Revert
[official-gcc.git] / gcc / basic-block.h
blobe330f3e40f3220af6921003bd51c44c209ab9302
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "function.h"
34 /* Head of register set linked list. */
35 typedef bitmap_head regset_head;
37 /* A pointer to a regset_head. */
38 typedef bitmap regset;
40 /* Allocate a register set with oballoc. */
41 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
43 /* Do any cleanup needed on a regset when it is no longer used. */
44 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
46 /* Initialize a new regset. */
47 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
49 /* Clear a register set by freeing up the linked list. */
50 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
52 /* Copy a register set to another register set. */
53 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
55 /* Compare two register sets. */
56 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
58 /* `and' a register set with a second register set. */
59 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
61 /* `and' the complement of a register set with a register set. */
62 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
64 /* Inclusive or a register set with a second register set. */
65 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
67 /* Exclusive or a register set with a second register set. */
68 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
70 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
71 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
72 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
74 /* Clear a single register in a register set. */
75 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
77 /* Set a single register in a register set. */
78 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
80 /* Return true if a register is set in a register set. */
81 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
83 /* Copy the hard registers in a register set to the hard register set. */
84 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
85 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
86 do { \
87 CLEAR_HARD_REG_SET (TO); \
88 reg_set_to_hard_reg_set (&TO, FROM); \
89 } while (0)
91 typedef bitmap_iterator reg_set_iterator;
93 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
94 register number and executing CODE for all registers that are set. */
95 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
96 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
98 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
99 REGNUM to the register number and executing CODE for all registers that are
100 set in the first regset and not set in the second. */
101 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
102 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
104 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
105 REGNUM to the register number and executing CODE for all registers that are
106 set in both regsets. */
107 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
108 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
110 /* Type we use to hold basic block counters. Should be at least
111 64bit. Although a counter cannot be negative, we use a signed
112 type, because erroneous negative counts can be generated when the
113 flow graph is manipulated by various optimizations. A signed type
114 makes those easy to detect. */
115 typedef HOST_WIDEST_INT gcov_type;
117 /* Control flow edge information. */
118 struct edge_def GTY(())
120 /* The two blocks at the ends of the edge. */
121 struct basic_block_def *src;
122 struct basic_block_def *dest;
124 /* Instructions queued on the edge. */
125 union edge_def_insns {
126 tree GTY ((tag ("true"))) t;
127 rtx GTY ((tag ("false"))) r;
128 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
130 /* Auxiliary info specific to a pass. */
131 PTR GTY ((skip (""))) aux;
133 /* Location of any goto implicit in the edge, during tree-ssa. */
134 source_locus goto_locus;
136 int flags; /* see EDGE_* below */
137 int probability; /* biased by REG_BR_PROB_BASE */
138 gcov_type count; /* Expected number of executions calculated
139 in profile.c */
141 /* The index number corresponding to this edge in the edge vector
142 dest->preds. */
143 unsigned int dest_idx;
146 typedef struct edge_def *edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149 DEF_VEC_ALLOC_P(edge,heap);
151 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
152 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
153 label, or eh */
154 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
155 like an exception, or sibcall */
156 #define EDGE_EH 8 /* Exception throw */
157 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK 32 /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
160 flow. */
161 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
162 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
163 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
164 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
165 predicate is nonzero. */
166 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
167 predicate is zero. */
168 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
169 valid during SSA-CCP. */
170 #define EDGE_CROSSING 8192 /* Edge crosses between hot
171 and cold sections, when we
172 do partitioning. */
173 #define EDGE_ALL_FLAGS 16383
175 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
177 /* Counter summary from the last set of coverage counts read by
178 profile.c. */
179 extern const struct gcov_ctr_summary *profile_info;
181 /* Declared in cfgloop.h. */
182 struct loop;
183 struct loops;
185 /* Declared in tree-flow.h. */
186 struct edge_prediction;
187 struct rtl_bb_info;
189 /* A basic block is a sequence of instructions with only entry and
190 only one exit. If any one of the instructions are executed, they
191 will all be executed, and in sequence from first to last.
193 There may be COND_EXEC instructions in the basic block. The
194 COND_EXEC *instructions* will be executed -- but if the condition
195 is false the conditionally executed *expressions* will of course
196 not be executed. We don't consider the conditionally executed
197 expression (which might have side-effects) to be in a separate
198 basic block because the program counter will always be at the same
199 location after the COND_EXEC instruction, regardless of whether the
200 condition is true or not.
202 Basic blocks need not start with a label nor end with a jump insn.
203 For example, a previous basic block may just "conditionally fall"
204 into the succeeding basic block, and the last basic block need not
205 end with a jump insn. Block 0 is a descendant of the entry block.
207 A basic block beginning with two labels cannot have notes between
208 the labels.
