target, it's simple
1361 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1363 Changes in the register we use for saving registers to the stack:
1364 This is usually SP, but not always. Again, we deduce that if you
1365 copy SP into another register (and SP is not the CFA register),
1366 then the new register is the one we will be using for register
1367 saves. This also seems to work.
1369 Register saves: There's not much guesswork about this one; if
1370 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1371 register save, and the register used to calculate the destination
1372 had better be the one we think we're using for this purpose.
1373 It's also assumed that a copy from a call-saved register to another
1374 register is saving that register if RTX_FRAME_RELATED_P is set on
1375 that instruction. If the copy is from a call-saved register to
1376 the *same* register, that means that the register is now the same
1377 value as in the caller.
1379 Except: If the register being saved is the CFA register, and the
1380 offset is nonzero, we are saving the CFA, so we assume we have to
1381 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1382 the intent is to save the value of SP from the previous frame.
1384 In addition, if a register has previously been saved to a different
1385 register,
1387 Invariants / Summaries of Rules
1389 cfa current rule for calculating the CFA. It usually
1390 consists of a register and an offset.
1391 cfa_store register used by prologue code to save things to the stack
1392 cfa_store.offset is the offset from the value of
1393 cfa_store.reg to the actual CFA
1394 cfa_temp register holding an integral value. cfa_temp.offset
1395 stores the value, which will be used to adjust the
1396 stack pointer. cfa_temp is also used like cfa_store,
1397 to track stores to the stack via fp or a temp reg.
1399 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1400 with cfa.reg as the first operand changes the cfa.reg and its
1401 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1402 cfa_temp.offset.
1404 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1405 expression yielding a constant. This sets cfa_temp.reg
1406 and cfa_temp.offset.
1408 Rule 5: Create a new register cfa_store used to save items to the
1409 stack.
1411 Rules 10-14: Save a register to the stack. Define offset as the
1412 difference of the original location and cfa_store's
1413 location (or cfa_temp's location if cfa_temp is used).
1415 The Rules
1417 "{a,b}" indicates a choice of a xor b.
1418 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1420 Rule 1:
1421 (set <reg1> <reg2>:cfa.reg)
1422 effects: cfa.reg = <reg1>
1423 cfa.offset unchanged
1424 cfa_temp.reg = <reg1>
1425 cfa_temp.offset = cfa.offset
1427 Rule 2:
1428 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1429 {<const_int>,<reg>:cfa_temp.reg}))
1430 effects: cfa.reg = sp if fp used
1431 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1432 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1433 if cfa_store.reg==sp
1435 Rule 3:
1436 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1437 effects: cfa.reg = fp
1438 cfa_offset += +/- <const_int>
1440 Rule 4:
1441 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1442 constraints: <reg1> != fp
1443 <reg1> != sp
1444 effects: cfa.reg = <reg1>
1445 cfa_temp.reg = <reg1>
1446 cfa_temp.offset = cfa.offset
1448 Rule 5:
1449 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1450 constraints: <reg1> != fp
1451 <reg1> != sp
1452 effects: cfa_store.reg = <reg1>
1453 cfa_store.offset = cfa.offset - cfa_temp.offset
1455 Rule 6:
1456 (set <reg> <const_int>)
1457 effects: cfa_temp.reg = <reg>
1458 cfa_temp.offset = <const_int>
1460 Rule 7:
1461 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1462 effects: cfa_temp.reg = <reg1>
1463 cfa_temp.offset |= <const_int>
1465 Rule 8:
1466 (set <reg> (high <exp>))
1467 effects: none
1469 Rule 9:
1470 (set <reg> (lo_sum <exp> <const_int>))
1471 effects: cfa_temp.reg = <reg>
1472 cfa_temp.offset = <const_int>
1474 Rule 10:
1475 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1476 effects: cfa_store.offset -= <const_int>
1477 cfa.offset = cfa_store.offset if cfa.reg == sp
1478 cfa.reg = sp
1479 cfa.base_offset = -cfa_store.offset
1481 Rule 11:
1482 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1483 effects: cfa_store.offset += -/+ mode_size(mem)
1484 cfa.offset = cfa_store.offset if cfa.reg == sp
1485 cfa.reg = sp
1486 cfa.base_offset = -cfa_store.offset
1488 Rule 12:
1489 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1491 <reg2>)
1492 effects: cfa.reg = <reg1>
1493 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1495 Rule 13:
1496 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1497 effects: cfa.reg = <reg1>
1498 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1500 Rule 14:
1501 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1502 effects: cfa.reg = <reg1>
1503 cfa.base_offset = -cfa_temp.offset
1504 cfa_temp.offset -= mode_size(mem)
1506 Rule 15:
1507 (set <reg> {unspec, unspec_volatile})
1508 effects: target-dependent */
1510 static void
1511 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1513 rtx src, dest;
1514 HOST_WIDE_INT offset;
1516 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1517 the PARALLEL independently. The first element is always processed if
1518 it is a SET. This is for backward compatibility. Other elements
1519 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1520 flag is set in them. */
1521 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1523 int par_index;
1524 int limit = XVECLEN (expr, 0);
1526 for (par_index = 0; par_index < limit; par_index++)
1527 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1528 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1529 || par_index == 0))
1530 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1532 return;
1535 gcc_assert (GET_CODE (expr) == SET);
1537 src = SET_SRC (expr);
1538 dest = SET_DEST (expr);
1540 if (REG_P (src))
1542 rtx rsi = reg_saved_in (src);
1543 if (rsi)
1544 src = rsi;
1547 switch (GET_CODE (dest))
1549 case REG:
1550 switch (GET_CODE (src))
1552 /* Setting FP from SP. */
1553 case REG:
1554 if (cfa.reg == (unsigned) REGNO (src))
1556 /* Rule 1 */
1557 /* Update the CFA rule wrt SP or FP. Make sure src is
1558 relative to the current CFA register.
1560 We used to require that dest be either SP or FP, but the
1561 ARM copies SP to a temporary register, and from there to
1562 FP. So we just rely on the backends to only set
1563 RTX_FRAME_RELATED_P on appropriate insns. */
1564 cfa.reg = REGNO (dest);
1565 cfa_temp.reg = cfa.reg;
1566 cfa_temp.offset = cfa.offset;
1568 else
1570 /* Saving a register in a register. */
1571 gcc_assert (!fixed_regs [REGNO (dest)]
1572 /* For the SPARC and its register window. */
1573 || (DWARF_FRAME_REGNUM (REGNO (src))
1574 == DWARF_FRAME_RETURN_COLUMN));
1575 queue_reg_save (label, src, dest, 0);
1577 break;
1579 case PLUS:
1580 case MINUS:
1581 case LO_SUM:
1582 if (dest == stack_pointer_rtx)
1584 /* Rule 2 */
1585 /* Adjusting SP. */
1586 switch (GET_CODE (XEXP (src, 1)))
1588 case CONST_INT:
1589 offset = INTVAL (XEXP (src, 1));
1590 break;
1591 case REG:
1592 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1593 == cfa_temp.reg);
1594 offset = cfa_temp.offset;
1595 break;
1596 default:
1597 gcc_unreachable ();
1600 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1602 /* Restoring SP from FP in the epilogue. */
1603 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1604 cfa.reg = STACK_POINTER_REGNUM;
1606 else if (GET_CODE (src) == LO_SUM)
1607 /* Assume we've set the source reg of the LO_SUM from sp. */
1609 else
1610 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1612 if (GET_CODE (src) != MINUS)
1613 offset = -offset;
1614 if (cfa.reg == STACK_POINTER_REGNUM)
1615 cfa.offset += offset;
1616 if (cfa_store.reg == STACK_POINTER_REGNUM)
1617 cfa_store.offset += offset;
1619 else if (dest == hard_frame_pointer_rtx)
1621 /* Rule 3 */
1622 /* Either setting the FP from an offset of the SP,
1623 or adjusting the FP */
1624 gcc_assert (frame_pointer_needed);
1626 gcc_assert (REG_P (XEXP (src, 0))
1627 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1628 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1629 offset = INTVAL (XEXP (src, 1));
1630 if (GET_CODE (src) != MINUS)
1631 offset = -offset;
1632 cfa.offset += offset;
1633 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1635 else
1637 gcc_assert (GET_CODE (src) != MINUS);
1639 /* Rule 4 */
1640 if (REG_P (XEXP (src, 0))
1641 && REGNO (XEXP (src, 0)) == cfa.reg
1642 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1644 /* Setting a temporary CFA register that will be copied
1645 into the FP later on. */
1646 offset = - INTVAL (XEXP (src, 1));
1647 cfa.offset += offset;
1648 cfa.reg = REGNO (dest);
1649 /* Or used to save regs to the stack. */
1650 cfa_temp.reg = cfa.reg;
1651 cfa_temp.offset = cfa.offset;
1654 /* Rule 5 */
1655 else if (REG_P (XEXP (src, 0))
1656 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1657 && XEXP (src, 1) == stack_pointer_rtx)
1659 /* Setting a scratch register that we will use instead
1660 of SP for saving registers to the stack. */
1661 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1662 cfa_store.reg = REGNO (dest);
1663 cfa_store.offset = cfa.offset - cfa_temp.offset;
1666 /* Rule 9 */
1667 else if (GET_CODE (src) == LO_SUM
1668 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1670 cfa_temp.reg = REGNO (dest);
1671 cfa_temp.offset = INTVAL (XEXP (src, 1));
1673 else
1674 gcc_unreachable ();
1676 break;
1678 /* Rule 6 */
1679 case CONST_INT:
1680 cfa_temp.reg = REGNO (dest);
1681 cfa_temp.offset = INTVAL (src);
1682 break;
1684 /* Rule 7 */
1685 case IOR:
1686 gcc_assert (REG_P (XEXP (src, 0))
1687 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1688 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1690 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1691 cfa_temp.reg = REGNO (dest);
1692 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1693 break;
1695 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1696 which will fill in all of the bits. */
1697 /* Rule 8 */
1698 case HIGH:
1699 break;
1701 /* Rule 15 */
1702 case UNSPEC:
1703 case UNSPEC_VOLATILE:
1704 gcc_assert (targetm.dwarf_handle_frame_unspec);
1705 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1706 return;
1708 default:
1709 gcc_unreachable ();
1712 def_cfa_1 (label, &cfa);
1713 break;
1715 case MEM:
1716 gcc_assert (REG_P (src));
1718 /* Saving a register to the stack. Make sure dest is relative to the
1719 CFA register. */
1720 switch (GET_CODE (XEXP (dest, 0)))
1722 /* Rule 10 */
1723 /* With a push. */
1724 case PRE_MODIFY:
1725 /* We can't handle variable size modifications. */
1726 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1727 == CONST_INT);
1728 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1730 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1731 && cfa_store.reg == STACK_POINTER_REGNUM);
1733 cfa_store.offset += offset;
1734 if (cfa.reg == STACK_POINTER_REGNUM)
1735 cfa.offset = cfa_store.offset;
1737 offset = -cfa_store.offset;
1738 break;
1740 /* Rule 11 */
1741 case PRE_INC:
1742 case PRE_DEC:
1743 offset = GET_MODE_SIZE (GET_MODE (dest));
1744 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1745 offset = -offset;
1747 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1748 && cfa_store.reg == STACK_POINTER_REGNUM);
1750 cfa_store.offset += offset;
1751 if (cfa.reg == STACK_POINTER_REGNUM)
1752 cfa.offset = cfa_store.offset;
1754 offset = -cfa_store.offset;
1755 break;
1757 /* Rule 12 */
1758 /* With an offset. */
1759 case PLUS:
1760 case MINUS:
1761 case LO_SUM:
1763 int regno;
1765 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1766 && REG_P (XEXP (XEXP (dest, 0), 0)));
1767 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1768 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1769 offset = -offset;
1771 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1773 if (cfa_store.reg == (unsigned) regno)
1774 offset -= cfa_store.offset;
1775 else
1777 gcc_assert (cfa_temp.reg == (unsigned) regno);
1778 offset -= cfa_temp.offset;
1781 break;
1783 /* Rule 13 */
1784 /* Without an offset. */
1785 case REG:
1787 int regno = REGNO (XEXP (dest, 0));
1789 if (cfa_store.reg == (unsigned) regno)
1790 offset = -cfa_store.offset;
1791 else
1793 gcc_assert (cfa_temp.reg == (unsigned) regno);
1794 offset = -cfa_temp.offset;
1797 break;
1799 /* Rule 14 */
1800 case POST_INC:
1801 gcc_assert (cfa_temp.reg
1802 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1803 offset = -cfa_temp.offset;
1804 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1805 break;
1807 default:
1808 gcc_unreachable ();
1811 if (REGNO (src) != STACK_POINTER_REGNUM
1812 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1813 && (unsigned) REGNO (src) == cfa.reg)
1815 /* We're storing the current CFA reg into the stack. */
1817 if (cfa.offset == 0)
1819 /* If the source register is exactly the CFA, assume
1820 we're saving SP like any other register; this happens
1821 on the ARM. */
1822 def_cfa_1 (label, &cfa);
1823 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1824 break;
1826 else
1828 /* Otherwise, we'll need to look in the stack to
1829 calculate the CFA. */
1830 rtx x = XEXP (dest, 0);
1832 if (!REG_P (x))
1833 x = XEXP (x, 0);
1834 gcc_assert (REG_P (x));
1836 cfa.reg = REGNO (x);
1837 cfa.base_offset = offset;
1838 cfa.indirect = 1;
1839 def_cfa_1 (label, &cfa);
1840 break;
1844 def_cfa_1 (label, &cfa);
1845 queue_reg_save (label, src, NULL_RTX, offset);
1846 break;
1848 default:
1849 gcc_unreachable ();
1853 /* Record call frame debugging information for INSN, which either
1854 sets SP or FP (adjusting how we calculate the frame address) or saves a
1855 register to the stack. If INSN is NULL_RTX, initialize our state.
1857 If AFTER_P is false, we're being called before the insn is emitted,
1858 otherwise after. Call instructions get invoked twice. */
1860 void
1861 dwarf2out_frame_debug (rtx insn, bool after_p)
1863 const char *label;
1864 rtx src;
1866 if (insn == NULL_RTX)
1868 size_t i;
1870 /* Flush any queued register saves. */
1871 flush_queued_reg_saves ();
1873 /* Set up state for generating call frame debug info. */
1874 lookup_cfa (&cfa);
1875 gcc_assert (cfa.reg
1876 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1878 cfa.reg = STACK_POINTER_REGNUM;
1879 cfa_store = cfa;
1880 cfa_temp.reg = -1;
1881 cfa_temp.offset = 0;
1883 for (i = 0; i < num_regs_saved_in_regs; i++)
1885 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1886 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1888 num_regs_saved_in_regs = 0;
1889 return;
1892 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1893 flush_queued_reg_saves ();
1895 if (! RTX_FRAME_RELATED_P (insn))
1897 if (!ACCUMULATE_OUTGOING_ARGS)
1898 dwarf2out_stack_adjust (insn, after_p);
1899 return;
1902 label = dwarf2out_cfi_label ();
1903 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1904 if (src)
1905 insn = XEXP (src, 0);
1906 else
1907 insn = PATTERN (insn);
1909 dwarf2out_frame_debug_expr (insn, label);
1912 #endif
1914 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1915 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1916 (enum dwarf_call_frame_info cfi);
1918 static enum dw_cfi_oprnd_type
1919 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1921 switch (cfi)
1923 case DW_CFA_nop:
1924 case DW_CFA_GNU_window_save:
1925 return dw_cfi_oprnd_unused;
1927 case DW_CFA_set_loc:
1928 case DW_CFA_advance_loc1:
1929 case DW_CFA_advance_loc2:
1930 case DW_CFA_advance_loc4:
1931 case DW_CFA_MIPS_advance_loc8:
1932 return dw_cfi_oprnd_addr;
1934 case DW_CFA_offset:
1935 case DW_CFA_offset_extended:
1936 case DW_CFA_def_cfa:
1937 case DW_CFA_offset_extended_sf:
1938 case DW_CFA_def_cfa_sf:
1939 case DW_CFA_restore_extended:
1940 case DW_CFA_undefined:
1941 case DW_CFA_same_value:
1942 case DW_CFA_def_cfa_register:
1943 case DW_CFA_register:
1944 return dw_cfi_oprnd_reg_num;
1946 case DW_CFA_def_cfa_offset:
1947 case DW_CFA_GNU_args_size:
1948 case DW_CFA_def_cfa_offset_sf:
1949 return dw_cfi_oprnd_offset;
1951 case DW_CFA_def_cfa_expression:
1952 case DW_CFA_expression:
1953 return dw_cfi_oprnd_loc;
1955 default:
1956 gcc_unreachable ();
1960 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1961 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1962 (enum dwarf_call_frame_info cfi);
1964 static enum dw_cfi_oprnd_type
1965 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1967 switch (cfi)
1969 case DW_CFA_def_cfa:
1970 case DW_CFA_def_cfa_sf:
1971 case DW_CFA_offset:
1972 case DW_CFA_offset_extended_sf:
1973 case DW_CFA_offset_extended:
1974 return dw_cfi_oprnd_offset;
1976 case DW_CFA_register:
1977 return dw_cfi_oprnd_reg_num;
1979 default:
1980 return dw_cfi_oprnd_unused;
1984 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1986 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1987 switch to the data section instead, and write out a synthetic label
1988 for collect2. */
1990 static void
1991 switch_to_eh_frame_section (void)
1993 tree label;
1995 #ifdef EH_FRAME_SECTION_NAME
1996 if (eh_frame_section == 0)
1998 int flags;
2000 if (EH_TABLES_CAN_BE_READ_ONLY)
2002 int fde_encoding;
2003 int per_encoding;
2004 int lsda_encoding;
2006 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2007 /*global=*/0);
2008 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2009 /*global=*/1);
2010 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2011 /*global=*/0);
2012 flags = ((! flag_pic
2013 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2014 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2015 && (per_encoding & 0x70) != DW_EH_PE_absptr
2016 && (per_encoding & 0x70) != DW_EH_PE_aligned
2017 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2018 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2019 ? 0 : SECTION_WRITE);
2021 else
2022 flags = SECTION_WRITE;
2023 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2025 #endif
2027 if (eh_frame_section)
2028 switch_to_section (eh_frame_section);
2029 else
2031 /* We have no special eh_frame section. Put the information in
2032 the data section and emit special labels to guide collect2. */
2033 switch_to_section (data_section);
2034 label = get_file_function_name ("F");
2035 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2036 targetm.asm_out.globalize_label (asm_out_file,
2037 IDENTIFIER_POINTER (label));
2038 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2042 /* Output a Call Frame Information opcode and its operand(s). */
2044 static void
2045 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2047 unsigned long r;
2048 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2049 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2050 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2051 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2052 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2053 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2055 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2056 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2057 "DW_CFA_offset, column 0x%lx", r);
2058 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2060 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2062 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2063 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2064 "DW_CFA_restore, column 0x%lx", r);
2066 else
2068 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2069 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2071 switch (cfi->dw_cfi_opc)
2073 case DW_CFA_set_loc:
2074 if (for_eh)
2075 dw2_asm_output_encoded_addr_rtx (
2076 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2077 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2078 false, NULL);
2079 else
2080 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2081 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2082 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2083 break;
2085 case DW_CFA_advance_loc1:
2086 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2087 fde->dw_fde_current_label, NULL);
2088 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2089 break;
2091 case DW_CFA_advance_loc2:
2092 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2093 fde->dw_fde_current_label, NULL);
2094 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2095 break;
2097 case DW_CFA_advance_loc4:
2098 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2099 fde->dw_fde_current_label, NULL);
2100 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2101 break;
2103 case DW_CFA_MIPS_advance_loc8:
2104 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2105 fde->dw_fde_current_label, NULL);
2106 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2107 break;
2109 case DW_CFA_offset_extended:
2110 case DW_CFA_def_cfa:
2111 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2112 dw2_asm_output_data_uleb128 (r, NULL);
2113 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2114 break;
2116 case DW_CFA_offset_extended_sf:
2117 case DW_CFA_def_cfa_sf:
2118 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2119 dw2_asm_output_data_uleb128 (r, NULL);
2120 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2121 break;
2123 case DW_CFA_restore_extended:
2124 case DW_CFA_undefined:
2125 case DW_CFA_same_value:
2126 case DW_CFA_def_cfa_register:
2127 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2128 dw2_asm_output_data_uleb128 (r, NULL);
2129 break;
2131 case DW_CFA_register:
2132 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2133 dw2_asm_output_data_uleb128 (r, NULL);
2134 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2135 dw2_asm_output_data_uleb128 (r, NULL);
2136 break;
2138 case DW_CFA_def_cfa_offset:
2139 case DW_CFA_GNU_args_size:
2140 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2141 break;
2143 case DW_CFA_def_cfa_offset_sf:
2144 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2145 break;
2147 case DW_CFA_GNU_window_save:
2148 break;
2150 case DW_CFA_def_cfa_expression:
2151 case DW_CFA_expression:
2152 output_cfa_loc (cfi);
2153 break;
2155 case DW_CFA_GNU_negative_offset_extended:
2156 /* Obsoleted by DW_CFA_offset_extended_sf. */
2157 gcc_unreachable ();
2159 default:
2160 break;
2165 /* Output the call frame information used to record information
2166 that relates to calculating the frame pointer, and records the
2167 location of saved registers. */
2169 static void
2170 output_call_frame_info (int for_eh)
2172 unsigned int i;
2173 dw_fde_ref fde;
2174 dw_cfi_ref cfi;
2175 char l1[20], l2[20], section_start_label[20];
2176 bool any_lsda_needed = false;
2177 char augmentation[6];
2178 int augmentation_size;
2179 int fde_encoding = DW_EH_PE_absptr;
2180 int per_encoding = DW_EH_PE_absptr;
2181 int lsda_encoding = DW_EH_PE_absptr;
2182 int return_reg;
2184 /* Don't emit a CIE if there won't be any FDEs. */
2185 if (fde_table_in_use == 0)
2186 return;
2188 /* If we make FDEs linkonce, we may have to emit an empty label for
2189 an FDE that wouldn't otherwise be emitted. We want to avoid
2190 having an FDE kept around when the function it refers to is
2191 discarded. Example where this matters: a primary function
2192 template in C++ requires EH information, but an explicit
2193 specialization doesn't. */
2194 if (TARGET_USES_WEAK_UNWIND_INFO
2195 && ! flag_asynchronous_unwind_tables
2196 && for_eh)
2197 for (i = 0; i < fde_table_in_use; i++)
2198 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2199 && !fde_table[i].uses_eh_lsda
2200 && ! DECL_WEAK (fde_table[i].decl))
2201 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2202 for_eh, /* empty */ 1);
2204 /* If we don't have any functions we'll want to unwind out of, don't
2205 emit any EH unwind information. Note that if exceptions aren't
2206 enabled, we won't have collected nothrow information, and if we
2207 asked for asynchronous tables, we always want this info. */
2208 if (for_eh)
2210 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2212 for (i = 0; i < fde_table_in_use; i++)
2213 if (fde_table[i].uses_eh_lsda)
2214 any_eh_needed = any_lsda_needed = true;
2215 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2216 any_eh_needed = true;
2217 else if (! fde_table[i].nothrow
2218 && ! fde_table[i].all_throwers_are_sibcalls)
2219 any_eh_needed = true;
2221 if (! any_eh_needed)
2222 return;
2225 /* We're going to be generating comments, so turn on app. */
2226 if (flag_debug_asm)
2227 app_enable ();
2229 if (for_eh)
2230 switch_to_eh_frame_section ();
2231 else
2233 if (!debug_frame_section)
2234 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2235 SECTION_DEBUG, NULL);
2236 switch_to_section (debug_frame_section);
2239 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2240 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2242 /* Output the CIE. */
2243 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2244 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2245 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2246 dw2_asm_output_data (4, 0xffffffff,
2247 "Initial length escape value indicating 64-bit DWARF extension");
2248 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2249 "Length of Common Information Entry");
2250 ASM_OUTPUT_LABEL (asm_out_file, l1);
2252 /* Now that the CIE pointer is PC-relative for EH,
2253 use 0 to identify the CIE. */
2254 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2255 (for_eh ? 0 : DWARF_CIE_ID),
2256 "CIE Identifier Tag");
2258 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2260 augmentation[0] = 0;
2261 augmentation_size = 0;
2262 if (for_eh)
2264 char *p;
2266 /* Augmentation:
2267 z Indicates that a uleb128 is present to size the
2268 augmentation section.
2269 L Indicates the encoding (and thus presence) of
2270 an LSDA pointer in the FDE augmentation.
2271 R Indicates a non-default pointer encoding for
2272 FDE code pointers.
2273 P Indicates the presence of an encoding + language
2274 personality routine in the CIE augmentation. */
2276 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2277 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2278 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2280 p = augmentation + 1;
2281 if (eh_personality_libfunc)
2283 *p++ = 'P';
2284 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2286 if (any_lsda_needed)
2288 *p++ = 'L';
2289 augmentation_size += 1;
2291 if (fde_encoding != DW_EH_PE_absptr)
2293 *p++ = 'R';
2294 augmentation_size += 1;
2296 if (p > augmentation + 1)
2298 augmentation[0] = 'z';
2299 *p = '\0';
2302 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2303 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2305 int offset = ( 4 /* Length */
2306 + 4 /* CIE Id */
2307 + 1 /* CIE version */
2308 + strlen (augmentation) + 1 /* Augmentation */
2309 + size_of_uleb128 (1) /* Code alignment */
2310 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2311 + 1 /* RA column */
2312 + 1 /* Augmentation size */
2313 + 1 /* Personality encoding */ );
2314 int pad = -offset & (PTR_SIZE - 1);
2316 augmentation_size += pad;
2318 /* Augmentations should be small, so there's scarce need to
2319 iterate for a solution. Die if we exceed one uleb128 byte. */
2320 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2324 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2325 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2326 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2327 "CIE Data Alignment Factor");
2329 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2330 if (DW_CIE_VERSION == 1)
2331 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2332 else
2333 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2335 if (augmentation[0])
2337 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2338 if (eh_personality_libfunc)
2340 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2341 eh_data_format_name (per_encoding));
2342 dw2_asm_output_encoded_addr_rtx (per_encoding,
2343 eh_personality_libfunc,
2344 true, NULL);
2347 if (any_lsda_needed)
2348 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2349 eh_data_format_name (lsda_encoding));
2351 if (fde_encoding != DW_EH_PE_absptr)
2352 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2353 eh_data_format_name (fde_encoding));
2356 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2357 output_cfi (cfi, NULL, for_eh);
2359 /* Pad the CIE out to an address sized boundary. */
2360 ASM_OUTPUT_ALIGN (asm_out_file,
2361 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2362 ASM_OUTPUT_LABEL (asm_out_file, l2);
2364 /* Loop through all of the FDE's. */
2365 for (i = 0; i < fde_table_in_use; i++)
2367 fde = &fde_table[i];
2369 /* Don't emit EH unwind info for leaf functions that don't need it. */
2370 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2371 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2372 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2373 && !fde->uses_eh_lsda)
2374 continue;
2376 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2377 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2379 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2380 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2381 dw2_asm_output_data (4, 0xffffffff,
2382 "Initial length escape value indicating 64-bit DWARF extension");
2383 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2384 "FDE Length");
2385 ASM_OUTPUT_LABEL (asm_out_file, l1);
2387 if (for_eh)
2388 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2389 else
2390 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2391 debug_frame_section, "FDE CIE offset");
2393 if (for_eh)
2395 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2396 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2397 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2398 sym_ref,
2399 false,
2400 "FDE initial location");
2401 if (fde->dw_fde_switched_sections)
2403 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2404 fde->dw_fde_unlikely_section_label);
2405 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2406 fde->dw_fde_hot_section_label);
2407 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2408 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2409 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2410 "FDE initial location");
2411 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2412 fde->dw_fde_hot_section_end_label,
2413 fde->dw_fde_hot_section_label,
2414 "FDE address range");
2415 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2416 "FDE initial location");
2417 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2418 fde->dw_fde_unlikely_section_end_label,
2419 fde->dw_fde_unlikely_section_label,
2420 "FDE address range");
2422 else
2423 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2424 fde->dw_fde_end, fde->dw_fde_begin,
2425 "FDE address range");
2427 else
2429 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2430 "FDE initial location");
2431 if (fde->dw_fde_switched_sections)
2433 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2434 fde->dw_fde_hot_section_label,
2435 "FDE initial location");
2436 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2437 fde->dw_fde_hot_section_end_label,
2438 fde->dw_fde_hot_section_label,
2439 "FDE address range");
2440 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2441 fde->dw_fde_unlikely_section_label,
2442 "FDE initial location");
2443 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2444 fde->dw_fde_unlikely_section_end_label,
2445 fde->dw_fde_unlikely_section_label,
2446 "FDE address range");
2448 else
2449 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2450 fde->dw_fde_end, fde->dw_fde_begin,
2451 "FDE address range");
2454 if (augmentation[0])
2456 if (any_lsda_needed)
2458 int size = size_of_encoded_value (lsda_encoding);
2460 if (lsda_encoding == DW_EH_PE_aligned)
2462 int offset = ( 4 /* Length */
2463 + 4 /* CIE offset */
2464 + 2 * size_of_encoded_value (fde_encoding)
2465 + 1 /* Augmentation size */ );
2466 int pad = -offset & (PTR_SIZE - 1);
2468 size += pad;
2469 gcc_assert (size_of_uleb128 (size) == 1);
2472 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2474 if (fde->uses_eh_lsda)
2476 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2477 fde->funcdef_number);
2478 dw2_asm_output_encoded_addr_rtx (
2479 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2480 false, "Language Specific Data Area");
2482 else
2484 if (lsda_encoding == DW_EH_PE_aligned)
2485 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2486 dw2_asm_output_data
2487 (size_of_encoded_value (lsda_encoding), 0,
2488 "Language Specific Data Area (none)");
2491 else
2492 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2495 /* Loop through the Call Frame Instructions associated with
2496 this FDE. */
2497 fde->dw_fde_current_label = fde->dw_fde_begin;
2498 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2499 output_cfi (cfi, fde, for_eh);
2501 /* Pad the FDE out to an address sized boundary. */
2502 ASM_OUTPUT_ALIGN (asm_out_file,
2503 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2504 ASM_OUTPUT_LABEL (asm_out_file, l2);
2507 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2508 dw2_asm_output_data (4, 0, "End of Table");
2509 #ifdef MIPS_DEBUGGING_INFO
2510 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2511 get a value of 0. Putting .align 0 after the label fixes it. */
2512 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2513 #endif
2515 /* Turn off app to make assembly quicker. */
2516 if (flag_debug_asm)
2517 app_disable ();
2520 /* Output a marker (i.e. a label) for the beginning of a function, before
2521 the prologue. */
2523 void
2524 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2525 const char *file ATTRIBUTE_UNUSED)
2527 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2528 char * dup_label;
2529 dw_fde_ref fde;
2531 current_function_func_begin_label = NULL;
2533 #ifdef TARGET_UNWIND_INFO
2534 /* ??? current_function_func_begin_label is also used by except.c
2535 for call-site information. We must emit this label if it might
2536 be used. */
2537 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2538 && ! dwarf2out_do_frame ())
2539 return;
2540 #else
2541 if (! dwarf2out_do_frame ())
2542 return;
2543 #endif
2545 switch_to_section (function_section (current_function_decl));
2546 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2547 current_function_funcdef_no);
2548 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2549 current_function_funcdef_no);
2550 dup_label = xstrdup (label);
2551 current_function_func_begin_label = dup_label;
2553 #ifdef TARGET_UNWIND_INFO
2554 /* We can elide the fde allocation if we're not emitting debug info. */
2555 if (! dwarf2out_do_frame ())
2556 return;
2557 #endif
2559 /* Expand the fde table if necessary. */
2560 if (fde_table_in_use == fde_table_allocated)
2562 fde_table_allocated += FDE_TABLE_INCREMENT;
2563 fde_table = ggc_realloc (fde_table,
2564 fde_table_allocated * sizeof (dw_fde_node));
2565 memset (fde_table + fde_table_in_use, 0,
2566 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2569 /* Record the FDE associated with this function. */
2570 current_funcdef_fde = fde_table_in_use;
2572 /* Add the new FDE at the end of the fde_table. */
2573 fde = &fde_table[fde_table_in_use++];
2574 fde->decl = current_function_decl;
2575 fde->dw_fde_begin = dup_label;
2576 fde->dw_fde_current_label = dup_label;
2577 fde->dw_fde_hot_section_label = NULL;
2578 fde->dw_fde_hot_section_end_label = NULL;
2579 fde->dw_fde_unlikely_section_label = NULL;
2580 fde->dw_fde_unlikely_section_end_label = NULL;
2581 fde->dw_fde_switched_sections = false;
2582 fde->dw_fde_end = NULL;
2583 fde->dw_fde_cfi = NULL;
2584 fde->funcdef_number = current_function_funcdef_no;
2585 fde->nothrow = TREE_NOTHROW (current_function_decl);
2586 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2587 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2589 args_size = old_args_size = 0;
2591 /* We only want to output line number information for the genuine dwarf2
2592 prologue case, not the eh frame case. */
2593 #ifdef DWARF2_DEBUGGING_INFO
2594 if (file)
2595 dwarf2out_source_line (line, file);
2596 #endif
2599 /* Output a marker (i.e. a label) for the absolute end of the generated code
2600 for a function definition. This gets called *after* the epilogue code has
2601 been generated. */
2603 void
2604 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2605 const char *file ATTRIBUTE_UNUSED)
2607 dw_fde_ref fde;
2608 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2610 /* Output a label to mark the endpoint of the code generated for this
2611 function. */
2612 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2613 current_function_funcdef_no);
2614 ASM_OUTPUT_LABEL (asm_out_file, label);
2615 fde = &fde_table[fde_table_in_use - 1];
2616 fde->dw_fde_end = xstrdup (label);
2619 void
2620 dwarf2out_frame_init (void)
2622 /* Allocate the initial hunk of the fde_table. */
2623 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2624 fde_table_allocated = FDE_TABLE_INCREMENT;
2625 fde_table_in_use = 0;
2627 /* Generate the CFA instructions common to all FDE's. Do it now for the
2628 sake of lookup_cfa. */
2630 /* On entry, the Canonical Frame Address is at SP. */
2631 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2633 #ifdef DWARF2_UNWIND_INFO
2634 if (DWARF2_UNWIND_INFO)
2635 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2636 #endif
2639 void
2640 dwarf2out_frame_finish (void)
2642 /* Output call frame information. */
2643 if (DWARF2_FRAME_INFO)
2644 output_call_frame_info (0);
2646 #ifndef TARGET_UNWIND_INFO
2647 /* Output another copy for the unwinder. */
2648 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2649 output_call_frame_info (1);
2650 #endif
2652 #endif
2654 /* And now, the subset of the debugging information support code necessary
2655 for emitting location expressions. */
2657 /* Data about a single source file. */
2658 struct dwarf_file_data GTY(())
2660 const char * filename;
2661 int emitted_number;
2664 /* We need some way to distinguish DW_OP_addr with a direct symbol
2665 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2666 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2669 typedef struct dw_val_struct *dw_val_ref;
2670 typedef struct die_struct *dw_die_ref;
2671 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2672 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2674 /* Each DIE may have a series of attribute/value pairs. Values
2675 can take on several forms. The forms that are used in this
2676 implementation are listed below. */
2678 enum dw_val_class
2680 dw_val_class_addr,
2681 dw_val_class_offset,
2682 dw_val_class_loc,
2683 dw_val_class_loc_list,
2684 dw_val_class_range_list,
2685 dw_val_class_const,
2686 dw_val_class_unsigned_const,
2687 dw_val_class_long_long,
2688 dw_val_class_vec,
2689 dw_val_class_flag,
2690 dw_val_class_die_ref,
2691 dw_val_class_fde_ref,
2692 dw_val_class_lbl_id,
2693 dw_val_class_lineptr,
2694 dw_val_class_str,
2695 dw_val_class_macptr,
2696 dw_val_class_file
2699 /* Describe a double word constant value. */
2700 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2702 typedef struct dw_long_long_struct GTY(())
2704 unsigned long hi;
2705 unsigned long low;
2707 dw_long_long_const;
2709 /* Describe a floating point constant value, or a vector constant value. */
2711 typedef struct dw_vec_struct GTY(())
2713 unsigned char * GTY((length ("%h.length"))) array;
2714 unsigned length;
2715 unsigned elt_size;
2717 dw_vec_const;
2719 /* The dw_val_node describes an attribute's value, as it is
2720 represented internally. */
2722 typedef struct dw_val_struct GTY(())
2724 enum dw_val_class val_class;
2725 union dw_val_struct_union
2727 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2728 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2729 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2730 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2731 HOST_WIDE_INT GTY ((default)) val_int;
2732 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2733 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2734 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2735 struct dw_val_die_union
2737 dw_die_ref die;
2738 int external;
2739 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2740 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2741 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2742 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2743 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2744 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2746 GTY ((desc ("%1.val_class"))) v;
2748 dw_val_node;
2750 /* Locations in memory are described using a sequence of stack machine
2751 operations. */
2753 typedef struct dw_loc_descr_struct GTY(())
2755 dw_loc_descr_ref dw_loc_next;
2756 enum dwarf_location_atom dw_loc_opc;
2757 dw_val_node dw_loc_oprnd1;
2758 dw_val_node dw_loc_oprnd2;
2759 int dw_loc_addr;
2761 dw_loc_descr_node;
2763 /* Location lists are ranges + location descriptions for that range,
2764 so you can track variables that are in different places over
2765 their entire life. */
2766 typedef struct dw_loc_list_struct GTY(())
2768 dw_loc_list_ref dw_loc_next;
2769 const char *begin; /* Label for begin address of range */
2770 const char *end; /* Label for end address of range */
2771 char *ll_symbol; /* Label for beginning of location list.
