1 /* A pass for lowering gimple to HSAIL
2 Copyright (C) 2013-2016 Free Software Foundation, Inc.
3 Contributed by Martin Jambor <mjambor@suse.cz> and
4 Martin Liska <mliska@suse.cz>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
27 #include "hash-table.h"
30 #include "tree-pass.h"
33 #include "basic-block.h"
34 #include "fold-const.h"
36 #include "gimple-iterator.h"
39 #include "gimple-pretty-print.h"
40 #include "diagnostic-core.h"
41 #include "alloc-pool.h"
42 #include "gimple-ssa.h"
43 #include "tree-phinodes.h"
44 #include "stringpool.h"
45 #include "tree-ssanames.h"
47 #include "ssa-iterators.h"
49 #include "print-tree.h"
50 #include "symbol-summary.h"
58 #include "gomp-constants.h"
59 #include "internal-fn.h"
61 #include "stor-layout.h"
63 /* Print a warning message and set that we have seen an error. */
65 #define HSA_SORRY_ATV(location, message, ...) \
69 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
71 inform (location, message, __VA_ARGS__); \
75 /* Same as previous, but highlight a location. */
77 #define HSA_SORRY_AT(location, message) \
81 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
83 inform (location, message); \
87 /* Default number of threads used by kernel dispatch. */
89 #define HSA_DEFAULT_NUM_THREADS 64
91 /* Following structures are defined in the final version
92 of HSA specification. */
94 /* HSA queue packet is shadow structure, originally provided by AMD. */
96 struct hsa_queue_packet
100 uint16_t workgroup_size_x
;
101 uint16_t workgroup_size_y
;
102 uint16_t workgroup_size_z
;
104 uint32_t grid_size_x
;
105 uint32_t grid_size_y
;
106 uint32_t grid_size_z
;
107 uint32_t private_segment_size
;
108 uint32_t group_segment_size
;
109 uint64_t kernel_object
;
110 void *kernarg_address
;
112 uint64_t completion_signal
;
115 /* HSA queue is shadow structure, originally provided by AMD. */
122 uint64_t doorbell_signal
;
128 /* Alloc pools for allocating basic hsa structures such as operands,
129 instructions and other basic entities. */
130 static object_allocator
<hsa_op_address
> *hsa_allocp_operand_address
;
131 static object_allocator
<hsa_op_immed
> *hsa_allocp_operand_immed
;
132 static object_allocator
<hsa_op_reg
> *hsa_allocp_operand_reg
;
133 static object_allocator
<hsa_op_code_list
> *hsa_allocp_operand_code_list
;
134 static object_allocator
<hsa_op_operand_list
> *hsa_allocp_operand_operand_list
;
135 static object_allocator
<hsa_insn_basic
> *hsa_allocp_inst_basic
;
136 static object_allocator
<hsa_insn_phi
> *hsa_allocp_inst_phi
;
137 static object_allocator
<hsa_insn_mem
> *hsa_allocp_inst_mem
;
138 static object_allocator
<hsa_insn_atomic
> *hsa_allocp_inst_atomic
;
139 static object_allocator
<hsa_insn_signal
> *hsa_allocp_inst_signal
;
140 static object_allocator
<hsa_insn_seg
> *hsa_allocp_inst_seg
;
141 static object_allocator
<hsa_insn_cmp
> *hsa_allocp_inst_cmp
;
142 static object_allocator
<hsa_insn_br
> *hsa_allocp_inst_br
;
143 static object_allocator
<hsa_insn_sbr
> *hsa_allocp_inst_sbr
;
144 static object_allocator
<hsa_insn_call
> *hsa_allocp_inst_call
;
145 static object_allocator
<hsa_insn_arg_block
> *hsa_allocp_inst_arg_block
;
146 static object_allocator
<hsa_insn_comment
> *hsa_allocp_inst_comment
;
147 static object_allocator
<hsa_insn_queue
> *hsa_allocp_inst_queue
;
148 static object_allocator
<hsa_insn_srctype
> *hsa_allocp_inst_srctype
;
149 static object_allocator
<hsa_insn_packed
> *hsa_allocp_inst_packed
;
150 static object_allocator
<hsa_insn_cvt
> *hsa_allocp_inst_cvt
;
151 static object_allocator
<hsa_insn_alloca
> *hsa_allocp_inst_alloca
;
152 static object_allocator
<hsa_bb
> *hsa_allocp_bb
;
154 /* List of pointers to all instructions that come from an object allocator. */
155 static vec
<hsa_insn_basic
*> hsa_instructions
;
157 /* List of pointers to all operands that come from an object allocator. */
158 static vec
<hsa_op_base
*> hsa_operands
;
160 hsa_symbol::hsa_symbol ()
161 : m_decl (NULL_TREE
), m_name (NULL
), m_name_number (0),
162 m_directive_offset (0), m_type (BRIG_TYPE_NONE
),
163 m_segment (BRIG_SEGMENT_NONE
), m_linkage (BRIG_LINKAGE_NONE
), m_dim (0),
164 m_cst_value (NULL
), m_global_scope_p (false), m_seen_error (false),
165 m_allocation (BRIG_ALLOCATION_AUTOMATIC
), m_emitted_to_brig (false)
170 hsa_symbol::hsa_symbol (BrigType16_t type
, BrigSegment8_t segment
,
171 BrigLinkage8_t linkage
, bool global_scope_p
,
172 BrigAllocation allocation
)
173 : m_decl (NULL_TREE
), m_name (NULL
), m_name_number (0),
174 m_directive_offset (0), m_type (type
), m_segment (segment
),
175 m_linkage (linkage
), m_dim (0), m_cst_value (NULL
),
176 m_global_scope_p (global_scope_p
), m_seen_error (false),
177 m_allocation (allocation
), m_emitted_to_brig (false)
181 unsigned HOST_WIDE_INT
182 hsa_symbol::total_byte_size ()
184 unsigned HOST_WIDE_INT s
185 = hsa_type_bit_size (~BRIG_TYPE_ARRAY_MASK
& m_type
);
186 gcc_assert (s
% BITS_PER_UNIT
== 0);
195 /* Forward declaration. */
198 hsa_type_for_tree_type (const_tree type
, unsigned HOST_WIDE_INT
*dim_p
,
202 hsa_symbol::fillup_for_decl (tree decl
)
205 m_type
= hsa_type_for_tree_type (TREE_TYPE (decl
), &m_dim
, false);
207 if (hsa_seen_error ())
211 /* Constructor of class representing global HSA function/kernel information and
212 state. FNDECL is function declaration, KERNEL_P is true if the function
213 is going to become a HSA kernel. If the function has body, SSA_NAMES_COUNT
214 should be set to number of SSA names used in the function. */
216 hsa_function_representation::hsa_function_representation
217 (tree fdecl
, bool kernel_p
, unsigned ssa_names_count
)
219 m_reg_count (0), m_input_args (vNULL
),
220 m_output_arg (NULL
), m_spill_symbols (vNULL
), m_global_symbols (vNULL
),
221 m_private_variables (vNULL
), m_called_functions (vNULL
),
222 m_called_internal_fns (vNULL
), m_hbb_count (0),
223 m_in_ssa (true), m_kern_p (kernel_p
), m_declaration_p (false),
224 m_decl (fdecl
), m_internal_fn (NULL
), m_shadow_reg (NULL
),
225 m_kernel_dispatch_count (0), m_maximum_omp_data_size (0),
226 m_seen_error (false), m_temp_symbol_count (0), m_ssa_map ()
228 int sym_init_len
= (vec_safe_length (cfun
->local_decls
) / 2) + 1;;
229 m_local_symbols
= new hash_table
<hsa_noop_symbol_hasher
> (sym_init_len
);
230 m_ssa_map
.safe_grow_cleared (ssa_names_count
);
233 /* Constructor of class representing HSA function information that
234 is derived for an internal function. */
235 hsa_function_representation::hsa_function_representation (hsa_internal_fn
*fn
)
236 : m_reg_count (0), m_input_args (vNULL
),
237 m_output_arg (NULL
), m_local_symbols (NULL
),
238 m_spill_symbols (vNULL
), m_global_symbols (vNULL
),
239 m_private_variables (vNULL
), m_called_functions (vNULL
),
240 m_called_internal_fns (vNULL
), m_hbb_count (0),
241 m_in_ssa (true), m_kern_p (false), m_declaration_p (true), m_decl (NULL
),
242 m_internal_fn (fn
), m_shadow_reg (NULL
), m_kernel_dispatch_count (0),
243 m_maximum_omp_data_size (0), m_seen_error (false), m_temp_symbol_count (0),
246 /* Destructor of class holding function/kernel-wide information and state. */
248 hsa_function_representation::~hsa_function_representation ()
250 /* Kernel names are deallocated at the end of BRIG output when deallocating
251 hsa_decl_kernel_mapping. */
252 if (!m_kern_p
|| m_seen_error
)
255 for (unsigned i
= 0; i
< m_input_args
.length (); i
++)
256 delete m_input_args
[i
];
257 m_input_args
.release ();
260 delete m_local_symbols
;
262 for (unsigned i
= 0; i
< m_spill_symbols
.length (); i
++)
263 delete m_spill_symbols
[i
];
264 m_spill_symbols
.release ();
267 for (unsigned i
= 0; i
< m_global_symbols
.iterate (i
, &sym
); i
++)
268 if (sym
->m_linkage
!= BRIG_ALLOCATION_PROGRAM
)
270 m_global_symbols
.release ();
272 for (unsigned i
= 0; i
< m_private_variables
.length (); i
++)
273 delete m_private_variables
[i
];
274 m_private_variables
.release ();
275 m_called_functions
.release ();
276 m_ssa_map
.release ();
278 for (unsigned i
= 0; i
< m_called_internal_fns
.length (); i
++)
279 delete m_called_internal_fns
[i
];
283 hsa_function_representation::get_shadow_reg ()
285 /* If we compile a function with kernel dispatch and does not set
286 an optimization level, the function won't be inlined and
294 /* Append the shadow argument. */
295 hsa_symbol
*shadow
= new hsa_symbol (BRIG_TYPE_U64
, BRIG_SEGMENT_KERNARG
,
296 BRIG_LINKAGE_FUNCTION
);
297 m_input_args
.safe_push (shadow
);
298 shadow
->m_name
= "hsa_runtime_shadow";
300 hsa_op_reg
*r
= new hsa_op_reg (BRIG_TYPE_U64
);
301 hsa_op_address
*addr
= new hsa_op_address (shadow
);
303 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_LD
, BRIG_TYPE_U64
, r
, addr
);
304 hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->append_insn (mem
);
310 bool hsa_function_representation::has_shadow_reg_p ()
312 return m_shadow_reg
!= NULL
;
316 hsa_function_representation::init_extra_bbs ()
318 hsa_init_new_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
319 hsa_init_new_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
323 hsa_function_representation::create_hsa_temporary (BrigType16_t type
)
325 hsa_symbol
*s
= new hsa_symbol (type
, BRIG_SEGMENT_PRIVATE
,
326 BRIG_LINKAGE_FUNCTION
);
327 s
->m_name_number
= m_temp_symbol_count
++;
329 hsa_cfun
->m_private_variables
.safe_push (s
);
334 hsa_function_representation::get_linkage ()
337 return BRIG_LINKAGE_PROGRAM
;
339 return m_kern_p
|| TREE_PUBLIC (m_decl
) ?
340 BRIG_LINKAGE_PROGRAM
: BRIG_LINKAGE_MODULE
;
343 /* Hash map of simple OMP builtins. */
344 static hash_map
<nofree_string_hash
, omp_simple_builtin
> *omp_simple_builtins
347 /* Warning messages for OMP builtins. */
349 #define HSA_WARN_LOCK_ROUTINE "support for HSA does not implement OpenMP " \
351 #define HSA_WARN_TIMING_ROUTINE "support for HSA does not implement OpenMP " \
353 #define HSA_WARN_MEMORY_ROUTINE "OpenMP device memory library routines have " \
354 "undefined semantics within target regions, support for HSA ignores them"
355 #define HSA_WARN_AFFINITY "Support for HSA does not implement OpenMP " \
358 /* Initialize hash map with simple OMP builtins. */
361 hsa_init_simple_builtins ()
363 if (omp_simple_builtins
!= NULL
)
367 = new hash_map
<nofree_string_hash
, omp_simple_builtin
> ();
369 omp_simple_builtin omp_builtins
[] =
371 omp_simple_builtin ("omp_get_initial_device", NULL
, false,
372 new hsa_op_immed (GOMP_DEVICE_HOST
,
373 (BrigType16_t
) BRIG_TYPE_S32
)),
374 omp_simple_builtin ("omp_is_initial_device", NULL
, false,
375 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_S32
)),
376 omp_simple_builtin ("omp_get_dynamic", NULL
, false,
377 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_S32
)),
378 omp_simple_builtin ("omp_set_dynamic", NULL
, false, NULL
),
379 omp_simple_builtin ("omp_init_lock", HSA_WARN_LOCK_ROUTINE
, true),
380 omp_simple_builtin ("omp_init_lock_with_hint", HSA_WARN_LOCK_ROUTINE
,
382 omp_simple_builtin ("omp_init_nest_lock_with_hint", HSA_WARN_LOCK_ROUTINE
,
384 omp_simple_builtin ("omp_destroy_lock", HSA_WARN_LOCK_ROUTINE
, true),
385 omp_simple_builtin ("omp_set_lock", HSA_WARN_LOCK_ROUTINE
, true),
386 omp_simple_builtin ("omp_unset_lock", HSA_WARN_LOCK_ROUTINE
, true),
387 omp_simple_builtin ("omp_test_lock", HSA_WARN_LOCK_ROUTINE
, true),
388 omp_simple_builtin ("omp_get_wtime", HSA_WARN_TIMING_ROUTINE
, true),
389 omp_simple_builtin ("omp_get_wtick", HSA_WARN_TIMING_ROUTINE
, true),
390 omp_simple_builtin ("omp_target_alloc", HSA_WARN_MEMORY_ROUTINE
, false,
391 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_U64
)),
392 omp_simple_builtin ("omp_target_free", HSA_WARN_MEMORY_ROUTINE
, false),
393 omp_simple_builtin ("omp_target_is_present", HSA_WARN_MEMORY_ROUTINE
,
395 new hsa_op_immed (-1, (BrigType16_t
) BRIG_TYPE_S32
)),
396 omp_simple_builtin ("omp_target_memcpy", HSA_WARN_MEMORY_ROUTINE
, false,
397 new hsa_op_immed (-1, (BrigType16_t
) BRIG_TYPE_S32
)),
398 omp_simple_builtin ("omp_target_memcpy_rect", HSA_WARN_MEMORY_ROUTINE
,
400 new hsa_op_immed (-1, (BrigType16_t
) BRIG_TYPE_S32
)),
401 omp_simple_builtin ("omp_target_associate_ptr", HSA_WARN_MEMORY_ROUTINE
,
403 new hsa_op_immed (-1, (BrigType16_t
) BRIG_TYPE_S32
)),
404 omp_simple_builtin ("omp_target_disassociate_ptr",
405 HSA_WARN_MEMORY_ROUTINE
,
407 new hsa_op_immed (-1, (BrigType16_t
) BRIG_TYPE_S32
)),
408 omp_simple_builtin ("omp_set_max_active_levels",
409 "Support for HSA only allows only one active level, "
410 "call to omp_set_max_active_levels will be ignored "
411 "in the generated HSAIL",
413 omp_simple_builtin ("omp_get_max_active_levels", NULL
, false,
414 new hsa_op_immed (1, (BrigType16_t
) BRIG_TYPE_S32
)),
415 omp_simple_builtin ("omp_in_final", NULL
, false,
416 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_S32
)),
417 omp_simple_builtin ("omp_get_proc_bind", HSA_WARN_AFFINITY
, false,
418 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_S32
)),
419 omp_simple_builtin ("omp_get_num_places", HSA_WARN_AFFINITY
, false,
420 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_S32
)),
421 omp_simple_builtin ("omp_get_place_num_procs", HSA_WARN_AFFINITY
, false,
422 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_S32
)),
423 omp_simple_builtin ("omp_get_place_proc_ids", HSA_WARN_AFFINITY
, false,
425 omp_simple_builtin ("omp_get_place_num", HSA_WARN_AFFINITY
, false,
426 new hsa_op_immed (-1, (BrigType16_t
) BRIG_TYPE_S32
)),
427 omp_simple_builtin ("omp_get_partition_num_places", HSA_WARN_AFFINITY
,
429 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_S32
)),
430 omp_simple_builtin ("omp_get_partition_place_nums", HSA_WARN_AFFINITY
,
432 omp_simple_builtin ("omp_set_default_device",
433 "omp_set_default_device has undefined semantics "
434 "within target regions, support for HSA ignores it",
436 omp_simple_builtin ("omp_get_default_device",
437 "omp_get_default_device has undefined semantics "
438 "within target regions, support for HSA ignores it",
440 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_S32
)),
441 omp_simple_builtin ("omp_get_num_devices",
442 "omp_get_num_devices has undefined semantics "
443 "within target regions, support for HSA ignores it",
445 new hsa_op_immed (0, (BrigType16_t
) BRIG_TYPE_S32
)),
446 omp_simple_builtin ("omp_get_num_procs", NULL
, true, NULL
),
447 omp_simple_builtin ("omp_get_cancellation", NULL
, true, NULL
),
448 omp_simple_builtin ("omp_set_nested", NULL
, true, NULL
),
449 omp_simple_builtin ("omp_get_nested", NULL
, true, NULL
),
450 omp_simple_builtin ("omp_set_schedule", NULL
, true, NULL
),
451 omp_simple_builtin ("omp_get_schedule", NULL
, true, NULL
),
452 omp_simple_builtin ("omp_get_thread_limit", NULL
, true, NULL
),
453 omp_simple_builtin ("omp_get_team_size", NULL
, true, NULL
),
454 omp_simple_builtin ("omp_get_ancestor_thread_num", NULL
, true, NULL
),
455 omp_simple_builtin ("omp_get_max_task_priority", NULL
, true, NULL
)
458 unsigned count
= sizeof (omp_builtins
) / sizeof (omp_simple_builtin
);
460 for (unsigned i
= 0; i
< count
; i
++)
461 omp_simple_builtins
->put (omp_builtins
[i
].m_name
, omp_builtins
[i
]);
464 /* Allocate HSA structures that we need only while generating with this. */
467 hsa_init_data_for_cfun ()
469 hsa_init_compilation_unit_data ();
470 hsa_allocp_operand_address
471 = new object_allocator
<hsa_op_address
> ("HSA address operands");
472 hsa_allocp_operand_immed
473 = new object_allocator
<hsa_op_immed
> ("HSA immediate operands");
474 hsa_allocp_operand_reg
475 = new object_allocator
<hsa_op_reg
> ("HSA register operands");
476 hsa_allocp_operand_code_list
477 = new object_allocator
<hsa_op_code_list
> ("HSA code list operands");
478 hsa_allocp_operand_operand_list
479 = new object_allocator
<hsa_op_operand_list
> ("HSA operand list operands");
480 hsa_allocp_inst_basic
481 = new object_allocator
<hsa_insn_basic
> ("HSA basic instructions");
483 = new object_allocator
<hsa_insn_phi
> ("HSA phi operands");
485 = new object_allocator
<hsa_insn_mem
> ("HSA memory instructions");
486 hsa_allocp_inst_atomic
487 = new object_allocator
<hsa_insn_atomic
> ("HSA atomic instructions");
488 hsa_allocp_inst_signal
489 = new object_allocator
<hsa_insn_signal
> ("HSA signal instructions");
491 = new object_allocator
<hsa_insn_seg
> ("HSA segment conversion "
494 = new object_allocator
<hsa_insn_cmp
> ("HSA comparison instructions");
496 = new object_allocator
<hsa_insn_br
> ("HSA branching instructions");
498 = new object_allocator
<hsa_insn_sbr
> ("HSA switch branching instructions");
500 = new object_allocator
<hsa_insn_call
> ("HSA call instructions");
501 hsa_allocp_inst_arg_block
502 = new object_allocator
<hsa_insn_arg_block
> ("HSA arg block instructions");
503 hsa_allocp_inst_comment
504 = new object_allocator
<hsa_insn_comment
> ("HSA comment instructions");
505 hsa_allocp_inst_queue
506 = new object_allocator
<hsa_insn_queue
> ("HSA queue instructions");
507 hsa_allocp_inst_srctype
508 = new object_allocator
<hsa_insn_srctype
> ("HSA source type instructions");
509 hsa_allocp_inst_packed
510 = new object_allocator
<hsa_insn_packed
> ("HSA packed instructions");
512 = new object_allocator
<hsa_insn_cvt
> ("HSA convert instructions");
513 hsa_allocp_inst_alloca
514 = new object_allocator
<hsa_insn_alloca
> ("HSA alloca instructions");
515 hsa_allocp_bb
= new object_allocator
<hsa_bb
> ("HSA basic blocks");
518 /* Deinitialize HSA subsystem and free all allocated memory. */
521 hsa_deinit_data_for_cfun (void)
525 FOR_ALL_BB_FN (bb
, cfun
)
528 hsa_bb
*hbb
= hsa_bb_for_bb (bb
);
533 for (unsigned int i
= 0; i
< hsa_operands
.length (); i
++)
534 hsa_destroy_operand (hsa_operands
[i
]);
536 hsa_operands
.release ();
538 for (unsigned i
= 0; i
< hsa_instructions
.length (); i
++)
539 hsa_destroy_insn (hsa_instructions
[i
]);
541 hsa_instructions
.release ();
543 if (omp_simple_builtins
!= NULL
)
545 delete omp_simple_builtins
;
546 omp_simple_builtins
= NULL
;
549 delete hsa_allocp_operand_address
;
550 delete hsa_allocp_operand_immed
;
551 delete hsa_allocp_operand_reg
;
552 delete hsa_allocp_operand_code_list
;
553 delete hsa_allocp_operand_operand_list
;
554 delete hsa_allocp_inst_basic
;
555 delete hsa_allocp_inst_phi
;
556 delete hsa_allocp_inst_atomic
;
557 delete hsa_allocp_inst_mem
;
558 delete hsa_allocp_inst_signal
;
559 delete hsa_allocp_inst_seg
;
560 delete hsa_allocp_inst_cmp
;
561 delete hsa_allocp_inst_br
;
562 delete hsa_allocp_inst_sbr
;
563 delete hsa_allocp_inst_call
;
564 delete hsa_allocp_inst_arg_block
;
565 delete hsa_allocp_inst_comment
;
566 delete hsa_allocp_inst_queue
;
567 delete hsa_allocp_inst_srctype
;
568 delete hsa_allocp_inst_packed
;
569 delete hsa_allocp_inst_cvt
;
570 delete hsa_allocp_inst_alloca
;
571 delete hsa_allocp_bb
;
575 /* Return the type which holds addresses in the given SEGMENT. */
578 hsa_get_segment_addr_type (BrigSegment8_t segment
)
582 case BRIG_SEGMENT_NONE
:
585 case BRIG_SEGMENT_FLAT
:
586 case BRIG_SEGMENT_GLOBAL
:
587 case BRIG_SEGMENT_READONLY
:
588 case BRIG_SEGMENT_KERNARG
:
589 return hsa_machine_large_p () ? BRIG_TYPE_U64
: BRIG_TYPE_U32
;
591 case BRIG_SEGMENT_GROUP
:
592 case BRIG_SEGMENT_PRIVATE
:
593 case BRIG_SEGMENT_SPILL
:
594 case BRIG_SEGMENT_ARG
:
595 return BRIG_TYPE_U32
;
600 /* Return integer brig type according to provided SIZE in bytes. If SIGN
601 is set to true, return signed integer type. */
604 get_integer_type_by_bytes (unsigned size
, bool sign
)
612 return BRIG_TYPE_S16
;
614 return BRIG_TYPE_S32
;
616 return BRIG_TYPE_S64
;
626 return BRIG_TYPE_U16
;
628 return BRIG_TYPE_U32
;
630 return BRIG_TYPE_U64
;
638 /* Return HSA type for tree TYPE, which has to fit into BrigType16_t. Pointers
639 are assumed to use flat addressing. If min32int is true, always expand
640 integer types to one that has at least 32 bits. */
643 hsa_type_for_scalar_tree_type (const_tree type
, bool min32int
)
647 BrigType16_t res
= BRIG_TYPE_NONE
;
649 gcc_checking_assert (TYPE_P (type
));
650 gcc_checking_assert (!AGGREGATE_TYPE_P (type
));
651 if (POINTER_TYPE_P (type
))
652 return hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
);
654 if (TREE_CODE (type
) == VECTOR_TYPE
|| TREE_CODE (type
) == COMPLEX_TYPE
)
655 base
= TREE_TYPE (type
);
659 if (!tree_fits_uhwi_p (TYPE_SIZE (base
)))
661 HSA_SORRY_ATV (EXPR_LOCATION (type
),
662 "support for HSA does not implement huge or "
663 "variable-sized type %T", type
);
667 bsize
= tree_to_uhwi (TYPE_SIZE (base
));
668 unsigned byte_size
= bsize
/ BITS_PER_UNIT
;
669 if (INTEGRAL_TYPE_P (base
))
670 res
= get_integer_type_by_bytes (byte_size
, !TYPE_UNSIGNED (base
));
671 else if (SCALAR_FLOAT_TYPE_P (base
))
689 if (res
== BRIG_TYPE_NONE
)
691 HSA_SORRY_ATV (EXPR_LOCATION (type
),
692 "support for HSA does not implement type %T", type
);
696 if (TREE_CODE (type
) == VECTOR_TYPE
)
698 HOST_WIDE_INT tsize
= tree_to_uhwi (TYPE_SIZE (type
));
702 HSA_SORRY_ATV (EXPR_LOCATION (type
),
703 "support for HSA does not implement a vector type "
704 "where a type and unit size are equal: %T", type
);
711 res
|= BRIG_TYPE_PACK_32
;
714 res