210 Data for jump tables are stored in jump_insns that occur in no
211 basic block even though these insns can follow or precede insns in
212 basic blocks. */
214 /* Basic block information indexed by block number. */
215 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
217 /* Pointers to the first and last trees of the block. */
218 tree stmt_list;
220 /* The edges into and out of the block. */
221 VEC(edge,gc) *preds;
222 VEC(edge,gc) *succs;
224 /* Auxiliary info specific to a pass. */
225 PTR GTY ((skip (""))) aux;
227 /* Innermost loop containing the block. */
228 struct loop * GTY ((skip (""))) loop_father;
230 /* The dominance and postdominance information node. */
231 struct et_node * GTY ((skip (""))) dom[2];
233 /* Previous and next blocks in the chain. */
234 struct basic_block_def *prev_bb;
235 struct basic_block_def *next_bb;
237 union basic_block_il_dependent {
238 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
239 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
241 /* Chain of PHI nodes for this block. */
242 tree phi_nodes;
244 /* A list of predictions. */
245 struct edge_prediction *predictions;
247 /* Expected number of executions: calculated in profile.c. */
248 gcov_type count;
250 /* The index of this block. */
251 int index;
253 /* The loop depth of this block. */
254 int loop_depth;
256 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
257 int frequency;
259 /* Various flags. See BB_* below. */
260 int flags;
263 struct rtl_bb_info GTY(())
265 /* The first and last insns of the block. */
266 rtx head_;
267 rtx end_;
269 /* The registers that are live on entry to this block. */
270 bitmap GTY ((skip (""))) global_live_at_start;
272 /* The registers that are live on exit from this block. */
273 bitmap GTY ((skip (""))) global_live_at_end;
275 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
276 and after the block. */
277 rtx header;
278 rtx footer;
280 /* This field is used by the bb-reorder and tracer passes. */
281 int visited;
284 typedef struct basic_block_def *basic_block;
286 DEF_VEC_P(basic_block);
287 DEF_VEC_ALLOC_P(basic_block,gc);
288 DEF_VEC_ALLOC_P(basic_block,heap);
290 #define BB_FREQ_MAX 10000
292 /* Masks for basic_block.flags.
294 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
295 the compilation, so they are never cleared.
297 All other flags may be cleared by clear_bb_flags(). It is generally
298 a bad idea to rely on any flags being up-to-date. */
300 enum bb_flags
303 /* Set if insns in BB have are modified. Used for updating liveness info. */
304 BB_DIRTY = 1,
306 /* Only set on blocks that have just been created by create_bb. */
307 BB_NEW = 2,
309 /* Set by find_unreachable_blocks. Do not rely on this being set in any
310 pass. */
311 BB_REACHABLE = 4,
313 /* Set for blocks in an irreducible loop by loop analysis. */
314 BB_IRREDUCIBLE_LOOP = 8,
316 /* Set on blocks that may actually not be single-entry single-exit block. */
317 BB_SUPERBLOCK = 16,
319 /* Set on basic blocks that the scheduler should not touch. This is used
320 by SMS to prevent other schedulers from messing with the loop schedule. */
321 BB_DISABLE_SCHEDULE = 32,
323 /* Set on blocks that should be put in a hot section. */
324 BB_HOT_PARTITION = 64,
326 /* Set on blocks that should be put in a cold section. */
327 BB_COLD_PARTITION = 128,
329 /* Set on block that was duplicated. */
330 BB_DUPLICATED = 256,
332 /* Set on blocks that are in RTL format. */
333 BB_RTL = 1024,
335 /* Set on blocks that are forwarder blocks.
336 Only used in cfgcleanup.c. */
337 BB_FORWARDER_BLOCK = 2048,
339 /* Set on blocks that cannot be threaded through.
340 Only used in cfgcleanup.c. */
341 BB_NONTHREADABLE_BLOCK = 4096
344 /* Dummy flag for convenience in the hot/cold partitioning code. */
345 #define BB_UNPARTITIONED 0
347 /* Partitions, to be used when partitioning hot and cold basic blocks into
348 separate sections. */
349 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
350 #define BB_SET_PARTITION(bb, part) do { \
351 basic_block bb_ = (bb); \
352 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
353 | (part)); \
354 } while (0)
356 #define BB_COPY_PARTITION(dstbb, srcbb) \
357 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
359 /* A structure to group all the per-function control flow graph data.
360 The x_* prefixing is necessary because otherwise references to the
361 fields of this struct are interpreted as the defines for backward
362 source compatibility following the definition of this struct. */
363 struct control_flow_graph GTY(())
365 /* Block pointers for the exit and entry of a function.