2772 Only on head of list */
2773 const char *section; /* Section this loclist is relative to */
2774 dw_loc_descr_ref expr;
2775 } dw_loc_list_node;
2777 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2779 static const char *dwarf_stack_op_name (unsigned);
2780 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2781 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2782 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2783 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2784 static unsigned long size_of_locs (dw_loc_descr_ref);
2785 static void output_loc_operands (dw_loc_descr_ref);
2786 static void output_loc_sequence (dw_loc_descr_ref);
2788 /* Convert a DWARF stack opcode into its string name. */
2790 static const char *
2791 dwarf_stack_op_name (unsigned int op)
2793 switch (op)
2795 case DW_OP_addr:
2796 case INTERNAL_DW_OP_tls_addr:
2797 return "DW_OP_addr";
2798 case DW_OP_deref:
2799 return "DW_OP_deref";
2800 case DW_OP_const1u:
2801 return "DW_OP_const1u";
2802 case DW_OP_const1s:
2803 return "DW_OP_const1s";
2804 case DW_OP_const2u:
2805 return "DW_OP_const2u";
2806 case DW_OP_const2s:
2807 return "DW_OP_const2s";
2808 case DW_OP_const4u:
2809 return "DW_OP_const4u";
2810 case DW_OP_const4s:
2811 return "DW_OP_const4s";
2812 case DW_OP_const8u:
2813 return "DW_OP_const8u";
2814 case DW_OP_const8s:
2815 return "DW_OP_const8s";
2816 case DW_OP_constu:
2817 return "DW_OP_constu";
2818 case DW_OP_consts:
2819 return "DW_OP_consts";
2820 case DW_OP_dup:
2821 return "DW_OP_dup";
2822 case DW_OP_drop:
2823 return "DW_OP_drop";
2824 case DW_OP_over:
2825 return "DW_OP_over";
2826 case DW_OP_pick:
2827 return "DW_OP_pick";
2828 case DW_OP_swap:
2829 return "DW_OP_swap";
2830 case DW_OP_rot:
2831 return "DW_OP_rot";
2832 case DW_OP_xderef:
2833 return "DW_OP_xderef";
2834 case DW_OP_abs:
2835 return "DW_OP_abs";
2836 case DW_OP_and:
2837 return "DW_OP_and";
2838 case DW_OP_div:
2839 return "DW_OP_div";
2840 case DW_OP_minus:
2841 return "DW_OP_minus";
2842 case DW_OP_mod:
2843 return "DW_OP_mod";
2844 case DW_OP_mul:
2845 return "DW_OP_mul";
2846 case DW_OP_neg:
2847 return "DW_OP_neg";
2848 case DW_OP_not:
2849 return "DW_OP_not";
2850 case DW_OP_or:
2851 return "DW_OP_or";
2852 case DW_OP_plus:
2853 return "DW_OP_plus";
2854 case DW_OP_plus_uconst:
2855 return "DW_OP_plus_uconst";
2856 case DW_OP_shl:
2857 return "DW_OP_shl";
2858 case DW_OP_shr:
2859 return "DW_OP_shr";
2860 case DW_OP_shra:
2861 return "DW_OP_shra";
2862 case DW_OP_xor:
2863 return "DW_OP_xor";
2864 case DW_OP_bra:
2865 return "DW_OP_bra";
2866 case DW_OP_eq:
2867 return "DW_OP_eq";
2868 case DW_OP_ge:
2869 return "DW_OP_ge";
2870 case DW_OP_gt:
2871 return "DW_OP_gt";
2872 case DW_OP_le:
2873 return "DW_OP_le";
2874 case DW_OP_lt:
2875 return "DW_OP_lt";
2876 case DW_OP_ne:
2877 return "DW_OP_ne";
2878 case DW_OP_skip:
2879 return "DW_OP_skip";
2880 case DW_OP_lit0:
2881 return "DW_OP_lit0";
2882 case DW_OP_lit1:
2883 return "DW_OP_lit1";
2884 case DW_OP_lit2:
2885 return "DW_OP_lit2";
2886 case DW_OP_lit3:
2887 return "DW_OP_lit3";
2888 case DW_OP_lit4:
2889 return "DW_OP_lit4";
2890 case DW_OP_lit5:
2891 return "DW_OP_lit5";
2892 case DW_OP_lit6:
2893 return "DW_OP_lit6";
2894 case DW_OP_lit7:
2895 return "DW_OP_lit7";
2896 case DW_OP_lit8:
2897 return "DW_OP_lit8";
2898 case DW_OP_lit9:
2899 return "DW_OP_lit9";
2900 case DW_OP_lit10:
2901 return "DW_OP_lit10";
2902 case DW_OP_lit11:
2903 return "DW_OP_lit11";
2904 case DW_OP_lit12:
2905 return "DW_OP_lit12";
2906 case DW_OP_lit13:
2907 return "DW_OP_lit13";
2908 case DW_OP_lit14:
2909 return "DW_OP_lit14";
2910 case DW_OP_lit15:
2911 return "DW_OP_lit15";
2912 case DW_OP_lit16:
2913 return "DW_OP_lit16";
2914 case DW_OP_lit17:
2915 return "DW_OP_lit17";
2916 case DW_OP_lit18:
2917 return "DW_OP_lit18";
2918 case DW_OP_lit19:
2919 return "DW_OP_lit19";
2920 case DW_OP_lit20:
2921 return "DW_OP_lit20";
2922 case DW_OP_lit21:
2923 return "DW_OP_lit21";
2924 case DW_OP_lit22:
2925 return "DW_OP_lit22";
2926 case DW_OP_lit23:
2927 return "DW_OP_lit23";
2928 case DW_OP_lit24:
2929 return "DW_OP_lit24";
2930 case DW_OP_lit25:
2931 return "DW_OP_lit25";
2932 case DW_OP_lit26:
2933 return "DW_OP_lit26";
2934 case DW_OP_lit27:
2935 return "DW_OP_lit27";
2936 case DW_OP_lit28:
2937 return "DW_OP_lit28";
2938 case DW_OP_lit29:
2939 return "DW_OP_lit29";
2940 case DW_OP_lit30:
2941 return "DW_OP_lit30";
2942 case DW_OP_lit31:
2943 return "DW_OP_lit31";
2944 case DW_OP_reg0:
2945 return "DW_OP_reg0";
2946 case DW_OP_reg1:
2947 return "DW_OP_reg1";
2948 case DW_OP_reg2:
2949 return "DW_OP_reg2";
2950 case DW_OP_reg3:
2951 return "DW_OP_reg3";
2952 case DW_OP_reg4:
2953 return "DW_OP_reg4";
2954 case DW_OP_reg5:
2955 return "DW_OP_reg5";
2956 case DW_OP_reg6:
2957 return "DW_OP_reg6";
2958 case DW_OP_reg7:
2959 return "DW_OP_reg7";
2960 case DW_OP_reg8:
2961 return "DW_OP_reg8";
2962 case DW_OP_reg9:
2963 return "DW_OP_reg9";
2964 case DW_OP_reg10:
2965 return "DW_OP_reg10";
2966 case DW_OP_reg11:
2967 return "DW_OP_reg11";
2968 case DW_OP_reg12:
2969 return "DW_OP_reg12";
2970 case DW_OP_reg13:
2971 return "DW_OP_reg13";
2972 case DW_OP_reg14:
2973 return "DW_OP_reg14";
2974 case DW_OP_reg15:
2975 return "DW_OP_reg15";
2976 case DW_OP_reg16:
2977 return "DW_OP_reg16";
2978 case DW_OP_reg17:
2979 return "DW_OP_reg17";
2980 case DW_OP_reg18:
2981 return "DW_OP_reg18";
2982 case DW_OP_reg19:
2983 return "DW_OP_reg19";
2984 case DW_OP_reg20:
2985 return "DW_OP_reg20";
2986 case DW_OP_reg21:
2987 return "DW_OP_reg21";
2988 case DW_OP_reg22:
2989 return "DW_OP_reg22";
2990 case DW_OP_reg23:
2991 return "DW_OP_reg23";
2992 case DW_OP_reg24:
2993 return "DW_OP_reg24";
2994 case DW_OP_reg25:
2995 return "DW_OP_reg25";
2996 case DW_OP_reg26:
2997 return "DW_OP_reg26";
2998 case DW_OP_reg27:
2999 return "DW_OP_reg27";
3000 case DW_OP_reg28:
3001 return "DW_OP_reg28";
3002 case DW_OP_reg29:
3003 return "DW_OP_reg29";
3004 case DW_OP_reg30:
3005 return "DW_OP_reg30";
3006 case DW_OP_reg31:
3007 return "DW_OP_reg31";
3008 case DW_OP_breg0:
3009 return "DW_OP_breg0";
3010 case DW_OP_breg1:
3011 return "DW_OP_breg1";
3012 case DW_OP_breg2:
3013 return "DW_OP_breg2";
3014 case DW_OP_breg3:
3015 return "DW_OP_breg3";
3016 case DW_OP_breg4:
3017 return "DW_OP_breg4";
3018 case DW_OP_breg5:
3019 return "DW_OP_breg5";
3020 case DW_OP_breg6:
3021 return "DW_OP_breg6";
3022 case DW_OP_breg7:
3023 return "DW_OP_breg7";
3024 case DW_OP_breg8:
3025 return "DW_OP_breg8";
3026 case DW_OP_breg9:
3027 return "DW_OP_breg9";
3028 case DW_OP_breg10:
3029 return "DW_OP_breg10";
3030 case DW_OP_breg11:
3031 return "DW_OP_breg11";
3032 case DW_OP_breg12:
3033 return "DW_OP_breg12";
3034 case DW_OP_breg13:
3035 return "DW_OP_breg13";
3036 case DW_OP_breg14:
3037 return "DW_OP_breg14";
3038 case DW_OP_breg15:
3039 return "DW_OP_breg15";
3040 case DW_OP_breg16:
3041 return "DW_OP_breg16";
3042 case DW_OP_breg17:
3043 return "DW_OP_breg17";
3044 case DW_OP_breg18:
3045 return "DW_OP_breg18";
3046 case DW_OP_breg19:
3047 return "DW_OP_breg19";
3048 case DW_OP_breg20:
3049 return "DW_OP_breg20";
3050 case DW_OP_breg21:
3051 return "DW_OP_breg21";
3052 case DW_OP_breg22:
3053 return "DW_OP_breg22";
3054 case DW_OP_breg23:
3055 return "DW_OP_breg23";
3056 case DW_OP_breg24:
3057 return "DW_OP_breg24";
3058 case DW_OP_breg25:
3059 return "DW_OP_breg25";
3060 case DW_OP_breg26:
3061 return "DW_OP_breg26";
3062 case DW_OP_breg27:
3063 return "DW_OP_breg27";
3064 case DW_OP_breg28:
3065 return "DW_OP_breg28";
3066 case DW_OP_breg29:
3067 return "DW_OP_breg29";
3068 case DW_OP_breg30:
3069 return "DW_OP_breg30";
3070 case DW_OP_breg31:
3071 return "DW_OP_breg31";
3072 case DW_OP_regx:
3073 return "DW_OP_regx";
3074 case DW_OP_fbreg:
3075 return "DW_OP_fbreg";
3076 case DW_OP_bregx:
3077 return "DW_OP_bregx";
3078 case DW_OP_piece:
3079 return "DW_OP_piece";
3080 case DW_OP_deref_size:
3081 return "DW_OP_deref_size";
3082 case DW_OP_xderef_size:
3083 return "DW_OP_xderef_size";
3084 case DW_OP_nop:
3085 return "DW_OP_nop";
3086 case DW_OP_push_object_address:
3087 return "DW_OP_push_object_address";
3088 case DW_OP_call2:
3089 return "DW_OP_call2";
3090 case DW_OP_call4:
3091 return "DW_OP_call4";
3092 case DW_OP_call_ref:
3093 return "DW_OP_call_ref";
3094 case DW_OP_GNU_push_tls_address:
3095 return "DW_OP_GNU_push_tls_address";
3096 default:
3097 return "OP_<unknown>";
3101 /* Return a pointer to a newly allocated location description. Location
3102 descriptions are simple expression terms that can be strung
3103 together to form more complicated location (address) descriptions. */
3105 static inline dw_loc_descr_ref
3106 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3107 unsigned HOST_WIDE_INT oprnd2)
3109 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3111 descr->dw_loc_opc = op;
3112 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3113 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3114 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3115 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3117 return descr;
3120 /* Add a location description term to a location description expression. */
3122 static inline void
3123 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3125 dw_loc_descr_ref *d;
3127 /* Find the end of the chain. */
3128 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3131 *d = descr;
3134 /* Return the size of a location descriptor. */
3136 static unsigned long
3137 size_of_loc_descr (dw_loc_descr_ref loc)
3139 unsigned long size = 1;
3141 switch (loc->dw_loc_opc)
3143 case DW_OP_addr:
3144 case INTERNAL_DW_OP_tls_addr:
3145 size += DWARF2_ADDR_SIZE;
3146 break;
3147 case DW_OP_const1u:
3148 case DW_OP_const1s:
3149 size += 1;
3150 break;
3151 case DW_OP_const2u:
3152 case DW_OP_const2s:
3153 size += 2;
3154 break;
3155 case DW_OP_const4u:
3156 case DW_OP_const4s:
3157 size += 4;
3158 break;
3159 case DW_OP_const8u:
3160 case DW_OP_const8s:
3161 size += 8;
3162 break;
3163 case DW_OP_constu:
3164 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3165 break;
3166 case DW_OP_consts:
3167 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3168 break;
3169 case DW_OP_pick:
3170 size += 1;
3171 break;
3172 case DW_OP_plus_uconst:
3173 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3174 break;
3175 case DW_OP_skip:
3176 case DW_OP_bra:
3177 size += 2;
3178 break;
3179 case DW_OP_breg0:
3180 case DW_OP_breg1:
3181 case DW_OP_breg2:
3182 case DW_OP_breg3:
3183 case DW_OP_breg4:
3184 case DW_OP_breg5:
3185 case DW_OP_breg6:
3186 case DW_OP_breg7:
3187 case DW_OP_breg8:
3188 case DW_OP_breg9:
3189 case DW_OP_breg10:
3190 case DW_OP_breg11:
3191 case DW_OP_breg12:
3192 case DW_OP_breg13:
3193 case DW_OP_breg14:
3194 case DW_OP_breg15:
3195 case DW_OP_breg16:
3196 case DW_OP_breg17:
3197 case DW_OP_breg18:
3198 case DW_OP_breg19:
3199 case DW_OP_breg20:
3200 case DW_OP_breg21:
3201 case DW_OP_breg22:
3202 case DW_OP_breg23:
3203 case DW_OP_breg24:
3204 case DW_OP_breg25:
3205 case DW_OP_breg26:
3206 case DW_OP_breg27:
3207 case DW_OP_breg28:
3208 case DW_OP_breg29:
3209 case DW_OP_breg30:
3210 case DW_OP_breg31:
3211 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3212 break;
3213 case DW_OP_regx:
3214 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3215 break;
3216 case DW_OP_fbreg:
3217 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3218 break;
3219 case DW_OP_bregx:
3220 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3221 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3222 break;
3223 case DW_OP_piece:
3224 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3225 break;
3226 case DW_OP_deref_size:
3227 case DW_OP_xderef_size:
3228 size += 1;
3229 break;
3230 case DW_OP_call2:
3231 size += 2;
3232 break;
3233 case DW_OP_call4:
3234 size += 4;
3235 break;
3236 case DW_OP_call_ref:
3237 size += DWARF2_ADDR_SIZE;
3238 break;
3239 default:
3240 break;
3243 return size;
3246 /* Return the size of a series of location descriptors. */
3248 static unsigned long
3249 size_of_locs (dw_loc_descr_ref loc)
3251 dw_loc_descr_ref l;
3252 unsigned long size;
3254 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3255 field, to avoid writing to a PCH file. */
3256 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3258 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3259 break;
3260 size += size_of_loc_descr (l);
3262 if (! l)
3263 return size;
3265 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3267 l->dw_loc_addr = size;
3268 size += size_of_loc_descr (l);
3271 return size;
3274 /* Output location description stack opcode's operands (if any). */
3276 static void
3277 output_loc_operands (dw_loc_descr_ref loc)
3279 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3280 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3282 switch (loc->dw_loc_opc)
3284 #ifdef DWARF2_DEBUGGING_INFO
3285 case DW_OP_addr:
3286 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3287 break;
3288 case DW_OP_const2u:
3289 case DW_OP_const2s:
3290 dw2_asm_output_data (2, val1->v.val_int, NULL);
3291 break;
3292 case DW_OP_const4u:
3293 case DW_OP_const4s:
3294 dw2_asm_output_data (4, val1->v.val_int, NULL);
3295 break;
3296 case DW_OP_const8u:
3297 case DW_OP_const8s:
3298 gcc_assert (HOST_BITS_PER_LONG >= 64);
3299 dw2_asm_output_data (8, val1->v.val_int, NULL);
3300 break;
3301 case DW_OP_skip:
3302 case DW_OP_bra:
3304 int offset;
3306 gcc_assert (val1->val_class == dw_val_class_loc);
3307 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3309 dw2_asm_output_data (2, offset, NULL);
3311 break;
3312 #else
3313 case DW_OP_addr:
3314 case DW_OP_const2u:
3315 case DW_OP_const2s:
3316 case DW_OP_const4u:
3317 case DW_OP_const4s:
3318 case DW_OP_const8u:
3319 case DW_OP_const8s:
3320 case DW_OP_skip:
3321 case DW_OP_bra:
3322 /* We currently don't make any attempt to make sure these are
3323 aligned properly like we do for the main unwind info, so
3324 don't support emitting things larger than a byte if we're
3325 only doing unwinding. */
3326 gcc_unreachable ();
3327 #endif
3328 case DW_OP_const1u:
3329 case DW_OP_const1s:
3330 dw2_asm_output_data (1, val1->v.val_int, NULL);
3331 break;
3332 case DW_OP_constu:
3333 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3334 break;
3335 case DW_OP_consts:
3336 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3337 break;
3338 case DW_OP_pick:
3339 dw2_asm_output_data (1, val1->v.val_int, NULL);
3340 break;
3341 case DW_OP_plus_uconst:
3342 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3343 break;
3344 case DW_OP_breg0:
3345 case DW_OP_breg1:
3346 case DW_OP_breg2:
3347 case DW_OP_breg3:
3348 case DW_OP_breg4:
3349 case DW_OP_breg5:
3350 case DW_OP_breg6:
3351 case DW_OP_breg7:
3352 case DW_OP_breg8:
3353 case DW_OP_breg9:
3354 case DW_OP_breg10:
3355 case DW_OP_breg11:
3356 case DW_OP_breg12:
3357 case DW_OP_breg13:
3358 case DW_OP_breg14:
3359 case DW_OP_breg15:
3360 case DW_OP_breg16:
3361 case DW_OP_breg17:
3362 case DW_OP_breg18:
3363 case DW_OP_breg19:
3364 case DW_OP_breg20:
3365 case DW_OP_breg21:
3366 case DW_OP_breg22:
3367 case DW_OP_breg23:
3368 case DW_OP_breg24:
3369 case DW_OP_breg25:
3370 case DW_OP_breg26:
3371 case DW_OP_breg27:
3372 case DW_OP_breg28:
3373 case DW_OP_breg29:
3374 case DW_OP_breg30:
3375 case DW_OP_breg31:
3376 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3377 break;
3378 case DW_OP_regx:
3379 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3380 break;
3381 case DW_OP_fbreg:
3382 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3383 break;
3384 case DW_OP_bregx:
3385 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3386 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3387 break;
3388 case DW_OP_piece:
3389 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3390 break;
3391 case DW_OP_deref_size:
3392 case DW_OP_xderef_size:
3393 dw2_asm_output_data (1, val1->v.val_int, NULL);
3394 break;
3396 case INTERNAL_DW_OP_tls_addr:
3397 if (targetm.asm_out.output_dwarf_dtprel)
3399 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3400 DWARF2_ADDR_SIZE,
3401 val1->v.val_addr);
3402 fputc ('\n', asm_out_file);
3404 else
3405 gcc_unreachable ();
3406 break;
3408 default:
3409 /* Other codes have no operands. */
3410 break;
3414 /* Output a sequence of location operations. */
3416 static void
3417 output_loc_sequence (dw_loc_descr_ref loc)
3419 for (; loc != NULL; loc = loc->dw_loc_next)
3421 /* Output the opcode. */
3422 dw2_asm_output_data (1, loc->dw_loc_opc,
3423 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3425 /* Output the operand(s) (if any). */
3426 output_loc_operands (loc);
3430 /* This routine will generate the correct assembly data for a location
3431 description based on a cfi entry with a complex address. */
3433 static void
3434 output_cfa_loc (dw_cfi_ref cfi)
3436 dw_loc_descr_ref loc;
3437 unsigned long size;
3439 /* Output the size of the block. */
3440 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3441 size = size_of_locs (loc);
3442 dw2_asm_output_data_uleb128 (size, NULL);
3444 /* Now output the operations themselves. */
3445 output_loc_sequence (loc);
3448 /* This function builds a dwarf location descriptor sequence from a
3449 dw_cfa_location, adding the given OFFSET to the result of the
3450 expression. */
3452 static struct dw_loc_descr_struct *
3453 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3455 struct dw_loc_descr_struct *head, *tmp;
3457 offset += cfa->offset;
3459 if (cfa->indirect)
3461 if (cfa->base_offset)
3463 if (cfa->reg <= 31)
3464 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3465 else
3466 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3468 else if (cfa->reg <= 31)
3469 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3470 else
3471 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3473 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3474 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3475 add_loc_descr (&head, tmp);
3476 if (offset != 0)
3478 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3479 add_loc_descr (&head, tmp);
3482 else
3484 if (offset == 0)
3485 if (cfa->reg <= 31)
3486 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3487 else
3488 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3489 else if (cfa->reg <= 31)
3490 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3491 else
3492 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3495 return head;
3498 /* This function fills in aa dw_cfa_location structure from a dwarf location
3499 descriptor sequence. */
3501 static void
3502 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3504 struct dw_loc_descr_struct *ptr;
3505 cfa->offset = 0;
3506 cfa->base_offset = 0;
3507 cfa->indirect = 0;
3508 cfa->reg = -1;
3510 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3512 enum dwarf_location_atom op = ptr->dw_loc_opc;
3514 switch (op)
3516 case DW_OP_reg0:
3517 case DW_OP_reg1:
3518 case DW_OP_reg2:
3519 case DW_OP_reg3:
3520 case DW_OP_reg4:
3521 case DW_OP_reg5:
3522 case DW_OP_reg6:
3523 case DW_OP_reg7:
3524 case DW_OP_reg8:
3525 case DW_OP_reg9:
3526 case DW_OP_reg10:
3527 case DW_OP_reg11:
3528 case DW_OP_reg12:
3529 case DW_OP_reg13:
3530 case DW_OP_reg14:
3531 case DW_OP_reg15:
3532 case DW_OP_reg16:
3533 case DW_OP_reg17:
3534 case DW_OP_reg18:
3535 case DW_OP_reg19:
3536 case DW_OP_reg20:
3537 case DW_OP_reg21:
3538 case DW_OP_reg22:
3539 case DW_OP_reg23:
3540 case DW_OP_reg24:
3541 case DW_OP_reg25:
3542 case DW_OP_reg26:
3543 case DW_OP_reg27:
3544 case DW_OP_reg28:
3545 case DW_OP_reg29:
3546 case DW_OP_reg30:
3547 case DW_OP_reg31:
3548 cfa->reg = op - DW_OP_reg0;
3549 break;
3550 case DW_OP_regx:
3551 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3552 break;
3553 case DW_OP_breg0:
3554 case DW_OP_breg1:
3555 case DW_OP_breg2:
3556 case DW_OP_breg3:
3557 case DW_OP_breg4:
3558 case DW_OP_breg5:
3559 case DW_OP_breg6:
3560 case DW_OP_breg7:
3561 case DW_OP_breg8:
3562 case DW_OP_breg9:
3563 case DW_OP_breg10:
3564 case DW_OP_breg11:
3565 case DW_OP_breg12:
3566 case DW_OP_breg13:
3567 case DW_OP_breg14:
3568 case DW_OP_breg15:
3569 case DW_OP_breg16:
3570 case DW_OP_breg17:
3571 case DW_OP_breg18:
3572 case DW_OP_breg19:
3573 case DW_OP_breg20:
3574 case DW_OP_breg21:
3575 case DW_OP_breg22:
3576 case DW_OP_breg23:
3577 case DW_OP_breg24:
3578 case DW_OP_breg25:
3579 case DW_OP_breg26:
3580 case DW_OP_breg27:
3581 case DW_OP_breg28:
3582 case DW_OP_breg29:
3583 case DW_OP_breg30:
3584 case DW_OP_breg31:
3585 cfa->reg = op - DW_OP_breg0;
3586 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3587 break;
3588 case DW_OP_bregx:
3589 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3590 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3591 break;
3592 case DW_OP_deref:
3593 cfa->indirect = 1;
3594 break;
3595 case DW_OP_plus_uconst:
3596 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3597 break;
3598 default:
3599 internal_error ("DW_LOC_OP %s not implemented",
3600 dwarf_stack_op_name (ptr->dw_loc_opc));
3604 #endif /* .debug_frame support */
3606 /* And now, the support for symbolic debugging information. */
3607 #ifdef DWARF2_DEBUGGING_INFO
3609 /* .debug_str support. */
3610 static int output_indirect_string (void **, void *);
3612 static void dwarf2out_init (const char *);
3613 static void dwarf2out_finish (const char *);
3614 static void dwarf2out_define (unsigned int, const char *);
3615 static void dwarf2out_undef (unsigned int, const char *);
3616 static void dwarf2out_start_source_file (unsigned, const char *);
3617 static void dwarf2out_end_source_file (unsigned);
3618 static void dwarf2out_begin_block (unsigned, unsigned);
3619 static void dwarf2out_end_block (unsigned, unsigned);
3620 static bool dwarf2out_ignore_block (tree);
3621 static void dwarf2out_global_decl (tree);
3622 static void dwarf2out_type_decl (tree, int);
3623 static void dwarf2out_imported_module_or_decl (tree, tree);
3624 static void dwarf2out_abstract_function (tree);
3625 static void dwarf2out_var_location (rtx);
3626 static void dwarf2out_begin_function (tree);
3627 static void dwarf2out_switch_text_section (void);
3629 /* The debug hooks structure. */
3631 const struct gcc_debug_hooks dwarf2_debug_hooks =
3633 dwarf2out_init,
3634 dwarf2out_finish,
3635 dwarf2out_define,
3636 dwarf2out_undef,
3637 dwarf2out_start_source_file,
3638 dwarf2out_end_source_file,
3639 dwarf2out_begin_block,
3640 dwarf2out_end_block,
3641 dwarf2out_ignore_block,
3642 dwarf2out_source_line,
3643 dwarf2out_begin_prologue,
3644 debug_nothing_int_charstar, /* end_prologue */
3645 dwarf2out_end_epilogue,
3646 dwarf2out_begin_function,
3647 debug_nothing_int, /* end_function */
3648 dwarf2out_decl, /* function_decl */
3649 dwarf2out_global_decl,
3650 dwarf2out_type_decl, /* type_decl */
3651 dwarf2out_imported_module_or_decl,
3652 debug_nothing_tree, /* deferred_inline_function */
3653 /* The DWARF 2 backend tries to reduce debugging bloat by not
3654 emitting the abstract description of inline functions until
3655 something tries to reference them. */
3656 dwarf2out_abstract_function, /* outlining_inline_function */
3657 debug_nothing_rtx, /* label */
3658 debug_nothing_int, /* handle_pch */
3659 dwarf2out_var_location,
3660 dwarf2out_switch_text_section,
3661 1 /* start_end_main_source_file */
3663 #endif
3665 /* NOTE: In the comments in this file, many references are made to
3666 "Debugging Information Entries". This term is abbreviated as `DIE'
3667 throughout the remainder of this file. */
3669 /* An internal representation of the DWARF output is built, and then
3670 walked to generate the DWARF debugging info. The walk of the internal
3671 representation is done after the entire program has been compiled.
3672 The types below are used to describe the internal representation. */
3674 /* Various DIE's use offsets relative to the beginning of the
3675 .debug_info section to refer to each other. */
3677 typedef long int dw_offset;
3679 /* Define typedefs here to avoid circular dependencies. */
3681 typedef struct dw_attr_struct *dw_attr_ref;
3682 typedef struct dw_line_info_struct *dw_line_info_ref;
3683 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3684 typedef struct pubname_struct *pubname_ref;
3685 typedef struct dw_ranges_struct *dw_ranges_ref;
3687 /* Each entry in the line_info_table maintains the file and
3688 line number associated with the label generated for that
3689 entry. The label gives the PC value associated with
3690 the line number entry. */
3692 typedef struct dw_line_info_struct GTY(())
3694 unsigned long dw_file_num;
3695 unsigned long dw_line_num;
3697 dw_line_info_entry;
3699 /* Line information for functions in separate sections; each one gets its
3700 own sequence. */
3701 typedef struct dw_separate_line_info_struct GTY(())
3703 unsigned long dw_file_num;
3704 unsigned long dw_line_num;
3705 unsigned long function;
3707 dw_separate_line_info_entry;
3709 /* Each DIE attribute has a field specifying the attribute kind,
3710 a link to the next attribute in the chain, and an attribute value.
3711 Attributes are typically linked below the DIE they modify. */
3713 typedef struct dw_attr_struct GTY(())
3715 enum dwarf_attribute dw_attr;
3716 dw_val_node dw_attr_val;
3718 dw_attr_node;
3720 DEF_VEC_O(dw_attr_node);
3721 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3723 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3724 The children of each node form a circular list linked by
3725 die_sib. die_child points to the node *before* the "first" child node. */
3727 typedef struct die_struct GTY(())
3729 enum dwarf_tag die_tag;
3730 char *die_symbol;
3731 VEC(dw_attr_node,gc) * die_attr;
3732 dw_die_ref die_parent;
3733 dw_die_ref die_child;
3734 dw_die_ref die_sib;
3735 dw_die_ref die_definition; /* ref from a specification to its definition */
3736 dw_offset die_offset;
3737 unsigned long die_abbrev;
3738 int die_mark;
3739 /* Die is used and must not be pruned as unused. */
3740 int die_perennial_p;
3741 unsigned int decl_id;
3743 die_node;
3745 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3746 #define FOR_EACH_CHILD(die, c, expr) do { \
3747 c = die->die_child; \
3748 if (c) do { \
3749 c = c->die_sib; \
3750 expr; \
3751 } while (c != die->die_child); \
3752 } while (0)
3754 /* The pubname structure */
3756 typedef struct pubname_struct GTY(())
3758 dw_die_ref die;
3759 char *name;
3761 pubname_entry;
3763 DEF_VEC_O(pubname_entry);
3764 DEF_VEC_ALLOC_O(pubname_entry, gc);
3766 struct dw_ranges_struct GTY(())
3768 int block_num;
3771 /* The limbo die list structure. */
3772 typedef struct limbo_die_struct GTY(())
3774 dw_die_ref die;
3775 tree created_for;
3776 struct limbo_die_struct *next;
3778 limbo_die_node;
3780 /* How to start an assembler comment. */
3781 #ifndef ASM_COMMENT_START
3782 #define ASM_COMMENT_START ";#"
3783 #endif
3785 /* Define a macro which returns nonzero for a TYPE_DECL which was
3786 implicitly generated for a tagged type.
3788 Note that unlike the gcc front end (which generates a NULL named
3789 TYPE_DECL node for each complete tagged type, each array type, and
3790 each function type node created) the g++ front end generates a
3791 _named_ TYPE_DECL node for each tagged type node created.
3792 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3793 generate a DW_TAG_typedef DIE for them. */
3795 #define TYPE_DECL_IS_STUB(decl) \
3796 (DECL_NAME (decl) == NULL_TREE \
3797 || (DECL_ARTIFICIAL (decl) \
3798 && is_tagged_type (TREE_TYPE (decl)) \
3799 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3800 /* This is necessary for stub decls that \
3801 appear in nested inline functions. */ \
3802 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3803 && (decl_ultimate_origin (decl) \
3804 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3806 /* Information concerning the compilation unit's programming
3807 language, and compiler version. */
3809 /* Fixed size portion of the DWARF compilation unit header. */
3810 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3811 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3813 /* Fixed size portion of public names info. */
3814 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3816 /* Fixed size portion of the address range info. */
3817 #define DWARF_ARANGES_HEADER_SIZE \
3818 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3819 DWARF2_ADDR_SIZE * 2) \
3820 - DWARF_INITIAL_LENGTH_SIZE)
3822 /* Size of padding portion in the address range info. It must be
3823 aligned to twice the pointer size. */
3824 #define DWARF_ARANGES_PAD_SIZE \
3825 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3826 DWARF2_ADDR_SIZE * 2) \
3827 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3829 /* Use assembler line directives if available. */
3830 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3831 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3832 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3833 #else
3834 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3835 #endif
3836 #endif
3838 /* Minimum line offset in a special line info. opcode.
3839 This value was chosen to give a reasonable range of values. */
3840 #define DWARF_LINE_BASE -10
3842 /* First special line opcode - leave room for the standard opcodes. */
3843 #define DWARF_LINE_OPCODE_BASE 10
3845 /* Range of line offsets in a special line info. opcode. */
3846 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3848 /* Flag that indicates the initial value of the is_stmt_start flag.
3849 In the present implementation, we do not mark any lines as
3850 the beginning of a source statement, because that information
3851 is not made available by the GCC front-end. */
3852 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3854 #ifdef DWARF2_DEBUGGING_INFO
3855 /* This location is used by calc_die_sizes() to keep track
3856 the offset of each DIE within the .debug_info section. */
3857 static unsigned long next_die_offset;
3858 #endif
3860 /* Record the root of the DIE's built for the current compilation unit. */
3861 static GTY(()) dw_die_ref comp_unit_die;
3863 /* A list of DIEs with a NULL parent waiting to be relocated. */
3864 static GTY(()) limbo_die_node *limbo_die_list;
3866 /* Filenames referenced by this compilation unit. */
3867 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3869 /* A hash table of references to DIE's that describe declarations.
3870 The key is a DECL_UID() which is a unique number identifying each decl. */
3871 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3873 /* Node of the variable location list. */
3874 struct var_loc_node GTY ((chain_next ("%h.next")))
3876 rtx GTY (()) var_loc_note;
3877 const char * GTY (()) label;
3878 const char * GTY (()) section_label;
3879 struct var_loc_node * GTY (()) next;
3882 /* Variable location list. */
3883 struct var_loc_list_def GTY (())
3885 struct var_loc_node * GTY (()) first;
3887 /* Do not mark the last element of the chained list because
3888 it is marked through the chain. */
3889 struct var_loc_node * GTY ((skip ("%h"))) last;
3891 /* DECL_UID of the variable decl. */
3892 unsigned int decl_id;
3894 typedef struct var_loc_list_def var_loc_list;
3897 /* Table of decl location linked lists. */
3898 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3900 /* A pointer to the base of a list of references to DIE's that
3901 are uniquely identified by their tag, presence/absence of
3902 children DIE's, and list of attribute/value pairs. */
3903 static GTY((length ("abbrev_die_table_allocated")))
3904 dw_die_ref *abbrev_die_table;
3906 /* Number of elements currently allocated for abbrev_die_table. */
3907 static GTY(()) unsigned abbrev_die_table_allocated;
3909 /* Number of elements in type_die_table currently in use. */
3910 static GTY(()) unsigned abbrev_die_table_in_use;
3912 /* Size (in elements) of increments by which we may expand the
3913 abbrev_die_table. */
3914 #define ABBREV_DIE_TABLE_INCREMENT 256
3916 /* A pointer to the base of a table that contains line information
3917 for each source code line in .text in the compilation unit. */
3918 static GTY((length ("line_info_table_allocated")))
3919 dw_line_info_ref line_info_table;
3921 /* Number of elements currently allocated for line_info_table. */
3922 static GTY(()) unsigned line_info_table_allocated;
3924 /* Number of elements in line_info_table currently in use. */
3925 static GTY(()) unsigned line_info_table_in_use;
3927 /* True if the compilation unit places functions in more than one section. */
3928 static GTY(()) bool have_multiple_function_sections = false;
3930 /* A pointer to the base of a table that contains line information
3931 for each source code line outside of .text in the compilation unit. */
3932 static GTY ((length ("separate_line_info_table_allocated")))
3933 dw_separate_line_info_ref separate_line_info_table;
3935 /* Number of elements currently allocated for separate_line_info_table. */
3936 static GTY(()) unsigned separate_line_info_table_allocated;
3938 /* Number of elements in separate_line_info_table currently in use. */
3939 static GTY(()) unsigned separate_line_info_table_in_use;
3941 /* Size (in elements) of increments by which we may expand the
3942 line_info_table. */
3943 #define LINE_INFO_TABLE_INCREMENT 1024
3945 /* A pointer to the base of a table that contains a list of publicly
3946 accessible names. */
3947 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
3949 /* A pointer to the base of a table that contains a list of publicly
3950 accessible types. */
3951 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
3953 /* Array of dies for which we should generate .debug_arange info. */
3954 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3956 /* Number of elements currently allocated for arange_table. */
3957 static GTY(()) unsigned arange_table_allocated;
3959 /* Number of elements in arange_table currently in use. */
3960 static GTY(()) unsigned arange_table_in_use;
3962 /* Size (in elements) of increments by which we may expand the
3963 arange_table. */
3964 #define ARANGE_TABLE_INCREMENT 64
3966 /* Array of dies for which we should generate .debug_ranges info. */
3967 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3969 /* Number of elements currently allocated for ranges_table. */
3970 static GTY(()) unsigned ranges_table_allocated;
3972 /* Number of elements in ranges_table currently in use. */
3973 static GTY(()) unsigned ranges_table_in_use;
3975 /* Size (in elements) of increments by which we may expand the
3976 ranges_table. */
3977 #define RANGES_TABLE_INCREMENT 64
3979 /* Whether we have location lists that need outputting */
3980 static GTY(()) bool have_location_lists;
3982 /* Unique label counter. */
3983 static GTY(()) unsigned int loclabel_num;
3985 #ifdef DWARF2_DEBUGGING_INFO
3986 /* Record whether the function being analyzed contains inlined functions. */
3987 static int current_function_has_inlines;
3988 #endif
3989 #if 0 && defined (MIPS_DEBUGGING_INFO)
3990 static int comp_unit_has_inlines;
3991 #endif
3993 /* The last file entry emitted by maybe_emit_file(). */
3994 static GTY(()) struct dwarf_file_data * last_emitted_file;
3996 /* Number of internal labels generated by gen_internal_sym(). */
3997 static GTY(()) int label_num;
3999 /* Cached result of previous call to lookup_filename. */
4000 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4002 #ifdef DWARF2_DEBUGGING_INFO
4004 /* Offset from the "steady-state frame pointer" to the frame base,
4005 within the current function. */
4006 static HOST_WIDE_INT frame_pointer_fb_offset;
4008 /* Forward declarations for functions defined in this file. */
4010 static int is_pseudo_reg (rtx);
4011 static tree type_main_variant (tree);
4012 static int is_tagged_type (tree);
4013 static const char *dwarf_tag_name (unsigned);
4014 static const char *dwarf_attr_name (unsigned);
4015 static const char *dwarf_form_name (unsigned);
4016 static tree decl_ultimate_origin (tree);
4017 static tree block_ultimate_origin (tree);
4018 static tree decl_class_context (tree);
4019 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4020 static inline enum dw_val_class AT_class (dw_attr_ref);
4021 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4022 static inline unsigned AT_flag (dw_attr_ref);
4023 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4024 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4025 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4026 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4027 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4028 unsigned long);
4029 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4030 unsigned int, unsigned char *);
4031 static hashval_t debug_str_do_hash (const void *);
4032 static int debug_str_eq (const void *, const void *);
4033 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4034 static inline const char *AT_string (dw_attr_ref);
4035 static int AT_string_form (dw_attr_ref);
4036 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4037 static void add_AT_specification (dw_die_ref, dw_die_ref);
4038 static inline dw_die_ref AT_ref (dw_attr_ref);
4039 static inline int AT_ref_external (dw_attr_ref);
4040 static inline void set_AT_ref_external (dw_attr_ref, int);
4041 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4042 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4043 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4044 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4045 dw_loc_list_ref);
4046 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4047 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4048 static inline rtx AT_addr (dw_attr_ref);
4049 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4050 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4051 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4052 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4053 unsigned HOST_WIDE_INT);
4054 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4055 unsigned long);
4056 static inline const char *AT_lbl (dw_attr_ref);
4057 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4058 static const char *get_AT_low_pc (dw_die_ref);
4059 static const char *get_AT_hi_pc (dw_die_ref);
4060 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4061 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4062 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4063 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4064 static bool is_c_family (void);
4065 static bool is_cxx (void);
4066 static bool is_java (void);
4067 static bool is_fortran (void);
4068 static bool is_ada (void);
4069 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4070 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4071 static void add_child_die (dw_die_ref, dw_die_ref);
4072 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4073 static dw_die_ref lookup_type_die (tree);
4074 static void equate_type_number_to_die (tree, dw_die_ref);
4075 static hashval_t decl_die_table_hash (const void *);
4076 static int decl_die_table_eq (const void *, const void *);
4077 static dw_die_ref lookup_decl_die (tree);
4078 static hashval_t decl_loc_table_hash (const void *);
4079 static int decl_loc_table_eq (const void *, const void *);
4080 static var_loc_list *lookup_decl_loc (tree);
4081 static void equate_decl_number_to_die (tree, dw_die_ref);
4082 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4083 static void print_spaces (FILE *);
4084 static void print_die (dw_die_ref, FILE *);
4085 static void print_dwarf_line_table (FILE *);
4086 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4087 static dw_die_ref pop_compile_unit (dw_die_ref);
4088 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4089 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4090 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4091 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4092 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4093 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4094 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4095 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4096 static void compute_section_prefix (dw_die_ref);
4097 static int is_type_die (dw_die_ref);
4098 static int is_comdat_die (dw_die_ref);
4099 static int is_symbol_die (dw_die_ref);
4100 static void assign_symbol_names (dw_die_ref);
4101 static void break_out_includes (dw_die_ref);
4102 static hashval_t htab_cu_hash (const void *);
4103 static int htab_cu_eq (const void *, const void *);
4104 static void htab_cu_del (void *);
4105 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4106 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4107 static void add_sibling_attributes (dw_die_ref);
4108 static void build_abbrev_table (dw_die_ref);
4109 static void output_location_lists (dw_die_ref);
4110 static int constant_size (long unsigned);
4111 static unsigned long size_of_die (dw_die_ref);
4112 static void calc_die_sizes (dw_die_ref);
4113 static void mark_dies (dw_die_ref);
4114 static void unmark_dies (dw_die_ref);
4115 static void unmark_all_dies (dw_die_ref);
4116 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4117 static unsigned long size_of_aranges (void);
4118 static enum dwarf_form value_format (dw_attr_ref);
4119 static void output_value_format (dw_attr_ref);
4120 static void output_abbrev_section (void);
4121 static void output_die_symbol (dw_die_ref);
4122 static void output_die (dw_die_ref);
4123 static void output_compilation_unit_header (void);
4124 static void output_comp_unit (dw_die_ref, int);
4125 static const char *dwarf2_name (tree, int);
4126 static void add_pubname (tree, dw_die_ref);
4127 static void add_pubtype (tree, dw_die_ref);
4128 static void output_pubnames (VEC (pubname_entry,gc) *);
4129 static void add_arange (tree, dw_die_ref);
4130 static void output_aranges (void);
4131 static unsigned int add_ranges (tree);
4132 static void output_ranges (void);
4133 static void output_line_info (void);
4134 static void output_file_names (void);
4135 static dw_die_ref base_type_die (tree);
4136 static tree root_type (tree);
4137 static int is_base_type (tree);
4138 static bool is_subrange_type (tree);
4139 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4140 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4141 static int type_is_enum (tree);
4142 static unsigned int dbx_reg_number (rtx);
4143 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4144 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4145 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4146 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4147 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4148 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4149 static int is_based_loc (rtx);
4150 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4151 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4152 static dw_loc_descr_ref loc_descriptor (rtx);
4153 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4154 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4155 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4156 static tree field_type (tree);
4157 static unsigned int simple_type_align_in_bits (tree);
4158 static unsigned int simple_decl_align_in_bits (tree);
4159 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4160 static HOST_WIDE_INT field_byte_offset (tree);
4161 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4162 dw_loc_descr_ref);
4163 static void add_data_member_location_attribute (dw_die_ref, tree);
4164 static void add_const_value_attribute (dw_die_ref, rtx);
4165 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4166 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4167 static void insert_float (rtx, unsigned char *);
4168 static rtx rtl_for_decl_location (tree);
4169 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4170 enum dwarf_attribute);
4171 static void tree_add_const_value_attribute (dw_die_ref, tree);
4172 static void add_name_attribute (dw_die_ref, const char *);
4173 static void add_comp_dir_attribute (dw_die_ref);
4174 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4175 static void add_subscript_info (dw_die_ref, tree);
4176 static void add_byte_size_attribute (dw_die_ref, tree);
4177 static void add_bit_offset_attribute (dw_die_ref, tree);
4178 static void add_bit_size_attribute (dw_die_ref, tree);
4179 static void add_prototyped_attribute (dw_die_ref, tree);
4180 static void add_abstract_origin_attribute (dw_die_ref, tree);
4181 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4182 static void add_src_coords_attributes (dw_die_ref, tree);
4183 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4184 static void push_decl_scope (tree);
4185 static void pop_decl_scope (void);
4186 static dw_die_ref scope_die_for (tree, dw_die_ref);
4187 static inline int local_scope_p (dw_die_ref);
4188 static inline int class_or_namespace_scope_p (dw_die_ref);
4189 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4190 static void add_calling_convention_attribute (dw_die_ref, tree);
4191 static const char *type_tag (tree);
4192 static tree member_declared_type (tree);
4193 #if 0
4194 static const char *decl_start_label (tree);
4195 #endif
4196 static void gen_array_type_die (tree, dw_die_ref);
4197 #if 0
4198 static void gen_entry_point_die (tree, dw_die_ref);
4199 #endif
4200 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4201 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4202 static void gen_inlined_union_type_die (tree, dw_die_ref);
4203 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4204 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4205 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4206 static void gen_formal_types_die (tree, dw_die_ref);
4207 static void gen_subprogram_die (tree, dw_die_ref);
4208 static void gen_variable_die (tree, dw_die_ref);
4209 static void gen_label_die (tree, dw_die_ref);
4210 static void gen_lexical_block_die (tree, dw_die_ref, int);
4211 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4212 static void gen_field_die (tree, dw_die_ref);
4213 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4214 static dw_die_ref gen_compile_unit_die (const char *);
4215 static void gen_inheritance_die (tree, tree, dw_die_ref);
4216 static void gen_member_die (tree, dw_die_ref);
4217 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4218 static void gen_subroutine_type_die (tree, dw_die_ref);
4219 static void gen_typedef_die (tree, dw_die_ref);
4220 static void gen_type_die (tree, dw_die_ref);
4221 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4222 static void gen_block_die (tree, dw_die_ref, int);
4223 static void decls_for_scope (tree, dw_die_ref, int);
4224 static int is_redundant_typedef (tree);
4225 static void gen_namespace_die (tree);
4226 static void gen_decl_die (tree, dw_die_ref);
4227 static dw_die_ref force_decl_die (tree);
4228 static dw_die_ref force_type_die (tree);
4229 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4230 static void declare_in_namespace (tree, dw_die_ref);
4231 static struct dwarf_file_data * lookup_filename (const char *);
4232 static void retry_incomplete_types (void);
4233 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4234 static void splice_child_die (dw_die_ref, dw_die_ref);
4235 static int file_info_cmp (const void *, const void *);
4236 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4237 const char *, const char *, unsigned);
4238 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4239 const char *, const char *,
4240 const char *);
4241 static void output_loc_list (dw_loc_list_ref);
4242 static char *gen_internal_sym (const char *);
4244 static void prune_unmark_dies (dw_die_ref);
4245 static void prune_unused_types_mark (dw_die_ref, int);
4246 static void prune_unused_types_walk (dw_die_ref);
4247 static void prune_unused_types_walk_attribs (dw_die_ref);
4248 static void prune_unused_types_prune (dw_die_ref);
4249 static void prune_unused_types (void);
4250 static int maybe_emit_file (struct dwarf_file_data *fd);
4252 /* Section names used to hold DWARF debugging information. */
4253 #ifndef DEBUG_INFO_SECTION
4254 #define DEBUG_INFO_SECTION ".debug_info"
4255 #endif
4256 #ifndef DEBUG_ABBREV_SECTION
4257 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4258 #endif
4259 #ifndef DEBUG_ARANGES_SECTION
4260 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4261 #endif
4262 #ifndef DEBUG_MACINFO_SECTION
4263 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4264 #endif
4265 #ifndef DEBUG_LINE_SECTION
4266 #define DEBUG_LINE_SECTION ".debug_line"
4267 #endif
4268 #ifndef DEBUG_LOC_SECTION
4269 #define DEBUG_LOC_SECTION ".debug_loc"
4270 #endif
4271 #ifndef DEBUG_PUBNAMES_SECTION
4272 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4273 #endif
4274 #ifndef DEBUG_STR_SECTION
4275 #define DEBUG_STR_SECTION ".debug_str"
4276 #endif
4277 #ifndef DEBUG_RANGES_SECTION
4278 #define DEBUG_RANGES_SECTION ".debug_ranges"
4279 #endif
4281 /* Standard ELF section names for compiled code and data. */
4282 #ifndef TEXT_SECTION_NAME
4283 #define TEXT_SECTION_NAME ".text"
4284 #endif
4286 /* Section flags for .debug_str section. */
4287 #define DEBUG_STR_SECTION_FLAGS \
4288 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4289 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4290 : SECTION_DEBUG)
4292 /* Labels we insert at beginning sections we can reference instead of
4293 the section names themselves. */
4295 #ifndef TEXT_SECTION_LABEL
4296 #define TEXT_SECTION_LABEL "Ltext"
4297 #endif
4298 #ifndef COLD_TEXT_SECTION_LABEL
4299 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4300 #endif
4301 #ifndef DEBUG_LINE_SECTION_LABEL
4302 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4303 #endif
4304 #ifndef DEBUG_INFO_SECTION_LABEL
4305 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4306 #endif
4307 #ifndef DEBUG_ABBREV_SECTION_LABEL
4308 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4309 #endif
4310 #ifndef DEBUG_LOC_SECTION_LABEL
4311 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4312 #endif
4313 #ifndef DEBUG_RANGES_SECTION_LABEL
4314 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4315 #endif
4316 #ifndef DEBUG_MACINFO_SECTION_LABEL
4317 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4318 #endif
4320 /* Definitions of defaults for formats and names of various special
4321 (artificial) labels which may be generated within this file (when the -g
4322 options is used and DWARF2_DEBUGGING_INFO is in effect.