|= BRIG_TYPE_PACK_64
;
717 res
|= BRIG_TYPE_PACK_128
;
720 HSA_SORRY_ATV (EXPR_LOCATION (type
),
721 "support for HSA does not implement type %T", type
);
727 /* Registers/immediate operands can only be 32bit or more except for
729 if (res
== BRIG_TYPE_U8
|| res
== BRIG_TYPE_U16
)
731 else if (res
== BRIG_TYPE_S8
|| res
== BRIG_TYPE_S16
)
735 if (TREE_CODE (type
) == COMPLEX_TYPE
)
737 unsigned bsize
= 2 * hsa_type_bit_size (res
);
738 res
= hsa_bittype_for_bitsize (bsize
);
744 /* Returns the BRIG type we need to load/store entities of TYPE. */
747 mem_type_for_type (BrigType16_t type
)
749 /* HSA has non-intuitive constraints on load/store types. If it's
750 a bit-type it _must_ be B128, if it's not a bit-type it must be
751 64bit max. So for loading entities of 128 bits (e.g. vectors)
752 we have to to B128, while for loading the rest we have to use the
753 input type (??? or maybe also flattened to a equally sized non-vector
755 if ((type
& BRIG_TYPE_PACK_MASK
) == BRIG_TYPE_PACK_128
)
756 return BRIG_TYPE_B128
;
757 else if (hsa_btype_p (type
) || hsa_type_packed_p (type
))
759 unsigned bitsize
= hsa_type_bit_size (type
);
761 return hsa_uint_for_bitsize (bitsize
);
763 return hsa_bittype_for_bitsize (bitsize
);
768 /* Return HSA type for tree TYPE. If it cannot fit into BrigType16_t, some
769 kind of array will be generated, setting DIM appropriately. Otherwise, it
770 will be set to zero. */
773 hsa_type_for_tree_type (const_tree type
, unsigned HOST_WIDE_INT
*dim_p
= NULL
,
774 bool min32int
= false)
776 gcc_checking_assert (TYPE_P (type
));
777 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
)))
779 HSA_SORRY_ATV (EXPR_LOCATION (type
), "support for HSA does not "
780 "implement huge or variable-sized type %T", type
);
781 return BRIG_TYPE_NONE
;
784 if (RECORD_OR_UNION_TYPE_P (type
))
787 *dim_p
= tree_to_uhwi (TYPE_SIZE_UNIT (type
));
788 return BRIG_TYPE_U8
| BRIG_TYPE_ARRAY
;
791 if (TREE_CODE (type
) == ARRAY_TYPE
)
793 /* We try to be nice and use the real base-type when this is an array of
794 scalars and only resort to an array of bytes if the type is more
797 unsigned HOST_WIDE_INT dim
= 1;
799 while (TREE_CODE (type
) == ARRAY_TYPE
)
801 tree domain
= TYPE_DOMAIN (type
);
802 if (!TYPE_MIN_VALUE (domain
)
803 || !TYPE_MAX_VALUE (domain
)
804 || !tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
805 || !tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)))
807 HSA_SORRY_ATV (EXPR_LOCATION (type
),
808 "support for HSA does not implement array %T with "
809 "unknown bounds", type
);
810 return BRIG_TYPE_NONE
;
812 HOST_WIDE_INT min
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
813 HOST_WIDE_INT max
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
814 dim
= dim
* (unsigned HOST_WIDE_INT
) (max
- min
+ 1);
815 type
= TREE_TYPE (type
);
819 if (RECORD_OR_UNION_TYPE_P (type
))
821 dim
= dim
* tree_to_uhwi (TYPE_SIZE_UNIT (type
));
825 res
= hsa_type_for_scalar_tree_type (type
, false);
829 return res
| BRIG_TYPE_ARRAY
;
836 return hsa_type_for_scalar_tree_type (type
, min32int
);
839 /* Returns true if converting from STYPE into DTYPE needs the _CVT
840 opcode. If false a normal _MOV is enough. */
843 hsa_needs_cvt (BrigType16_t dtype
, BrigType16_t stype
)
845 if (hsa_btype_p (dtype
))
848 /* float <-> int conversions are real converts. */
849 if (hsa_type_float_p (dtype
) != hsa_type_float_p (stype
))
851 /* When both types have different size, then we need CVT as well. */
852 if (hsa_type_bit_size (dtype
) != hsa_type_bit_size (stype
))
857 /* Lookup or create the associated hsa_symbol structure with a given VAR_DECL
858 or lookup the hsa_structure corresponding to a PARM_DECL. */
861 get_symbol_for_decl (tree decl
)
864 hsa_symbol
dummy (BRIG_TYPE_NONE
, BRIG_SEGMENT_NONE
, BRIG_LINKAGE_NONE
);
866 gcc_assert (TREE_CODE (decl
) == PARM_DECL
867 || TREE_CODE (decl
) == RESULT_DECL
868 || TREE_CODE (decl
) == VAR_DECL
);
872 bool is_in_global_vars
873 = TREE_CODE (decl
) == VAR_DECL
&& is_global_var (decl
);
875 if (is_in_global_vars
)
876 slot
= hsa_global_variable_symbols
->find_slot (&dummy
, INSERT
);
878 slot
= hsa_cfun
->m_local_symbols
->find_slot (&dummy
, INSERT
);
880 gcc_checking_assert (slot
);
883 hsa_symbol
*sym
= (*slot
);
885 /* If the symbol is problematic, mark current function also as
887 if (sym
->m_seen_error
)
890 /* PR hsa/70234: If a global variable was marked to be emitted,
891 but HSAIL generation of a function using the variable fails,
892 we should retry to emit the variable in context of a different
895 Iterate elements whether a symbol is already in m_global_symbols
897 if (is_in_global_vars
&& !sym
->m_emitted_to_brig
)
899 for (unsigned i
= 0; i
< hsa_cfun
->m_global_symbols
.length (); i
++)
900 if (hsa_cfun
->m_global_symbols
[i
] == sym
)
902 hsa_cfun
->m_global_symbols
.safe_push (sym
);
910 gcc_assert (TREE_CODE (decl
) == VAR_DECL
);
912 if (is_in_global_vars
)
914 sym
= new hsa_symbol (BRIG_TYPE_NONE
, BRIG_SEGMENT_GLOBAL
,
915 BRIG_LINKAGE_PROGRAM
, true,
916 BRIG_ALLOCATION_PROGRAM
);
917 hsa_cfun
->m_global_symbols
.safe_push (sym
);
921 /* PARM_DECL and RESULT_DECL should be already in m_local_symbols. */
922 gcc_assert (TREE_CODE (decl
) == VAR_DECL
);
924 sym
= new hsa_symbol (BRIG_TYPE_NONE
, BRIG_SEGMENT_PRIVATE
,
925 BRIG_LINKAGE_FUNCTION
);
926 hsa_cfun
->m_private_variables
.safe_push (sym
);
929 sym
->fillup_for_decl (decl
);
930 sym
->m_name
= hsa_get_declaration_name (decl
);
937 /* For a given HSA function declaration, return a host
938 function declaration. */
941 hsa_get_host_function (tree decl
)
943 hsa_function_summary
*s
944 = hsa_summaries
->get (cgraph_node::get_create (decl
));
945 gcc_assert (s
->m_kind
!= HSA_NONE
);
946 gcc_assert (s
->m_gpu_implementation_p
);
948 return s
->m_binded_function
->decl
;
951 /* Return true if function DECL has a host equivalent function. */
954 get_brig_function_name (tree decl
)
958 hsa_function_summary
*s
= hsa_summaries
->get (cgraph_node::get_create (d
));
959 if (s
->m_kind
!= HSA_NONE
&& s
->m_gpu_implementation_p
)
960 d
= s
->m_binded_function
->decl
;
962 /* IPA split can create a function that has no host equivalent. */
966 char *name
= xstrdup (hsa_get_declaration_name (d
));
967 hsa_sanitize_name (name
);
972 /* Create a spill symbol of type TYPE. */
975 hsa_get_spill_symbol (BrigType16_t type
)
977 hsa_symbol
*sym
= new hsa_symbol (type
, BRIG_SEGMENT_SPILL
,
978 BRIG_LINKAGE_FUNCTION
);
979 hsa_cfun
->m_spill_symbols
.safe_push (sym
);
983 /* Create a symbol for a read-only string constant. */
985 hsa_get_string_cst_symbol (tree string_cst
)
987 gcc_checking_assert (TREE_CODE (string_cst
) == STRING_CST
);
989 hsa_symbol
**slot
= hsa_cfun
->m_string_constants_map
.get (string_cst
);
993 hsa_op_immed
*cst
= new hsa_op_immed (string_cst
);
994 hsa_symbol
*sym
= new hsa_symbol (cst
->m_type
, BRIG_SEGMENT_GLOBAL
,
995 BRIG_LINKAGE_MODULE
, true,
996 BRIG_ALLOCATION_AGENT
);
997 sym
->m_cst_value
= cst
;
998 sym
->m_dim
= TREE_STRING_LENGTH (string_cst
);
999 sym
->m_name_number
= hsa_cfun
->m_global_symbols
.length ();
1001 hsa_cfun
->m_global_symbols
.safe_push (sym
);
1002 hsa_cfun
->m_string_constants_map
.put (string_cst
, sym
);
1006 /* Constructor of the ancestor of all operands. K is BRIG kind that identified
1007 what the operator is. */
1009 hsa_op_base::hsa_op_base (BrigKind16_t k
)
1010 : m_next (NULL
), m_brig_op_offset (0), m_kind (k
)
1012 hsa_operands
.safe_push (this);
1015 /* Constructor of ancestor of all operands which have a type. K is BRIG kind
1016 that identified what the operator is. T is the type of the operator. */
1018 hsa_op_with_type::hsa_op_with_type (BrigKind16_t k
, BrigType16_t t
)
1019 : hsa_op_base (k
), m_type (t
)
1024 hsa_op_with_type::get_in_type (BrigType16_t dtype
, hsa_bb
*hbb
)
1026 if (m_type
== dtype
)
1031 if (hsa_needs_cvt (dtype
, m_type
))
1033 dest
= new hsa_op_reg (dtype
);
1034 hbb
->append_insn (new hsa_insn_cvt (dest
, this));
1038 dest
= new hsa_op_reg (m_type
);
1039 hbb
->append_insn (new hsa_insn_basic (2, BRIG_OPCODE_MOV
,
1040 dest
->m_type
, dest
, this));
1042 /* We cannot simply for instance: 'mov_u32 $_3, 48 (s32)' because
1043 type of the operand must be same as type of the instruction. */
1044 dest
->m_type
= dtype
;
1050 /* Constructor of class representing HSA immediate values. TREE_VAL is the
1051 tree representation of the immediate value. If min32int is true,
1052 always expand integer types to one that has at least 32 bits. */
1054 hsa_op_immed::hsa_op_immed (tree tree_val
, bool min32int
)
1055 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES
,
1056 hsa_type_for_tree_type (TREE_TYPE (tree_val
), NULL
,
1060 if (hsa_seen_error ())
1063 gcc_checking_assert ((is_gimple_min_invariant (tree_val
)
1064 && (!POINTER_TYPE_P (TREE_TYPE (tree_val
))
1065 || TREE_CODE (tree_val
) == INTEGER_CST
))
1066 || TREE_CODE (tree_val
) == CONSTRUCTOR
);
1067 m_tree_value
= tree_val
;
1068 m_brig_repr_size
= hsa_get_imm_brig_type_len (m_type
);
1070 if (TREE_CODE (m_tree_value
) == STRING_CST
)
1071 m_brig_repr_size
= TREE_STRING_LENGTH (m_tree_value
);
1072 else if (TREE_CODE (m_tree_value
) == CONSTRUCTOR
)
1075 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (m_tree_value
)));
1077 /* Verify that all elements of a constructor are constants. */
1078 for (unsigned i
= 0;
1079 i
< vec_safe_length (CONSTRUCTOR_ELTS (m_tree_value
)); i
++)
1081 tree v
= CONSTRUCTOR_ELT (m_tree_value
, i
)->value
;
1082 if (!CONSTANT_CLASS_P (v
))
1084 HSA_SORRY_AT (EXPR_LOCATION (tree_val
),
1085 "HSA ctor should have only constants");
1091 emit_to_buffer (m_tree_value
);
1094 /* Constructor of class representing HSA immediate values. INTEGER_VALUE is the
1095 integer representation of the immediate value. TYPE is BRIG type. */
1097 hsa_op_immed::hsa_op_immed (HOST_WIDE_INT integer_value
, BrigType16_t type
)
1098 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES
, type
),
1099 m_tree_value (NULL
), m_brig_repr (NULL
)
1101 gcc_assert (hsa_type_integer_p (type
));
1102 m_int_value
= integer_value
;
1103 m_brig_repr_size
= hsa_type_bit_size (type
) / BITS_PER_UNIT
;
1107 switch (m_brig_repr_size
)
1110 bytes
.b8
= (uint8_t) m_int_value
;
1113 bytes
.b16
= (uint16_t) m_int_value
;
1116 bytes
.b32
= (uint32_t) m_int_value
;
1119 bytes
.b64
= (uint64_t) m_int_value
;
1125 m_brig_repr
= XNEWVEC (char, m_brig_repr_size
);
1126 memcpy (m_brig_repr
, &bytes
, m_brig_repr_size
);
1129 hsa_op_immed::hsa_op_immed ()
1130 : hsa_op_with_type (BRIG_KIND_NONE
, BRIG_TYPE_NONE
), m_brig_repr (NULL
)
1134 /* New operator to allocate immediate operands from pool alloc. */
1137 hsa_op_immed::operator new (size_t)
1139 return hsa_allocp_operand_immed
->allocate_raw ();
1144 hsa_op_immed::~hsa_op_immed ()
1149 /* Change type of the immediate value to T. */
1152 hsa_op_immed::set_type (BrigType16_t t
)
1157 /* Constructor of class representing HSA registers and pseudo-registers. T is
1158 the BRIG type of the new register. */
1160 hsa_op_reg::hsa_op_reg (BrigType16_t t
)
1161 : hsa_op_with_type (BRIG_KIND_OPERAND_REGISTER
, t
), m_gimple_ssa (NULL_TREE
),
1162 m_def_insn (NULL
), m_spill_sym (NULL
), m_order (hsa_cfun
->m_reg_count
++),
1163 m_lr_begin (0), m_lr_end (0), m_reg_class (0), m_hard_num (0)
1167 /* New operator to allocate a register from pool alloc. */
1170 hsa_op_reg::operator new (size_t)
1172 return hsa_allocp_operand_reg
->allocate_raw ();
1175 /* Verify register operand. */
1178 hsa_op_reg::verify_ssa ()
1180 /* Verify that each HSA register has a definition assigned.
1181 Exceptions are VAR_DECL and PARM_DECL that are a default
1183 gcc_checking_assert (m_def_insn
1184 || (m_gimple_ssa
!= NULL
1185 && (!SSA_NAME_VAR (m_gimple_ssa
)
1186 || (TREE_CODE (SSA_NAME_VAR (m_gimple_ssa
))
1188 && SSA_NAME_IS_DEFAULT_DEF (m_gimple_ssa
)));
1190 /* Verify that every use of the register is really present
1191 in an instruction. */
1192 for (unsigned i
= 0; i
< m_uses
.length (); i
++)
1194 hsa_insn_basic
*use
= m_uses
[i
];
1196 bool is_visited
= false;
1197 for (unsigned j
= 0; j
< use
->operand_count (); j
++)
1199 hsa_op_base
*u
= use
->get_op (j
);
1200 hsa_op_address
*addr
; addr
= dyn_cast
<hsa_op_address
*> (u
);
1201 if (addr
&& addr
->m_reg
)
1206 bool r
= !addr
&& use
->op_output_p (j
);
1210 error ("HSA SSA name defined by instruction that is supposed "
1212 debug_hsa_operand (this);
1213 debug_hsa_insn (use
);
1214 internal_error ("HSA SSA verification failed");
1223 error ("HSA SSA name not among operands of instruction that is "
1224 "supposed to use it");
1225 debug_hsa_operand (this);
1226 debug_hsa_insn (use
);
1227 internal_error ("HSA SSA verification failed");
1232 hsa_op_address::hsa_op_address (hsa_symbol
*sym
, hsa_op_reg
*r
,
1233 HOST_WIDE_INT offset
)
1234 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS
), m_symbol (sym
), m_reg (r
),
1235 m_imm_offset (offset
)
1239 hsa_op_address::hsa_op_address (hsa_symbol
*sym
, HOST_WIDE_INT offset
)
1240 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS
), m_symbol (sym
), m_reg (NULL
),
1241 m_imm_offset (offset
)
1245 hsa_op_address::hsa_op_address (hsa_op_reg
*r
, HOST_WIDE_INT offset
)
1246 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS
), m_symbol (NULL
), m_reg (r
),
1247 m_imm_offset (offset
)
1251 /* New operator to allocate address operands from pool alloc. */
1254 hsa_op_address::operator new (size_t)
1256 return hsa_allocp_operand_address
->allocate_raw ();
1259 /* Constructor of an operand referring to HSAIL code. */
1261 hsa_op_code_ref::hsa_op_code_ref () : hsa_op_base (BRIG_KIND_OPERAND_CODE_REF
),
1262 m_directive_offset (0)
1266 /* Constructor of an operand representing a code list. Set it up so that it
1267 can contain ELEMENTS number of elements. */
1269 hsa_op_code_list::hsa_op_code_list (unsigned elements
)
1270 : hsa_op_base (BRIG_KIND_OPERAND_CODE_LIST
)
1272 m_offsets
.create (1);
1273 m_offsets
.safe_grow_cleared (elements
);
1276 /* New operator to allocate code list operands from pool alloc. */
1279 hsa_op_code_list::operator new (size_t)
1281 return hsa_allocp_operand_code_list
->allocate_raw ();
1284 /* Constructor of an operand representing an operand list.
1285 Set it up so that it can contain ELEMENTS number of elements. */
1287 hsa_op_operand_list::hsa_op_operand_list (unsigned elements
)
1288 : hsa_op_base (BRIG_KIND_OPERAND_OPERAND_LIST
)
1290 m_offsets
.create (elements
);
1291 m_offsets
.safe_grow (elements
);
1294 /* New operator to allocate operand list operands from pool alloc. */
1297 hsa_op_operand_list::operator new (size_t)
1299 return hsa_allocp_operand_operand_list
->allocate_raw ();
1302 hsa_op_operand_list::~hsa_op_operand_list ()
1304 m_offsets
.release ();
1309 hsa_function_representation::reg_for_gimple_ssa (tree ssa
)
1313 gcc_checking_assert (TREE_CODE (ssa
) == SSA_NAME
);
1314 if (m_ssa_map
[SSA_NAME_VERSION (ssa
)])
1315 return m_ssa_map
[SSA_NAME_VERSION (ssa
)];
1317 hreg
= new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (ssa
),
1319 hreg
->m_gimple_ssa
= ssa
;
1320 m_ssa_map
[SSA_NAME_VERSION (ssa
)] = hreg
;
1326 hsa_op_reg::set_definition (hsa_insn_basic
*insn
)
1328 if (hsa_cfun
->m_in_ssa
)
1330 gcc_checking_assert (!m_def_insn
);
1337 /* Constructor of the class which is the bases of all instructions and directly
1338 represents the most basic ones. NOPS is the number of operands that the
1339 operand vector will contain (and which will be cleared). OP is the opcode
1340 of the instruction. This constructor does not set type. */
1342 hsa_insn_basic::hsa_insn_basic (unsigned nops
, int opc
)
1344 m_next (NULL
), m_bb (NULL
), m_opcode (opc
), m_number (0),
1345 m_type (BRIG_TYPE_NONE
), m_brig_offset (0)
1348 m_operands
.safe_grow_cleared (nops
);
1350 hsa_instructions
.safe_push (this);
1353 /* Make OP the operand number INDEX of operands of this instruction. If OP is a
1354 register or an address containing a register, then either set the definition
1355 of the register to this instruction if it an output operand or add this
1356 instruction to the uses if it is an input one. */
1359 hsa_insn_basic::set_op (int index
, hsa_op_base
*op
)
1361 /* Each address operand is always use. */
1362 hsa_op_address
*addr
= dyn_cast
<hsa_op_address
*> (op
);
1363 if (addr
&& addr
->m_reg
)
1364 addr
->m_reg
->m_uses
.safe_push (this);
1367 hsa_op_reg
*reg
= dyn_cast
<hsa_op_reg
*> (op
);
1370 if (op_output_p (index
))
1371 reg
->set_definition (this);
1373 reg
->m_uses
.safe_push (this);
1377 m_operands
[index
] = op
;
1380 /* Get INDEX-th operand of the instruction. */
1383 hsa_insn_basic::get_op (int index
)
1385 return m_operands
[index
];
1388 /* Get address of INDEX-th operand of the instruction. */
1391 hsa_insn_basic::get_op_addr (int index
)
1393 return &m_operands
[index
];
1396 /* Get number of operands of the instruction. */
1398 hsa_insn_basic::operand_count ()
1400 return m_operands
.length ();
1403 /* Constructor of the class which is the bases of all instructions and directly
1404 represents the most basic ones. NOPS is the number of operands that the
1405 operand vector will contain (and which will be cleared). OPC is the opcode
1406 of the instruction, T is the type of the instruction. */
1408 hsa_insn_basic::hsa_insn_basic (unsigned nops
, int opc
, BrigType16_t t
,
1409 hsa_op_base
*arg0
, hsa_op_base
*arg1
,
1410 hsa_op_base
*arg2
, hsa_op_base
*arg3
)
1411 : m_prev (NULL
), m_next (NULL
), m_bb (NULL
), m_opcode (opc
),m_number (0),
1412 m_type (t
), m_brig_offset (0)
1415 m_operands
.safe_grow_cleared (nops
);
1419 gcc_checking_assert (nops
>= 1);
1425 gcc_checking_assert (nops
>= 2);
1431 gcc_checking_assert (nops
>= 3);
1437 gcc_checking_assert (nops
>= 4);
1441 hsa_instructions
.safe_push (this);
1444 /* New operator to allocate basic instruction from pool alloc. */
1447 hsa_insn_basic::operator new (size_t)
1449 return hsa_allocp_inst_basic
->allocate_raw ();
1452 /* Verify the instruction. */
1455 hsa_insn_basic::verify ()
1457 hsa_op_address
*addr
;
1460 /* Iterate all register operands and verify that the instruction
1461 is set in uses of the register. */
1462 for (unsigned i
= 0; i
< operand_count (); i
++)
1464 hsa_op_base
*use
= get_op (i
);
1466 if ((addr
= dyn_cast
<hsa_op_address
*> (use
)) && addr
->m_reg
)
1468 gcc_assert (addr
->m_reg
->m_def_insn
!= this);
1472 if ((reg
= dyn_cast
<hsa_op_reg
*> (use
)) && !op_output_p (i
))
1475 for (j
= 0; j
< reg
->m_uses
.length (); j
++)
1477 if (reg
->m_uses
[j
] == this)
1481 if (j
== reg
->m_uses
.length ())
1483 error ("HSA instruction uses a register but is not among "
1484 "recorded register uses");
1485 debug_hsa_operand (reg
);
1486 debug_hsa_insn (this);
1487 internal_error ("HSA instruction verification failed");
1493 /* Constructor of an instruction representing a PHI node. NOPS is the number
1494 of operands (equal to the number of predecessors). */
1496 hsa_insn_phi::hsa_insn_phi (unsigned nops
, hsa_op_reg
*dst
)
1497 : hsa_insn_basic (nops
, HSA_OPCODE_PHI
), m_dest (dst
)
1499 dst
->set_definition (this);
1502 /* New operator to allocate PHI instruction from pool alloc. */
1505 hsa_insn_phi::operator new (size_t)
1507 return hsa_allocp_inst_phi
->allocate_raw ();
1510 /* Constructor of class representing instruction for conditional jump, CTRL is
1511 the control register determining whether the jump will be carried out, the
1512 new instruction is automatically added to its uses list. */
1514 hsa_insn_br::hsa_insn_br (hsa_op_reg
*ctrl
)
1515 : hsa_insn_basic (1, BRIG_OPCODE_CBR
, BRIG_TYPE_B1
, ctrl
),
1516 m_width (BRIG_WIDTH_1
)
1520 /* New operator to allocate branch instruction from pool alloc. */
1523 hsa_insn_br::operator new (size_t)
1525 return hsa_allocp_inst_br
->allocate_raw ();
1528 /* Constructor of class representing instruction for switch jump, CTRL is
1529 the index register. */
1531 hsa_insn_sbr::hsa_insn_sbr (hsa_op_reg
*index
, unsigned jump_count
)
1532 : hsa_insn_basic (1, BRIG_OPCODE_SBR
, BRIG_TYPE_B1
, index
),
1533 m_width (BRIG_WIDTH_1
), m_jump_table (vNULL
), m_default_bb (NULL
),
1534 m_label_code_list (new hsa_op_code_list (jump_count
))
1538 /* New operator to allocate switch branch instruction from pool alloc. */
1541 hsa_insn_sbr::operator new (size_t)
1543 return hsa_allocp_inst_sbr
->allocate_raw ();
1546 /* Replace all occurrences of OLD_BB with NEW_BB in the statements
1550 hsa_insn_sbr::replace_all_labels (basic_block old_bb
, basic_block new_bb
)
1552 for (unsigned i
= 0; i
< m_jump_table
.length (); i
++)
1553 if (m_jump_table
[i
] == old_bb
)
1554 m_jump_table
[i
] = new_bb
;
1557 hsa_insn_sbr::~hsa_insn_sbr ()
1559 m_jump_table
.release ();
1562 /* Constructor of comparison instruction. CMP is the comparison operation and T
1563 is the result type. */
1565 hsa_insn_cmp::hsa_insn_cmp (BrigCompareOperation8_t cmp
, BrigType16_t t
,
1566 hsa_op_base
*arg0
, hsa_op_base
*arg1
,
1568 : hsa_insn_basic (3 , BRIG_OPCODE_CMP
, t
, arg0
, arg1
, arg2
), m_compare (cmp
)
1572 /* New operator to allocate compare instruction from pool alloc. */