366 These are always the head and tail of the basic block list. */
367 basic_block x_entry_block_ptr;
368 basic_block x_exit_block_ptr;
370 /* Index by basic block number, get basic block struct info. */
371 VEC(basic_block,gc) *x_basic_block_info;
373 /* Number of basic blocks in this flow graph. */
374 int x_n_basic_blocks;
376 /* Number of edges in this flow graph. */
377 int x_n_edges;
379 /* The first free basic block number. */
380 int x_last_basic_block;
382 /* Mapping of labels to their associated blocks. At present
383 only used for the tree CFG. */
384 VEC(basic_block,gc) *x_label_to_block_map;
386 enum profile_status {
387 PROFILE_ABSENT,
388 PROFILE_GUESSED,
389 PROFILE_READ
390 } x_profile_status;
393 /* Defines for accessing the fields of the CFG structure for function FN. */
394 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
395 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
396 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
397 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
398 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
399 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
400 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
402 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
403 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
405 /* Defines for textual backward source compatibility. */
406 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
407 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
408 #define basic_block_info (cfun->cfg->x_basic_block_info)
409 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
410 #define n_edges (cfun->cfg->x_n_edges)
411 #define last_basic_block (cfun->cfg->x_last_basic_block)
412 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
413 #define profile_status (cfun->cfg->x_profile_status)
415 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
416 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
418 /* For iterating over basic blocks. */
419 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
420 for (BB = FROM; BB != TO; BB = BB->DIR)
422 #define FOR_EACH_BB_FN(BB, FN) \
423 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
425 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
427 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
428 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
430 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
432 /* For iterating over insns in basic block. */
433 #define FOR_BB_INSNS(BB, INSN) \
434 for ((INSN) = BB_HEAD (BB); \
435 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
436 (INSN) = NEXT_INSN (INSN))
438 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
439 for ((INSN) = BB_END (BB); \
440 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
441 (INSN) = PREV_INSN (INSN))
443 /* Cycles through _all_ basic blocks, even the fake ones (entry and
444 exit block). */
446 #define FOR_ALL_BB(BB) \
447 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
449 #define FOR_ALL_BB_FN(BB, FN) \
450 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
452 extern bitmap_obstack reg_obstack;
454 /* Indexed by n, gives number of basic block that (REG n) is used in.
455 If the value is REG_BLOCK_GLOBAL (-2),
456 it means (REG n) is used in more than one basic block.
457 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
458 This information remains valid for the rest of the compilation
459 of the current function; it is used to control register allocation. */
461 #define REG_BLOCK_UNKNOWN -1
462 #define REG_BLOCK_GLOBAL -2
464 #define REG_BASIC_BLOCK(N) \
465 (VEC_index (reg_info_p, reg_n_info, N)->basic_block)
467 /* Stuff for recording basic block info. */
469 #define BB_HEAD(B) (B)->il.rtl->head_
470 #define BB_END(B) (B)->il.rtl->end_
472 /* Special block numbers [markers] for entry and exit. */
473 #define ENTRY_BLOCK (0)
474 #define EXIT_BLOCK (1)
476 /* The two blocks that are always in the cfg. */
477 #define NUM_FIXED_BLOCKS (2)
480 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
481 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
483 extern void compute_bb_for_insn (void);
484 extern unsigned int free_bb_for_insn (void);
485 extern void update_bb_for_insn (basic_block);
487 extern void free_basic_block_vars (void);
489 extern void insert_insn_on_edge (rtx, edge);
490 basic_block split_edge_and_insert (edge, rtx);
492 extern void commit_edge_insertions (void);
493 extern void commit_edge_insertions_watch_calls (void);
495 extern void remove_fake_edges (void);
496 extern void remove_fake_exit_edges (void);
497 extern void add_noreturn_fake_exit_edges (void);
498 extern void connect_infinite_loops_to_exit (void);
499 extern edge unchecked_make_edge (basic_block, basic_block, int);
500 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
501 extern edge make_edge (basic_block, basic_block, int);
502 extern edge make_single_succ_edge (basic_block, basic_block, int);
503 extern void remove_edge (edge);
504 extern void redirect_edge_succ (edge, basic_block);
505 extern edge redirect_edge_succ_nodup (edge, basic_block);
506 extern void redirect_edge_pred (edge, basic_block);
507 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
508 extern void clear_bb_flags (void);
509 extern int post_order_compute (int *, bool);
510 extern int pre_and_rev_post_order_compute (int *, int *, bool);
511 extern int dfs_enumerate_from (basic_block, int,
512 bool (*)(basic_block, void *),
513 basic_block *, int, void *);
514 extern void compute_dominance_frontiers (bitmap *);
515 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
516 extern void dump_edge_info (FILE *, edge, int);
517 extern void brief_dump_cfg (FILE *);
518 extern void clear_edges (void);
519 extern rtx first_insn_after_basic_block_note (basic_block);
520 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
521 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
522 gcov_type);
524 /* Structure to group all of the information to process IF-THEN and
525 IF-THEN-ELSE blocks for the conditional execution support. This