4323 If necessary, these may be overridden from within the tm.h file, but
4324 typically, overriding these defaults is unnecessary. */
4326 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4327 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4334 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4335 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4337 #ifndef TEXT_END_LABEL
4338 #define TEXT_END_LABEL "Letext"
4339 #endif
4340 #ifndef COLD_END_LABEL
4341 #define COLD_END_LABEL "Letext_cold"
4342 #endif
4343 #ifndef BLOCK_BEGIN_LABEL
4344 #define BLOCK_BEGIN_LABEL "LBB"
4345 #endif
4346 #ifndef BLOCK_END_LABEL
4347 #define BLOCK_END_LABEL "LBE"
4348 #endif
4349 #ifndef LINE_CODE_LABEL
4350 #define LINE_CODE_LABEL "LM"
4351 #endif
4352 #ifndef SEPARATE_LINE_CODE_LABEL
4353 #define SEPARATE_LINE_CODE_LABEL "LSM"
4354 #endif
4356 /* We allow a language front-end to designate a function that is to be
4357 called to "demangle" any name before it is put into a DIE. */
4359 static const char *(*demangle_name_func) (const char *);
4361 void
4362 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4364 demangle_name_func = func;
4367 /* Test if rtl node points to a pseudo register. */
4369 static inline int
4370 is_pseudo_reg (rtx rtl)
4372 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4373 || (GET_CODE (rtl) == SUBREG
4374 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4377 /* Return a reference to a type, with its const and volatile qualifiers
4378 removed. */
4380 static inline tree
4381 type_main_variant (tree type)
4383 type = TYPE_MAIN_VARIANT (type);
4385 /* ??? There really should be only one main variant among any group of
4386 variants of a given type (and all of the MAIN_VARIANT values for all
4387 members of the group should point to that one type) but sometimes the C
4388 front-end messes this up for array types, so we work around that bug
4389 here. */
4390 if (TREE_CODE (type) == ARRAY_TYPE)
4391 while (type != TYPE_MAIN_VARIANT (type))
4392 type = TYPE_MAIN_VARIANT (type);
4394 return type;
4397 /* Return nonzero if the given type node represents a tagged type. */
4399 static inline int
4400 is_tagged_type (tree type)
4402 enum tree_code code = TREE_CODE (type);
4404 return (code == RECORD_TYPE || code == UNION_TYPE
4405 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4408 /* Convert a DIE tag into its string name. */
4410 static const char *
4411 dwarf_tag_name (unsigned int tag)
4413 switch (tag)
4415 case DW_TAG_padding:
4416 return "DW_TAG_padding";
4417 case DW_TAG_array_type:
4418 return "DW_TAG_array_type";
4419 case DW_TAG_class_type:
4420 return "DW_TAG_class_type";
4421 case DW_TAG_entry_point:
4422 return "DW_TAG_entry_point";
4423 case DW_TAG_enumeration_type:
4424 return "DW_TAG_enumeration_type";
4425 case DW_TAG_formal_parameter:
4426 return "DW_TAG_formal_parameter";
4427 case DW_TAG_imported_declaration:
4428 return "DW_TAG_imported_declaration";
4429 case DW_TAG_label:
4430 return "DW_TAG_label";
4431 case DW_TAG_lexical_block:
4432 return "DW_TAG_lexical_block";
4433 case DW_TAG_member:
4434 return "DW_TAG_member";
4435 case DW_TAG_pointer_type:
4436 return "DW_TAG_pointer_type";
4437 case DW_TAG_reference_type:
4438 return "DW_TAG_reference_type";
4439 case DW_TAG_compile_unit:
4440 return "DW_TAG_compile_unit";
4441 case DW_TAG_string_type:
4442 return "DW_TAG_string_type";
4443 case DW_TAG_structure_type:
4444 return "DW_TAG_structure_type";
4445 case DW_TAG_subroutine_type:
4446 return "DW_TAG_subroutine_type";
4447 case DW_TAG_typedef:
4448 return "DW_TAG_typedef";
4449 case DW_TAG_union_type:
4450 return "DW_TAG_union_type";
4451 case DW_TAG_unspecified_parameters:
4452 return "DW_TAG_unspecified_parameters";
4453 case DW_TAG_variant:
4454 return "DW_TAG_variant";
4455 case DW_TAG_common_block:
4456 return "DW_TAG_common_block";
4457 case DW_TAG_common_inclusion:
4458 return "DW_TAG_common_inclusion";
4459 case DW_TAG_inheritance:
4460 return "DW_TAG_inheritance";
4461 case DW_TAG_inlined_subroutine:
4462 return "DW_TAG_inlined_subroutine";
4463 case DW_TAG_module:
4464 return "DW_TAG_module";
4465 case DW_TAG_ptr_to_member_type:
4466 return "DW_TAG_ptr_to_member_type";
4467 case DW_TAG_set_type:
4468 return "DW_TAG_set_type";
4469 case DW_TAG_subrange_type:
4470 return "DW_TAG_subrange_type";
4471 case DW_TAG_with_stmt:
4472 return "DW_TAG_with_stmt";
4473 case DW_TAG_access_declaration:
4474 return "DW_TAG_access_declaration";
4475 case DW_TAG_base_type:
4476 return "DW_TAG_base_type";
4477 case DW_TAG_catch_block:
4478 return "DW_TAG_catch_block";
4479 case DW_TAG_const_type:
4480 return "DW_TAG_const_type";
4481 case DW_TAG_constant:
4482 return "DW_TAG_constant";
4483 case DW_TAG_enumerator:
4484 return "DW_TAG_enumerator";
4485 case DW_TAG_file_type:
4486 return "DW_TAG_file_type";
4487 case DW_TAG_friend:
4488 return "DW_TAG_friend";
4489 case DW_TAG_namelist:
4490 return "DW_TAG_namelist";
4491 case DW_TAG_namelist_item:
4492 return "DW_TAG_namelist_item";
4493 case DW_TAG_namespace:
4494 return "DW_TAG_namespace";
4495 case DW_TAG_packed_type:
4496 return "DW_TAG_packed_type";
4497 case DW_TAG_subprogram:
4498 return "DW_TAG_subprogram";
4499 case DW_TAG_template_type_param:
4500 return "DW_TAG_template_type_param";
4501 case DW_TAG_template_value_param:
4502 return "DW_TAG_template_value_param";
4503 case DW_TAG_thrown_type:
4504 return "DW_TAG_thrown_type";
4505 case DW_TAG_try_block:
4506 return "DW_TAG_try_block";
4507 case DW_TAG_variant_part:
4508 return "DW_TAG_variant_part";
4509 case DW_TAG_variable:
4510 return "DW_TAG_variable";
4511 case DW_TAG_volatile_type:
4512 return "DW_TAG_volatile_type";
4513 case DW_TAG_imported_module:
4514 return "DW_TAG_imported_module";
4515 case DW_TAG_MIPS_loop:
4516 return "DW_TAG_MIPS_loop";
4517 case DW_TAG_format_label:
4518 return "DW_TAG_format_label";
4519 case DW_TAG_function_template:
4520 return "DW_TAG_function_template";
4521 case DW_TAG_class_template:
4522 return "DW_TAG_class_template";
4523 case DW_TAG_GNU_BINCL:
4524 return "DW_TAG_GNU_BINCL";
4525 case DW_TAG_GNU_EINCL:
4526 return "DW_TAG_GNU_EINCL";
4527 default:
4528 return "DW_TAG_<unknown>";
4532 /* Convert a DWARF attribute code into its string name. */
4534 static const char *
4535 dwarf_attr_name (unsigned int attr)
4537 switch (attr)
4539 case DW_AT_sibling:
4540 return "DW_AT_sibling";
4541 case DW_AT_location:
4542 return "DW_AT_location";
4543 case DW_AT_name:
4544 return "DW_AT_name";
4545 case DW_AT_ordering:
4546 return "DW_AT_ordering";
4547 case DW_AT_subscr_data:
4548 return "DW_AT_subscr_data";
4549 case DW_AT_byte_size:
4550 return "DW_AT_byte_size";
4551 case DW_AT_bit_offset:
4552 return "DW_AT_bit_offset";
4553 case DW_AT_bit_size:
4554 return "DW_AT_bit_size";
4555 case DW_AT_element_list:
4556 return "DW_AT_element_list";
4557 case DW_AT_stmt_list:
4558 return "DW_AT_stmt_list";
4559 case DW_AT_low_pc:
4560 return "DW_AT_low_pc";
4561 case DW_AT_high_pc:
4562 return "DW_AT_high_pc";
4563 case DW_AT_language:
4564 return "DW_AT_language";
4565 case DW_AT_member:
4566 return "DW_AT_member";
4567 case DW_AT_discr:
4568 return "DW_AT_discr";
4569 case DW_AT_discr_value:
4570 return "DW_AT_discr_value";
4571 case DW_AT_visibility:
4572 return "DW_AT_visibility";
4573 case DW_AT_import:
4574 return "DW_AT_import";
4575 case DW_AT_string_length:
4576 return "DW_AT_string_length";
4577 case DW_AT_common_reference:
4578 return "DW_AT_common_reference";
4579 case DW_AT_comp_dir:
4580 return "DW_AT_comp_dir";
4581 case DW_AT_const_value:
4582 return "DW_AT_const_value";
4583 case DW_AT_containing_type:
4584 return "DW_AT_containing_type";
4585 case DW_AT_default_value:
4586 return "DW_AT_default_value";
4587 case DW_AT_inline:
4588 return "DW_AT_inline";
4589 case DW_AT_is_optional:
4590 return "DW_AT_is_optional";
4591 case DW_AT_lower_bound:
4592 return "DW_AT_lower_bound";
4593 case DW_AT_producer:
4594 return "DW_AT_producer";
4595 case DW_AT_prototyped:
4596 return "DW_AT_prototyped";
4597 case DW_AT_return_addr:
4598 return "DW_AT_return_addr";
4599 case DW_AT_start_scope:
4600 return "DW_AT_start_scope";
4601 case DW_AT_stride_size:
4602 return "DW_AT_stride_size";
4603 case DW_AT_upper_bound:
4604 return "DW_AT_upper_bound";
4605 case DW_AT_abstract_origin:
4606 return "DW_AT_abstract_origin";
4607 case DW_AT_accessibility:
4608 return "DW_AT_accessibility";
4609 case DW_AT_address_class:
4610 return "DW_AT_address_class";
4611 case DW_AT_artificial:
4612 return "DW_AT_artificial";
4613 case DW_AT_base_types:
4614 return "DW_AT_base_types";
4615 case DW_AT_calling_convention:
4616 return "DW_AT_calling_convention";
4617 case DW_AT_count:
4618 return "DW_AT_count";
4619 case DW_AT_data_member_location:
4620 return "DW_AT_data_member_location";
4621 case DW_AT_decl_column:
4622 return "DW_AT_decl_column";
4623 case DW_AT_decl_file:
4624 return "DW_AT_decl_file";
4625 case DW_AT_decl_line:
4626 return "DW_AT_decl_line";
4627 case DW_AT_declaration:
4628 return "DW_AT_declaration";
4629 case DW_AT_discr_list:
4630 return "DW_AT_discr_list";
4631 case DW_AT_encoding:
4632 return "DW_AT_encoding";
4633 case DW_AT_external:
4634 return "DW_AT_external";
4635 case DW_AT_frame_base:
4636 return "DW_AT_frame_base";
4637 case DW_AT_friend:
4638 return "DW_AT_friend";
4639 case DW_AT_identifier_case:
4640 return "DW_AT_identifier_case";
4641 case DW_AT_macro_info:
4642 return "DW_AT_macro_info";
4643 case DW_AT_namelist_items:
4644 return "DW_AT_namelist_items";
4645 case DW_AT_priority:
4646 return "DW_AT_priority";
4647 case DW_AT_segment:
4648 return "DW_AT_segment";
4649 case DW_AT_specification:
4650 return "DW_AT_specification";
4651 case DW_AT_static_link:
4652 return "DW_AT_static_link";
4653 case DW_AT_type:
4654 return "DW_AT_type";
4655 case DW_AT_use_location:
4656 return "DW_AT_use_location";
4657 case DW_AT_variable_parameter:
4658 return "DW_AT_variable_parameter";
4659 case DW_AT_virtuality:
4660 return "DW_AT_virtuality";
4661 case DW_AT_vtable_elem_location:
4662 return "DW_AT_vtable_elem_location";
4664 case DW_AT_allocated:
4665 return "DW_AT_allocated";
4666 case DW_AT_associated:
4667 return "DW_AT_associated";
4668 case DW_AT_data_location:
4669 return "DW_AT_data_location";
4670 case DW_AT_stride:
4671 return "DW_AT_stride";
4672 case DW_AT_entry_pc:
4673 return "DW_AT_entry_pc";
4674 case DW_AT_use_UTF8:
4675 return "DW_AT_use_UTF8";
4676 case DW_AT_extension:
4677 return "DW_AT_extension";
4678 case DW_AT_ranges:
4679 return "DW_AT_ranges";
4680 case DW_AT_trampoline:
4681 return "DW_AT_trampoline";
4682 case DW_AT_call_column:
4683 return "DW_AT_call_column";
4684 case DW_AT_call_file:
4685 return "DW_AT_call_file";
4686 case DW_AT_call_line:
4687 return "DW_AT_call_line";
4689 case DW_AT_MIPS_fde:
4690 return "DW_AT_MIPS_fde";
4691 case DW_AT_MIPS_loop_begin:
4692 return "DW_AT_MIPS_loop_begin";
4693 case DW_AT_MIPS_tail_loop_begin:
4694 return "DW_AT_MIPS_tail_loop_begin";
4695 case DW_AT_MIPS_epilog_begin:
4696 return "DW_AT_MIPS_epilog_begin";
4697 case DW_AT_MIPS_loop_unroll_factor:
4698 return "DW_AT_MIPS_loop_unroll_factor";
4699 case DW_AT_MIPS_software_pipeline_depth:
4700 return "DW_AT_MIPS_software_pipeline_depth";
4701 case DW_AT_MIPS_linkage_name:
4702 return "DW_AT_MIPS_linkage_name";
4703 case DW_AT_MIPS_stride:
4704 return "DW_AT_MIPS_stride";
4705 case DW_AT_MIPS_abstract_name:
4706 return "DW_AT_MIPS_abstract_name";
4707 case DW_AT_MIPS_clone_origin:
4708 return "DW_AT_MIPS_clone_origin";
4709 case DW_AT_MIPS_has_inlines:
4710 return "DW_AT_MIPS_has_inlines";
4712 case DW_AT_sf_names:
4713 return "DW_AT_sf_names";
4714 case DW_AT_src_info:
4715 return "DW_AT_src_info";
4716 case DW_AT_mac_info:
4717 return "DW_AT_mac_info";
4718 case DW_AT_src_coords:
4719 return "DW_AT_src_coords";
4720 case DW_AT_body_begin:
4721 return "DW_AT_body_begin";
4722 case DW_AT_body_end:
4723 return "DW_AT_body_end";
4724 case DW_AT_GNU_vector:
4725 return "DW_AT_GNU_vector";
4727 case DW_AT_VMS_rtnbeg_pd_address:
4728 return "DW_AT_VMS_rtnbeg_pd_address";
4730 default:
4731 return "DW_AT_<unknown>";
4735 /* Convert a DWARF value form code into its string name. */
4737 static const char *
4738 dwarf_form_name (unsigned int form)
4740 switch (form)
4742 case DW_FORM_addr:
4743 return "DW_FORM_addr";
4744 case DW_FORM_block2:
4745 return "DW_FORM_block2";
4746 case DW_FORM_block4:
4747 return "DW_FORM_block4";
4748 case DW_FORM_data2:
4749 return "DW_FORM_data2";
4750 case DW_FORM_data4:
4751 return "DW_FORM_data4";
4752 case DW_FORM_data8:
4753 return "DW_FORM_data8";
4754 case DW_FORM_string:
4755 return "DW_FORM_string";
4756 case DW_FORM_block:
4757 return "DW_FORM_block";
4758 case DW_FORM_block1:
4759 return "DW_FORM_block1";
4760 case DW_FORM_data1:
4761 return "DW_FORM_data1";
4762 case DW_FORM_flag:
4763 return "DW_FORM_flag";
4764 case DW_FORM_sdata:
4765 return "DW_FORM_sdata";
4766 case DW_FORM_strp:
4767 return "DW_FORM_strp";
4768 case DW_FORM_udata:
4769 return "DW_FORM_udata";
4770 case DW_FORM_ref_addr:
4771 return "DW_FORM_ref_addr";
4772 case DW_FORM_ref1:
4773 return "DW_FORM_ref1";
4774 case DW_FORM_ref2:
4775 return "DW_FORM_ref2";
4776 case DW_FORM_ref4:
4777 return "DW_FORM_ref4";
4778 case DW_FORM_ref8:
4779 return "DW_FORM_ref8";
4780 case DW_FORM_ref_udata:
4781 return "DW_FORM_ref_udata";
4782 case DW_FORM_indirect:
4783 return "DW_FORM_indirect";
4784 default:
4785 return "DW_FORM_<unknown>";
4789 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4790 instance of an inlined instance of a decl which is local to an inline
4791 function, so we have to trace all of the way back through the origin chain
4792 to find out what sort of node actually served as the original seed for the
4793 given block. */
4795 static tree
4796 decl_ultimate_origin (tree decl)
4798 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4799 return NULL_TREE;
4801 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4802 nodes in the function to point to themselves; ignore that if
4803 we're trying to output the abstract instance of this function. */
4804 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4805 return NULL_TREE;
4807 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4808 most distant ancestor, this should never happen. */
4809 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4811 return DECL_ABSTRACT_ORIGIN (decl);
4814 /* Determine the "ultimate origin" of a block. The block may be an inlined
4815 instance of an inlined instance of a block which is local to an inline
4816 function, so we have to trace all of the way back through the origin chain
4817 to find out what sort of node actually served as the original seed for the
4818 given block. */
4820 static tree
4821 block_ultimate_origin (tree block)
4823 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4825 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4826 nodes in the function to point to themselves; ignore that if
4827 we're trying to output the abstract instance of this function. */
4828 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4829 return NULL_TREE;
4831 if (immediate_origin == NULL_TREE)
4832 return NULL_TREE;
4833 else
4835 tree ret_val;
4836 tree lookahead = immediate_origin;
4840 ret_val = lookahead;
4841 lookahead = (TREE_CODE (ret_val) == BLOCK
4842 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4844 while (lookahead != NULL && lookahead != ret_val);
4846 /* The block's abstract origin chain may not be the *ultimate* origin of
4847 the block. It could lead to a DECL that has an abstract origin set.
4848 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4849 will give us if it has one). Note that DECL's abstract origins are
4850 supposed to be the most distant ancestor (or so decl_ultimate_origin
4851 claims), so we don't need to loop following the DECL origins. */
4852 if (DECL_P (ret_val))
4853 return DECL_ORIGIN (ret_val);
4855 return ret_val;
4859 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4860 of a virtual function may refer to a base class, so we check the 'this'
4861 parameter. */
4863 static tree
4864 decl_class_context (tree decl)
4866 tree context = NULL_TREE;
4868 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4869 context = DECL_CONTEXT (decl);
4870 else
4871 context = TYPE_MAIN_VARIANT
4872 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4874 if (context && !TYPE_P (context))
4875 context = NULL_TREE;
4877 return context;
4880 /* Add an attribute/value pair to a DIE. */
4882 static inline void
4883 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4885 /* Maybe this should be an assert? */
4886 if (die == NULL)
4887 return;
4889 if (die->die_attr == NULL)
4890 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4891 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4894 static inline enum dw_val_class
4895 AT_class (dw_attr_ref a)
4897 return a->dw_attr_val.val_class;
4900 /* Add a flag value attribute to a DIE. */
4902 static inline void
4903 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4905 dw_attr_node attr;
4907 attr.dw_attr = attr_kind;
4908 attr.dw_attr_val.val_class = dw_val_class_flag;
4909 attr.dw_attr_val.v.val_flag = flag;
4910 add_dwarf_attr (die, &attr);
4913 static inline unsigned
4914 AT_flag (dw_attr_ref a)
4916 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4917 return a->dw_attr_val.v.val_flag;
4920 /* Add a signed integer attribute value to a DIE. */
4922 static inline void
4923 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4925 dw_attr_node attr;
4927 attr.dw_attr = attr_kind;
4928 attr.dw_attr_val.val_class = dw_val_class_const;
4929 attr.dw_attr_val.v.val_int = int_val;
4930 add_dwarf_attr (die, &attr);
4933 static inline HOST_WIDE_INT
4934 AT_int (dw_attr_ref a)
4936 gcc_assert (a && AT_class (a) == dw_val_class_const);
4937 return a->dw_attr_val.v.val_int;
4940 /* Add an unsigned integer attribute value to a DIE. */
4942 static inline void
4943 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4944 unsigned HOST_WIDE_INT unsigned_val)
4946 dw_attr_node attr;
4948 attr.dw_attr = attr_kind;
4949 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4950 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4951 add_dwarf_attr (die, &attr);
4954 static inline unsigned HOST_WIDE_INT
4955 AT_unsigned (dw_attr_ref a)
4957 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4958 return a->dw_attr_val.v.val_unsigned;
4961 /* Add an unsigned double integer attribute value to a DIE. */
4963 static inline void
4964 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4965 long unsigned int val_hi, long unsigned int val_low)
4967 dw_attr_node attr;
4969 attr.dw_attr = attr_kind;
4970 attr.dw_attr_val.val_class = dw_val_class_long_long;
4971 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4972 attr.dw_attr_val.v.val_long_long.low = val_low;
4973 add_dwarf_attr (die, &attr);
4976 /* Add a floating point attribute value to a DIE and return it. */
4978 static inline void
4979 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4980 unsigned int length, unsigned int elt_size, unsigned char *array)
4982 dw_attr_node attr;
4984 attr.dw_attr = attr_kind;
4985 attr.dw_attr_val.val_class = dw_val_class_vec;
4986 attr.dw_attr_val.v.val_vec.length = length;
4987 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4988 attr.dw_attr_val.v.val_vec.array = array;
4989 add_dwarf_attr (die, &attr);
4992 /* Hash and equality functions for debug_str_hash. */
4994 static hashval_t
4995 debug_str_do_hash (const void *x)
4997 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5000 static int
5001 debug_str_eq (const void *x1, const void *x2)
5003 return strcmp ((((const struct indirect_string_node *)x1)->str),
5004 (const char *)x2) == 0;
5007 /* Add a string attribute value to a DIE. */
5009 static inline void
5010 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5012 dw_attr_node attr;
5013 struct indirect_string_node *node;
5014 void **slot;
5016 if (! debug_str_hash)
5017 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5018 debug_str_eq, NULL);
5020 slot = htab_find_slot_with_hash (debug_str_hash, str,
5021 htab_hash_string (str), INSERT);
5022 if (*slot == NULL)
5023 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5024 node = (struct indirect_string_node *) *slot;
5025 node->str = ggc_strdup (str);
5026 node->refcount++;
5028 attr.dw_attr = attr_kind;
5029 attr.dw_attr_val.val_class = dw_val_class_str;
5030 attr.dw_attr_val.v.val_str = node;
5031 add_dwarf_attr (die, &attr);
5034 static inline const char *
5035 AT_string (dw_attr_ref a)
5037 gcc_assert (a && AT_class (a) == dw_val_class_str);
5038 return a->dw_attr_val.v.val_str->str;
5041 /* Find out whether a string should be output inline in DIE
5042 or out-of-line in .debug_str section. */
5044 static int
5045 AT_string_form (dw_attr_ref a)
5047 struct indirect_string_node *node;
5048 unsigned int len;
5049 char label[32];
5051 gcc_assert (a && AT_class (a) == dw_val_class_str);
5053 node = a->dw_attr_val.v.val_str;
5054 if (node->form)
5055 return node->form;
5057 len = strlen (node->str) + 1;
5059 /* If the string is shorter or equal to the size of the reference, it is
5060 always better to put it inline. */
5061 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5062 return node->form = DW_FORM_string;
5064 /* If we cannot expect the linker to merge strings in .debug_str
5065 section, only put it into .debug_str if it is worth even in this
5066 single module. */
5067 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5068 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5069 return node->form = DW_FORM_string;
5071 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5072 ++dw2_string_counter;
5073 node->label = xstrdup (label);
5075 return node->form = DW_FORM_strp;
5078 /* Add a DIE reference attribute value to a DIE. */
5080 static inline void
5081 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5083 dw_attr_node attr;
5085 attr.dw_attr = attr_kind;
5086 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5087 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5088 attr.dw_attr_val.v.val_die_ref.external = 0;
5089 add_dwarf_attr (die, &attr);
5092 /* Add an AT_specification attribute to a DIE, and also make the back
5093 pointer from the specification to the definition. */
5095 static inline void
5096 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5098 add_AT_die_ref (die, DW_AT_specification, targ_die);
5099 gcc_assert (!targ_die->die_definition);
5100 targ_die->die_definition = die;
5103 static inline dw_die_ref
5104 AT_ref (dw_attr_ref a)
5106 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5107 return a->dw_attr_val.v.val_die_ref.die;
5110 static inline int
5111 AT_ref_external (dw_attr_ref a)
5113 if (a && AT_class (a) == dw_val_class_die_ref)
5114 return a->dw_attr_val.v.val_die_ref.external;
5116 return 0;
5119 static inline void
5120 set_AT_ref_external (dw_attr_ref a, int i)
5122 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5123 a->dw_attr_val.v.val_die_ref.external = i;
5126 /* Add an FDE reference attribute value to a DIE. */
5128 static inline void
5129 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5131 dw_attr_node attr;
5133 attr.dw_attr = attr_kind;
5134 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5135 attr.dw_attr_val.v.val_fde_index = targ_fde;
5136 add_dwarf_attr (die, &attr);
5139 /* Add a location description attribute value to a DIE. */
5141 static inline void
5142 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5144 dw_attr_node attr;
5146 attr.dw_attr = attr_kind;
5147 attr.dw_attr_val.val_class = dw_val_class_loc;
5148 attr.dw_attr_val.v.val_loc = loc;
5149 add_dwarf_attr (die, &attr);
5152 static inline dw_loc_descr_ref
5153 AT_loc (dw_attr_ref a)
5155 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5156 return a->dw_attr_val.v.val_loc;
5159 static inline void
5160 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5162 dw_attr_node attr;
5164 attr.dw_attr = attr_kind;
5165 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5166 attr.dw_attr_val.v.val_loc_list = loc_list;
5167 add_dwarf_attr (die, &attr);
5168 have_location_lists = true;
5171 static inline dw_loc_list_ref
5172 AT_loc_list (dw_attr_ref a)
5174 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5175 return a->dw_attr_val.v.val_loc_list;
5178 /* Add an address constant attribute value to a DIE. */
5180 static inline void
5181 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5183 dw_attr_node attr;
5185 attr.dw_attr = attr_kind;
5186 attr.dw_attr_val.val_class = dw_val_class_addr;
5187 attr.dw_attr_val.v.val_addr = addr;
5188 add_dwarf_attr (die, &attr);
5191 /* Get the RTX from to an address DIE attribute. */
5193 static inline rtx
5194 AT_addr (dw_attr_ref a)
5196 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5197 return a->dw_attr_val.v.val_addr;
5200 /* Add a file attribute value to a DIE. */
5202 static inline void
5203 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5204 struct dwarf_file_data *fd)
5206 dw_attr_node attr;
5208 attr.dw_attr = attr_kind;
5209 attr.dw_attr_val.val_class = dw_val_class_file;
5210 attr.dw_attr_val.v.val_file = fd;
5211 add_dwarf_attr (die, &attr);
5214 /* Get the dwarf_file_data from a file DIE attribute. */
5216 static inline struct dwarf_file_data *
5217 AT_file (dw_attr_ref a)
5219 gcc_assert (a && AT_class (a) == dw_val_class_file);
5220 return a->dw_attr_val.v.val_file;
5223 /* Add a label identifier attribute value to a DIE. */
5225 static inline void
5226 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5228 dw_attr_node attr;
5230 attr.dw_attr = attr_kind;
5231 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5232 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5233 add_dwarf_attr (die, &attr);
5236 /* Add a section offset attribute value to a DIE, an offset into the
5237 debug_line section. */
5239 static inline void
5240 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5241 const char *label)
5243 dw_attr_node attr;
5245 attr.dw_attr = attr_kind;
5246 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5247 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5248 add_dwarf_attr (die, &attr);
5251 /* Add a section offset attribute value to a DIE, an offset into the
5252 debug_macinfo section. */
5254 static inline void
5255 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5256 const char *label)
5258 dw_attr_node attr;
5260 attr.dw_attr = attr_kind;
5261 attr.dw_attr_val.val_class = dw_val_class_macptr;
5262 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5263 add_dwarf_attr (die, &attr);
5266 /* Add an offset attribute value to a DIE. */
5268 static inline void
5269 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5270 unsigned HOST_WIDE_INT offset)
5272 dw_attr_node attr;
5274 attr.dw_attr = attr_kind;
5275 attr.dw_attr_val.val_class = dw_val_class_offset;
5276 attr.dw_attr_val.v.val_offset = offset;
5277 add_dwarf_attr (die, &attr);
5280 /* Add an range_list attribute value to a DIE. */
5282 static void
5283 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5284 long unsigned int offset)
5286 dw_attr_node attr;
5288 attr.dw_attr = attr_kind;
5289 attr.dw_attr_val.val_class = dw_val_class_range_list;
5290 attr.dw_attr_val.v.val_offset = offset;
5291 add_dwarf_attr (die, &attr);
5294 static inline const char *
5295 AT_lbl (dw_attr_ref a)
5297 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5298 || AT_class (a) == dw_val_class_lineptr
5299 || AT_class (a) == dw_val_class_macptr));
5300 return a->dw_attr_val.v.val_lbl_id;
5303 /* Get the attribute of type attr_kind. */
5305 static dw_attr_ref
5306 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5308 dw_attr_ref a;
5309 unsigned ix;
5310 dw_die_ref spec = NULL;
5312 if (! die)
5313 return NULL;
5315 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5316 if (a->dw_attr == attr_kind)
5317 return a;
5318 else if (a->dw_attr == DW_AT_specification
5319 || a->dw_attr == DW_AT_abstract_origin)
5320 spec = AT_ref (a);
5322 if (spec)
5323 return get_AT (spec, attr_kind);
5325 return NULL;
5328 /* Return the "low pc" attribute value, typically associated with a subprogram
5329 DIE. Return null if the "low pc" attribute is either not present, or if it
5330 cannot be represented as an assembler label identifier. */
5332 static inline const char *
5333 get_AT_low_pc (dw_die_ref die)
5335 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5337 return a ? AT_lbl (a) : NULL;
5340 /* Return the "high pc" attribute value, typically associated with a subprogram
5341 DIE. Return null if the "high pc" attribute is either not present, or if it
5342 cannot be represented as an assembler label identifier. */
5344 static inline const char *
5345 get_AT_hi_pc (dw_die_ref die)
5347 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5349 return a ? AT_lbl (a) : NULL;
5352 /* Return the value of the string attribute designated by ATTR_KIND, or
5353 NULL if it is not present. */
5355 static inline const char *
5356 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5358 dw_attr_ref a = get_AT (die, attr_kind);
5360 return a ? AT_string (a) : NULL;
5363 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5364 if it is not present. */
5366 static inline int
5367 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5369 dw_attr_ref a = get_AT (die, attr_kind);
5371 return a ? AT_flag (a) : 0;
5374 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5375 if it is not present. */
5377 static inline unsigned
5378 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5380 dw_attr_ref a = get_AT (die, attr_kind);
5382 return a ? AT_unsigned (a) : 0;
5385 static inline dw_die_ref
5386 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5388 dw_attr_ref a = get_AT (die, attr_kind);
5390 return a ? AT_ref (a) : NULL;
5393 static inline struct dwarf_file_data *
5394 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5396 dw_attr_ref a = get_AT (die, attr_kind);
5398 return a ? AT_file (a) : NULL;
5401 /* Return TRUE if the language is C or C++. */
5403 static inline bool
5404 is_c_family (void)
5406 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5408 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5409 || lang == DW_LANG_C99
5410 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5413 /* Return TRUE if the language is C++. */
5415 static inline bool
5416 is_cxx (void)
5418 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5420 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5423 /* Return TRUE if the language is Fortran. */
5425 static inline bool
5426 is_fortran (void)
5428 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5430 return (lang == DW_LANG_Fortran77
5431 || lang == DW_LANG_Fortran90
5432 || lang == DW_LANG_Fortran95);
5435 /* Return TRUE if the language is Java. */
5437 static inline bool
5438 is_java (void)
5440 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5442 return lang == DW_LANG_Java;
5445 /* Return TRUE if the language is Ada. */
5447 static inline bool
5448 is_ada (void)
5450 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5452 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5455 /* Remove the specified attribute if present. */
5457 static void
5458 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5460 dw_attr_ref a;
5461 unsigned ix;
5463 if (! die)
5464 return;
5466 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5467 if (a->dw_attr == attr_kind)
5469 if (AT_class (a) == dw_val_class_str)
5470 if (a->dw_attr_val.v.val_str->refcount)
5471 a->dw_attr_val.v.val_str->refcount--;
5473 /* VEC_ordered_remove should help reduce the number of abbrevs
5474 that are needed. */
5475 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5476 return;
5480 /* Remove CHILD from its parent. PREV must have the property that
5481 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5483 static void
5484 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5486 gcc_assert (child->die_parent == prev->die_parent);
5487 gcc_assert (prev->die_sib == child);
5488 if (prev == child)
5490 gcc_assert (child->die_parent->die_child == child);
5491 prev = NULL;
5493 else
5494 prev->die_sib = child->die_sib;
5495 if (child->die_parent->die_child == child)
5496 child->die_parent->die_child = prev;
5499 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5500 matches TAG. */
5502 static void
5503 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5505 dw_die_ref c;
5507 c = die->die_child;
5508 if (c) do {
5509 dw_die_ref prev = c;
5510 c = c->die_sib;
5511 while (c->die_tag == tag)
5513 remove_child_with_prev (c, prev);
5514 /* Might have removed every child. */
5515 if (c == c->die_sib)
5516 return;
5517 c = c->die_sib;
5519 } while (c != die->die_child);
5522 /* Add a CHILD_DIE as the last child of DIE. */
5524 static void
5525 add_child_die (dw_die_ref die, dw_die_ref child_die)
5527 /* FIXME this should probably be an assert. */
5528 if (! die || ! child_die)
5529 return;
5530 gcc_assert (die != child_die);
5532 child_die->die_parent = die;
5533 if (die->die_child)
5535 child_die->die_sib = die->die_child->die_sib;
5536 die->die_child->die_sib = child_die;
5538 else
5539 child_die->die_sib = child_die;
5540 die->die_child = child_die;
5543 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5544 is the specification, to the end of PARENT's list of children.
5545 This is done by removing and re-adding it. */
5547 static void
5548 splice_child_die (dw_die_ref parent, dw_die_ref child)
5550 dw_die_ref p;
5552 /* We want the declaration DIE from inside the class, not the
5553 specification DIE at toplevel. */
5554 if (child->die_parent != parent)
5556 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5558 if (tmp)
5559 child = tmp;
5562 gcc_assert (child->die_parent == parent
5563 || (child->die_parent
5564 == get_AT_ref (parent, DW_AT_specification)));
5566 for (p = child->die_parent->die_child; ; p = p->die_sib)
5567 if (p->die_sib == child)
5569 remove_child_with_prev (child, p);
5570 break;
5573 add_child_die (parent, child);
5576 /* Return a pointer to a newly created DIE node. */
5578 static inline dw_die_ref
5579 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5581 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5583 die->die_tag = tag_value;
5585 if (parent_die != NULL)
5586 add_child_die (parent_die, die);
5587 else
5589 limbo_die_node *limbo_node;
5591 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5592 limbo_node->die = die;
5593 limbo_node->created_for = t;
5594 limbo_node->next = limbo_die_list;
5595 limbo_die_list = limbo_node;
5598 return die;
5601 /* Return the DIE associated with the given type specifier. */
5603 static inline dw_die_ref
5604 lookup_type_die (tree type)
5606 return TYPE_SYMTAB_DIE (type);
5609 /* Equate a DIE to a given type specifier. */
5611 static inline void
5612 equate_type_number_to_die (tree type, dw_die_ref type_die)
5614 TYPE_SYMTAB_DIE (type) = type_die;
5617 /* Returns a hash value for X (which really is a die_struct). */
5619 static hashval_t
5620 decl_die_table_hash (const void *x)
5622 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5625 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5627 static int
5628 decl_die_table_eq (const void *x, const void *y)
5630 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5633 /* Return the DIE associated with a given declaration. */
5635 static inline dw_die_ref
5636 lookup_decl_die (tree decl)
5638 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5641 /* Returns a hash value for X (which really is a var_loc_list). */
5643 static hashval_t
5644 decl_loc_table_hash (const void *x)
5646 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5649 /* Return nonzero if decl_id of var_loc_list X is the same as
5650 UID of decl *Y. */
5652 static int
5653 decl_loc_table_eq (const void *x, const void *y)
5655 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5658 /* Return the var_loc list associated with a given declaration. */
5660 static inline var_loc_list *
5661 lookup_decl_loc (tree decl)
5663 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5666 /* Equate a DIE to a particular declaration. */
5668 static void
5669 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5671 unsigned int decl_id = DECL_UID (decl);
5672 void **slot;
5674 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5675 *slot = decl_die;
5676 decl_die->decl_id = decl_id;
5679 /* Add a variable location node to the linked list for DECL. */
5681 static void
5682 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5684 unsigned int decl_id = DECL_UID (decl);
5685 var_loc_list *temp;
5686 void **slot;
5688 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5689 if (*slot == NULL)
5691 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5692 temp->decl_id = decl_id;
5693 *slot = temp;
5695 else
5696 temp = *slot;
5698 if (temp->last)
5700 /* If the current location is the same as the end of the list,
5701 we have nothing to do. */
5702 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5703 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5705 /* Add LOC to the end of list and update LAST. */
5706 temp->last->next = loc;
5707 temp->last = loc;
5710 /* Do not add empty location to the beginning of the list. */
5711 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5713 temp->first = loc;
5714 temp->last = loc;
5718 /* Keep track of the number of spaces used to indent the
5719 output of the debugging routines that print the structure of
5720 the DIE internal representation. */
5721 static int print_indent;
5723 /* Indent the line the number of spaces given by print_indent. */
5725 static inline void
5726 print_spaces (FILE *outfile)
5728 fprintf (outfile, "%*s", print_indent, "");
5731 /* Print the information associated with a given DIE, and its children.
5732 This routine is a debugging aid only. */
5734 static void
5735 print_die (dw_die_ref die, FILE *outfile)
5737 dw_attr_ref a;
5738 dw_die_ref c;
5739 unsigned ix;
5741 print_spaces (outfile);
5742 fprintf (outfile, "DIE %4lu: %s\n",
5743 die->die_offset, dwarf_tag_name (die->die_tag));
5744 print_spaces (outfile);
5745 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5746 fprintf (outfile, " offset: %lu\n", die->die_offset);
5748 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5750 print_spaces (outfile);
5751 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5753 switch (AT_class (a))
5755 case dw_val_class_addr:
5756 fprintf (outfile, "address");
5757 break;
5758 case dw_val_class_offset:
5759 fprintf (outfile, "offset");
5760 break;
5761 case dw_val_class_loc:
5762 fprintf (outfile, "location descriptor");
5763 break;
5764 case dw_val_class_loc_list:
5765 fprintf (outfile, "location list -> label:%s",
5766 AT_loc_list (a)->ll_symbol);
5767 break;
5768 case dw_val_class_range_list:
5769 fprintf (outfile, "range list");
5770 break;
5771 case dw_val_class_const:
5772 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5773 break;
5774 case dw_val_class_unsigned_const:
5775 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5776 break;
5777 case dw_val_class_long_long:
5778 fprintf (outfile, "constant (%lu,%lu)",
5779 a->dw_attr_val.v.val_long_long.hi,
5780 a->dw_attr_val.v.val_long_long.low);
5781 break;
5782 case dw_val_class_vec:
5783 fprintf (outfile, "floating-point or vector constant");
5784 break;
5785 case dw_val_class_flag:
5786 fprintf (outfile, "%u", AT_flag (a));
5787 break;
5788 case dw_val_class_die_ref:
5789 if (AT_ref (a) != NULL)
5791 if (AT_ref (a)->die_symbol)
5792 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5793 else
5794 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5796 else
5797 fprintf (outfile, "die -> <null>");
5798 break;
5799 case dw_val_class_lbl_id:
5800 case dw_val_class_lineptr:
5801 case dw_val_class_macptr:
5802 fprintf (outfile, "label: %s", AT_lbl (a));
5803 break;
5804 case dw_val_class_str:
5805 if (AT_string (a) != NULL)
5806 fprintf (outfile, "\"%s\"", AT_string (a));
5807 else
5808 fprintf (outfile, "<null>");
5809 break;
5810 case dw_val_class_file:
5811 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5812 AT_file (a)->emitted_number);
5813 break;
5814 default:
5815 break;
5818 fprintf (outfile, "\n");
5821 if (die->die_child != NULL)
5823 print_indent += 4;
5824 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5825 print_indent -= 4;
5827 if (print_indent == 0)
5828 fprintf (outfile, "\n");
5831 /* Print the contents of the source code line number correspondence table.
5832 This routine is a debugging aid only. */
5834 static void
5835 print_dwarf_line_table (FILE *outfile)
5837 unsigned i;
5838 dw_line_info_ref line_info;
5840 fprintf (outfile, "\n\nDWARF source line information\n");
5841 for (i = 1; i < line_info_table_in_use; i++)
5843 line_info = &line_info_table[i];
5844 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5845 line_info->dw_file_num,
5846 line_info->dw_line_num);
5849 fprintf (outfile, "\n\n");
5852 /* Print the information collected for a given DIE. */
5854 void
5855 debug_dwarf_die (dw_die_ref die)
5857 print_die (die, stderr);
5860 /* Print all DWARF information collected for the compilation unit.