1575 hsa_insn_cmp::operator new (size_t)
1577 return hsa_allocp_inst_cmp
->allocate_raw ();
1580 /* Constructor of classes representing memory accesses. OPC is the opcode (must
1581 be BRIG_OPCODE_ST or BRIG_OPCODE_LD) and T is the type. The instruction
1582 operands are provided as ARG0 and ARG1. */
1584 hsa_insn_mem::hsa_insn_mem (int opc
, BrigType16_t t
, hsa_op_base
*arg0
,
1586 : hsa_insn_basic (2, opc
, t
, arg0
, arg1
),
1587 m_align (hsa_natural_alignment (t
)), m_equiv_class (0)
1589 gcc_checking_assert (opc
== BRIG_OPCODE_LD
|| opc
== BRIG_OPCODE_ST
);
1592 /* Constructor for descendants allowing different opcodes and number of
1593 operands, it passes its arguments directly to hsa_insn_basic
1594 constructor. The instruction operands are provided as ARG[0-3]. */
1597 hsa_insn_mem::hsa_insn_mem (unsigned nops
, int opc
, BrigType16_t t
,
1598 hsa_op_base
*arg0
, hsa_op_base
*arg1
,
1599 hsa_op_base
*arg2
, hsa_op_base
*arg3
)
1600 : hsa_insn_basic (nops
, opc
, t
, arg0
, arg1
, arg2
, arg3
),
1601 m_align (hsa_natural_alignment (t
)), m_equiv_class (0)
1605 /* New operator to allocate memory instruction from pool alloc. */
1608 hsa_insn_mem::operator new (size_t)
1610 return hsa_allocp_inst_mem
->allocate_raw ();
1613 /* Constructor of class representing atomic instructions and signals. OPC is
1614 the principal opcode, aop is the specific atomic operation opcode. T is the
1615 type of the instruction. The instruction operands
1616 are provided as ARG[0-3]. */
1618 hsa_insn_atomic::hsa_insn_atomic (int nops
, int opc
,
1619 enum BrigAtomicOperation aop
,
1620 BrigType16_t t
, BrigMemoryOrder memorder
,
1622 hsa_op_base
*arg1
, hsa_op_base
*arg2
,
1624 : hsa_insn_mem (nops
, opc
, t
, arg0
, arg1
, arg2
, arg3
), m_atomicop (aop
),
1625 m_memoryorder (memorder
),
1626 m_memoryscope (BRIG_MEMORY_SCOPE_SYSTEM
)
1628 gcc_checking_assert (opc
== BRIG_OPCODE_ATOMICNORET
||
1629 opc
== BRIG_OPCODE_ATOMIC
||
1630 opc
== BRIG_OPCODE_SIGNAL
||
1631 opc
== BRIG_OPCODE_SIGNALNORET
);
1634 /* New operator to allocate signal instruction from pool alloc. */
1637 hsa_insn_atomic::operator new (size_t)
1639 return hsa_allocp_inst_atomic
->allocate_raw ();
1642 /* Constructor of class representing signal instructions. OPC is the prinicpal
1643 opcode, sop is the specific signal operation opcode. T is the type of the
1644 instruction. The instruction operands are provided as ARG[0-3]. */
1646 hsa_insn_signal::hsa_insn_signal (int nops
, int opc
,
1647 enum BrigAtomicOperation sop
,
1648 BrigType16_t t
, hsa_op_base
*arg0
,
1649 hsa_op_base
*arg1
, hsa_op_base
*arg2
,
1651 : hsa_insn_atomic (nops
, opc
, sop
, t
, BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE
,
1652 arg0
, arg1
, arg2
, arg3
)
1656 /* New operator to allocate signal instruction from pool alloc. */
1659 hsa_insn_signal::operator new (size_t)
1661 return hsa_allocp_inst_signal
->allocate_raw ();
1664 /* Constructor of class representing segment conversion instructions. OPC is
1665 the opcode which must be either BRIG_OPCODE_STOF or BRIG_OPCODE_FTOS. DEST
1666 and SRCT are destination and source types respectively, SEG is the segment
1667 we are converting to or from. The instruction operands are
1668 provided as ARG0 and ARG1. */
1670 hsa_insn_seg::hsa_insn_seg (int opc
, BrigType16_t dest
, BrigType16_t srct
,
1671 BrigSegment8_t seg
, hsa_op_base
*arg0
,
1673 : hsa_insn_basic (2, opc
, dest
, arg0
, arg1
), m_src_type (srct
),
1676 gcc_checking_assert (opc
== BRIG_OPCODE_STOF
|| opc
== BRIG_OPCODE_FTOS
);
1679 /* New operator to allocate address conversion instruction from pool alloc. */
1682 hsa_insn_seg::operator new (size_t)
1684 return hsa_allocp_inst_seg
->allocate_raw ();
1687 /* Constructor of class representing a call instruction. CALLEE is the tree
1688 representation of the function being called. */
1690 hsa_insn_call::hsa_insn_call (tree callee
)
1691 : hsa_insn_basic (0, BRIG_OPCODE_CALL
), m_called_function (callee
),
1692 m_output_arg (NULL
), m_args_code_list (NULL
), m_result_code_list (NULL
)
1696 hsa_insn_call::hsa_insn_call (hsa_internal_fn
*fn
)
1697 : hsa_insn_basic (0, BRIG_OPCODE_CALL
), m_called_function (NULL
),
1698 m_called_internal_fn (fn
), m_output_arg (NULL
), m_args_code_list (NULL
),
1699 m_result_code_list (NULL
)
1703 /* New operator to allocate call instruction from pool alloc. */
1706 hsa_insn_call::operator new (size_t)
1708 return hsa_allocp_inst_call
->allocate_raw ();
1711 hsa_insn_call::~hsa_insn_call ()
1713 for (unsigned i
= 0; i
< m_input_args
.length (); i
++)
1714 delete m_input_args
[i
];
1716 delete m_output_arg
;
1718 m_input_args
.release ();
1719 m_input_arg_insns
.release ();
1722 /* Constructor of class representing the argument block required to invoke
1724 hsa_insn_arg_block::hsa_insn_arg_block (BrigKind brig_kind
,
1725 hsa_insn_call
* call
)
1726 : hsa_insn_basic (0, HSA_OPCODE_ARG_BLOCK
), m_kind (brig_kind
),
1731 /* New operator to allocate argument block instruction from pool alloc. */
1734 hsa_insn_arg_block::operator new (size_t)
1736 return hsa_allocp_inst_arg_block
->allocate_raw ();
1739 hsa_insn_comment::hsa_insn_comment (const char *s
)
1740 : hsa_insn_basic (0, BRIG_KIND_DIRECTIVE_COMMENT
)
1742 unsigned l
= strlen (s
);
1744 /* Append '// ' to the string. */
1745 char *buf
= XNEWVEC (char, l
+ 4);
1746 sprintf (buf
, "// %s", s
);
1750 /* New operator to allocate comment instruction from pool alloc. */
1753 hsa_insn_comment::operator new (size_t)
1755 return hsa_allocp_inst_comment
->allocate_raw ();
1758 hsa_insn_comment::~hsa_insn_comment ()
1760 gcc_checking_assert (m_comment
);
1765 /* Constructor of class representing the queue instruction in HSAIL. */
1766 hsa_insn_queue::hsa_insn_queue (int nops
, BrigOpcode opcode
)
1767 : hsa_insn_basic (nops
, opcode
, BRIG_TYPE_U64
)
1771 /* New operator to allocate source type instruction from pool alloc. */
1774 hsa_insn_srctype::operator new (size_t)
1776 return hsa_allocp_inst_srctype
->allocate_raw ();
1779 /* Constructor of class representing the source type instruction in HSAIL. */
1781 hsa_insn_srctype::hsa_insn_srctype (int nops
, BrigOpcode opcode
,
1782 BrigType16_t destt
, BrigType16_t srct
,
1783 hsa_op_base
*arg0
, hsa_op_base
*arg1
,
1784 hsa_op_base
*arg2
= NULL
)
1785 : hsa_insn_basic (nops
, opcode
, destt
, arg0
, arg1
, arg2
),
1786 m_source_type (srct
)
1789 /* New operator to allocate packed instruction from pool alloc. */
1792 hsa_insn_packed::operator new (size_t)
1794 return hsa_allocp_inst_packed
->allocate_raw ();
1797 /* Constructor of class representing the packed instruction in HSAIL. */
1799 hsa_insn_packed::hsa_insn_packed (int nops
, BrigOpcode opcode
,
1800 BrigType16_t destt
, BrigType16_t srct
,
1801 hsa_op_base
*arg0
, hsa_op_base
*arg1
,
1803 : hsa_insn_srctype (nops
, opcode
, destt
, srct
, arg0
, arg1
, arg2
)
1805 m_operand_list
= new hsa_op_operand_list (nops
- 1);
1808 /* New operator to allocate convert instruction from pool alloc. */
1811 hsa_insn_cvt::operator new (size_t)
1813 return hsa_allocp_inst_cvt
->allocate_raw ();
1816 /* Constructor of class representing the convert instruction in HSAIL. */
1818 hsa_insn_cvt::hsa_insn_cvt (hsa_op_with_type
*dest
, hsa_op_with_type
*src
)
1819 : hsa_insn_basic (2, BRIG_OPCODE_CVT
, dest
->m_type
, dest
, src
)
1823 /* New operator to allocate alloca from pool alloc. */
1826 hsa_insn_alloca::operator new (size_t)
1828 return hsa_allocp_inst_alloca
->allocate_raw ();
1831 /* Constructor of class representing the alloca in HSAIL. */
1833 hsa_insn_alloca::hsa_insn_alloca (hsa_op_with_type
*dest
,
1834 hsa_op_with_type
*size
, unsigned alignment
)
1835 : hsa_insn_basic (2, BRIG_OPCODE_ALLOCA
, dest
->m_type
, dest
, size
),
1836 m_align (BRIG_ALIGNMENT_8
)
1838 gcc_assert (dest
->m_type
== BRIG_TYPE_U32
);
1840 m_align
= hsa_alignment_encoding (alignment
);
1843 /* Append an instruction INSN into the basic block. */
1846 hsa_bb::append_insn (hsa_insn_basic
*insn
)
1848 gcc_assert (insn
->m_opcode
!= 0 || insn
->operand_count () == 0);
1849 gcc_assert (!insn
->m_bb
);
1852 insn
->m_prev
= m_last_insn
;
1853 insn
->m_next
= NULL
;
1855 m_last_insn
->m_next
= insn
;
1858 m_first_insn
= insn
;
1861 /* Insert HSA instruction NEW_INSN immediately before an existing instruction
1865 hsa_insert_insn_before (hsa_insn_basic
*new_insn
, hsa_insn_basic
*old_insn
)
1867 hsa_bb
*hbb
= hsa_bb_for_bb (old_insn
->m_bb
);
1869 if (hbb
->m_first_insn
== old_insn
)
1870 hbb
->m_first_insn
= new_insn
;
1871 new_insn
->m_prev
= old_insn
->m_prev
;
1872 new_insn
->m_next
= old_insn
;
1873 if (old_insn
->m_prev
)
1874 old_insn
->m_prev
->m_next
= new_insn
;
1875 old_insn
->m_prev
= new_insn
;
1878 /* Append HSA instruction NEW_INSN immediately after an existing instruction
1882 hsa_append_insn_after (hsa_insn_basic
*new_insn
, hsa_insn_basic
*old_insn
)
1884 hsa_bb
*hbb
= hsa_bb_for_bb (old_insn
->m_bb
);
1886 if (hbb
->m_last_insn
== old_insn
)
1887 hbb
->m_last_insn
= new_insn
;
1888 new_insn
->m_prev
= old_insn
;
1889 new_insn
->m_next
= old_insn
->m_next
;
1890 if (old_insn
->m_next
)
1891 old_insn
->m_next
->m_prev
= new_insn
;
1892 old_insn
->m_next
= new_insn
;
1895 /* Return a register containing the calculated value of EXP which must be an
1896 expression consisting of PLUS_EXPRs, MULT_EXPRs, NOP_EXPRs, SSA_NAMEs and
1897 integer constants as returned by get_inner_reference.
1898 Newly generated HSA instructions will be appended to HBB.
1899 Perform all calculations in ADDRTYPE. */
1901 static hsa_op_with_type
*
1902 gen_address_calculation (tree exp
, hsa_bb
*hbb
, BrigType16_t addrtype
)
1906 if (TREE_CODE (exp
) == NOP_EXPR
)
1907 exp
= TREE_OPERAND (exp
, 0);
1909 switch (TREE_CODE (exp
))
1912 return hsa_cfun
->reg_for_gimple_ssa (exp
)->get_in_type (addrtype
, hbb
);
1916 hsa_op_immed
*imm
= new hsa_op_immed (exp
);
1917 if (addrtype
!= imm
->m_type
)
1918 imm
->m_type
= addrtype
;
1923 opcode
= BRIG_OPCODE_ADD
;
1927 opcode
= BRIG_OPCODE_MUL
;
1934 hsa_op_reg
*res
= new hsa_op_reg (addrtype
);
1935 hsa_insn_basic
*insn
= new hsa_insn_basic (3, opcode
, addrtype
);
1936 insn
->set_op (0, res
);
1938 hsa_op_with_type
*op1
= gen_address_calculation (TREE_OPERAND (exp
, 0), hbb
,
1940 hsa_op_with_type
*op2
= gen_address_calculation (TREE_OPERAND (exp
, 1), hbb
,
1942 insn
->set_op (1, op1
);
1943 insn
->set_op (2, op2
);
1945 hbb
->append_insn (insn
);
1949 /* If R1 is NULL, just return R2, otherwise append an instruction adding them
1950 to HBB and return the register holding the result. */
1953 add_addr_regs_if_needed (hsa_op_reg
*r1
, hsa_op_reg
*r2
, hsa_bb
*hbb
)
1955 gcc_checking_assert (r2
);
1959 hsa_op_reg
*res
= new hsa_op_reg (r1
->m_type
);
1960 gcc_assert (!hsa_needs_cvt (r1
->m_type
, r2
->m_type
));
1961 hsa_insn_basic
*insn
= new hsa_insn_basic (3, BRIG_OPCODE_ADD
, res
->m_type
);
1962 insn
->set_op (0, res
);
1963 insn
->set_op (1, r1
);
1964 insn
->set_op (2, r2
);
1965 hbb
->append_insn (insn
);
1969 /* Helper of gen_hsa_addr. Update *SYMBOL, *ADDRTYPE, *REG and *OFFSET to
1970 reflect BASE which is the first operand of a MEM_REF or a TARGET_MEM_REF. */
1973 process_mem_base (tree base
, hsa_symbol
**symbol
, BrigType16_t
*addrtype
,
1974 hsa_op_reg
**reg
, offset_int
*offset
, hsa_bb
*hbb
)
1976 if (TREE_CODE (base
) == SSA_NAME
)
1979 hsa_op_with_type
*ssa
1980 = hsa_cfun
->reg_for_gimple_ssa (base
)->get_in_type (*addrtype
, hbb
);
1981 *reg
= dyn_cast
<hsa_op_reg
*> (ssa
);
1983 else if (TREE_CODE (base
) == ADDR_EXPR
)
1985 tree decl
= TREE_OPERAND (base
, 0);
1987 if (!DECL_P (decl
) || TREE_CODE (decl
) == FUNCTION_DECL
)
1989 HSA_SORRY_AT (EXPR_LOCATION (base
),
1990 "support for HSA does not implement a memory reference "
1991 "to a non-declaration type");
1995 gcc_assert (!*symbol
);
1997 *symbol
= get_symbol_for_decl (decl
);
1998 *addrtype
= hsa_get_segment_addr_type ((*symbol
)->m_segment
);
2000 else if (TREE_CODE (base
) == INTEGER_CST
)
2001 *offset
+= wi::to_offset (base
);
2006 /* Forward declaration of a function. */
2009 gen_hsa_addr_insns (tree val
, hsa_op_reg
*dest
, hsa_bb
*hbb
);
2011 /* Generate HSA address operand for a given tree memory reference REF. If
2012 instructions need to be created to calculate the address, they will be added
2013 to the end of HBB. If a caller provider OUTPUT_BITSIZE and OUTPUT_BITPOS,
2014 the function assumes that the caller will handle possible
2015 bit-field references. Otherwise if we reference a bit-field, sorry message
2018 static hsa_op_address
*
2019 gen_hsa_addr (tree ref
, hsa_bb
*hbb
, HOST_WIDE_INT
*output_bitsize
= NULL
,
2020 HOST_WIDE_INT
*output_bitpos
= NULL
)
2022 hsa_symbol
*symbol
= NULL
;
2023 hsa_op_reg
*reg
= NULL
;
2024 offset_int offset
= 0;
2026 tree varoffset
= NULL_TREE
;
2027 BrigType16_t addrtype
= hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
);
2028 HOST_WIDE_INT bitsize
= 0, bitpos
= 0;
2029 BrigType16_t flat_addrtype
= hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
);
2031 if (TREE_CODE (ref
) == STRING_CST
)
2033 symbol
= hsa_get_string_cst_symbol (ref
);
2036 else if (TREE_CODE (ref
) == BIT_FIELD_REF
2037 && ((tree_to_uhwi (TREE_OPERAND (ref
, 1)) % BITS_PER_UNIT
) != 0
2038 || (tree_to_uhwi (TREE_OPERAND (ref
, 2)) % BITS_PER_UNIT
) != 0))
2040 HSA_SORRY_ATV (EXPR_LOCATION (origref
),
2041 "support for HSA does not implement "
2042 "bit field references such as %E", ref
);
2046 if (handled_component_p (ref
))
2048 enum machine_mode mode
;
2049 int unsignedp
, volatilep
, preversep
;
2051 ref
= get_inner_reference (ref
, &bitsize
, &bitpos
, &varoffset
, &mode
,
2052 &unsignedp
, &preversep
, &volatilep
, false);
2055 offset
= wi::rshift (offset
, LOG2_BITS_PER_UNIT
, SIGNED
);
2058 switch (TREE_CODE (ref
))
2062 addrtype
= hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE
);
2063 symbol
= hsa_cfun
->create_hsa_temporary (flat_addrtype
);
2064 hsa_op_reg
*r
= new hsa_op_reg (flat_addrtype
);
2065 gen_hsa_addr_insns (ref
, r
, hbb
);
2066 hbb
->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST
, r
->m_type
,
2067 r
, new hsa_op_address (symbol
)));
2073 addrtype
= hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE
);
2074 symbol
= hsa_cfun
->create_hsa_temporary (flat_addrtype
);
2075 hsa_op_reg
*r
= hsa_cfun
->reg_for_gimple_ssa (ref
);
2077 hbb
->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST
, r
->m_type
,
2078 r
, new hsa_op_address (symbol
)));
2085 gcc_assert (!symbol
);
2086 symbol
= get_symbol_for_decl (ref
);
2087 addrtype
= hsa_get_segment_addr_type (symbol
->m_segment
);
2091 process_mem_base (TREE_OPERAND (ref
, 0), &symbol
, &addrtype
, ®
,
2094 if (!integer_zerop (TREE_OPERAND (ref
, 1)))
2095 offset
+= wi::to_offset (TREE_OPERAND (ref
, 1));
2098 case TARGET_MEM_REF
:
2099 process_mem_base (TMR_BASE (ref
), &symbol
, &addrtype
, ®
, &offset
, hbb
);
2100 if (TMR_INDEX (ref
))
2103 hsa_op_base
*idx
= hsa_cfun
->reg_for_gimple_ssa
2104 (TMR_INDEX (ref
))->get_in_type (addrtype
, hbb
);
2105 if (TMR_STEP (ref
) && !integer_onep (TMR_STEP (ref
)))
2107 disp1
= new hsa_op_reg (addrtype
);
2108 hsa_insn_basic
*insn
= new hsa_insn_basic (3, BRIG_OPCODE_MUL
,
2111 /* As step must respect addrtype, we overwrite the type
2112 of an immediate value. */
2113 hsa_op_immed
*step
= new hsa_op_immed (TMR_STEP (ref
));
2114 step
->m_type
= addrtype
;
2116 insn
->set_op (0, disp1
);
2117 insn
->set_op (1, idx
);
2118 insn
->set_op (2, step
);
2119 hbb
->append_insn (insn
);
2122 disp1
= as_a
<hsa_op_reg
*> (idx
);
2123 reg
= add_addr_regs_if_needed (reg
, disp1
, hbb
);
2125 if (TMR_INDEX2 (ref
))
2127 if (TREE_CODE (TMR_INDEX2 (ref
)) == SSA_NAME
)
2129 hsa_op_base
*disp2
= hsa_cfun
->reg_for_gimple_ssa
2130 (TMR_INDEX2 (ref
))->get_in_type (addrtype
, hbb
);
2131 reg
= add_addr_regs_if_needed (reg
, as_a
<hsa_op_reg
*> (disp2
),
2134 else if (TREE_CODE (TMR_INDEX2 (ref
)) == INTEGER_CST
)
2135 offset
+= wi::to_offset (TMR_INDEX2 (ref
));
2139 offset
+= wi::to_offset (TMR_OFFSET (ref
));
2142 HSA_SORRY_AT (EXPR_LOCATION (origref
),
2143 "support for HSA does not implement function pointers");
2146 HSA_SORRY_ATV (EXPR_LOCATION (origref
), "support for HSA does "
2147 "not implement memory access to %E", origref
);
2153 if (TREE_CODE (varoffset
) == INTEGER_CST
)
2154 offset
+= wi::to_offset (varoffset
);
2157 hsa_op_base
*off_op
= gen_address_calculation (varoffset
, hbb
,
2159 reg
= add_addr_regs_if_needed (reg
, as_a
<hsa_op_reg
*> (off_op
),
2164 gcc_checking_assert ((symbol
2166 == hsa_get_segment_addr_type (symbol
->m_segment
))
2169 == hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
)));
2171 HOST_WIDE_INT hwi_offset
= offset
.to_shwi ();
2173 /* Calculate remaining bitsize offset (if presented). */
2174 bitpos
%= BITS_PER_UNIT
;
2175 /* If bitsize is a power of two that is greater or equal to BITS_PER_UNIT, it
2176 is not a reason to think this is a bit-field access. */
2178 && (bitsize
>= BITS_PER_UNIT
)
2179 && !(bitsize
& (bitsize
- 1)))
2182 if ((bitpos
|| bitsize
) && (output_bitpos
== NULL
|| output_bitsize
== NULL
))
2183 HSA_SORRY_ATV (EXPR_LOCATION (origref
), "support for HSA does not "
2184 "implement unhandled bit field reference such as %E", ref
);
2186 if (output_bitsize
!= NULL
&& output_bitpos
!= NULL
)
2188 *output_bitsize
= bitsize
;
2189 *output_bitpos
= bitpos
;
2192 return new hsa_op_address (symbol
, reg
, hwi_offset
);
2195 /* Generate HSA address for a function call argument of given TYPE.
2196 INDEX is used to generate corresponding name of the arguments.
2197 Special value -1 represents fact that result value is created. */
2199 static hsa_op_address
*
2200 gen_hsa_addr_for_arg (tree tree_type
, int index
)
2202 hsa_symbol
*sym
= new hsa_symbol (BRIG_TYPE_NONE
, BRIG_SEGMENT_ARG
,
2204 sym
->m_type
= hsa_type_for_tree_type (tree_type
, &sym
->m_dim
);
2206 if (index
== -1) /* Function result. */
2207 sym
->m_name
= "res";
2208 else /* Function call arguments. */
2211 sym
->m_name_number
= index
;
2214 return new hsa_op_address (sym
);
2217 /* Generate HSA instructions that calculate address of VAL including all
2218 necessary conversions to flat addressing and place the result into DEST.
2219 Instructions are appended to HBB. */
2222 gen_hsa_addr_insns (tree val
, hsa_op_reg
*dest
, hsa_bb
*hbb
)
2224 /* Handle cases like tmp = NULL, where we just emit a move instruction
2226 if (TREE_CODE (val
) == INTEGER_CST
)
2228 hsa_op_immed
*c
= new hsa_op_immed (val
);
2229 hsa_insn_basic
*insn
= new hsa_insn_basic (2, BRIG_OPCODE_MOV
,
2230 dest
->m_type
, dest
, c
);
2231 hbb
->append_insn (insn
);
2235 hsa_op_address
*addr
;
2237 gcc_assert (dest
->m_type
== hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
));
2238 if (TREE_CODE (val
) == ADDR_EXPR
)
2239 val
= TREE_OPERAND (val
, 0);
2240 addr
= gen_hsa_addr (val
, hbb
);
2241 hsa_insn_basic
*insn
= new hsa_insn_basic (2, BRIG_OPCODE_LDA
);
2242 insn
->set_op (1, addr
);
2243 if (addr
->m_symbol
&& addr
->m_symbol
->m_segment
!= BRIG_SEGMENT_GLOBAL
)
2245 /* LDA produces segment-relative address, we need to convert
2246 it to the flat one. */
2248 tmp
= new hsa_op_reg (hsa_get_segment_addr_type
2249 (addr
->m_symbol
->m_segment
));
2251 seg
= new hsa_insn_seg (BRIG_OPCODE_STOF
,
2252 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
),
2253 tmp
->m_type
, addr
->m_symbol
->m_segment
, dest
,
2256 insn
->set_op (0, tmp
);
2257 insn
->m_type
= tmp
->m_type
;
2258 hbb
->append_insn (insn
);
2259 hbb
->append_insn (seg
);
2263 insn
->set_op (0, dest
);
2264 insn
->m_type
= hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
);
2265 hbb
->append_insn (insn
);
2269 /* Return an HSA register or HSA immediate value operand corresponding to
2270 gimple operand OP. */
2272 static hsa_op_with_type
*
2273 hsa_reg_or_immed_for_gimple_op (tree op
, hsa_bb
*hbb
)
2277 if (TREE_CODE (op
) == SSA_NAME
)
2278 tmp
= hsa_cfun
->reg_for_gimple_ssa (op
);
2279 else if (!POINTER_TYPE_P (TREE_TYPE (op
)))
2280 return new hsa_op_immed (op
);
2283 tmp
= new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
));
2284 gen_hsa_addr_insns (op
, tmp
, hbb
);
2289 /* Create a simple movement instruction with register destination DEST and
2290 register or immediate source SRC and append it to the end of HBB. */
2293 hsa_build_append_simple_mov (hsa_op_reg
*dest
, hsa_op_base
*src
, hsa_bb
*hbb
)
2295 hsa_insn_basic
*insn
= new hsa_insn_basic (2, BRIG_OPCODE_MOV
, dest
->m_type
,
2297 if (hsa_op_reg
*sreg
= dyn_cast
<hsa_op_reg
*> (src
))
2298 gcc_assert (hsa_type_bit_size (dest
->m_type
)
2299 == hsa_type_bit_size (sreg
->m_type
));
2301 gcc_assert (hsa_type_bit_size (dest
->m_type
)
2302 == hsa_type_bit_size (as_a
<hsa_op_immed
*> (src
)->m_type
));
2304 hbb
->append_insn (insn
);
2307 /* Generate HSAIL instructions loading a bit field into register DEST.
2308 VALUE_REG is a register of a SSA name that is used in the bit field
2309 reference. To identify a bit field BITPOS is offset to the loaded memory
2310 and BITSIZE is number of bits of the bit field.
