1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Util
; use Exp_Util
;
33 with Fname
; use Fname
;
34 with Itypes
; use Itypes
;
36 with Lib
.Xref
; use Lib
.Xref
;
37 with Namet
; use Namet
;
38 with Namet
.Sp
; use Namet
.Sp
;
39 with Nlists
; use Nlists
;
40 with Nmake
; use Nmake
;
42 with Output
; use Output
;
43 with Restrict
; use Restrict
;
44 with Rident
; use Rident
;
46 with Sem_Aux
; use Sem_Aux
;
47 with Sem_Case
; use Sem_Case
;
48 with Sem_Cat
; use Sem_Cat
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Dim
; use Sem_Dim
;
53 with Sem_Disp
; use Sem_Disp
;
54 with Sem_Dist
; use Sem_Dist
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Type
; use Sem_Type
;
58 with Sem_Util
; use Sem_Util
;
59 with Sem_Warn
; use Sem_Warn
;
60 with Stand
; use Stand
;
61 with Sinfo
; use Sinfo
;
62 with Snames
; use Snames
;
63 with Tbuild
; use Tbuild
;
64 with Uintp
; use Uintp
;
66 package body Sem_Ch4
is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Concatenation_Rest
(N
: Node_Id
);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
76 procedure Analyze_Expression
(N
: Node_Id
);
77 -- For expressions that are not names, this is just a call to analyze.
78 -- If the expression is a name, it may be a call to a parameterless
79 -- function, and if so must be converted into an explicit call node
80 -- and analyzed as such. This deproceduring must be done during the first
81 -- pass of overload resolution, because otherwise a procedure call with
82 -- overloaded actuals may fail to resolve.
84 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
);
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
86 -- is an operator name or an expanded name whose selector is an operator
87 -- name, and one possible interpretation is as a predefined operator.
89 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
94 procedure Analyze_User_Defined_Binary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
99 procedure Analyze_User_Defined_Unary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
104 procedure Ambiguous_Operands
(N
: Node_Id
);
105 -- For equality, membership, and comparison operators with overloaded
106 -- arguments, list possible interpretations.
108 procedure Analyze_One_Call
112 Success
: out Boolean;
113 Skip_First
: Boolean := False);
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
132 procedure Check_Misspelled_Selector
135 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
140 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean;
141 -- Verify that type T is declared in scope S. Used to find interpretations
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
146 procedure Find_Arithmetic_Types
150 -- L and R are the operands of an arithmetic operator. Find
151 -- consistent pairs of interpretations for L and R that have a
152 -- numeric type consistent with the semantics of the operator.
154 procedure Find_Comparison_Types
158 -- L and R are operands of a comparison operator. Find consistent
159 -- pairs of interpretations for L and R.
161 procedure Find_Concatenation_Types
165 -- For the four varieties of concatenation
167 procedure Find_Equality_Types
171 -- Ditto for equality operators
173 procedure Find_Boolean_Types
177 -- Ditto for binary logical operations
179 procedure Find_Negation_Types
183 -- Find consistent interpretation for operand of negation operator
185 procedure Find_Non_Universal_Interpretations
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
195 -- a function call whose name is an operator designator. Any_Access, which
196 -- is the initial type of the literal NULL, is a universal type for the
197 -- purpose of this routine.
199 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean;
200 -- Find candidate interpretations for the name Obj.Proc when it appears
201 -- in a subprogram renaming declaration.
203 procedure Find_Unary_Types
207 -- Unary arithmetic types: plus, minus, abs
209 procedure Check_Arithmetic_Pair
213 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
214 -- types for left and right operand. Determine whether they constitute
215 -- a valid pair for the given operator, and record the corresponding
216 -- interpretation of the operator node. The node N may be an operator
217 -- node (the usual case) or a function call whose prefix is an operator
218 -- designator. In both cases Op_Id is the operator name itself.
220 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
);
221 -- Give detailed information on overloaded call where none of the
222 -- interpretations match. N is the call node, Nam the designator for
223 -- the overloaded entity being called.
225 function Junk_Operand
(N
: Node_Id
) return Boolean;
226 -- Test for an operand that is an inappropriate entity (e.g. a package
227 -- name or a label). If so, issue an error message and return True. If
228 -- the operand is not an inappropriate entity kind, return False.
230 procedure Operator_Check
(N
: Node_Id
);
231 -- Verify that an operator has received some valid interpretation. If none
232 -- was found, determine whether a use clause would make the operation
233 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
234 -- every type compatible with the operator, even if the operator for the
235 -- type is not directly visible. The routine uses this type to emit a more
236 -- informative message.
238 function Process_Implicit_Dereference_Prefix
240 P
: Node_Id
) return Entity_Id
;
241 -- Called when P is the prefix of an implicit dereference, denoting an
242 -- object E. The function returns the designated type of the prefix, taking
243 -- into account that the designated type of an anonymous access type may be
244 -- a limited view, when the non-limited view is visible.
245 -- If in semantics only mode (-gnatc or generic), the function also records
246 -- that the prefix is a reference to E, if any. Normally, such a reference
247 -- is generated only when the implicit dereference is expanded into an
248 -- explicit one, but for consistency we must generate the reference when
249 -- expansion is disabled as well.
251 procedure Remove_Abstract_Operations
(N
: Node_Id
);
252 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
253 -- operation is not a candidate interpretation.