5861 This routine is a debugging aid only. */
5863 void
5864 debug_dwarf (void)
5866 print_indent = 0;
5867 print_die (comp_unit_die, stderr);
5868 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5869 print_dwarf_line_table (stderr);
5872 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5873 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5874 DIE that marks the start of the DIEs for this include file. */
5876 static dw_die_ref
5877 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5879 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5880 dw_die_ref new_unit = gen_compile_unit_die (filename);
5882 new_unit->die_sib = old_unit;
5883 return new_unit;
5886 /* Close an include-file CU and reopen the enclosing one. */
5888 static dw_die_ref
5889 pop_compile_unit (dw_die_ref old_unit)
5891 dw_die_ref new_unit = old_unit->die_sib;
5893 old_unit->die_sib = NULL;
5894 return new_unit;
5897 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5898 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5900 /* Calculate the checksum of a location expression. */
5902 static inline void
5903 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5905 CHECKSUM (loc->dw_loc_opc);
5906 CHECKSUM (loc->dw_loc_oprnd1);
5907 CHECKSUM (loc->dw_loc_oprnd2);
5910 /* Calculate the checksum of an attribute. */
5912 static void
5913 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5915 dw_loc_descr_ref loc;
5916 rtx r;
5918 CHECKSUM (at->dw_attr);
5920 /* We don't care that this was compiled with a different compiler
5921 snapshot; if the output is the same, that's what matters. */
5922 if (at->dw_attr == DW_AT_producer)
5923 return;
5925 switch (AT_class (at))
5927 case dw_val_class_const:
5928 CHECKSUM (at->dw_attr_val.v.val_int);
5929 break;
5930 case dw_val_class_unsigned_const:
5931 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5932 break;
5933 case dw_val_class_long_long:
5934 CHECKSUM (at->dw_attr_val.v.val_long_long);
5935 break;
5936 case dw_val_class_vec:
5937 CHECKSUM (at->dw_attr_val.v.val_vec);
5938 break;
5939 case dw_val_class_flag:
5940 CHECKSUM (at->dw_attr_val.v.val_flag);
5941 break;
5942 case dw_val_class_str:
5943 CHECKSUM_STRING (AT_string (at));
5944 break;
5946 case dw_val_class_addr:
5947 r = AT_addr (at);
5948 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5949 CHECKSUM_STRING (XSTR (r, 0));
5950 break;
5952 case dw_val_class_offset:
5953 CHECKSUM (at->dw_attr_val.v.val_offset);
5954 break;
5956 case dw_val_class_loc:
5957 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5958 loc_checksum (loc, ctx);
5959 break;
5961 case dw_val_class_die_ref:
5962 die_checksum (AT_ref (at), ctx, mark);
5963 break;
5965 case dw_val_class_fde_ref:
5966 case dw_val_class_lbl_id:
5967 case dw_val_class_lineptr:
5968 case dw_val_class_macptr:
5969 break;
5971 case dw_val_class_file:
5972 CHECKSUM_STRING (AT_file (at)->filename);
5973 break;
5975 default:
5976 break;
5980 /* Calculate the checksum of a DIE. */
5982 static void
5983 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5985 dw_die_ref c;
5986 dw_attr_ref a;
5987 unsigned ix;
5989 /* To avoid infinite recursion. */
5990 if (die->die_mark)
5992 CHECKSUM (die->die_mark);
5993 return;
5995 die->die_mark = ++(*mark);
5997 CHECKSUM (die->die_tag);
5999 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6000 attr_checksum (a, ctx, mark);
6002 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6005 #undef CHECKSUM
6006 #undef CHECKSUM_STRING
6008 /* Do the location expressions look same? */
6009 static inline int
6010 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6012 return loc1->dw_loc_opc == loc2->dw_loc_opc
6013 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6014 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6017 /* Do the values look the same? */
6018 static int
6019 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6021 dw_loc_descr_ref loc1, loc2;
6022 rtx r1, r2;
6024 if (v1->val_class != v2->val_class)
6025 return 0;
6027 switch (v1->val_class)
6029 case dw_val_class_const:
6030 return v1->v.val_int == v2->v.val_int;
6031 case dw_val_class_unsigned_const:
6032 return v1->v.val_unsigned == v2->v.val_unsigned;
6033 case dw_val_class_long_long:
6034 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6035 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6036 case dw_val_class_vec:
6037 if (v1->v.val_vec.length != v2->v.val_vec.length
6038 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6039 return 0;
6040 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6041 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6042 return 0;
6043 return 1;
6044 case dw_val_class_flag:
6045 return v1->v.val_flag == v2->v.val_flag;
6046 case dw_val_class_str:
6047 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6049 case dw_val_class_addr:
6050 r1 = v1->v.val_addr;
6051 r2 = v2->v.val_addr;
6052 if (GET_CODE (r1) != GET_CODE (r2))
6053 return 0;
6054 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6055 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6057 case dw_val_class_offset:
6058 return v1->v.val_offset == v2->v.val_offset;
6060 case dw_val_class_loc:
6061 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6062 loc1 && loc2;
6063 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6064 if (!same_loc_p (loc1, loc2, mark))
6065 return 0;
6066 return !loc1 && !loc2;
6068 case dw_val_class_die_ref:
6069 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6071 case dw_val_class_fde_ref:
6072 case dw_val_class_lbl_id:
6073 case dw_val_class_lineptr:
6074 case dw_val_class_macptr:
6075 return 1;
6077 case dw_val_class_file:
6078 return v1->v.val_file == v2->v.val_file;
6080 default:
6081 return 1;
6085 /* Do the attributes look the same? */
6087 static int
6088 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6090 if (at1->dw_attr != at2->dw_attr)
6091 return 0;
6093 /* We don't care that this was compiled with a different compiler
6094 snapshot; if the output is the same, that's what matters. */
6095 if (at1->dw_attr == DW_AT_producer)
6096 return 1;
6098 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6101 /* Do the dies look the same? */
6103 static int
6104 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6106 dw_die_ref c1, c2;
6107 dw_attr_ref a1;
6108 unsigned ix;
6110 /* To avoid infinite recursion. */
6111 if (die1->die_mark)
6112 return die1->die_mark == die2->die_mark;
6113 die1->die_mark = die2->die_mark = ++(*mark);
6115 if (die1->die_tag != die2->die_tag)
6116 return 0;
6118 if (VEC_length (dw_attr_node, die1->die_attr)
6119 != VEC_length (dw_attr_node, die2->die_attr))
6120 return 0;
6122 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6123 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6124 return 0;
6126 c1 = die1->die_child;
6127 c2 = die2->die_child;
6128 if (! c1)
6130 if (c2)
6131 return 0;
6133 else
6134 for (;;)
6136 if (!same_die_p (c1, c2, mark))
6137 return 0;
6138 c1 = c1->die_sib;
6139 c2 = c2->die_sib;
6140 if (c1 == die1->die_child)
6142 if (c2 == die2->die_child)
6143 break;
6144 else
6145 return 0;
6149 return 1;
6152 /* Do the dies look the same? Wrapper around same_die_p. */
6154 static int
6155 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6157 int mark = 0;
6158 int ret = same_die_p (die1, die2, &mark);
6160 unmark_all_dies (die1);
6161 unmark_all_dies (die2);
6163 return ret;
6166 /* The prefix to attach to symbols on DIEs in the current comdat debug
6167 info section. */
6168 static char *comdat_symbol_id;
6170 /* The index of the current symbol within the current comdat CU. */
6171 static unsigned int comdat_symbol_number;
6173 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6174 children, and set comdat_symbol_id accordingly. */
6176 static void
6177 compute_section_prefix (dw_die_ref unit_die)
6179 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6180 const char *base = die_name ? lbasename (die_name) : "anonymous";
6181 char *name = alloca (strlen (base) + 64);
6182 char *p;
6183 int i, mark;
6184 unsigned char checksum[16];
6185 struct md5_ctx ctx;
6187 /* Compute the checksum of the DIE, then append part of it as hex digits to
6188 the name filename of the unit. */
6190 md5_init_ctx (&ctx);
6191 mark = 0;
6192 die_checksum (unit_die, &ctx, &mark);
6193 unmark_all_dies (unit_die);
6194 md5_finish_ctx (&ctx, checksum);
6196 sprintf (name, "%s.", base);
6197 clean_symbol_name (name);
6199 p = name + strlen (name);
6200 for (i = 0; i < 4; i++)
6202 sprintf (p, "%.2x", checksum[i]);
6203 p += 2;
6206 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6207 comdat_symbol_number = 0;
6210 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6212 static int
6213 is_type_die (dw_die_ref die)
6215 switch (die->die_tag)
6217 case DW_TAG_array_type:
6218 case DW_TAG_class_type:
6219 case DW_TAG_enumeration_type:
6220 case DW_TAG_pointer_type:
6221 case DW_TAG_reference_type:
6222 case DW_TAG_string_type:
6223 case DW_TAG_structure_type:
6224 case DW_TAG_subroutine_type:
6225 case DW_TAG_union_type:
6226 case DW_TAG_ptr_to_member_type:
6227 case DW_TAG_set_type:
6228 case DW_TAG_subrange_type:
6229 case DW_TAG_base_type:
6230 case DW_TAG_const_type:
6231 case DW_TAG_file_type:
6232 case DW_TAG_packed_type:
6233 case DW_TAG_volatile_type:
6234 case DW_TAG_typedef:
6235 return 1;
6236 default:
6237 return 0;
6241 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6242 Basically, we want to choose the bits that are likely to be shared between
6243 compilations (types) and leave out the bits that are specific to individual
6244 compilations (functions). */
6246 static int
6247 is_comdat_die (dw_die_ref c)
6249 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6250 we do for stabs. The advantage is a greater likelihood of sharing between
6251 objects that don't include headers in the same order (and therefore would
6252 put the base types in a different comdat). jason 8/28/00 */
6254 if (c->die_tag == DW_TAG_base_type)
6255 return 0;
6257 if (c->die_tag == DW_TAG_pointer_type
6258 || c->die_tag == DW_TAG_reference_type
6259 || c->die_tag == DW_TAG_const_type
6260 || c->die_tag == DW_TAG_volatile_type)
6262 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6264 return t ? is_comdat_die (t) : 0;
6267 return is_type_die (c);
6270 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6271 compilation unit. */
6273 static int
6274 is_symbol_die (dw_die_ref c)
6276 return (is_type_die (c)
6277 || (get_AT (c, DW_AT_declaration)
6278 && !get_AT (c, DW_AT_specification))
6279 || c->die_tag == DW_TAG_namespace);
6282 static char *
6283 gen_internal_sym (const char *prefix)
6285 char buf[256];
6287 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6288 return xstrdup (buf);
6291 /* Assign symbols to all worthy DIEs under DIE. */
6293 static void
6294 assign_symbol_names (dw_die_ref die)
6296 dw_die_ref c;
6298 if (is_symbol_die (die))
6300 if (comdat_symbol_id)
6302 char *p = alloca (strlen (comdat_symbol_id) + 64);
6304 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6305 comdat_symbol_id, comdat_symbol_number++);
6306 die->die_symbol = xstrdup (p);
6308 else
6309 die->die_symbol = gen_internal_sym ("LDIE");
6312 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6315 struct cu_hash_table_entry
6317 dw_die_ref cu;
6318 unsigned min_comdat_num, max_comdat_num;
6319 struct cu_hash_table_entry *next;
6322 /* Routines to manipulate hash table of CUs. */
6323 static hashval_t
6324 htab_cu_hash (const void *of)
6326 const struct cu_hash_table_entry *entry = of;
6328 return htab_hash_string (entry->cu->die_symbol);
6331 static int
6332 htab_cu_eq (const void *of1, const void *of2)
6334 const struct cu_hash_table_entry *entry1 = of1;
6335 const struct die_struct *entry2 = of2;
6337 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6340 static void
6341 htab_cu_del (void *what)
6343 struct cu_hash_table_entry *next, *entry = what;
6345 while (entry)
6347 next = entry->next;
6348 free (entry);
6349 entry = next;
6353 /* Check whether we have already seen this CU and set up SYM_NUM
6354 accordingly. */
6355 static int
6356 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6358 struct cu_hash_table_entry dummy;
6359 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6361 dummy.max_comdat_num = 0;
6363 slot = (struct cu_hash_table_entry **)
6364 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6365 INSERT);
6366 entry = *slot;
6368 for (; entry; last = entry, entry = entry->next)
6370 if (same_die_p_wrap (cu, entry->cu))
6371 break;
6374 if (entry)
6376 *sym_num = entry->min_comdat_num;
6377 return 1;
6380 entry = XCNEW (struct cu_hash_table_entry);
6381 entry->cu = cu;
6382 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6383 entry->next = *slot;
6384 *slot = entry;
6386 return 0;
6389 /* Record SYM_NUM to record of CU in HTABLE. */
6390 static void
6391 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6393 struct cu_hash_table_entry **slot, *entry;
6395 slot = (struct cu_hash_table_entry **)
6396 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6397 NO_INSERT);
6398 entry = *slot;
6400 entry->max_comdat_num = sym_num;
6403 /* Traverse the DIE (which is always comp_unit_die), and set up
6404 additional compilation units for each of the include files we see
6405 bracketed by BINCL/EINCL. */
6407 static void
6408 break_out_includes (dw_die_ref die)
6410 dw_die_ref c;
6411 dw_die_ref unit = NULL;
6412 limbo_die_node *node, **pnode;
6413 htab_t cu_hash_table;
6415 c = die->die_child;
6416 if (c) do {
6417 dw_die_ref prev = c;
6418 c = c->die_sib;
6419 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6420 || (unit && is_comdat_die (c)))
6422 dw_die_ref next = c->die_sib;
6424 /* This DIE is for a secondary CU; remove it from the main one. */
6425 remove_child_with_prev (c, prev);
6427 if (c->die_tag == DW_TAG_GNU_BINCL)
6428 unit = push_new_compile_unit (unit, c);
6429 else if (c->die_tag == DW_TAG_GNU_EINCL)
6430 unit = pop_compile_unit (unit);
6431 else
6432 add_child_die (unit, c);
6433 c = next;
6434 if (c == die->die_child)
6435 break;
6437 } while (c != die->die_child);
6439 #if 0
6440 /* We can only use this in debugging, since the frontend doesn't check
6441 to make sure that we leave every include file we enter. */
6442 gcc_assert (!unit);
6443 #endif
6445 assign_symbol_names (die);
6446 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6447 for (node = limbo_die_list, pnode = &limbo_die_list;
6448 node;
6449 node = node->next)
6451 int is_dupl;
6453 compute_section_prefix (node->die);
6454 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6455 &comdat_symbol_number);
6456 assign_symbol_names (node->die);
6457 if (is_dupl)
6458 *pnode = node->next;
6459 else
6461 pnode = &node->next;
6462 record_comdat_symbol_number (node->die, cu_hash_table,
6463 comdat_symbol_number);
6466 htab_delete (cu_hash_table);
6469 /* Traverse the DIE and add a sibling attribute if it may have the
6470 effect of speeding up access to siblings. To save some space,
6471 avoid generating sibling attributes for DIE's without children. */
6473 static void
6474 add_sibling_attributes (dw_die_ref die)
6476 dw_die_ref c;
6478 if (! die->die_child)
6479 return;
6481 if (die->die_parent && die != die->die_parent->die_child)
6482 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6484 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6487 /* Output all location lists for the DIE and its children. */
6489 static void
6490 output_location_lists (dw_die_ref die)
6492 dw_die_ref c;
6493 dw_attr_ref a;
6494 unsigned ix;
6496 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6497 if (AT_class (a) == dw_val_class_loc_list)
6498 output_loc_list (AT_loc_list (a));
6500 FOR_EACH_CHILD (die, c, output_location_lists (c));
6503 /* The format of each DIE (and its attribute value pairs) is encoded in an
6504 abbreviation table. This routine builds the abbreviation table and assigns
6505 a unique abbreviation id for each abbreviation entry. The children of each
6506 die are visited recursively. */
6508 static void
6509 build_abbrev_table (dw_die_ref die)
6511 unsigned long abbrev_id;
6512 unsigned int n_alloc;
6513 dw_die_ref c;
6514 dw_attr_ref a;
6515 unsigned ix;
6517 /* Scan the DIE references, and mark as external any that refer to
6518 DIEs from other CUs (i.e. those which are not marked). */
6519 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6520 if (AT_class (a) == dw_val_class_die_ref
6521 && AT_ref (a)->die_mark == 0)
6523 gcc_assert (AT_ref (a)->die_symbol);
6525 set_AT_ref_external (a, 1);
6528 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6530 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6531 dw_attr_ref die_a, abbrev_a;
6532 unsigned ix;
6533 bool ok = true;
6535 if (abbrev->die_tag != die->die_tag)
6536 continue;
6537 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6538 continue;
6540 if (VEC_length (dw_attr_node, abbrev->die_attr)
6541 != VEC_length (dw_attr_node, die->die_attr))
6542 continue;
6544 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6546 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6547 if ((abbrev_a->dw_attr != die_a->dw_attr)
6548 || (value_format (abbrev_a) != value_format (die_a)))
6550 ok = false;
6551 break;
6554 if (ok)
6555 break;
6558 if (abbrev_id >= abbrev_die_table_in_use)
6560 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6562 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6563 abbrev_die_table = ggc_realloc (abbrev_die_table,
6564 sizeof (dw_die_ref) * n_alloc);
6566 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6567 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6568 abbrev_die_table_allocated = n_alloc;
6571 ++abbrev_die_table_in_use;
6572 abbrev_die_table[abbrev_id] = die;
6575 die->die_abbrev = abbrev_id;
6576 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6579 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6581 static int
6582 constant_size (long unsigned int value)
6584 int log;
6586 if (value == 0)
6587 log = 0;
6588 else
6589 log = floor_log2 (value);
6591 log = log / 8;
6592 log = 1 << (floor_log2 (log) + 1);
6594 return log;
6597 /* Return the size of a DIE as it is represented in the
6598 .debug_info section. */
6600 static unsigned long
6601 size_of_die (dw_die_ref die)
6603 unsigned long size = 0;
6604 dw_attr_ref a;
6605 unsigned ix;
6607 size += size_of_uleb128 (die->die_abbrev);
6608 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6610 switch (AT_class (a))
6612 case dw_val_class_addr:
6613 size += DWARF2_ADDR_SIZE;
6614 break;
6615 case dw_val_class_offset:
6616 size += DWARF_OFFSET_SIZE;
6617 break;
6618 case dw_val_class_loc:
6620 unsigned long lsize = size_of_locs (AT_loc (a));
6622 /* Block length. */
6623 size += constant_size (lsize);
6624 size += lsize;
6626 break;
6627 case dw_val_class_loc_list:
6628 size += DWARF_OFFSET_SIZE;
6629 break;
6630 case dw_val_class_range_list:
6631 size += DWARF_OFFSET_SIZE;
6632 break;
6633 case dw_val_class_const:
6634 size += size_of_sleb128 (AT_int (a));
6635 break;
6636 case dw_val_class_unsigned_const:
6637 size += constant_size (AT_unsigned (a));
6638 break;
6639 case dw_val_class_long_long:
6640 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6641 break;
6642 case dw_val_class_vec:
6643 size += 1 + (a->dw_attr_val.v.val_vec.length
6644 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6645 break;
6646 case dw_val_class_flag:
6647 size += 1;
6648 break;
6649 case dw_val_class_die_ref:
6650 if (AT_ref_external (a))
6651 size += DWARF2_ADDR_SIZE;
6652 else
6653 size += DWARF_OFFSET_SIZE;
6654 break;
6655 case dw_val_class_fde_ref:
6656 size += DWARF_OFFSET_SIZE;
6657 break;
6658 case dw_val_class_lbl_id:
6659 size += DWARF2_ADDR_SIZE;
6660 break;
6661 case dw_val_class_lineptr:
6662 case dw_val_class_macptr:
6663 size += DWARF_OFFSET_SIZE;
6664 break;
6665 case dw_val_class_str:
6666 if (AT_string_form (a) == DW_FORM_strp)
6667 size += DWARF_OFFSET_SIZE;
6668 else
6669 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6670 break;
6671 case dw_val_class_file:
6672 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6673 break;
6674 default:
6675 gcc_unreachable ();
6679 return size;
6682 /* Size the debugging information associated with a given DIE. Visits the
6683 DIE's children recursively. Updates the global variable next_die_offset, on
6684 each time through. Uses the current value of next_die_offset to update the
6685 die_offset field in each DIE. */
6687 static void
6688 calc_die_sizes (dw_die_ref die)
6690 dw_die_ref c;
6692 die->die_offset = next_die_offset;
6693 next_die_offset += size_of_die (die);
6695 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6697 if (die->die_child != NULL)
6698 /* Count the null byte used to terminate sibling lists. */
6699 next_die_offset += 1;
6702 /* Set the marks for a die and its children. We do this so
6703 that we know whether or not a reference needs to use FORM_ref_addr; only
6704 DIEs in the same CU will be marked. We used to clear out the offset
6705 and use that as the flag, but ran into ordering problems. */
6707 static void
6708 mark_dies (dw_die_ref die)
6710 dw_die_ref c;
6712 gcc_assert (!die->die_mark);
6714 die->die_mark = 1;
6715 FOR_EACH_CHILD (die, c, mark_dies (c));
6718 /* Clear the marks for a die and its children. */
6720 static void
6721 unmark_dies (dw_die_ref die)
6723 dw_die_ref c;
6725 gcc_assert (die->die_mark);
6727 die->die_mark = 0;
6728 FOR_EACH_CHILD (die, c, unmark_dies (c));
6731 /* Clear the marks for a die, its children and referred dies. */
6733 static void
6734 unmark_all_dies (dw_die_ref die)
6736 dw_die_ref c;
6737 dw_attr_ref a;
6738 unsigned ix;
6740 if (!die->die_mark)
6741 return;
6742 die->die_mark = 0;
6744 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6746 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6747 if (AT_class (a) == dw_val_class_die_ref)
6748 unmark_all_dies (AT_ref (a));
6751 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6752 generated for the compilation unit. */
6754 static unsigned long
6755 size_of_pubnames (VEC (pubname_entry, gc) * names)
6757 unsigned long size;
6758 unsigned i;
6759 pubname_ref p;
6761 size = DWARF_PUBNAMES_HEADER_SIZE;
6762 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6763 if (names != pubtype_table
6764 || p->die->die_offset != 0
6765 || !flag_eliminate_unused_debug_types)
6766 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6768 size += DWARF_OFFSET_SIZE;
6769 return size;
6772 /* Return the size of the information in the .debug_aranges section. */
6774 static unsigned long
6775 size_of_aranges (void)
6777 unsigned long size;
6779 size = DWARF_ARANGES_HEADER_SIZE;
6781 /* Count the address/length pair for this compilation unit. */
6782 size += 2 * DWARF2_ADDR_SIZE;
6783 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6785 /* Count the two zero words used to terminated the address range table. */
6786 size += 2 * DWARF2_ADDR_SIZE;
6787 return size;
6790 /* Select the encoding of an attribute value. */
6792 static enum dwarf_form
6793 value_format (dw_attr_ref a)
6795 switch (a->dw_attr_val.val_class)
6797 case dw_val_class_addr:
6798 return DW_FORM_addr;
6799 case dw_val_class_range_list:
6800 case dw_val_class_offset:
6801 case dw_val_class_loc_list:
6802 switch (DWARF_OFFSET_SIZE)
6804 case 4:
6805 return DW_FORM_data4;
6806 case 8:
6807 return DW_FORM_data8;
6808 default:
6809 gcc_unreachable ();
6811 case dw_val_class_loc:
6812 switch (constant_size (size_of_locs (AT_loc (a))))
6814 case 1:
6815 return DW_FORM_block1;
6816 case 2:
6817 return DW_FORM_block2;
6818 default:
6819 gcc_unreachable ();
6821 case dw_val_class_const:
6822 return DW_FORM_sdata;
6823 case dw_val_class_unsigned_const:
6824 switch (constant_size (AT_unsigned (a)))
6826 case 1:
6827 return DW_FORM_data1;
6828 case 2:
6829 return DW_FORM_data2;
6830 case 4:
6831 return DW_FORM_data4;
6832 case 8:
6833 return DW_FORM_data8;
6834 default:
6835 gcc_unreachable ();
6837 case dw_val_class_long_long:
6838 return DW_FORM_block1;
6839 case dw_val_class_vec:
6840 return DW_FORM_block1;
6841 case dw_val_class_flag:
6842 return DW_FORM_flag;
6843 case dw_val_class_die_ref:
6844 if (AT_ref_external (a))
6845 return DW_FORM_ref_addr;
6846 else
6847 return DW_FORM_ref;
6848 case dw_val_class_fde_ref:
6849 return DW_FORM_data;
6850 case dw_val_class_lbl_id:
6851 return DW_FORM_addr;
6852 case dw_val_class_lineptr:
6853 case dw_val_class_macptr:
6854 return DW_FORM_data;
6855 case dw_val_class_str:
6856 return AT_string_form (a);
6857 case dw_val_class_file:
6858 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6860 case 1:
6861 return DW_FORM_data1;
6862 case 2:
6863 return DW_FORM_data2;
6864 case 4:
6865 return DW_FORM_data4;
6866 default:
6867 gcc_unreachable ();
6870 default:
6871 gcc_unreachable ();
6875 /* Output the encoding of an attribute value. */
6877 static void
6878 output_value_format (dw_attr_ref a)
6880 enum dwarf_form form = value_format (a);
6882 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6885 /* Output the .debug_abbrev section which defines the DIE abbreviation
6886 table. */
6888 static void
6889 output_abbrev_section (void)
6891 unsigned long abbrev_id;
6893 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6895 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6896 unsigned ix;
6897 dw_attr_ref a_attr;
6899 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6900 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6901 dwarf_tag_name (abbrev->die_tag));
6903 if (abbrev->die_child != NULL)
6904 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6905 else
6906 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6908 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6909 ix++)
6911 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6912 dwarf_attr_name (a_attr->dw_attr));
6913 output_value_format (a_attr);
6916 dw2_asm_output_data (1, 0, NULL);
6917 dw2_asm_output_data (1, 0, NULL);
6920 /* Terminate the table. */
6921 dw2_asm_output_data (1, 0, NULL);
6924 /* Output a symbol we can use to refer to this DIE from another CU. */
6926 static inline void
6927 output_die_symbol (dw_die_ref die)
6929 char *sym = die->die_symbol;
6931 if (sym == 0)
6932 return;
6934 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6935 /* We make these global, not weak; if the target doesn't support
6936 .linkonce, it doesn't support combining the sections, so debugging
6937 will break. */
6938 targetm.asm_out.globalize_label (asm_out_file, sym);
6940 ASM_OUTPUT_LABEL (asm_out_file, sym);
6943 /* Return a new location list, given the begin and end range, and the
6944 expression. gensym tells us whether to generate a new internal symbol for
6945 this location list node, which is done for the head of the list only. */
6947 static inline dw_loc_list_ref
6948 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6949 const char *section, unsigned int gensym)
6951 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6953 retlist->begin = begin;
6954 retlist->end = end;
6955 retlist->expr = expr;
6956 retlist->section = section;
6957 if (gensym)
6958 retlist->ll_symbol = gen_internal_sym ("LLST");
6960 return retlist;
6963 /* Add a location description expression to a location list. */
6965 static inline void
6966 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6967 const char *begin, const char *end,
6968 const char *section)
6970 dw_loc_list_ref *d;
6972 /* Find the end of the chain. */
6973 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6976 /* Add a new location list node to the list. */
6977 *d = new_loc_list (descr, begin, end, section, 0);
6980 static void
6981 dwarf2out_switch_text_section (void)
6983 dw_fde_ref fde;
6985 gcc_assert (cfun);
6987 fde = &fde_table[fde_table_in_use - 1];
6988 fde->dw_fde_switched_sections = true;
6989 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6990 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6991 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6992 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6993 have_multiple_function_sections = true;
6995 /* Reset the current label on switching text sections, so that we
6996 don't attempt to advance_loc4 between labels in different sections. */
6997 fde->dw_fde_current_label = NULL;
7000 /* Output the location list given to us. */
7002 static void
7003 output_loc_list (dw_loc_list_ref list_head)
7005 dw_loc_list_ref curr = list_head;
7007 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7009 /* Walk the location list, and output each range + expression. */
7010 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7012 unsigned long size;
7013 if (!have_multiple_function_sections)
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7016 "Location list begin address (%s)",
7017 list_head->ll_symbol);
7018 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7019 "Location list end address (%s)",
7020 list_head->ll_symbol);
7022 else
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7025 "Location list begin address (%s)",
7026 list_head->ll_symbol);
7027 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7028 "Location list end address (%s)",
7029 list_head->ll_symbol);
7031 size = size_of_locs (curr->expr);
7033 /* Output the block length for this list of location operations. */
7034 gcc_assert (size <= 0xffff);
7035 dw2_asm_output_data (2, size, "%s", "Location expression size");
7037 output_loc_sequence (curr->expr);
7040 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7041 "Location list terminator begin (%s)",
7042 list_head->ll_symbol);
7043 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7044 "Location list terminator end (%s)",
7045 list_head->ll_symbol);
7048 /* Output the DIE and its attributes. Called recursively to generate
7049 the definitions of each child DIE. */
7051 static void
7052 output_die (dw_die_ref die)
7054 dw_attr_ref a;
7055 dw_die_ref c;
7056 unsigned long size;
7057 unsigned ix;
7059 /* If someone in another CU might refer to us, set up a symbol for
7060 them to point to. */
7061 if (die->die_symbol)
7062 output_die_symbol (die);
7064 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7065 die->die_offset, dwarf_tag_name (die->die_tag));
7067 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7069 const char *name = dwarf_attr_name (a->dw_attr);
7071 switch (AT_class (a))
7073 case dw_val_class_addr:
7074 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7075 break;
7077 case dw_val_class_offset:
7078 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7079 "%s", name);
7080 break;
7082 case dw_val_class_range_list:
7084 char *p = strchr (ranges_section_label, '\0');
7086 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7087 a->dw_attr_val.v.val_offset);
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7089 debug_ranges_section, "%s", name);
7090 *p = '\0';
7092 break;
7094 case dw_val_class_loc:
7095 size = size_of_locs (AT_loc (a));
7097 /* Output the block length for this list of location operations. */
7098 dw2_asm_output_data (constant_size (size), size, "%s", name);
7100 output_loc_sequence (AT_loc (a));
7101 break;
7103 case dw_val_class_const:
7104 /* ??? It would be slightly more efficient to use a scheme like is
7105 used for unsigned constants below, but gdb 4.x does not sign
7106 extend. Gdb 5.x does sign extend. */
7107 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7108 break;
7110 case dw_val_class_unsigned_const:
7111 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7112 AT_unsigned (a), "%s", name);
7113 break;
7115 case dw_val_class_long_long:
7117 unsigned HOST_WIDE_INT first, second;
7119 dw2_asm_output_data (1,
7120 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7121 "%s", name);
7123 if (WORDS_BIG_ENDIAN)
7125 first = a->dw_attr_val.v.val_long_long.hi;
7126 second = a->dw_attr_val.v.val_long_long.low;
7128 else
7130 first = a->dw_attr_val.v.val_long_long.low;
7131 second = a->dw_attr_val.v.val_long_long.hi;
7134 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7135 first, "long long constant");
7136 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7137 second, NULL);
7139 break;
7141 case dw_val_class_vec:
7143 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7144 unsigned int len = a->dw_attr_val.v.val_vec.length;
7145 unsigned int i;
7146 unsigned char *p;
7148 dw2_asm_output_data (1, len * elt_size, "%s", name);
7149 if (elt_size > sizeof (HOST_WIDE_INT))
7151 elt_size /= 2;
7152 len *= 2;
7154 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7155 i < len;
7156 i++, p += elt_size)
7157 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7158 "fp or vector constant word %u", i);
7159 break;
7162 case dw_val_class_flag:
7163 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7164 break;
7166 case dw_val_class_loc_list:
7168 char *sym = AT_loc_list (a)->ll_symbol;
7170 gcc_assert (sym);
7171 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7172 "%s", name);
7174 break;
7176 case dw_val_class_die_ref:
7177 if (AT_ref_external (a))
7179 char *sym = AT_ref (a)->die_symbol;
7181 gcc_assert (sym);
7182 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7183 "%s", name);
7185 else
7187 gcc_assert (AT_ref (a)->die_offset);
7188 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7189 "%s", name);
7191 break;
7193 case dw_val_class_fde_ref:
7195 char l1[20];
7197 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7198 a->dw_attr_val.v.val_fde_index * 2);
7199 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7200 "%s", name);
7202 break;
7204 case dw_val_class_lbl_id:
7205 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7206 break;
7208 case dw_val_class_lineptr:
7209 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7210 debug_line_section, "%s", name);
7211 break;
7213 case dw_val_class_macptr:
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7215 debug_macinfo_section, "%s", name);
7216 break;
7218 case dw_val_class_str:
7219 if (AT_string_form (a) == DW_FORM_strp)
7220 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7221 a->dw_attr_val.v.val_str->label,
7222 debug_str_section,
7223 "%s: \"%s\"", name, AT_string (a));
7224 else
7225 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7226 break;
7228 case dw_val_class_file:
7230 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7232 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7233 a->dw_attr_val.v.val_file->filename);
7234 break;
7237 default:
7238 gcc_unreachable ();
7242 FOR_EACH_CHILD (die, c, output_die (c));
7244 /* Add null byte to terminate sibling list. */
7245 if (die->die_child != NULL)
7246 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7247 die->die_offset);
7250 /* Output the compilation unit that appears at the beginning of the
7251 .debug_info section, and precedes the DIE descriptions. */
7253 static void
7254 output_compilation_unit_header (void)
7256 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7257 dw2_asm_output_data (4, 0xffffffff,
7258 "Initial length escape value indicating 64-bit DWARF extension");
7259 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7260 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7261 "Length of Compilation Unit Info");
7262 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7263 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7264 debug_abbrev_section,
7265 "Offset Into Abbrev. Section");
7266 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7269 /* Output the compilation unit DIE and its children. */
7271 static void
7272 output_comp_unit (dw_die_ref die, int output_if_empty)
7274 const char *secname;
7275 char *oldsym, *tmp;
7277 /* Unless we are outputting main CU, we may throw away empty ones. */
7278 if (!output_if_empty && die->die_child == NULL)
7279 return;
7281 /* Even if there are no children of this DIE, we must output the information
7282 about the compilation unit. Otherwise, on an empty translation unit, we
7283 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7284 will then complain when examining the file. First mark all the DIEs in
7285 this CU so we know which get local refs. */
7286 mark_dies (die);
7288 build_abbrev_table (die);
7290 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7291 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7292 calc_die_sizes (die);
7294 oldsym = die->die_symbol;
7295 if (oldsym)
7297 tmp = alloca (strlen (oldsym) + 24);
7299 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7300 secname = tmp;
7301 die->die_symbol = NULL;
7302 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7304 else
7305 switch_to_section (debug_info_section);
7307 /* Output debugging information. */
7308 output_compilation_unit_header ();
7309 output_die (die);
7311 /* Leave the marks on the main CU, so we can check them in
7312 output_pubnames. */
7313 if (oldsym)
7315 unmark_dies (die);
7316 die->die_symbol = oldsym;
7320 /* Return the DWARF2/3 pubname associated with a decl. */
7322 static const char *
7323 dwarf2_name (tree decl, int scope)
7325 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7328 /* Add a new entry to .debug_pubnames if appropriate. */
7330 static void
7331 add_pubname (tree decl, dw_die_ref die)
7333 pubname_entry e;
7335 if (! TREE_PUBLIC (decl))
7336 return;
7338 e.die = die;
7339 e.name = xstrdup (dwarf2_name (decl, 1));
7340 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7343 /* Add a new entry to .debug_pubtypes if appropriate. */
7345 static void
7346 add_pubtype (tree decl, dw_die_ref die)
7348 pubname_entry e;
7350 e.name = NULL;
7351 if ((TREE_PUBLIC (decl)
7352 || die->die_parent == comp_unit_die)
7353 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7355 e.die = die;
7356 if (TYPE_P (decl))
7358 if (TYPE_NAME (decl))
7360 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7361 e.name = xstrdup ((const char *) IDENTIFIER_POINTER
7362 (TYPE_NAME (decl)));
7363 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7364 && DECL_NAME (TYPE_NAME (decl)))
7365 e.name = xstrdup ((const char *) IDENTIFIER_POINTER
7366 (DECL_NAME (TYPE_NAME (decl))));
7367 else
7368 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7371 else
7372 e.name = xstrdup (dwarf2_name (decl, 1));
7374 /* If we don't have a name for the type, there's no point in adding
7375 it to the table. */
7376 if (e.name && e.name[0] != '\0')
7377 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7381 /* Output the public names table used to speed up access to externally
7382 visible names; or the public types table used to find type definitions. */
7384 static void
7385 output_pubnames (VEC (pubname_entry, gc) * names)
7387 unsigned i;
7388 unsigned long pubnames_length = size_of_pubnames (names);
7389 pubname_ref pub;
7391 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7392 dw2_asm_output_data (4, 0xffffffff,
7393 "Initial length escape value indicating 64-bit DWARF extension");
7394 if (names == pubname_table)
7395 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7396 "Length of Public Names Info");
7397 else
7398 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7399 "Length of Public Type Names Info");
7400 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7401 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7402 debug_info_section,
7403 "Offset of Compilation Unit Info");
7404 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7405 "Compilation Unit Length");
7407 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7409 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7410 if (names == pubname_table)
7411 gcc_assert (pub->die->die_mark);
7413 if (names != pubtype_table
7414 || pub->die->die_offset != 0
7415 || !flag_eliminate_unused_debug_types)
7417 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7418 "DIE offset");
7420 dw2_asm_output_nstring (pub->name, -1, "external name");
7424 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7427 /* Add a new entry to .debug_aranges if appropriate. */
7429 static void
7430 add_arange (tree decl, dw_die_ref die)
7432 if (! DECL_SECTION_NAME (decl))
7433 return;
7435 if (arange_table_in_use == arange_table_allocated)
7437 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7438 arange_table = ggc_realloc (arange_table,
7439 (arange_table_allocated
7440 * sizeof (dw_die_ref)));
7441 memset (arange_table + arange_table_in_use, 0,
7442 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7445 arange_table[arange_table_in_use++] = die;
7448 /* Output the information that goes into the .debug_aranges table.
7449 Namely, define the beginning and ending address range of the
7450 text section generated for this compilation unit. */
7452 static void
7453 output_aranges (void)
7455 unsigned i;
7456 unsigned long aranges_length = size_of_aranges ();
7458 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7459 dw2_asm_output_data (4, 0xffffffff,
7460 "Initial length escape value indicating 64-bit DWARF extension");
7461 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7462 "Length of Address Ranges Info");
7463 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7464 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7465 debug_info_section,
7466 "Offset of Compilation Unit Info");
7467 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7468 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7470 /* We need to align to twice the pointer size here. */
7471 if (DWARF_ARANGES_PAD_SIZE)
7473 /* Pad using a 2 byte words so that padding is correct for any
7474 pointer size. */
7475 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7476 2 * DWARF2_ADDR_SIZE);
7477 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7478 dw2_asm_output_data (2, 0, NULL);
7481 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7482 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7483 text_section_label, "Length");
7484 if (flag_reorder_blocks_and_partition)
7486 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7487 "Address");
7488 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7489 cold_text_section_label, "Length");
7492 for (i = 0; i < arange_table_in_use; i++)
7494 dw_die_ref die = arange_table[i];
7496 /* We shouldn't see aranges for DIEs outside of the main CU. */
7497 gcc_assert (die->die_mark);
7499 if (die->die_tag == DW_TAG_subprogram)
7501 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7502 "Address");
7503 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7504 get_AT_low_pc (die), "Length");
7506 else
7508 /* A static variable; extract the symbol from DW_AT_location.
7509 Note that this code isn't currently hit, as we only emit
7510 aranges for functions (jason 9/23/99). */
7511 dw_attr_ref a = get_AT (die, DW_AT_location);
7512 dw_loc_descr_ref loc;
7514 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7516 loc = AT_loc (a);
7517 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7519 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7520 loc->dw_loc_oprnd1.v.val_addr, "Address");
7521 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7522 get_AT_unsigned (die, DW_AT_byte_size),
7523 "Length");
7527 /* Output the terminator words. */
7528 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7529 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7532 /* Add a new entry to .debug_ranges. Return the offset at which it
7533 was placed. */
7535 static unsigned int
7536 add_ranges (tree block)
7538 unsigned int in_use = ranges_table_in_use;
7540 if (in_use == ranges_table_allocated)
7542 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7543 ranges_table
7544 = ggc_realloc (ranges_table, (ranges_table_allocated
7545 * sizeof (struct dw_ranges_struct)));
7546 memset (ranges_table + ranges_table_in_use, 0,
7547 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7550 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7551 ranges_table_in_use = in_use + 1;
7553 return in_use * 2 * DWARF2_ADDR_SIZE;
7556 static void
7557 output_ranges (void)
7559 unsigned i;
7560 static const char *const start_fmt = "Offset 0x%x";
7561 const char *fmt = start_fmt;
7563 for (i = 0; i < ranges_table_in_use; i++)
7565 int block_num = ranges_table[i].block_num;
7567 if (block_num)
7569 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7570 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7572 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7573 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7575 /* If all code is in the text section, then the compilation
7576 unit base address defaults to DW_AT_low_pc, which is the
7577 base of the text section. */
7578 if (!have_multiple_function_sections)
7580 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7581 text_section_label,
7582 fmt, i * 2 * DWARF2_ADDR_SIZE);
7583 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7584 text_section_label, NULL);
7587 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7588 compilation unit base address to zero, which allows us to
7589 use absolute addresses, and not worry about whether the
7590 target supports cross-section arithmetic. */
7591 else
7593 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7594 fmt, i * 2 * DWARF2_ADDR_SIZE);
7595 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7598 fmt = NULL;
7600 else
7602 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7603 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7604 fmt = start_fmt;
7609 /* Data structure containing information about input files. */
7610 struct file_info
7612 const char *path; /* Complete file name. */
7613 const char *fname; /* File name part. */
7614 int length; /* Length of entire string. */
7615 struct dwarf_file_data * file_idx; /* Index in input file table. */
7616 int dir_idx; /* Index in directory table. */
7619 /* Data structure containing information about directories with source
7620 files. */
7621 struct dir_info
7623 const char *path; /* Path including directory name. */
7624 int length; /* Path length. */
7625 int prefix; /* Index of directory entry which is a prefix. */
7626 int count; /* Number of files in this directory. */
7627 int dir_idx; /* Index of directory used as base. */
7630 /* Callback function for file_info comparison. We sort by looking at
7631 the directories in the path. */
7633 static int
7634 file_info_cmp (const void *p1, const void *p2)
7636 const struct file_info *s1 = p1;
7637 const struct file_info *s2 = p2;
7638 unsigned char *cp1;
7639 unsigned char *cp2;
7641 /* Take care of file names without directories. We need to make sure that
7642 we return consistent values to qsort since some will get confused if
7643 we return the same value when identical operands are passed in opposite
7644 orders. So if neither has a directory, return 0 and otherwise return
7645 1 or -1 depending on which one has the directory. */
7646 if ((s1->path == s1->fname || s2->path == s2->fname))
7647 return (s2->path == s2->fname) - (s1->path == s1->fname);
7649 cp1 = (unsigned char *) s1->path;
7650 cp2 = (unsigned char *) s2->path;
7652 while (1)
7654 ++cp1;
7655 ++cp2;
7656 /* Reached the end of the first path? If so, handle like above. */
7657 if ((cp1 == (unsigned char *) s1->fname)
7658 || (cp2 == (unsigned char *) s2->fname))
7659 return ((cp2 == (unsigned char *) s2->fname)
7660 - (cp1 == (unsigned char *) s1->fname));
7662 /* Character of current path component the same? */
7663 else if (*cp1 != *cp2)
7664 return *cp1 - *cp2;
7668 struct file_name_acquire_data
7670 struct file_info *files;
7671 int used_files;
7672 int max_files;
7675 /* Traversal function for the hash table. */
7677 static int
7678 file_name_acquire (void ** slot, void *data)
7680 struct file_name_acquire_data *fnad = data;
7681 struct dwarf_file_data *d = *slot;
7682 struct file_info *fi;
7683 const char *f;
7685 gcc_assert (fnad->max_files >= d->emitted_number);
7687 if (! d->emitted_number)
7688 return 1;
7690 gcc_assert (fnad->max_files != fnad->used_files);
7692 fi = fnad->files + fnad->used_files++;
7694 /* Skip all leading "./". */
7695 f = d->filename;
7696 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7697 f += 2;
7699 /* Create a new array entry. */
7700 fi->path = f;
7701 fi->length = strlen (f);
7702 fi->file_idx = d;
7704 /* Search for the file name part. */
7705 f = strrchr (f, DIR_SEPARATOR);
7706 #if defined (DIR_SEPARATOR_2)
7708 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7710 if (g != NULL)
7712 if (f == NULL || f < g)
7713 f = g;
7716 #endif
7718 fi->fname = f == NULL ? fi->path : f + 1;
7719 return 1;
7722 /* Output the directory table and the file name table. We try to minimize
7723 the total amount of memory needed. A heuristic is used to avoid large
7724 slowdowns with many input files. */
7726 static void
7727 output_file_names (void)
7729 struct file_name_acquire_data fnad;
7730 int numfiles;
7731 struct file_info *files;
7732 struct dir_info *dirs;
7733 int *saved;
7734 int *savehere;
7735 int *backmap;
7736 int ndirs;
7737 int idx_offset;
7738 int i;
7739 int idx;
7741 if (!last_emitted_file)
7743 dw2_asm_output_data (1, 0, "End directory table");
7744 dw2_asm_output_data (1, 0, "End file name table");
7745 return;
7748 numfiles = last_emitted_file->emitted_number;
7750 /* Allocate the various arrays we need. */
7751 files = alloca (numfiles * sizeof (struct file_info));
7752 dirs = alloca (numfiles * sizeof (struct dir_info));
7754 fnad.files = files;
7755 fnad.used_files = 0;
7756 fnad.max_files = numfiles;
7757 htab_traverse (file_table, file_name_acquire, &fnad);
7758 gcc_assert (fnad.used_files == fnad.max_files);
7760 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7762 /* Find all the different directories used. */
7763 dirs[0].path = files[0].path;
7764 dirs[0].length = files[0].fname - files[0].path;
7765 dirs[0].prefix = -1;
7766 dirs[0].count = 1;
7767 dirs[0].dir_idx = 0;
7768 files[0].dir_idx = 0;
7769 ndirs = 1;
7771 for (i = 1; i < numfiles; i++)
7772 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7773 && memcmp (dirs[ndirs - 1].path, files[i].path,
7774 dirs[ndirs - 1].length) == 0)
7776 /* Same directory as last entry. */
7777 files[i].dir_idx = ndirs - 1;
7778 ++dirs[ndirs - 1].count;
7780 else
7782 int j;
7784 /* This is a new directory. */
7785 dirs[ndirs].path = files[i].path;
7786 dirs[ndirs].length = files[i].fname - files[i].path;
7787 dirs[ndirs].count = 1;
7788 dirs[ndirs].dir_idx = ndirs;
7789 files[i].dir_idx = ndirs;
7791 /* Search for a prefix. */
7792 dirs[ndirs].prefix = -1;
7793 for (j = 0; j < ndirs; j++)
7794 if (dirs[j].length < dirs[ndirs].length
7795 && dirs[j].length > 1
7796 && (dirs[ndirs].prefix == -1
7797 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7798 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7799 dirs[ndirs].prefix = j;
7801 ++ndirs;
7804 /* Now to the actual work. We have to find a subset of the directories which
7805 allow expressing the file name using references to the directory table
7806 with the least amount of characters. We do not do an exhaustive search
7807 where we would have to check out every combination of every single
7808 possible prefix. Instead we use a heuristic which provides nearly optimal
7809 results in most cases and never is much off. */
7810 saved = alloca (ndirs * sizeof (int));
7811 savehere = alloca (ndirs * sizeof (int));
7813 memset (saved, '\0', ndirs * sizeof (saved[0]));
7814 for (i = 0; i < ndirs; i++)
7816 int j;
7817 int total;
7819 /* We can always save some space for the current directory. But this
7820 does not mean it will be enough to justify adding the directory. */
7821 savehere[i] = dirs[i].length;
7822 total = (savehere[i] - saved[i]) * dirs[i].count;
7824 for (j = i + 1; j < ndirs; j++)
7826 savehere[j] = 0;
7827 if (saved[j] < dirs[i].length)
7829 /* Determine whether the dirs[i] path is a prefix of the
7830 dirs[j] path. */
7831 int k;
7833 k = dirs[j].prefix;
7834 while (k != -1 && k != (int) i)
7835 k = dirs[k].prefix;
7837 if (k == (int) i)
7839 /* Yes it is. We can possibly save some memory by
7840 writing the filenames in dirs[j] relative to
7841 dirs[i]. */
7842 savehere[j] = dirs[i].length;
7843 total += (savehere[j] - saved[j]) * dirs[j].count;
7848 /* Check whether we can save enough to justify adding the dirs[i]
7849 directory. */
7850 if (total > dirs[i].length + 1)
7852 /* It's worthwhile adding. */
7853 for (j = i; j < ndirs; j++)
7854 if (savehere[j] > 0)
7856 /* Remember how much we saved for this directory so far. */
7857 saved[j] = savehere[j];
7859 /* Remember the prefix directory. */
7860 dirs[j].dir_idx = i;
7865 /* Emit the directory name table. */
7866 idx = 1;
7867 idx_offset = dirs[0].length > 0 ? 1 : 0;
7868 for (i = 1 - idx_offset; i < ndirs; i++)
7869 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7870 "Directory Entry: 0x%x", i + idx_offset);
7872 dw2_asm_output_data (1, 0, "End directory table");
7874 /* We have to emit them in the order of emitted_number since that's
7875 used in the debug info generation. To do this efficiently we
7876 generate a back-mapping of the indices first. */
7877 backmap = alloca (numfiles * sizeof (int));
7878 for (i = 0; i < numfiles; i++)
7879 backmap[files[i].file_idx->emitted_number - 1] = i;
7881 /* Now write all the file names. */
7882 for (i = 0; i < numfiles; i++)
7884 int file_idx = backmap[i];
7885 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7887 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7888 "File Entry: 0x%x", (unsigned) i + 1);
7890 /* Include directory index. */
7891 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7893 /* Modification time. */
7894 dw2_asm_output_data_uleb128 (0, NULL);
7896 /* File length in bytes. */
7897 dw2_asm_output_data_uleb128 (0, NULL);
7900 dw2_asm_output_data (1, 0, "End file name table");
7904 /* Output the source line number correspondence information. This
7905 information goes into the .debug_line section. */
7907 static void
7908 output_line_info (void)
7910 char l1[20], l2[20], p1[20], p2[20];
7911 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7912 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7913 unsigned opc;
7914 unsigned n_op_args;
7915 unsigned long lt_index;
7916 unsigned long current_line;
7917 long line_offset;
7918 long line_delta;
7919 unsigned long current_file;
7920 unsigned long function;
7922 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7923 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7924 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7925 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7927 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7928 dw2_asm_output_data (4, 0xffffffff,
7929 "Initial length escape value indicating 64-bit DWARF extension");
7930 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7931 "Length of Source Line Info");
7932 ASM_OUTPUT_LABEL (asm_out_file, l1);
7934 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7935 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7936 ASM_OUTPUT_LABEL (asm_out_file, p1);
7938 /* Define the architecture-dependent minimum instruction length (in
7939 bytes). In this implementation of DWARF, this field is used for
7940 information purposes only. Since GCC generates assembly language,
7941 we have no a priori knowledge of how many instruction bytes are
7942 generated for each source line, and therefore can use only the
7943 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7944 commands. Accordingly, we fix this as `1', which is "correct
7945 enough" for all architectures, and don't let the target override. */
7946 dw2_asm_output_data (1, 1,
7947 "Minimum Instruction Length");
7949 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7950 "Default is_stmt_start flag");
7951 dw2_asm_output_data (1, DWARF_LINE_BASE,
7952 "Line Base Value (Special Opcodes)");
7953 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7954 "Line Range Value (Special Opcodes)");
7955 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7956 "Special Opcode Base");
7958 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7960 switch (opc)
7962 case DW_LNS_advance_pc:
7963 case DW_LNS_advance_line:
7964 case DW_LNS_set_file:
7965 case DW_LNS_set_column:
7966 case DW_LNS_fixed_advance_pc:
7967 n_op_args = 1;
7968 break;
7969 default:
7970 n_op_args = 0;
7971 break;
7974 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7975 opc, n_op_args);
7978 /* Write out the information about the files we use. */
7979 output_file_names ();
7980 ASM_OUTPUT_LABEL (asm_out_file, p2);
7982 /* We used to set the address register to the first location in the text
7983 section here, but that didn't accomplish anything since we already
7984 have a line note for the opening brace of the first function. */
7986 /* Generate the line number to PC correspondence table, encoded as
7987 a series of state machine operations. */
7988 current_file = 1;
7989 current_line = 1;
7991 if (cfun && in_cold_section_p)
7992 strcpy (prev_line_label, cfun->cold_section_label);
7993 else
7994 strcpy (prev_line_label, text_section_label);
7995 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7997 dw_line_info_ref line_info = &line_info_table[lt_index];
7999 #if 0
8000 /* Disable this optimization for now; GDB wants to see two line notes
8001 at the beginning of a function so it can find the end of the
8002 prologue. */
8004 /* Don't emit anything for redundant notes. Just updating the
8005 address doesn't accomplish anything, because we already assume
8006 that anything after the last address is this line. */
8007 if (line_info->dw_line_num == current_line
8008 && line_info->dw_file_num == current_file)
8009 continue;
8010 #endif
8012 /* Emit debug info for the address of the current line.