2311 Add instructions to HBB. */
2314 gen_hsa_insns_for_bitfield (hsa_op_reg
*dest
, hsa_op_reg
*value_reg
,
2315 HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
2318 unsigned type_bitsize
= hsa_type_bit_size (dest
->m_type
);
2319 unsigned left_shift
= type_bitsize
- (bitsize
+ bitpos
);
2320 unsigned right_shift
= left_shift
+ bitpos
;
2324 hsa_op_reg
*value_reg_2
= new hsa_op_reg (dest
->m_type
);
2325 hsa_op_immed
*c
= new hsa_op_immed (left_shift
, BRIG_TYPE_U32
);
2327 hsa_insn_basic
*lshift
2328 = new hsa_insn_basic (3, BRIG_OPCODE_SHL
, value_reg_2
->m_type
,
2329 value_reg_2
, value_reg
, c
);
2331 hbb
->append_insn (lshift
);
2333 value_reg
= value_reg_2
;
2338 hsa_op_reg
*value_reg_2
= new hsa_op_reg (dest
->m_type
);
2339 hsa_op_immed
*c
= new hsa_op_immed (right_shift
, BRIG_TYPE_U32
);
2341 hsa_insn_basic
*rshift
2342 = new hsa_insn_basic (3, BRIG_OPCODE_SHR
, value_reg_2
->m_type
,
2343 value_reg_2
, value_reg
, c
);
2345 hbb
->append_insn (rshift
);
2347 value_reg
= value_reg_2
;
2350 hsa_insn_basic
*assignment
2351 = new hsa_insn_basic (2, BRIG_OPCODE_MOV
, dest
->m_type
, dest
, value_reg
);
2352 hbb
->append_insn (assignment
);
2356 /* Generate HSAIL instructions loading a bit field into register DEST. ADDR is
2357 prepared memory address which is used to load the bit field. To identify a
2358 bit field BITPOS is offset to the loaded memory and BITSIZE is number of
2359 bits of the bit field. Add instructions to HBB. Load must be performed in
2363 gen_hsa_insns_for_bitfield_load (hsa_op_reg
*dest
, hsa_op_address
*addr
,
2364 HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
2365 hsa_bb
*hbb
, BrigAlignment8_t align
)
2367 hsa_op_reg
*value_reg
= new hsa_op_reg (dest
->m_type
);
2368 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_LD
, dest
->m_type
, value_reg
,
2370 mem
->set_align (align
);
2371 hbb
->append_insn (mem
);
2372 gen_hsa_insns_for_bitfield (dest
, value_reg
, bitsize
, bitpos
, hbb
);
2375 /* Return the alignment of base memory accesses we issue to perform bit-field
2376 memory access REF. */
2378 static BrigAlignment8_t
2379 hsa_bitmemref_alignment (tree ref
)
2381 unsigned HOST_WIDE_INT bit_offset
= 0;
2385 if (TREE_CODE (ref
) == BIT_FIELD_REF
)
2387 if (!tree_fits_uhwi_p (TREE_OPERAND (ref
, 2)))
2388 return BRIG_ALIGNMENT_1
;
2389 bit_offset
+= tree_to_uhwi (TREE_OPERAND (ref
, 2));
2391 else if (TREE_CODE (ref
) == COMPONENT_REF
2392 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
2393 bit_offset
+= int_bit_position (TREE_OPERAND (ref
, 1));
2396 ref
= TREE_OPERAND (ref
, 0);
2399 unsigned HOST_WIDE_INT bits
= bit_offset
% BITS_PER_UNIT
;
2400 unsigned HOST_WIDE_INT byte_bits
= bit_offset
- bits
;
2401 BrigAlignment8_t base
= hsa_alignment_encoding (get_object_alignment (ref
));
2404 return MIN (base
, hsa_alignment_encoding (byte_bits
& -byte_bits
));
2407 /* Generate HSAIL instructions loading something into register DEST. RHS is
2408 tree representation of the loaded data, which are loaded as type TYPE. Add
2409 instructions to HBB. */
2412 gen_hsa_insns_for_load (hsa_op_reg
*dest
, tree rhs
, tree type
, hsa_bb
*hbb
)
2414 /* The destination SSA name will give us the type. */
2415 if (TREE_CODE (rhs
) == VIEW_CONVERT_EXPR
)
2416 rhs
= TREE_OPERAND (rhs
, 0);
2418 if (TREE_CODE (rhs
) == SSA_NAME
)
2420 hsa_op_reg
*src
= hsa_cfun
->reg_for_gimple_ssa (rhs
);
2421 hsa_build_append_simple_mov (dest
, src
, hbb
);
2423 else if (is_gimple_min_invariant (rhs
)
2424 || TREE_CODE (rhs
) == ADDR_EXPR
)
2426 if (POINTER_TYPE_P (TREE_TYPE (rhs
)))
2428 if (dest
->m_type
!= hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
))
2430 HSA_SORRY_ATV (EXPR_LOCATION (rhs
),
2431 "support for HSA does not implement conversion "
2432 "of %E to the requested non-pointer type.", rhs
);
2436 gen_hsa_addr_insns (rhs
, dest
, hbb
);
2438 else if (TREE_CODE (rhs
) == COMPLEX_CST
)
2440 hsa_op_immed
*real_part
= new hsa_op_immed (TREE_REALPART (rhs
));
2441 hsa_op_immed
*imag_part
= new hsa_op_immed (TREE_IMAGPART (rhs
));
2443 hsa_op_reg
*real_part_reg
2444 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type
),
2446 hsa_op_reg
*imag_part_reg
2447 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type
),
2450 hsa_build_append_simple_mov (real_part_reg
, real_part
, hbb
);
2451 hsa_build_append_simple_mov (imag_part_reg
, imag_part
, hbb
);
2453 BrigType16_t src_type
= hsa_bittype_for_type (real_part_reg
->m_type
);
2455 hsa_insn_packed
*insn
2456 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE
, dest
->m_type
,
2457 src_type
, dest
, real_part_reg
,
2459 hbb
->append_insn (insn
);
2463 hsa_op_immed
*imm
= new hsa_op_immed (rhs
);
2464 hsa_build_append_simple_mov (dest
, imm
, hbb
);
2467 else if (TREE_CODE (rhs
) == REALPART_EXPR
|| TREE_CODE (rhs
) == IMAGPART_EXPR
)
2469 tree pack_type
= TREE_TYPE (TREE_OPERAND (rhs
, 0));
2471 hsa_op_reg
*packed_reg
2472 = new hsa_op_reg (hsa_type_for_scalar_tree_type (pack_type
, true));
2474 tree complex_rhs
= TREE_OPERAND (rhs
, 0);
2475 gen_hsa_insns_for_load (packed_reg
, complex_rhs
, TREE_TYPE (complex_rhs
),
2478 hsa_op_reg
*real_reg
2479 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type
, true));
2481 hsa_op_reg
*imag_reg
2482 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type
, true));
2484 BrigKind16_t brig_type
= packed_reg
->m_type
;
2485 hsa_insn_packed
*packed
2486 = new hsa_insn_packed (3, BRIG_OPCODE_EXPAND
,
2487 hsa_bittype_for_type (real_reg
->m_type
),
2488 brig_type
, real_reg
, imag_reg
, packed_reg
);
2490 hbb
->append_insn (packed
);
2492 hsa_op_reg
*source
= TREE_CODE (rhs
) == REALPART_EXPR
?
2493 real_reg
: imag_reg
;
2495 hsa_insn_basic
*insn
= new hsa_insn_basic (2, BRIG_OPCODE_MOV
,
2496 dest
->m_type
, dest
, source
);
2498 hbb
->append_insn (insn
);
2500 else if (TREE_CODE (rhs
) == BIT_FIELD_REF
2501 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == SSA_NAME
)
2503 tree ssa_name
= TREE_OPERAND (rhs
, 0);
2504 HOST_WIDE_INT bitsize
= tree_to_uhwi (TREE_OPERAND (rhs
, 1));
2505 HOST_WIDE_INT bitpos
= tree_to_uhwi (TREE_OPERAND (rhs
, 2));
2507 hsa_op_reg
*imm_value
= hsa_cfun
->reg_for_gimple_ssa (ssa_name
);
2508 gen_hsa_insns_for_bitfield (dest
, imm_value
, bitsize
, bitpos
, hbb
);
2510 else if (DECL_P (rhs
) || TREE_CODE (rhs
) == MEM_REF
2511 || TREE_CODE (rhs
) == TARGET_MEM_REF
2512 || handled_component_p (rhs
))
2514 HOST_WIDE_INT bitsize
, bitpos
;
2516 /* Load from memory. */
2517 hsa_op_address
*addr
;
2518 addr
= gen_hsa_addr (rhs
, hbb
, &bitsize
, &bitpos
);
2520 /* Handle load of a bit field. */
2523 HSA_SORRY_AT (EXPR_LOCATION (rhs
),
2524 "support for HSA does not implement load from a bit "
2525 "field bigger than 64 bits");
2529 if (bitsize
|| bitpos
)
2530 gen_hsa_insns_for_bitfield_load (dest
, addr
, bitsize
, bitpos
, hbb
,
2531 hsa_bitmemref_alignment (rhs
));
2535 /* Not dest->m_type, that's possibly extended. */
2536 mtype
= mem_type_for_type (hsa_type_for_scalar_tree_type (type
,
2538 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_LD
, mtype
, dest
,
2540 mem
->set_align (hsa_alignment_encoding (get_object_alignment (rhs
)));
2541 hbb
->append_insn (mem
);
2545 HSA_SORRY_ATV (EXPR_LOCATION (rhs
),
2546 "support for HSA does not implement loading "
2551 /* Return number of bits necessary for representation of a bit field,
2552 starting at BITPOS with size of BITSIZE. */
2555 get_bitfield_size (unsigned bitpos
, unsigned bitsize
)
2557 unsigned s
= bitpos
+ bitsize
;
2558 unsigned sizes
[] = {8, 16, 32, 64};
2560 for (unsigned i
= 0; i
< 4; i
++)
2568 /* Generate HSAIL instructions storing into memory. LHS is the destination of
2569 the store, SRC is the source operand. Add instructions to HBB. */
2572 gen_hsa_insns_for_store (tree lhs
, hsa_op_base
*src
, hsa_bb
*hbb
)
2574 HOST_WIDE_INT bitsize
= 0, bitpos
= 0;
2575 BrigAlignment8_t req_align
;
2577 mtype
= mem_type_for_type (hsa_type_for_scalar_tree_type (TREE_TYPE (lhs
),
2579 hsa_op_address
*addr
;
2580 addr
= gen_hsa_addr (lhs
, hbb
, &bitsize
, &bitpos
);
2582 /* Handle store to a bit field. */
2585 HSA_SORRY_AT (EXPR_LOCATION (lhs
),
2586 "support for HSA does not implement store to a bit field "
2587 "bigger than 64 bits");
2591 unsigned type_bitsize
= get_bitfield_size (bitpos
, bitsize
);
2593 /* HSAIL does not support MOV insn with 16-bits integers. */
2594 if (type_bitsize
< 32)
2597 if (bitpos
|| (bitsize
&& type_bitsize
!= bitsize
))
2599 unsigned HOST_WIDE_INT mask
= 0;
2600 BrigType16_t mem_type
2601 = get_integer_type_by_bytes (type_bitsize
/ BITS_PER_UNIT
,
2602 !TYPE_UNSIGNED (TREE_TYPE (lhs
)));
2604 for (unsigned i
= 0; i
< type_bitsize
; i
++)
2605 if (i
< bitpos
|| i
>= bitpos
+ bitsize
)
2606 mask
|= ((unsigned HOST_WIDE_INT
)1 << i
);
2608 hsa_op_reg
*value_reg
= new hsa_op_reg (mem_type
);
2610 req_align
= hsa_bitmemref_alignment (lhs
);
2611 /* Load value from memory. */
2612 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_LD
, mem_type
,
2614 mem
->set_align (req_align
);
2615 hbb
->append_insn (mem
);
2617 /* AND the loaded value with prepared mask. */
2618 hsa_op_reg
*cleared_reg
= new hsa_op_reg (mem_type
);
2621 = get_integer_type_by_bytes (type_bitsize
/ BITS_PER_UNIT
, false);
2622 hsa_op_immed
*c
= new hsa_op_immed (mask
, t
);
2624 hsa_insn_basic
*clearing
2625 = new hsa_insn_basic (3, BRIG_OPCODE_AND
, mem_type
, cleared_reg
,
2627 hbb
->append_insn (clearing
);
2629 /* Shift to left a value that is going to be stored. */
2630 hsa_op_reg
*new_value_reg
= new hsa_op_reg (mem_type
);
2632 hsa_insn_basic
*basic
= new hsa_insn_basic (2, BRIG_OPCODE_MOV
, mem_type
,
2633 new_value_reg
, src
);
2634 hbb
->append_insn (basic
);
2638 hsa_op_reg
*shifted_value_reg
= new hsa_op_reg (mem_type
);
2639 c
= new hsa_op_immed (bitpos
, BRIG_TYPE_U32
);
2641 hsa_insn_basic
*basic
2642 = new hsa_insn_basic (3, BRIG_OPCODE_SHL
, mem_type
,
2643 shifted_value_reg
, new_value_reg
, c
);
2644 hbb
->append_insn (basic
);
2646 new_value_reg
= shifted_value_reg
;
2649 /* OR the prepared value with prepared chunk loaded from memory. */
2650 hsa_op_reg
*prepared_reg
= new hsa_op_reg (mem_type
);
2651 basic
= new hsa_insn_basic (3, BRIG_OPCODE_OR
, mem_type
, prepared_reg
,
2652 new_value_reg
, cleared_reg
);
2653 hbb
->append_insn (basic
);
2659 req_align
= hsa_alignment_encoding (get_object_alignment (lhs
));
2661 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_ST
, mtype
, src
, addr
);
2662 mem
->set_align (req_align
);
2664 /* The HSAIL verifier has another constraint: if the source is an immediate
2665 then it must match the destination type. If it's a register the low bits
2666 will be used for sub-word stores. We're always allocating new operands so
2667 we can modify the above in place. */
2668 if (hsa_op_immed
*imm
= dyn_cast
<hsa_op_immed
*> (src
))
2670 if (!hsa_type_packed_p (imm
->m_type
))
2671 imm
->m_type
= mem
->m_type
;
2674 /* ...and all vector immediates apparently need to be vectors of
2676 unsigned bs
= hsa_type_bit_size (imm
->m_type
);
2677 gcc_assert (bs
== hsa_type_bit_size (mem
->m_type
));
2681 imm
->m_type
= BRIG_TYPE_U8X4
;
2684 imm
->m_type
= BRIG_TYPE_U8X8
;
2687 imm
->m_type
= BRIG_TYPE_U8X16
;
2695 hbb
->append_insn (mem
);
2698 /* Generate memory copy instructions that are going to be used
2699 for copying a HSA symbol SRC_SYMBOL (or SRC_REG) to TARGET memory,
2700 represented by pointer in a register. */
2703 gen_hsa_memory_copy (hsa_bb
*hbb
, hsa_op_address
*target
, hsa_op_address
*src
,
2706 hsa_op_address
*addr
;
2709 unsigned offset
= 0;
2723 BrigType16_t t
= get_integer_type_by_bytes (s
, false);
2725 hsa_op_reg
*tmp
= new hsa_op_reg (t
);
2726 addr
= new hsa_op_address (src
->m_symbol
, src
->m_reg
,
2727 src
->m_imm_offset
+ offset
);
2728 mem
= new hsa_insn_mem (BRIG_OPCODE_LD
, t
, tmp
, addr
);
2729 hbb
->append_insn (mem
);
2731 addr
= new hsa_op_address (target
->m_symbol
, target
->m_reg
,
2732 target
->m_imm_offset
+ offset
);
2733 mem
= new hsa_insn_mem (BRIG_OPCODE_ST
, t
, tmp
, addr
);
2734 hbb
->append_insn (mem
);
2740 /* Create a memset mask that is created by copying a CONSTANT byte value
2741 to an integer of BYTE_SIZE bytes. */
2743 static unsigned HOST_WIDE_INT
2744 build_memset_value (unsigned HOST_WIDE_INT constant
, unsigned byte_size
)
2749 HOST_WIDE_INT v
= constant
;
2751 for (unsigned i
= 1; i
< byte_size
; i
++)
2752 v
|= constant
<< (8 * i
);
2757 /* Generate memory set instructions that are going to be used
2758 for setting a CONSTANT byte value to TARGET memory of SIZE bytes. */
2761 gen_hsa_memory_set (hsa_bb
*hbb
, hsa_op_address
*target
,
2762 unsigned HOST_WIDE_INT constant
,
2765 hsa_op_address
*addr
;
2768 unsigned offset
= 0;
2782 addr
= new hsa_op_address (target
->m_symbol
, target
->m_reg
,
2783 target
->m_imm_offset
+ offset
);
2785 BrigType16_t t
= get_integer_type_by_bytes (s
, false);
2786 HOST_WIDE_INT c
= build_memset_value (constant
, s
);
2788 mem
= new hsa_insn_mem (BRIG_OPCODE_ST
, t
, new hsa_op_immed (c
, t
),
2790 hbb
->append_insn (mem
);
2796 /* Generate HSAIL instructions for a single assignment
2797 of an empty constructor to an ADDR_LHS. Constructor is passed as a
2798 tree RHS and all instructions are appended to HBB. */
2801 gen_hsa_ctor_assignment (hsa_op_address
*addr_lhs
, tree rhs
, hsa_bb
*hbb
)
2803 if (vec_safe_length (CONSTRUCTOR_ELTS (rhs
)))
2805 HSA_SORRY_AT (EXPR_LOCATION (rhs
),
2806 "support for HSA does not implement load from constructor");
2810 unsigned size
= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs
)));
2811 gen_hsa_memory_set (hbb
, addr_lhs
, 0, size
);
2814 /* Generate HSA instructions for a single assignment of RHS to LHS.
2815 HBB is the basic block they will be appended to. */
2818 gen_hsa_insns_for_single_assignment (tree lhs
, tree rhs
, hsa_bb
*hbb
)
2820 if (TREE_CODE (lhs
) == SSA_NAME
)
2822 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
2823 if (hsa_seen_error ())
2826 gen_hsa_insns_for_load (dest
, rhs
, TREE_TYPE (lhs
), hbb
);
2828 else if (TREE_CODE (rhs
) == SSA_NAME
2829 || (is_gimple_min_invariant (rhs
) && TREE_CODE (rhs
) != STRING_CST
))
2831 /* Store to memory. */
2832 hsa_op_base
*src
= hsa_reg_or_immed_for_gimple_op (rhs
, hbb
);
2833 if (hsa_seen_error ())
2836 gen_hsa_insns_for_store (lhs
, src
, hbb
);
2840 hsa_op_address
*addr_lhs
= gen_hsa_addr (lhs
, hbb
);
2842 if (TREE_CODE (rhs
) == CONSTRUCTOR
)
2843 gen_hsa_ctor_assignment (addr_lhs
, rhs
, hbb
);
2846 hsa_op_address
*addr_rhs
= gen_hsa_addr (rhs
, hbb
);
2848 unsigned size
= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs
)));
2849 gen_hsa_memory_copy (hbb
, addr_lhs
, addr_rhs
, size
);
2854 /* Prepend before INSN a load from spill symbol of SPILL_REG. Return the
2855 register into which we loaded. If this required another register to convert
2856 from a B1 type, return it in *PTMP2, otherwise store NULL into it. We
2857 assume we are out of SSA so the returned register does not have its
2861 hsa_spill_in (hsa_insn_basic
*insn
, hsa_op_reg
*spill_reg
, hsa_op_reg
**ptmp2
)
2863 hsa_symbol
*spill_sym
= spill_reg
->m_spill_sym
;
2864 hsa_op_reg
*reg
= new hsa_op_reg (spill_sym
->m_type
);
2865 hsa_op_address
*addr
= new hsa_op_address (spill_sym
);
2867 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_LD
, spill_sym
->m_type
,
2869 hsa_insert_insn_before (mem
, insn
);
2872 if (spill_reg
->m_type
== BRIG_TYPE_B1
)
2874 hsa_insn_basic
*cvtinsn
;
2876 reg
= new hsa_op_reg (spill_reg
->m_type
);
2878 cvtinsn
= new hsa_insn_cvt (reg
, *ptmp2
);
2879 hsa_insert_insn_before (cvtinsn
, insn
);
2884 /* Append after INSN a store to spill symbol of SPILL_REG. Return the register
2885 from which we stored. If this required another register to convert to a B1
2886 type, return it in *PTMP2, otherwise store NULL into it. We assume we are
2887 out of SSA so the returned register does not have its use updated. */
2890 hsa_spill_out (hsa_insn_basic
*insn
, hsa_op_reg
*spill_reg
, hsa_op_reg
**ptmp2
)
2892 hsa_symbol
*spill_sym
= spill_reg
->m_spill_sym
;
2893 hsa_op_reg
*reg
= new hsa_op_reg (spill_sym
->m_type
);
2894 hsa_op_address
*addr
= new hsa_op_address (spill_sym
);
2895 hsa_op_reg
*returnreg
;
2899 if (spill_reg
->m_type
== BRIG_TYPE_B1
)
2901 hsa_insn_basic
*cvtinsn
;
2902 *ptmp2
= new hsa_op_reg (spill_sym
->m_type
);
2903 reg
->m_type
= spill_reg
->m_type
;
2905 cvtinsn
= new hsa_insn_cvt (*ptmp2
, returnreg
);
2906 hsa_append_insn_after (cvtinsn
, insn
);
2911 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_ST
, spill_sym
->m_type
, reg
,
2913 hsa_append_insn_after (mem
, insn
);
2917 /* Generate a comparison instruction that will compare LHS and RHS with
2918 comparison specified by CODE and put result into register DEST. DEST has to
2919 have its type set already but must not have its definition set yet.