255 function Try_Container_Indexing
258 Exprs
: List_Id
) return Boolean;
259 -- AI05-0139: Generalized indexing to support iterators over containers
261 function Try_Indexed_Call
265 Skip_First
: Boolean) return Boolean;
266 -- If a function has defaults for all its actuals, a call to it may in fact
267 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
268 -- interpretation as an indexing, prior to analysis as a call. If both are
269 -- possible, the node is overloaded with both interpretations (same symbol
270 -- but two different types). If the call is written in prefix form, the
271 -- prefix becomes the first parameter in the call, and only the remaining
272 -- actuals must be checked for the presence of defaults.
274 function Try_Indirect_Call
277 Typ
: Entity_Id
) return Boolean;
278 -- Similarly, a function F that needs no actuals can return an access to a
279 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
280 -- the call may be overloaded with both interpretations.
282 function Try_Object_Operation
284 CW_Test_Only
: Boolean := False) return Boolean;
285 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
286 -- is a call in this notation, it is transformed into a normal subprogram
287 -- call where the prefix is a parameter, and True is returned. If node
288 -- N is not of this form, it is unchanged, and False is returned. if
289 -- CW_Test_Only is true then N is an N_Selected_Component node which
290 -- is part of a call to an entry or procedure of a tagged concurrent
291 -- type and this routine is invoked to search for class-wide subprograms
292 -- conflicting with the target entity.
294 procedure wpo
(T
: Entity_Id
);
295 pragma Warnings
(Off
, wpo
);
296 -- Used for debugging: obtain list of primitive operations even if
297 -- type is not frozen and dispatch table is not built yet.
299 ------------------------
300 -- Ambiguous_Operands --
301 ------------------------
303 procedure Ambiguous_Operands
(N
: Node_Id
) is
304 procedure List_Operand_Interps
(Opnd
: Node_Id
);
306 --------------------------
307 -- List_Operand_Interps --
308 --------------------------
310 procedure List_Operand_Interps
(Opnd
: Node_Id
) is
315 if Is_Overloaded
(Opnd
) then
316 if Nkind
(Opnd
) in N_Op
then
318 elsif Nkind
(Opnd
) = N_Function_Call
then
320 elsif Ada_Version
>= Ada_2012
then
326 Get_First_Interp
(Opnd
, I
, It
);
327 while Present
(It
.Nam
) loop
328 if Has_Implicit_Dereference
(It
.Typ
) then
330 ("can be interpreted as implicit dereference", Opnd
);
334 Get_Next_Interp
(I
, It
);
345 if Opnd
= Left_Opnd
(N
) then
346 Error_Msg_N
("\left operand has the following interpretations", N
);
349 ("\right operand has the following interpretations", N
);
353 List_Interps
(Nam
, Err
);
354 end List_Operand_Interps
;
356 -- Start of processing for Ambiguous_Operands
359 if Nkind
(N
) in N_Membership_Test
then
360 Error_Msg_N
("ambiguous operands for membership", N
);
362 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
) then
363 Error_Msg_N
("ambiguous operands for equality", N
);
366 Error_Msg_N
("ambiguous operands for comparison", N
);
369 if All_Errors_Mode
then
370 List_Operand_Interps
(Left_Opnd
(N
));
371 List_Operand_Interps
(Right_Opnd
(N
));
373 Error_Msg_N
("\use -gnatf switch for details", N
);
375 end Ambiguous_Operands
;
377 -----------------------
378 -- Analyze_Aggregate --
379 -----------------------
381 -- Most of the analysis of Aggregates requires that the type be known,
382 -- and is therefore put off until resolution.
384 procedure Analyze_Aggregate
(N
: Node_Id
) is
386 if No
(Etype
(N
)) then
387 Set_Etype
(N
, Any_Composite
);
389 end Analyze_Aggregate
;
391 -----------------------
392 -- Analyze_Allocator --
393 -----------------------
395 procedure Analyze_Allocator
(N
: Node_Id
) is
396 Loc
: constant Source_Ptr
:= Sloc
(N
);
397 Sav_Errs
: constant Nat
:= Serious_Errors_Detected
;
398 E
: Node_Id
:= Expression
(N
);
399 Acc_Type
: Entity_Id
;
406 Check_SPARK_Restriction
("allocator is not allowed", N
);
408 -- Deal with allocator restrictions
410 -- In accordance with H.4(7), the No_Allocators restriction only applies
411 -- to user-written allocators. The same consideration applies to the
412 -- No_Standard_Allocators_Before_Elaboration restriction.
414 if Comes_From_Source
(N
) then
415 Check_Restriction
(No_Allocators
, N
);
417 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
418 -- look at enclosing context, checking task/main subprogram case.
422 while Present
(P
) loop
424 -- For the task case we need a handled sequence of statements,
425 -- where the occurrence of the allocator is within the statements
426 -- and the parent is a task body
428 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
429 and then Is_List_Member
(C
)
430 and then List_Containing
(C
) = Statements
(P
)
432 Onode
:= Original_Node
(Parent
(P
));
434 -- Check for allocator within task body, this is a definite
435 -- violation of No_Allocators_After_Elaboration we can detect
438 if Nkind
(Onode
) = N_Task_Body
then
440 (No_Standard_Allocators_After_Elaboration
, N
);
445 -- The other case is appearance in a subprogram body. This is
446 -- a violation if this is a library level subprogram with no
447 -- parameters. Note that this is now a static error even if the
448 -- subprogram is not the main program (this is a change, in an
449 -- earlier version only the main program was affected, and the
450 -- check had to be done in the binder.
