2011-11-04 Tom de Vries <tom@codesourcery.com>
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob4275344757533e16b721987eac65545312eb4a07
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "tree-dump.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
36 #include "domwalk.h"
37 #include "cfgloop.h"
38 #include "tree-data-ref.h"
40 static unsigned int tree_ssa_phiopt (void);
41 static unsigned int tree_ssa_phiopt_worker (bool);
42 static bool conditional_replacement (basic_block, basic_block,
43 edge, edge, gimple, tree, tree);
44 static bool value_replacement (basic_block, basic_block,
45 edge, edge, gimple, tree, tree);
46 static bool minmax_replacement (basic_block, basic_block,
47 edge, edge, gimple, tree, tree);
48 static bool abs_replacement (basic_block, basic_block,
49 edge, edge, gimple, tree, tree);
50 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
51 struct pointer_set_t *);
52 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
53 static struct pointer_set_t * get_non_trapping (void);
54 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
56 /* This pass tries to replaces an if-then-else block with an
57 assignment. We have four kinds of transformations. Some of these
58 transformations are also performed by the ifcvt RTL optimizer.
60 Conditional Replacement
61 -----------------------
63 This transformation, implemented in conditional_replacement,
64 replaces
66 bb0:
67 if (cond) goto bb2; else goto bb1;
68 bb1:
69 bb2:
70 x = PHI <0 (bb1), 1 (bb0), ...>;
72 with
74 bb0:
75 x' = cond;
76 goto bb2;
77 bb2:
78 x = PHI <x' (bb0), ...>;
80 We remove bb1 as it becomes unreachable. This occurs often due to
81 gimplification of conditionals.
83 Value Replacement
84 -----------------
86 This transformation, implemented in value_replacement, replaces
88 bb0:
89 if (a != b) goto bb2; else goto bb1;
90 bb1:
91 bb2:
92 x = PHI <a (bb1), b (bb0), ...>;
94 with
96 bb0:
97 bb2:
98 x = PHI <b (bb0), ...>;
100 This opportunity can sometimes occur as a result of other
101 optimizations.
103 ABS Replacement
104 ---------------
106 This transformation, implemented in abs_replacement, replaces
108 bb0:
109 if (a >= 0) goto bb2; else goto bb1;
110 bb1:
111 x = -a;
112 bb2:
113 x = PHI <x (bb1), a (bb0), ...>;
115 with
117 bb0:
118 x' = ABS_EXPR< a >;
119 bb2:
120 x = PHI <x' (bb0), ...>;
122 MIN/MAX Replacement
123 -------------------
125 This transformation, minmax_replacement replaces
127 bb0:
128 if (a <= b) goto bb2; else goto bb1;
129 bb1:
130 bb2:
131 x = PHI <b (bb1), a (bb0), ...>;
133 with
135 bb0:
136 x' = MIN_EXPR (a, b)
137 bb2:
138 x = PHI <x' (bb0), ...>;
140 A similar transformation is done for MAX_EXPR. */
142 static unsigned int
143 tree_ssa_phiopt (void)
145 return tree_ssa_phiopt_worker (false);
148 /* This pass tries to transform conditional stores into unconditional
149 ones, enabling further simplifications with the simpler then and else
150 blocks. In particular it replaces this:
152 bb0:
153 if (cond) goto bb2; else goto bb1;
154 bb1:
155 *p = RHS;
156 bb2:
158 with
160 bb0:
161 if (cond) goto bb1; else goto bb2;
162 bb1:
163 condtmp' = *p;
164 bb2:
165 condtmp = PHI <RHS, condtmp'>
166 *p = condtmp;
168 This transformation can only be done under several constraints,
169 documented below. It also replaces:
171 bb0:
172 if (cond) goto bb2; else goto bb1;
173 bb1:
174 *p = RHS1;
175 goto bb3;
176 bb2:
177 *p = RHS2;
178 bb3:
180 with
182 bb0:
183 if (cond) goto bb3; else goto bb1;
184 bb1:
185 bb3:
186 condtmp = PHI <RHS1, RHS2>
187 *p = condtmp; */
189 static unsigned int
190 tree_ssa_cs_elim (void)
192 return tree_ssa_phiopt_worker (true);
195 /* For conditional store replacement we need a temporary to
196 put the old contents of the memory in. */
197 static tree condstoretemp;
199 /* The core routine of conditional store replacement and normal
200 phi optimizations. Both share much of the infrastructure in how
201 to match applicable basic block patterns. DO_STORE_ELIM is true
202 when we want to do conditional store replacement, false otherwise. */
203 static unsigned int
204 tree_ssa_phiopt_worker (bool do_store_elim)
206 basic_block bb;
207 basic_block *bb_order;
208 unsigned n, i;
209 bool cfgchanged = false;
210 struct pointer_set_t *nontrap = 0;
212 if (do_store_elim)
214 condstoretemp = NULL_TREE;
215 /* Calculate the set of non-trapping memory accesses. */
216 nontrap = get_non_trapping ();
219 /* Search every basic block for COND_EXPR we may be able to optimize.
221 We walk the blocks in order that guarantees that a block with
222 a single predecessor is processed before the predecessor.