8014 Unfortunately, we have little choice here currently, and must always
8015 use the most general form. GCC does not know the address delta
8016 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8017 attributes which will give an upper bound on the address range. We
8018 could perhaps use length attributes to determine when it is safe to
8019 use DW_LNS_fixed_advance_pc. */
8021 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8022 if (0)
8024 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8025 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8026 "DW_LNS_fixed_advance_pc");
8027 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8029 else
8031 /* This can handle any delta. This takes
8032 4+DWARF2_ADDR_SIZE bytes. */
8033 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8034 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8035 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8036 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8039 strcpy (prev_line_label, line_label);
8041 /* Emit debug info for the source file of the current line, if
8042 different from the previous line. */
8043 if (line_info->dw_file_num != current_file)
8045 current_file = line_info->dw_file_num;
8046 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8047 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8050 /* Emit debug info for the current line number, choosing the encoding
8051 that uses the least amount of space. */
8052 if (line_info->dw_line_num != current_line)
8054 line_offset = line_info->dw_line_num - current_line;
8055 line_delta = line_offset - DWARF_LINE_BASE;
8056 current_line = line_info->dw_line_num;
8057 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8058 /* This can handle deltas from -10 to 234, using the current
8059 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8060 takes 1 byte. */
8061 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8062 "line %lu", current_line);
8063 else
8065 /* This can handle any delta. This takes at least 4 bytes,
8066 depending on the value being encoded. */
8067 dw2_asm_output_data (1, DW_LNS_advance_line,
8068 "advance to line %lu", current_line);
8069 dw2_asm_output_data_sleb128 (line_offset, NULL);
8070 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8073 else
8074 /* We still need to start a new row, so output a copy insn. */
8075 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8078 /* Emit debug info for the address of the end of the function. */
8079 if (0)
8081 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8082 "DW_LNS_fixed_advance_pc");
8083 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8085 else
8087 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8088 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8089 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8090 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8093 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8094 dw2_asm_output_data_uleb128 (1, NULL);
8095 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8097 function = 0;
8098 current_file = 1;
8099 current_line = 1;
8100 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8102 dw_separate_line_info_ref line_info
8103 = &separate_line_info_table[lt_index];
8105 #if 0
8106 /* Don't emit anything for redundant notes. */
8107 if (line_info->dw_line_num == current_line
8108 && line_info->dw_file_num == current_file
8109 && line_info->function == function)
8110 goto cont;
8111 #endif
8113 /* Emit debug info for the address of the current line. If this is
8114 a new function, or the first line of a function, then we need
8115 to handle it differently. */
8116 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8117 lt_index);
8118 if (function != line_info->function)
8120 function = line_info->function;
8122 /* Set the address register to the first line in the function. */
8123 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8124 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8125 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8126 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8128 else
8130 /* ??? See the DW_LNS_advance_pc comment above. */
8131 if (0)
8133 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8134 "DW_LNS_fixed_advance_pc");
8135 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8137 else
8139 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8140 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8141 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8142 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8146 strcpy (prev_line_label, line_label);
8148 /* Emit debug info for the source file of the current line, if
8149 different from the previous line. */
8150 if (line_info->dw_file_num != current_file)
8152 current_file = line_info->dw_file_num;
8153 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8154 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8157 /* Emit debug info for the current line number, choosing the encoding
8158 that uses the least amount of space. */
8159 if (line_info->dw_line_num != current_line)
8161 line_offset = line_info->dw_line_num - current_line;
8162 line_delta = line_offset - DWARF_LINE_BASE;
8163 current_line = line_info->dw_line_num;
8164 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8165 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8166 "line %lu", current_line);
8167 else
8169 dw2_asm_output_data (1, DW_LNS_advance_line,
8170 "advance to line %lu", current_line);
8171 dw2_asm_output_data_sleb128 (line_offset, NULL);
8172 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8175 else
8176 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8178 #if 0
8179 cont:
8180 #endif
8182 lt_index++;
8184 /* If we're done with a function, end its sequence. */
8185 if (lt_index == separate_line_info_table_in_use
8186 || separate_line_info_table[lt_index].function != function)
8188 current_file = 1;
8189 current_line = 1;
8191 /* Emit debug info for the address of the end of the function. */
8192 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8193 if (0)
8195 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8196 "DW_LNS_fixed_advance_pc");
8197 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8199 else
8201 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8202 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8203 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8204 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8207 /* Output the marker for the end of this sequence. */
8208 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8209 dw2_asm_output_data_uleb128 (1, NULL);
8210 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8214 /* Output the marker for the end of the line number info. */
8215 ASM_OUTPUT_LABEL (asm_out_file, l2);
8218 /* Given a pointer to a tree node for some base type, return a pointer to
8219 a DIE that describes the given type.
8221 This routine must only be called for GCC type nodes that correspond to
8222 Dwarf base (fundamental) types. */
8224 static dw_die_ref
8225 base_type_die (tree type)
8227 dw_die_ref base_type_result;
8228 enum dwarf_type encoding;
8230 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8231 return 0;
8233 switch (TREE_CODE (type))
8235 case INTEGER_TYPE:
8236 if (TYPE_STRING_FLAG (type))
8238 if (TYPE_UNSIGNED (type))
8239 encoding = DW_ATE_unsigned_char;
8240 else
8241 encoding = DW_ATE_signed_char;
8243 else if (TYPE_UNSIGNED (type))
8244 encoding = DW_ATE_unsigned;
8245 else
8246 encoding = DW_ATE_signed;
8247 break;
8249 case REAL_TYPE:
8250 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8251 encoding = DW_ATE_decimal_float;
8252 else
8253 encoding = DW_ATE_float;
8254 break;
8256 /* Dwarf2 doesn't know anything about complex ints, so use
8257 a user defined type for it. */
8258 case COMPLEX_TYPE:
8259 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8260 encoding = DW_ATE_complex_float;
8261 else
8262 encoding = DW_ATE_lo_user;
8263 break;
8265 case BOOLEAN_TYPE:
8266 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8267 encoding = DW_ATE_boolean;
8268 break;
8270 default:
8271 /* No other TREE_CODEs are Dwarf fundamental types. */
8272 gcc_unreachable ();
8275 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8277 /* This probably indicates a bug. */
8278 if (! TYPE_NAME (type))
8279 add_name_attribute (base_type_result, "__unknown__");
8281 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8282 int_size_in_bytes (type));
8283 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8285 return base_type_result;
8288 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8289 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8290 a given type is generally the same as the given type, except that if the
8291 given type is a pointer or reference type, then the root type of the given
8292 type is the root type of the "basis" type for the pointer or reference
8293 type. (This definition of the "root" type is recursive.) Also, the root
8294 type of a `const' qualified type or a `volatile' qualified type is the
8295 root type of the given type without the qualifiers. */
8297 static tree
8298 root_type (tree type)
8300 if (TREE_CODE (type) == ERROR_MARK)
8301 return error_mark_node;
8303 switch (TREE_CODE (type))
8305 case ERROR_MARK:
8306 return error_mark_node;
8308 case POINTER_TYPE:
8309 case REFERENCE_TYPE:
8310 return type_main_variant (root_type (TREE_TYPE (type)));
8312 default:
8313 return type_main_variant (type);
8317 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8318 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8320 static inline int
8321 is_base_type (tree type)
8323 switch (TREE_CODE (type))
8325 case ERROR_MARK:
8326 case VOID_TYPE:
8327 case INTEGER_TYPE:
8328 case REAL_TYPE:
8329 case COMPLEX_TYPE:
8330 case BOOLEAN_TYPE:
8331 return 1;
8333 case ARRAY_TYPE:
8334 case RECORD_TYPE:
8335 case UNION_TYPE:
8336 case QUAL_UNION_TYPE:
8337 case ENUMERAL_TYPE:
8338 case FUNCTION_TYPE:
8339 case METHOD_TYPE:
8340 case POINTER_TYPE:
8341 case REFERENCE_TYPE:
8342 case OFFSET_TYPE:
8343 case LANG_TYPE:
8344 case VECTOR_TYPE:
8345 return 0;
8347 default:
8348 gcc_unreachable ();
8351 return 0;
8354 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8355 node, return the size in bits for the type if it is a constant, or else
8356 return the alignment for the type if the type's size is not constant, or
8357 else return BITS_PER_WORD if the type actually turns out to be an
8358 ERROR_MARK node. */
8360 static inline unsigned HOST_WIDE_INT
8361 simple_type_size_in_bits (tree type)
8363 if (TREE_CODE (type) == ERROR_MARK)
8364 return BITS_PER_WORD;
8365 else if (TYPE_SIZE (type) == NULL_TREE)
8366 return 0;
8367 else if (host_integerp (TYPE_SIZE (type), 1))
8368 return tree_low_cst (TYPE_SIZE (type), 1);
8369 else
8370 return TYPE_ALIGN (type);
8373 /* Return true if the debug information for the given type should be
8374 emitted as a subrange type. */
8376 static inline bool
8377 is_subrange_type (tree type)
8379 tree subtype = TREE_TYPE (type);
8381 /* Subrange types are identified by the fact that they are integer
8382 types, and that they have a subtype which is either an integer type
8383 or an enumeral type. */
8385 if (TREE_CODE (type) != INTEGER_TYPE
8386 || subtype == NULL_TREE)
8387 return false;
8389 if (TREE_CODE (subtype) != INTEGER_TYPE
8390 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8391 return false;
8393 if (TREE_CODE (type) == TREE_CODE (subtype)
8394 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8395 && TYPE_MIN_VALUE (type) != NULL
8396 && TYPE_MIN_VALUE (subtype) != NULL
8397 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8398 && TYPE_MAX_VALUE (type) != NULL
8399 && TYPE_MAX_VALUE (subtype) != NULL
8400 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8402 /* The type and its subtype have the same representation. If in
8403 addition the two types also have the same name, then the given
8404 type is not a subrange type, but rather a plain base type. */
8405 /* FIXME: brobecker/2004-03-22:
8406 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8407 therefore be sufficient to check the TYPE_SIZE node pointers
8408 rather than checking the actual size. Unfortunately, we have
8409 found some cases, such as in the Ada "integer" type, where
8410 this is not the case. Until this problem is solved, we need to
8411 keep checking the actual size. */
8412 tree type_name = TYPE_NAME (type);
8413 tree subtype_name = TYPE_NAME (subtype);
8415 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8416 type_name = DECL_NAME (type_name);
8418 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8419 subtype_name = DECL_NAME (subtype_name);
8421 if (type_name == subtype_name)
8422 return false;
8425 return true;
8428 /* Given a pointer to a tree node for a subrange type, return a pointer
8429 to a DIE that describes the given type. */
8431 static dw_die_ref
8432 subrange_type_die (tree type, dw_die_ref context_die)
8434 dw_die_ref subrange_die;
8435 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8437 if (context_die == NULL)
8438 context_die = comp_unit_die;
8440 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8442 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8444 /* The size of the subrange type and its base type do not match,
8445 so we need to generate a size attribute for the subrange type. */
8446 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8449 if (TYPE_MIN_VALUE (type) != NULL)
8450 add_bound_info (subrange_die, DW_AT_lower_bound,
8451 TYPE_MIN_VALUE (type));
8452 if (TYPE_MAX_VALUE (type) != NULL)
8453 add_bound_info (subrange_die, DW_AT_upper_bound,
8454 TYPE_MAX_VALUE (type));
8456 return subrange_die;
8459 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8460 entry that chains various modifiers in front of the given type. */
8462 static dw_die_ref
8463 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8464 dw_die_ref context_die)
8466 enum tree_code code = TREE_CODE (type);
8467 dw_die_ref mod_type_die;
8468 dw_die_ref sub_die = NULL;
8469 tree item_type = NULL;
8470 tree qualified_type;
8471 tree name;
8473 if (code == ERROR_MARK)
8474 return NULL;
8476 /* See if we already have the appropriately qualified variant of
8477 this type. */
8478 qualified_type
8479 = get_qualified_type (type,
8480 ((is_const_type ? TYPE_QUAL_CONST : 0)
8481 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8483 /* If we do, then we can just use its DIE, if it exists. */
8484 if (qualified_type)
8486 mod_type_die = lookup_type_die (qualified_type);
8487 if (mod_type_die)
8488 return mod_type_die;
8491 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8493 /* Handle C typedef types. */
8494 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8496 tree dtype = TREE_TYPE (name);
8498 if (qualified_type == dtype)
8500 /* For a named type, use the typedef. */
8501 gen_type_die (qualified_type, context_die);
8502 return lookup_type_die (qualified_type);
8504 else if (DECL_ORIGINAL_TYPE (name)
8505 && (is_const_type < TYPE_READONLY (dtype)
8506 || is_volatile_type < TYPE_VOLATILE (dtype)))
8507 /* cv-unqualified version of named type. Just use the unnamed
8508 type to which it refers. */
8509 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8510 is_const_type, is_volatile_type,
8511 context_die);
8512 /* Else cv-qualified version of named type; fall through. */
8515 if (is_const_type)
8517 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8518 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8520 else if (is_volatile_type)
8522 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8523 sub_die = modified_type_die (type, 0, 0, context_die);
8525 else if (code == POINTER_TYPE)
8527 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8528 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8529 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8530 item_type = TREE_TYPE (type);
8532 else if (code == REFERENCE_TYPE)
8534 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8535 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8536 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8537 item_type = TREE_TYPE (type);
8539 else if (is_subrange_type (type))
8541 mod_type_die = subrange_type_die (type, context_die);
8542 item_type = TREE_TYPE (type);
8544 else if (is_base_type (type))
8545 mod_type_die = base_type_die (type);
8546 else
8548 gen_type_die (type, context_die);
8550 /* We have to get the type_main_variant here (and pass that to the
8551 `lookup_type_die' routine) because the ..._TYPE node we have
8552 might simply be a *copy* of some original type node (where the
8553 copy was created to help us keep track of typedef names) and
8554 that copy might have a different TYPE_UID from the original
8555 ..._TYPE node. */
8556 if (TREE_CODE (type) != VECTOR_TYPE)
8557 return lookup_type_die (type_main_variant (type));
8558 else
8559 /* Vectors have the debugging information in the type,
8560 not the main variant. */
8561 return lookup_type_die (type);
8564 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8565 don't output a DW_TAG_typedef, since there isn't one in the
8566 user's program; just attach a DW_AT_name to the type. */
8567 if (name
8568 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8570 if (TREE_CODE (name) == TYPE_DECL)
8571 /* Could just call add_name_and_src_coords_attributes here,
8572 but since this is a builtin type it doesn't have any
8573 useful source coordinates anyway. */
8574 name = DECL_NAME (name);
8575 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8578 if (qualified_type)
8579 equate_type_number_to_die (qualified_type, mod_type_die);
8581 if (item_type)
8582 /* We must do this after the equate_type_number_to_die call, in case
8583 this is a recursive type. This ensures that the modified_type_die
8584 recursion will terminate even if the type is recursive. Recursive
8585 types are possible in Ada. */
8586 sub_die = modified_type_die (item_type,
8587 TYPE_READONLY (item_type),
8588 TYPE_VOLATILE (item_type),
8589 context_die);
8591 if (sub_die != NULL)
8592 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8594 return mod_type_die;
8597 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8598 an enumerated type. */
8600 static inline int
8601 type_is_enum (tree type)
8603 return TREE_CODE (type) == ENUMERAL_TYPE;
8606 /* Return the DBX register number described by a given RTL node. */
8608 static unsigned int
8609 dbx_reg_number (rtx rtl)
8611 unsigned regno = REGNO (rtl);
8613 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8615 #ifdef LEAF_REG_REMAP
8617 int leaf_reg;
8619 leaf_reg = LEAF_REG_REMAP (regno);
8620 if (leaf_reg != -1)
8621 regno = (unsigned) leaf_reg;
8623 #endif
8625 return DBX_REGISTER_NUMBER (regno);
8628 /* Optionally add a DW_OP_piece term to a location description expression.
8629 DW_OP_piece is only added if the location description expression already
8630 doesn't end with DW_OP_piece. */
8632 static void
8633 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8635 dw_loc_descr_ref loc;
8637 if (*list_head != NULL)
8639 /* Find the end of the chain. */
8640 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8643 if (loc->dw_loc_opc != DW_OP_piece)
8644 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8648 /* Return a location descriptor that designates a machine register or
8649 zero if there is none. */
8651 static dw_loc_descr_ref
8652 reg_loc_descriptor (rtx rtl)
8654 rtx regs;
8656 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8657 return 0;
8659 regs = targetm.dwarf_register_span (rtl);
8661 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8662 return multiple_reg_loc_descriptor (rtl, regs);
8663 else
8664 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8667 /* Return a location descriptor that designates a machine register for
8668 a given hard register number. */
8670 static dw_loc_descr_ref
8671 one_reg_loc_descriptor (unsigned int regno)
8673 if (regno <= 31)
8674 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8675 else
8676 return new_loc_descr (DW_OP_regx, regno, 0);
8679 /* Given an RTL of a register, return a location descriptor that
8680 designates a value that spans more than one register. */
8682 static dw_loc_descr_ref
8683 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8685 int nregs, size, i;
8686 unsigned reg;
8687 dw_loc_descr_ref loc_result = NULL;
8689 reg = REGNO (rtl);
8690 #ifdef LEAF_REG_REMAP
8692 int leaf_reg;
8694 leaf_reg = LEAF_REG_REMAP (reg);
8695 if (leaf_reg != -1)
8696 reg = (unsigned) leaf_reg;
8698 #endif
8699 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8700 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8702 /* Simple, contiguous registers. */
8703 if (regs == NULL_RTX)
8705 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8707 loc_result = NULL;
8708 while (nregs--)
8710 dw_loc_descr_ref t;
8712 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8713 add_loc_descr (&loc_result, t);
8714 add_loc_descr_op_piece (&loc_result, size);
8715 ++reg;
8717 return loc_result;
8720 /* Now onto stupid register sets in non contiguous locations. */
8722 gcc_assert (GET_CODE (regs) == PARALLEL);
8724 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8725 loc_result = NULL;
8727 for (i = 0; i < XVECLEN (regs, 0); ++i)
8729 dw_loc_descr_ref t;
8731 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8732 add_loc_descr (&loc_result, t);
8733 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8734 add_loc_descr_op_piece (&loc_result, size);
8736 return loc_result;
8739 /* Return a location descriptor that designates a constant. */
8741 static dw_loc_descr_ref
8742 int_loc_descriptor (HOST_WIDE_INT i)
8744 enum dwarf_location_atom op;
8746 /* Pick the smallest representation of a constant, rather than just
8747 defaulting to the LEB encoding. */
8748 if (i >= 0)
8750 if (i <= 31)
8751 op = DW_OP_lit0 + i;
8752 else if (i <= 0xff)
8753 op = DW_OP_const1u;
8754 else if (i <= 0xffff)
8755 op = DW_OP_const2u;
8756 else if (HOST_BITS_PER_WIDE_INT == 32
8757 || i <= 0xffffffff)
8758 op = DW_OP_const4u;
8759 else
8760 op = DW_OP_constu;
8762 else
8764 if (i >= -0x80)
8765 op = DW_OP_const1s;
8766 else if (i >= -0x8000)
8767 op = DW_OP_const2s;
8768 else if (HOST_BITS_PER_WIDE_INT == 32
8769 || i >= -0x80000000)
8770 op = DW_OP_const4s;
8771 else
8772 op = DW_OP_consts;
8775 return new_loc_descr (op, i, 0);
8778 /* Return a location descriptor that designates a base+offset location. */
8780 static dw_loc_descr_ref
8781 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8783 unsigned int regno;
8785 /* We only use "frame base" when we're sure we're talking about the
8786 post-prologue local stack frame. We do this by *not* running
8787 register elimination until this point, and recognizing the special
8788 argument pointer and soft frame pointer rtx's. */
8789 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8791 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8793 if (elim != reg)
8795 if (GET_CODE (elim) == PLUS)
8797 offset += INTVAL (XEXP (elim, 1));
8798 elim = XEXP (elim, 0);
8800 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8801 : stack_pointer_rtx));
8802 offset += frame_pointer_fb_offset;
8804 return new_loc_descr (DW_OP_fbreg, offset, 0);
8808 regno = dbx_reg_number (reg);
8809 if (regno <= 31)
8810 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8811 else
8812 return new_loc_descr (DW_OP_bregx, regno, offset);
8815 /* Return true if this RTL expression describes a base+offset calculation. */
8817 static inline int
8818 is_based_loc (rtx rtl)
8820 return (GET_CODE (rtl) == PLUS
8821 && ((REG_P (XEXP (rtl, 0))
8822 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8823 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8826 /* The following routine converts the RTL for a variable or parameter
8827 (resident in memory) into an equivalent Dwarf representation of a
8828 mechanism for getting the address of that same variable onto the top of a
8829 hypothetical "address evaluation" stack.
8831 When creating memory location descriptors, we are effectively transforming
8832 the RTL for a memory-resident object into its Dwarf postfix expression
8833 equivalent. This routine recursively descends an RTL tree, turning
8834 it into Dwarf postfix code as it goes.
8836 MODE is the mode of the memory reference, needed to handle some
8837 autoincrement addressing modes.
8839 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8840 location list for RTL.
8842 Return 0 if we can't represent the location. */
8844 static dw_loc_descr_ref
8845 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8847 dw_loc_descr_ref mem_loc_result = NULL;
8848 enum dwarf_location_atom op;
8850 /* Note that for a dynamically sized array, the location we will generate a
8851 description of here will be the lowest numbered location which is
8852 actually within the array. That's *not* necessarily the same as the
8853 zeroth element of the array. */
8855 rtl = targetm.delegitimize_address (rtl);
8857 switch (GET_CODE (rtl))
8859 case POST_INC:
8860 case POST_DEC:
8861 case POST_MODIFY:
8862 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8863 just fall into the SUBREG code. */
8865 /* ... fall through ... */
8867 case SUBREG:
8868 /* The case of a subreg may arise when we have a local (register)
8869 variable or a formal (register) parameter which doesn't quite fill
8870 up an entire register. For now, just assume that it is
8871 legitimate to make the Dwarf info refer to the whole register which
8872 contains the given subreg. */
8873 rtl = XEXP (rtl, 0);
8875 /* ... fall through ... */
8877 case REG:
8878 /* Whenever a register number forms a part of the description of the
8879 method for calculating the (dynamic) address of a memory resident
8880 object, DWARF rules require the register number be referred to as
8881 a "base register". This distinction is not based in any way upon
8882 what category of register the hardware believes the given register
8883 belongs to. This is strictly DWARF terminology we're dealing with
8884 here. Note that in cases where the location of a memory-resident
8885 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8886 OP_CONST (0)) the actual DWARF location descriptor that we generate
8887 may just be OP_BASEREG (basereg). This may look deceptively like
8888 the object in question was allocated to a register (rather than in
8889 memory) so DWARF consumers need to be aware of the subtle
8890 distinction between OP_REG and OP_BASEREG. */
8891 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8892 mem_loc_result = based_loc_descr (rtl, 0);
8893 break;
8895 case MEM:
8896 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8897 if (mem_loc_result != 0)
8898 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8899 break;
8901 case LO_SUM:
8902 rtl = XEXP (rtl, 1);
8904 /* ... fall through ... */
8906 case LABEL_REF:
8907 /* Some ports can transform a symbol ref into a label ref, because
8908 the symbol ref is too far away and has to be dumped into a constant
8909 pool. */
8910 case CONST:
8911 case SYMBOL_REF:
8912 /* Alternatively, the symbol in the constant pool might be referenced
8913 by a different symbol. */
8914 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8916 bool marked;
8917 rtx tmp = get_pool_constant_mark (rtl, &marked);
8919 if (GET_CODE (tmp) == SYMBOL_REF)
8921 rtl = tmp;
8922 if (CONSTANT_POOL_ADDRESS_P (tmp))
8923 get_pool_constant_mark (tmp, &marked);
8924 else
8925 marked = true;
8928 /* If all references to this pool constant were optimized away,
8929 it was not output and thus we can't represent it.
8930 FIXME: might try to use DW_OP_const_value here, though
8931 DW_OP_piece complicates it. */
8932 if (!marked)
8933 return 0;
8936 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8937 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8938 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8939 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8940 break;
8942 case PRE_MODIFY:
8943 /* Extract the PLUS expression nested inside and fall into
8944 PLUS code below. */
8945 rtl = XEXP (rtl, 1);
8946 goto plus;
8948 case PRE_INC:
8949 case PRE_DEC:
8950 /* Turn these into a PLUS expression and fall into the PLUS code
8951 below. */
8952 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8953 GEN_INT (GET_CODE (rtl) == PRE_INC
8954 ? GET_MODE_UNIT_SIZE (mode)
8955 : -GET_MODE_UNIT_SIZE (mode)));
8957 /* ... fall through ... */
8959 case PLUS:
8960 plus:
8961 if (is_based_loc (rtl))
8962 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8963 INTVAL (XEXP (rtl, 1)));
8964 else
8966 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8967 if (mem_loc_result == 0)
8968 break;
8970 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8971 && INTVAL (XEXP (rtl, 1)) >= 0)
8972 add_loc_descr (&mem_loc_result,
8973 new_loc_descr (DW_OP_plus_uconst,
8974 INTVAL (XEXP (rtl, 1)), 0));
8975 else
8977 add_loc_descr (&mem_loc_result,
8978 mem_loc_descriptor (XEXP (rtl, 1), mode));
8979 add_loc_descr (&mem_loc_result,
8980 new_loc_descr (DW_OP_plus, 0, 0));
8983 break;
8985 /* If a pseudo-reg is optimized away, it is possible for it to
8986 be replaced with a MEM containing a multiply or shift. */
8987 case MULT:
8988 op = DW_OP_mul;
8989 goto do_binop;
8991 case ASHIFT:
8992 op = DW_OP_shl;
8993 goto do_binop;
8995 case ASHIFTRT:
8996 op = DW_OP_shra;
8997 goto do_binop;
8999 case LSHIFTRT:
9000 op = DW_OP_shr;
9001 goto do_binop;
9003 do_binop:
9005 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
9006 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
9008 if (op0 == 0 || op1 == 0)
9009 break;
9011 mem_loc_result = op0;
9012 add_loc_descr (&mem_loc_result, op1);
9013 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9014 break;
9017 case CONST_INT:
9018 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9019 break;
9021 default:
9022 gcc_unreachable ();
9025 return mem_loc_result;
9028 /* Return a descriptor that describes the concatenation of two locations.
9029 This is typically a complex variable. */
9031 static dw_loc_descr_ref
9032 concat_loc_descriptor (rtx x0, rtx x1)
9034 dw_loc_descr_ref cc_loc_result = NULL;
9035 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
9036 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
9038 if (x0_ref == 0 || x1_ref == 0)
9039 return 0;
9041 cc_loc_result = x0_ref;
9042 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9044 add_loc_descr (&cc_loc_result, x1_ref);
9045 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9047 return cc_loc_result;
9050 /* Output a proper Dwarf location descriptor for a variable or parameter
9051 which is either allocated in a register or in a memory location. For a
9052 register, we just generate an OP_REG and the register number. For a
9053 memory location we provide a Dwarf postfix expression describing how to
9054 generate the (dynamic) address of the object onto the address stack.
9056 If we don't know how to describe it, return 0. */
9058 static dw_loc_descr_ref
9059 loc_descriptor (rtx rtl)
9061 dw_loc_descr_ref loc_result = NULL;
9063 switch (GET_CODE (rtl))
9065 case SUBREG:
9066 /* The case of a subreg may arise when we have a local (register)
9067 variable or a formal (register) parameter which doesn't quite fill
9068 up an entire register. For now, just assume that it is
9069 legitimate to make the Dwarf info refer to the whole register which
9070 contains the given subreg. */
9071 rtl = SUBREG_REG (rtl);
9073 /* ... fall through ... */
9075 case REG:
9076 loc_result = reg_loc_descriptor (rtl);
9077 break;
9079 case MEM:
9080 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9081 break;
9083 case CONCAT:
9084 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9085 break;
9087 case VAR_LOCATION:
9088 /* Single part. */
9089 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9091 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9092 break;
9095 rtl = XEXP (rtl, 1);
9096 /* FALLTHRU */
9098 case PARALLEL:
9100 rtvec par_elems = XVEC (rtl, 0);
9101 int num_elem = GET_NUM_ELEM (par_elems);
9102 enum machine_mode mode;
9103 int i;
9105 /* Create the first one, so we have something to add to. */
9106 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9107 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9108 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9109 for (i = 1; i < num_elem; i++)
9111 dw_loc_descr_ref temp;
9113 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9114 add_loc_descr (&loc_result, temp);
9115 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9116 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9119 break;
9121 default:
9122 gcc_unreachable ();
9125 return loc_result;
9128 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9129 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9130 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9131 top-level invocation, and we require the address of LOC; is 0 if we require
9132 the value of LOC. */
9134 static dw_loc_descr_ref
9135 loc_descriptor_from_tree_1 (tree loc, int want_address)
9137 dw_loc_descr_ref ret, ret1;
9138 int have_address = 0;
9139 enum dwarf_location_atom op;
9141 /* ??? Most of the time we do not take proper care for sign/zero
9142 extending the values properly. Hopefully this won't be a real
9143 problem... */
9145 switch (TREE_CODE (loc))
9147 case ERROR_MARK:
9148 return 0;
9150 case PLACEHOLDER_EXPR:
9151 /* This case involves extracting fields from an object to determine the
9152 position of other fields. We don't try to encode this here. The
9153 only user of this is Ada, which encodes the needed information using
9154 the names of types. */
9155 return 0;
9157 case CALL_EXPR:
9158 return 0;
9160 case PREINCREMENT_EXPR:
9161 case PREDECREMENT_EXPR:
9162 case POSTINCREMENT_EXPR:
9163 case POSTDECREMENT_EXPR:
9164 /* There are no opcodes for these operations. */
9165 return 0;
9167 case ADDR_EXPR:
9168 /* If we already want an address, there's nothing we can do. */
9169 if (want_address)
9170 return 0;
9172 /* Otherwise, process the argument and look for the address. */
9173 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9175 case VAR_DECL:
9176 if (DECL_THREAD_LOCAL_P (loc))
9178 rtx rtl;
9180 /* If this is not defined, we have no way to emit the data. */
9181 if (!targetm.asm_out.output_dwarf_dtprel)
9182 return 0;
9184 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9185 look up addresses of objects in the current module. */
9186 if (DECL_EXTERNAL (loc))
9187 return 0;
9189 rtl = rtl_for_decl_location (loc);
9190 if (rtl == NULL_RTX)
9191 return 0;
9193 if (!MEM_P (rtl))
9194 return 0;
9195 rtl = XEXP (rtl, 0);
9196 if (! CONSTANT_P (rtl))
9197 return 0;
9199 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9200 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9201 ret->dw_loc_oprnd1.v.val_addr = rtl;
9203 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9204 add_loc_descr (&ret, ret1);
9206 have_address = 1;
9207 break;
9209 /* FALLTHRU */
9211 case PARM_DECL:
9212 if (DECL_HAS_VALUE_EXPR_P (loc))
9213 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9214 want_address);
9215 /* FALLTHRU */
9217 case RESULT_DECL:
9218 case FUNCTION_DECL:
9220 rtx rtl = rtl_for_decl_location (loc);
9222 if (rtl == NULL_RTX)
9223 return 0;
9224 else if (GET_CODE (rtl) == CONST_INT)
9226 HOST_WIDE_INT val = INTVAL (rtl);
9227 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9228 val &= GET_MODE_MASK (DECL_MODE (loc));
9229 ret = int_loc_descriptor (val);
9231 else if (GET_CODE (rtl) == CONST_STRING)
9232 return 0;
9233 else if (CONSTANT_P (rtl))
9235 ret = new_loc_descr (DW_OP_addr, 0, 0);
9236 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9237 ret->dw_loc_oprnd1.v.val_addr = rtl;
9239 else
9241 enum machine_mode mode;
9243 /* Certain constructs can only be represented at top-level. */
9244 if (want_address == 2)
9245 return loc_descriptor (rtl);
9247 mode = GET_MODE (rtl);
9248 if (MEM_P (rtl))
9250 rtl = XEXP (rtl, 0);
9251 have_address = 1;
9253 ret = mem_loc_descriptor (rtl, mode);
9256 break;
9258 case INDIRECT_REF:
9259 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9260 have_address = 1;
9261 break;
9263 case COMPOUND_EXPR:
9264 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9266 case NOP_EXPR:
9267 case CONVERT_EXPR:
9268 case NON_LVALUE_EXPR:
9269 case VIEW_CONVERT_EXPR:
9270 case SAVE_EXPR:
9271 case MODIFY_EXPR:
9272 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9274 case COMPONENT_REF:
9275 case BIT_FIELD_REF:
9276 case ARRAY_REF:
9277 case ARRAY_RANGE_REF:
9279 tree obj, offset;
9280 HOST_WIDE_INT bitsize, bitpos, bytepos;
9281 enum machine_mode mode;
9282 int volatilep;
9283 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9285 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9286 &unsignedp, &volatilep, false);
9288 if (obj == loc)
9289 return 0;
9291 ret = loc_descriptor_from_tree_1 (obj, 1);
9292 if (ret == 0
9293 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9294 return 0;
9296 if (offset != NULL_TREE)
9298 /* Variable offset. */
9299 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9300 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9303 bytepos = bitpos / BITS_PER_UNIT;
9304 if (bytepos > 0)
9305 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9306 else if (bytepos < 0)
9308 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9309 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9312 have_address = 1;
9313 break;
9316 case INTEGER_CST:
9317 if (host_integerp (loc, 0))
9318 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9319 else
9320 return 0;
9321 break;
9323 case CONSTRUCTOR:
9325 /* Get an RTL for this, if something has been emitted. */
9326 rtx rtl = lookup_constant_def (loc);
9327 enum machine_mode mode;
9329 if (!rtl || !MEM_P (rtl))
9330 return 0;
9331 mode = GET_MODE (rtl);
9332 rtl = XEXP (rtl, 0);
9333 ret = mem_loc_descriptor (rtl, mode);
9334 have_address = 1;
9335 break;
9338 case TRUTH_AND_EXPR:
9339 case TRUTH_ANDIF_EXPR:
9340 case BIT_AND_EXPR:
9341 op = DW_OP_and;
9342 goto do_binop;
9344 case TRUTH_XOR_EXPR:
9345 case BIT_XOR_EXPR:
9346 op = DW_OP_xor;
9347 goto do_binop;
9349 case TRUTH_OR_EXPR:
9350 case TRUTH_ORIF_EXPR:
9351 case BIT_IOR_EXPR:
9352 op = DW_OP_or;
9353 goto do_binop;
9355 case FLOOR_DIV_EXPR:
9356 case CEIL_DIV_EXPR:
9357 case ROUND_DIV_EXPR:
9358 case TRUNC_DIV_EXPR:
9359 op = DW_OP_div;
9360 goto do_binop;
9362 case MINUS_EXPR:
9363 op = DW_OP_minus;
9364 goto do_binop;
9366 case FLOOR_MOD_EXPR:
9367 case CEIL_MOD_EXPR:
9368 case ROUND_MOD_EXPR:
9369 case TRUNC_MOD_EXPR:
9370 op = DW_OP_mod;
9371 goto do_binop;
9373 case MULT_EXPR:
9374 op = DW_OP_mul;
9375 goto do_binop;
9377 case LSHIFT_EXPR:
9378 op = DW_OP_shl;
9379 goto do_binop;
9381 case RSHIFT_EXPR:
9382 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9383 goto do_binop;
9385 case PLUS_EXPR:
9386 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9387 && host_integerp (TREE_OPERAND (loc, 1), 0))
9389 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9390 if (ret == 0)
9391 return 0;
9393 add_loc_descr (&ret,
9394 new_loc_descr (DW_OP_plus_uconst,
9395 tree_low_cst (TREE_OPERAND (loc, 1),
9397 0));
9398 break;
9401 op = DW_OP_plus;
9402 goto do_binop;
9404 case LE_EXPR:
9405 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9406 return 0;
9408 op = DW_OP_le;
9409 goto do_binop;
9411 case GE_EXPR:
9412 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9413 return 0;
9415 op = DW_OP_ge;
9416 goto do_binop;
9418 case LT_EXPR:
9419 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9420 return 0;
9422 op = DW_OP_lt;
9423 goto do_binop;
9425 case GT_EXPR:
9426 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9427 return 0;
9429 op = DW_OP_gt;
9430 goto do_binop;
9432 case EQ_EXPR:
9433 op = DW_OP_eq;
9434 goto do_binop;
9436 case NE_EXPR:
9437 op = DW_OP_ne;
9438 goto do_binop;
9440 do_binop:
9441 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9442 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9443 if (ret == 0 || ret1 == 0)
9444 return 0;
9446 add_loc_descr (&ret, ret1);
9447 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9448 break;
9450 case TRUTH_NOT_EXPR:
9451 case BIT_NOT_EXPR:
9452 op = DW_OP_not;
9453 goto do_unop;
9455 case ABS_EXPR:
9456 op = DW_OP_abs;
9457 goto do_unop;
9459 case NEGATE_EXPR:
9460 op = DW_OP_neg;
9461 goto do_unop;
9463 do_unop:
9464 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9465 if (ret == 0)
9466 return 0;
9468 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9469 break;
9471 case MIN_EXPR:
9472 case MAX_EXPR:
9474 const enum tree_code code =
9475 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9477 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9478 build2 (code, integer_type_node,
9479 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9480 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9483 /* ... fall through ... */
9485 case COND_EXPR:
9487 dw_loc_descr_ref lhs
9488 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9489 dw_loc_descr_ref rhs
9490 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9491 dw_loc_descr_ref bra_node, jump_node, tmp;
9493 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9494 if (ret == 0 || lhs == 0 || rhs == 0)
9495 return 0;
9497 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9498 add_loc_descr (&ret, bra_node);
9500 add_loc_descr (&ret, rhs);
9501 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9502 add_loc_descr (&ret, jump_node);
9504 add_loc_descr (&ret, lhs);
9505 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9506 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9508 /* ??? Need a node to point the skip at. Use a nop. */
9509 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9510 add_loc_descr (&ret, tmp);
9511 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9512 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9514 break;
9516 case FIX_TRUNC_EXPR:
9517 return 0;
9519 default:
9520 /* Leave front-end specific codes as simply unknown. This comes
9521 up, for instance, with the C STMT_EXPR. */
9522 if ((unsigned int) TREE_CODE (loc)
9523 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9524 return 0;
9526 #ifdef ENABLE_CHECKING
9527 /* Otherwise this is a generic code; we should just lists all of
9528 these explicitly. We forgot one. */
9529 gcc_unreachable ();
9530 #else
9531 /* In a release build, we want to degrade gracefully: better to
9532 generate incomplete debugging information than to crash. */
9533 return NULL;
9534 #endif
9537 /* Show if we can't fill the request for an address. */
9538 if (want_address && !have_address)
9539 return 0;
9541 /* If we've got an address and don't want one, dereference. */
9542 if (!want_address && have_address && ret)
9544 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9546 if (size > DWARF2_ADDR_SIZE || size == -1)
9547 return 0;
9548 else if (size == DWARF2_ADDR_SIZE)
9549 op = DW_OP_deref;
9550 else
9551 op = DW_OP_deref_size;
9553 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9556 return ret;
9559 static inline dw_loc_descr_ref
9560 loc_descriptor_from_tree (tree loc)
9562 return loc_descriptor_from_tree_1 (loc, 2);
9565 /* Given a value, round it up to the lowest multiple of `boundary'
9566 which is not less than the value itself. */
9568 static inline HOST_WIDE_INT
9569 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9571 return (((value + boundary - 1) / boundary) * boundary);
9574 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9575 pointer to the declared type for the relevant field variable, or return
9576 `integer_type_node' if the given node turns out to be an
9577 ERROR_MARK node. */
9579 static inline tree
9580 field_type (tree decl)
9582 tree type;
9584 if (TREE_CODE (decl) == ERROR_MARK)
9585 return integer_type_node;
9587 type = DECL_BIT_FIELD_TYPE (decl);
9588 if (type == NULL_TREE)
9589 type = TREE_TYPE (decl);
9591 return type;
9594 /* Given a pointer to a tree node, return the alignment in bits for
9595 it, or else return BITS_PER_WORD if the node actually turns out to
9596 be an ERROR_MARK node. */
9598 static inline unsigned
9599 simple_type_align_in_bits (tree type)
9601 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9604 static inline unsigned
9605 simple_decl_align_in_bits (tree decl)
9607 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9610 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9611 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9612 or return 0 if we are unable to determine what that offset is, either
9613 because the argument turns out to be a pointer to an ERROR_MARK node, or
9614 because the offset is actually variable. (We can't handle the latter case
9615 just yet). */
9617 static HOST_WIDE_INT
9618 field_byte_offset (tree decl)
9620 unsigned int type_align_in_bits;
9621 unsigned int decl_align_in_bits;
9622 unsigned HOST_WIDE_INT type_size_in_bits;
9623 HOST_WIDE_INT object_offset_in_bits;
9624 tree type;
9625 tree field_size_tree;
9626 HOST_WIDE_INT bitpos_int;
9627 HOST_WIDE_INT deepest_bitpos;
9628 unsigned HOST_WIDE_INT field_size_in_bits;
9630 if (TREE_CODE (decl) == ERROR_MARK)
9631 return 0;
9633 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9635 type = field_type (decl);
9636 field_size_tree = DECL_SIZE (decl);
9638 /* The size could be unspecified if there was an error, or for
9639 a flexible array member. */
9640 if (! field_size_tree)
9641 field_size_tree = bitsize_zero_node;
9643 /* We cannot yet cope with fields whose positions are variable, so
9644 for now, when we see such things, we simply return 0. Someday, we may
9645 be able to handle such cases, but it will be damn difficult. */
9646 if (! host_integerp (bit_position (decl), 0))
9647 return 0;
9649 bitpos_int = int_bit_position (decl);
9651 /* If we don't know the size of the field, pretend it's a full word. */
9652 if (host_integerp (field_size_tree, 1))
9653 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9654 else
9655 field_size_in_bits = BITS_PER_WORD;
9657 type_size_in_bits = simple_type_size_in_bits (type);
9658 type_align_in_bits = simple_type_align_in_bits (type);
9659 decl_align_in_bits = simple_decl_align_in_bits (decl);
9661 /* The GCC front-end doesn't make any attempt to keep track of the starting
9662 bit offset (relative to the start of the containing structure type) of the
9663 hypothetical "containing object" for a bit-field. Thus, when computing
9664 the byte offset value for the start of the "containing object" of a
9665 bit-field, we must deduce this information on our own. This can be rather
9666 tricky to do in some cases. For example, handling the following structure
9667 type definition when compiling for an i386/i486 target (which only aligns
9668 long long's to 32-bit boundaries) can be very tricky:
9670 struct S { int field1; long long field2:31; };
9672 Fortunately, there is a simple rule-of-thumb which can be used in such
9673 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9674 structure shown above. It decides to do this based upon one simple rule
9675 for bit-field allocation. GCC allocates each "containing object" for each
9676 bit-field at the first (i.e. lowest addressed) legitimate alignment
9677 boundary (based upon the required minimum alignment for the declared type
9678 of the field) which it can possibly use, subject to the condition that
9679 there is still enough available space remaining in the containing object
9680 (when allocated at the selected point) to fully accommodate all of the
9681 bits of the bit-field itself.