452 if Nkind
(P
) = N_Subprogram_Body
453 and then Nkind
(Parent
(P
)) = N_Compilation_Unit
454 and then No
(Parameter_Specifications
(Specification
(P
)))
457 (No_Standard_Allocators_After_Elaboration
, N
);
465 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
466 -- any. The expected type for the name is any type. A non-overloading
467 -- rule then requires it to be of a type descended from
468 -- System.Storage_Pools.Subpools.Subpool_Handle.
470 -- This isn't exactly what the AI says, but it seems to be the right
471 -- rule. The AI should be fixed.???
474 Subpool
: constant Node_Id
:= Subpool_Handle_Name
(N
);
477 if Present
(Subpool
) then
480 if Is_Overloaded
(Subpool
) then
481 Error_Msg_N
("ambiguous subpool handle", Subpool
);
484 -- Check that Etype (Subpool) is descended from Subpool_Handle
490 -- Analyze the qualified expression or subtype indication
492 if Nkind
(E
) = N_Qualified_Expression
then
493 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
494 Set_Etype
(Acc_Type
, Acc_Type
);
495 Find_Type
(Subtype_Mark
(E
));
497 -- Analyze the qualified expression, and apply the name resolution
498 -- rule given in 4.7(3).
501 Type_Id
:= Etype
(E
);
502 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
504 -- Allocators generated by the build-in-place expansion mechanism
505 -- are explicitly marked as coming from source but do not need to be
506 -- checked for limited initialization. To exclude this case, ensure
507 -- that the parent of the allocator is a source node.
509 if Is_Limited_Type
(Type_Id
)
510 and then Comes_From_Source
(N
)
511 and then Comes_From_Source
(Parent
(N
))
512 and then not In_Instance_Body
514 if not OK_For_Limited_Init
(Type_Id
, Expression
(E
)) then
515 Error_Msg_N
("initialization not allowed for limited types", N
);
516 Explain_Limited_Type
(Type_Id
, N
);
520 -- A qualified expression requires an exact match of the type,
521 -- class-wide matching is not allowed.
523 -- if Is_Class_Wide_Type (Type_Id)
524 -- and then Base_Type
525 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
527 -- Wrong_Type (Expression (E), Type_Id);
530 -- We don't analyze the qualified expression itself because it's
531 -- part of the allocator. It is fully analyzed and resolved when
532 -- the allocator is resolved with the context type.
534 Set_Etype
(E
, Type_Id
);
536 -- Case where allocator has a subtype indication
541 Base_Typ
: Entity_Id
;
544 -- If the allocator includes a N_Subtype_Indication then a
545 -- constraint is present, otherwise the node is a subtype mark.
546 -- Introduce an explicit subtype declaration into the tree
547 -- defining some anonymous subtype and rewrite the allocator to
548 -- use this subtype rather than the subtype indication.
550 -- It is important to introduce the explicit subtype declaration
551 -- so that the bounds of the subtype indication are attached to
552 -- the tree in case the allocator is inside a generic unit.
554 if Nkind
(E
) = N_Subtype_Indication
then
556 -- A constraint is only allowed for a composite type in Ada
557 -- 95. In Ada 83, a constraint is also allowed for an
558 -- access-to-composite type, but the constraint is ignored.
560 Find_Type
(Subtype_Mark
(E
));
561 Base_Typ
:= Entity
(Subtype_Mark
(E
));
563 if Is_Elementary_Type
(Base_Typ
) then
564 if not (Ada_Version
= Ada_83
565 and then Is_Access_Type
(Base_Typ
))
567 Error_Msg_N
("constraint not allowed here", E
);
569 if Nkind
(Constraint
(E
)) =
570 N_Index_Or_Discriminant_Constraint
572 Error_Msg_N
-- CODEFIX
573 ("\if qualified expression was meant, " &
574 "use apostrophe", Constraint
(E
));
578 -- Get rid of the bogus constraint:
580 Rewrite
(E
, New_Copy_Tree
(Subtype_Mark
(E
)));
581 Analyze_Allocator
(N
);
585 if Expander_Active
then
586 Def_Id
:= Make_Temporary
(Loc
, 'S');
589 Make_Subtype_Declaration
(Loc
,
590 Defining_Identifier
=> Def_Id
,
591 Subtype_Indication
=> Relocate_Node
(E
)));
593 if Sav_Errs
/= Serious_Errors_Detected
594 and then Nkind
(Constraint
(E
)) =
595 N_Index_Or_Discriminant_Constraint
597 Error_Msg_N
-- CODEFIX
598 ("if qualified expression was meant, "
599 & "use apostrophe!", Constraint
(E
));
602 E
:= New_Occurrence_Of
(Def_Id
, Loc
);
603 Rewrite
(Expression
(N
), E
);
607 Type_Id
:= Process_Subtype
(E
, N
);
608 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
609 Set_Etype
(Acc_Type
, Acc_Type
);
610 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
611 Check_Fully_Declared
(Type_Id
, N
);
613 -- Ada 2005 (AI-231): If the designated type is itself an access
614 -- type that excludes null, its default initialization will
615 -- be a null object, and we can insert an unconditional raise
616 -- before the allocator.