223 This ensures that we collapse inner ifs before visiting the
224 outer ones, and also that we do not try to visit a removed
225 block. */
226 bb_order = blocks_in_phiopt_order ();
227 n = n_basic_blocks - NUM_FIXED_BLOCKS;
229 for (i = 0; i < n; i++)
231 gimple cond_stmt, phi;
232 basic_block bb1, bb2;
233 edge e1, e2;
234 tree arg0, arg1;
236 bb = bb_order[i];
238 cond_stmt = last_stmt (bb);
239 /* Check to see if the last statement is a GIMPLE_COND. */
240 if (!cond_stmt
241 || gimple_code (cond_stmt) != GIMPLE_COND)
242 continue;
244 e1 = EDGE_SUCC (bb, 0);
245 bb1 = e1->dest;
246 e2 = EDGE_SUCC (bb, 1);
247 bb2 = e2->dest;
249 /* We cannot do the optimization on abnormal edges. */
250 if ((e1->flags & EDGE_ABNORMAL) != 0
251 || (e2->flags & EDGE_ABNORMAL) != 0)
252 continue;
254 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
255 if (EDGE_COUNT (bb1->succs) == 0
256 || bb2 == NULL
257 || EDGE_COUNT (bb2->succs) == 0)
258 continue;
260 /* Find the bb which is the fall through to the other. */
261 if (EDGE_SUCC (bb1, 0)->dest == bb2)
263 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
265 basic_block bb_tmp = bb1;
266 edge e_tmp = e1;
267 bb1 = bb2;
268 bb2 = bb_tmp;
269 e1 = e2;
270 e2 = e_tmp;
272 else if (do_store_elim
273 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
275 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
277 if (!single_succ_p (bb1)
278 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
279 || !single_succ_p (bb2)
280 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
281 || EDGE_COUNT (bb3->preds) != 2)
282 continue;
283 if (cond_if_else_store_replacement (bb1, bb2, bb3))
284 cfgchanged = true;
285 continue;
287 else
288 continue;
290 e1 = EDGE_SUCC (bb1, 0);
292 /* Make sure that bb1 is just a fall through. */
293 if (!single_succ_p (bb1)
294 || (e1->flags & EDGE_FALLTHRU) == 0)
295 continue;
297 /* Also make sure that bb1 only have one predecessor and that it
298 is bb. */
299 if (!single_pred_p (bb1)
300 || single_pred (bb1) != bb)
301 continue;
303 if (do_store_elim)
305 /* bb1 is the middle block, bb2 the join block, bb the split block,
306 e1 the fallthrough edge from bb1 to bb2. We can't do the
307 optimization if the join block has more than two predecessors. */
308 if (EDGE_COUNT (bb2->preds) > 2)
309 continue;
310 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
311 cfgchanged = true;
313 else
315 gimple_seq phis = phi_nodes (bb2);
316 gimple_stmt_iterator gsi;
318 /* Check to make sure that there is only one non-virtual PHI node.
319 TODO: we could do it with more than one iff the other PHI nodes
320 have the same elements for these two edges. */
321 phi = NULL;
322 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
324 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
325 continue;
326 if (phi)
328 phi = NULL;
329 break;
331 phi = gsi_stmt (gsi);
333 if (!phi)
334 continue;
336 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
337 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
339 /* Something is wrong if we cannot find the arguments in the PHI
340 node. */
341 gcc_assert (arg0 != NULL && arg1 != NULL);
343 /* Do the replacement of conditional if it can be done. */
344 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
345 cfgchanged = true;
346 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
347 cfgchanged = true;
348 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
349 cfgchanged = true;
350 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
351 cfgchanged = true;
355 free (bb_order);
357 if (do_store_elim)
358 pointer_set_destroy (nontrap);
359 /* If the CFG has changed, we should cleanup the CFG. */
360 if (cfgchanged && do_store_elim)
362 /* In cond-store replacement we have added some loads on edges
363 and new VOPS (as we moved the store, and created a load). */
364 gsi_commit_edge_inserts ();
365 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
367 else if (cfgchanged)
368 return TODO_cleanup_cfg;
369 return 0;
372 /* Returns the list of basic blocks in the function in an order that guarantees
373 that if a block X has just a single predecessor Y, then Y is after X in the
374 ordering. */
376 basic_block *
377 blocks_in_phiopt_order (void)
379 basic_block x, y;
380 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
381 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
382 unsigned np, i;
383 sbitmap visited = sbitmap_alloc (last_basic_block);
385 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
386 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
388 sbitmap_zero (visited);
390 MARK_VISITED (ENTRY_BLOCK_PTR);
391 FOR_EACH_BB (x)
393 if (VISITED_P (x))
394 continue;
396 /* Walk the predecessors of x as long as they have precisely one
397 predecessor and add them to the list, so that they get stored
398 after x. */
399 for (y = x, np = 1;
400 single_pred_p (y) && !VISITED_P (single_pred (y));
401 y = single_pred (y))
402 np++;
403 for (y = x, i = n - np;
404 single_pred_p (y) && !VISITED_P (single_pred (y));
405 y = single_pred (y), i++)
407 order[i] = y;
408 MARK_VISITED (y);
410 order[i] = y;
411 MARK_VISITED (y);
413 gcc_assert (i == n - 1);
414 n -= np;
417 sbitmap_free (visited);
418 gcc_assert (n == 0);
419 return order;
421 #undef MARK_VISITED
422 #undef VISITED_P
426 /* Return TRUE if block BB has no executable statements, otherwise return
427 FALSE. */
429 bool
430 empty_block_p (basic_block bb)
432 /* BB must have no executable statements. */
433 gimple_stmt_iterator gsi = gsi_after_labels (bb);
434 if (gsi_end_p (gsi))
435 return true;
436 if (is_gimple_debug (gsi_stmt (gsi)))
437 gsi_next_nondebug (&gsi);
438 return gsi_end_p (gsi);
441 /* Replace PHI node element whose edge is E in block BB with variable NEW.