526 needs to be in a public file in case the IFCVT macros call
527 functions passing the ce_if_block data structure. */
529 typedef struct ce_if_block
531 basic_block test_bb; /* First test block. */
532 basic_block then_bb; /* THEN block. */
533 basic_block else_bb; /* ELSE block or NULL. */
534 basic_block join_bb; /* Join THEN/ELSE blocks. */
535 basic_block last_test_bb; /* Last bb to hold && or || tests. */
536 int num_multiple_test_blocks; /* # of && and || basic blocks. */
537 int num_and_and_blocks; /* # of && blocks. */
538 int num_or_or_blocks; /* # of || blocks. */
539 int num_multiple_test_insns; /* # of insns in && and || blocks. */
540 int and_and_p; /* Complex test is &&. */
541 int num_then_insns; /* # of insns in THEN block. */
542 int num_else_insns; /* # of insns in ELSE block. */
543 int pass; /* Pass number. */
545 #ifdef IFCVT_EXTRA_FIELDS
546 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
547 #endif
549 } ce_if_block_t;
551 /* This structure maintains an edge list vector. */
552 struct edge_list
554 int num_blocks;
555 int num_edges;
556 edge *index_to_edge;
559 /* The base value for branch probability notes and edge probabilities. */
560 #define REG_BR_PROB_BASE 10000
562 /* This is the value which indicates no edge is present. */
563 #define EDGE_INDEX_NO_EDGE -1
565 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
566 if there is no edge between the 2 basic blocks. */
567 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
569 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
570 block which is either the pred or succ end of the indexed edge. */
571 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
572 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
574 /* INDEX_EDGE returns a pointer to the edge. */
575 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
577 /* Number of edges in the compressed edge list. */
578 #define NUM_EDGES(el) ((el)->num_edges)
580 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
581 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
582 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
584 /* BB is assumed to contain conditional jump. Return the branch edge. */
585 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
586 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
588 /* Return expected execution frequency of the edge E. */
589 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
590 * (e)->probability \
591 + REG_BR_PROB_BASE / 2) \
592 / REG_BR_PROB_BASE)
594 /* Return nonzero if edge is critical. */
595 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
596 && EDGE_COUNT ((e)->dest->preds) >= 2)
598 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
599 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
600 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
601 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
603 /* Returns true if BB has precisely one successor. */
605 static inline bool
606 single_succ_p (basic_block bb)
608 return EDGE_COUNT (bb->succs) == 1;
611 /* Returns true if BB has precisely one predecessor. */
613 static inline bool
614 single_pred_p (basic_block bb)
616 return EDGE_COUNT (bb->preds) == 1;
619 /* Returns the single successor edge of basic block BB. Aborts if
620 BB does not have exactly one successor. */
622 static inline edge
623 single_succ_edge (basic_block bb)
625 gcc_assert (single_succ_p (bb));
626 return EDGE_SUCC (bb, 0);
629 /* Returns the single predecessor edge of basic block BB. Aborts
630 if BB does not have exactly one predecessor. */
632 static inline edge
633 single_pred_edge (basic_block bb)
635 gcc_assert (single_pred_p (bb));
636 return EDGE_PRED (bb, 0);
639 /* Returns the single successor block of basic block BB. Aborts
640 if BB does not have exactly one successor. */
642 static inline basic_block
643 single_succ (basic_block bb)
645 return single_succ_edge (bb)->dest;
648 /* Returns the single predecessor block of basic block BB. Aborts
649 if BB does not have exactly one predecessor.*/
651 static inline basic_block
652 single_pred (basic_block bb)
654 return single_pred_edge (bb)->src;
657 /* Iterator object for edges. */
659 typedef struct {
660 unsigned index;
661 VEC(edge,gc) **container;
662 } edge_iterator;
664 static inline VEC(edge,gc) *
665 ei_container (edge_iterator i)
667 gcc_assert (i.container);
668 return *i.container;
671 #define ei_start(iter) ei_start_1 (&(iter))
672 #define ei_last(iter) ei_last_1 (&(iter))
674 /* Return an iterator pointing to the start of an edge vector. */
675 static inline edge_iterator
676 ei_start_1 (VEC(edge,gc) **ev)
678 edge_iterator i;
680 i.index = 0;
681 i.container = ev;
683 return i;
686 /* Return an iterator pointing to the last element of an edge
687 vector. */
688 static inline edge_iterator
689 ei_last_1 (VEC(edge,gc) **ev)
691 edge_iterator i;
693 i.index = EDGE_COUNT (*ev) - 1;
694 i.container = ev;
696 return i;
699 /* Is the iterator `i' at the end of the sequence? */
700 static inline bool
701 ei_end_p (edge_iterator i)
703 return (i.index == EDGE_COUNT (ei_container (i)));
706 /* Is the iterator `i' at one position before the end of the
707 sequence? */
708 static inline bool
709 ei_one_before_end_p (edge_iterator i)
711 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
714 /* Advance the iterator to the next element. */
715 static inline void
716 ei_next (edge_iterator *i)
718 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
719 i->index++;
722 /* Move the iterator to the previous element. */
723 static inline void
724 ei_prev (edge_iterator *i)
726 gcc_assert (i->index > 0);
727 i->index--;
730 /* Return the edge pointed to by the iterator `i'. */
731 static inline edge
732 ei_edge (edge_iterator i)
734 return EDGE_I (ei_container (i), i.index);
737 /* Return an edge pointed to by the iterator. Do it safely so that
738 NULL is returned when the iterator is pointing at the end of the
739 sequence. */
740 static inline edge
741 ei_safe_edge (edge_iterator i)
743 return !ei_end_p (i) ? ei_edge (i) : NULL;
746 /* Return 1 if we should continue to iterate. Return 0 otherwise.