618 -- Ada 2012 (AI-104): A not null indication here is altogether
621 if Can_Never_Be_Null
(Type_Id
) then
623 Not_Null_Check
: constant Node_Id
:=
624 Make_Raise_Constraint_Error
(Sloc
(E
),
625 Reason
=> CE_Null_Not_Allowed
);
628 if Expander_Active
then
629 Insert_Action
(N
, Not_Null_Check
);
630 Analyze
(Not_Null_Check
);
632 elsif Warn_On_Ada_2012_Compatibility
then
634 ("null value not allowed here in Ada 2012?y?", E
);
639 -- Check for missing initialization. Skip this check if we already
640 -- had errors on analyzing the allocator, since in that case these
641 -- are probably cascaded errors.
643 if Is_Indefinite_Subtype
(Type_Id
)
644 and then Serious_Errors_Detected
= Sav_Errs
646 -- The build-in-place machinery may produce an allocator when
647 -- the designated type is indefinite but the underlying type is
648 -- not. In this case the unknown discriminants are meaningless
649 -- and should not trigger error messages. Check the parent node
650 -- because the allocator is marked as coming from source.
652 if Present
(Underlying_Type
(Type_Id
))
653 and then not Is_Indefinite_Subtype
(Underlying_Type
(Type_Id
))
654 and then not Comes_From_Source
(Parent
(N
))
658 elsif Is_Class_Wide_Type
(Type_Id
) then
660 ("initialization required in class-wide allocation", N
);
663 if Ada_Version
< Ada_2005
664 and then Is_Limited_Type
(Type_Id
)
666 Error_Msg_N
("unconstrained allocation not allowed", N
);
668 if Is_Array_Type
(Type_Id
) then
670 ("\constraint with array bounds required", N
);
672 elsif Has_Unknown_Discriminants
(Type_Id
) then
675 else pragma Assert
(Has_Discriminants
(Type_Id
));
677 ("\constraint with discriminant values required", N
);
680 -- Limited Ada 2005 and general non-limited case
684 ("uninitialized unconstrained allocation not allowed",
687 if Is_Array_Type
(Type_Id
) then
689 ("\qualified expression or constraint with " &
690 "array bounds required", N
);
692 elsif Has_Unknown_Discriminants
(Type_Id
) then
693 Error_Msg_N
("\qualified expression required", N
);
695 else pragma Assert
(Has_Discriminants
(Type_Id
));
697 ("\qualified expression or constraint with " &
698 "discriminant values required", N
);
706 if Is_Abstract_Type
(Type_Id
) then
707 Error_Msg_N
("cannot allocate abstract object", E
);
710 if Has_Task
(Designated_Type
(Acc_Type
)) then
711 Check_Restriction
(No_Tasking
, N
);
712 Check_Restriction
(Max_Tasks
, N
);
713 Check_Restriction
(No_Task_Allocators
, N
);
716 -- Check restriction against dynamically allocated protected objects
718 if Has_Protected
(Designated_Type
(Acc_Type
)) then
719 Check_Restriction
(No_Protected_Type_Allocators
, N
);
722 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
723 -- type is nested, and the designated type needs finalization. The rule
724 -- is conservative in that class-wide types need finalization.
726 if Needs_Finalization
(Designated_Type
(Acc_Type
))
727 and then not Is_Library_Level_Entity
(Acc_Type
)
729 Check_Restriction
(No_Nested_Finalization
, N
);
732 -- Check that an allocator of a nested access type doesn't create a
733 -- protected object when restriction No_Local_Protected_Objects applies.
735 if Has_Protected
(Designated_Type
(Acc_Type
))
736 and then not Is_Library_Level_Entity
(Acc_Type
)
738 Check_Restriction
(No_Local_Protected_Objects
, N
);
741 -- If the No_Streams restriction is set, check that the type of the
742 -- object is not, and does not contain, any subtype derived from
743 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
744 -- Has_Stream just for efficiency reasons. There is no point in
745 -- spending time on a Has_Stream check if the restriction is not set.
747 if Restriction_Check_Required
(No_Streams
) then
748 if Has_Stream
(Designated_Type
(Acc_Type
)) then
749 Check_Restriction
(No_Streams
, N
);
753 Set_Etype
(N
, Acc_Type
);
755 if not Is_Library_Level_Entity
(Acc_Type
) then
756 Check_Restriction
(No_Local_Allocators
, N
);
759 if Serious_Errors_Detected
> Sav_Errs
then
760 Set_Error_Posted
(N
);
761 Set_Etype
(N
, Any_Type
);
763 end Analyze_Allocator
;
765 ---------------------------
766 -- Analyze_Arithmetic_Op --
767 ---------------------------
769 procedure Analyze_Arithmetic_Op
(N
: Node_Id
) is
770 L
: constant Node_Id
:= Left_Opnd
(N
);
771 R
: constant Node_Id
:= Right_Opnd
(N
);
775 Candidate_Type
:= Empty
;
776 Analyze_Expression
(L
);
777 Analyze_Expression
(R
);
779 -- If the entity is already set, the node is the instantiation of a
780 -- generic node with a non-local reference, or was manufactured by a
781 -- call to Make_Op_xxx. In either case the entity is known to be valid,
782 -- and we do not need to collect interpretations, instead we just get
783 -- the single possible interpretation.