442 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
443 is known to have two edges, one of which must reach BB). */
445 static void
446 replace_phi_edge_with_variable (basic_block cond_block,
447 edge e, gimple phi, tree new_tree)
449 basic_block bb = gimple_bb (phi);
450 basic_block block_to_remove;
451 gimple_stmt_iterator gsi;
453 /* Change the PHI argument to new. */
454 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
456 /* Remove the empty basic block. */
457 if (EDGE_SUCC (cond_block, 0)->dest == bb)
459 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
460 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
461 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
462 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
464 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
466 else
468 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
469 EDGE_SUCC (cond_block, 1)->flags
470 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
471 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
472 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
474 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
476 delete_basic_block (block_to_remove);
478 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
479 gsi = gsi_last_bb (cond_block);
480 gsi_remove (&gsi, true);
482 if (dump_file && (dump_flags & TDF_DETAILS))
483 fprintf (dump_file,
484 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
485 cond_block->index,
486 bb->index);
489 /* The function conditional_replacement does the main work of doing the
490 conditional replacement. Return true if the replacement is done.
491 Otherwise return false.
492 BB is the basic block where the replacement is going to be done on. ARG0
493 is argument 0 from PHI. Likewise for ARG1. */
495 static bool
496 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
497 edge e0, edge e1, gimple phi,
498 tree arg0, tree arg1)
500 tree result;
501 gimple stmt, new_stmt;
502 tree cond;
503 gimple_stmt_iterator gsi;
504 edge true_edge, false_edge;
505 tree new_var, new_var2;
507 /* FIXME: Gimplification of complex type is too hard for now. */
508 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
509 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
510 return false;
512 /* The PHI arguments have the constants 0 and 1, then convert
513 it to the conditional. */
514 if ((integer_zerop (arg0) && integer_onep (arg1))
515 || (integer_zerop (arg1) && integer_onep (arg0)))
517 else
518 return false;
520 if (!empty_block_p (middle_bb))
521 return false;
523 /* At this point we know we have a GIMPLE_COND with two successors.
524 One successor is BB, the other successor is an empty block which
525 falls through into BB.
527 There is a single PHI node at the join point (BB) and its arguments
528 are constants (0, 1).
530 So, given the condition COND, and the two PHI arguments, we can
531 rewrite this PHI into non-branching code:
533 dest = (COND) or dest = COND'
535 We use the condition as-is if the argument associated with the
536 true edge has the value one or the argument associated with the
537 false edge as the value zero. Note that those conditions are not
538 the same since only one of the outgoing edges from the GIMPLE_COND
539 will directly reach BB and thus be associated with an argument. */
541 stmt = last_stmt (cond_bb);
542 result = PHI_RESULT (phi);
544 /* To handle special cases like floating point comparison, it is easier and
545 less error-prone to build a tree and gimplify it on the fly though it is
546 less efficient. */
547 cond = fold_build2_loc (gimple_location (stmt),
548 gimple_cond_code (stmt), boolean_type_node,
549 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
551 /* We need to know which is the true edge and which is the false
552 edge so that we know when to invert the condition below. */
553 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
554 if ((e0 == true_edge && integer_zerop (arg0))
555 || (e0 == false_edge && integer_onep (arg0))
556 || (e1 == true_edge && integer_zerop (arg1))
557 || (e1 == false_edge && integer_onep (arg1)))
558 cond = fold_build1_loc (gimple_location (stmt),
559 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
561 /* Insert our new statements at the end of conditional block before the
562 COND_STMT. */
563 gsi = gsi_for_stmt (stmt);
564 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
565 GSI_SAME_STMT);
567 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
569 source_location locus_0, locus_1;
571 new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
572 add_referenced_var (new_var2);
573 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
574 new_var, NULL);
575 new_var2 = make_ssa_name (new_var2, new_stmt);
576 gimple_assign_set_lhs (new_stmt, new_var2);
577 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
578 new_var = new_var2;
580 /* Set the locus to the first argument, unless is doesn't have one. */
581 locus_0 = gimple_phi_arg_location (phi, 0);
582 locus_1 = gimple_phi_arg_location (phi, 1);
583 if (locus_0 == UNKNOWN_LOCATION)
584 locus_0 = locus_1;
585 gimple_set_location (new_stmt, locus_0);
588 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
590 /* Note that we optimized this PHI. */
591 return true;
594 /* The function value_replacement does the main work of doing the value
595 replacement. Return true if the replacement is done. Otherwise return
596 false.
597 BB is the basic block where the replacement is going to be done on. ARG0
598 is argument 0 from the PHI. Likewise for ARG1. */
600 static bool
601 value_replacement (basic_block cond_bb, basic_block middle_bb,
602 edge e0, edge e1, gimple phi,
603 tree arg0, tree arg1)
605 gimple cond;
606 edge true_edge, false_edge;
607 enum tree_code code;
609 /* If the type says honor signed zeros we cannot do this
610 optimization. */
611 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
612 return false;
614 if (!empty_block_p (middle_bb))
615 return false;
617 cond = last_stmt (cond_bb);
618 code = gimple_cond_code (cond);
620 /* This transformation is only valid for equality comparisons. */
621 if (code != NE_EXPR && code != EQ_EXPR)
622 return false;
624 /* We need to know which is the true edge and which is the false
625 edge so that we know if have abs or negative abs. */
626 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
628 /* At this point we know we have a COND_EXPR with two successors.
629 One successor is BB, the other successor is an empty block which
630 falls through into BB.