747 *Edge P is set to the next edge if we are to continue to iterate
748 and NULL otherwise. */
750 static inline bool
751 ei_cond (edge_iterator ei, edge *p)
753 if (!ei_end_p (ei))
755 *p = ei_edge (ei);
756 return 1;
758 else
760 *p = NULL;
761 return 0;
765 /* This macro serves as a convenient way to iterate each edge in a
766 vector of predecessor or successor edges. It must not be used when
767 an element might be removed during the traversal, otherwise
768 elements will be missed. Instead, use a for-loop like that shown
769 in the following pseudo-code:
771 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
773 IF (e != taken_edge)
774 remove_edge (e);
775 ELSE
776 ei_next (&ei);
780 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
781 for ((ITER) = ei_start ((EDGE_VEC)); \
782 ei_cond ((ITER), &(EDGE)); \
783 ei_next (&(ITER)))
785 struct edge_list * create_edge_list (void);
786 void free_edge_list (struct edge_list *);
787 void print_edge_list (FILE *, struct edge_list *);
788 void verify_edge_list (FILE *, struct edge_list *);
789 int find_edge_index (struct edge_list *, basic_block, basic_block);
790 edge find_edge (basic_block, basic_block);
793 enum update_life_extent
795 UPDATE_LIFE_LOCAL = 0,
796 UPDATE_LIFE_GLOBAL = 1,
797 UPDATE_LIFE_GLOBAL_RM_NOTES = 2
800 /* Flags for life_analysis and update_life_info. */
802 #define PROP_DEATH_NOTES 1 /* Create DEAD and UNUSED notes. */
803 #define PROP_LOG_LINKS 2 /* Create LOG_LINKS. */
804 #define PROP_REG_INFO 4 /* Update regs_ever_live et al. */
805 #define PROP_KILL_DEAD_CODE 8 /* Remove dead code. */
806 #define PROP_SCAN_DEAD_CODE 16 /* Scan for dead code. */
807 #define PROP_ALLOW_CFG_CHANGES 32 /* Allow the CFG to be changed
808 by dead code removal. */
809 #define PROP_AUTOINC 64 /* Create autoinc mem references. */
810 #define PROP_SCAN_DEAD_STORES 128 /* Scan for dead code. */
811 #define PROP_ASM_SCAN 256 /* Internal flag used within flow.c
812 to flag analysis of asms. */
813 #define PROP_DEAD_INSN 1024 /* Internal flag used within flow.c
814 to flag analysis of dead insn. */
815 #define PROP_POST_REGSTACK 2048 /* We run after reg-stack and need
816 to preserve REG_DEAD notes for
817 stack regs. */
818 #define PROP_FINAL (PROP_DEATH_NOTES | PROP_LOG_LINKS \
819 | PROP_REG_INFO | PROP_KILL_DEAD_CODE \
820 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
821 | PROP_ALLOW_CFG_CHANGES \
822 | PROP_SCAN_DEAD_STORES)
823 #define PROP_POSTRELOAD (PROP_DEATH_NOTES \
824 | PROP_KILL_DEAD_CODE \
825 | PROP_SCAN_DEAD_CODE \
826 | PROP_SCAN_DEAD_STORES)
828 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
829 except for edge forwarding */
830 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
831 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
832 to care REG_DEAD notes. */
833 #define CLEANUP_UPDATE_LIFE 8 /* Keep life information up to date. */
834 #define CLEANUP_THREADING 16 /* Do jump threading. */
835 #define CLEANUP_NO_INSN_DEL 32 /* Do not try to delete trivially dead
836 insns. */
837 #define CLEANUP_CFGLAYOUT 64 /* Do cleanup in cfglayout mode. */
838 #define CLEANUP_LOG_LINKS 128 /* Update log links. */
840 /* The following are ORed in on top of the CLEANUP* flags in calls to
841 struct_equiv_block_eq. */
842 #define STRUCT_EQUIV_START 256 /* Initializes the search range. */
843 #define STRUCT_EQUIV_RERUN 512 /* Rerun to find register use in
844 found equivalence. */
845 #define STRUCT_EQUIV_FINAL 1024 /* Make any changes necessary to get
846 actual equivalence. */
847 #define STRUCT_EQUIV_NEED_FULL_BLOCK 2048 /* struct_equiv_block_eq is required
848 to match only full blocks */
849 #define STRUCT_EQUIV_MATCH_JUMPS 4096 /* Also include the jumps at the end of the block in the comparison. */
851 extern void life_analysis (int);
852 extern int update_life_info (sbitmap, enum update_life_extent, int);
853 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
854 extern int count_or_remove_death_notes (sbitmap, int);