9683 This simple rule makes it obvious why GCC allocates 8 bytes for each
9684 object of the structure type shown above. When looking for a place to
9685 allocate the "containing object" for `field2', the compiler simply tries
9686 to allocate a 64-bit "containing object" at each successive 32-bit
9687 boundary (starting at zero) until it finds a place to allocate that 64-
9688 bit field such that at least 31 contiguous (and previously unallocated)
9689 bits remain within that selected 64 bit field. (As it turns out, for the
9690 example above, the compiler finds it is OK to allocate the "containing
9691 object" 64-bit field at bit-offset zero within the structure type.)
9693 Here we attempt to work backwards from the limited set of facts we're
9694 given, and we try to deduce from those facts, where GCC must have believed
9695 that the containing object started (within the structure type). The value
9696 we deduce is then used (by the callers of this routine) to generate
9697 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9698 and, in the case of DW_AT_location, regular fields as well). */
9700 /* Figure out the bit-distance from the start of the structure to the
9701 "deepest" bit of the bit-field. */
9702 deepest_bitpos = bitpos_int + field_size_in_bits;
9704 /* This is the tricky part. Use some fancy footwork to deduce where the
9705 lowest addressed bit of the containing object must be. */
9706 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9708 /* Round up to type_align by default. This works best for bitfields. */
9709 object_offset_in_bits += type_align_in_bits - 1;
9710 object_offset_in_bits /= type_align_in_bits;
9711 object_offset_in_bits *= type_align_in_bits;
9713 if (object_offset_in_bits > bitpos_int)
9715 /* Sigh, the decl must be packed. */
9716 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9718 /* Round up to decl_align instead. */
9719 object_offset_in_bits += decl_align_in_bits - 1;
9720 object_offset_in_bits /= decl_align_in_bits;
9721 object_offset_in_bits *= decl_align_in_bits;
9724 return object_offset_in_bits / BITS_PER_UNIT;
9727 /* The following routines define various Dwarf attributes and any data
9728 associated with them. */
9730 /* Add a location description attribute value to a DIE.
9732 This emits location attributes suitable for whole variables and
9733 whole parameters. Note that the location attributes for struct fields are
9734 generated by the routine `data_member_location_attribute' below. */
9736 static inline void
9737 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9738 dw_loc_descr_ref descr)
9740 if (descr != 0)
9741 add_AT_loc (die, attr_kind, descr);
9744 /* Attach the specialized form of location attribute used for data members of
9745 struct and union types. In the special case of a FIELD_DECL node which
9746 represents a bit-field, the "offset" part of this special location
9747 descriptor must indicate the distance in bytes from the lowest-addressed
9748 byte of the containing struct or union type to the lowest-addressed byte of
9749 the "containing object" for the bit-field. (See the `field_byte_offset'
9750 function above).
9752 For any given bit-field, the "containing object" is a hypothetical object
9753 (of some integral or enum type) within which the given bit-field lives. The
9754 type of this hypothetical "containing object" is always the same as the
9755 declared type of the individual bit-field itself (for GCC anyway... the
9756 DWARF spec doesn't actually mandate this). Note that it is the size (in
9757 bytes) of the hypothetical "containing object" which will be given in the
9758 DW_AT_byte_size attribute for this bit-field. (See the
9759 `byte_size_attribute' function below.) It is also used when calculating the
9760 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9761 function below.) */
9763 static void
9764 add_data_member_location_attribute (dw_die_ref die, tree decl)
9766 HOST_WIDE_INT offset;
9767 dw_loc_descr_ref loc_descr = 0;
9769 if (TREE_CODE (decl) == TREE_BINFO)
9771 /* We're working on the TAG_inheritance for a base class. */
9772 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9774 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9775 aren't at a fixed offset from all (sub)objects of the same
9776 type. We need to extract the appropriate offset from our
9777 vtable. The following dwarf expression means
9779 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9781 This is specific to the V3 ABI, of course. */
9783 dw_loc_descr_ref tmp;
9785 /* Make a copy of the object address. */
9786 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9787 add_loc_descr (&loc_descr, tmp);
9789 /* Extract the vtable address. */
9790 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9791 add_loc_descr (&loc_descr, tmp);
9793 /* Calculate the address of the offset. */
9794 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9795 gcc_assert (offset < 0);
9797 tmp = int_loc_descriptor (-offset);
9798 add_loc_descr (&loc_descr, tmp);
9799 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9800 add_loc_descr (&loc_descr, tmp);
9802 /* Extract the offset. */
9803 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9804 add_loc_descr (&loc_descr, tmp);
9806 /* Add it to the object address. */
9807 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9808 add_loc_descr (&loc_descr, tmp);
9810 else
9811 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9813 else
9814 offset = field_byte_offset (decl);
9816 if (! loc_descr)
9818 enum dwarf_location_atom op;
9820 /* The DWARF2 standard says that we should assume that the structure
9821 address is already on the stack, so we can specify a structure field
9822 address by using DW_OP_plus_uconst. */
9824 #ifdef MIPS_DEBUGGING_INFO
9825 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9826 operator correctly. It works only if we leave the offset on the
9827 stack. */
9828 op = DW_OP_constu;
9829 #else
9830 op = DW_OP_plus_uconst;
9831 #endif
9833 loc_descr = new_loc_descr (op, offset, 0);
9836 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9839 /* Writes integer values to dw_vec_const array. */
9841 static void
9842 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9844 while (size != 0)
9846 *dest++ = val & 0xff;
9847 val >>= 8;
9848 --size;
9852 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9854 static HOST_WIDE_INT
9855 extract_int (const unsigned char *src, unsigned int size)
9857 HOST_WIDE_INT val = 0;
9859 src += size;
9860 while (size != 0)
9862 val <<= 8;
9863 val |= *--src & 0xff;
9864 --size;
9866 return val;
9869 /* Writes floating point values to dw_vec_const array. */
9871 static void
9872 insert_float (rtx rtl, unsigned char *array)
9874 REAL_VALUE_TYPE rv;
9875 long val[4];
9876 int i;
9878 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9879 real_to_target (val, &rv, GET_MODE (rtl));
9881 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9882 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9884 insert_int (val[i], 4, array);
9885 array += 4;
9889 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9890 does not have a "location" either in memory or in a register. These
9891 things can arise in GNU C when a constant is passed as an actual parameter
9892 to an inlined function. They can also arise in C++ where declared
9893 constants do not necessarily get memory "homes". */
9895 static void
9896 add_const_value_attribute (dw_die_ref die, rtx rtl)
9898 switch (GET_CODE (rtl))
9900 case CONST_INT:
9902 HOST_WIDE_INT val = INTVAL (rtl);
9904 if (val < 0)
9905 add_AT_int (die, DW_AT_const_value, val);
9906 else
9907 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9909 break;
9911 case CONST_DOUBLE:
9912 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9913 floating-point constant. A CONST_DOUBLE is used whenever the
9914 constant requires more than one word in order to be adequately
9915 represented. We output CONST_DOUBLEs as blocks. */
9917 enum machine_mode mode = GET_MODE (rtl);
9919 if (SCALAR_FLOAT_MODE_P (mode))
9921 unsigned int length = GET_MODE_SIZE (mode);
9922 unsigned char *array = ggc_alloc (length);
9924 insert_float (rtl, array);
9925 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9927 else
9929 /* ??? We really should be using HOST_WIDE_INT throughout. */
9930 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9932 add_AT_long_long (die, DW_AT_const_value,
9933 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9936 break;
9938 case CONST_VECTOR:
9940 enum machine_mode mode = GET_MODE (rtl);
9941 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9942 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9943 unsigned char *array = ggc_alloc (length * elt_size);
9944 unsigned int i;
9945 unsigned char *p;
9947 switch (GET_MODE_CLASS (mode))
9949 case MODE_VECTOR_INT:
9950 for (i = 0, p = array; i < length; i++, p += elt_size)
9952 rtx elt = CONST_VECTOR_ELT (rtl, i);
9953 HOST_WIDE_INT lo, hi;
9955 switch (GET_CODE (elt))
9957 case CONST_INT:
9958 lo = INTVAL (elt);
9959 hi = -(lo < 0);
9960 break;
9962 case CONST_DOUBLE:
9963 lo = CONST_DOUBLE_LOW (elt);
9964 hi = CONST_DOUBLE_HIGH (elt);
9965 break;
9967 default:
9968 gcc_unreachable ();
9971 if (elt_size <= sizeof (HOST_WIDE_INT))
9972 insert_int (lo, elt_size, p);
9973 else
9975 unsigned char *p0 = p;
9976 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9978 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9979 if (WORDS_BIG_ENDIAN)
9981 p0 = p1;
9982 p1 = p;
9984 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9985 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9988 break;
9990 case MODE_VECTOR_FLOAT:
9991 for (i = 0, p = array; i < length; i++, p += elt_size)
9993 rtx elt = CONST_VECTOR_ELT (rtl, i);
9994 insert_float (elt, p);
9996 break;
9998 default:
9999 gcc_unreachable ();
10002 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
10004 break;
10006 case CONST_STRING:
10007 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10008 break;
10010 case SYMBOL_REF:
10011 case LABEL_REF:
10012 case CONST:
10013 add_AT_addr (die, DW_AT_const_value, rtl);
10014 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10015 break;
10017 case PLUS:
10018 /* In cases where an inlined instance of an inline function is passed
10019 the address of an `auto' variable (which is local to the caller) we
10020 can get a situation where the DECL_RTL of the artificial local
10021 variable (for the inlining) which acts as a stand-in for the
10022 corresponding formal parameter (of the inline function) will look
10023 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10024 exactly a compile-time constant expression, but it isn't the address
10025 of the (artificial) local variable either. Rather, it represents the
10026 *value* which the artificial local variable always has during its
10027 lifetime. We currently have no way to represent such quasi-constant
10028 values in Dwarf, so for now we just punt and generate nothing. */
10029 break;
10031 default:
10032 /* No other kinds of rtx should be possible here. */
10033 gcc_unreachable ();
10038 /* Determine whether the evaluation of EXPR references any variables
10039 or functions which aren't otherwise used (and therefore may not be
10040 output). */
10041 static tree
10042 reference_to_unused (tree * tp, int * walk_subtrees,
10043 void * data ATTRIBUTE_UNUSED)
10045 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10046 *walk_subtrees = 0;
10048 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10049 && ! TREE_ASM_WRITTEN (*tp))
10050 return *tp;
10051 else
10052 return NULL_TREE;
10055 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10056 for use in a later add_const_value_attribute call. */
10058 static rtx
10059 rtl_for_decl_init (tree init, tree type)
10061 rtx rtl = NULL_RTX;
10063 /* If a variable is initialized with a string constant without embedded
10064 zeros, build CONST_STRING. */
10065 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10067 tree enttype = TREE_TYPE (type);
10068 tree domain = TYPE_DOMAIN (type);
10069 enum machine_mode mode = TYPE_MODE (enttype);
10071 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10072 && domain
10073 && integer_zerop (TYPE_MIN_VALUE (domain))
10074 && compare_tree_int (TYPE_MAX_VALUE (domain),
10075 TREE_STRING_LENGTH (init) - 1) == 0
10076 && ((size_t) TREE_STRING_LENGTH (init)
10077 == strlen (TREE_STRING_POINTER (init)) + 1))
10078 rtl = gen_rtx_CONST_STRING (VOIDmode,
10079 ggc_strdup (TREE_STRING_POINTER (init)));
10081 /* Other aggregates, and complex values, could be represented using
10082 CONCAT: FIXME! */
10083 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10085 /* Vectors only work if their mode is supported by the target.
10086 FIXME: generic vectors ought to work too. */
10087 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10089 /* If the initializer is something that we know will expand into an
10090 immediate RTL constant, expand it now. We must be careful not to
10091 reference variables which won't be output. */
10092 else if (initializer_constant_valid_p (init, type)
10093 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10095 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10097 /* If expand_expr returns a MEM, it wasn't immediate. */
10098 gcc_assert (!rtl || !MEM_P (rtl));
10101 return rtl;
10104 /* Generate RTL for the variable DECL to represent its location. */
10106 static rtx
10107 rtl_for_decl_location (tree decl)
10109 rtx rtl;
10111 /* Here we have to decide where we are going to say the parameter "lives"
10112 (as far as the debugger is concerned). We only have a couple of
10113 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10115 DECL_RTL normally indicates where the parameter lives during most of the
10116 activation of the function. If optimization is enabled however, this
10117 could be either NULL or else a pseudo-reg. Both of those cases indicate
10118 that the parameter doesn't really live anywhere (as far as the code
10119 generation parts of GCC are concerned) during most of the function's
10120 activation. That will happen (for example) if the parameter is never
10121 referenced within the function.
10123 We could just generate a location descriptor here for all non-NULL
10124 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10125 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10126 where DECL_RTL is NULL or is a pseudo-reg.
10128 Note however that we can only get away with using DECL_INCOMING_RTL as
10129 a backup substitute for DECL_RTL in certain limited cases. In cases
10130 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10131 we can be sure that the parameter was passed using the same type as it is
10132 declared to have within the function, and that its DECL_INCOMING_RTL
10133 points us to a place where a value of that type is passed.
10135 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10136 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10137 because in these cases DECL_INCOMING_RTL points us to a value of some
10138 type which is *different* from the type of the parameter itself. Thus,
10139 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10140 such cases, the debugger would end up (for example) trying to fetch a
10141 `float' from a place which actually contains the first part of a
10142 `double'. That would lead to really incorrect and confusing
10143 output at debug-time.
10145 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10146 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10147 are a couple of exceptions however. On little-endian machines we can
10148 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10149 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10150 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10151 when (on a little-endian machine) a non-prototyped function has a
10152 parameter declared to be of type `short' or `char'. In such cases,
10153 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10154 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10155 passed `int' value. If the debugger then uses that address to fetch
10156 a `short' or a `char' (on a little-endian machine) the result will be
10157 the correct data, so we allow for such exceptional cases below.
10159 Note that our goal here is to describe the place where the given formal
10160 parameter lives during most of the function's activation (i.e. between the
10161 end of the prologue and the start of the epilogue). We'll do that as best
10162 as we can. Note however that if the given formal parameter is modified
10163 sometime during the execution of the function, then a stack backtrace (at
10164 debug-time) will show the function as having been called with the *new*
10165 value rather than the value which was originally passed in. This happens
10166 rarely enough that it is not a major problem, but it *is* a problem, and
10167 I'd like to fix it.
10169 A future version of dwarf2out.c may generate two additional attributes for
10170 any given DW_TAG_formal_parameter DIE which will describe the "passed
10171 type" and the "passed location" for the given formal parameter in addition
10172 to the attributes we now generate to indicate the "declared type" and the
10173 "active location" for each parameter. This additional set of attributes
10174 could be used by debuggers for stack backtraces. Separately, note that
10175 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10176 This happens (for example) for inlined-instances of inline function formal
10177 parameters which are never referenced. This really shouldn't be
10178 happening. All PARM_DECL nodes should get valid non-NULL
10179 DECL_INCOMING_RTL values. FIXME. */
10181 /* Use DECL_RTL as the "location" unless we find something better. */
10182 rtl = DECL_RTL_IF_SET (decl);
10184 /* When generating abstract instances, ignore everything except
10185 constants, symbols living in memory, and symbols living in
10186 fixed registers. */
10187 if (! reload_completed)
10189 if (rtl
10190 && (CONSTANT_P (rtl)
10191 || (MEM_P (rtl)
10192 && CONSTANT_P (XEXP (rtl, 0)))
10193 || (REG_P (rtl)
10194 && TREE_CODE (decl) == VAR_DECL
10195 && TREE_STATIC (decl))))
10197 rtl = targetm.delegitimize_address (rtl);
10198 return rtl;
10200 rtl = NULL_RTX;
10202 else if (TREE_CODE (decl) == PARM_DECL)
10204 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10206 tree declared_type = TREE_TYPE (decl);
10207 tree passed_type = DECL_ARG_TYPE (decl);
10208 enum machine_mode dmode = TYPE_MODE (declared_type);
10209 enum machine_mode pmode = TYPE_MODE (passed_type);
10211 /* This decl represents a formal parameter which was optimized out.
10212 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10213 all cases where (rtl == NULL_RTX) just below. */
10214 if (dmode == pmode)
10215 rtl = DECL_INCOMING_RTL (decl);
10216 else if (SCALAR_INT_MODE_P (dmode)
10217 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10218 && DECL_INCOMING_RTL (decl))
10220 rtx inc = DECL_INCOMING_RTL (decl);
10221 if (REG_P (inc))
10222 rtl = inc;
10223 else if (MEM_P (inc))
10225 if (BYTES_BIG_ENDIAN)
10226 rtl = adjust_address_nv (inc, dmode,
10227 GET_MODE_SIZE (pmode)
10228 - GET_MODE_SIZE (dmode));
10229 else
10230 rtl = inc;
10235 /* If the parm was passed in registers, but lives on the stack, then
10236 make a big endian correction if the mode of the type of the
10237 parameter is not the same as the mode of the rtl. */
10238 /* ??? This is the same series of checks that are made in dbxout.c before
10239 we reach the big endian correction code there. It isn't clear if all
10240 of these checks are necessary here, but keeping them all is the safe
10241 thing to do. */
10242 else if (MEM_P (rtl)
10243 && XEXP (rtl, 0) != const0_rtx
10244 && ! CONSTANT_P (XEXP (rtl, 0))
10245 /* Not passed in memory. */
10246 && !MEM_P (DECL_INCOMING_RTL (decl))
10247 /* Not passed by invisible reference. */
10248 && (!REG_P (XEXP (rtl, 0))
10249 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10250 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10251 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10252 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10253 #endif
10255 /* Big endian correction check. */
10256 && BYTES_BIG_ENDIAN
10257 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10258 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10259 < UNITS_PER_WORD))
10261 int offset = (UNITS_PER_WORD
10262 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10264 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10265 plus_constant (XEXP (rtl, 0), offset));
10268 else if (TREE_CODE (decl) == VAR_DECL
10269 && rtl
10270 && MEM_P (rtl)
10271 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10272 && BYTES_BIG_ENDIAN)
10274 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10275 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10277 /* If a variable is declared "register" yet is smaller than
10278 a register, then if we store the variable to memory, it
10279 looks like we're storing a register-sized value, when in
10280 fact we are not. We need to adjust the offset of the
10281 storage location to reflect the actual value's bytes,
10282 else gdb will not be able to display it. */
10283 if (rsize > dsize)
10284 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10285 plus_constant (XEXP (rtl, 0), rsize-dsize));
10288 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10289 and will have been substituted directly into all expressions that use it.
10290 C does not have such a concept, but C++ and other languages do. */
10291 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10292 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10294 if (rtl)
10295 rtl = targetm.delegitimize_address (rtl);
10297 /* If we don't look past the constant pool, we risk emitting a
10298 reference to a constant pool entry that isn't referenced from
10299 code, and thus is not emitted. */
10300 if (rtl)
10301 rtl = avoid_constant_pool_reference (rtl);
10303 return rtl;
10306 /* We need to figure out what section we should use as the base for the
10307 address ranges where a given location is valid.
10308 1. If this particular DECL has a section associated with it, use that.
10309 2. If this function has a section associated with it, use that.
10310 3. Otherwise, use the text section.
10311 XXX: If you split a variable across multiple sections, we won't notice. */
10313 static const char *
10314 secname_for_decl (tree decl)
10316 const char *secname;
10318 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10320 tree sectree = DECL_SECTION_NAME (decl);
10321 secname = TREE_STRING_POINTER (sectree);
10323 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10325 tree sectree = DECL_SECTION_NAME (current_function_decl);
10326 secname = TREE_STRING_POINTER (sectree);
10328 else if (cfun && in_cold_section_p)
10329 secname = cfun->cold_section_label;
10330 else
10331 secname = text_section_label;
10333 return secname;
10336 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10337 data attribute for a variable or a parameter. We generate the
10338 DW_AT_const_value attribute only in those cases where the given variable
10339 or parameter does not have a true "location" either in memory or in a
10340 register. This can happen (for example) when a constant is passed as an
10341 actual argument in a call to an inline function. (It's possible that
10342 these things can crop up in other ways also.) Note that one type of
10343 constant value which can be passed into an inlined function is a constant
10344 pointer. This can happen for example if an actual argument in an inlined
10345 function call evaluates to a compile-time constant address. */
10347 static void
10348 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10349 enum dwarf_attribute attr)
10351 rtx rtl;
10352 dw_loc_descr_ref descr;
10353 var_loc_list *loc_list;
10354 struct var_loc_node *node;
10355 if (TREE_CODE (decl) == ERROR_MARK)
10356 return;
10358 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10359 || TREE_CODE (decl) == RESULT_DECL);
10361 /* See if we possibly have multiple locations for this variable. */
10362 loc_list = lookup_decl_loc (decl);
10364 /* If it truly has multiple locations, the first and last node will
10365 differ. */
10366 if (loc_list && loc_list->first != loc_list->last)
10368 const char *endname, *secname;
10369 dw_loc_list_ref list;
10370 rtx varloc;
10372 /* Now that we know what section we are using for a base,
10373 actually construct the list of locations.
10374 The first location information is what is passed to the
10375 function that creates the location list, and the remaining
10376 locations just get added on to that list.
10377 Note that we only know the start address for a location
10378 (IE location changes), so to build the range, we use
10379 the range [current location start, next location start].
10380 This means we have to special case the last node, and generate
10381 a range of [last location start, end of function label]. */
10383 node = loc_list->first;
10384 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10385 secname = secname_for_decl (decl);
10387 list = new_loc_list (loc_descriptor (varloc),
10388 node->label, node->next->label, secname, 1);
10389 node = node->next;
10391 for (; node->next; node = node->next)
10392 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10394 /* The variable has a location between NODE->LABEL and
10395 NODE->NEXT->LABEL. */
10396 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10397 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10398 node->label, node->next->label, secname);
10401 /* If the variable has a location at the last label
10402 it keeps its location until the end of function. */
10403 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10405 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10407 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10408 if (!current_function_decl)
10409 endname = text_end_label;
10410 else
10412 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10413 current_function_funcdef_no);
10414 endname = ggc_strdup (label_id);
10416 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10417 node->label, endname, secname);
10420 /* Finally, add the location list to the DIE, and we are done. */
10421 add_AT_loc_list (die, attr, list);
10422 return;
10425 /* Try to get some constant RTL for this decl, and use that as the value of
10426 the location. */
10428 rtl = rtl_for_decl_location (decl);
10429 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10431 add_const_value_attribute (die, rtl);
10432 return;
10435 /* If we have tried to generate the location otherwise, and it
10436 didn't work out (we wouldn't be here if we did), and we have a one entry
10437 location list, try generating a location from that. */
10438 if (loc_list && loc_list->first)
10440 node = loc_list->first;
10441 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10442 if (descr)
10444 add_AT_location_description (die, attr, descr);
10445 return;
10449 /* We couldn't get any rtl, so try directly generating the location
10450 description from the tree. */
10451 descr = loc_descriptor_from_tree (decl);
10452 if (descr)
10454 add_AT_location_description (die, attr, descr);
10455 return;
10457 /* None of that worked, so it must not really have a location;
10458 try adding a constant value attribute from the DECL_INITIAL. */
10459 tree_add_const_value_attribute (die, decl);
10462 /* If we don't have a copy of this variable in memory for some reason (such
10463 as a C++ member constant that doesn't have an out-of-line definition),
10464 we should tell the debugger about the constant value. */
10466 static void
10467 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10469 tree init = DECL_INITIAL (decl);
10470 tree type = TREE_TYPE (decl);
10471 rtx rtl;
10473 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10474 /* OK */;
10475 else
10476 return;
10478 rtl = rtl_for_decl_init (init, type);
10479 if (rtl)
10480 add_const_value_attribute (var_die, rtl);
10483 /* Convert the CFI instructions for the current function into a
10484 location list. This is used for DW_AT_frame_base when we targeting
10485 a dwarf2 consumer that does not support the dwarf3
10486 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10487 expressions. */
10489 static dw_loc_list_ref
10490 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10492 dw_fde_ref fde;
10493 dw_loc_list_ref list, *list_tail;
10494 dw_cfi_ref cfi;
10495 dw_cfa_location last_cfa, next_cfa;
10496 const char *start_label, *last_label, *section;
10498 fde = &fde_table[fde_table_in_use - 1];
10500 section = secname_for_decl (current_function_decl);
10501 list_tail = &list;
10502 list = NULL;
10504 next_cfa.reg = INVALID_REGNUM;
10505 next_cfa.offset = 0;
10506 next_cfa.indirect = 0;
10507 next_cfa.base_offset = 0;
10509 start_label = fde->dw_fde_begin;
10511 /* ??? Bald assumption that the CIE opcode list does not contain
10512 advance opcodes. */
10513 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10514 lookup_cfa_1 (cfi, &next_cfa);
10516 last_cfa = next_cfa;
10517 last_label = start_label;
10519 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10520 switch (cfi->dw_cfi_opc)
10522 case DW_CFA_set_loc:
10523 case DW_CFA_advance_loc1:
10524 case DW_CFA_advance_loc2:
10525 case DW_CFA_advance_loc4:
10526 if (!cfa_equal_p (&last_cfa, &next_cfa))
10528 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10529 start_label, last_label, section,
10530 list == NULL);
10532 list_tail = &(*list_tail)->dw_loc_next;
10533 last_cfa = next_cfa;
10534 start_label = last_label;
10536 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10537 break;
10539 case DW_CFA_advance_loc:
10540 /* The encoding is complex enough that we should never emit this. */
10541 case DW_CFA_remember_state:
10542 case DW_CFA_restore_state:
10543 /* We don't handle these two in this function. It would be possible
10544 if it were to be required. */
10545 gcc_unreachable ();
10547 default:
10548 lookup_cfa_1 (cfi, &next_cfa);
10549 break;
10552 if (!cfa_equal_p (&last_cfa, &next_cfa))
10554 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10555 start_label, last_label, section,
10556 list == NULL);
10557 list_tail = &(*list_tail)->dw_loc_next;
10558 start_label = last_label;
10560 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10561 start_label, fde->dw_fde_end, section,
10562 list == NULL);
10564 return list;
10567 /* Compute a displacement from the "steady-state frame pointer" to the
10568 frame base (often the same as the CFA), and store it in
10569 frame_pointer_fb_offset. OFFSET is added to the displacement
10570 before the latter is negated. */
10572 static void
10573 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10575 rtx reg, elim;
10577 #ifdef FRAME_POINTER_CFA_OFFSET
10578 reg = frame_pointer_rtx;
10579 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10580 #else
10581 reg = arg_pointer_rtx;
10582 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10583 #endif
10585 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10586 if (GET_CODE (elim) == PLUS)
10588 offset += INTVAL (XEXP (elim, 1));
10589 elim = XEXP (elim, 0);
10591 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10592 : stack_pointer_rtx));
10594 frame_pointer_fb_offset = -offset;
10597 /* Generate a DW_AT_name attribute given some string value to be included as
10598 the value of the attribute. */
10600 static void
10601 add_name_attribute (dw_die_ref die, const char *name_string)
10603 if (name_string != NULL && *name_string != 0)
10605 if (demangle_name_func)
10606 name_string = (*demangle_name_func) (name_string);
10608 add_AT_string (die, DW_AT_name, name_string);
10612 /* Generate a DW_AT_comp_dir attribute for DIE. */
10614 static void
10615 add_comp_dir_attribute (dw_die_ref die)
10617 const char *wd = get_src_pwd ();
10618 if (wd != NULL)
10619 add_AT_string (die, DW_AT_comp_dir, wd);
10622 /* Given a tree node describing an array bound (either lower or upper) output
10623 a representation for that bound. */
10625 static void
10626 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10628 switch (TREE_CODE (bound))
10630 case ERROR_MARK:
10631 return;
10633 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10634 case INTEGER_CST:
10635 if (! host_integerp (bound, 0)
10636 || (bound_attr == DW_AT_lower_bound
10637 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10638 || (is_fortran () && integer_onep (bound)))))
10639 /* Use the default. */
10641 else
10642 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10643 break;
10645 case CONVERT_EXPR:
10646 case NOP_EXPR:
10647 case NON_LVALUE_EXPR:
10648 case VIEW_CONVERT_EXPR:
10649 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10650 break;
10652 case SAVE_EXPR:
10653 break;
10655 case VAR_DECL:
10656 case PARM_DECL:
10657 case RESULT_DECL:
10659 dw_die_ref decl_die = lookup_decl_die (bound);
10661 /* ??? Can this happen, or should the variable have been bound
10662 first? Probably it can, since I imagine that we try to create
10663 the types of parameters in the order in which they exist in
10664 the list, and won't have created a forward reference to a
10665 later parameter. */
10666 if (decl_die != NULL)
10667 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10668 break;
10671 default:
10673 /* Otherwise try to create a stack operation procedure to
10674 evaluate the value of the array bound. */
10676 dw_die_ref ctx, decl_die;
10677 dw_loc_descr_ref loc;
10679 loc = loc_descriptor_from_tree (bound);
10680 if (loc == NULL)
10681 break;
10683 if (current_function_decl == 0)
10684 ctx = comp_unit_die;
10685 else
10686 ctx = lookup_decl_die (current_function_decl);
10688 decl_die = new_die (DW_TAG_variable, ctx, bound);
10689 add_AT_flag (decl_die, DW_AT_artificial, 1);
10690 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10691 add_AT_loc (decl_die, DW_AT_location, loc);
10693 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10694 break;
10699 /* Note that the block of subscript information for an array type also
10700 includes information about the element type of type given array type. */
10702 static void
10703 add_subscript_info (dw_die_ref type_die, tree type)
10705 #ifndef MIPS_DEBUGGING_INFO
10706 unsigned dimension_number;
10707 #endif
10708 tree lower, upper;
10709 dw_die_ref subrange_die;
10711 /* The GNU compilers represent multidimensional array types as sequences of
10712 one dimensional array types whose element types are themselves array
10713 types. Here we squish that down, so that each multidimensional array
10714 type gets only one array_type DIE in the Dwarf debugging info. The draft
10715 Dwarf specification say that we are allowed to do this kind of
10716 compression in C (because there is no difference between an array or
10717 arrays and a multidimensional array in C) but for other source languages
10718 (e.g. Ada) we probably shouldn't do this. */
10720 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10721 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10722 We work around this by disabling this feature. See also
10723 gen_array_type_die. */
10724 #ifndef MIPS_DEBUGGING_INFO
10725 for (dimension_number = 0;
10726 TREE_CODE (type) == ARRAY_TYPE;
10727 type = TREE_TYPE (type), dimension_number++)
10728 #endif
10730 tree domain = TYPE_DOMAIN (type);
10732 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10733 and (in GNU C only) variable bounds. Handle all three forms
10734 here. */
10735 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10736 if (domain)
10738 /* We have an array type with specified bounds. */
10739 lower = TYPE_MIN_VALUE (domain);
10740 upper = TYPE_MAX_VALUE (domain);
10742 /* Define the index type. */
10743 if (TREE_TYPE (domain))
10745 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10746 TREE_TYPE field. We can't emit debug info for this
10747 because it is an unnamed integral type. */
10748 if (TREE_CODE (domain) == INTEGER_TYPE
10749 && TYPE_NAME (domain) == NULL_TREE
10750 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10751 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10753 else
10754 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10755 type_die);
10758 /* ??? If upper is NULL, the array has unspecified length,
10759 but it does have a lower bound. This happens with Fortran
10760 dimension arr(N:*)
10761 Since the debugger is definitely going to need to know N
10762 to produce useful results, go ahead and output the lower
10763 bound solo, and hope the debugger can cope. */
10765 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10766 if (upper)
10767 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10770 /* Otherwise we have an array type with an unspecified length. The
10771 DWARF-2 spec does not say how to handle this; let's just leave out the
10772 bounds. */
10776 static void
10777 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10779 unsigned size;
10781 switch (TREE_CODE (tree_node))
10783 case ERROR_MARK:
10784 size = 0;
10785 break;
10786 case ENUMERAL_TYPE:
10787 case RECORD_TYPE:
10788 case UNION_TYPE:
10789 case QUAL_UNION_TYPE:
10790 size = int_size_in_bytes (tree_node);
10791 break;
10792 case FIELD_DECL:
10793 /* For a data member of a struct or union, the DW_AT_byte_size is
10794 generally given as the number of bytes normally allocated for an
10795 object of the *declared* type of the member itself. This is true
10796 even for bit-fields. */
10797 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10798 break;
10799 default:
10800 gcc_unreachable ();
10803 /* Note that `size' might be -1 when we get to this point. If it is, that
10804 indicates that the byte size of the entity in question is variable. We
10805 have no good way of expressing this fact in Dwarf at the present time,
10806 so just let the -1 pass on through. */
10807 add_AT_unsigned (die, DW_AT_byte_size, size);
10810 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10811 which specifies the distance in bits from the highest order bit of the
10812 "containing object" for the bit-field to the highest order bit of the
10813 bit-field itself.
10815 For any given bit-field, the "containing object" is a hypothetical object
10816 (of some integral or enum type) within which the given bit-field lives. The
10817 type of this hypothetical "containing object" is always the same as the
10818 declared type of the individual bit-field itself. The determination of the
10819 exact location of the "containing object" for a bit-field is rather
10820 complicated. It's handled by the `field_byte_offset' function (above).
10822 Note that it is the size (in bytes) of the hypothetical "containing object"
10823 which will be given in the DW_AT_byte_size attribute for this bit-field.
10824 (See `byte_size_attribute' above). */
10826 static inline void
10827 add_bit_offset_attribute (dw_die_ref die, tree decl)
10829 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10830 tree type = DECL_BIT_FIELD_TYPE (decl);
10831 HOST_WIDE_INT bitpos_int;
10832 HOST_WIDE_INT highest_order_object_bit_offset;
10833 HOST_WIDE_INT highest_order_field_bit_offset;
10834 HOST_WIDE_INT unsigned bit_offset;
10836 /* Must be a field and a bit field. */
10837 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10839 /* We can't yet handle bit-fields whose offsets are variable, so if we
10840 encounter such things, just return without generating any attribute
10841 whatsoever. Likewise for variable or too large size. */
10842 if (! host_integerp (bit_position (decl), 0)
10843 || ! host_integerp (DECL_SIZE (decl), 1))
10844 return;
10846 bitpos_int = int_bit_position (decl);
10848 /* Note that the bit offset is always the distance (in bits) from the
10849 highest-order bit of the "containing object" to the highest-order bit of
10850 the bit-field itself. Since the "high-order end" of any object or field
10851 is different on big-endian and little-endian machines, the computation
10852 below must take account of these differences. */
10853 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10854 highest_order_field_bit_offset = bitpos_int;
10856 if (! BYTES_BIG_ENDIAN)
10858 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10859 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10862 bit_offset
10863 = (! BYTES_BIG_ENDIAN
10864 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10865 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10867 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10870 /* For a FIELD_DECL node which represents a bit field, output an attribute
10871 which specifies the length in bits of the given field. */
10873 static inline void
10874 add_bit_size_attribute (dw_die_ref die, tree decl)
10876 /* Must be a field and a bit field. */
10877 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10878 && DECL_BIT_FIELD_TYPE (decl));
10880 if (host_integerp (DECL_SIZE (decl), 1))
10881 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10884 /* If the compiled language is ANSI C, then add a 'prototyped'
10885 attribute, if arg types are given for the parameters of a function. */
10887 static inline void
10888 add_prototyped_attribute (dw_die_ref die, tree func_type)
10890 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10891 && TYPE_ARG_TYPES (func_type) != NULL)
10892 add_AT_flag (die, DW_AT_prototyped, 1);
10895 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10896 by looking in either the type declaration or object declaration
10897 equate table. */
10899 static inline void
10900 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10902 dw_die_ref origin_die = NULL;
10904 if (TREE_CODE (origin) != FUNCTION_DECL)
10906 /* We may have gotten separated from the block for the inlined
10907 function, if we're in an exception handler or some such; make
10908 sure that the abstract function has been written out.
10910 Doing this for nested functions is wrong, however; functions are
10911 distinct units, and our context might not even be inline. */
10912 tree fn = origin;
10914 if (TYPE_P (fn))
10915 fn = TYPE_STUB_DECL (fn);
10917 fn = decl_function_context (fn);
10918 if (fn)
10919 dwarf2out_abstract_function (fn);
10922 if (DECL_P (origin))
10923 origin_die = lookup_decl_die (origin);
10924 else if (TYPE_P (origin))
10925 origin_die = lookup_type_die (origin);
10927 /* XXX: Functions that are never lowered don't always have correct block
10928 trees (in the case of java, they simply have no block tree, in some other
10929 languages). For these functions, there is nothing we can really do to
10930 output correct debug info for inlined functions in all cases. Rather
10931 than die, we'll just produce deficient debug info now, in that we will
10932 have variables without a proper abstract origin. In the future, when all
10933 functions are lowered, we should re-add a gcc_assert (origin_die)
10934 here. */
10936 if (origin_die)
10937 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10940 /* We do not currently support the pure_virtual attribute. */
10942 static inline void
10943 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10945 if (DECL_VINDEX (func_decl))
10947 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10949 if (host_integerp (DECL_VINDEX (func_decl), 0))
10950 add_AT_loc (die, DW_AT_vtable_elem_location,
10951 new_loc_descr (DW_OP_constu,
10952 tree_low_cst (DECL_VINDEX (func_decl), 0),
10953 0));
10955 /* GNU extension: Record what type this method came from originally. */
10956 if (debug_info_level > DINFO_LEVEL_TERSE)
10957 add_AT_die_ref (die, DW_AT_containing_type,
10958 lookup_type_die (DECL_CONTEXT (func_decl)));
10962 /* Add source coordinate attributes for the given decl. */
10964 static void
10965 add_src_coords_attributes (dw_die_ref die, tree decl)
10967 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10969 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10970 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10973 /* Add a DW_AT_name attribute and source coordinate attribute for the
10974 given decl, but only if it actually has a name. */
10976 static void
10977 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10979 tree decl_name;
10981 decl_name = DECL_NAME (decl);
10982 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10984 add_name_attribute (die, dwarf2_name (decl, 0));
10985 if (! DECL_ARTIFICIAL (decl))
10986 add_src_coords_attributes (die, decl);
10988 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10989 && TREE_PUBLIC (decl)
10990 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10991 && !DECL_ABSTRACT (decl)
10992 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10993 add_AT_string (die, DW_AT_MIPS_linkage_name,
10994 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10997 #ifdef VMS_DEBUGGING_INFO
10998 /* Get the function's name, as described by its RTL. This may be different
10999 from the DECL_NAME name used in the source file. */
11000 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
11002 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11003 XEXP (DECL_RTL (decl), 0));
11004 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11006 #endif
11009 /* Push a new declaration scope. */
11011 static void
11012 push_decl_scope (tree scope)
11014 VEC_safe_push (tree, gc, decl_scope_table, scope);
11017 /* Pop a declaration scope. */
11019 static inline void
11020 pop_decl_scope (void)
11022 VEC_pop (tree, decl_scope_table);
11025 /* Return the DIE for the scope that immediately contains this type.
11026 Non-named types get global scope. Named types nested in other
11027 types get their containing scope if it's open, or global scope
11028 otherwise. All other types (i.e. function-local named types) get
11029 the current active scope. */
11031 static dw_die_ref
11032 scope_die_for (tree t, dw_die_ref context_die)
11034 dw_die_ref scope_die = NULL;
11035 tree containing_scope;
11036 int i;
11038 /* Non-types always go in the current scope. */
11039 gcc_assert (TYPE_P (t));
11041 containing_scope = TYPE_CONTEXT (t);
11043 /* Use the containing namespace if it was passed in (for a declaration). */
11044 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11046 if (context_die == lookup_decl_die (containing_scope))
11047 /* OK */;
11048 else
11049 containing_scope = NULL_TREE;
11052 /* Ignore function type "scopes" from the C frontend. They mean that
11053 a tagged type is local to a parmlist of a function declarator, but
11054 that isn't useful to DWARF. */
11055 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11056 containing_scope = NULL_TREE;
11058 if (containing_scope == NULL_TREE)
11059 scope_die = comp_unit_die;
11060 else if (TYPE_P (containing_scope))
11062 /* For types, we can just look up the appropriate DIE. But
11063 first we check to see if we're in the middle of emitting it
11064 so we know where the new DIE should go. */
11065 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11066 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11067 break;
11069 if (i < 0)
11071 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11072 || TREE_ASM_WRITTEN (containing_scope));
11074 /* If none of the current dies are suitable, we get file scope. */
11075 scope_die = comp_unit_die;
11077 else
11078 scope_die = lookup_type_die (containing_scope);
11080 else
11081 scope_die = context_die;
11083 return scope_die;
11086 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11088 static inline int
11089 local_scope_p (dw_die_ref context_die)
11091 for (; context_die; context_die = context_die->die_parent)
11092 if (context_die->die_tag == DW_TAG_inlined_subroutine
11093 || context_die->die_tag == DW_TAG_subprogram)
11094 return 1;
11096 return 0;
11099 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11100 whether or not to treat a DIE in this context as a declaration. */
11102 static inline int
11103 class_or_namespace_scope_p (dw_die_ref context_die)
11105 return (context_die
11106 && (context_die->die_tag == DW_TAG_structure_type
11107 || context_die->die_tag == DW_TAG_union_type
11108 || context_die->die_tag == DW_TAG_namespace));
11111 /* Many forms of DIEs require a "type description" attribute. This
11112 routine locates the proper "type descriptor" die for the type given
11113 by 'type', and adds a DW_AT_type attribute below the given die. */
11115 static void
11116 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11117 int decl_volatile, dw_die_ref context_die)
11119 enum tree_code code = TREE_CODE (type);
11120 dw_die_ref type_die = NULL;
11122 /* ??? If this type is an unnamed subrange type of an integral or
11123 floating-point type, use the inner type. This is because we have no
11124 support for unnamed types in base_type_die. This can happen if this is
11125 an Ada subrange type. Correct solution is emit a subrange type die. */
11126 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11127 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11128 type = TREE_TYPE (type), code = TREE_CODE (type);
11130 if (code == ERROR_MARK
11131 /* Handle a special case. For functions whose return type is void, we
11132 generate *no* type attribute. (Note that no object may have type
11133 `void', so this only applies to function return types). */
11134 || code == VOID_TYPE)
11135 return;
11137 type_die = modified_type_die (type,
11138 decl_const || TYPE_READONLY (type),
11139 decl_volatile || TYPE_VOLATILE (type),
11140 context_die);
11142 if (type_die != NULL)
11143 add_AT_die_ref (object_die, DW_AT_type, type_die);
11146 /* Given an object die, add the calling convention attribute for the
11147 function call type. */
11148 static void
11149 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11151 enum dwarf_calling_convention value = DW_CC_normal;
11153 value = targetm.dwarf_calling_convention (type);
11155 /* Only add the attribute if the backend requests it, and
11156 is not DW_CC_normal. */
11157 if (value && (value != DW_CC_normal))
11158 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11161 /* Given a tree pointer to a struct, class, union, or enum type node, return
11162 a pointer to the (string) tag name for the given type, or zero if the type
11163 was declared without a tag. */
11165 static const char *
11166 type_tag (tree type)
11168 const char *name = 0;
11170 if (TYPE_NAME (type) != 0)
11172 tree t = 0;
11174 /* Find the IDENTIFIER_NODE for the type name. */
11175 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11176 t = TYPE_NAME (type);
11178 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11179 a TYPE_DECL node, regardless of whether or not a `typedef' was
11180 involved. */
11181 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11182 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11183 t = DECL_NAME (TYPE_NAME (type));
11185 /* Now get the name as a string, or invent one. */
11186 if (t != 0)
11187 name = IDENTIFIER_POINTER (t);
11190 return (name == 0 || *name == '\0') ? 0 : name;
11193 /* Return the type associated with a data member, make a special check
11194 for bit field types. */
11196 static inline tree
11197 member_declared_type (tree member)
11199 return (DECL_BIT_FIELD_TYPE (member)
11200 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11203 /* Get the decl's label, as described by its RTL. This may be different
11204 from the DECL_NAME name used in the source file. */
11206 #if 0
11207 static const char *
11208 decl_start_label (tree decl)
11210 rtx x;
11211 const char *fnname;
11213 x = DECL_RTL (decl);
11214 gcc_assert (MEM_P (x));
11216 x = XEXP (x, 0);
11217 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11219 fnname = XSTR (x, 0);
11220 return fnname;
11222 #endif
11224 /* These routines generate the internal representation of the DIE's for
11225 the compilation unit. Debugging information is collected by walking
11226 the declaration trees passed in from dwarf2out_decl(). */
11228 static void
11229 gen_array_type_die (tree type, dw_die_ref context_die)
11231 dw_die_ref scope_die = scope_die_for (type, context_die);
11232 dw_die_ref array_die;
11233 tree element_type;
11235 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11236 the inner array type comes before the outer array type. Thus we must
11237 call gen_type_die before we call new_die. See below also. */
11238 #ifdef MIPS_DEBUGGING_INFO
11239 gen_type_die (TREE_TYPE (type), context_die);
11240 #endif
11242 array_die = new_die (DW_TAG_array_type, scope_die, type);
11243 add_name_attribute (array_die, type_tag (type));
11244 equate_type_number_to_die (type, array_die);
11246 if (TREE_CODE (type) == VECTOR_TYPE)
11248 /* The frontend feeds us a representation for the vector as a struct
11249 containing an array. Pull out the array type. */
11250 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11251 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11254 #if 0
11255 /* We default the array ordering. SDB will probably do
11256 the right things even if DW_AT_ordering is not present. It's not even
11257 an issue until we start to get into multidimensional arrays anyway. If
11258 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11259 then we'll have to put the DW_AT_ordering attribute back in. (But if
11260 and when we find out that we need to put these in, we will only do so
11261 for multidimensional arrays. */
11262 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11263 #endif
11265 #ifdef MIPS_DEBUGGING_INFO
11266 /* The SGI compilers handle arrays of unknown bound by setting
11267 AT_declaration and not emitting any subrange DIEs. */
11268 if (! TYPE_DOMAIN (type))
11269 add_AT_flag (array_die, DW_AT_declaration, 1);
11270 else
11271 #endif
11272 add_subscript_info (array_die, type);
11274 /* Add representation of the type of the elements of this array type. */
11275 element_type = TREE_TYPE (type);
11277 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11278 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11279 We work around this by disabling this feature. See also
11280 add_subscript_info. */
11281 #ifndef MIPS_DEBUGGING_INFO
11282 while (TREE_CODE (element_type) == ARRAY_TYPE)
11283 element_type = TREE_TYPE (element_type);
11285 gen_type_die (element_type, context_die);
11286 #endif
11288 add_type_attribute (array_die, element_type, 0, 0, context_die);
11290 if (get_AT (array_die, DW_AT_name))
11291 add_pubtype (type, array_die);
11294 #if 0
11295 static void
11296 gen_entry_point_die (tree decl, dw_die_ref context_die)
11298 tree origin = decl_ultimate_origin (decl);
11299 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11301 if (origin != NULL)
11302 add_abstract_origin_attribute (decl_die, origin);
11303 else
11305 add_name_and_src_coords_attributes (decl_die, decl);
11306 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11307 0, 0, context_die);
11310 if (DECL_ABSTRACT (decl))
11311 equate_decl_number_to_die (decl, decl_die);
11312 else
11313 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11315 #endif
11317 /* Walk through the list of incomplete types again, trying once more to
11318 emit full debugging info for them. */
11320 static void
11321 retry_incomplete_types (void)
11323 int i;
11325 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11326 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11329 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11331 static void
11332 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11334 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11336 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11337 be incomplete and such types are not marked. */
11338 add_abstract_origin_attribute (type_die, type);
11341 /* Generate a DIE to represent an inlined instance of a structure type. */
11343 static void
11344 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11346 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11348 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11349 be incomplete and such types are not marked. */
11350 add_abstract_origin_attribute (type_die, type);
11353 /* Generate a DIE to represent an inlined instance of a union type. */
11355 static void
11356 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11358 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11360 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11361 be incomplete and such types are not marked. */
11362 add_abstract_origin_attribute (type_die, type);
11365 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11366 include all of the information about the enumeration values also. Each
11367 enumerated type name/value is listed as a child of the enumerated type
11368 DIE. */
11370 static dw_die_ref
11371 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11373 dw_die_ref type_die = lookup_type_die (type);
11375 if (type_die == NULL)
11377 type_die = new_die (DW_TAG_enumeration_type,
11378 scope_die_for (type, context_die), type);
11379 equate_type_number_to_die (type, type_die);
11380 add_name_attribute (type_die, type_tag (type));
11382 else if (! TYPE_SIZE (type))
11383 return type_die;
11384 else
11385 remove_AT (type_die, DW_AT_declaration);
11387 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11388 given enum type is incomplete, do not generate the DW_AT_byte_size
11389 attribute or the DW_AT_element_list attribute. */
11390 if (TYPE_SIZE (type))
11392 tree link;
11394 TREE_ASM_WRITTEN (type) = 1;
11395 add_byte_size_attribute (type_die, type);
11396 if (TYPE_STUB_DECL (type) != NULL_TREE)
11397 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11399 /* If the first reference to this type was as the return type of an
11400 inline function, then it may not have a parent. Fix this now. */
11401 if (type_die->die_parent == NULL)
11402 add_child_die (scope_die_for (type, context_die), type_die);
11404 for (link = TYPE_VALUES (type);
11405 link != NULL; link = TREE_CHAIN (link))
11407 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11408 tree value = TREE_VALUE (link);
11410 add_name_attribute (enum_die,
11411 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11413 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11414 /* DWARF2 does not provide a way of indicating whether or
11415 not enumeration constants are signed or unsigned. GDB
11416 always assumes the values are signed, so we output all
11417 values as if they were signed. That means that
11418 enumeration constants with very large unsigned values
11419 will appear to have negative values in the debugger. */
11420 add_AT_int (enum_die, DW_AT_const_value,
11421 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11424 else
11425 add_AT_flag (type_die, DW_AT_declaration, 1);
11427 if (get_AT (type_die, DW_AT_name))
11428 add_pubtype (type, type_die);
11430 return type_die;
11433 /* Generate a DIE to represent either a real live formal parameter decl or to
11434 represent just the type of some formal parameter position in some function
11435 type.