632 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
634 There is a single PHI node at the join point (BB) with two arguments.
636 We now need to verify that the two arguments in the PHI node match
637 the two arguments to the equality comparison. */
639 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
640 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
641 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
642 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
644 edge e;
645 tree arg;
647 /* For NE_EXPR, we want to build an assignment result = arg where
648 arg is the PHI argument associated with the true edge. For
649 EQ_EXPR we want the PHI argument associated with the false edge. */
650 e = (code == NE_EXPR ? true_edge : false_edge);
652 /* Unfortunately, E may not reach BB (it may instead have gone to
653 OTHER_BLOCK). If that is the case, then we want the single outgoing
654 edge from OTHER_BLOCK which reaches BB and represents the desired
655 path from COND_BLOCK. */
656 if (e->dest == middle_bb)
657 e = single_succ_edge (e->dest);
659 /* Now we know the incoming edge to BB that has the argument for the
660 RHS of our new assignment statement. */
661 if (e0 == e)
662 arg = arg0;
663 else
664 arg = arg1;
666 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
668 /* Note that we optimized this PHI. */
669 return true;
671 return false;
674 /* The function minmax_replacement does the main work of doing the minmax
675 replacement. Return true if the replacement is done. Otherwise return
676 false.
677 BB is the basic block where the replacement is going to be done on. ARG0
678 is argument 0 from the PHI. Likewise for ARG1. */
680 static bool
681 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
682 edge e0, edge e1, gimple phi,
683 tree arg0, tree arg1)
685 tree result, type;
686 gimple cond, new_stmt;
687 edge true_edge, false_edge;
688 enum tree_code cmp, minmax, ass_code;
689 tree smaller, larger, arg_true, arg_false;
690 gimple_stmt_iterator gsi, gsi_from;
692 type = TREE_TYPE (PHI_RESULT (phi));
694 /* The optimization may be unsafe due to NaNs. */
695 if (HONOR_NANS (TYPE_MODE (type)))
696 return false;
698 cond = last_stmt (cond_bb);
699 cmp = gimple_cond_code (cond);
701 /* This transformation is only valid for order comparisons. Record which
702 operand is smaller/larger if the result of the comparison is true. */
703 if (cmp == LT_EXPR || cmp == LE_EXPR)
705 smaller = gimple_cond_lhs (cond);
706 larger = gimple_cond_rhs (cond);
708 else if (cmp == GT_EXPR || cmp == GE_EXPR)
710 smaller = gimple_cond_rhs (cond);
711 larger = gimple_cond_lhs (cond);
713 else
714 return false;
716 /* We need to know which is the true edge and which is the false
717 edge so that we know if have abs or negative abs. */
718 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
720 /* Forward the edges over the middle basic block. */
721 if (true_edge->dest == middle_bb)
722 true_edge = EDGE_SUCC (true_edge->dest, 0);
723 if (false_edge->dest == middle_bb)
724 false_edge = EDGE_SUCC (false_edge->dest, 0);
726 if (true_edge == e0)
728 gcc_assert (false_edge == e1);
729 arg_true = arg0;
730 arg_false = arg1;
732 else
734 gcc_assert (false_edge == e0);
735 gcc_assert (true_edge == e1);
736 arg_true = arg1;
737 arg_false = arg0;
740 if (empty_block_p (middle_bb))
742 if (operand_equal_for_phi_arg_p (arg_true, smaller)
743 && operand_equal_for_phi_arg_p (arg_false, larger))
745 /* Case
747 if (smaller < larger)
748 rslt = smaller;
749 else
750 rslt = larger; */
751 minmax = MIN_EXPR;
753 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
754 && operand_equal_for_phi_arg_p (arg_true, larger))
755 minmax = MAX_EXPR;
756 else
757 return false;
759 else
761 /* Recognize the following case, assuming d <= u:
763 if (a <= u)
764 b = MAX (a, d);
765 x = PHI <b, u>
767 This is equivalent to
769 b = MAX (a, d);
770 x = MIN (b, u); */
772 gimple assign = last_and_only_stmt (middle_bb);
773 tree lhs, op0, op1, bound;
775 if (!assign
776 || gimple_code (assign) != GIMPLE_ASSIGN)
777 return false;
779 lhs = gimple_assign_lhs (assign);
780 ass_code = gimple_assign_rhs_code (assign);
781 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
782 return false;
783 op0 = gimple_assign_rhs1 (assign);
784 op1 = gimple_assign_rhs2 (assign);
786 if (true_edge->src == middle_bb)
788 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
789 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
790 return false;
792 if (operand_equal_for_phi_arg_p (arg_false, larger))
794 /* Case
796 if (smaller < larger)
798 r' = MAX_EXPR (smaller, bound)
800 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
801 if (ass_code != MAX_EXPR)
802 return false;
804 minmax = MIN_EXPR;
805 if (operand_equal_for_phi_arg_p (op0, smaller))
806 bound = op1;
807 else if (operand_equal_for_phi_arg_p (op1, smaller))
808 bound = op0;
809 else
810 return false;
812 /* We need BOUND <= LARGER. */
813 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
814 bound, larger)))
815 return false;
817 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
819 /* Case
821 if (smaller < larger)
823 r' = MIN_EXPR (larger, bound)
825 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
826 if (ass_code != MIN_EXPR)
827 return false;
829 minmax = MAX_EXPR;
830 if (operand_equal_for_phi_arg_p (op0, larger))
831 bound = op1;
832 else if (operand_equal_for_phi_arg_p (op1, larger))
833 bound = op0;
834 else
835 return false;
837 /* We need BOUND >= SMALLER. */
838 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
839 bound, smaller)))
840 return false;
842 else
843 return false;
845 else
847 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
848 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
849 return false;
851 if (operand_equal_for_phi_arg_p (arg_true, larger))
853 /* Case
855 if (smaller > larger)
857 r' = MIN_EXPR (smaller, bound)
859 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
860 if (ass_code != MIN_EXPR)
861 return false;
863 minmax = MAX_EXPR;
864 if (operand_equal_for_phi_arg_p (op0, smaller))
865 bound = op1;
866 else if (operand_equal_for_phi_arg_p (op1, smaller))
867 bound = op0;
868 else
869 return false;
871 /* We need BOUND >= LARGER. */
872 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
873 bound, larger)))
874 return false;
876 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
878 /* Case
880 if (smaller > larger)
882 r' = MAX_EXPR (larger, bound)
884 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
885 if (ass_code != MAX_EXPR)
886 return false;
888 minmax = MIN_EXPR;
889 if (operand_equal_for_phi_arg_p (op0, larger))
890 bound = op1;
891 else if (operand_equal_for_phi_arg_p (op1, larger))
892 bound = op0;
893 else
894 return false;
896 /* We need BOUND <= SMALLER. */
897 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
898 bound, smaller)))
899 return false;
901 else
902 return false;
905 /* Move the statement from the middle block. */
906 gsi = gsi_last_bb (cond_bb);
907 gsi_from = gsi_last_nondebug_bb (middle_bb);
908 gsi_move_before (&gsi_from, &gsi);
911 /* Emit the statement to compute min/max. */
912 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
913 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
914 gsi = gsi_last_bb (cond_bb);
915 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
917 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
918 return true;
921 /* The function absolute_replacement does the main work of doing the absolute
922 replacement. Return true if the replacement is done. Otherwise return
923 false.