787 if Present
(Op_Id
) then
788 if Ekind
(Op_Id
) = E_Operator
then
790 if Nkind_In
(N
, N_Op_Divide
, N_Op_Mod
, N_Op_Multiply
, N_Op_Rem
)
791 and then Treat_Fixed_As_Integer
(N
)
795 Set_Etype
(N
, Any_Type
);
796 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
800 Set_Etype
(N
, Any_Type
);
801 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
804 -- Entity is not already set, so we do need to collect interpretations
807 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
808 Set_Etype
(N
, Any_Type
);
810 while Present
(Op_Id
) loop
811 if Ekind
(Op_Id
) = E_Operator
812 and then Present
(Next_Entity
(First_Entity
(Op_Id
)))
814 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
816 -- The following may seem superfluous, because an operator cannot
817 -- be generic, but this ignores the cleverness of the author of
820 elsif Is_Overloadable
(Op_Id
) then
821 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
824 Op_Id
:= Homonym
(Op_Id
);
829 end Analyze_Arithmetic_Op
;
835 -- Function, procedure, and entry calls are checked here. The Name in
836 -- the call may be overloaded. The actuals have been analyzed and may
837 -- themselves be overloaded. On exit from this procedure, the node N
838 -- may have zero, one or more interpretations. In the first case an
839 -- error message is produced. In the last case, the node is flagged
840 -- as overloaded and the interpretations are collected in All_Interp.
842 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
843 -- the type-checking is similar to that of other calls.
845 procedure Analyze_Call
(N
: Node_Id
) is
846 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
851 Success
: Boolean := False;
853 Deref
: Boolean := False;
854 -- Flag indicates whether an interpretation of the prefix is a
855 -- parameterless call that returns an access_to_subprogram.
857 procedure Check_Ghost_Subprogram_Call
;
858 -- Verify the legality of a call to a ghost subprogram. Such calls can
859 -- appear only in assertion expressions except subtype predicates or
860 -- from within another ghost subprogram.
862 procedure Check_Mixed_Parameter_And_Named_Associations
;
863 -- Check that parameter and named associations are not mixed. This is
864 -- a restriction in SPARK mode.
866 function Name_Denotes_Function
return Boolean;
867 -- If the type of the name is an access to subprogram, this may be the
868 -- type of a name, or the return type of the function being called. If
869 -- the name is not an entity then it can denote a protected function.
870 -- Until we distinguish Etype from Return_Type, we must use this routine
871 -- to resolve the meaning of the name in the call.
873 procedure No_Interpretation
;
874 -- Output error message when no valid interpretation exists
876 ---------------------------------
877 -- Check_Ghost_Subprogram_Call --
878 ---------------------------------
880 procedure Check_Ghost_Subprogram_Call
is
884 -- Do not perform the check while preanalyzing the enclosing context
885 -- because the call is not in its final place. Premature attempts to
886 -- verify the placement lead to bogus errors.
888 if In_Spec_Expression
then
891 -- The ghost subprogram appears inside an assertion expression which
892 -- is one of the allowed cases.
894 elsif In_Assertion_Expression_Pragma
(N
) then
897 -- Otherwise see if it inside another ghost subprogram
900 -- Loop to climb scopes
903 while Present
(S
) and then S
/= Standard_Standard
loop
905 -- The call appears inside another ghost subprogram
907 if Is_Ghost_Subprogram
(S
) then
914 -- If we fall through the loop it was not within another
915 -- ghost subprogram, so we have bad placement.
918 ("call to ghost subprogram must appear in assertion expression "
919 & "or another ghost subprogram", N
);
921 end Check_Ghost_Subprogram_Call
;
923 --------------------------------------------------
924 -- Check_Mixed_Parameter_And_Named_Associations --
925 --------------------------------------------------
927 procedure Check_Mixed_Parameter_And_Named_Associations
is
929 Named_Seen
: Boolean;
934 Actual
:= First
(Actuals
);
935 while Present
(Actual
) loop
936 case Nkind
(Actual
) is
937 when N_Parameter_Association
=>
939 Check_SPARK_Restriction
940 ("named association cannot follow positional one",
950 end Check_Mixed_Parameter_And_Named_Associations
;
952 ---------------------------
953 -- Name_Denotes_Function --
954 ---------------------------
956 function Name_Denotes_Function
return Boolean is
958 if Is_Entity_Name
(Nam
) then
959 return Ekind
(Entity
(Nam
)) = E_Function
;
961 elsif Nkind
(Nam
) = N_Selected_Component
then
962 return Ekind
(Entity
(Selector_Name
(Nam
))) = E_Function
;
967 end Name_Denotes_Function
;
969 -----------------------
970 -- No_Interpretation --
971 -----------------------
973 procedure No_Interpretation
is
974 L
: constant Boolean := Is_List_Member
(N
);
975 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
978 -- If the node is in a list whose parent is not an expression then it
979 -- must be an attempted procedure call.