2920 Generated instructions will be added to HBB. */
2923 gen_hsa_cmp_insn_from_gimple (enum tree_code code
, tree lhs
, tree rhs
,
2924 hsa_op_reg
*dest
, hsa_bb
*hbb
)
2926 BrigCompareOperation8_t compare
;
2931 compare
= BRIG_COMPARE_LT
;
2934 compare
= BRIG_COMPARE_LE
;
2937 compare
= BRIG_COMPARE_GT
;
2940 compare
= BRIG_COMPARE_GE
;
2943 compare
= BRIG_COMPARE_EQ
;
2946 compare
= BRIG_COMPARE_NE
;
2948 case UNORDERED_EXPR
:
2949 compare
= BRIG_COMPARE_NAN
;
2952 compare
= BRIG_COMPARE_NUM
;
2955 compare
= BRIG_COMPARE_LTU
;
2958 compare
= BRIG_COMPARE_LEU
;
2961 compare
= BRIG_COMPARE_GTU
;
2964 compare
= BRIG_COMPARE_GEU
;
2967 compare
= BRIG_COMPARE_EQU
;
2970 compare
= BRIG_COMPARE_NEU
;
2974 HSA_SORRY_ATV (EXPR_LOCATION (lhs
),
2975 "support for HSA does not implement comparison tree "
2976 "code %s\n", get_tree_code_name (code
));
2980 /* CMP instruction returns e.g. 0xffffffff (for a 32-bit with integer)
2981 as a result of comparison. */
2983 BrigType16_t dest_type
= hsa_type_integer_p (dest
->m_type
)
2984 ? (BrigType16_t
) BRIG_TYPE_B1
: dest
->m_type
;
2986 hsa_insn_cmp
*cmp
= new hsa_insn_cmp (compare
, dest_type
);
2987 cmp
->set_op (1, hsa_reg_or_immed_for_gimple_op (lhs
, hbb
));
2988 cmp
->set_op (2, hsa_reg_or_immed_for_gimple_op (rhs
, hbb
));
2990 hbb
->append_insn (cmp
);
2991 cmp
->set_output_in_type (dest
, 0, hbb
);
2994 /* Generate an unary instruction with OPCODE and append it to a basic block
2995 HBB. The instruction uses DEST as a destination and OP1
2996 as a single operand. */
2999 gen_hsa_unary_operation (BrigOpcode opcode
, hsa_op_reg
*dest
,
3000 hsa_op_with_type
*op1
, hsa_bb
*hbb
)
3002 gcc_checking_assert (dest
);
3003 hsa_insn_basic
*insn
;
3005 if (opcode
== BRIG_OPCODE_MOV
&& hsa_needs_cvt (dest
->m_type
, op1
->m_type
))
3006 insn
= new hsa_insn_cvt (dest
, op1
);
3007 else if (opcode
== BRIG_OPCODE_FIRSTBIT
|| opcode
== BRIG_OPCODE_LASTBIT
)
3008 insn
= new hsa_insn_srctype (2, opcode
, BRIG_TYPE_U32
, op1
->m_type
, NULL
,
3012 insn
= new hsa_insn_basic (2, opcode
, dest
->m_type
, dest
, op1
);
3014 if (opcode
== BRIG_OPCODE_ABS
|| opcode
== BRIG_OPCODE_NEG
)
3016 /* ABS and NEG only exist in _s form :-/ */
3017 if (insn
->m_type
== BRIG_TYPE_U32
)
3018 insn
->m_type
= BRIG_TYPE_S32
;
3019 else if (insn
->m_type
== BRIG_TYPE_U64
)
3020 insn
->m_type
= BRIG_TYPE_S64
;
3024 hbb
->append_insn (insn
);
3026 if (opcode
== BRIG_OPCODE_FIRSTBIT
|| opcode
== BRIG_OPCODE_LASTBIT
)
3027 insn
->set_output_in_type (dest
, 0, hbb
);
3030 /* Generate a binary instruction with OPCODE and append it to a basic block
3031 HBB. The instruction uses DEST as a destination and operands OP1
3035 gen_hsa_binary_operation (int opcode
, hsa_op_reg
*dest
,
3036 hsa_op_base
*op1
, hsa_op_base
*op2
, hsa_bb
*hbb
)
3038 gcc_checking_assert (dest
);
3040 if ((opcode
== BRIG_OPCODE_SHL
|| opcode
== BRIG_OPCODE_SHR
)
3041 && is_a
<hsa_op_immed
*> (op2
))
3043 hsa_op_immed
*i
= dyn_cast
<hsa_op_immed
*> (op2
);
3044 i
->set_type (BRIG_TYPE_U32
);
3046 if ((opcode
== BRIG_OPCODE_OR
3047 || opcode
== BRIG_OPCODE_XOR
3048 || opcode
== BRIG_OPCODE_AND
)
3049 && is_a
<hsa_op_immed
*> (op2
))
3051 hsa_op_immed
*i
= dyn_cast
<hsa_op_immed
*> (op2
);
3052 i
->set_type (hsa_unsigned_type_for_type (i
->m_type
));
3055 hsa_insn_basic
*insn
= new hsa_insn_basic (3, opcode
, dest
->m_type
, dest
,
3057 hbb
->append_insn (insn
);
3060 /* Generate HSA instructions for a single assignment. HBB is the basic block
3061 they will be appended to. */
3064 gen_hsa_insns_for_operation_assignment (gimple
*assign
, hsa_bb
*hbb
)
3066 tree_code code
= gimple_assign_rhs_code (assign
);
3067 gimple_rhs_class rhs_class
= get_gimple_rhs_class (gimple_expr_code (assign
));
3069 tree lhs
= gimple_assign_lhs (assign
);
3070 tree rhs1
= gimple_assign_rhs1 (assign
);
3071 tree rhs2
= gimple_assign_rhs2 (assign
);
3072 tree rhs3
= gimple_assign_rhs3 (assign
);
3080 /* The opcode is changed to BRIG_OPCODE_CVT if BRIG types
3081 needs a conversion. */
3082 opcode
= BRIG_OPCODE_MOV
;
3086 case POINTER_PLUS_EXPR
:
3087 opcode
= BRIG_OPCODE_ADD
;
3090 opcode
= BRIG_OPCODE_SUB
;
3093 opcode
= BRIG_OPCODE_MUL
;
3095 case MULT_HIGHPART_EXPR
:
3096 opcode
= BRIG_OPCODE_MULHI
;
3099 case TRUNC_DIV_EXPR
:
3100 case EXACT_DIV_EXPR
:
3101 opcode
= BRIG_OPCODE_DIV
;
3104 case FLOOR_DIV_EXPR
:
3105 case ROUND_DIV_EXPR
:
3106 HSA_SORRY_AT (gimple_location (assign
),
3107 "support for HSA does not implement CEIL_DIV_EXPR, "
3108 "FLOOR_DIV_EXPR or ROUND_DIV_EXPR");
3110 case TRUNC_MOD_EXPR
:
3111 opcode
= BRIG_OPCODE_REM
;
3114 case FLOOR_MOD_EXPR
:
3115 case ROUND_MOD_EXPR
:
3116 HSA_SORRY_AT (gimple_location (assign
),
3117 "support for HSA does not implement CEIL_MOD_EXPR, "
3118 "FLOOR_MOD_EXPR or ROUND_MOD_EXPR");
3121 opcode
= BRIG_OPCODE_NEG
;
3124 opcode
= BRIG_OPCODE_MIN
;
3127 opcode
= BRIG_OPCODE_MAX
;
3130 opcode
= BRIG_OPCODE_ABS
;
3133 opcode
= BRIG_OPCODE_SHL
;
3136 opcode
= BRIG_OPCODE_SHR
;
3141 hsa_insn_basic
*insn
= NULL
;
3142 int code1
= code
== LROTATE_EXPR
? BRIG_OPCODE_SHL
: BRIG_OPCODE_SHR
;
3143 int code2
= code
!= LROTATE_EXPR
? BRIG_OPCODE_SHL
: BRIG_OPCODE_SHR
;
3144 BrigType16_t btype
= hsa_type_for_scalar_tree_type (TREE_TYPE (lhs
),
3147 hsa_op_with_type
*src
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
);
3148 hsa_op_reg
*op1
= new hsa_op_reg (btype
);
3149 hsa_op_reg
*op2
= new hsa_op_reg (btype
);
3150 hsa_op_with_type
*shift1
= hsa_reg_or_immed_for_gimple_op (rhs2
, hbb
);
3152 tree type
= TREE_TYPE (rhs2
);
3153 unsigned HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (TYPE_SIZE (type
));
3155 hsa_op_with_type
*shift2
= NULL
;
3156 if (TREE_CODE (rhs2
) == INTEGER_CST
)
3157 shift2
= new hsa_op_immed (bitsize
- tree_to_uhwi (rhs2
),
3159 else if (TREE_CODE (rhs2
) == SSA_NAME
)
3161 hsa_op_reg
*s
= hsa_cfun
->reg_for_gimple_ssa (rhs2
);
3162 hsa_op_reg
*d
= new hsa_op_reg (s
->m_type
);
3163 hsa_op_immed
*size_imm
= new hsa_op_immed (bitsize
, BRIG_TYPE_U32
);
3165 insn
= new hsa_insn_basic (3, BRIG_OPCODE_SUB
, d
->m_type
,
3167 hbb
->append_insn (insn
);
3174 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
3175 gen_hsa_binary_operation (code1
, op1
, src
, shift1
, hbb
);
3176 gen_hsa_binary_operation (code2
, op2
, src
, shift2
, hbb
);
3177 gen_hsa_binary_operation (BRIG_OPCODE_OR
, dest
, op1
, op2
, hbb
);
3182 opcode
= BRIG_OPCODE_OR
;
3185 opcode
= BRIG_OPCODE_XOR
;
3188 opcode
= BRIG_OPCODE_AND
;
3191 opcode
= BRIG_OPCODE_NOT
;
3193 case FIX_TRUNC_EXPR
:
3195 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
3196 hsa_op_with_type
*v
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
);
3198 if (hsa_needs_cvt (dest
->m_type
, v
->m_type
))
3200 hsa_op_reg
*tmp
= new hsa_op_reg (v
->m_type
);
3202 hsa_insn_basic
*insn
= new hsa_insn_basic (2, BRIG_OPCODE_TRUNC
,
3203 tmp
->m_type
, tmp
, v
);
3204 hbb
->append_insn (insn
);
3206 hsa_insn_basic
*cvtinsn
= new hsa_insn_cvt (dest
, tmp
);
3207 hbb
->append_insn (cvtinsn
);
3211 hsa_insn_basic
*insn
= new hsa_insn_basic (2, BRIG_OPCODE_TRUNC
,
3212 dest
->m_type
, dest
, v
);
3213 hbb
->append_insn (insn
);
3218 opcode
= BRIG_OPCODE_TRUNC
;
3227 case UNORDERED_EXPR
:
3237 = hsa_cfun
->reg_for_gimple_ssa (gimple_assign_lhs (assign
));
3239 gen_hsa_cmp_insn_from_gimple (code
, rhs1
, rhs2
, dest
, hbb
);
3245 = hsa_cfun
->reg_for_gimple_ssa (gimple_assign_lhs (assign
));
3246 hsa_op_with_type
*ctrl
= NULL
;
3249 if (CONSTANT_CLASS_P (cond
) || TREE_CODE (cond
) == SSA_NAME
)
3250 ctrl
= hsa_reg_or_immed_for_gimple_op (cond
, hbb
);
3253 hsa_op_reg
*r
= new hsa_op_reg (BRIG_TYPE_B1
);
3255 gen_hsa_cmp_insn_from_gimple (TREE_CODE (cond
),
3256 TREE_OPERAND (cond
, 0),
3257 TREE_OPERAND (cond
, 1),
3263 hsa_op_with_type
*op2
= hsa_reg_or_immed_for_gimple_op (rhs2
, hbb
);
3264 hsa_op_with_type
*op3
= hsa_reg_or_immed_for_gimple_op (rhs3
, hbb
);
3266 BrigType16_t utype
= hsa_unsigned_type_for_type (dest
->m_type
);
3267 if (is_a
<hsa_op_immed
*> (op2
))
3268 op2
->m_type
= utype
;
3269 if (is_a
<hsa_op_immed
*> (op3
))
3270 op3
->m_type
= utype
;
3272 hsa_insn_basic
*insn
3273 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV
,
3274 hsa_bittype_for_type (dest
->m_type
),
3275 dest
, ctrl
, op2
, op3
);
3277 hbb
->append_insn (insn
);
3283 = hsa_cfun
->reg_for_gimple_ssa (gimple_assign_lhs (assign
));
3284 hsa_op_with_type
*rhs1_reg
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
);
3285 hsa_op_with_type
*rhs2_reg
= hsa_reg_or_immed_for_gimple_op (rhs2
, hbb
);
3287 if (hsa_seen_error ())
3290 BrigType16_t src_type
= hsa_bittype_for_type (rhs1_reg
->m_type
);
3291 rhs1_reg
= rhs1_reg
->get_in_type (src_type
, hbb
);
3292 rhs2_reg
= rhs2_reg
->get_in_type (src_type
, hbb
);
3294 hsa_insn_packed
*insn
3295 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE
, dest
->m_type
, src_type
,
3296 dest
, rhs1_reg
, rhs2_reg
);
3297 hbb
->append_insn (insn
);
3302 /* Implement others as we come across them. */
3303 HSA_SORRY_ATV (gimple_location (assign
),
3304 "support for HSA does not implement operation %s",
3305 get_tree_code_name (code
));
3310 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (gimple_assign_lhs (assign
));
3312 hsa_op_with_type
*op1
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
);
3313 hsa_op_with_type
*op2
= rhs2
!= NULL_TREE
?
3314 hsa_reg_or_immed_for_gimple_op (rhs2
, hbb
) : NULL
;
3316 if (hsa_seen_error ())
3321 case GIMPLE_TERNARY_RHS
:
3326 case GIMPLE_BINARY_RHS
:
3327 gen_hsa_binary_operation (opcode
, dest
, op1
, op2
, hbb
);
3330 case GIMPLE_UNARY_RHS
:
3331 gen_hsa_unary_operation (opcode
, dest
, op1
, hbb
);
3338 /* Generate HSA instructions for a given gimple condition statement COND.
3339 Instructions will be appended to HBB, which also needs to be the
3340 corresponding structure to the basic_block of COND. */
3343 gen_hsa_insns_for_cond_stmt (gimple
*cond
, hsa_bb
*hbb
)
3345 hsa_op_reg
*ctrl
= new hsa_op_reg (BRIG_TYPE_B1
);
3348 gen_hsa_cmp_insn_from_gimple (gimple_cond_code (cond
),
3349 gimple_cond_lhs (cond
),
3350 gimple_cond_rhs (cond
),
3353 cbr
= new hsa_insn_br (ctrl
);
3354 hbb
->append_insn (cbr
);
3357 /* Maximum number of elements in a jump table for an HSA SBR instruction. */
3359 #define HSA_MAXIMUM_SBR_LABELS 16
3361 /* Return lowest value of a switch S that is handled in a non-default
3365 get_switch_low (gswitch
*s
)
3367 unsigned labels
= gimple_switch_num_labels (s
);
3368 gcc_checking_assert (labels
>= 1);
3370 return CASE_LOW (gimple_switch_label (s
, 1));
3373 /* Return highest value of a switch S that is handled in a non-default
3377 get_switch_high (gswitch
*s
)
3379 unsigned labels
= gimple_switch_num_labels (s
);
3381 /* Compare last label to maximum number of labels. */
3382 tree label
= gimple_switch_label (s
, labels
- 1);
3383 tree low
= CASE_LOW (label
);
3384 tree high
= CASE_HIGH (label
);
3386 return high
!= NULL_TREE
? high
: low
;
3390 get_switch_size (gswitch
*s
)
3392 return int_const_binop (MINUS_EXPR
, get_switch_high (s
), get_switch_low (s
));
3395 /* Generate HSA instructions for a given gimple switch.
3396 Instructions will be appended to HBB. */
3399 gen_hsa_insns_for_switch_stmt (gswitch
*s
, hsa_bb
*hbb
)
3401 function
*func
= DECL_STRUCT_FUNCTION (current_function_decl
);
3402 tree index_tree
= gimple_switch_index (s
);
3403 tree lowest
= get_switch_low (s
);
3405 hsa_op_reg
*index
= hsa_cfun
->reg_for_gimple_ssa (index_tree
);
3406 hsa_op_reg
*sub_index
= new hsa_op_reg (index
->m_type
);
3407 hbb
->append_insn (new hsa_insn_basic (3, BRIG_OPCODE_SUB
, sub_index
->m_type
,
3409 new hsa_op_immed (lowest
)));
3411 hsa_op_base
*tmp
= sub_index
->get_in_type (BRIG_TYPE_U64
, hbb
);
3412 sub_index
= as_a
<hsa_op_reg
*> (tmp
);
3413 unsigned labels
= gimple_switch_num_labels (s
);
3414 unsigned HOST_WIDE_INT size
= tree_to_uhwi (get_switch_size (s
));
3416 hsa_insn_sbr
*sbr
= new hsa_insn_sbr (sub_index
, size
+ 1);
3417 tree default_label
= gimple_switch_default_label (s
);
3418 basic_block default_label_bb
= label_to_block_fn (func
,
3419 CASE_LABEL (default_label
));
3421 sbr
->m_default_bb
= default_label_bb
;
3423 /* Prepare array with default label destination. */
3424 for (unsigned HOST_WIDE_INT i
= 0; i
<= size
; i
++)
3425 sbr
->m_jump_table
.safe_push (default_label_bb
);
3427 /* Iterate all labels and fill up the jump table. */
3428 for (unsigned i
= 1; i
< labels
; i
++)
3430 tree label
= gimple_switch_label (s
, i
);
3431 basic_block bb
= label_to_block_fn (func
, CASE_LABEL (label
));
3433 unsigned HOST_WIDE_INT sub_low
3434 = tree_to_uhwi (int_const_binop (MINUS_EXPR
, CASE_LOW (label
), lowest
));
3436 unsigned HOST_WIDE_INT sub_high
= sub_low
;
3437 tree high
= CASE_HIGH (label
);
3439 sub_high
= tree_to_uhwi (int_const_binop (MINUS_EXPR
, high
, lowest
));
3441 for (unsigned HOST_WIDE_INT j
= sub_low
; j
<= sub_high
; j
++)
3442 sbr
->m_jump_table
[j
] = bb
;
3445 hbb
->append_insn (sbr
);
3448 /* Verify that the function DECL can be handled by HSA. */
3451 verify_function_arguments (tree decl
)
3453 if (DECL_STATIC_CHAIN (decl
))
3455 HSA_SORRY_ATV (EXPR_LOCATION (decl
),
3456 "HSA does not support nested functions: %D", decl
);
3459 else if (!TYPE_ARG_TYPES (TREE_TYPE (decl
)))
3461 HSA_SORRY_ATV (EXPR_LOCATION (decl
),
3462 "HSA does not support functions with variadic arguments "
3463 "(or unknown return type): %D", decl
);
3468 /* Return BRIG type for FORMAL_ARG_TYPE. If the formal argument type is NULL,
3469 return ACTUAL_ARG_TYPE. */
3472 get_format_argument_type (tree formal_arg_type
, BrigType16_t actual_arg_type
)
3474 if (formal_arg_type
== NULL
)
3475 return actual_arg_type
;
3477 BrigType16_t decl_type
3478 = hsa_type_for_scalar_tree_type (formal_arg_type
, false);
3479 return mem_type_for_type (decl_type
);
3482 /* Generate HSA instructions for a direct call instruction.
3483 Instructions will be appended to HBB, which also needs to be the
3484 corresponding structure to the basic_block of STMT. */
3487 gen_hsa_insns_for_direct_call (gimple
*stmt
, hsa_bb
*hbb
)
3489 tree decl
= gimple_call_fndecl (stmt
);
3490 verify_function_arguments (decl
);
3491 if (hsa_seen_error ())
3494 hsa_insn_call
*call_insn
= new hsa_insn_call (decl
);
3495 hsa_cfun
->m_called_functions
.safe_push (call_insn
->m_called_function
);
3497 /* Argument block start. */
3498 hsa_insn_arg_block
*arg_start
3499 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START
, call_insn
);
3500 hbb
->append_insn (arg_start
);
3502 tree parm_type_chain
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
3504 /* Preparation of arguments that will be passed to function. */
3505 const unsigned args
= gimple_call_num_args (stmt
);
3506 for (unsigned i
= 0; i
< args
; ++i
)
3508 tree parm
= gimple_call_arg (stmt
, (int)i
);
3509 tree parm_decl_type
= parm_type_chain
!= NULL_TREE
3510 ? TREE_VALUE (parm_type_chain
) : NULL_TREE
;
3511 hsa_op_address
*addr
;
3513 if (AGGREGATE_TYPE_P (TREE_TYPE (parm
)))
3515 addr
= gen_hsa_addr_for_arg (TREE_TYPE (parm
), i
);
3516 hsa_op_address
*src
= gen_hsa_addr (parm
, hbb
);
3517 gen_hsa_memory_copy (hbb
, addr
, src
,
3518 addr
->m_symbol
->total_byte_size ());
3522 hsa_op_with_type
*src
= hsa_reg_or_immed_for_gimple_op (parm
, hbb
);
3524 if (parm_decl_type
!= NULL
&& AGGREGATE_TYPE_P (parm_decl_type
))
3526 HSA_SORRY_AT (gimple_location (stmt
),
3527 "support for HSA does not implement an aggregate "
3528 "formal argument in a function call, while actual "
3529 "argument is not an aggregate");
3533 BrigType16_t formal_arg_type
3534 = get_format_argument_type (parm_decl_type
, src
->m_type
);
3535 if (hsa_seen_error ())
3538 if (src
->m_type
!= formal_arg_type
)
3539 src
= src
->get_in_type (formal_arg_type
, hbb
);
3542 = gen_hsa_addr_for_arg (parm_decl_type
!= NULL_TREE
?
3543 parm_decl_type
: TREE_TYPE (parm
), i
);
3544 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_ST
, formal_arg_type
,
3547 hbb
->append_insn (mem
);
3550 call_insn
->m_input_args
.safe_push (addr
->m_symbol
);
3551 if (parm_type_chain
)
3552 parm_type_chain
= TREE_CHAIN (parm_type_chain
);
3555 call_insn
->m_args_code_list
= new hsa_op_code_list (args
);
3556 hbb
->append_insn (call_insn
);
3558 tree result_type
= TREE_TYPE (TREE_TYPE (decl
));
3560 tree result
= gimple_call_lhs (stmt
);
3561 hsa_insn_mem
*result_insn
= NULL
;
3562 if (!VOID_TYPE_P (result_type
))
3564 hsa_op_address
*addr
= gen_hsa_addr_for_arg (result_type
, -1);
3566 /* Even if result of a function call is unused, we have to emit
3567 declaration for the result. */
3570 tree lhs_type
= TREE_TYPE (result
);
3572 if (hsa_seen_error ())
3575 if (AGGREGATE_TYPE_P (lhs_type
))
3577 hsa_op_address
*result_addr
= gen_hsa_addr (result
, hbb
);
3578 gen_hsa_memory_copy (hbb
, result_addr
, addr
,
3579 addr
->m_symbol
->total_byte_size ());
3584 = mem_type_for_type (hsa_type_for_scalar_tree_type (lhs_type
,
3587 hsa_op_reg
*dst
= hsa_cfun
->reg_for_gimple_ssa (result
);
3588 result_insn
= new hsa_insn_mem (BRIG_OPCODE_LD
, mtype
, dst
, addr
);
3589 hbb
->append_insn (result_insn
);
3593 call_insn
->m_output_arg
= addr
->m_symbol
;
3594 call_insn
->m_result_code_list
= new hsa_op_code_list (1);
3600 HSA_SORRY_AT (gimple_location (stmt
),
3601 "support for HSA does not implement an assignment of "
3602 "return value from a void function");
3606 call_insn
->m_result_code_list
= new hsa_op_code_list (0);
3609 /* Argument block end. */
3610 hsa_insn_arg_block
*arg_end
3611 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END
, call_insn
);
3612 hbb
->append_insn (arg_end
);
3615 /* Generate HSA instructions for a direct call of an internal fn.
3616 Instructions will be appended to HBB, which also needs to be the
3617 corresponding structure to the basic_block of STMT. */
3620 gen_hsa_insns_for_call_of_internal_fn (gimple
*stmt
, hsa_bb
*hbb
)
3622 tree lhs
= gimple_call_lhs (stmt
);
3626 tree lhs_type
= TREE_TYPE (lhs
);
3627 tree rhs1
= gimple_call_arg (stmt
, 0);
3628 tree rhs1_type
= TREE_TYPE (rhs1
);
3629 enum internal_fn fn
= gimple_call_internal_fn (stmt
);
3630 hsa_internal_fn
*ifn
3631 = new hsa_internal_fn (fn
, tree_to_uhwi (TYPE_SIZE (rhs1_type
)));
3632 hsa_insn_call
*call_insn
= new hsa_insn_call (ifn
);
3634 gcc_checking_assert (FLOAT_TYPE_P (rhs1_type
));
3636 if (!hsa_emitted_internal_decls
->find (call_insn
->m_called_internal_fn
))
3637 hsa_cfun
->m_called_internal_fns
.safe_push (call_insn
->m_called_internal_fn
);
3639 hsa_insn_arg_block
*arg_start
3640 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START
, call_insn
);
3641 hbb
->append_insn (arg_start
);
3643 unsigned num_args
= gimple_call_num_args (stmt
);
3645 /* Function arguments. */
3646 for (unsigned i
= 0; i
< num_args
; i
++)
3648 tree parm
= gimple_call_arg (stmt
, (int)i
);
3649 hsa_op_with_type
*src
= hsa_reg_or_immed_for_gimple_op (parm
, hbb
);
3651 hsa_op_address
*addr
= gen_hsa_addr_for_arg (TREE_TYPE (parm
), i
);
3652 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_ST
, src
->m_type
,
3655 call_insn
->m_input_args
.safe_push (addr
->m_symbol
);
3656 hbb
->append_insn (mem
);
3659 call_insn
->m_args_code_list
= new hsa_op_code_list (num_args
);
3660 hbb
->append_insn (call_insn
);
3662 /* Assign returned value. */
3663 hsa_op_address
*addr
= gen_hsa_addr_for_arg (lhs_type
, -1);
3665 call_insn
->m_output_arg
= addr
->m_symbol
;
3666 call_insn
->m_result_code_list
= new hsa_op_code_list (1);
3668 /* Argument block end. */
3669 hsa_insn_arg_block
*arg_end
3670 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END
, call_insn
);
3671 hbb
->append_insn (arg_end
);
3674 /* Generate HSA instructions for a return value instruction.
3675 Instructions will be appended to HBB, which also needs to be the
3676 corresponding structure to the basic_block of STMT. */
3679 gen_hsa_insns_for_return (greturn
*stmt
, hsa_bb
*hbb
)
3681 tree retval
= gimple_return_retval (stmt
);
3684 hsa_op_address
*addr
= new hsa_op_address (hsa_cfun
->m_output_arg
);
3686 if (AGGREGATE_TYPE_P (TREE_TYPE (retval
)))
3688 hsa_op_address
*retval_addr
= gen_hsa_addr (retval
, hbb
);
3689 gen_hsa_memory_copy (hbb
, addr
, retval_addr
,
3690 hsa_cfun
->m_output_arg
->total_byte_size ());
3694 BrigType16_t t
= hsa_type_for_scalar_tree_type (TREE_TYPE (retval
),
3696 BrigType16_t mtype
= mem_type_for_type (t
);
3698 /* Store of return value. */
3699 hsa_op_with_type
*src
= hsa_reg_or_immed_for_gimple_op (retval
, hbb
);
3700 src
= src
->get_in_type (mtype
, hbb
);
3701 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_ST
, mtype
, src
,
3703 hbb
->append_insn (mem
);
3707 /* HSAIL return instruction emission. */
3708 hsa_insn_basic
*ret
= new hsa_insn_basic (0, BRIG_OPCODE_RET
);
3709 hbb
->append_insn (ret
);
3712 /* Set OP_INDEX-th operand of the instruction to DEST, as the DEST
3713 can have a different type, conversion instructions are possibly
3717 hsa_insn_basic::set_output_in_type (hsa_op_reg
*dest
, unsigned op_index
,
3720 hsa_insn_basic
*insn
;
3721 gcc_checking_assert (op_output_p (op_index
));
3723 if (dest
->m_type
== m_type
)
3725 set_op (op_index
, dest
);
3729 hsa_op_reg
*tmp
= new hsa_op_reg (m_type
);
3730 set_op (op_index
, tmp
);
3732 if (hsa_needs_cvt (dest
->m_type
, m_type
))
3733 insn
= new hsa_insn_cvt (dest
, tmp
);
3735 insn
= new hsa_insn_basic (2, BRIG_OPCODE_MOV
, dest
->m_type
,
3736 dest
, tmp
->get_in_type (dest
->m_type
, hbb
));
3738 hbb
->append_insn (insn
);
3741 /* Generate instruction OPCODE to query a property of HSA grid along the
3742 given DIMENSION. Store result into DEST and append the instruction to
3746 query_hsa_grid (hsa_op_reg
*dest
, BrigType16_t opcode
, int dimension
,
3749 /* We're using just one-dimensional kernels, so hard-coded
3752 = new hsa_op_immed (dimension
, (BrigKind16_t
) BRIG_TYPE_U32
);
3753 hsa_insn_basic
*insn
= new hsa_insn_basic (2, opcode
, BRIG_TYPE_U32
, NULL
,
3755 hbb
->append_insn (insn
);
3756 insn
->set_output_in_type (dest
, 0, hbb
);
3759 /* Generate a special HSA-related instruction for gimple STMT.
3760 Instructions are appended to basic block HBB. */
3763 query_hsa_grid (gimple
*stmt
, BrigOpcode16_t opcode
, int dimension
,
3766 tree lhs
= gimple_call_lhs (dyn_cast
<gcall
*> (stmt
));
3767 if (lhs
== NULL_TREE
)
3770 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
3772 query_hsa_grid (dest
, opcode
, dimension
, hbb
);
3775 /* Emit instructions that set hsa_num_threads according to provided VALUE.