924 bb is the basic block where the replacement is going to be done on. arg0
925 is argument 0 from the phi. Likewise for arg1. */
927 static bool
928 abs_replacement (basic_block cond_bb, basic_block middle_bb,
929 edge e0 ATTRIBUTE_UNUSED, edge e1,
930 gimple phi, tree arg0, tree arg1)
932 tree result;
933 gimple new_stmt, cond;
934 gimple_stmt_iterator gsi;
935 edge true_edge, false_edge;
936 gimple assign;
937 edge e;
938 tree rhs, lhs;
939 bool negate;
940 enum tree_code cond_code;
942 /* If the type says honor signed zeros we cannot do this
943 optimization. */
944 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
945 return false;
947 /* OTHER_BLOCK must have only one executable statement which must have the
948 form arg0 = -arg1 or arg1 = -arg0. */
950 assign = last_and_only_stmt (middle_bb);
951 /* If we did not find the proper negation assignment, then we can not
952 optimize. */
953 if (assign == NULL)
954 return false;
956 /* If we got here, then we have found the only executable statement
957 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
958 arg1 = -arg0, then we can not optimize. */
959 if (gimple_code (assign) != GIMPLE_ASSIGN)
960 return false;
962 lhs = gimple_assign_lhs (assign);
964 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
965 return false;
967 rhs = gimple_assign_rhs1 (assign);
969 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
970 if (!(lhs == arg0 && rhs == arg1)
971 && !(lhs == arg1 && rhs == arg0))
972 return false;
974 cond = last_stmt (cond_bb);
975 result = PHI_RESULT (phi);
977 /* Only relationals comparing arg[01] against zero are interesting. */
978 cond_code = gimple_cond_code (cond);
979 if (cond_code != GT_EXPR && cond_code != GE_EXPR
980 && cond_code != LT_EXPR && cond_code != LE_EXPR)
981 return false;
983 /* Make sure the conditional is arg[01] OP y. */
984 if (gimple_cond_lhs (cond) != rhs)
985 return false;
987 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
988 ? real_zerop (gimple_cond_rhs (cond))
989 : integer_zerop (gimple_cond_rhs (cond)))
991 else
992 return false;
994 /* We need to know which is the true edge and which is the false
995 edge so that we know if have abs or negative abs. */
996 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
998 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
999 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1000 the false edge goes to OTHER_BLOCK. */
1001 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1002 e = true_edge;
1003 else
1004 e = false_edge;
1006 if (e->dest == middle_bb)
1007 negate = true;
1008 else
1009 negate = false;
1011 result = duplicate_ssa_name (result, NULL);
1013 if (negate)
1015 tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
1016 add_referenced_var (tmp);
1017 lhs = make_ssa_name (tmp, NULL);
1019 else
1020 lhs = result;
1022 /* Build the modify expression with abs expression. */
1023 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1025 gsi = gsi_last_bb (cond_bb);
1026 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1028 if (negate)
1030 /* Get the right GSI. We want to insert after the recently
1031 added ABS_EXPR statement (which we know is the first statement
1032 in the block. */
1033 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1035 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1038 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1040 /* Note that we optimized this PHI. */
1041 return true;
1044 /* Auxiliary functions to determine the set of memory accesses which
1045 can't trap because they are preceded by accesses to the same memory
1046 portion. We do that for MEM_REFs, so we only need to track
1047 the SSA_NAME of the pointer indirectly referenced. The algorithm
1048 simply is a walk over all instructions in dominator order. When
1049 we see an MEM_REF we determine if we've already seen a same
1050 ref anywhere up to the root of the dominator tree. If we do the
1051 current access can't trap. If we don't see any dominating access
1052 the current access might trap, but might also make later accesses
1053 non-trapping, so we remember it. We need to be careful with loads
1054 or stores, for instance a load might not trap, while a store would,
1055 so if we see a dominating read access this doesn't mean that a later
1056 write access would not trap. Hence we also need to differentiate the
1057 type of access(es) seen.