981 if L
and then K
not in N_Subexpr
then
982 if Ekind
(Entity
(Nam
)) = E_Generic_Procedure
then
984 ("must instantiate generic procedure& before call",
988 ("procedure or entry name expected", Nam
);
991 -- Check for tasking cases where only an entry call will do
994 and then Nkind_In
(K
, N_Entry_Call_Alternative
,
995 N_Triggering_Alternative
)
997 Error_Msg_N
("entry name expected", Nam
);
999 -- Otherwise give general error message
1002 Error_Msg_N
("invalid prefix in call", Nam
);
1004 end No_Interpretation
;
1006 -- Start of processing for Analyze_Call
1009 if Restriction_Check_Required
(SPARK_05
) then
1010 Check_Mixed_Parameter_And_Named_Associations
;
1013 -- Initialize the type of the result of the call to the error type,
1014 -- which will be reset if the type is successfully resolved.
1016 Set_Etype
(N
, Any_Type
);
1020 if not Is_Overloaded
(Nam
) then
1022 -- Only one interpretation to check
1024 if Ekind
(Etype
(Nam
)) = E_Subprogram_Type
then
1025 Nam_Ent
:= Etype
(Nam
);
1027 -- If the prefix is an access_to_subprogram, this may be an indirect
1028 -- call. This is the case if the name in the call is not an entity
1029 -- name, or if it is a function name in the context of a procedure
1030 -- call. In this latter case, we have a call to a parameterless
1031 -- function that returns a pointer_to_procedure which is the entity
1032 -- being called. Finally, F (X) may be a call to a parameterless
1033 -- function that returns a pointer to a function with parameters.
1034 -- Note that if F returns an access-to-subprogram whose designated
1035 -- type is an array, F (X) cannot be interpreted as an indirect call
1036 -- through the result of the call to F.
1038 elsif Is_Access_Type
(Etype
(Nam
))
1039 and then Ekind
(Designated_Type
(Etype
(Nam
))) = E_Subprogram_Type
1041 (not Name_Denotes_Function
1042 or else Nkind
(N
) = N_Procedure_Call_Statement
1044 (Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1045 and then Is_Entity_Name
(Nam
)
1046 and then No
(First_Formal
(Entity
(Nam
)))
1048 Is_Array_Type
(Etype
(Designated_Type
(Etype
(Nam
))))
1049 and then Present
(Actuals
)))
1051 Nam_Ent
:= Designated_Type
(Etype
(Nam
));
1052 Insert_Explicit_Dereference
(Nam
);
1054 -- Selected component case. Simple entry or protected operation,
1055 -- where the entry name is given by the selector name.
1057 elsif Nkind
(Nam
) = N_Selected_Component
then
1058 Nam_Ent
:= Entity
(Selector_Name
(Nam
));
1060 if not Ekind_In
(Nam_Ent
, E_Entry
,
1065 Error_Msg_N
("name in call is not a callable entity", Nam
);
1066 Set_Etype
(N
, Any_Type
);
1070 -- If the name is an Indexed component, it can be a call to a member
1071 -- of an entry family. The prefix must be a selected component whose
1072 -- selector is the entry. Analyze_Procedure_Call normalizes several
1073 -- kinds of call into this form.
1075 elsif Nkind
(Nam
) = N_Indexed_Component
then
1076 if Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
1077 Nam_Ent
:= Entity
(Selector_Name
(Prefix
(Nam
)));
1079 Error_Msg_N
("name in call is not a callable entity", Nam
);
1080 Set_Etype
(N
, Any_Type
);
1084 elsif not Is_Entity_Name
(Nam
) then
1085 Error_Msg_N
("name in call is not a callable entity", Nam
);
1086 Set_Etype
(N
, Any_Type
);
1090 Nam_Ent
:= Entity
(Nam
);
1092 -- If not overloadable, this may be a generalized indexing
1093 -- operation with named associations. Rewrite again as an
1094 -- indexed component and analyze as container indexing.
1096 if not Is_Overloadable
(Nam_Ent
) then
1098 (Find_Value_Of_Aspect
1099 (Etype
(Nam_Ent
), Aspect_Constant_Indexing
))
1102 Make_Indexed_Component
(Sloc
(N
),
1104 Expressions
=> Parameter_Associations
(N
)));
1106 if Try_Container_Indexing
(N
, Nam
, Expressions
(N
)) then
1120 -- Operations generated for RACW stub types are called only through
1121 -- dispatching, and can never be the static interpretation of a call.
1123 if Is_RACW_Stub_Type_Operation
(Nam_Ent
) then
1128 Analyze_One_Call
(N
, Nam_Ent
, True, Success
);
1130 -- If this is an indirect call, the return type of the access_to
1131 -- subprogram may be an incomplete type. At the point of the call,
1132 -- use the full type if available, and at the same time update the
1133 -- return type of the access_to_subprogram.
1136 and then Nkind
(Nam
) = N_Explicit_Dereference
1137 and then Ekind
(Etype
(N
)) = E_Incomplete_Type
1138 and then Present
(Full_View
(Etype
(N
)))
1140 Set_Etype
(N
, Full_View
(Etype
(N
)));
1141 Set_Etype
(Nam_Ent
, Etype
(N
));
1147 -- An overloaded selected component must denote overloaded operations
1148 -- of a concurrent type. The interpretations are attached to the
1149 -- simple name of those operations.