3776 Instructions are appended to basic block HBB. */
3779 gen_set_num_threads (tree value
, hsa_bb
*hbb
)
3781 hbb
->append_insn (new hsa_insn_comment ("omp_set_num_threads"));
3782 hsa_op_with_type
*src
= hsa_reg_or_immed_for_gimple_op (value
, hbb
);
3784 src
= src
->get_in_type (hsa_num_threads
->m_type
, hbb
);
3785 hsa_op_address
*addr
= new hsa_op_address (hsa_num_threads
);
3787 hsa_insn_basic
*basic
3788 = new hsa_insn_mem (BRIG_OPCODE_ST
, hsa_num_threads
->m_type
, src
, addr
);
3789 hbb
->append_insn (basic
);
3792 /* Return byte offset of a FIELD_NAME in GOMP_hsa_kernel_dispatch which
3793 is defined in plugin-hsa.c. */
3795 static HOST_WIDE_INT
3796 get_hsa_kernel_dispatch_offset (const char *field_name
)
3798 tree
*hsa_kernel_dispatch_type
= hsa_get_kernel_dispatch_type ();
3799 if (*hsa_kernel_dispatch_type
== NULL
)
3801 /* Collection of information needed for a dispatch of a kernel from a
3802 kernel. Keep in sync with libgomp's plugin-hsa.c. */
3804 *hsa_kernel_dispatch_type
= make_node (RECORD_TYPE
);
3805 tree id_f1
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3806 get_identifier ("queue"), ptr_type_node
);
3807 DECL_CHAIN (id_f1
) = NULL_TREE
;
3808 tree id_f2
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3809 get_identifier ("omp_data_memory"),
3811 DECL_CHAIN (id_f2
) = id_f1
;
3812 tree id_f3
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3813 get_identifier ("kernarg_address"),
3815 DECL_CHAIN (id_f3
) = id_f2
;
3816 tree id_f4
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3817 get_identifier ("object"),
3819 DECL_CHAIN (id_f4
) = id_f3
;
3820 tree id_f5
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3821 get_identifier ("signal"),
3823 DECL_CHAIN (id_f5
) = id_f4
;
3824 tree id_f6
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3825 get_identifier ("private_segment_size"),
3827 DECL_CHAIN (id_f6
) = id_f5
;
3828 tree id_f7
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3829 get_identifier ("group_segment_size"),
3831 DECL_CHAIN (id_f7
) = id_f6
;
3832 tree id_f8
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3833 get_identifier ("kernel_dispatch_count"),
3835 DECL_CHAIN (id_f8
) = id_f7
;
3836 tree id_f9
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3837 get_identifier ("debug"),
3839 DECL_CHAIN (id_f9
) = id_f8
;
3840 tree id_f10
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3841 get_identifier ("omp_level"),
3843 DECL_CHAIN (id_f10
) = id_f9
;
3844 tree id_f11
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3845 get_identifier ("children_dispatches"),
3847 DECL_CHAIN (id_f11
) = id_f10
;
3848 tree id_f12
= build_decl (BUILTINS_LOCATION
, FIELD_DECL
,
3849 get_identifier ("omp_num_threads"),
3851 DECL_CHAIN (id_f12
) = id_f11
;
3854 finish_builtin_struct (*hsa_kernel_dispatch_type
, "__hsa_kernel_dispatch",
3856 TYPE_ARTIFICIAL (*hsa_kernel_dispatch_type
) = 1;
3859 for (tree chain
= TYPE_FIELDS (*hsa_kernel_dispatch_type
);
3860 chain
!= NULL_TREE
; chain
= TREE_CHAIN (chain
))
3861 if (strcmp (field_name
, IDENTIFIER_POINTER (DECL_NAME (chain
))) == 0)
3862 return int_byte_position (chain
);
3867 /* Return an HSA register that will contain number of threads for
3868 a future dispatched kernel. Instructions are added to HBB. */
3871 gen_num_threads_for_dispatch (hsa_bb
*hbb
)
3873 /* Step 1) Assign to number of threads:
3874 MIN (HSA_DEFAULT_NUM_THREADS, hsa_num_threads). */
3875 hsa_op_reg
*threads
= new hsa_op_reg (hsa_num_threads
->m_type
);
3876 hsa_op_address
*addr
= new hsa_op_address (hsa_num_threads
);
3878 hbb
->append_insn (new hsa_insn_mem (BRIG_OPCODE_LD
, threads
->m_type
,
3881 hsa_op_immed
*limit
= new hsa_op_immed (HSA_DEFAULT_NUM_THREADS
,
3883 hsa_op_reg
*r
= new hsa_op_reg (BRIG_TYPE_B1
);
3885 = new hsa_insn_cmp (BRIG_COMPARE_LT
, r
->m_type
, r
, threads
, limit
);
3886 hbb
->append_insn (cmp
);
3888 BrigType16_t btype
= hsa_bittype_for_type (threads
->m_type
);
3889 hsa_op_reg
*tmp
= new hsa_op_reg (threads
->m_type
);
3891 hbb
->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV
, btype
, tmp
, r
,
3894 /* Step 2) If the number is equal to zero,
3895 return shadow->omp_num_threads. */
3896 hsa_op_reg
*shadow_reg_ptr
= hsa_cfun
->get_shadow_reg ();
3898 hsa_op_reg
*shadow_thread_count
= new hsa_op_reg (BRIG_TYPE_U32
);
3900 = new hsa_op_address (shadow_reg_ptr
,
3901 get_hsa_kernel_dispatch_offset ("omp_num_threads"));
3902 hsa_insn_basic
*basic
3903 = new hsa_insn_mem (BRIG_OPCODE_LD
, shadow_thread_count
->m_type
,
3904 shadow_thread_count
, addr
);
3905 hbb
->append_insn (basic
);
3907 hsa_op_reg
*tmp2
= new hsa_op_reg (threads
->m_type
);
3908 r
= new hsa_op_reg (BRIG_TYPE_B1
);
3909 hsa_op_immed
*imm
= new hsa_op_immed (0, shadow_thread_count
->m_type
);
3910 hbb
->append_insn (new hsa_insn_cmp (BRIG_COMPARE_EQ
, r
->m_type
, r
, tmp
, imm
));
3911 hbb
->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV
, btype
, tmp2
, r
,
3912 shadow_thread_count
, tmp
));
3914 hsa_op_base
*dest
= tmp2
->get_in_type (BRIG_TYPE_U16
, hbb
);
3916 return as_a
<hsa_op_reg
*> (dest
);
3920 /* Emit instructions that assign number of teams to lhs of gimple STMT.
3921 Instructions are appended to basic block HBB. */
3924 gen_get_num_teams (gimple
*stmt
, hsa_bb
*hbb
)
3926 if (gimple_call_lhs (stmt
) == NULL_TREE
)
3929 hbb
->append_insn (new hsa_insn_comment ("omp_get_num_teams"));
3931 tree lhs
= gimple_call_lhs (stmt
);
3932 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
3933 hsa_op_immed
*one
= new hsa_op_immed (1, dest
->m_type
);
3935 hsa_insn_basic
*basic
3936 = new hsa_insn_basic (2, BRIG_OPCODE_MOV
, dest
->m_type
, dest
, one
);
3938 hbb
->append_insn (basic
);
3941 /* Emit instructions that assign a team number to lhs of gimple STMT.
3942 Instructions are appended to basic block HBB. */
3945 gen_get_team_num (gimple
*stmt
, hsa_bb
*hbb
)
3947 if (gimple_call_lhs (stmt
) == NULL_TREE
)
3950 hbb
->append_insn (new hsa_insn_comment ("omp_get_team_num"));
3952 tree lhs
= gimple_call_lhs (stmt
);
3953 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
3954 hsa_op_immed
*zero
= new hsa_op_immed (0, dest
->m_type
);
3956 hsa_insn_basic
*basic
3957 = new hsa_insn_basic (2, BRIG_OPCODE_MOV
, dest
->m_type
, dest
, zero
);
3959 hbb
->append_insn (basic
);
3962 /* Emit instructions that get levels-var ICV to lhs of gimple STMT.
3963 Instructions are appended to basic block HBB. */
3966 gen_get_level (gimple
*stmt
, hsa_bb
*hbb
)
3968 if (gimple_call_lhs (stmt
) == NULL_TREE
)
3971 hbb
->append_insn (new hsa_insn_comment ("omp_get_level"));
3973 tree lhs
= gimple_call_lhs (stmt
);
3974 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
3976 hsa_op_reg
*shadow_reg_ptr
= hsa_cfun
->get_shadow_reg ();
3977 if (shadow_reg_ptr
== NULL
)
3979 HSA_SORRY_AT (gimple_location (stmt
),
3980 "support for HSA does not implement omp_get_level called "
3981 "from a function not being inlined within a kernel");
3985 hsa_op_address
*addr
3986 = new hsa_op_address (shadow_reg_ptr
,
3987 get_hsa_kernel_dispatch_offset ("omp_level"));
3989 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_LD
, BRIG_TYPE_U64
,
3990 (hsa_op_base
*) NULL
, addr
);
3991 hbb
->append_insn (mem
);
3992 mem
->set_output_in_type (dest
, 0, hbb
);
3995 /* Emit instruction that implement omp_get_max_threads of gimple STMT. */
3998 gen_get_max_threads (gimple
*stmt
, hsa_bb
*hbb
)
4000 tree lhs
= gimple_call_lhs (stmt
);
4004 hbb
->append_insn (new hsa_insn_comment ("omp_get_max_threads"));
4006 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4007 hsa_op_with_type
*num_theads_reg
= gen_num_threads_for_dispatch (hbb
)
4008 ->get_in_type (dest
->m_type
, hbb
);
4009 hsa_build_append_simple_mov (dest
, num_theads_reg
, hbb
);
4012 /* Emit instructions that implement alloca builtin gimple STMT.
4013 Instructions are appended to basic block HBB. */
4016 gen_hsa_alloca (gcall
*call
, hsa_bb
*hbb
)
4018 tree lhs
= gimple_call_lhs (call
);
4019 if (lhs
== NULL_TREE
)
4022 built_in_function fn
= DECL_FUNCTION_CODE (gimple_call_fndecl (call
));
4024 gcc_checking_assert (fn
== BUILT_IN_ALLOCA
4025 || fn
== BUILT_IN_ALLOCA_WITH_ALIGN
);
4027 unsigned bit_alignment
= 0;
4029 if (fn
== BUILT_IN_ALLOCA_WITH_ALIGN
)
4031 tree alignment_tree
= gimple_call_arg (call
, 1);
4032 if (TREE_CODE (alignment_tree
) != INTEGER_CST
)
4034 HSA_SORRY_ATV (gimple_location (call
),
4035 "support for HSA does not implement "
4036 "__builtin_alloca_with_align with a non-constant "
4037 "alignment: %E", alignment_tree
);
4040 bit_alignment
= tree_to_uhwi (alignment_tree
);
4043 tree rhs1
= gimple_call_arg (call
, 0);
4044 hsa_op_with_type
*size
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
)
4045 ->get_in_type (BRIG_TYPE_U32
, hbb
);
4046 hsa_op_with_type
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4049 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE
));
4050 hsa_insn_alloca
*a
= new hsa_insn_alloca (tmp
, size
, bit_alignment
);
4051 hbb
->append_insn (a
);
4054 = new hsa_insn_seg (BRIG_OPCODE_STOF
,
4055 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
),
4056 tmp
->m_type
, BRIG_SEGMENT_PRIVATE
, dest
, tmp
);
4057 hbb
->append_insn (seg
);
4060 /* Emit instructions that implement clrsb builtin STMT:
4061 Returns the number of leading redundant sign bits in x, i.e. the number
4062 of bits following the most significant bit that are identical to it.
4063 There are no special cases for 0 or other values.
4064 Instructions are appended to basic block HBB. */
4067 gen_hsa_clrsb (gcall
*call
, hsa_bb
*hbb
)
4069 tree lhs
= gimple_call_lhs (call
);
4070 if (lhs
== NULL_TREE
)
4073 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4074 tree rhs1
= gimple_call_arg (call
, 0);
4075 hsa_op_with_type
*arg
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
);
4076 BrigType16_t bittype
= hsa_bittype_for_type (arg
->m_type
);
4077 unsigned bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (rhs1
)));
4079 /* FIRSTBIT instruction is defined just for 32 and 64-bits wide integers. */
4080 gcc_checking_assert (bitsize
== 32 || bitsize
== 64);
4082 /* Set true to MOST_SIG if the most significant bit is set to one. */
4083 hsa_op_immed
*c
= new hsa_op_immed (1ul << (bitsize
- 1),
4084 hsa_uint_for_bitsize (bitsize
));
4086 hsa_op_reg
*and_reg
= new hsa_op_reg (bittype
);
4087 gen_hsa_binary_operation (BRIG_OPCODE_AND
, and_reg
, arg
, c
, hbb
);
4089 hsa_op_reg
*most_sign
= new hsa_op_reg (BRIG_TYPE_B1
);
4091 = new hsa_insn_cmp (BRIG_COMPARE_EQ
, most_sign
->m_type
, most_sign
,
4093 hbb
->append_insn (cmp
);
4095 /* If the most significant bit is one, negate the input. Otherwise
4096 shift the input value to left by one bit. */
4097 hsa_op_reg
*arg_neg
= new hsa_op_reg (arg
->m_type
);
4098 gen_hsa_unary_operation (BRIG_OPCODE_NEG
, arg_neg
, arg
, hbb
);
4100 hsa_op_reg
*shifted_arg
= new hsa_op_reg (arg
->m_type
);
4101 gen_hsa_binary_operation (BRIG_OPCODE_SHL
, shifted_arg
, arg
,
4102 new hsa_op_immed (1, BRIG_TYPE_U64
), hbb
);
4104 /* Assign the value that can be used for FIRSTBIT instruction according
4105 to the most significant bit. */
4106 hsa_op_reg
*tmp
= new hsa_op_reg (bittype
);
4107 hsa_insn_basic
*cmov
4108 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV
, bittype
, tmp
, most_sign
,
4109 arg_neg
, shifted_arg
);
4110 hbb
->append_insn (cmov
);
4112 hsa_op_reg
*leading_bits
= new hsa_op_reg (BRIG_TYPE_S32
);
4113 gen_hsa_unary_operation (BRIG_OPCODE_FIRSTBIT
, leading_bits
,
4114 tmp
->get_in_type (hsa_uint_for_bitsize (bitsize
),
4117 /* Set flag if the input value is equal to zero. */
4118 hsa_op_reg
*is_zero
= new hsa_op_reg (BRIG_TYPE_B1
);
4119 cmp
= new hsa_insn_cmp (BRIG_COMPARE_EQ
, is_zero
->m_type
, is_zero
, arg
,
4120 new hsa_op_immed (0, arg
->m_type
));
4121 hbb
->append_insn (cmp
);
4123 /* Return the number of leading bits,
4124 or (bitsize - 1) if the input value is zero. */
4125 cmov
= new hsa_insn_basic (4, BRIG_OPCODE_CMOV
, BRIG_TYPE_B32
, NULL
, is_zero
,
4126 new hsa_op_immed (bitsize
- 1, BRIG_TYPE_U32
),
4127 leading_bits
->get_in_type (BRIG_TYPE_B32
, hbb
));
4128 hbb
->append_insn (cmov
);
4129 cmov
->set_output_in_type (dest
, 0, hbb
);
4132 /* Emit instructions that implement ffs builtin STMT:
4133 Returns one plus the index of the least significant 1-bit of x,
4134 or if x is zero, returns zero.
4135 Instructions are appended to basic block HBB. */
4138 gen_hsa_ffs (gcall
*call
, hsa_bb
*hbb
)
4140 tree lhs
= gimple_call_lhs (call
);
4141 if (lhs
== NULL_TREE
)
4144 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4146 tree rhs1
= gimple_call_arg (call
, 0);
4147 hsa_op_with_type
*arg
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
);
4149 hsa_op_reg
*tmp
= new hsa_op_reg (BRIG_TYPE_U32
);
4150 hsa_insn_srctype
*insn
= new hsa_insn_srctype (2, BRIG_OPCODE_LASTBIT
,
4151 tmp
->m_type
, arg
->m_type
,
4153 hbb
->append_insn (insn
);
4155 hsa_insn_basic
*addition
4156 = new hsa_insn_basic (3, BRIG_OPCODE_ADD
, tmp
->m_type
, NULL
, tmp
,
4157 new hsa_op_immed (1, tmp
->m_type
));
4158 hbb
->append_insn (addition
);
4159 addition
->set_output_in_type (dest
, 0, hbb
);
4163 gen_hsa_popcount_to_dest (hsa_op_reg
*dest
, hsa_op_with_type
*arg
, hsa_bb
*hbb
)
4165 gcc_checking_assert (hsa_type_integer_p (arg
->m_type
));
4167 if (hsa_type_bit_size (arg
->m_type
) < 32)
4168 arg
= arg
->get_in_type (BRIG_TYPE_B32
, hbb
);
4170 if (!hsa_btype_p (arg
->m_type
))
4171 arg
= arg
->get_in_type (hsa_bittype_for_type (arg
->m_type
), hbb
);
4173 hsa_insn_srctype
*popcount
4174 = new hsa_insn_srctype (2, BRIG_OPCODE_POPCOUNT
, BRIG_TYPE_U32
,
4175 arg
->m_type
, NULL
, arg
);
4176 hbb
->append_insn (popcount
);
4177 popcount
->set_output_in_type (dest
, 0, hbb
);
4180 /* Emit instructions that implement parity builtin STMT:
4181 Returns the parity of x, i.e. the number of 1-bits in x modulo 2.
4182 Instructions are appended to basic block HBB. */
4185 gen_hsa_parity (gcall
*call
, hsa_bb
*hbb
)
4187 tree lhs
= gimple_call_lhs (call
);
4188 if (lhs
== NULL_TREE
)
4191 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4192 tree rhs1
= gimple_call_arg (call
, 0);
4193 hsa_op_with_type
*arg
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
);
4195 hsa_op_reg
*popcount
= new hsa_op_reg (BRIG_TYPE_U32
);
4196 gen_hsa_popcount_to_dest (popcount
, arg
, hbb
);
4198 hsa_insn_basic
*insn
4199 = new hsa_insn_basic (3, BRIG_OPCODE_REM
, popcount
->m_type
, NULL
, popcount
,
4200 new hsa_op_immed (2, popcount
->m_type
));
4201 hbb
->append_insn (insn
);
4202 insn
->set_output_in_type (dest
, 0, hbb
);
4205 /* Emit instructions that implement popcount builtin STMT.
4206 Instructions are appended to basic block HBB. */
4209 gen_hsa_popcount (gcall
*call
, hsa_bb
*hbb
)
4211 tree lhs
= gimple_call_lhs (call
);
4212 if (lhs
== NULL_TREE
)
4215 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4216 tree rhs1
= gimple_call_arg (call
, 0);
4217 hsa_op_with_type
*arg
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
);
4219 gen_hsa_popcount_to_dest (dest
, arg
, hbb
);
4222 /* Set VALUE to a shadow kernel debug argument and append a new instruction
4223 to HBB basic block. */
4226 set_debug_value (hsa_bb
*hbb
, hsa_op_with_type
*value
)
4228 hsa_op_reg
*shadow_reg_ptr
= hsa_cfun
->get_shadow_reg ();
4229 if (shadow_reg_ptr
== NULL
)
4232 hsa_op_address
*addr
4233 = new hsa_op_address (shadow_reg_ptr
,
4234 get_hsa_kernel_dispatch_offset ("debug"));
4235 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_ST
, BRIG_TYPE_U64
, value
,
4237 hbb
->append_insn (mem
);
4241 omp_simple_builtin::generate (gimple
*stmt
, hsa_bb
*hbb
)
4245 if (m_warning_message
)
4246 HSA_SORRY_AT (gimple_location (stmt
), m_warning_message
)
4248 HSA_SORRY_ATV (gimple_location (stmt
),
4249 "Support for HSA does not implement calls to %s\n",
4252 else if (m_warning_message
!= NULL
)
4253 warning_at (gimple_location (stmt
), OPT_Whsa
, m_warning_message
);
4255 if (m_return_value
!= NULL
)
4257 tree lhs
= gimple_call_lhs (stmt
);
4261 hbb
->append_insn (new hsa_insn_comment (m_name
));
4263 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4264 hsa_op_with_type
*op
= m_return_value
->get_in_type (dest
->m_type
, hbb
);
4265 hsa_build_append_simple_mov (dest
, op
, hbb
);
4269 /* If STMT is a call of a known library function, generate code to perform
4270 it and return true. */
4273 gen_hsa_insns_for_known_library_call (gimple
*stmt
, hsa_bb
*hbb
)
4275 bool handled
= false;
4276 const char *name
= hsa_get_declaration_name (gimple_call_fndecl (stmt
));
4279 size_t len
= strlen (name
);
4280 if (len
> 0 && name
[len
- 1] == '_')
4282 copy
= XNEWVEC (char, len
+ 1);
4283 strcpy (copy
, name
);
4284 copy
[len
- 1] = '\0';
4288 /* Handle omp_* routines. */
4289 if (strstr (name
, "omp_") == name
)
4291 hsa_init_simple_builtins ();
4292 omp_simple_builtin
*builtin
= omp_simple_builtins
->get (name
);
4295 builtin
->generate (stmt
, hbb
);
4300 if (strcmp (name
, "omp_set_num_threads") == 0)
4301 gen_set_num_threads (gimple_call_arg (stmt
, 0), hbb
);
4302 else if (strcmp (name
, "omp_get_thread_num") == 0)
4304 hbb
->append_insn (new hsa_insn_comment (name
));
4305 query_hsa_grid (stmt
, BRIG_OPCODE_WORKITEMABSID
, 0, hbb
);
4307 else if (strcmp (name
, "omp_get_num_threads") == 0)
4309 hbb
->append_insn (new hsa_insn_comment (name
));
4310 query_hsa_grid (stmt
, BRIG_OPCODE_GRIDSIZE
, 0, hbb
);
4312 else if (strcmp (name
, "omp_get_num_teams") == 0)
4313 gen_get_num_teams (stmt
, hbb
);
4314 else if (strcmp (name
, "omp_get_team_num") == 0)
4315 gen_get_team_num (stmt
, hbb
);
4316 else if (strcmp (name
, "omp_get_level") == 0)
4317 gen_get_level (stmt
, hbb
);
4318 else if (strcmp (name
, "omp_get_active_level") == 0)
4319 gen_get_level (stmt
, hbb
);
4320 else if (strcmp (name
, "omp_in_parallel") == 0)
4321 gen_get_level (stmt
, hbb
);
4322 else if (strcmp (name
, "omp_get_max_threads") == 0)
4323 gen_get_max_threads (stmt
, hbb
);
4335 if (strcmp (name
, "__hsa_set_debug_value") == 0)
4338 if (hsa_cfun
->has_shadow_reg_p ())
4340 tree rhs1
= gimple_call_arg (stmt
, 0);
4341 hsa_op_with_type
*src
= hsa_reg_or_immed_for_gimple_op (rhs1
, hbb
);
4343 src
= src
->get_in_type (BRIG_TYPE_U64
, hbb
);
4344 set_debug_value (hbb
, src
);
4353 /* Helper functions to create a single unary HSA operations out of calls to
4354 builtins. OPCODE is the HSA operation to be generated. STMT is a gimple
4355 call to a builtin. HBB is the HSA BB to which the instruction should be
4356 added. Note that nothing will be created if STMT does not have a LHS. */
4359 gen_hsa_unaryop_for_builtin (BrigOpcode opcode
, gimple
*stmt
, hsa_bb
*hbb
)
4361 tree lhs
= gimple_call_lhs (stmt
);
4364 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4365 hsa_op_with_type
*op
4366 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt
, 0), hbb
);
4367 gen_hsa_unary_operation (opcode
, dest
, op
, hbb
);
4370 /* Helper functions to create a call to standard library if LHS of the
4371 STMT is used. HBB is the HSA BB to which the instruction should be
4375 gen_hsa_unaryop_builtin_call (gimple
*stmt
, hsa_bb
*hbb
)
4377 tree lhs
= gimple_call_lhs (stmt
);
4381 if (gimple_call_internal_p (stmt
))
4382 gen_hsa_insns_for_call_of_internal_fn (stmt
, hbb
);
4384 gen_hsa_insns_for_direct_call (stmt
, hbb
);
4387 /* Helper functions to create a single unary HSA operations out of calls to
4388 builtins (if unsafe math optimizations are enable). Otherwise, create
4389 a call to standard library function.
4390 OPCODE is the HSA operation to be generated. STMT is a gimple
4391 call to a builtin. HBB is the HSA BB to which the instruction should be
4392 added. Note that nothing will be created if STMT does not have a LHS. */
4395 gen_hsa_unaryop_or_call_for_builtin (BrigOpcode opcode
, gimple
*stmt
,
4398 if (flag_unsafe_math_optimizations
)
4399 gen_hsa_unaryop_for_builtin (opcode
, stmt
, hbb
);
4401 gen_hsa_unaryop_builtin_call (stmt
, hbb
);
4404 /* Generate HSA address corresponding to a value VAL (as opposed to a memory
4405 reference tree), for example an SSA_NAME or an ADDR_EXPR. HBB is the HSA BB
4406 to which the instruction should be added. */
4408 static hsa_op_address
*
4409 get_address_from_value (tree val
, hsa_bb
*hbb
)
4411 switch (TREE_CODE (val
))
4415 BrigType16_t addrtype
= hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
);
4417 = hsa_cfun
->reg_for_gimple_ssa (val
)->get_in_type (addrtype
, hbb
);
4418 return new hsa_op_address (NULL
, as_a
<hsa_op_reg
*> (reg
), 0);
4421 return gen_hsa_addr (TREE_OPERAND (val
, 0), hbb
);
4424 if (tree_fits_shwi_p (val
))
4425 return new hsa_op_address (NULL
, NULL
, tree_to_shwi (val
));
4426 /* Otherwise fall-through */
4429 HSA_SORRY_ATV (EXPR_LOCATION (val
),
4430 "support for HSA does not implement memory access to %E",
4432 return new hsa_op_address (NULL
, NULL
, 0);
4436 /* Return string for MEMMODEL. */
4439 get_memory_order_name (unsigned memmodel
)
4441 switch (memmodel
& MEMMODEL_BASE_MASK
)
4443 case MEMMODEL_RELAXED
:
4445 case MEMMODEL_CONSUME
:
4447 case MEMMODEL_ACQUIRE
:
4449 case MEMMODEL_RELEASE
:
4451 case MEMMODEL_ACQ_REL
:
4453 case MEMMODEL_SEQ_CST
:
4460 /* Return memory order according to predefined __atomic memory model
4461 constants. LOCATION is provided to locate the problematic statement. */
4463 static BrigMemoryOrder
4464 get_memory_order (unsigned memmodel
, location_t location
)
4466 switch (memmodel
& MEMMODEL_BASE_MASK
)
4468 case MEMMODEL_RELAXED
:
4469 return BRIG_MEMORY_ORDER_RELAXED
;
4470 case MEMMODEL_CONSUME
:
4471 /* HSA does not have an equivalent, but we can use the slightly stronger
4473 case MEMMODEL_ACQUIRE
:
4474 return BRIG_MEMORY_ORDER_SC_ACQUIRE
;
4475 case MEMMODEL_RELEASE
:
4476 return BRIG_MEMORY_ORDER_SC_RELEASE
;
4477 case MEMMODEL_ACQ_REL
:
4478 case MEMMODEL_SEQ_CST
:
4479 /* Callers implementing a simple load or store need to remove the release
4480 or acquire part respectively. */
4481 return BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE
;
4484 const char *mmname
= get_memory_order_name (memmodel
);
4485 HSA_SORRY_ATV (location
,
4486 "support for HSA does not implement the specified "
4487 " memory model%s %s",
4488 mmname
? ": " : "", mmname
? mmname
: "");
4489 return BRIG_MEMORY_ORDER_NONE
;
4494 /* Helper function to create an HSA atomic binary operation instruction out of
4495 calls to atomic builtins. RET_ORIG is true if the built-in is the variant
4496 that return s the value before applying operation, and false if it should
4497 return the value after applying the operation (if it returns value at all).