1059 ??? We currently are very conservative and assume that a load might
1060 trap even if a store doesn't (write-only memory). This probably is
1061 overly conservative. */
1063 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1064 through it was seen, which would constitute a no-trap region for
1065 same accesses. */
1066 struct name_to_bb
1068 tree ssa_name;
1069 basic_block bb;
1070 unsigned store : 1;
1073 /* The hash table for remembering what we've seen. */
1074 static htab_t seen_ssa_names;
1076 /* The set of MEM_REFs which can't trap. */
1077 static struct pointer_set_t *nontrap_set;
1079 /* The hash function, based on the pointer to the pointer SSA_NAME. */
1080 static hashval_t
1081 name_to_bb_hash (const void *p)
1083 const_tree n = ((const struct name_to_bb *)p)->ssa_name;
1084 return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store;
1087 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
1088 it's enough to simply compare them for equality. */
1089 static int
1090 name_to_bb_eq (const void *p1, const void *p2)
1092 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1093 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1095 return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
1098 /* We see the expression EXP in basic block BB. If it's an interesting
1099 expression (an MEM_REF through an SSA_NAME) possibly insert the
1100 expression into the set NONTRAP or the hash table of seen expressions.
1101 STORE is true if this expression is on the LHS, otherwise it's on
1102 the RHS. */
1103 static void
1104 add_or_mark_expr (basic_block bb, tree exp,
1105 struct pointer_set_t *nontrap, bool store)
1107 if (TREE_CODE (exp) == MEM_REF
1108 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
1110 tree name = TREE_OPERAND (exp, 0);
1111 struct name_to_bb map;
1112 void **slot;
1113 struct name_to_bb *n2bb;
1114 basic_block found_bb = 0;
1116 /* Try to find the last seen MEM_REF through the same
1117 SSA_NAME, which can trap. */
1118 map.ssa_name = name;
1119 map.bb = 0;
1120 map.store = store;
1121 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1122 n2bb = (struct name_to_bb *) *slot;
1123 if (n2bb)
1124 found_bb = n2bb->bb;
1126 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1127 (it's in a basic block on the path from us to the dominator root)
1128 then we can't trap. */
1129 if (found_bb && found_bb->aux == (void *)1)
1131 pointer_set_insert (nontrap, exp);
1133 else
1135 /* EXP might trap, so insert it into the hash table. */
1136 if (n2bb)
1138 n2bb->bb = bb;
1140 else
1142 n2bb = XNEW (struct name_to_bb);
1143 n2bb->ssa_name = name;
1144 n2bb->bb = bb;
1145 n2bb->store = store;
1146 *slot = n2bb;
1152 /* Called by walk_dominator_tree, when entering the block BB. */
1153 static void
1154 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1156 gimple_stmt_iterator gsi;
1157 /* Mark this BB as being on the path to dominator root. */
1158 bb->aux = (void*)1;
1160 /* And walk the statements in order. */
1161 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1163 gimple stmt = gsi_stmt (gsi);
1165 if (is_gimple_assign (stmt))
1167 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1168 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1169 if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1)
1170 add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set,
1171 false);
1176 /* Called by walk_dominator_tree, when basic block BB is exited. */
1177 static void
1178 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1180 /* This BB isn't on the path to dominator root anymore. */
1181 bb->aux = NULL;
1184 /* This is the entry point of gathering non trapping memory accesses.
1185 It will do a dominator walk over the whole function, and it will
1186 make use of the bb->aux pointers. It returns a set of trees
1187 (the MEM_REFs itself) which can't trap. */
1188 static struct pointer_set_t *
1189 get_non_trapping (void)
1191 struct pointer_set_t *nontrap;
1192 struct dom_walk_data walk_data;
1194 nontrap = pointer_set_create ();
1195 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1196 free);
1197 /* We're going to do a dominator walk, so ensure that we have
1198 dominance information. */
1199 calculate_dominance_info (CDI_DOMINATORS);
1201 /* Setup callbacks for the generic dominator tree walker. */
1202 nontrap_set = nontrap;
1203 walk_data.dom_direction = CDI_DOMINATORS;
1204 walk_data.initialize_block_local_data = NULL;
1205 walk_data.before_dom_children = nt_init_block;
1206 walk_data.after_dom_children = nt_fini_block;
1207 walk_data.global_data = NULL;
1208 walk_data.block_local_data_size = 0;
1210 init_walk_dominator_tree (&walk_data);
1211 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1212 fini_walk_dominator_tree (&walk_data);
1213 htab_delete (seen_ssa_names);
1215 return nontrap;
1218 /* Do the main work of conditional store replacement. We already know
1219 that the recognized pattern looks like so:
1221 split:
1222 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1223 MIDDLE_BB:
1224 something
1225 fallthrough (edge E0)
1226 JOIN_BB:
1227 some more
1229 We check that MIDDLE_BB contains only one store, that that store
1230 doesn't trap (not via NOTRAP, but via checking if an access to the same
1231 memory location dominates us) and that the store has a "simple" RHS. */
1233 static bool
1234 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1235 edge e0, edge e1, struct pointer_set_t *nontrap)
1237 gimple assign = last_and_only_stmt (middle_bb);
1238 tree lhs, rhs, name;
1239 gimple newphi, new_stmt;
1240 gimple_stmt_iterator gsi;
1241 source_location locus;
1243 /* Check if middle_bb contains of only one store. */
1244 if (!assign
1245 || !gimple_assign_single_p (assign))