11437 Note that this routine is a bit unusual because its argument may be a
11438 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11439 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11440 node. If it's the former then this function is being called to output a
11441 DIE to represent a formal parameter object (or some inlining thereof). If
11442 it's the latter, then this function is only being called to output a
11443 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11444 argument type of some subprogram type. */
11446 static dw_die_ref
11447 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11449 dw_die_ref parm_die
11450 = new_die (DW_TAG_formal_parameter, context_die, node);
11451 tree origin;
11453 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11455 case tcc_declaration:
11456 origin = decl_ultimate_origin (node);
11457 if (origin != NULL)
11458 add_abstract_origin_attribute (parm_die, origin);
11459 else
11461 add_name_and_src_coords_attributes (parm_die, node);
11462 add_type_attribute (parm_die, TREE_TYPE (node),
11463 TREE_READONLY (node),
11464 TREE_THIS_VOLATILE (node),
11465 context_die);
11466 if (DECL_ARTIFICIAL (node))
11467 add_AT_flag (parm_die, DW_AT_artificial, 1);
11470 equate_decl_number_to_die (node, parm_die);
11471 if (! DECL_ABSTRACT (node))
11472 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11474 break;
11476 case tcc_type:
11477 /* We were called with some kind of a ..._TYPE node. */
11478 add_type_attribute (parm_die, node, 0, 0, context_die);
11479 break;
11481 default:
11482 gcc_unreachable ();
11485 return parm_die;
11488 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11489 at the end of an (ANSI prototyped) formal parameters list. */
11491 static void
11492 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11494 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11497 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11498 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11499 parameters as specified in some function type specification (except for
11500 those which appear as part of a function *definition*). */
11502 static void
11503 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11505 tree link;
11506 tree formal_type = NULL;
11507 tree first_parm_type;
11508 tree arg;
11510 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11512 arg = DECL_ARGUMENTS (function_or_method_type);
11513 function_or_method_type = TREE_TYPE (function_or_method_type);
11515 else
11516 arg = NULL_TREE;
11518 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11520 /* Make our first pass over the list of formal parameter types and output a
11521 DW_TAG_formal_parameter DIE for each one. */
11522 for (link = first_parm_type; link; )
11524 dw_die_ref parm_die;
11526 formal_type = TREE_VALUE (link);
11527 if (formal_type == void_type_node)
11528 break;
11530 /* Output a (nameless) DIE to represent the formal parameter itself. */
11531 parm_die = gen_formal_parameter_die (formal_type, context_die);
11532 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11533 && link == first_parm_type)
11534 || (arg && DECL_ARTIFICIAL (arg)))
11535 add_AT_flag (parm_die, DW_AT_artificial, 1);
11537 link = TREE_CHAIN (link);
11538 if (arg)
11539 arg = TREE_CHAIN (arg);
11542 /* If this function type has an ellipsis, add a
11543 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11544 if (formal_type != void_type_node)
11545 gen_unspecified_parameters_die (function_or_method_type, context_die);
11547 /* Make our second (and final) pass over the list of formal parameter types
11548 and output DIEs to represent those types (as necessary). */
11549 for (link = TYPE_ARG_TYPES (function_or_method_type);
11550 link && TREE_VALUE (link);
11551 link = TREE_CHAIN (link))
11552 gen_type_die (TREE_VALUE (link), context_die);
11555 /* We want to generate the DIE for TYPE so that we can generate the
11556 die for MEMBER, which has been defined; we will need to refer back
11557 to the member declaration nested within TYPE. If we're trying to
11558 generate minimal debug info for TYPE, processing TYPE won't do the
11559 trick; we need to attach the member declaration by hand. */
11561 static void
11562 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11564 gen_type_die (type, context_die);
11566 /* If we're trying to avoid duplicate debug info, we may not have
11567 emitted the member decl for this function. Emit it now. */
11568 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11569 && ! lookup_decl_die (member))
11571 dw_die_ref type_die;
11572 gcc_assert (!decl_ultimate_origin (member));
11574 push_decl_scope (type);
11575 type_die = lookup_type_die (type);
11576 if (TREE_CODE (member) == FUNCTION_DECL)
11577 gen_subprogram_die (member, type_die);
11578 else if (TREE_CODE (member) == FIELD_DECL)
11580 /* Ignore the nameless fields that are used to skip bits but handle
11581 C++ anonymous unions and structs. */
11582 if (DECL_NAME (member) != NULL_TREE
11583 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11584 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11586 gen_type_die (member_declared_type (member), type_die);
11587 gen_field_die (member, type_die);
11590 else
11591 gen_variable_die (member, type_die);
11593 pop_decl_scope ();
11597 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11598 may later generate inlined and/or out-of-line instances of. */
11600 static void
11601 dwarf2out_abstract_function (tree decl)
11603 dw_die_ref old_die;
11604 tree save_fn;
11605 struct function *save_cfun;
11606 tree context;
11607 int was_abstract = DECL_ABSTRACT (decl);
11609 /* Make sure we have the actual abstract inline, not a clone. */
11610 decl = DECL_ORIGIN (decl);
11612 old_die = lookup_decl_die (decl);
11613 if (old_die && get_AT (old_die, DW_AT_inline))
11614 /* We've already generated the abstract instance. */
11615 return;
11617 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11618 we don't get confused by DECL_ABSTRACT. */
11619 if (debug_info_level > DINFO_LEVEL_TERSE)
11621 context = decl_class_context (decl);
11622 if (context)
11623 gen_type_die_for_member
11624 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11627 /* Pretend we've just finished compiling this function. */
11628 save_fn = current_function_decl;
11629 save_cfun = cfun;
11630 current_function_decl = decl;
11631 cfun = DECL_STRUCT_FUNCTION (decl);
11633 set_decl_abstract_flags (decl, 1);
11634 dwarf2out_decl (decl);
11635 if (! was_abstract)
11636 set_decl_abstract_flags (decl, 0);
11638 current_function_decl = save_fn;
11639 cfun = save_cfun;
11642 /* Helper function of premark_used_types() which gets called through
11643 htab_traverse_resize().
11645 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11646 marked as unused by prune_unused_types. */
11647 static int
11648 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11650 tree type;
11651 dw_die_ref die;
11653 type = *slot;
11654 die = lookup_type_die (type);
11655 if (die != NULL)
11656 die->die_perennial_p = 1;
11657 return 1;
11660 /* Mark all members of used_types_hash as perennial. */
11661 static void
11662 premark_used_types (void)
11664 if (cfun && cfun->used_types_hash)
11665 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11668 /* Generate a DIE to represent a declared function (either file-scope or
11669 block-local). */
11671 static void
11672 gen_subprogram_die (tree decl, dw_die_ref context_die)
11674 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11675 tree origin = decl_ultimate_origin (decl);
11676 dw_die_ref subr_die;
11677 tree fn_arg_types;
11678 tree outer_scope;
11679 dw_die_ref old_die = lookup_decl_die (decl);
11680 int declaration = (current_function_decl != decl
11681 || class_or_namespace_scope_p (context_die));
11683 premark_used_types ();
11685 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11686 started to generate the abstract instance of an inline, decided to output
11687 its containing class, and proceeded to emit the declaration of the inline
11688 from the member list for the class. If so, DECLARATION takes priority;
11689 we'll get back to the abstract instance when done with the class. */
11691 /* The class-scope declaration DIE must be the primary DIE. */
11692 if (origin && declaration && class_or_namespace_scope_p (context_die))
11694 origin = NULL;
11695 gcc_assert (!old_die);
11698 /* Now that the C++ front end lazily declares artificial member fns, we
11699 might need to retrofit the declaration into its class. */
11700 if (!declaration && !origin && !old_die
11701 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11702 && !class_or_namespace_scope_p (context_die)
11703 && debug_info_level > DINFO_LEVEL_TERSE)
11704 old_die = force_decl_die (decl);
11706 if (origin != NULL)
11708 gcc_assert (!declaration || local_scope_p (context_die));
11710 /* Fixup die_parent for the abstract instance of a nested
11711 inline function. */
11712 if (old_die && old_die->die_parent == NULL)
11713 add_child_die (context_die, old_die);
11715 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11716 add_abstract_origin_attribute (subr_die, origin);
11718 else if (old_die)
11720 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11721 struct dwarf_file_data * file_index = lookup_filename (s.file);
11723 if (!get_AT_flag (old_die, DW_AT_declaration)
11724 /* We can have a normal definition following an inline one in the
11725 case of redefinition of GNU C extern inlines.
11726 It seems reasonable to use AT_specification in this case. */
11727 && !get_AT (old_die, DW_AT_inline))
11729 /* Detect and ignore this case, where we are trying to output
11730 something we have already output. */
11731 return;
11734 /* If the definition comes from the same place as the declaration,
11735 maybe use the old DIE. We always want the DIE for this function
11736 that has the *_pc attributes to be under comp_unit_die so the
11737 debugger can find it. We also need to do this for abstract
11738 instances of inlines, since the spec requires the out-of-line copy
11739 to have the same parent. For local class methods, this doesn't
11740 apply; we just use the old DIE. */
11741 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11742 && (DECL_ARTIFICIAL (decl)
11743 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11744 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11745 == (unsigned) s.line))))
11747 subr_die = old_die;
11749 /* Clear out the declaration attribute and the formal parameters.
11750 Do not remove all children, because it is possible that this
11751 declaration die was forced using force_decl_die(). In such
11752 cases die that forced declaration die (e.g. TAG_imported_module)
11753 is one of the children that we do not want to remove. */
11754 remove_AT (subr_die, DW_AT_declaration);
11755 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11757 else
11759 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11760 add_AT_specification (subr_die, old_die);
11761 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11762 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11763 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11764 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11767 else
11769 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11771 if (TREE_PUBLIC (decl))
11772 add_AT_flag (subr_die, DW_AT_external, 1);
11774 add_name_and_src_coords_attributes (subr_die, decl);
11775 if (debug_info_level > DINFO_LEVEL_TERSE)
11777 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11778 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11779 0, 0, context_die);
11782 add_pure_or_virtual_attribute (subr_die, decl);
11783 if (DECL_ARTIFICIAL (decl))
11784 add_AT_flag (subr_die, DW_AT_artificial, 1);
11786 if (TREE_PROTECTED (decl))
11787 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11788 else if (TREE_PRIVATE (decl))
11789 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11792 if (declaration)
11794 if (!old_die || !get_AT (old_die, DW_AT_inline))
11796 add_AT_flag (subr_die, DW_AT_declaration, 1);
11798 /* The first time we see a member function, it is in the context of
11799 the class to which it belongs. We make sure of this by emitting
11800 the class first. The next time is the definition, which is
11801 handled above. The two may come from the same source text.
11803 Note that force_decl_die() forces function declaration die. It is
11804 later reused to represent definition. */
11805 equate_decl_number_to_die (decl, subr_die);
11808 else if (DECL_ABSTRACT (decl))
11810 if (DECL_DECLARED_INLINE_P (decl))
11812 if (cgraph_function_possibly_inlined_p (decl))
11813 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11814 else
11815 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11817 else
11819 if (cgraph_function_possibly_inlined_p (decl))
11820 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11821 else
11822 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11825 equate_decl_number_to_die (decl, subr_die);
11827 else if (!DECL_EXTERNAL (decl))
11829 HOST_WIDE_INT cfa_fb_offset;
11831 if (!old_die || !get_AT (old_die, DW_AT_inline))
11832 equate_decl_number_to_die (decl, subr_die);
11834 if (!flag_reorder_blocks_and_partition)
11836 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11837 current_function_funcdef_no);
11838 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11839 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11840 current_function_funcdef_no);
11841 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11843 add_pubname (decl, subr_die);
11844 add_arange (decl, subr_die);
11846 else
11847 { /* Do nothing for now; maybe need to duplicate die, one for
11848 hot section and ond for cold section, then use the hot/cold
11849 section begin/end labels to generate the aranges... */
11851 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11852 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11853 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11854 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11856 add_pubname (decl, subr_die);
11857 add_arange (decl, subr_die);
11858 add_arange (decl, subr_die);
11862 #ifdef MIPS_DEBUGGING_INFO
11863 /* Add a reference to the FDE for this routine. */
11864 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11865 #endif
11867 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11869 /* We define the "frame base" as the function's CFA. This is more
11870 convenient for several reasons: (1) It's stable across the prologue
11871 and epilogue, which makes it better than just a frame pointer,
11872 (2) With dwarf3, there exists a one-byte encoding that allows us
11873 to reference the .debug_frame data by proxy, but failing that,
11874 (3) We can at least reuse the code inspection and interpretation
11875 code that determines the CFA position at various points in the
11876 function. */
11877 /* ??? Use some command-line or configury switch to enable the use
11878 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11879 consumers that understand it; fall back to "pure" dwarf2 and
11880 convert the CFA data into a location list. */
11882 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11883 if (list->dw_loc_next)
11884 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11885 else
11886 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11889 /* Compute a displacement from the "steady-state frame pointer" to
11890 the CFA. The former is what all stack slots and argument slots
11891 will reference in the rtl; the later is what we've told the
11892 debugger about. We'll need to adjust all frame_base references
11893 by this displacement. */
11894 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11896 if (cfun->static_chain_decl)
11897 add_AT_location_description (subr_die, DW_AT_static_link,
11898 loc_descriptor_from_tree (cfun->static_chain_decl));
11901 /* Now output descriptions of the arguments for this function. This gets
11902 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11903 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11904 `...' at the end of the formal parameter list. In order to find out if
11905 there was a trailing ellipsis or not, we must instead look at the type
11906 associated with the FUNCTION_DECL. This will be a node of type
11907 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11908 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11909 an ellipsis at the end. */
11911 /* In the case where we are describing a mere function declaration, all we
11912 need to do here (and all we *can* do here) is to describe the *types* of
11913 its formal parameters. */
11914 if (debug_info_level <= DINFO_LEVEL_TERSE)
11916 else if (declaration)
11917 gen_formal_types_die (decl, subr_die);
11918 else
11920 /* Generate DIEs to represent all known formal parameters. */
11921 tree arg_decls = DECL_ARGUMENTS (decl);
11922 tree parm;
11924 /* When generating DIEs, generate the unspecified_parameters DIE
11925 instead if we come across the arg "__builtin_va_alist" */
11926 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11927 if (TREE_CODE (parm) == PARM_DECL)
11929 if (DECL_NAME (parm)
11930 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11931 "__builtin_va_alist"))
11932 gen_unspecified_parameters_die (parm, subr_die);
11933 else
11934 gen_decl_die (parm, subr_die);
11937 /* Decide whether we need an unspecified_parameters DIE at the end.
11938 There are 2 more cases to do this for: 1) the ansi ... declaration -
11939 this is detectable when the end of the arg list is not a
11940 void_type_node 2) an unprototyped function declaration (not a
11941 definition). This just means that we have no info about the
11942 parameters at all. */
11943 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11944 if (fn_arg_types != NULL)
11946 /* This is the prototyped case, check for.... */
11947 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11948 gen_unspecified_parameters_die (decl, subr_die);
11950 else if (DECL_INITIAL (decl) == NULL_TREE)
11951 gen_unspecified_parameters_die (decl, subr_die);
11954 /* Output Dwarf info for all of the stuff within the body of the function
11955 (if it has one - it may be just a declaration). */
11956 outer_scope = DECL_INITIAL (decl);
11958 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11959 a function. This BLOCK actually represents the outermost binding contour
11960 for the function, i.e. the contour in which the function's formal
11961 parameters and labels get declared. Curiously, it appears that the front
11962 end doesn't actually put the PARM_DECL nodes for the current function onto
11963 the BLOCK_VARS list for this outer scope, but are strung off of the
11964 DECL_ARGUMENTS list for the function instead.
11966 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11967 the LABEL_DECL nodes for the function however, and we output DWARF info
11968 for those in decls_for_scope. Just within the `outer_scope' there will be
11969 a BLOCK node representing the function's outermost pair of curly braces,
11970 and any blocks used for the base and member initializers of a C++
11971 constructor function. */
11972 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11974 /* Emit a DW_TAG_variable DIE for a named return value. */
11975 if (DECL_NAME (DECL_RESULT (decl)))
11976 gen_decl_die (DECL_RESULT (decl), subr_die);
11978 current_function_has_inlines = 0;
11979 decls_for_scope (outer_scope, subr_die, 0);
11981 #if 0 && defined (MIPS_DEBUGGING_INFO)
11982 if (current_function_has_inlines)
11984 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11985 if (! comp_unit_has_inlines)
11987 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11988 comp_unit_has_inlines = 1;
11991 #endif
11993 /* Add the calling convention attribute if requested. */
11994 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11998 /* Generate a DIE to represent a declared data object. */
12000 static void
12001 gen_variable_die (tree decl, dw_die_ref context_die)
12003 tree origin = decl_ultimate_origin (decl);
12004 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
12006 dw_die_ref old_die = lookup_decl_die (decl);
12007 int declaration = (DECL_EXTERNAL (decl)
12008 /* If DECL is COMDAT and has not actually been
12009 emitted, we cannot take its address; there
12010 might end up being no definition anywhere in
12011 the program. For example, consider the C++
12012 test case:
12014 template <class T>
12015 struct S { static const int i = 7; };
12017 template <class T>
12018 const int S<T>::i;
12020 int f() { return S<int>::i; }
12022 Here, S<int>::i is not DECL_EXTERNAL, but no
12023 definition is required, so the compiler will
12024 not emit a definition. */
12025 || (TREE_CODE (decl) == VAR_DECL
12026 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12027 || class_or_namespace_scope_p (context_die));
12029 if (origin != NULL)
12030 add_abstract_origin_attribute (var_die, origin);
12032 /* Loop unrolling can create multiple blocks that refer to the same
12033 static variable, so we must test for the DW_AT_declaration flag.
12035 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12036 copy decls and set the DECL_ABSTRACT flag on them instead of
12037 sharing them.
12039 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12041 ??? The declare_in_namespace support causes us to get two DIEs for one
12042 variable, both of which are declarations. We want to avoid considering
12043 one to be a specification, so we must test that this DIE is not a
12044 declaration. */
12045 else if (old_die && TREE_STATIC (decl) && ! declaration
12046 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12048 /* This is a definition of a C++ class level static. */
12049 add_AT_specification (var_die, old_die);
12050 if (DECL_NAME (decl))
12052 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12053 struct dwarf_file_data * file_index = lookup_filename (s.file);
12055 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12056 add_AT_file (var_die, DW_AT_decl_file, file_index);
12058 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12059 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12062 else
12064 add_name_and_src_coords_attributes (var_die, decl);
12065 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12066 TREE_THIS_VOLATILE (decl), context_die);
12068 if (TREE_PUBLIC (decl))
12069 add_AT_flag (var_die, DW_AT_external, 1);
12071 if (DECL_ARTIFICIAL (decl))
12072 add_AT_flag (var_die, DW_AT_artificial, 1);
12074 if (TREE_PROTECTED (decl))
12075 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12076 else if (TREE_PRIVATE (decl))
12077 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12080 if (declaration)
12081 add_AT_flag (var_die, DW_AT_declaration, 1);
12083 if (DECL_ABSTRACT (decl) || declaration)
12084 equate_decl_number_to_die (decl, var_die);
12086 if (! declaration && ! DECL_ABSTRACT (decl))
12088 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12089 add_pubname (decl, var_die);
12091 else
12092 tree_add_const_value_attribute (var_die, decl);
12095 /* Generate a DIE to represent a label identifier. */
12097 static void
12098 gen_label_die (tree decl, dw_die_ref context_die)
12100 tree origin = decl_ultimate_origin (decl);
12101 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12102 rtx insn;
12103 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12105 if (origin != NULL)
12106 add_abstract_origin_attribute (lbl_die, origin);
12107 else
12108 add_name_and_src_coords_attributes (lbl_die, decl);
12110 if (DECL_ABSTRACT (decl))
12111 equate_decl_number_to_die (decl, lbl_die);
12112 else
12114 insn = DECL_RTL_IF_SET (decl);
12116 /* Deleted labels are programmer specified labels which have been
12117 eliminated because of various optimizations. We still emit them
12118 here so that it is possible to put breakpoints on them. */
12119 if (insn
12120 && (LABEL_P (insn)
12121 || ((NOTE_P (insn)
12122 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12124 /* When optimization is enabled (via -O) some parts of the compiler
12125 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12126 represent source-level labels which were explicitly declared by
12127 the user. This really shouldn't be happening though, so catch
12128 it if it ever does happen. */
12129 gcc_assert (!INSN_DELETED_P (insn));
12131 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12132 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12137 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12138 attributes to the DIE for a block STMT, to describe where the inlined
12139 function was called from. This is similar to add_src_coords_attributes. */
12141 static inline void
12142 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12144 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12146 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12147 add_AT_unsigned (die, DW_AT_call_line, s.line);
12150 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12151 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12153 static inline void
12154 add_high_low_attributes (tree stmt, dw_die_ref die)
12156 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12158 if (BLOCK_FRAGMENT_CHAIN (stmt))
12160 tree chain;
12162 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12164 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12167 add_ranges (chain);
12168 chain = BLOCK_FRAGMENT_CHAIN (chain);
12170 while (chain);
12171 add_ranges (NULL);
12173 else
12175 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12176 BLOCK_NUMBER (stmt));
12177 add_AT_lbl_id (die, DW_AT_low_pc, label);
12178 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12179 BLOCK_NUMBER (stmt));
12180 add_AT_lbl_id (die, DW_AT_high_pc, label);
12184 /* Generate a DIE for a lexical block. */
12186 static void
12187 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12189 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12191 if (! BLOCK_ABSTRACT (stmt))
12192 add_high_low_attributes (stmt, stmt_die);
12194 decls_for_scope (stmt, stmt_die, depth);
12197 /* Generate a DIE for an inlined subprogram. */
12199 static void
12200 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12202 tree decl = block_ultimate_origin (stmt);
12204 /* Emit info for the abstract instance first, if we haven't yet. We
12205 must emit this even if the block is abstract, otherwise when we
12206 emit the block below (or elsewhere), we may end up trying to emit
12207 a die whose origin die hasn't been emitted, and crashing. */
12208 dwarf2out_abstract_function (decl);
12210 if (! BLOCK_ABSTRACT (stmt))
12212 dw_die_ref subr_die
12213 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12215 add_abstract_origin_attribute (subr_die, decl);
12216 add_high_low_attributes (stmt, subr_die);
12217 add_call_src_coords_attributes (stmt, subr_die);
12219 decls_for_scope (stmt, subr_die, depth);
12220 current_function_has_inlines = 1;
12222 else
12223 /* We may get here if we're the outer block of function A that was
12224 inlined into function B that was inlined into function C. When
12225 generating debugging info for C, dwarf2out_abstract_function(B)
12226 would mark all inlined blocks as abstract, including this one.
12227 So, we wouldn't (and shouldn't) expect labels to be generated
12228 for this one. Instead, just emit debugging info for
12229 declarations within the block. This is particularly important
12230 in the case of initializers of arguments passed from B to us:
12231 if they're statement expressions containing declarations, we
12232 wouldn't generate dies for their abstract variables, and then,
12233 when generating dies for the real variables, we'd die (pun
12234 intended :-) */
12235 gen_lexical_block_die (stmt, context_die, depth);
12238 /* Generate a DIE for a field in a record, or structure. */
12240 static void
12241 gen_field_die (tree decl, dw_die_ref context_die)
12243 dw_die_ref decl_die;
12245 if (TREE_TYPE (decl) == error_mark_node)
12246 return;
12248 decl_die = new_die (DW_TAG_member, context_die, decl);
12249 add_name_and_src_coords_attributes (decl_die, decl);
12250 add_type_attribute (decl_die, member_declared_type (decl),
12251 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12252 context_die);
12254 if (DECL_BIT_FIELD_TYPE (decl))
12256 add_byte_size_attribute (decl_die, decl);
12257 add_bit_size_attribute (decl_die, decl);
12258 add_bit_offset_attribute (decl_die, decl);
12261 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12262 add_data_member_location_attribute (decl_die, decl);
12264 if (DECL_ARTIFICIAL (decl))
12265 add_AT_flag (decl_die, DW_AT_artificial, 1);
12267 if (TREE_PROTECTED (decl))
12268 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12269 else if (TREE_PRIVATE (decl))
12270 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12272 /* Equate decl number to die, so that we can look up this decl later on. */
12273 equate_decl_number_to_die (decl, decl_die);
12276 #if 0
12277 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12278 Use modified_type_die instead.
12279 We keep this code here just in case these types of DIEs may be needed to
12280 represent certain things in other languages (e.g. Pascal) someday. */
12282 static void
12283 gen_pointer_type_die (tree type, dw_die_ref context_die)
12285 dw_die_ref ptr_die
12286 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12288 equate_type_number_to_die (type, ptr_die);
12289 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12290 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12293 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12294 Use modified_type_die instead.
12295 We keep this code here just in case these types of DIEs may be needed to
12296 represent certain things in other languages (e.g. Pascal) someday. */
12298 static void
12299 gen_reference_type_die (tree type, dw_die_ref context_die)
12301 dw_die_ref ref_die
12302 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12304 equate_type_number_to_die (type, ref_die);
12305 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12306 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12308 #endif
12310 /* Generate a DIE for a pointer to a member type. */
12312 static void
12313 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12315 dw_die_ref ptr_die
12316 = new_die (DW_TAG_ptr_to_member_type,
12317 scope_die_for (type, context_die), type);
12319 equate_type_number_to_die (type, ptr_die);
12320 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12321 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12322 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12325 /* Generate the DIE for the compilation unit. */
12327 static dw_die_ref
12328 gen_compile_unit_die (const char *filename)
12330 dw_die_ref die;
12331 char producer[250];
12332 const char *language_string = lang_hooks.name;
12333 int language;
12335 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12337 if (filename)
12339 add_name_attribute (die, filename);
12340 /* Don't add cwd for <built-in>. */
12341 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
12342 add_comp_dir_attribute (die);
12345 sprintf (producer, "%s %s", language_string, version_string);
12347 #ifdef MIPS_DEBUGGING_INFO
12348 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12349 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12350 not appear in the producer string, the debugger reaches the conclusion
12351 that the object file is stripped and has no debugging information.
12352 To get the MIPS/SGI debugger to believe that there is debugging
12353 information in the object file, we add a -g to the producer string. */
12354 if (debug_info_level > DINFO_LEVEL_TERSE)
12355 strcat (producer, " -g");
12356 #endif
12358 add_AT_string (die, DW_AT_producer, producer);
12360 if (strcmp (language_string, "GNU C++") == 0)
12361 language = DW_LANG_C_plus_plus;
12362 else if (strcmp (language_string, "GNU Ada") == 0)
12363 language = DW_LANG_Ada95;
12364 else if (strcmp (language_string, "GNU F77") == 0)
12365 language = DW_LANG_Fortran77;
12366 else if (strcmp (language_string, "GNU F95") == 0)
12367 language = DW_LANG_Fortran95;
12368 else if (strcmp (language_string, "GNU Pascal") == 0)
12369 language = DW_LANG_Pascal83;
12370 else if (strcmp (language_string, "GNU Java") == 0)
12371 language = DW_LANG_Java;
12372 else if (strcmp (language_string, "GNU Objective-C") == 0)
12373 language = DW_LANG_ObjC;
12374 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12375 language = DW_LANG_ObjC_plus_plus;
12376 else
12377 language = DW_LANG_C89;
12379 add_AT_unsigned (die, DW_AT_language, language);
12380 return die;
12383 /* Generate the DIE for a base class. */
12385 static void
12386 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12388 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12390 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12391 add_data_member_location_attribute (die, binfo);
12393 if (BINFO_VIRTUAL_P (binfo))
12394 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12396 if (access == access_public_node)
12397 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12398 else if (access == access_protected_node)
12399 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12402 /* Generate a DIE for a class member. */
12404 static void
12405 gen_member_die (tree type, dw_die_ref context_die)
12407 tree member;
12408 tree binfo = TYPE_BINFO (type);
12409 dw_die_ref child;
12411 /* If this is not an incomplete type, output descriptions of each of its
12412 members. Note that as we output the DIEs necessary to represent the
12413 members of this record or union type, we will also be trying to output
12414 DIEs to represent the *types* of those members. However the `type'
12415 function (above) will specifically avoid generating type DIEs for member
12416 types *within* the list of member DIEs for this (containing) type except
12417 for those types (of members) which are explicitly marked as also being
12418 members of this (containing) type themselves. The g++ front- end can
12419 force any given type to be treated as a member of some other (containing)
12420 type by setting the TYPE_CONTEXT of the given (member) type to point to
12421 the TREE node representing the appropriate (containing) type. */
12423 /* First output info about the base classes. */
12424 if (binfo)
12426 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12427 int i;
12428 tree base;
12430 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12431 gen_inheritance_die (base,
12432 (accesses ? VEC_index (tree, accesses, i)
12433 : access_public_node), context_die);
12436 /* Now output info about the data members and type members. */
12437 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12439 /* If we thought we were generating minimal debug info for TYPE
12440 and then changed our minds, some of the member declarations
12441 may have already been defined. Don't define them again, but
12442 do put them in the right order. */
12444 child = lookup_decl_die (member);
12445 if (child)
12446 splice_child_die (context_die, child);
12447 else
12448 gen_decl_die (member, context_die);
12451 /* Now output info about the function members (if any). */
12452 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12454 /* Don't include clones in the member list. */
12455 if (DECL_ABSTRACT_ORIGIN (member))
12456 continue;
12458 child = lookup_decl_die (member);
12459 if (child)
12460 splice_child_die (context_die, child);
12461 else
12462 gen_decl_die (member, context_die);
12466 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12467 is set, we pretend that the type was never defined, so we only get the
12468 member DIEs needed by later specification DIEs. */
12470 static void
12471 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12473 dw_die_ref type_die = lookup_type_die (type);
12474 dw_die_ref scope_die = 0;
12475 int nested = 0;
12476 int complete = (TYPE_SIZE (type)
12477 && (! TYPE_STUB_DECL (type)
12478 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12479 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12481 if (type_die && ! complete)
12482 return;
12484 if (TYPE_CONTEXT (type) != NULL_TREE
12485 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12486 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12487 nested = 1;
12489 scope_die = scope_die_for (type, context_die);
12491 if (! type_die || (nested && scope_die == comp_unit_die))
12492 /* First occurrence of type or toplevel definition of nested class. */
12494 dw_die_ref old_die = type_die;
12496 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12497 ? DW_TAG_structure_type : DW_TAG_union_type,
12498 scope_die, type);
12499 equate_type_number_to_die (type, type_die);
12500 if (old_die)
12501 add_AT_specification (type_die, old_die);
12502 else
12503 add_name_attribute (type_die, type_tag (type));
12505 else
12506 remove_AT (type_die, DW_AT_declaration);
12508 /* If this type has been completed, then give it a byte_size attribute and
12509 then give a list of members. */
12510 if (complete && !ns_decl)
12512 /* Prevent infinite recursion in cases where the type of some member of
12513 this type is expressed in terms of this type itself. */
12514 TREE_ASM_WRITTEN (type) = 1;
12515 add_byte_size_attribute (type_die, type);
12516 if (TYPE_STUB_DECL (type) != NULL_TREE)
12517 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12519 /* If the first reference to this type was as the return type of an
12520 inline function, then it may not have a parent. Fix this now. */
12521 if (type_die->die_parent == NULL)
12522 add_child_die (scope_die, type_die);
12524 push_decl_scope (type);
12525 gen_member_die (type, type_die);
12526 pop_decl_scope ();
12528 /* GNU extension: Record what type our vtable lives in. */
12529 if (TYPE_VFIELD (type))
12531 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12533 gen_type_die (vtype, context_die);
12534 add_AT_die_ref (type_die, DW_AT_containing_type,
12535 lookup_type_die (vtype));
12538 else
12540 add_AT_flag (type_die, DW_AT_declaration, 1);
12542 /* We don't need to do this for function-local types. */
12543 if (TYPE_STUB_DECL (type)
12544 && ! decl_function_context (TYPE_STUB_DECL (type)))
12545 VEC_safe_push (tree, gc, incomplete_types, type);
12548 if (get_AT (type_die, DW_AT_name))
12549 add_pubtype (type, type_die);
12552 /* Generate a DIE for a subroutine _type_. */
12554 static void
12555 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12557 tree return_type = TREE_TYPE (type);
12558 dw_die_ref subr_die
12559 = new_die (DW_TAG_subroutine_type,
12560 scope_die_for (type, context_die), type);
12562 equate_type_number_to_die (type, subr_die);
12563 add_prototyped_attribute (subr_die, type);
12564 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12565 gen_formal_types_die (type, subr_die);
12567 if (get_AT (subr_die, DW_AT_name))
12568 add_pubtype (type, subr_die);
12571 /* Generate a DIE for a type definition. */
12573 static void
12574 gen_typedef_die (tree decl, dw_die_ref context_die)
12576 dw_die_ref type_die;
12577 tree origin;
12579 if (TREE_ASM_WRITTEN (decl))
12580 return;
12582 TREE_ASM_WRITTEN (decl) = 1;
12583 type_die = new_die (DW_TAG_typedef, context_die, decl);
12584 origin = decl_ultimate_origin (decl);
12585 if (origin != NULL)
12586 add_abstract_origin_attribute (type_die, origin);
12587 else
12589 tree type;
12591 add_name_and_src_coords_attributes (type_die, decl);
12592 if (DECL_ORIGINAL_TYPE (decl))
12594 type = DECL_ORIGINAL_TYPE (decl);
12596 gcc_assert (type != TREE_TYPE (decl));
12597 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12599 else
12600 type = TREE_TYPE (decl);
12602 add_type_attribute (type_die, type, TREE_READONLY (decl),
12603 TREE_THIS_VOLATILE (decl), context_die);
12606 if (DECL_ABSTRACT (decl))
12607 equate_decl_number_to_die (decl, type_die);
12609 if (get_AT (type_die, DW_AT_name))
12610 add_pubtype (decl, type_die);
12613 /* Generate a type description DIE. */
12615 static void
12616 gen_type_die (tree type, dw_die_ref context_die)
12618 int need_pop;
12620 if (type == NULL_TREE || type == error_mark_node)
12621 return;
12623 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12624 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12626 if (TREE_ASM_WRITTEN (type))
12627 return;
12629 /* Prevent broken recursion; we can't hand off to the same type. */
12630 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12632 TREE_ASM_WRITTEN (type) = 1;
12633 gen_decl_die (TYPE_NAME (type), context_die);
12634 return;
12637 /* We are going to output a DIE to represent the unqualified version
12638 of this type (i.e. without any const or volatile qualifiers) so
12639 get the main variant (i.e. the unqualified version) of this type
12640 now. (Vectors are special because the debugging info is in the
12641 cloned type itself). */
12642 if (TREE_CODE (type) != VECTOR_TYPE)
12643 type = type_main_variant (type);
12645 if (TREE_ASM_WRITTEN (type))
12646 return;
12648 switch (TREE_CODE (type))
12650 case ERROR_MARK:
12651 break;
12653 case POINTER_TYPE:
12654 case REFERENCE_TYPE:
12655 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12656 ensures that the gen_type_die recursion will terminate even if the
12657 type is recursive. Recursive types are possible in Ada. */
12658 /* ??? We could perhaps do this for all types before the switch
12659 statement. */
12660 TREE_ASM_WRITTEN (type) = 1;
12662 /* For these types, all that is required is that we output a DIE (or a
12663 set of DIEs) to represent the "basis" type. */
12664 gen_type_die (TREE_TYPE (type), context_die);
12665 break;
12667 case OFFSET_TYPE:
12668 /* This code is used for C++ pointer-to-data-member types.