4498 ACODE is the atomic operation code, STMT is a gimple call to a builtin. HBB
4499 is the HSA BB to which the instruction should be added. */
4502 gen_hsa_ternary_atomic_for_builtin (bool ret_orig
,
4503 enum BrigAtomicOperation acode
,
4507 tree lhs
= gimple_call_lhs (stmt
);
4509 tree type
= TREE_TYPE (gimple_call_arg (stmt
, 1));
4510 BrigType16_t hsa_type
= hsa_type_for_scalar_tree_type (type
, false);
4511 BrigType16_t mtype
= mem_type_for_type (hsa_type
);
4512 tree model
= gimple_call_arg (stmt
, 2);
4514 if (!tree_fits_uhwi_p (model
))
4516 HSA_SORRY_ATV (gimple_location (stmt
),
4517 "support for HSA does not implement memory model %E",
4522 unsigned HOST_WIDE_INT mmodel
= tree_to_uhwi (model
);
4524 BrigMemoryOrder memorder
= get_memory_order (mmodel
, gimple_location (stmt
));
4526 /* Certain atomic insns must have Bx memory types. */
4529 case BRIG_ATOMIC_LD
:
4530 case BRIG_ATOMIC_ST
:
4531 case BRIG_ATOMIC_AND
:
4532 case BRIG_ATOMIC_OR
:
4533 case BRIG_ATOMIC_XOR
:
4534 case BRIG_ATOMIC_EXCH
:
4535 mtype
= hsa_bittype_for_type (mtype
);
4546 dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4548 dest
= new hsa_op_reg (hsa_type
);
4549 opcode
= BRIG_OPCODE_ATOMIC
;
4555 opcode
= BRIG_OPCODE_ATOMICNORET
;
4559 if (acode
== BRIG_ATOMIC_ST
)
4561 if (memorder
== BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE
)
4562 memorder
= BRIG_MEMORY_ORDER_SC_RELEASE
;
4564 if (memorder
!= BRIG_MEMORY_ORDER_RELAXED
4565 && memorder
!= BRIG_MEMORY_ORDER_SC_RELEASE
4566 && memorder
!= BRIG_MEMORY_ORDER_NONE
)
4568 HSA_SORRY_ATV (gimple_location (stmt
),
4569 "support for HSA does not implement memory model for "
4570 "ATOMIC_ST: %s", get_memory_order_name (mmodel
));
4575 hsa_insn_atomic
*atominsn
= new hsa_insn_atomic (nops
, opcode
, acode
, mtype
,
4578 hsa_op_address
*addr
;
4579 addr
= get_address_from_value (gimple_call_arg (stmt
, 0), hbb
);
4580 if (addr
->m_symbol
&& addr
->m_symbol
->m_segment
== BRIG_SEGMENT_PRIVATE
)
4582 HSA_SORRY_AT (gimple_location (stmt
),
4583 "HSA does not implement atomic operations in private "
4587 hsa_op_base
*op
= hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt
, 1),
4592 atominsn
->set_op (0, dest
);
4593 atominsn
->set_op (1, addr
);
4594 atominsn
->set_op (2, op
);
4598 atominsn
->set_op (0, addr
);
4599 atominsn
->set_op (1, op
);
4602 hbb
->append_insn (atominsn
);
4604 /* HSA does not natively support the variants that return the modified value,
4605 so re-do the operation again non-atomically if that is what was
4607 if (lhs
&& !ret_orig
)
4612 case BRIG_ATOMIC_ADD
:
4613 arith
= BRIG_OPCODE_ADD
;
4615 case BRIG_ATOMIC_AND
:
4616 arith
= BRIG_OPCODE_AND
;
4618 case BRIG_ATOMIC_OR
:
4619 arith
= BRIG_OPCODE_OR
;
4621 case BRIG_ATOMIC_SUB
:
4622 arith
= BRIG_OPCODE_SUB
;
4624 case BRIG_ATOMIC_XOR
:
4625 arith
= BRIG_OPCODE_XOR
;
4630 hsa_op_reg
*real_dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4631 gen_hsa_binary_operation (arith
, real_dest
, dest
, op
, hbb
);
4635 /* Generate HSA instructions for an internal fn.
4636 Instructions will be appended to HBB, which also needs to be the
4637 corresponding structure to the basic_block of STMT. */
4640 gen_hsa_insn_for_internal_fn_call (gcall
*stmt
, hsa_bb
*hbb
)
4642 gcc_checking_assert (gimple_call_internal_fn (stmt
));
4643 internal_fn fn
= gimple_call_internal_fn (stmt
);
4645 bool is_float_type_p
= false;
4646 if (gimple_call_lhs (stmt
) != NULL
4647 && TREE_TYPE (gimple_call_lhs (stmt
)) == float_type_node
)
4648 is_float_type_p
= true;
4653 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL
, stmt
, hbb
);
4657 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR
, stmt
, hbb
);
4661 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT
, stmt
, hbb
);
4665 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT
, stmt
, hbb
);
4669 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC
, stmt
, hbb
);
4674 if (is_float_type_p
)
4675 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS
, stmt
, hbb
);
4677 gen_hsa_unaryop_builtin_call (stmt
, hbb
);
4683 if (is_float_type_p
)
4684 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2
, stmt
, hbb
);
4686 gen_hsa_unaryop_builtin_call (stmt
, hbb
);
4693 if (is_float_type_p
)
4694 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2
, stmt
, hbb
);
4696 gen_hsa_unaryop_builtin_call (stmt
, hbb
);
4703 if (is_float_type_p
)
4704 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN
, stmt
, hbb
);
4706 gen_hsa_unaryop_builtin_call (stmt
, hbb
);
4711 gen_hsa_clrsb (stmt
, hbb
);
4715 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT
, stmt
, hbb
);
4719 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT
, stmt
, hbb
);
4723 gen_hsa_ffs (stmt
, hbb
);
4727 gen_hsa_parity (stmt
, hbb
);
4731 gen_hsa_popcount (stmt
, hbb
);
4744 case IFN_SIGNIFICAND
:
4756 gen_hsa_insns_for_call_of_internal_fn (stmt
, hbb
);
4759 HSA_SORRY_ATV (gimple_location (stmt
),
4760 "support for HSA does not implement internal function: %s",
4761 internal_fn_name (fn
));
4766 #define HSA_MEMORY_BUILTINS_LIMIT 128
4768 /* Generate HSA instructions for the given call statement STMT. Instructions
4769 will be appended to HBB. */
4772 gen_hsa_insns_for_call (gimple
*stmt
, hsa_bb
*hbb
)
4774 gcall
*call
= as_a
<gcall
*> (stmt
);
4775 tree lhs
= gimple_call_lhs (stmt
);
4778 if (gimple_call_internal_p (stmt
))
4780 gen_hsa_insn_for_internal_fn_call (call
, hbb
);
4784 if (!gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
4786 tree function_decl
= gimple_call_fndecl (stmt
);
4787 if (function_decl
== NULL_TREE
)
4789 HSA_SORRY_AT (gimple_location (stmt
),
4790 "support for HSA does not implement indirect calls");
4794 if (hsa_callable_function_p (function_decl
))
4795 gen_hsa_insns_for_direct_call (stmt
, hbb
);
4796 else if (!gen_hsa_insns_for_known_library_call (stmt
, hbb
))
4797 HSA_SORRY_AT (gimple_location (stmt
),
4798 "HSA supports only calls of functions marked with pragma "
4799 "omp declare target");
4803 tree fndecl
= gimple_call_fndecl (stmt
);
4804 enum built_in_function builtin
= DECL_FUNCTION_CODE (fndecl
);
4808 case BUILT_IN_FABSF
:
4809 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_ABS
, stmt
, hbb
);
4813 case BUILT_IN_CEILF
:
4814 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL
, stmt
, hbb
);
4817 case BUILT_IN_FLOOR
:
4818 case BUILT_IN_FLOORF
:
4819 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR
, stmt
, hbb
);
4823 case BUILT_IN_RINTF
:
4824 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT
, stmt
, hbb
);
4828 case BUILT_IN_SQRTF
:
4829 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT
, stmt
, hbb
);
4832 case BUILT_IN_TRUNC
:
4833 case BUILT_IN_TRUNCF
:
4834 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC
, stmt
, hbb
);
4841 /* HSAIL does not provide an instruction for double argument type. */
4842 gen_hsa_unaryop_builtin_call (stmt
, hbb
);
4846 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS
, stmt
, hbb
);
4849 case BUILT_IN_EXP2F
:
4850 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2
, stmt
, hbb
);
4853 case BUILT_IN_LOG2F
:
4854 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2
, stmt
, hbb
);
4858 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN
, stmt
, hbb
);
4861 case BUILT_IN_CLRSB
:
4862 case BUILT_IN_CLRSBL
:
4863 case BUILT_IN_CLRSBLL
:
4864 gen_hsa_clrsb (call
, hbb
);
4869 case BUILT_IN_CLZLL
:
4870 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT
, stmt
, hbb
);
4875 case BUILT_IN_CTZLL
:
4876 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT
, stmt
, hbb
);
4881 case BUILT_IN_FFSLL
:
4882 gen_hsa_ffs (call
, hbb
);
4885 case BUILT_IN_PARITY
:
4886 case BUILT_IN_PARITYL
:
4887 case BUILT_IN_PARITYLL
:
4888 gen_hsa_parity (call
, hbb
);
4891 case BUILT_IN_POPCOUNT
:
4892 case BUILT_IN_POPCOUNTL
:
4893 case BUILT_IN_POPCOUNTLL
:
4894 gen_hsa_popcount (call
, hbb
);
4897 case BUILT_IN_ATOMIC_LOAD_1
:
4898 case BUILT_IN_ATOMIC_LOAD_2
:
4899 case BUILT_IN_ATOMIC_LOAD_4
:
4900 case BUILT_IN_ATOMIC_LOAD_8
:
4901 case BUILT_IN_ATOMIC_LOAD_16
:
4904 hsa_op_address
*addr
;
4905 addr
= get_address_from_value (gimple_call_arg (stmt
, 0), hbb
);
4906 tree model
= gimple_call_arg (stmt
, 1);
4907 if (!tree_fits_uhwi_p (model
))
4909 HSA_SORRY_ATV (gimple_location (stmt
),
4910 "support for HSA does not implement "
4916 unsigned HOST_WIDE_INT mmodel
= tree_to_uhwi (model
);
4917 BrigMemoryOrder memorder
= get_memory_order (mmodel
,
4918 gimple_location (stmt
));
4920 if (memorder
== BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE
)
4921 memorder
= BRIG_MEMORY_ORDER_SC_ACQUIRE
;
4923 if (memorder
!= BRIG_MEMORY_ORDER_RELAXED
4924 && memorder
!= BRIG_MEMORY_ORDER_SC_ACQUIRE
4925 && memorder
!= BRIG_MEMORY_ORDER_NONE
)
4927 HSA_SORRY_ATV (gimple_location (stmt
),
4928 "support for HSA does not implement "
4929 "memory model for ATOMIC_LD: %s",
4930 get_memory_order_name (mmodel
));
4936 BrigType16_t t
= hsa_type_for_scalar_tree_type (TREE_TYPE (lhs
),
4938 mtype
= mem_type_for_type (t
);
4939 mtype
= hsa_bittype_for_type (mtype
);
4940 dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
4944 mtype
= BRIG_TYPE_B64
;
4945 dest
= new hsa_op_reg (mtype
);
4948 hsa_insn_atomic
*atominsn
4949 = new hsa_insn_atomic (2, BRIG_OPCODE_ATOMIC
, BRIG_ATOMIC_LD
, mtype
,
4950 memorder
, dest
, addr
);
4952 hbb
->append_insn (atominsn
);
4956 case BUILT_IN_ATOMIC_EXCHANGE_1
:
4957 case BUILT_IN_ATOMIC_EXCHANGE_2
:
4958 case BUILT_IN_ATOMIC_EXCHANGE_4
:
4959 case BUILT_IN_ATOMIC_EXCHANGE_8
:
4960 case BUILT_IN_ATOMIC_EXCHANGE_16
:
4961 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_EXCH
, stmt
, hbb
);
4964 case BUILT_IN_ATOMIC_FETCH_ADD_1
:
4965 case BUILT_IN_ATOMIC_FETCH_ADD_2
:
4966 case BUILT_IN_ATOMIC_FETCH_ADD_4
:
4967 case BUILT_IN_ATOMIC_FETCH_ADD_8
:
4968 case BUILT_IN_ATOMIC_FETCH_ADD_16
:
4969 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_ADD
, stmt
, hbb
);
4972 case BUILT_IN_ATOMIC_FETCH_SUB_1
:
4973 case BUILT_IN_ATOMIC_FETCH_SUB_2
:
4974 case BUILT_IN_ATOMIC_FETCH_SUB_4
:
4975 case BUILT_IN_ATOMIC_FETCH_SUB_8
:
4976 case BUILT_IN_ATOMIC_FETCH_SUB_16
:
4977 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_SUB
, stmt
, hbb
);
4980 case BUILT_IN_ATOMIC_FETCH_AND_1
:
4981 case BUILT_IN_ATOMIC_FETCH_AND_2
:
4982 case BUILT_IN_ATOMIC_FETCH_AND_4
:
4983 case BUILT_IN_ATOMIC_FETCH_AND_8
:
4984 case BUILT_IN_ATOMIC_FETCH_AND_16
:
4985 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_AND
, stmt
, hbb
);
4988 case BUILT_IN_ATOMIC_FETCH_XOR_1
:
4989 case BUILT_IN_ATOMIC_FETCH_XOR_2
:
4990 case BUILT_IN_ATOMIC_FETCH_XOR_4
:
4991 case BUILT_IN_ATOMIC_FETCH_XOR_8
:
4992 case BUILT_IN_ATOMIC_FETCH_XOR_16
:
4993 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_XOR
, stmt
, hbb
);
4996 case BUILT_IN_ATOMIC_FETCH_OR_1
:
4997 case BUILT_IN_ATOMIC_FETCH_OR_2
:
4998 case BUILT_IN_ATOMIC_FETCH_OR_4
:
4999 case BUILT_IN_ATOMIC_FETCH_OR_8
:
5000 case BUILT_IN_ATOMIC_FETCH_OR_16
:
5001 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_OR
, stmt
, hbb
);
5004 case BUILT_IN_ATOMIC_STORE_1
:
5005 case BUILT_IN_ATOMIC_STORE_2
:
5006 case BUILT_IN_ATOMIC_STORE_4
:
5007 case BUILT_IN_ATOMIC_STORE_8
:
5008 case BUILT_IN_ATOMIC_STORE_16
:
5009 /* Since there cannot be any LHS, the first parameter is meaningless. */
5010 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_ST
, stmt
, hbb
);
5013 case BUILT_IN_ATOMIC_ADD_FETCH_1
:
5014 case BUILT_IN_ATOMIC_ADD_FETCH_2
:
5015 case BUILT_IN_ATOMIC_ADD_FETCH_4
:
5016 case BUILT_IN_ATOMIC_ADD_FETCH_8
:
5017 case BUILT_IN_ATOMIC_ADD_FETCH_16
:
5018 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_ADD
, stmt
, hbb
);
5021 case BUILT_IN_ATOMIC_SUB_FETCH_1
:
5022 case BUILT_IN_ATOMIC_SUB_FETCH_2
:
5023 case BUILT_IN_ATOMIC_SUB_FETCH_4
:
5024 case BUILT_IN_ATOMIC_SUB_FETCH_8
:
5025 case BUILT_IN_ATOMIC_SUB_FETCH_16
:
5026 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_SUB
, stmt
, hbb
);
5029 case BUILT_IN_ATOMIC_AND_FETCH_1
:
5030 case BUILT_IN_ATOMIC_AND_FETCH_2
:
5031 case BUILT_IN_ATOMIC_AND_FETCH_4
:
5032 case BUILT_IN_ATOMIC_AND_FETCH_8
:
5033 case BUILT_IN_ATOMIC_AND_FETCH_16
:
5034 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_AND
, stmt
, hbb
);
5037 case BUILT_IN_ATOMIC_XOR_FETCH_1
:
5038 case BUILT_IN_ATOMIC_XOR_FETCH_2
:
5039 case BUILT_IN_ATOMIC_XOR_FETCH_4
:
5040 case BUILT_IN_ATOMIC_XOR_FETCH_8
:
5041 case BUILT_IN_ATOMIC_XOR_FETCH_16
:
5042 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_XOR
, stmt
, hbb
);
5045 case BUILT_IN_ATOMIC_OR_FETCH_1
:
5046 case BUILT_IN_ATOMIC_OR_FETCH_2
:
5047 case BUILT_IN_ATOMIC_OR_FETCH_4
:
5048 case BUILT_IN_ATOMIC_OR_FETCH_8
:
5049 case BUILT_IN_ATOMIC_OR_FETCH_16
:
5050 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_OR
, stmt
, hbb
);
5053 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1
:
5054 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2
:
5055 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4
:
5056 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8
:
5057 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16
:
5059 /* TODO: Use the appropriate memory model for now. */
5060 tree type
= TREE_TYPE (gimple_call_arg (stmt
, 1));
5063 = hsa_bittype_for_type (hsa_type_for_scalar_tree_type (type
, false));
5065 hsa_insn_atomic
*atominsn
5066 = new hsa_insn_atomic (4, BRIG_OPCODE_ATOMIC
, BRIG_ATOMIC_CAS
, atype
,
5067 BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE
);
5068 hsa_op_address
*addr
;
5069 addr
= get_address_from_value (gimple_call_arg (stmt
, 0), hbb
);
5072 dest
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
5074 dest
= new hsa_op_reg (atype
);
5076 /* Should check what the memory scope is. */
5077 atominsn
->m_memoryscope
= BRIG_MEMORY_SCOPE_WORKGROUP
;
5078 atominsn
->set_op (0, dest
);
5079 atominsn
->set_op (1, addr
);
5081 hsa_op_with_type
*op
5082 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt
, 1), hbb
);
5083 atominsn
->set_op (2, op
);
5084 op
= hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt
, 2), hbb
);
5085 atominsn
->set_op (3, op
);
5087 hbb
->append_insn (atominsn
);
5090 case BUILT_IN_GOMP_PARALLEL
:
5091 HSA_SORRY_AT (gimple_location (stmt
),
5092 "support for HSA does not implement non-gridified "
5093 "OpenMP parallel constructs.");
5095 case BUILT_IN_OMP_GET_THREAD_NUM
:
5097 query_hsa_grid (stmt
, BRIG_OPCODE_WORKITEMABSID
, 0, hbb
);
5101 case BUILT_IN_OMP_GET_NUM_THREADS
:
5103 query_hsa_grid (stmt
, BRIG_OPCODE_GRIDSIZE
, 0, hbb
);
5106 case BUILT_IN_GOMP_TEAMS
:
5108 gen_set_num_threads (gimple_call_arg (stmt
, 1), hbb
);
5111 case BUILT_IN_OMP_GET_NUM_TEAMS
:
5113 gen_get_num_teams (stmt
, hbb
);
5116 case BUILT_IN_OMP_GET_TEAM_NUM
:
5118 gen_get_team_num (stmt
, hbb
);
5121 case BUILT_IN_MEMCPY
:
5122 case BUILT_IN_MEMPCPY
:
5124 tree byte_size
= gimple_call_arg (stmt
, 2);
5126 if (!tree_fits_uhwi_p (byte_size
))
5128 gen_hsa_insns_for_direct_call (stmt
, hbb
);
5132 unsigned n
= tree_to_uhwi (byte_size
);
5134 if (n
> HSA_MEMORY_BUILTINS_LIMIT
)
5136 gen_hsa_insns_for_direct_call (stmt
, hbb
);
5140 tree dst
= gimple_call_arg (stmt
, 0);
5141 tree src
= gimple_call_arg (stmt
, 1);
5143 hsa_op_address
*dst_addr
= get_address_from_value (dst
, hbb
);
5144 hsa_op_address
*src_addr
= get_address_from_value (src
, hbb
);
5146 gen_hsa_memory_copy (hbb
, dst_addr
, src_addr
, n
);
5148 tree lhs
= gimple_call_lhs (stmt
);
5151 hsa_op_reg
*lhs_reg
= hsa_cfun
->reg_for_gimple_ssa (lhs
);
5152 hsa_op_with_type
*dst_reg
= hsa_reg_or_immed_for_gimple_op (dst
,
5154 hsa_op_with_type
*tmp
;
5156 if (builtin
== BUILT_IN_MEMPCPY
)
5158 tmp
= new hsa_op_reg (dst_reg
->m_type
);
5160 = new hsa_insn_basic (3, BRIG_OPCODE_ADD
, tmp
->m_type
,
5162 new hsa_op_immed (n
, dst_reg
->m_type
));
5163 hbb
->append_insn (add
);
5168 hsa_build_append_simple_mov (lhs_reg
, tmp
, hbb
);
5173 case BUILT_IN_MEMSET
:
5175 tree dst
= gimple_call_arg (stmt
, 0);
5176 tree c
= gimple_call_arg (stmt
, 1);
5178 if (TREE_CODE (c
) != INTEGER_CST
)
5180 gen_hsa_insns_for_direct_call (stmt
, hbb
);
5184 tree byte_size
= gimple_call_arg (stmt
, 2);
5186 if (!tree_fits_uhwi_p (byte_size
))
5188 gen_hsa_insns_for_direct_call (stmt
, hbb
);
5192 unsigned n
= tree_to_uhwi (byte_size
);
5194 if (n
> HSA_MEMORY_BUILTINS_LIMIT
)
5196 gen_hsa_insns_for_direct_call (stmt
, hbb
);
5200 hsa_op_address
*dst_addr
;
5201 dst_addr
= get_address_from_value (dst
, hbb
);
5202 unsigned HOST_WIDE_INT constant
5203 = tree_to_uhwi (fold_convert (unsigned_char_type_node
, c
));
5205 gen_hsa_memory_set (hbb
, dst_addr
, constant
, n
);
5207 tree lhs
= gimple_call_lhs (stmt
);
5209 gen_hsa_insns_for_single_assignment (lhs
, dst
, hbb
);
5213 case BUILT_IN_BZERO
:
5215 tree dst
= gimple_call_arg (stmt
, 0);
5216 tree byte_size
= gimple_call_arg (stmt
, 1);
5218 if (!tree_fits_uhwi_p (byte_size
))
5220 gen_hsa_insns_for_direct_call (stmt
, hbb
);
5224 unsigned n
= tree_to_uhwi (byte_size
);
5226 if (n
> HSA_MEMORY_BUILTINS_LIMIT
)
5228 gen_hsa_insns_for_direct_call (stmt
, hbb
);
5232 hsa_op_address
*dst_addr
;
5233 dst_addr
= get_address_from_value (dst
, hbb
);
5235 gen_hsa_memory_set (hbb
, dst_addr
, 0, n
);
5239 case BUILT_IN_ALLOCA
:
5240 case BUILT_IN_ALLOCA_WITH_ALIGN
:
5242 gen_hsa_alloca (call
, hbb
);
5247 gen_hsa_insns_for_direct_call (stmt
, hbb
);
5253 /* Generate HSA instructions for a given gimple statement. Instructions will be
5257 gen_hsa_insns_for_gimple_stmt (gimple
*stmt
, hsa_bb
*hbb
)
5259 switch (gimple_code (stmt
))
5262 if (gimple_clobber_p (stmt
))
5265 if (gimple_assign_single_p (stmt
))
5267 tree lhs
= gimple_assign_lhs (stmt
);
5268 tree rhs
= gimple_assign_rhs1 (stmt
);
5269 gen_hsa_insns_for_single_assignment (lhs
, rhs
, hbb
);
5272 gen_hsa_insns_for_operation_assignment (stmt
, hbb
);
5275 gen_hsa_insns_for_return (as_a
<greturn
*> (stmt
), hbb
);
5278 gen_hsa_insns_for_cond_stmt (stmt
, hbb
);
5281 gen_hsa_insns_for_call (stmt
, hbb
);
5284 /* ??? HSA supports some debug facilities. */
5288 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5289 if (FORCED_LABEL (label
))
5290 HSA_SORRY_AT (gimple_location (stmt
),
5291 "support for HSA does not implement gimple label with "
5298 hbb
->append_insn (new hsa_insn_basic (0, BRIG_OPCODE_NOP
));
5303 gen_hsa_insns_for_switch_stmt (as_a
<gswitch
*> (stmt
), hbb
);
5307 HSA_SORRY_ATV (gimple_location (stmt
),
5308 "support for HSA does not implement gimple statement %s",
5309 gimple_code_name
[(int) gimple_code (stmt
)]);
5313 /* Generate a HSA PHI from a gimple PHI. */
5316 gen_hsa_phi_from_gimple_phi (gimple
*phi_stmt
, hsa_bb
*hbb
)
5319 unsigned count
= gimple_phi_num_args (phi_stmt
);
5322 = hsa_cfun
->reg_for_gimple_ssa (gimple_phi_result (phi_stmt
));
5323 hphi
= new hsa_insn_phi (count
, dest
);
5324 hphi
->m_bb
= hbb
->m_bb
;
5326 tree lhs
= gimple_phi_result (phi_stmt
);
5328 for (unsigned i
= 0; i
< count
; i
++)
5330 tree op
= gimple_phi_arg_def (phi_stmt
, i
);
5332 if (TREE_CODE (op
) == SSA_NAME
)
5334 hsa_op_reg
*hreg
= hsa_cfun
->reg_for_gimple_ssa (op
);
5335 hphi
->set_op (i
, hreg
);
5339 gcc_assert (is_gimple_min_invariant (op
));
5340 tree t
= TREE_TYPE (op
);
5341 if (!POINTER_TYPE_P (t
)
5342 || (TREE_CODE (op
) == STRING_CST
5343 && TREE_CODE (TREE_TYPE (t
)) == INTEGER_TYPE
))
5344 hphi
->set_op (i
, new hsa_op_immed (op
));
5345 else if (POINTER_TYPE_P (TREE_TYPE (lhs
))
5346 && TREE_CODE (op
) == INTEGER_CST
)
5348 /* Handle assignment of NULL value to a pointer type. */
5349 hphi
->set_op (i
, new hsa_op_immed (op
));
5351 else if (TREE_CODE (op
) == ADDR_EXPR
)
5353 edge e
= gimple_phi_arg_edge (as_a
<gphi
*> (phi_stmt
), i
);
5354 hsa_bb
*hbb_src
= hsa_init_new_bb (split_edge (e
));
5355 hsa_op_address
*addr
= gen_hsa_addr (TREE_OPERAND (op
, 0),
5359 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT
));
5360 hsa_insn_basic
*insn
5361 = new hsa_insn_basic (2, BRIG_OPCODE_LDA
, BRIG_TYPE_U64
,
5363 hbb_src
->append_insn (insn
);
5365 hphi
->set_op (i
, dest
);
5369 HSA_SORRY_AT (gimple_location (phi_stmt
),
5370 "support for HSA does not handle PHI nodes with "
5371 "constant address operands");