1246 return false;
1248 locus = gimple_location (assign);
1249 lhs = gimple_assign_lhs (assign);
1250 rhs = gimple_assign_rhs1 (assign);
1251 if (TREE_CODE (lhs) != MEM_REF
1252 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1253 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1254 return false;
1256 /* Prove that we can move the store down. We could also check
1257 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1258 whose value is not available readily, which we want to avoid. */
1259 if (!pointer_set_contains (nontrap, lhs))
1260 return false;
1262 /* Now we've checked the constraints, so do the transformation:
1263 1) Remove the single store. */
1264 gsi = gsi_for_stmt (assign);
1265 unlink_stmt_vdef (assign);
1266 gsi_remove (&gsi, true);
1267 release_defs (assign);
1269 /* 2) Create a temporary where we can store the old content
1270 of the memory touched by the store, if we need to. */
1271 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1272 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
1273 add_referenced_var (condstoretemp);
1275 /* 3) Insert a load from the memory of the store to the temporary
1276 on the edge which did not contain the store. */
1277 lhs = unshare_expr (lhs);
1278 new_stmt = gimple_build_assign (condstoretemp, lhs);
1279 name = make_ssa_name (condstoretemp, new_stmt);
1280 gimple_assign_set_lhs (new_stmt, name);
1281 gimple_set_location (new_stmt, locus);
1282 gsi_insert_on_edge (e1, new_stmt);
1284 /* 4) Create a PHI node at the join block, with one argument
1285 holding the old RHS, and the other holding the temporary
1286 where we stored the old memory contents. */
1287 newphi = create_phi_node (condstoretemp, join_bb);
1288 add_phi_arg (newphi, rhs, e0, locus);
1289 add_phi_arg (newphi, name, e1, locus);
1291 lhs = unshare_expr (lhs);
1292 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1294 /* 5) Insert that PHI node. */
1295 gsi = gsi_after_labels (join_bb);
1296 if (gsi_end_p (gsi))
1298 gsi = gsi_last_bb (join_bb);
1299 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1301 else
1302 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1304 return true;
1307 /* Do the main work of conditional store replacement. */
1309 static bool
1310 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1311 basic_block join_bb, gimple then_assign,
1312 gimple else_assign)
1314 tree lhs_base, lhs, then_rhs, else_rhs;
1315 source_location then_locus, else_locus;
1316 gimple_stmt_iterator gsi;
1317 gimple newphi, new_stmt;
1319 if (then_assign == NULL
1320 || !gimple_assign_single_p (then_assign)
1321 || else_assign == NULL
1322 || !gimple_assign_single_p (else_assign))
1323 return false;
1325 lhs = gimple_assign_lhs (then_assign);
1326 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1327 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1328 return false;
1330 lhs_base = get_base_address (lhs);
1331 if (lhs_base == NULL_TREE
1332 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1333 return false;
1335 then_rhs = gimple_assign_rhs1 (then_assign);
1336 else_rhs = gimple_assign_rhs1 (else_assign);
1337 then_locus = gimple_location (then_assign);
1338 else_locus = gimple_location (else_assign);
1340 /* Now we've checked the constraints, so do the transformation:
1341 1) Remove the stores. */
1342 gsi = gsi_for_stmt (then_assign);
1343 unlink_stmt_vdef (then_assign);
1344 gsi_remove (&gsi, true);
1345 release_defs (then_assign);
1347 gsi = gsi_for_stmt (else_assign);
1348 unlink_stmt_vdef (else_assign);
1349 gsi_remove (&gsi, true);
1350 release_defs (else_assign);
1352 /* 2) Create a temporary where we can store the old content
1353 of the memory touched by the store, if we need to. */
1354 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1355 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
1356 add_referenced_var (condstoretemp);
1358 /* 3) Create a PHI node at the join block, with one argument
1359 holding the old RHS, and the other holding the temporary
1360 where we stored the old memory contents. */
1361 newphi = create_phi_node (condstoretemp, join_bb);
1362 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1363 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1365 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1367 /* 4) Insert that PHI node. */
1368 gsi = gsi_after_labels (join_bb);
1369 if (gsi_end_p (gsi))
1371 gsi = gsi_last_bb (join_bb);
1372 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1374 else
1375 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1377 return true;
1380 /* Conditional store replacement. We already know
1381 that the recognized pattern looks like so:
1383 split:
1384 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1385 THEN_BB:
1387 X = Y;
1389 goto JOIN_BB;
1390 ELSE_BB:
1392 X = Z;
1394 fallthrough (edge E0)
1395 JOIN_BB:
1396 some more
1398 We check that it is safe to sink the store to JOIN_BB by verifying that
1399 there are no read-after-write or write-after-write dependencies in
1400 THEN_BB and ELSE_BB. */
1402 static bool
1403 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1404 basic_block join_bb)
1406 gimple then_assign = last_and_only_stmt (then_bb);
1407 gimple else_assign = last_and_only_stmt (else_bb);
1408 VEC (data_reference_p, heap) *then_datarefs, *else_datarefs;
1409 VEC (ddr_p, heap) *then_ddrs, *else_ddrs;
1410 gimple then_store, else_store;
1411 bool found, ok = false, res;
1412 struct data_dependence_relation *ddr;
1413 data_reference_p then_dr, else_dr;
1414 int i, j;
1415 tree then_lhs, else_lhs;
1416 VEC (gimple, heap) *then_stores, *else_stores;
1417 basic_block blocks[3];
1419 if (MAX_STORES_TO_SINK == 0)
1420 return false;