12669 Output a description of the relevant class type. */
12670 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12672 /* Output a description of the type of the object pointed to. */
12673 gen_type_die (TREE_TYPE (type), context_die);
12675 /* Now output a DIE to represent this pointer-to-data-member type
12676 itself. */
12677 gen_ptr_to_mbr_type_die (type, context_die);
12678 break;
12680 case FUNCTION_TYPE:
12681 /* Force out return type (in case it wasn't forced out already). */
12682 gen_type_die (TREE_TYPE (type), context_die);
12683 gen_subroutine_type_die (type, context_die);
12684 break;
12686 case METHOD_TYPE:
12687 /* Force out return type (in case it wasn't forced out already). */
12688 gen_type_die (TREE_TYPE (type), context_die);
12689 gen_subroutine_type_die (type, context_die);
12690 break;
12692 case ARRAY_TYPE:
12693 gen_array_type_die (type, context_die);
12694 break;
12696 case VECTOR_TYPE:
12697 gen_array_type_die (type, context_die);
12698 break;
12700 case ENUMERAL_TYPE:
12701 case RECORD_TYPE:
12702 case UNION_TYPE:
12703 case QUAL_UNION_TYPE:
12704 /* If this is a nested type whose containing class hasn't been written
12705 out yet, writing it out will cover this one, too. This does not apply
12706 to instantiations of member class templates; they need to be added to
12707 the containing class as they are generated. FIXME: This hurts the
12708 idea of combining type decls from multiple TUs, since we can't predict
12709 what set of template instantiations we'll get. */
12710 if (TYPE_CONTEXT (type)
12711 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12712 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12714 gen_type_die (TYPE_CONTEXT (type), context_die);
12716 if (TREE_ASM_WRITTEN (type))
12717 return;
12719 /* If that failed, attach ourselves to the stub. */
12720 push_decl_scope (TYPE_CONTEXT (type));
12721 context_die = lookup_type_die (TYPE_CONTEXT (type));
12722 need_pop = 1;
12724 else
12726 declare_in_namespace (type, context_die);
12727 need_pop = 0;
12730 if (TREE_CODE (type) == ENUMERAL_TYPE)
12731 gen_enumeration_type_die (type, context_die);
12732 else
12733 gen_struct_or_union_type_die (type, context_die);
12735 if (need_pop)
12736 pop_decl_scope ();
12738 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12739 it up if it is ever completed. gen_*_type_die will set it for us
12740 when appropriate. */
12741 return;
12743 case VOID_TYPE:
12744 case INTEGER_TYPE:
12745 case REAL_TYPE:
12746 case COMPLEX_TYPE:
12747 case BOOLEAN_TYPE:
12748 /* No DIEs needed for fundamental types. */
12749 break;
12751 case LANG_TYPE:
12752 /* No Dwarf representation currently defined. */
12753 break;
12755 default:
12756 gcc_unreachable ();
12759 TREE_ASM_WRITTEN (type) = 1;
12762 /* Generate a DIE for a tagged type instantiation. */
12764 static void
12765 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12767 if (type == NULL_TREE || type == error_mark_node)
12768 return;
12770 /* We are going to output a DIE to represent the unqualified version of
12771 this type (i.e. without any const or volatile qualifiers) so make sure
12772 that we have the main variant (i.e. the unqualified version) of this
12773 type now. */
12774 gcc_assert (type == type_main_variant (type));
12776 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12777 an instance of an unresolved type. */
12779 switch (TREE_CODE (type))
12781 case ERROR_MARK:
12782 break;
12784 case ENUMERAL_TYPE:
12785 gen_inlined_enumeration_type_die (type, context_die);
12786 break;
12788 case RECORD_TYPE:
12789 gen_inlined_structure_type_die (type, context_die);
12790 break;
12792 case UNION_TYPE:
12793 case QUAL_UNION_TYPE:
12794 gen_inlined_union_type_die (type, context_die);
12795 break;
12797 default:
12798 gcc_unreachable ();
12802 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12803 things which are local to the given block. */
12805 static void
12806 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12808 int must_output_die = 0;
12809 tree origin;
12810 tree decl;
12811 enum tree_code origin_code;
12813 /* Ignore blocks that are NULL. */
12814 if (stmt == NULL_TREE)
12815 return;
12817 /* If the block is one fragment of a non-contiguous block, do not
12818 process the variables, since they will have been done by the
12819 origin block. Do process subblocks. */
12820 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12822 tree sub;
12824 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12825 gen_block_die (sub, context_die, depth + 1);
12827 return;
12830 /* Determine the "ultimate origin" of this block. This block may be an
12831 inlined instance of an inlined instance of inline function, so we have
12832 to trace all of the way back through the origin chain to find out what
12833 sort of node actually served as the original seed for the creation of
12834 the current block. */
12835 origin = block_ultimate_origin (stmt);
12836 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12838 /* Determine if we need to output any Dwarf DIEs at all to represent this
12839 block. */
12840 if (origin_code == FUNCTION_DECL)
12841 /* The outer scopes for inlinings *must* always be represented. We
12842 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12843 must_output_die = 1;
12844 else
12846 /* In the case where the current block represents an inlining of the
12847 "body block" of an inline function, we must *NOT* output any DIE for
12848 this block because we have already output a DIE to represent the whole
12849 inlined function scope and the "body block" of any function doesn't
12850 really represent a different scope according to ANSI C rules. So we
12851 check here to make sure that this block does not represent a "body
12852 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12853 if (! is_body_block (origin ? origin : stmt))
12855 /* Determine if this block directly contains any "significant"
12856 local declarations which we will need to output DIEs for. */
12857 if (debug_info_level > DINFO_LEVEL_TERSE)
12858 /* We are not in terse mode so *any* local declaration counts
12859 as being a "significant" one. */
12860 must_output_die = (BLOCK_VARS (stmt) != NULL
12861 && (TREE_USED (stmt)
12862 || TREE_ASM_WRITTEN (stmt)
12863 || BLOCK_ABSTRACT (stmt)));
12864 else
12865 /* We are in terse mode, so only local (nested) function
12866 definitions count as "significant" local declarations. */
12867 for (decl = BLOCK_VARS (stmt);
12868 decl != NULL; decl = TREE_CHAIN (decl))
12869 if (TREE_CODE (decl) == FUNCTION_DECL
12870 && DECL_INITIAL (decl))
12872 must_output_die = 1;
12873 break;
12878 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12879 DIE for any block which contains no significant local declarations at
12880 all. Rather, in such cases we just call `decls_for_scope' so that any
12881 needed Dwarf info for any sub-blocks will get properly generated. Note
12882 that in terse mode, our definition of what constitutes a "significant"
12883 local declaration gets restricted to include only inlined function
12884 instances and local (nested) function definitions. */
12885 if (must_output_die)
12887 if (origin_code == FUNCTION_DECL)
12888 gen_inlined_subroutine_die (stmt, context_die, depth);
12889 else
12890 gen_lexical_block_die (stmt, context_die, depth);
12892 else
12893 decls_for_scope (stmt, context_die, depth);
12896 /* Generate all of the decls declared within a given scope and (recursively)
12897 all of its sub-blocks. */
12899 static void
12900 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12902 tree decl;
12903 tree subblocks;
12905 /* Ignore NULL blocks. */
12906 if (stmt == NULL_TREE)
12907 return;
12909 if (TREE_USED (stmt))
12911 /* Output the DIEs to represent all of the data objects and typedefs
12912 declared directly within this block but not within any nested
12913 sub-blocks. Also, nested function and tag DIEs have been
12914 generated with a parent of NULL; fix that up now. */
12915 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12917 dw_die_ref die;
12919 if (TREE_CODE (decl) == FUNCTION_DECL)
12920 die = lookup_decl_die (decl);
12921 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12922 die = lookup_type_die (TREE_TYPE (decl));
12923 else
12924 die = NULL;
12926 if (die != NULL && die->die_parent == NULL)
12927 add_child_die (context_die, die);
12928 /* Do not produce debug information for static variables since
12929 these might be optimized out. We are called for these later
12930 in cgraph_varpool_analyze_pending_decls. */
12931 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12933 else
12934 gen_decl_die (decl, context_die);
12938 /* If we're at -g1, we're not interested in subblocks. */
12939 if (debug_info_level <= DINFO_LEVEL_TERSE)
12940 return;
12942 /* Output the DIEs to represent all sub-blocks (and the items declared
12943 therein) of this block. */
12944 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12945 subblocks != NULL;
12946 subblocks = BLOCK_CHAIN (subblocks))
12947 gen_block_die (subblocks, context_die, depth + 1);
12950 /* Is this a typedef we can avoid emitting? */
12952 static inline int
12953 is_redundant_typedef (tree decl)
12955 if (TYPE_DECL_IS_STUB (decl))
12956 return 1;
12958 if (DECL_ARTIFICIAL (decl)
12959 && DECL_CONTEXT (decl)
12960 && is_tagged_type (DECL_CONTEXT (decl))
12961 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12962 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12963 /* Also ignore the artificial member typedef for the class name. */
12964 return 1;
12966 return 0;
12969 /* Returns the DIE for decl. A DIE will always be returned. */
12971 static dw_die_ref
12972 force_decl_die (tree decl)
12974 dw_die_ref decl_die;
12975 unsigned saved_external_flag;
12976 tree save_fn = NULL_TREE;
12977 decl_die = lookup_decl_die (decl);
12978 if (!decl_die)
12980 dw_die_ref context_die;
12981 tree decl_context = DECL_CONTEXT (decl);
12982 if (decl_context)
12984 /* Find die that represents this context. */
12985 if (TYPE_P (decl_context))
12986 context_die = force_type_die (decl_context);
12987 else
12988 context_die = force_decl_die (decl_context);
12990 else
12991 context_die = comp_unit_die;
12993 decl_die = lookup_decl_die (decl);
12994 if (decl_die)
12995 return decl_die;
12997 switch (TREE_CODE (decl))
12999 case FUNCTION_DECL:
13000 /* Clear current_function_decl, so that gen_subprogram_die thinks
13001 that this is a declaration. At this point, we just want to force
13002 declaration die. */
13003 save_fn = current_function_decl;
13004 current_function_decl = NULL_TREE;
13005 gen_subprogram_die (decl, context_die);
13006 current_function_decl = save_fn;
13007 break;
13009 case VAR_DECL:
13010 /* Set external flag to force declaration die. Restore it after
13011 gen_decl_die() call. */
13012 saved_external_flag = DECL_EXTERNAL (decl);
13013 DECL_EXTERNAL (decl) = 1;
13014 gen_decl_die (decl, context_die);
13015 DECL_EXTERNAL (decl) = saved_external_flag;
13016 break;
13018 case NAMESPACE_DECL:
13019 dwarf2out_decl (decl);
13020 break;
13022 default:
13023 gcc_unreachable ();
13026 /* We should be able to find the DIE now. */
13027 if (!decl_die)
13028 decl_die = lookup_decl_die (decl);
13029 gcc_assert (decl_die);
13032 return decl_die;
13035 /* Returns the DIE for TYPE. A DIE is always returned. */
13037 static dw_die_ref
13038 force_type_die (tree type)
13040 dw_die_ref type_die;
13042 type_die = lookup_type_die (type);
13043 if (!type_die)
13045 dw_die_ref context_die;
13046 if (TYPE_CONTEXT (type))
13048 if (TYPE_P (TYPE_CONTEXT (type)))
13049 context_die = force_type_die (TYPE_CONTEXT (type));
13050 else
13051 context_die = force_decl_die (TYPE_CONTEXT (type));
13053 else
13054 context_die = comp_unit_die;
13056 type_die = lookup_type_die (type);
13057 if (type_die)
13058 return type_die;
13059 gen_type_die (type, context_die);
13060 type_die = lookup_type_die (type);
13061 gcc_assert (type_die);
13063 return type_die;
13066 /* Force out any required namespaces to be able to output DECL,
13067 and return the new context_die for it, if it's changed. */
13069 static dw_die_ref
13070 setup_namespace_context (tree thing, dw_die_ref context_die)
13072 tree context = (DECL_P (thing)
13073 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13074 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13075 /* Force out the namespace. */
13076 context_die = force_decl_die (context);
13078 return context_die;
13081 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13082 type) within its namespace, if appropriate.
13084 For compatibility with older debuggers, namespace DIEs only contain
13085 declarations; all definitions are emitted at CU scope. */
13087 static void
13088 declare_in_namespace (tree thing, dw_die_ref context_die)
13090 dw_die_ref ns_context;
13092 if (debug_info_level <= DINFO_LEVEL_TERSE)
13093 return;
13095 /* If this decl is from an inlined function, then don't try to emit it in its
13096 namespace, as we will get confused. It would have already been emitted
13097 when the abstract instance of the inline function was emitted anyways. */
13098 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13099 return;
13101 ns_context = setup_namespace_context (thing, context_die);
13103 if (ns_context != context_die)
13105 if (DECL_P (thing))
13106 gen_decl_die (thing, ns_context);
13107 else
13108 gen_type_die (thing, ns_context);
13112 /* Generate a DIE for a namespace or namespace alias. */
13114 static void
13115 gen_namespace_die (tree decl)
13117 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13119 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13120 they are an alias of. */
13121 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13123 /* Output a real namespace. */
13124 dw_die_ref namespace_die
13125 = new_die (DW_TAG_namespace, context_die, decl);
13126 add_name_and_src_coords_attributes (namespace_die, decl);
13127 equate_decl_number_to_die (decl, namespace_die);
13129 else
13131 /* Output a namespace alias. */
13133 /* Force out the namespace we are an alias of, if necessary. */
13134 dw_die_ref origin_die
13135 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13137 /* Now create the namespace alias DIE. */
13138 dw_die_ref namespace_die
13139 = new_die (DW_TAG_imported_declaration, context_die, decl);
13140 add_name_and_src_coords_attributes (namespace_die, decl);
13141 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13142 equate_decl_number_to_die (decl, namespace_die);
13146 /* Generate Dwarf debug information for a decl described by DECL. */
13148 static void
13149 gen_decl_die (tree decl, dw_die_ref context_die)
13151 tree origin;
13153 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13154 return;
13156 switch (TREE_CODE (decl))
13158 case ERROR_MARK:
13159 break;
13161 case CONST_DECL:
13162 /* The individual enumerators of an enum type get output when we output
13163 the Dwarf representation of the relevant enum type itself. */
13164 break;
13166 case FUNCTION_DECL:
13167 /* Don't output any DIEs to represent mere function declarations,
13168 unless they are class members or explicit block externs. */
13169 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13170 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13171 break;
13173 #if 0
13174 /* FIXME */
13175 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13176 on local redeclarations of global functions. That seems broken. */
13177 if (current_function_decl != decl)
13178 /* This is only a declaration. */;
13179 #endif
13181 /* If we're emitting a clone, emit info for the abstract instance. */
13182 if (DECL_ORIGIN (decl) != decl)
13183 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13185 /* If we're emitting an out-of-line copy of an inline function,
13186 emit info for the abstract instance and set up to refer to it. */
13187 else if (cgraph_function_possibly_inlined_p (decl)
13188 && ! DECL_ABSTRACT (decl)
13189 && ! class_or_namespace_scope_p (context_die)
13190 /* dwarf2out_abstract_function won't emit a die if this is just
13191 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13192 that case, because that works only if we have a die. */
13193 && DECL_INITIAL (decl) != NULL_TREE)
13195 dwarf2out_abstract_function (decl);
13196 set_decl_origin_self (decl);
13199 /* Otherwise we're emitting the primary DIE for this decl. */
13200 else if (debug_info_level > DINFO_LEVEL_TERSE)
13202 /* Before we describe the FUNCTION_DECL itself, make sure that we
13203 have described its return type. */
13204 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13206 /* And its virtual context. */
13207 if (DECL_VINDEX (decl) != NULL_TREE)
13208 gen_type_die (DECL_CONTEXT (decl), context_die);
13210 /* And its containing type. */
13211 origin = decl_class_context (decl);
13212 if (origin != NULL_TREE)
13213 gen_type_die_for_member (origin, decl, context_die);
13215 /* And its containing namespace. */
13216 declare_in_namespace (decl, context_die);
13219 /* Now output a DIE to represent the function itself. */
13220 gen_subprogram_die (decl, context_die);
13221 break;
13223 case TYPE_DECL:
13224 /* If we are in terse mode, don't generate any DIEs to represent any
13225 actual typedefs. */
13226 if (debug_info_level <= DINFO_LEVEL_TERSE)
13227 break;
13229 /* In the special case of a TYPE_DECL node representing the declaration
13230 of some type tag, if the given TYPE_DECL is marked as having been
13231 instantiated from some other (original) TYPE_DECL node (e.g. one which
13232 was generated within the original definition of an inline function) we
13233 have to generate a special (abbreviated) DW_TAG_structure_type,
13234 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13235 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13237 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13238 break;
13241 if (is_redundant_typedef (decl))
13242 gen_type_die (TREE_TYPE (decl), context_die);
13243 else
13244 /* Output a DIE to represent the typedef itself. */
13245 gen_typedef_die (decl, context_die);
13246 break;
13248 case LABEL_DECL:
13249 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13250 gen_label_die (decl, context_die);
13251 break;
13253 case VAR_DECL:
13254 case RESULT_DECL:
13255 /* If we are in terse mode, don't generate any DIEs to represent any
13256 variable declarations or definitions. */
13257 if (debug_info_level <= DINFO_LEVEL_TERSE)
13258 break;
13260 /* Output any DIEs that are needed to specify the type of this data
13261 object. */
13262 gen_type_die (TREE_TYPE (decl), context_die);
13264 /* And its containing type. */
13265 origin = decl_class_context (decl);
13266 if (origin != NULL_TREE)
13267 gen_type_die_for_member (origin, decl, context_die);
13269 /* And its containing namespace. */
13270 declare_in_namespace (decl, context_die);
13272 /* Now output the DIE to represent the data object itself. This gets
13273 complicated because of the possibility that the VAR_DECL really
13274 represents an inlined instance of a formal parameter for an inline
13275 function. */
13276 origin = decl_ultimate_origin (decl);
13277 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13278 gen_formal_parameter_die (decl, context_die);
13279 else
13280 gen_variable_die (decl, context_die);
13281 break;
13283 case FIELD_DECL:
13284 /* Ignore the nameless fields that are used to skip bits but handle C++
13285 anonymous unions and structs. */
13286 if (DECL_NAME (decl) != NULL_TREE
13287 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13288 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13290 gen_type_die (member_declared_type (decl), context_die);
13291 gen_field_die (decl, context_die);
13293 break;
13295 case PARM_DECL:
13296 gen_type_die (TREE_TYPE (decl), context_die);
13297 gen_formal_parameter_die (decl, context_die);
13298 break;
13300 case NAMESPACE_DECL:
13301 gen_namespace_die (decl);
13302 break;
13304 default:
13305 /* Probably some frontend-internal decl. Assume we don't care. */
13306 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13307 break;
13311 /* Output debug information for global decl DECL. Called from toplev.c after
13312 compilation proper has finished. */
13314 static void
13315 dwarf2out_global_decl (tree decl)
13317 /* Output DWARF2 information for file-scope tentative data object
13318 declarations, file-scope (extern) function declarations (which had no
13319 corresponding body) and file-scope tagged type declarations and
13320 definitions which have not yet been forced out. */
13321 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13322 dwarf2out_decl (decl);
13325 /* Output debug information for type decl DECL. Called from toplev.c
13326 and from language front ends (to record built-in types). */
13327 static void
13328 dwarf2out_type_decl (tree decl, int local)
13330 if (!local)
13331 dwarf2out_decl (decl);
13334 /* Output debug information for imported module or decl. */
13336 static void
13337 dwarf2out_imported_module_or_decl (tree decl, tree context)
13339 dw_die_ref imported_die, at_import_die;
13340 dw_die_ref scope_die;
13341 expanded_location xloc;
13343 if (debug_info_level <= DINFO_LEVEL_TERSE)
13344 return;
13346 gcc_assert (decl);
13348 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13349 We need decl DIE for reference and scope die. First, get DIE for the decl
13350 itself. */
13352 /* Get the scope die for decl context. Use comp_unit_die for global module
13353 or decl. If die is not found for non globals, force new die. */
13354 if (!context)
13355 scope_die = comp_unit_die;
13356 else if (TYPE_P (context))
13357 scope_die = force_type_die (context);
13358 else
13359 scope_die = force_decl_die (context);
13361 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13362 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13363 at_import_die = force_type_die (TREE_TYPE (decl));
13364 else
13366 at_import_die = lookup_decl_die (decl);
13367 if (!at_import_die)
13369 /* If we're trying to avoid duplicate debug info, we may not have
13370 emitted the member decl for this field. Emit it now. */
13371 if (TREE_CODE (decl) == FIELD_DECL)
13373 tree type = DECL_CONTEXT (decl);
13374 dw_die_ref type_context_die;
13376 if (TYPE_CONTEXT (type))
13377 if (TYPE_P (TYPE_CONTEXT (type)))
13378 type_context_die = force_type_die (TYPE_CONTEXT (type));
13379 else
13380 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13381 else
13382 type_context_die = comp_unit_die;
13383 gen_type_die_for_member (type, decl, type_context_die);
13385 at_import_die = force_decl_die (decl);
13389 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13390 if (TREE_CODE (decl) == NAMESPACE_DECL)
13391 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13392 else
13393 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13395 xloc = expand_location (input_location);
13396 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13397 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13398 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13401 /* Write the debugging output for DECL. */
13403 void
13404 dwarf2out_decl (tree decl)
13406 dw_die_ref context_die = comp_unit_die;
13408 switch (TREE_CODE (decl))
13410 case ERROR_MARK:
13411 return;
13413 case FUNCTION_DECL:
13414 /* What we would really like to do here is to filter out all mere
13415 file-scope declarations of file-scope functions which are never
13416 referenced later within this translation unit (and keep all of ones
13417 that *are* referenced later on) but we aren't clairvoyant, so we have
13418 no idea which functions will be referenced in the future (i.e. later
13419 on within the current translation unit). So here we just ignore all
13420 file-scope function declarations which are not also definitions. If
13421 and when the debugger needs to know something about these functions,
13422 it will have to hunt around and find the DWARF information associated
13423 with the definition of the function.
13425 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13426 nodes represent definitions and which ones represent mere
13427 declarations. We have to check DECL_INITIAL instead. That's because
13428 the C front-end supports some weird semantics for "extern inline"
13429 function definitions. These can get inlined within the current
13430 translation unit (and thus, we need to generate Dwarf info for their
13431 abstract instances so that the Dwarf info for the concrete inlined
13432 instances can have something to refer to) but the compiler never
13433 generates any out-of-lines instances of such things (despite the fact
13434 that they *are* definitions).
13436 The important point is that the C front-end marks these "extern
13437 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13438 them anyway. Note that the C++ front-end also plays some similar games
13439 for inline function definitions appearing within include files which
13440 also contain `#pragma interface' pragmas. */
13441 if (DECL_INITIAL (decl) == NULL_TREE)
13442 return;
13444 /* If we're a nested function, initially use a parent of NULL; if we're
13445 a plain function, this will be fixed up in decls_for_scope. If
13446 we're a method, it will be ignored, since we already have a DIE. */
13447 if (decl_function_context (decl)
13448 /* But if we're in terse mode, we don't care about scope. */
13449 && debug_info_level > DINFO_LEVEL_TERSE)
13450 context_die = NULL;
13451 break;
13453 case VAR_DECL:
13454 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13455 declaration and if the declaration was never even referenced from
13456 within this entire compilation unit. We suppress these DIEs in
13457 order to save space in the .debug section (by eliminating entries
13458 which are probably useless). Note that we must not suppress
13459 block-local extern declarations (whether used or not) because that
13460 would screw-up the debugger's name lookup mechanism and cause it to
13461 miss things which really ought to be in scope at a given point. */
13462 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13463 return;
13465 /* For local statics lookup proper context die. */
13466 if (TREE_STATIC (decl) && decl_function_context (decl))
13467 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13469 /* If we are in terse mode, don't generate any DIEs to represent any
13470 variable declarations or definitions. */
13471 if (debug_info_level <= DINFO_LEVEL_TERSE)
13472 return;
13473 break;
13475 case NAMESPACE_DECL:
13476 if (debug_info_level <= DINFO_LEVEL_TERSE)
13477 return;
13478 if (lookup_decl_die (decl) != NULL)
13479 return;
13480 break;
13482 case TYPE_DECL:
13483 /* Don't emit stubs for types unless they are needed by other DIEs. */
13484 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13485 return;
13487 /* Don't bother trying to generate any DIEs to represent any of the
13488 normal built-in types for the language we are compiling. */
13489 if (DECL_IS_BUILTIN (decl))
13491 /* OK, we need to generate one for `bool' so GDB knows what type
13492 comparisons have. */
13493 if (is_cxx ()
13494 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13495 && ! DECL_IGNORED_P (decl))
13496 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13498 return;
13501 /* If we are in terse mode, don't generate any DIEs for types. */
13502 if (debug_info_level <= DINFO_LEVEL_TERSE)
13503 return;
13505 /* If we're a function-scope tag, initially use a parent of NULL;
13506 this will be fixed up in decls_for_scope. */
13507 if (decl_function_context (decl))
13508 context_die = NULL;
13510 break;
13512 default:
13513 return;
13516 gen_decl_die (decl, context_die);
13519 /* Output a marker (i.e. a label) for the beginning of the generated code for
13520 a lexical block. */
13522 static void
13523 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13524 unsigned int blocknum)
13526 switch_to_section (current_function_section ());
13527 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13530 /* Output a marker (i.e. a label) for the end of the generated code for a
13531 lexical block. */
13533 static void
13534 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13536 switch_to_section (current_function_section ());
13537 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13540 /* Returns nonzero if it is appropriate not to emit any debugging
13541 information for BLOCK, because it doesn't contain any instructions.
13543 Don't allow this for blocks with nested functions or local classes
13544 as we would end up with orphans, and in the presence of scheduling
13545 we may end up calling them anyway. */
13547 static bool
13548 dwarf2out_ignore_block (tree block)
13550 tree decl;
13552 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13553 if (TREE_CODE (decl) == FUNCTION_DECL
13554 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13555 return 0;
13557 return 1;
13560 /* Hash table routines for file_hash. */
13562 static int
13563 file_table_eq (const void *p1_p, const void *p2_p)
13565 const struct dwarf_file_data * p1 = p1_p;
13566 const char * p2 = p2_p;
13567 return strcmp (p1->filename, p2) == 0;
13570 static hashval_t
13571 file_table_hash (const void *p_p)
13573 const struct dwarf_file_data * p = p_p;
13574 return htab_hash_string (p->filename);
13577 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13578 dwarf2out.c) and return its "index". The index of each (known) filename is
13579 just a unique number which is associated with only that one filename. We
13580 need such numbers for the sake of generating labels (in the .debug_sfnames
13581 section) and references to those files numbers (in the .debug_srcinfo
13582 and.debug_macinfo sections). If the filename given as an argument is not
13583 found in our current list, add it to the list and assign it the next
13584 available unique index number. In order to speed up searches, we remember
13585 the index of the filename was looked up last. This handles the majority of
13586 all searches. */
13588 static struct dwarf_file_data *
13589 lookup_filename (const char *file_name)
13591 void ** slot;
13592 struct dwarf_file_data * created;
13594 /* Check to see if the file name that was searched on the previous
13595 call matches this file name. If so, return the index. */
13596 if (file_table_last_lookup
13597 && (file_name == file_table_last_lookup->filename
13598 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13599 return file_table_last_lookup;
13601 /* Didn't match the previous lookup, search the table. */
13602 slot = htab_find_slot_with_hash (file_table, file_name,
13603 htab_hash_string (file_name), INSERT);
13604 if (*slot)
13605 return *slot;
13607 created = ggc_alloc (sizeof (struct dwarf_file_data));
13608 created->filename = file_name;
13609 created->emitted_number = 0;
13610 *slot = created;
13611 return created;
13614 /* If the assembler will construct the file table, then translate the compiler
13615 internal file table number into the assembler file table number, and emit
13616 a .file directive if we haven't already emitted one yet. The file table
13617 numbers are different because we prune debug info for unused variables and
13618 types, which may include filenames. */
13620 static int
13621 maybe_emit_file (struct dwarf_file_data * fd)
13623 if (! fd->emitted_number)
13625 if (last_emitted_file)
13626 fd->emitted_number = last_emitted_file->emitted_number + 1;
13627 else
13628 fd->emitted_number = 1;
13629 last_emitted_file = fd;
13631 if (DWARF2_ASM_LINE_DEBUG_INFO)
13633 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13634 output_quoted_string (asm_out_file, fd->filename);
13635 fputc ('\n', asm_out_file);
13639 return fd->emitted_number;
13642 /* Called by the final INSN scan whenever we see a var location. We
13643 use it to drop labels in the right places, and throw the location in
13644 our lookup table. */
13646 static void
13647 dwarf2out_var_location (rtx loc_note)
13649 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13650 struct var_loc_node *newloc;
13651 rtx prev_insn;
13652 static rtx last_insn;
13653 static const char *last_label;
13654 tree decl;
13656 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13657 return;
13658 prev_insn = PREV_INSN (loc_note);
13660 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13661 /* If the insn we processed last time is the previous insn
13662 and it is also a var location note, use the label we emitted
13663 last time. */
13664 if (last_insn != NULL_RTX
13665 && last_insn == prev_insn
13666 && NOTE_P (prev_insn)
13667 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13669 newloc->label = last_label;
13671 else
13673 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13674 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13675 loclabel_num++;
13676 newloc->label = ggc_strdup (loclabel);
13678 newloc->var_loc_note = loc_note;
13679 newloc->next = NULL;
13681 if (cfun && in_cold_section_p)
13682 newloc->section_label = cfun->cold_section_label;
13683 else
13684 newloc->section_label = text_section_label;
13686 last_insn = loc_note;
13687 last_label = newloc->label;
13688 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13689 add_var_loc_to_decl (decl, newloc);
13692 /* We need to reset the locations at the beginning of each
13693 function. We can't do this in the end_function hook, because the
13694 declarations that use the locations won't have been output when
13695 that hook is called. Also compute have_multiple_function_sections here. */
13697 static void
13698 dwarf2out_begin_function (tree fun)
13700 htab_empty (decl_loc_table);
13702 if (function_section (fun) != text_section)
13703 have_multiple_function_sections = true;
13706 /* Output a label to mark the beginning of a source code line entry
13707 and record information relating to this source line, in
13708 'line_info_table' for later output of the .debug_line section. */
13710 static void
13711 dwarf2out_source_line (unsigned int line, const char *filename)
13713 if (debug_info_level >= DINFO_LEVEL_NORMAL
13714 && line != 0)
13716 int file_num = maybe_emit_file (lookup_filename (filename));
13718 switch_to_section (current_function_section ());
13720 /* If requested, emit something human-readable. */
13721 if (flag_debug_asm)
13722 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13723 filename, line);
13725 if (DWARF2_ASM_LINE_DEBUG_INFO)
13727 /* Emit the .loc directive understood by GNU as. */
13728 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13730 /* Indicate that line number info exists. */
13731 line_info_table_in_use++;
13733 else if (function_section (current_function_decl) != text_section)
13735 dw_separate_line_info_ref line_info;
13736 targetm.asm_out.internal_label (asm_out_file,
13737 SEPARATE_LINE_CODE_LABEL,
13738 separate_line_info_table_in_use);
13740 /* Expand the line info table if necessary. */
13741 if (separate_line_info_table_in_use
13742 == separate_line_info_table_allocated)
13744 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13745 separate_line_info_table
13746 = ggc_realloc (separate_line_info_table,
13747 separate_line_info_table_allocated
13748 * sizeof (dw_separate_line_info_entry));
13749 memset (separate_line_info_table
13750 + separate_line_info_table_in_use,
13752 (LINE_INFO_TABLE_INCREMENT
13753 * sizeof (dw_separate_line_info_entry)));
13756 /* Add the new entry at the end of the line_info_table. */
13757 line_info
13758 = &separate_line_info_table[separate_line_info_table_in_use++];
13759 line_info->dw_file_num = file_num;
13760 line_info->dw_line_num = line;
13761 line_info->function = current_function_funcdef_no;
13763 else
13765 dw_line_info_ref line_info;
13767 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13768 line_info_table_in_use);
13770 /* Expand the line info table if necessary. */
13771 if (line_info_table_in_use == line_info_table_allocated)
13773 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13774 line_info_table
13775 = ggc_realloc (line_info_table,
13776 (line_info_table_allocated
13777 * sizeof (dw_line_info_entry)));
13778 memset (line_info_table + line_info_table_in_use, 0,
13779 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13782 /* Add the new entry at the end of the line_info_table. */
13783 line_info = &line_info_table[line_info_table_in_use++];
13784 line_info->dw_file_num = file_num;
13785 line_info->dw_line_num = line;
13790 /* Record the beginning of a new source file. */
13792 static void
13793 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13795 if (flag_eliminate_dwarf2_dups)
13797 /* Record the beginning of the file for break_out_includes. */
13798 dw_die_ref bincl_die;
13800 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13801 add_AT_string (bincl_die, DW_AT_name, filename);
13804 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13806 int file_num = maybe_emit_file (lookup_filename (filename));
13808 switch_to_section (debug_macinfo_section);
13809 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13810 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13811 lineno);
13813 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13817 /* Record the end of a source file. */
13819 static void
13820 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13822 if (flag_eliminate_dwarf2_dups)
13823 /* Record the end of the file for break_out_includes. */
13824 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13826 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13828 switch_to_section (debug_macinfo_section);
13829 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13833 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13834 the tail part of the directive line, i.e. the part which is past the
13835 initial whitespace, #, whitespace, directive-name, whitespace part. */
13837 static void
13838 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13839 const char *buffer ATTRIBUTE_UNUSED)
13841 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13843 switch_to_section (debug_macinfo_section);
13844 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13845 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13846 dw2_asm_output_nstring (buffer, -1, "The macro");
13850 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13851 the tail part of the directive line, i.e. the part which is past the
13852 initial whitespace, #, whitespace, directive-name, whitespace part. */
13854 static void
13855 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13856 const char *buffer ATTRIBUTE_UNUSED)
13858 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13860 switch_to_section (debug_macinfo_section);
13861 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13862 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13863 dw2_asm_output_nstring (buffer, -1, "The macro");
13867 /* Set up for Dwarf output at the start of compilation. */
13869 static void
13870 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13872 /* Allocate the file_table. */
13873 file_table = htab_create_ggc (50, file_table_hash,
13874 file_table_eq, NULL);
13876 /* Allocate the decl_die_table. */
13877 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13878 decl_die_table_eq, NULL);
13880 /* Allocate the decl_loc_table. */
13881 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13882 decl_loc_table_eq, NULL);
13884 /* Allocate the initial hunk of the decl_scope_table. */
13885 decl_scope_table = VEC_alloc (tree, gc, 256);
13887 /* Allocate the initial hunk of the abbrev_die_table. */
13888 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13889 * sizeof (dw_die_ref));
13890 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13891 /* Zero-th entry is allocated, but unused. */
13892 abbrev_die_table_in_use = 1;
13894 /* Allocate the initial hunk of the line_info_table. */
13895 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13896 * sizeof (dw_line_info_entry));
13897 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13899 /* Zero-th entry is allocated, but unused. */
13900 line_info_table_in_use = 1;
13902 /* Allocate the pubtypes and pubnames vectors. */
13903 pubname_table = VEC_alloc (pubname_entry, gc, 32);
13904 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
13906 /* Generate the initial DIE for the .debug section. Note that the (string)
13907 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13908 will (typically) be a relative pathname and that this pathname should be
13909 taken as being relative to the directory from which the compiler was
13910 invoked when the given (base) source file was compiled. We will fill
13911 in this value in dwarf2out_finish. */
13912 comp_unit_die = gen_compile_unit_die (NULL);
13914 incomplete_types = VEC_alloc (tree, gc, 64);
13916 used_rtx_array = VEC_alloc (rtx, gc, 32);
13918 debug_info_section = get_section (DEBUG_INFO_SECTION,
13919 SECTION_DEBUG, NULL);
13920 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13921 SECTION_DEBUG, NULL);
13922 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13923 SECTION_DEBUG, NULL);
13924 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13925 SECTION_DEBUG, NULL);
13926 debug_line_section = get_section (DEBUG_LINE_SECTION,
13927 SECTION_DEBUG, NULL);
13928 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13929 SECTION_DEBUG, NULL);
13930 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13931 SECTION_DEBUG, NULL);
13932 #ifdef DEBUG_PUBTYPES_SECTION
13933 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
13934 SECTION_DEBUG, NULL);
13935 #endif
13936 debug_str_section = get_section (DEBUG_STR_SECTION,
13937 DEBUG_STR_SECTION_FLAGS, NULL);
13938 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13939 SECTION_DEBUG, NULL);
13940 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13941 SECTION_DEBUG, NULL);
13943 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13944 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13945 DEBUG_ABBREV_SECTION_LABEL, 0);
13946 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13947 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13948 COLD_TEXT_SECTION_LABEL, 0);
13949 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13951 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13952 DEBUG_INFO_SECTION_LABEL, 0);
13953 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13954 DEBUG_LINE_SECTION_LABEL, 0);
13955 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13956 DEBUG_RANGES_SECTION_LABEL, 0);
13957 switch_to_section (debug_abbrev_section);
13958 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13959 switch_to_section (debug_info_section);
13960 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13961 switch_to_section (debug_line_section);
13962 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13964 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13966 switch_to_section (debug_macinfo_section);
13967 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13968 DEBUG_MACINFO_SECTION_LABEL, 0);
13969 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13972 switch_to_section (text_section);
13973 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13974 if (flag_reorder_blocks_and_partition)
13976 switch_to_section (unlikely_text_section ());
13977 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13981 /* A helper function for dwarf2out_finish called through
13982 ht_forall. Emit one queued .debug_str string. */
13984 static int
13985 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13987 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13989 if (node->form == DW_FORM_strp)
13991 switch_to_section (debug_str_section);
13992 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13993 assemble_string (node->str, strlen (node->str) + 1);
13996 return 1;
13999 #if ENABLE_ASSERT_CHECKING
14000 /* Verify that all marks are clear. */
14002 static void
14003 verify_marks_clear (dw_die_ref die)
14005 dw_die_ref c;
14007 gcc_assert (! die->die_mark);
14008 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14010 #endif /* ENABLE_ASSERT_CHECKING */
14012 /* Clear the marks for a die and its children.
14013 Be cool if the mark isn't set. */
14015 static void
14016 prune_unmark_dies (dw_die_ref die)
14018 dw_die_ref c;
14020 if (die->die_mark)
14021 die->die_mark = 0;
14022 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14025 /* Given DIE that we're marking as used, find any other dies
14026 it references as attributes and mark them as used. */
14028 static void
14029 prune_unused_types_walk_attribs (dw_die_ref die)
14031 dw_attr_ref a;
14032 unsigned ix;
14034 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14036 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14038 /* A reference to another DIE.
14039 Make sure that it will get emitted. */
14040 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14042 /* Set the string's refcount to 0 so that prune_unused_types_mark
14043 accounts properly for it. */
14044 if (AT_class (a) == dw_val_class_str)
14045 a->dw_attr_val.v.val_str->refcount = 0;
14050 /* Mark DIE as being used. If DOKIDS is true, then walk down
14051 to DIE's children. */
14053 static void
14054 prune_unused_types_mark (dw_die_ref die, int dokids)
14056 dw_die_ref c;
14058 if (die->die_mark == 0)
14060 /* We haven't done this node yet. Mark it as used. */
14061 die->die_mark = 1;
14063 /* We also have to mark its parents as used.
14064 (But we don't want to mark our parents' kids due to this.) */
14065 if (die->die_parent)
14066 prune_unused_types_mark (die->die_parent, 0);
14068 /* Mark any referenced nodes. */
14069 prune_unused_types_walk_attribs (die);
14071 /* If this node is a specification,
14072 also mark the definition, if it exists. */
14073 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14074 prune_unused_types_mark (die->die_definition, 1);
14077 if (dokids && die->die_mark != 2)
14079 /* We need to walk the children, but haven't done so yet.
14080 Remember that we've walked the kids. */
14081 die->die_mark = 2;
14083 /* If this is an array type, we need to make sure our
14084 kids get marked, even if they're types. */
14085 if (die->die_tag == DW_TAG_array_type)
14086 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14087 else
14088 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14093 /* Walk the tree DIE and mark types that we actually use. */
14095 static void
14096 prune_unused_types_walk (dw_die_ref die)
14098 dw_die_ref c;
14100 /* Don't do anything if this node is already marked. */
14101 if (die->die_mark)
14102 return;
14104 switch (die->die_tag)
14106 case DW_TAG_const_type:
14107 case DW_TAG_packed_type:
14108 case DW_TAG_pointer_type:
14109 case DW_TAG_reference_type:
14110 case DW_TAG_volatile_type:
14111 case DW_TAG_typedef:
14112 case DW_TAG_array_type:
14113 case DW_TAG_structure_type:
14114 case DW_TAG_union_type:
14115 case DW_TAG_class_type:
14116 case DW_TAG_friend:
14117 case DW_TAG_variant_part:
14118 case DW_TAG_enumeration_type:
14119 case DW_TAG_subroutine_type:
14120 case DW_TAG_string_type:
14121 case DW_TAG_set_type:
14122 case DW_TAG_subrange_type:
14123 case DW_TAG_ptr_to_member_type:
14124 case DW_TAG_file_type:
14125 if (die->die_perennial_p)
14126 break;
14128 /* It's a type node --- don't mark it. */
14129 return;
14131 default:
14132 /* Mark everything else. */
14133 break;
14136 die->die_mark = 1;
14138 /* Now, mark any dies referenced from here. */
14139 prune_unused_types_walk_attribs (die);
14141 /* Mark children. */
14142 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14145 /* Increment the string counts on strings referred to from DIE's
14146 attributes. */
14148 static void
14149 prune_unused_types_update_strings (dw_die_ref die)
14151 dw_attr_ref a;
14152 unsigned ix;
14154 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14155 if (AT_class (a) == dw_val_class_str)
14157 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14158 s->refcount++;
14159 /* Avoid unnecessarily putting strings that are used less than
14160 twice in the hash table. */
14161 if (s->refcount
14162 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14164 void ** slot;
14165 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14166 htab_hash_string (s->str),
14167 INSERT);
14168 gcc_assert (*slot == NULL);
14169 *slot = s;
14174 /* Remove from the tree DIE any dies that aren't marked. */
14176 static void
14177 prune_unused_types_prune (dw_die_ref die)
14179 dw_die_ref c;
14181 gcc_assert (die->die_mark);
14182 prune_unused_types_update_strings (die);
14184 if (! die->die_child)
14185 return;
14187 c = die->die_child;
14188 do {
14189 dw_die_ref prev = c;
14190 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14191 if (c == die->die_child)
14193 /* No marked children between 'prev' and the end of the list. */
14194 if (prev == c)
14195 /* No marked children at all. */
14196 die->die_child = NULL;
14197 else
14199 prev->die_sib = c->die_sib;
14200 die->die_child = prev;
14202 return;
14205 if (c != prev->die_sib)
14206 prev->die_sib = c;
14207 prune_unused_types_prune (c);
14208 } while (c != die->die_child);
14212 /* Remove dies representing declarations that we never use. */
14214 static void
14215 prune_unused_types (void)
14217 unsigned int i;
14218 limbo_die_node *node;
14219 pubname_ref pub;
14221 #if ENABLE_ASSERT_CHECKING
14222 /* All the marks should already be clear. */
14223 verify_marks_clear (comp_unit_die);
14224 for (node = limbo_die_list; node; node = node->next)
14225 verify_marks_clear (node->die);
14226 #endif /* ENABLE_ASSERT_CHECKING */
14228 /* Set the mark on nodes that are actually used. */
14229 prune_unused_types_walk (comp_unit_die);
14230 for (node = limbo_die_list; node; node = node->next)
14231 prune_unused_types_walk (node->die);
14233 /* Also set the mark on nodes referenced from the
14234 pubname_table or arange_table. */
14235 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
14236 prune_unused_types_mark (pub->die, 1);
14237 for (i = 0; i < arange_table_in_use; i++)
14238 prune_unused_types_mark (arange_table[i], 1);
14240 /* Get rid of nodes that aren't marked; and update the string counts. */
14241 if (debug_str_hash)
14242 htab_empty (debug_str_hash);
14243 prune_unused_types_prune (comp_unit_die);
14244 for (node = limbo_die_list; node; node = node->next)
14245 prune_unused_types_prune (node->die);
14247 /* Leave the marks clear. */
14248 prune_unmark_dies (comp_unit_die);
14249 for (node = limbo_die_list; node; node = node->next)
14250 prune_unmark_dies (node->die);
14253 /* Set the parameter to true if there are any relative pathnames in
14254 the file table. */
14255 static int
14256 file_table_relative_p (void ** slot, void *param)
14258 bool *p = param;
14259 struct dwarf_file_data *d = *slot;
14260 if (d->emitted_number && !IS_ABSOLUTE_PATH (d->filename))
14262 *p = true;
14263 return 0;
14265 return 1;
14268 /* Output stuff that dwarf requires at the end of every file,
14269 and generate the DWARF-2 debugging info. */
14271 static void
14272 dwarf2out_finish (const char *filename)
14274 limbo_die_node *node, *next_node;
14275 dw_die_ref die = 0;
14277 /* Add the name for the main input file now. We delayed this from
14278 dwarf2out_init to avoid complications with PCH. */
14279 add_name_attribute (comp_unit_die, filename);
14280 if (!IS_ABSOLUTE_PATH (filename))
14281 add_comp_dir_attribute (comp_unit_die);
14282 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14284 bool p = false;
14285 htab_traverse (file_table, file_table_relative_p, &p);
14286 if (p)
14287 add_comp_dir_attribute (comp_unit_die);
14290 /* Traverse the limbo die list, and add parent/child links. The only
14291 dies without parents that should be here are concrete instances of
14292 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14293 For concrete instances, we can get the parent die from the abstract
14294 instance. */
14295 for (node = limbo_die_list; node; node = next_node)
14297 next_node = node->next;
14298 die = node->die;
14300 if (die->die_parent == NULL)
14302 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14304 if (origin)
14305 add_child_die (origin->die_parent, die);
14306 else if (die == comp_unit_die)
14308 else if (errorcount > 0 || sorrycount > 0)
14309 /* It's OK to be confused by errors in the input. */
14310 add_child_die (comp_unit_die, die);
14311 else
14313 /* In certain situations, the lexical block containing a
14314 nested function can be optimized away, which results
14315 in the nested function die being orphaned. Likewise
14316 with the return type of that nested function. Force
14317 this to be a child of the containing function.
14319 It may happen that even the containing function got fully
14320 inlined and optimized out. In that case we are lost and
14321 assign the empty child. This should not be big issue as
14322 the function is likely unreachable too. */
14323 tree context = NULL_TREE;
14325 gcc_assert (node->created_for);
14327 if (DECL_P (node->created_for))
14328 context = DECL_CONTEXT (node->created_for);
14329 else if (TYPE_P (node->created_for))
14330 context = TYPE_CONTEXT (node->created_for);
14332 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14334 origin = lookup_decl_die (context);
14335 if (origin)
14336 add_child_die (origin, die);
14337 else
14338 add_child_die (comp_unit_die, die);
14343 limbo_die_list = NULL;
14345 /* Walk through the list of incomplete types again, trying once more to
14346 emit full debugging info for them. */
14347 retry_incomplete_types ();
14349 if (flag_eliminate_unused_debug_types)
14350 prune_unused_types ();
14352 /* Generate separate CUs for each of the include files we've seen.
14353 They will go into limbo_die_list. */
14354 if (flag_eliminate_dwarf2_dups)
14355 break_out_includes (comp_unit_die);
14357 /* Traverse the DIE's and add add sibling attributes to those DIE's
14358 that have children. */
14359 add_sibling_attributes (comp_unit_die);
14360 for (node = limbo_die_list; node; node = node->next)
14361 add_sibling_attributes (node->die);
14363 /* Output a terminator label for the .text section. */
14364 switch_to_section (text_section);
14365 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14366 if (flag_reorder_blocks_and_partition)
14368 switch_to_section (unlikely_text_section ());
14369 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14372 /* We can only use the low/high_pc attributes if all of the code was
14373 in .text. */
14374 if (!have_multiple_function_sections)
14376 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14377 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14380 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14381 "base address". Use zero so that these addresses become absolute. */
14382 else if (have_location_lists || ranges_table_in_use)
14383 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14385 /* Output location list section if necessary. */
14386 if (have_location_lists)
14388 /* Output the location lists info. */
14389 switch_to_section (debug_loc_section);
14390 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14391 DEBUG_LOC_SECTION_LABEL, 0);
14392 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14393 output_location_lists (die);
14396 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14397 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14398 debug_line_section_label);
14400 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14401 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14403 /* Output all of the compilation units. We put the main one last so that
14404 the offsets are available to output_pubnames. */
14405 for (node = limbo_die_list; node; node = node->next)
14406 output_comp_unit (node->die, 0);
14408 output_comp_unit (comp_unit_die, 0);
14410 /* Output the abbreviation table. */
14411 switch_to_section (debug_abbrev_section);
14412 output_abbrev_section ();
14414 /* Output public names table if necessary. */
14415 if (!VEC_empty (pubname_entry, pubname_table))
14417 switch_to_section (debug_pubnames_section);
14418 output_pubnames (pubname_table);
14421 #ifdef DEBUG_PUBTYPES_SECTION
14422 /* Output public types table if necessary. */
14423 if (!VEC_empty (pubname_entry, pubtype_table))
14425 switch_to_section (debug_pubtypes_section);
14426 output_pubnames (pubtype_table);
14428 #endif
14430 /* Output the address range information. We only put functions in the arange
14431 table, so don't write it out if we don't have any. */
14432 if (fde_table_in_use)
14434 switch_to_section (debug_aranges_section);
14435 output_aranges ();
14438 /* Output ranges section if necessary. */
14439 if (ranges_table_in_use)
14441 switch_to_section (debug_ranges_section);
14442 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14443 output_ranges ();
14446 /* Output the source line correspondence table. We must do this
14447 even if there is no line information. Otherwise, on an empty
14448 translation unit, we will generate a present, but empty,
14449 .debug_info section. IRIX 6.5 `nm' will then complain when
14450 examining the file. This is done late so that any filenames
14451 used by the debug_info section are marked as 'used'. */
14452 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14454 switch_to_section (debug_line_section);
14455 output_line_info ();
14458 /* Have to end the macro section. */
14459 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14461 switch_to_section (debug_macinfo_section);
14462 dw2_asm_output_data (1, 0, "End compilation unit");
14465 /* If we emitted any DW_FORM_strp form attribute, output the string
14466 table too. */
14467 if (debug_str_hash)
14468 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14470 #else
14472 /* This should never be used, but its address is needed for comparisons. */
14473 const struct gcc_debug_hooks dwarf2_debug_hooks;
14475 #endif /* DWARF2_DEBUGGING_INFO */
14477 #include "gt-dwarf2out.h"