5377 hphi
->m_prev
= hbb
->m_last_phi
;
5378 hphi
->m_next
= NULL
;
5379 if (hbb
->m_last_phi
)
5380 hbb
->m_last_phi
->m_next
= hphi
;
5381 hbb
->m_last_phi
= hphi
;
5382 if (!hbb
->m_first_phi
)
5383 hbb
->m_first_phi
= hphi
;
5386 /* Constructor of class containing HSA-specific information about a basic
5387 block. CFG_BB is the CFG BB this HSA BB is associated with. IDX is the new
5388 index of this BB (so that the constructor does not attempt to use
5389 hsa_cfun during its construction). */
5391 hsa_bb::hsa_bb (basic_block cfg_bb
, int idx
)
5392 : m_bb (cfg_bb
), m_first_insn (NULL
), m_last_insn (NULL
), m_first_phi (NULL
),
5393 m_last_phi (NULL
), m_index (idx
), m_liveout (BITMAP_ALLOC (NULL
)),
5394 m_livein (BITMAP_ALLOC (NULL
))
5396 gcc_assert (!cfg_bb
->aux
);
5400 /* Constructor of class containing HSA-specific information about a basic
5401 block. CFG_BB is the CFG BB this HSA BB is associated with. */
5403 hsa_bb::hsa_bb (basic_block cfg_bb
)
5404 : m_bb (cfg_bb
), m_first_insn (NULL
), m_last_insn (NULL
), m_first_phi (NULL
),
5405 m_last_phi (NULL
), m_index (hsa_cfun
->m_hbb_count
++),
5406 m_liveout (BITMAP_ALLOC (NULL
)), m_livein (BITMAP_ALLOC (NULL
))
5408 gcc_assert (!cfg_bb
->aux
);
5412 /* Destructor of class representing HSA BB. */
5416 BITMAP_FREE (m_livein
);
5417 BITMAP_FREE (m_liveout
);
5420 /* Create and initialize and return a new hsa_bb structure for a given CFG
5424 hsa_init_new_bb (basic_block bb
)
5426 return new (*hsa_allocp_bb
) hsa_bb (bb
);
5429 /* Initialize OMP in an HSA basic block PROLOGUE. */
5432 init_prologue (void)
5434 if (!hsa_cfun
->m_kern_p
)
5437 hsa_bb
*prologue
= hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5439 /* Create a magic number that is going to be printed by libgomp. */
5440 unsigned index
= hsa_get_number_decl_kernel_mappings ();
5442 /* Emit store to debug argument. */
5443 if (PARAM_VALUE (PARAM_HSA_GEN_DEBUG_STORES
) > 0)
5444 set_debug_value (prologue
, new hsa_op_immed (1000 + index
, BRIG_TYPE_U64
));
5447 /* Initialize hsa_num_threads to a default value. */
5450 init_hsa_num_threads (void)
5452 hsa_bb
*prologue
= hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5454 /* Save the default value to private variable hsa_num_threads. */
5455 hsa_insn_basic
*basic
5456 = new hsa_insn_mem (BRIG_OPCODE_ST
, hsa_num_threads
->m_type
,
5457 new hsa_op_immed (0, hsa_num_threads
->m_type
),
5458 new hsa_op_address (hsa_num_threads
));
5459 prologue
->append_insn (basic
);
5462 /* Go over gimple representation and generate our internal HSA one. */
5465 gen_body_from_gimple ()
5469 /* Verify CFG for complex edges we are unable to handle. */
5473 FOR_EACH_BB_FN (bb
, cfun
)
5475 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5477 /* Verify all unsupported flags for edges that point
5478 to the same basic block. */
5479 if (e
->flags
& EDGE_EH
)
5481 HSA_SORRY_AT (UNKNOWN_LOCATION
,
5482 "support for HSA does not implement exception "
5489 FOR_EACH_BB_FN (bb
, cfun
)
5491 gimple_stmt_iterator gsi
;
5492 hsa_bb
*hbb
= hsa_bb_for_bb (bb
);
5496 hbb
= hsa_init_new_bb (bb
);
5498 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5500 gen_hsa_insns_for_gimple_stmt (gsi_stmt (gsi
), hbb
);
5501 if (hsa_seen_error ())
5506 FOR_EACH_BB_FN (bb
, cfun
)
5508 gimple_stmt_iterator gsi
;
5509 hsa_bb
*hbb
= hsa_bb_for_bb (bb
);
5510 gcc_assert (hbb
!= NULL
);
5512 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5513 if (!virtual_operand_p (gimple_phi_result (gsi_stmt (gsi
))))
5514 gen_hsa_phi_from_gimple_phi (gsi_stmt (gsi
), hbb
);
5517 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5519 fprintf (dump_file
, "------- Generated SSA form -------\n");
5520 dump_hsa_cfun (dump_file
);
5525 gen_function_decl_parameters (hsa_function_representation
*f
,
5531 for (parm
= TYPE_ARG_TYPES (TREE_TYPE (decl
)), i
= 0;
5533 parm
= TREE_CHAIN (parm
), i
++)
5535 /* Result type if last in the tree list. */
5536 if (TREE_CHAIN (parm
) == NULL
)
5539 tree v
= TREE_VALUE (parm
);
5541 hsa_symbol
*arg
= new hsa_symbol (BRIG_TYPE_NONE
, BRIG_SEGMENT_ARG
,
5543 arg
->m_type
= hsa_type_for_tree_type (v
, &arg
->m_dim
);
5544 arg
->m_name_number
= i
;
5546 f
->m_input_args
.safe_push (arg
);
5549 tree result_type
= TREE_TYPE (TREE_TYPE (decl
));
5550 if (!VOID_TYPE_P (result_type
))
5552 f
->m_output_arg
= new hsa_symbol (BRIG_TYPE_NONE
, BRIG_SEGMENT_ARG
,
5554 f
->m_output_arg
->m_type
5555 = hsa_type_for_tree_type (result_type
, &f
->m_output_arg
->m_dim
);
5556 f
->m_output_arg
->m_name
= "res";
5560 /* Generate the vector of parameters of the HSA representation of the current
5561 function. This also includes the output parameter representing the
5565 gen_function_def_parameters ()
5569 hsa_bb
*prologue
= hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5571 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
;
5572 parm
= DECL_CHAIN (parm
))
5574 struct hsa_symbol
**slot
;
5577 = new hsa_symbol (BRIG_TYPE_NONE
, hsa_cfun
->m_kern_p
5578 ? BRIG_SEGMENT_KERNARG
: BRIG_SEGMENT_ARG
,
5579 BRIG_LINKAGE_FUNCTION
);
5580 arg
->fillup_for_decl (parm
);
5582 hsa_cfun
->m_input_args
.safe_push (arg
);
5584 if (hsa_seen_error ())
5587 arg
->m_name
= hsa_get_declaration_name (parm
);
5589 /* Copy all input arguments and create corresponding private symbols
5591 hsa_symbol
*private_arg
;
5592 hsa_op_address
*parm_addr
= new hsa_op_address (arg
);
5594 if (TREE_ADDRESSABLE (parm
)
5595 || (!is_gimple_reg (parm
) && !TREE_READONLY (parm
)))
5597 private_arg
= hsa_cfun
->create_hsa_temporary (arg
->m_type
);
5598 private_arg
->fillup_for_decl (parm
);
5600 hsa_op_address
*private_arg_addr
= new hsa_op_address (private_arg
);
5601 gen_hsa_memory_copy (prologue
, private_arg_addr
, parm_addr
,
5602 arg
->total_byte_size ());
5607 slot
= hsa_cfun
->m_local_symbols
->find_slot (private_arg
, INSERT
);
5608 gcc_assert (!*slot
);
5609 *slot
= private_arg
;
5611 if (is_gimple_reg (parm
))
5613 tree ddef
= ssa_default_def (cfun
, parm
);
5614 if (ddef
&& !has_zero_uses (ddef
))
5616 BrigType16_t t
= hsa_type_for_scalar_tree_type (TREE_TYPE (ddef
),
5618 BrigType16_t mtype
= mem_type_for_type (t
);
5619 hsa_op_reg
*dest
= hsa_cfun
->reg_for_gimple_ssa (ddef
);
5620 hsa_insn_mem
*mem
= new hsa_insn_mem (BRIG_OPCODE_LD
, mtype
,
5622 gcc_assert (!parm_addr
->m_reg
);
5623 prologue
->append_insn (mem
);
5628 if (!VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
5630 struct hsa_symbol
**slot
;
5632 hsa_cfun
->m_output_arg
= new hsa_symbol (BRIG_TYPE_NONE
, BRIG_SEGMENT_ARG
,
5633 BRIG_LINKAGE_FUNCTION
);
5634 hsa_cfun
->m_output_arg
->fillup_for_decl (DECL_RESULT (cfun
->decl
));
5636 if (hsa_seen_error ())
5639 hsa_cfun
->m_output_arg
->m_name
= "res";
5640 slot
= hsa_cfun
->m_local_symbols
->find_slot (hsa_cfun
->m_output_arg
,
5642 gcc_assert (!*slot
);
5643 *slot
= hsa_cfun
->m_output_arg
;
5647 /* Generate function representation that corresponds to
5648 a function declaration. */
5650 hsa_function_representation
*
5651 hsa_generate_function_declaration (tree decl
)
5653 hsa_function_representation
*fun
5654 = new hsa_function_representation (decl
, false, 0);
5656 fun
->m_declaration_p
= true;
5657 fun
->m_name
= get_brig_function_name (decl
);
5658 gen_function_decl_parameters (fun
, decl
);
5664 /* Generate function representation that corresponds to
5667 hsa_function_representation
*
5668 hsa_generate_internal_fn_decl (hsa_internal_fn
*fn
)
5670 hsa_function_representation
*fun
= new hsa_function_representation (fn
);
5672 fun
->m_name
= fn
->name ();
5674 for (unsigned i
= 0; i
< fn
->get_arity (); i
++)
5677 = new hsa_symbol (fn
->get_argument_type (i
), BRIG_SEGMENT_ARG
,
5679 arg
->m_name_number
= i
;
5680 fun
->m_input_args
.safe_push (arg
);
5683 fun
->m_output_arg
= new hsa_symbol (fn
->get_argument_type (-1),
5684 BRIG_SEGMENT_ARG
, BRIG_LINKAGE_NONE
);
5685 fun
->m_output_arg
->m_name
= "res";
5690 /* Return true if switch statement S can be transformed
5691 to a SBR instruction in HSAIL. */
5694 transformable_switch_to_sbr_p (gswitch
*s
)
5696 /* Identify if a switch statement can be transformed to
5697 SBR instruction, like:
5699 sbr_u32 $s1 [@label1, @label2, @label3];
5702 tree size
= get_switch_size (s
);
5703 if (!tree_fits_uhwi_p (size
))
5706 if (tree_to_uhwi (size
) > HSA_MAXIMUM_SBR_LABELS
)
5712 /* Structure hold connection between PHI nodes and immediate
5713 values hold by there nodes. */
5715 struct phi_definition
5717 phi_definition (unsigned phi_i
, unsigned label_i
, tree imm
):
5718 phi_index (phi_i
), label_index (label_i
), phi_value (imm
)
5722 unsigned label_index
;
5726 /* Sum slice of a vector V, starting from index START and ending
5727 at the index END - 1. */
5729 template <typename T
>
5731 T
sum_slice (const auto_vec
<T
> &v
, unsigned start
, unsigned end
)
5735 for (unsigned i
= start
; i
< end
; i
++)
5741 /* Function transforms GIMPLE SWITCH statements to a series of IF statements.
5742 Let's assume following example:
5756 The transformation encompasses following steps:
5757 1) all immediate values used by edges coming from the switch basic block
5759 2) all these edges are removed
5760 3) the switch statement (in L0) is replaced by:
5766 4) newly created basic block Lx' is used for generation of
5768 5) else branch of the last condition goes to LD
5769 6) fix all immediate values in PHI nodes that were propagated though
5770 edges that were removed in step 2
5772 Note: if a case is made by a range C1..C2, then process
5773 following transformation:
5775 switch_cond_op1 = C1 <= index;
5776 switch_cond_op2 = index <= C2;
5777 switch_cond_and = switch_cond_op1 & switch_cond_op2;
5778 if (switch_cond_and != 0)
5786 convert_switch_statements ()
5788 function
*func
= DECL_STRUCT_FUNCTION (current_function_decl
);
5791 bool need_update
= false;
5793 FOR_EACH_BB_FN (bb
, func
)
5795 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
5796 if (gsi_end_p (gsi
))
5799 gimple
*stmt
= gsi_stmt (gsi
);
5801 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
5803 gswitch
*s
= as_a
<gswitch
*> (stmt
);
5805 /* If the switch can utilize SBR insn, skip the statement. */
5806 if (transformable_switch_to_sbr_p (s
))
5811 unsigned labels
= gimple_switch_num_labels (s
);
5812 tree index
= gimple_switch_index (s
);
5813 tree index_type
= TREE_TYPE (index
);
5814 tree default_label
= gimple_switch_default_label (s
);
5815 basic_block default_label_bb
5816 = label_to_block_fn (func
, CASE_LABEL (default_label
));
5817 basic_block cur_bb
= bb
;
5819 auto_vec
<edge
> new_edges
;
5820 auto_vec
<phi_definition
*> phi_todo_list
;
5821 auto_vec
<gcov_type
> edge_counts
;
5822 auto_vec
<int> edge_probabilities
;
5824 /* Investigate all labels that and PHI nodes in these edges which
5825 should be fixed after we add new collection of edges. */
5826 for (unsigned i
= 0; i
< labels
; i
++)
5828 tree label
= gimple_switch_label (s
, i
);
5829 basic_block label_bb
= label_to_block_fn (func
, CASE_LABEL (label
));
5830 edge e
= find_edge (bb
, label_bb
);
5831 edge_counts
.safe_push (e
->count
);
5832 edge_probabilities
.safe_push (e
->probability
);
5833 gphi_iterator phi_gsi
;
5835 /* Save PHI definitions that will be destroyed because of an edge
5836 is going to be removed. */
5837 unsigned phi_index
= 0;
5838 for (phi_gsi
= gsi_start_phis (e
->dest
);
5839 !gsi_end_p (phi_gsi
); gsi_next (&phi_gsi
))
5841 gphi
*phi
= phi_gsi
.phi ();
5842 for (unsigned j
= 0; j
< gimple_phi_num_args (phi
); j
++)
5844 if (gimple_phi_arg_edge (phi
, j
) == e
)
5846 tree imm
= gimple_phi_arg_def (phi
, j
);
5847 phi_definition
*p
= new phi_definition (phi_index
, i
,
5849 phi_todo_list
.safe_push (p
);
5857 /* Remove all edges for the current basic block. */
5858 for (int i
= EDGE_COUNT (bb
->succs
) - 1; i
>= 0; i
--)
5860 edge e
= EDGE_SUCC (bb
, i
);
5864 /* Iterate all non-default labels. */
5865 for (unsigned i
= 1; i
< labels
; i
++)
5867 tree label
= gimple_switch_label (s
, i
);
5868 tree low
= CASE_LOW (label
);
5869 tree high
= CASE_HIGH (label
);
5871 if (!useless_type_conversion_p (TREE_TYPE (low
), index_type
))
5872 low
= fold_convert (index_type
, low
);
5874 gimple_stmt_iterator cond_gsi
= gsi_last_bb (cur_bb
);
5878 tree tmp1
= make_temp_ssa_name (boolean_type_node
, NULL
,
5881 gimple
*assign1
= gimple_build_assign (tmp1
, LE_EXPR
, low
,
5884 tree tmp2
= make_temp_ssa_name (boolean_type_node
, NULL
,
5887 if (!useless_type_conversion_p (TREE_TYPE (high
), index_type
))
5888 high
= fold_convert (index_type
, high
);
5889 gimple
*assign2
= gimple_build_assign (tmp2
, LE_EXPR
, index
,
5892 tree tmp3
= make_temp_ssa_name (boolean_type_node
, NULL
,
5894 gimple
*assign3
= gimple_build_assign (tmp3
, BIT_AND_EXPR
, tmp1
,
5897 gsi_insert_before (&cond_gsi
, assign1
, GSI_SAME_STMT
);
5898 gsi_insert_before (&cond_gsi
, assign2
, GSI_SAME_STMT
);
5899 gsi_insert_before (&cond_gsi
, assign3
, GSI_SAME_STMT
);
5901 tree b
= constant_boolean_node (false, boolean_type_node
);
5902 c
= gimple_build_cond (NE_EXPR
, tmp3
, b
, NULL
, NULL
);
5905 c
= gimple_build_cond (EQ_EXPR
, index
, low
, NULL
, NULL
);
5907 gimple_set_location (c
, gimple_location (stmt
));
5909 gsi_insert_before (&cond_gsi
, c
, GSI_SAME_STMT
);
5911 basic_block label_bb
5912 = label_to_block_fn (func
, CASE_LABEL (label
));
5913 edge new_edge
= make_edge (cur_bb
, label_bb
, EDGE_TRUE_VALUE
);
5914 int prob_sum
= sum_slice
<int> (edge_probabilities
, i
, labels
) +
5915 edge_probabilities
[0];
5918 new_edge
->probability
5919 = RDIV (REG_BR_PROB_BASE
* edge_probabilities
[i
], prob_sum
);
5921 new_edge
->count
= edge_counts
[i
];
5922 new_edges
.safe_push (new_edge
);
5926 /* Prepare another basic block that will contain
5928 basic_block next_bb
= create_empty_bb (cur_bb
);
5931 add_bb_to_loop (next_bb
, cur_bb
->loop_father
);
5932 loops_state_set (LOOPS_NEED_FIXUP
);
5935 edge next_edge
= make_edge (cur_bb
, next_bb
, EDGE_FALSE_VALUE
);
5936 next_edge
->probability
5937 = inverse_probability (new_edge
->probability
);
5938 next_edge
->count
= edge_counts
[0]
5939 + sum_slice
<gcov_type
> (edge_counts
, i
, labels
);
5940 next_bb
->frequency
= EDGE_FREQUENCY (next_edge
);
5943 else /* Link last IF statement and default label
5946 edge e
= make_edge (cur_bb
, default_label_bb
, EDGE_FALSE_VALUE
);
5947 e
->probability
= inverse_probability (new_edge
->probability
);
5948 e
->count
= edge_counts
[0];
5949 new_edges
.safe_insert (0, e
);
5953 /* Restore original PHI immediate value. */
5954 for (unsigned i
= 0; i
< phi_todo_list
.length (); i
++)
5956 phi_definition
*phi_def
= phi_todo_list
[i
];
5957 edge new_edge
= new_edges
[phi_def
->label_index
];
5959 gphi_iterator it
= gsi_start_phis (new_edge
->dest
);
5960 for (unsigned i
= 0; i
< phi_def
->phi_index
; i
++)
5963 gphi
*phi
= it
.phi ();
5964 add_phi_arg (phi
, phi_def
->phi_value
, new_edge
, UNKNOWN_LOCATION
);
5968 /* Remove the original GIMPLE switch statement. */
5969 gsi_remove (&gsi
, true);
5974 dump_function_to_file (current_function_decl
, dump_file
, TDF_DETAILS
);
5978 free_dominance_info (CDI_DOMINATORS
);
5979 calculate_dominance_info (CDI_DOMINATORS
);
5983 /* Expand builtins that can't be handled by HSA back-end. */
5988 function
*func
= DECL_STRUCT_FUNCTION (current_function_decl
);
5991 FOR_EACH_BB_FN (bb
, func
)
5993 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
5996 gimple
*stmt
= gsi_stmt (gsi
);
5998 if (gimple_code (stmt
) != GIMPLE_CALL
)
6001 gcall
*call
= as_a
<gcall
*> (stmt
);
6003 if (!gimple_call_builtin_p (call
, BUILT_IN_NORMAL
))
6006 tree fndecl
= gimple_call_fndecl (stmt
);
6007 enum built_in_function fn
= DECL_FUNCTION_CODE (fndecl
);
6010 case BUILT_IN_CEXPF
:
6011 case BUILT_IN_CEXPIF
:
6012 case BUILT_IN_CEXPI
:
6014 /* Similar to builtins.c (expand_builtin_cexpi), the builtin
6015 can be transformed to: cexp(I * z) = ccos(z) + I * csin(z). */
6016 tree lhs
= gimple_call_lhs (stmt
);
6017 tree rhs
= gimple_call_arg (stmt
, 0);
6018 tree rhs_type
= TREE_TYPE (rhs
);
6019 bool float_type_p
= rhs_type
== float_type_node
;
6020 tree real_part
= make_temp_ssa_name (rhs_type
, NULL
,
6022 tree imag_part
= make_temp_ssa_name (rhs_type
, NULL
,
6026 = mathfn_built_in (rhs_type
, fn
== float_type_p
6027 ? BUILT_IN_COSF
: BUILT_IN_COS
);
6028 gcall
*cos
= gimple_build_call (cos_fndecl
, 1, rhs
);
6029 gimple_call_set_lhs (cos
, real_part
);
6030 gsi_insert_before (&gsi
, cos
, GSI_SAME_STMT
);
6033 = mathfn_built_in (rhs_type
, fn
== float_type_p
6034 ? BUILT_IN_SINF
: BUILT_IN_SIN
);
6035 gcall
*sin
= gimple_build_call (sin_fndecl
, 1, rhs
);
6036 gimple_call_set_lhs (sin
, imag_part
);
6037 gsi_insert_before (&gsi
, sin
, GSI_SAME_STMT
);
6040 gassign
*assign
= gimple_build_assign (lhs
, COMPLEX_EXPR
,
6041 real_part
, imag_part
);
6042 gsi_insert_before (&gsi
, assign
, GSI_SAME_STMT
);
6043 gsi_remove (&gsi
, true);
6054 /* Emit HSA module variables that are global for the entire module. */
6057 emit_hsa_module_variables (void)
6059 hsa_num_threads
= new hsa_symbol (BRIG_TYPE_U32
, BRIG_SEGMENT_PRIVATE
,
6060 BRIG_LINKAGE_MODULE
, true);
6062 hsa_num_threads
->m_name
= "hsa_num_threads";
6064 hsa_brig_emit_omp_symbols ();
6067 /* Generate HSAIL representation of the current function and write into a
6068 special section of the output file. If KERNEL is set, the function will be
6069 considered an HSA kernel callable from the host, otherwise it will be
6070 compiled as an HSA function callable from other HSA code. */
6073 generate_hsa (bool kernel
)
6075 hsa_init_data_for_cfun ();
6077 if (hsa_num_threads
== NULL
)
6078 emit_hsa_module_variables ();
6080 /* Initialize hsa_cfun. */
6081 hsa_cfun
= new hsa_function_representation (cfun
->decl
, kernel
,
6082 SSANAMES (cfun
)->length ());
6083 hsa_cfun
->init_extra_bbs ();
6087 HSA_SORRY_AT (UNKNOWN_LOCATION
,
6088 "support for HSA does not implement transactional memory");
6092 verify_function_arguments (cfun
->decl
);
6093 if (hsa_seen_error ())
6096 hsa_cfun
->m_name
= get_brig_function_name (cfun
->decl
);
6098 gen_function_def_parameters ();
6099 if (hsa_seen_error ())
6104 gen_body_from_gimple ();
6105 if (hsa_seen_error ())
6108 if (hsa_cfun
->m_kernel_dispatch_count
)
6109 init_hsa_num_threads ();
6111 if (hsa_cfun
->m_kern_p
)
6113 hsa_function_summary
*s
6114 = hsa_summaries
->get (cgraph_node::get (hsa_cfun
->m_decl
));
6115 hsa_add_kern_decl_mapping (current_function_decl
, hsa_cfun
->m_name
,
6116 hsa_cfun
->m_maximum_omp_data_size
,
6117 s
->m_gridified_kernel_p
);
6122 for (unsigned i
= 0; i
< hsa_cfun
->m_ssa_map
.length (); i
++)
6123 if (hsa_cfun
->m_ssa_map
[i
])
6124 hsa_cfun
->m_ssa_map
[i
]->verify_ssa ();
6127 FOR_EACH_BB_FN (bb
, cfun
)
6129 hsa_bb
*hbb
= hsa_bb_for_bb (bb
);
6131 for (hsa_insn_basic
*insn
= hbb
->m_first_insn
; insn
;
6132 insn
= insn
->m_next
)
6138 hsa_brig_emit_function ();
6141 hsa_deinit_data_for_cfun ();
6146 const pass_data pass_data_gen_hsail
=
6149 "hsagen", /* name */
6150 OPTGROUP_NONE
, /* optinfo_flags */
6151 TV_NONE
, /* tv_id */
6152 PROP_cfg
| PROP_ssa
, /* properties_required */
6153 0, /* properties_provided */
6154 0, /* properties_destroyed */
6155 0, /* todo_flags_start */
6156 0 /* todo_flags_finish */
6159 class pass_gen_hsail
: public gimple_opt_pass
6162 pass_gen_hsail (gcc::context
*ctxt
)
6163 : gimple_opt_pass(pass_data_gen_hsail
, ctxt
)
6166 /* opt_pass methods: */
6167 bool gate (function
*);
6168 unsigned int execute (function
*);
6170 }; // class pass_gen_hsail
6172 /* Determine whether or not to run generation of HSAIL. */
6175 pass_gen_hsail::gate (function
*f
)
6177 return hsa_gen_requested_p ()
6178 && hsa_gpu_implementation_p (f
->decl
);
6182 pass_gen_hsail::execute (function
*)
6184 hsa_function_summary
*s
6185 = hsa_summaries
->get (cgraph_node::get_create (current_function_decl
));
6187 convert_switch_statements ();
6189 generate_hsa (s
->m_kind
== HSA_KERNEL
);
6190 TREE_ASM_WRITTEN (current_function_decl
) = 1;
6191 return TODO_discard_function
;
6196 /* Create the instance of hsa gen pass. */
6199 make_pass_gen_hsail (gcc::context
*ctxt
)
6201 return new pass_gen_hsail (ctxt
);