855 extern int propagate_block (basic_block, regset, regset, regset, int);
857 struct propagate_block_info;
858 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
859 extern struct propagate_block_info *init_propagate_block_info
860 (basic_block, regset, regset, regset, int);
861 extern void free_propagate_block_info (struct propagate_block_info *);
863 /* In lcm.c */
864 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
865 sbitmap *, sbitmap *, sbitmap **,
866 sbitmap **);
867 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
868 sbitmap *, sbitmap *,
869 sbitmap *, sbitmap **,
870 sbitmap **);
871 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
873 /* In predict.c */
874 extern void expected_value_to_br_prob (void);
875 extern bool maybe_hot_bb_p (basic_block);
876 extern bool probably_cold_bb_p (basic_block);
877 extern bool probably_never_executed_bb_p (basic_block);
878 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
879 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
880 extern void tree_predict_edge (edge, enum br_predictor, int);
881 extern void rtl_predict_edge (edge, enum br_predictor, int);
882 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
883 extern void guess_outgoing_edge_probabilities (basic_block);
884 extern void remove_predictions_associated_with_edge (edge);
885 extern bool edge_probability_reliable_p (edge);
886 extern bool br_prob_note_reliable_p (rtx);
888 /* In flow.c */
889 extern void init_flow (void);
890 extern void debug_bb (basic_block);
891 extern basic_block debug_bb_n (int);
892 extern void dump_regset (regset, FILE *);
893 extern void debug_regset (regset);
894 extern void allocate_reg_life_data (void);
895 extern void expunge_block (basic_block);
896 extern void link_block (basic_block, basic_block);
897 extern void unlink_block (basic_block);
898 extern void compact_blocks (void);
899 extern basic_block alloc_block (void);
900 extern void find_unreachable_blocks (void);
901 extern int delete_noop_moves (void);
902 extern basic_block force_nonfallthru (edge);
903 extern rtx block_label (basic_block);
904 extern bool forwarder_block_p (basic_block);
905 extern bool purge_all_dead_edges (void);
906 extern bool purge_dead_edges (basic_block);
907 extern void find_many_sub_basic_blocks (sbitmap);
908 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
909 extern bool can_fallthru (basic_block, basic_block);
910 extern bool could_fall_through (basic_block, basic_block);
911 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
912 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
913 extern void alloc_aux_for_block (basic_block, int);
914 extern void alloc_aux_for_blocks (int);
915 extern void clear_aux_for_blocks (void);
916 extern void free_aux_for_blocks (void);
917 extern void alloc_aux_for_edge (edge, int);
918 extern void alloc_aux_for_edges (int);
919 extern void clear_aux_for_edges (void);
920 extern void free_aux_for_edges (void);
921 extern void find_basic_blocks (rtx);
922 extern bool cleanup_cfg (int);
923 extern bool delete_unreachable_blocks (void);
924 extern bool merge_seq_blocks (void);
926 typedef struct conflict_graph_def *conflict_graph;
928 /* Callback function when enumerating conflicts. The arguments are
929 the smaller and larger regno in the conflict. Returns zero if
930 enumeration is to continue, nonzero to halt enumeration. */
931 typedef int (*conflict_graph_enum_fn) (int, int, void *);
934 /* Prototypes of operations on conflict graphs. */
936 extern conflict_graph conflict_graph_new
937 (int);
938 extern void conflict_graph_delete (conflict_graph);
939 extern int conflict_graph_add (conflict_graph, int, int);
940 extern int conflict_graph_conflict_p (conflict_graph, int, int);
941 extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
942 void *);
943 extern void conflict_graph_merge_regs (conflict_graph, int, int);
944 extern void conflict_graph_print (conflict_graph, FILE*);
945 extern bool mark_dfs_back_edges (void);