1422 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1423 if (then_assign && else_assign)
1424 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1425 then_assign, else_assign);
1427 /* Find data references. */
1428 then_datarefs = VEC_alloc (data_reference_p, heap, 1);
1429 else_datarefs = VEC_alloc (data_reference_p, heap, 1);
1430 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1431 == chrec_dont_know)
1432 || !VEC_length (data_reference_p, then_datarefs)
1433 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1434 == chrec_dont_know)
1435 || !VEC_length (data_reference_p, else_datarefs))
1437 free_data_refs (then_datarefs);
1438 free_data_refs (else_datarefs);
1439 return false;
1442 /* Find pairs of stores with equal LHS. */
1443 then_stores = VEC_alloc (gimple, heap, 1);
1444 else_stores = VEC_alloc (gimple, heap, 1);
1445 FOR_EACH_VEC_ELT (data_reference_p, then_datarefs, i, then_dr)
1447 if (DR_IS_READ (then_dr))
1448 continue;
1450 then_store = DR_STMT (then_dr);
1451 then_lhs = gimple_get_lhs (then_store);
1452 found = false;
1454 FOR_EACH_VEC_ELT (data_reference_p, else_datarefs, j, else_dr)
1456 if (DR_IS_READ (else_dr))
1457 continue;
1459 else_store = DR_STMT (else_dr);
1460 else_lhs = gimple_get_lhs (else_store);
1462 if (operand_equal_p (then_lhs, else_lhs, 0))
1464 found = true;
1465 break;
1469 if (!found)
1470 continue;
1472 VEC_safe_push (gimple, heap, then_stores, then_store);
1473 VEC_safe_push (gimple, heap, else_stores, else_store);
1476 /* No pairs of stores found. */
1477 if (!VEC_length (gimple, then_stores)
1478 || VEC_length (gimple, then_stores) > (unsigned) MAX_STORES_TO_SINK)
1480 free_data_refs (then_datarefs);
1481 free_data_refs (else_datarefs);
1482 VEC_free (gimple, heap, then_stores);
1483 VEC_free (gimple, heap, else_stores);
1484 return false;
1487 /* Compute and check data dependencies in both basic blocks. */
1488 then_ddrs = VEC_alloc (ddr_p, heap, 1);
1489 else_ddrs = VEC_alloc (ddr_p, heap, 1);
1490 compute_all_dependences (then_datarefs, &then_ddrs, NULL, false);
1491 compute_all_dependences (else_datarefs, &else_ddrs, NULL, false);
1492 blocks[0] = then_bb;
1493 blocks[1] = else_bb;
1494 blocks[2] = join_bb;
1495 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1497 /* Check that there are no read-after-write or write-after-write dependencies
1498 in THEN_BB. */
1499 FOR_EACH_VEC_ELT (ddr_p, then_ddrs, i, ddr)
1501 struct data_reference *dra = DDR_A (ddr);
1502 struct data_reference *drb = DDR_B (ddr);
1504 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1505 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1506 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1507 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1508 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1509 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1511 free_dependence_relations (then_ddrs);
1512 free_dependence_relations (else_ddrs);
1513 free_data_refs (then_datarefs);
1514 free_data_refs (else_datarefs);
1515 VEC_free (gimple, heap, then_stores);
1516 VEC_free (gimple, heap, else_stores);
1517 return false;
1521 /* Check that there are no read-after-write or write-after-write dependencies
1522 in ELSE_BB. */
1523 FOR_EACH_VEC_ELT (ddr_p, else_ddrs, i, ddr)
1525 struct data_reference *dra = DDR_A (ddr);
1526 struct data_reference *drb = DDR_B (ddr);
1528 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1529 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1530 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1531 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1532 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1533 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1535 free_dependence_relations (then_ddrs);
1536 free_dependence_relations (else_ddrs);
1537 free_data_refs (then_datarefs);
1538 free_data_refs (else_datarefs);
1539 VEC_free (gimple, heap, then_stores);
1540 VEC_free (gimple, heap, else_stores);
1541 return false;
1545 /* Sink stores with same LHS. */
1546 FOR_EACH_VEC_ELT (gimple, then_stores, i, then_store)
1548 else_store = VEC_index (gimple, else_stores, i);
1549 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1550 then_store, else_store);
1551 ok = ok || res;
1554 free_dependence_relations (then_ddrs);
1555 free_dependence_relations (else_ddrs);
1556 free_data_refs (then_datarefs);
1557 free_data_refs (else_datarefs);
1558 VEC_free (gimple, heap, then_stores);
1559 VEC_free (gimple, heap, else_stores);
1561 return ok;
1564 /* Always do these optimizations if we have SSA
1565 trees to work on. */
1566 static bool
1567 gate_phiopt (void)
1569 return 1;
1572 struct gimple_opt_pass pass_phiopt =
1575 GIMPLE_PASS,
1576 "phiopt", /* name */
1577 gate_phiopt, /* gate */
1578 tree_ssa_phiopt, /* execute */
1579 NULL, /* sub */
1580 NULL, /* next */
1581 0, /* static_pass_number */
1582 TV_TREE_PHIOPT, /* tv_id */
1583 PROP_cfg | PROP_ssa, /* properties_required */
1584 0, /* properties_provided */
1585 0, /* properties_destroyed */
1586 0, /* todo_flags_start */
1587 TODO_ggc_collect
1588 | TODO_verify_ssa
1589 | TODO_verify_flow
1590 | TODO_verify_stmts /* todo_flags_finish */
1594 static bool
1595 gate_cselim (void)
1597 return flag_tree_cselim;
1600 struct gimple_opt_pass pass_cselim =
1603 GIMPLE_PASS,
1604 "cselim", /* name */
1605 gate_cselim, /* gate */
1606 tree_ssa_cs_elim, /* execute */
1607 NULL, /* sub */
1608 NULL, /* next */
1609 0, /* static_pass_number */
1610 TV_TREE_PHIOPT, /* tv_id */
1611 PROP_cfg | PROP_ssa, /* properties_required */
1612 0, /* properties_provided */
1613 0, /* properties_destroyed */
1614 0, /* todo_flags_start */
1615 TODO_ggc_collect
1616 | TODO_verify_ssa
1617 | TODO_verify_flow
1618 | TODO_verify_stmts /* todo_flags_finish */