1151 if Nkind
(Nam
) = N_Selected_Component
then
1152 Nam
:= Selector_Name
(Nam
);
1155 Get_First_Interp
(Nam
, X
, It
);
1157 while Present
(It
.Nam
) loop
1161 -- Name may be call that returns an access to subprogram, or more
1162 -- generally an overloaded expression one of whose interpretations
1163 -- yields an access to subprogram. If the name is an entity, we do
1164 -- not dereference, because the node is a call that returns the
1165 -- access type: note difference between f(x), where the call may
1166 -- return an access subprogram type, and f(x)(y), where the type
1167 -- returned by the call to f is implicitly dereferenced to analyze
1170 if Is_Access_Type
(Nam_Ent
) then
1171 Nam_Ent
:= Designated_Type
(Nam_Ent
);
1173 elsif Is_Access_Type
(Etype
(Nam_Ent
))
1175 (not Is_Entity_Name
(Nam
)
1176 or else Nkind
(N
) = N_Procedure_Call_Statement
)
1177 and then Ekind
(Designated_Type
(Etype
(Nam_Ent
)))
1180 Nam_Ent
:= Designated_Type
(Etype
(Nam_Ent
));
1182 if Is_Entity_Name
(Nam
) then
1187 -- If the call has been rewritten from a prefixed call, the first
1188 -- parameter has been analyzed, but may need a subsequent
1189 -- dereference, so skip its analysis now.
1191 if N
/= Original_Node
(N
)
1192 and then Nkind
(Original_Node
(N
)) = Nkind
(N
)
1193 and then Nkind
(Name
(N
)) /= Nkind
(Name
(Original_Node
(N
)))
1194 and then Present
(Parameter_Associations
(N
))
1195 and then Present
(Etype
(First
(Parameter_Associations
(N
))))
1198 (N
, Nam_Ent
, False, Success
, Skip_First
=> True);
1200 Analyze_One_Call
(N
, Nam_Ent
, False, Success
);
1203 -- If the interpretation succeeds, mark the proper type of the
1204 -- prefix (any valid candidate will do). If not, remove the
1205 -- candidate interpretation. This only needs to be done for
1206 -- overloaded protected operations, for other entities disambi-
1207 -- guation is done directly in Resolve.
1211 and then Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1213 Set_Entity
(Nam
, It
.Nam
);
1214 Insert_Explicit_Dereference
(Nam
);
1215 Set_Etype
(Nam
, Nam_Ent
);
1218 Set_Etype
(Nam
, It
.Typ
);
1221 elsif Nkind_In
(Name
(N
), N_Selected_Component
,
1227 Get_Next_Interp
(X
, It
);
1230 -- If the name is the result of a function call, it can only be a
1231 -- call to a function returning an access to subprogram. Insert
1232 -- explicit dereference.
1234 if Nkind
(Nam
) = N_Function_Call
then
1235 Insert_Explicit_Dereference
(Nam
);
1238 if Etype
(N
) = Any_Type
then
1240 -- None of the interpretations is compatible with the actuals
1242 Diagnose_Call
(N
, Nam
);
1244 -- Special checks for uninstantiated put routines
1246 if Nkind
(N
) = N_Procedure_Call_Statement
1247 and then Is_Entity_Name
(Nam
)
1248 and then Chars
(Nam
) = Name_Put
1249 and then List_Length
(Actuals
) = 1
1252 Arg
: constant Node_Id
:= First
(Actuals
);
1256 if Nkind
(Arg
) = N_Parameter_Association
then
1257 Typ
:= Etype
(Explicit_Actual_Parameter
(Arg
));
1262 if Is_Signed_Integer_Type
(Typ
) then
1264 ("possible missing instantiation of "
1265 & "'Text_'I'O.'Integer_'I'O!", Nam
);
1267 elsif Is_Modular_Integer_Type
(Typ
) then
1269 ("possible missing instantiation of "
1270 & "'Text_'I'O.'Modular_'I'O!", Nam
);
1272 elsif Is_Floating_Point_Type
(Typ
) then
1274 ("possible missing instantiation of "
1275 & "'Text_'I'O.'Float_'I'O!", Nam
);
1277 elsif Is_Ordinary_Fixed_Point_Type
(Typ
) then
1279 ("possible missing instantiation of "
1280 & "'Text_'I'O.'Fixed_'I'O!", Nam
);
1282 elsif Is_Decimal_Fixed_Point_Type
(Typ
) then
1284 ("possible missing instantiation of "
1285 & "'Text_'I'O.'Decimal_'I'O!", Nam
);
1287 elsif Is_Enumeration_Type
(Typ
) then
1289 ("possible missing instantiation of "
1290 & "'Text_'I'O.'Enumeration_'I'O!", Nam
);
1295 elsif not Is_Overloaded
(N
)
1296 and then Is_Entity_Name
(Nam
)
1298 -- Resolution yields a single interpretation. Verify that the
1299 -- reference has capitalization consistent with the declaration.
1301 Set_Entity_With_Checks
(Nam
, Entity
(Nam
));
1302 Generate_Reference
(Entity
(Nam
), Nam
);
1304 Set_Etype
(Nam
, Etype
(Entity
(Nam
)));
1306 Remove_Abstract_Operations
(N
);
1312 -- A call to a ghost subprogram is allowed only in assertion expressions
1313 -- excluding subtype predicates or from within another ghost subprogram.
1315 if Is_Ghost_Subprogram
(Get_Subprogram_Entity
(N
)) then
1316 Check_Ghost_Subprogram_Call
;
1320 -----------------------------
1321 -- Analyze_Case_Expression --
1322 -----------------------------
1324 procedure Analyze_Case_Expression
(N
: Node_Id
) is
1325 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1326 -- Error routine invoked by the generic instantiation below when
1327 -- the case expression has a non static choice.