946 extern void set_edge_can_fallthru_flag (void);
947 extern void update_br_prob_note (basic_block);
948 extern void fixup_abnormal_edges (void);
949 extern bool inside_basic_block_p (rtx);
950 extern bool control_flow_insn_p (rtx);
951 extern rtx get_last_bb_insn (basic_block);
953 /* In bb-reorder.c */
954 extern void reorder_basic_blocks (unsigned int);
956 /* In dominance.c */
958 enum cdi_direction
960 CDI_DOMINATORS,
961 CDI_POST_DOMINATORS
964 enum dom_state
966 DOM_NONE, /* Not computed at all. */
967 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
968 DOM_OK /* Everything is ok. */
971 extern enum dom_state dom_computed[2];
973 extern bool dom_info_available_p (enum cdi_direction);
974 extern void calculate_dominance_info (enum cdi_direction);
975 extern void free_dominance_info (enum cdi_direction);
976 extern basic_block nearest_common_dominator (enum cdi_direction,
977 basic_block, basic_block);
978 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
979 bitmap);
980 extern void set_immediate_dominator (enum cdi_direction, basic_block,
981 basic_block);
982 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
983 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
984 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
985 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
986 unsigned, basic_block *);
987 extern void add_to_dominance_info (enum cdi_direction, basic_block);
988 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
989 basic_block recount_dominator (enum cdi_direction, basic_block);
990 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
991 basic_block);
992 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
993 extern void verify_dominators (enum cdi_direction);
994 extern basic_block first_dom_son (enum cdi_direction, basic_block);
995 extern basic_block next_dom_son (enum cdi_direction, basic_block);
996 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
997 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
999 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
1000 extern void break_superblocks (void);
1001 extern void check_bb_profile (basic_block, FILE *);
1002 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
1003 extern void init_rtl_bb_info (basic_block);
1005 extern void initialize_original_copy_tables (void);
1006 extern void free_original_copy_tables (void);
1007 extern void set_bb_original (basic_block, basic_block);
1008 extern basic_block get_bb_original (basic_block);
1009 extern void set_bb_copy (basic_block, basic_block);
1010 extern basic_block get_bb_copy (basic_block);
1012 extern rtx insert_insn_end_bb_new (rtx, basic_block);
1014 #include "cfghooks.h"
1016 /* In struct-equiv.c */
1018 /* Constants used to size arrays in struct equiv_info (currently only one).
1019 When these limits are exceeded, struct_equiv returns zero.
1020 The maximum number of pseudo registers that are different in the two blocks,
1021 but appear in equivalent places and are dead at the end (or where one of
1022 a pair is dead at the end). */
1023 #define STRUCT_EQUIV_MAX_LOCAL 16
1024 /* The maximum number of references to an input register that struct_equiv
1025 can handle. */
1027 /* Structure used to track state during struct_equiv that can be rolled
1028 back when we find we can't match an insn, or if we want to match part
1029 of it in a different way.
1030 This information pertains to the pair of partial blocks that has been
1031 matched so far. Since this pair is structurally equivalent, this is
1032 conceptually just one partial block expressed in two potentially
1033 different ways. */
1034 struct struct_equiv_checkpoint
1036 int ninsns; /* Insns are matched so far. */
1037 int local_count; /* Number of block-local registers. */
1038 int input_count; /* Number of inputs to the block. */
1040 /* X_START and Y_START are the first insns (in insn stream order)
1041 of the partial blocks that have been considered for matching so far.
1042 Since we are scanning backwards, they are also the instructions that
1043 are currently considered - or the last ones that have been considered -
1044 for matching (Unless we tracked back to these because a preceding
1045 instruction failed to match). */
1046 rtx x_start, y_start;
1048 /* INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
1049 during the current pass; we keep X_INPUT / Y_INPUT around between passes
1050 so that we can match REG_EQUAL / REG_EQUIV notes referring to these. */
1051 bool input_valid;
1053 /* Some information would be expensive to exactly checkpoint, so we
1054 merely increment VERSION any time information about local
1055 registers, inputs and/or register liveness changes. When backtracking,
1056 it is decremented for changes that can be undone, and if a discrepancy
1057 remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
1058 that a new pass should be made over the entire block match to get
1059 accurate register information. */
1060 int version;
1063 /* A struct equiv_info is used to pass information to struct_equiv and
1064 to gather state while two basic blocks are checked for structural
1065 equivalence. */
1067 struct equiv_info
1069 /* Fields set up by the caller to struct_equiv_block_eq */
1071 basic_block x_block, y_block; /* The two blocks being matched. */
1073 /* MODE carries the mode bits from cleanup_cfg if we are called from
1074 try_crossjump_to_edge, and additionally it carries the
1075 STRUCT_EQUIV_* bits described above. */
1076 int mode;
1078 /* INPUT_COST is the cost that adding an extra input to the matched blocks
1079 is supposed to have, and is taken into account when considering if the
1080 matched sequence should be extended backwards. input_cost < 0 means
1081 don't accept any inputs at all. */
1082 int input_cost;
1085 /* Fields to track state inside of struct_equiv_block_eq. Some of these
1086 are also outputs. */
1088 /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1089 is used as an input parameter, i.e. where different registers are used
1090 as sources. This is only used for a register that is live at the end
1091 of the blocks, or in some identical code at the end of the blocks;
1092 Inputs that are dead at the end go into X_LOCAL / Y_LOCAL. */
1093 rtx x_input, y_input;
1094 /* When a previous pass has identified a valid input, INPUT_REG is set
1095 by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1096 for the input. */
1097 rtx input_reg;
1099 /* COMMON_LIVE keeps track of the registers which are currently live
1100 (as we scan backwards from the end) and have the same numbers in both
1101 blocks. N.B. a register that is in common_live is unsuitable to become
1102 a local reg. */
1103 regset common_live;
1104 /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1105 local to one of the blocks; these registers must not be accepted as
1106 identical when encountered in both blocks. */
1107 regset x_local_live, y_local_live;
1109 /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1110 being used, to avoid having to backtrack in the next pass, so that we
1111 get accurate life info for this insn then. For each such insn,
1112 the bit with the number corresponding to the CUR.NINSNS value at the
1113 time of scanning is set. */
1114 bitmap equiv_used;
1116 /* Current state that can be saved & restored easily. */
1117 struct struct_equiv_checkpoint cur;
1118 /* BEST_MATCH is used to store the best match so far, weighing the
1119 cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1120 CUR.INPUT_COUNT * INPUT_COST of setting up the inputs. */
1121 struct struct_equiv_checkpoint best_match;
1122 /* If a checkpoint restore failed, or an input conflict newly arises,
1123 NEED_RERUN is set. This has to be tested by the caller to re-run
1124 the comparison if the match appears otherwise sound. The state kept in
1125 x_start, y_start, equiv_used and check_input_conflict ensures that
1126 we won't loop indefinitely. */
1127 bool need_rerun;
1128 /* If there is indication of an input conflict at the end,
1129 CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1130 for each insn in the next pass. This is needed so that we won't discard
1131 a partial match if there is a longer match that has to be abandoned due
1132 to an input conflict. */
1133 bool check_input_conflict;
1134 /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1135 have passed a point where there were multiple dying inputs. This helps
1136 us decide if we should set check_input_conflict for the next pass. */
1137 bool had_input_conflict;
1139 /* LIVE_UPDATE controls if we want to change any life info at all. We
1140 set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1141 pass so that we don't introduce new registers just for the note; if we
1142 can't match the notes without the current register information, we drop
1143 them. */
1144 bool live_update;
1146 /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1147 that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1148 to the next free entry. */
1149 rtx x_local[STRUCT_EQUIV_MAX_LOCAL], y_local[STRUCT_EQUIV_MAX_LOCAL];
1150 /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1151 was a source operand (including STRICT_LOW_PART) for the last invocation
1152 of struct_equiv mentioning it, zero if it was a destination-only operand.
1153 Since we are scanning backwards, this means the register is input/local
1154 for the (partial) block scanned so far. */
1155 bool local_rvalue[STRUCT_EQUIV_MAX_LOCAL];
1158 /* Additional fields that are computed for the convenience of the caller. */
1160 /* DYING_INPUTS is set to the number of local registers that turn out
1161 to be inputs to the (possibly partial) block. */
1162 int dying_inputs;
1163 /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1164 that are being compared. A final jump insn will not be included. */
1165 rtx x_end, y_end;
1167 /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1168 Y_LABEL in Y_BLOCK. */
1169 rtx x_label, y_label;
1173 extern bool insns_match_p (rtx, rtx, struct equiv_info *);
1174 extern int struct_equiv_block_eq (int, struct equiv_info *);
1175 extern bool struct_equiv_init (int, struct equiv_info *);
1176 extern bool rtx_equiv_p (rtx *, rtx, int, struct equiv_info *);
1178 /* In cfgrtl.c */
1179 extern bool condjump_equiv_p (struct equiv_info *, bool);
1181 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
1182 static inline bool bb_has_eh_pred (basic_block bb)
1184 edge e;
1185 edge_iterator ei;
1187 FOR_EACH_EDGE (e, ei, bb->preds)
1189 if (e->flags & EDGE_EH)
1190 return true;
1192 return false;
1195 #endif /* GCC_BASIC_BLOCK_H */