1329 package Case_Choices_Analysis
is new
1330 Generic_Analyze_Choices
1331 (Process_Associated_Node
=> No_OP
);
1332 use Case_Choices_Analysis
;
1334 package Case_Choices_Checking
is new
1335 Generic_Check_Choices
1336 (Process_Empty_Choice
=> No_OP
,
1337 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1338 Process_Associated_Node
=> No_OP
);
1339 use Case_Choices_Checking
;
1341 -----------------------------
1342 -- Non_Static_Choice_Error --
1343 -----------------------------
1345 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1347 Flag_Non_Static_Expr
1348 ("choice given in case expression is not static!", Choice
);
1349 end Non_Static_Choice_Error
;
1353 Expr
: constant Node_Id
:= Expression
(N
);
1355 Exp_Type
: Entity_Id
;
1356 Exp_Btype
: Entity_Id
;
1358 FirstX
: Node_Id
:= Empty
;
1359 -- First expression in the case for which there is some type information
1360 -- available, i.e. it is not Any_Type, which can happen because of some
1361 -- error, or from the use of e.g. raise Constraint_Error.
1363 Others_Present
: Boolean;
1364 -- Indicates if Others was present
1366 -- Start of processing for Analyze_Case_Expression
1369 if Comes_From_Source
(N
) then
1370 Check_Compiler_Unit
("case expression", N
);
1373 Analyze_And_Resolve
(Expr
, Any_Discrete
);
1374 Check_Unset_Reference
(Expr
);
1375 Exp_Type
:= Etype
(Expr
);
1376 Exp_Btype
:= Base_Type
(Exp_Type
);
1378 Alt
:= First
(Alternatives
(N
));
1379 while Present
(Alt
) loop
1380 Analyze
(Expression
(Alt
));
1382 if No
(FirstX
) and then Etype
(Expression
(Alt
)) /= Any_Type
then
1383 FirstX
:= Expression
(Alt
);
1389 -- Get our initial type from the first expression for which we got some
1390 -- useful type information from the expression.
1392 if not Is_Overloaded
(FirstX
) then
1393 Set_Etype
(N
, Etype
(FirstX
));
1401 Set_Etype
(N
, Any_Type
);
1403 Get_First_Interp
(FirstX
, I
, It
);
1404 while Present
(It
.Nam
) loop
1406 -- For each interpretation of the first expression, we only
1407 -- add the interpretation if every other expression in the
1408 -- case expression alternatives has a compatible type.
1410 Alt
:= Next
(First
(Alternatives
(N
)));
1411 while Present
(Alt
) loop
1412 exit when not Has_Compatible_Type
(Expression
(Alt
), It
.Typ
);
1417 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1420 Get_Next_Interp
(I
, It
);
1425 Exp_Btype
:= Base_Type
(Exp_Type
);
1427 -- The expression must be of a discrete type which must be determinable
1428 -- independently of the context in which the expression occurs, but
1429 -- using the fact that the expression must be of a discrete type.
1430 -- Moreover, the type this expression must not be a character literal
1431 -- (which is always ambiguous).
1433 -- If error already reported by Resolve, nothing more to do
1435 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1438 elsif Exp_Btype
= Any_Character
then
1440 ("character literal as case expression is ambiguous", Expr
);
1444 -- If the case expression is a formal object of mode in out, then
1445 -- treat it as having a nonstatic subtype by forcing use of the base
1446 -- type (which has to get passed to Check_Case_Choices below). Also
1447 -- use base type when the case expression is parenthesized.
1449 if Paren_Count
(Expr
) > 0
1450 or else (Is_Entity_Name
(Expr
)
1451 and then Ekind
(Entity
(Expr
)) = E_Generic_In_Out_Parameter
)
1453 Exp_Type
:= Exp_Btype
;
1456 -- The case expression alternatives cover the range of a static subtype
1457 -- subject to aspect Static_Predicate. Do not check the choices when the
1458 -- case expression has not been fully analyzed yet because this may lead
1461 if Is_OK_Static_Subtype
(Exp_Type
)
1462 and then Has_Static_Predicate_Aspect
(Exp_Type
)
1463 and then In_Spec_Expression
1467 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1470 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1471 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1474 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1476 ("case on universal integer requires OTHERS choice", Expr
);
1478 end Analyze_Case_Expression
;
1480 ---------------------------
1481 -- Analyze_Comparison_Op --
1482 ---------------------------
1484 procedure Analyze_Comparison_Op
(N
: Node_Id
) is
1485 L
: constant Node_Id
:= Left_Opnd
(N
);
1486 R
: constant Node_Id
:= Right_Opnd
(N
);
1487 Op_Id
: Entity_Id
:= Entity
(N
);
1490 Set_Etype
(N
, Any_Type
);
1491 Candidate_Type
:= Empty
;
1493 Analyze_Expression
(L
);
1494 Analyze_Expression
(R
);
1496 if Present
(Op_Id
) then
1497 if Ekind
(Op_Id
) = E_Operator
then
1498 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1500 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1503 if Is_Overloaded
(L
) then
1504 Set_Etype
(L
, Intersect_Types
(L
, R
));
1508 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1509 while Present
(Op_Id
) loop
1510 if Ekind
(Op_Id
) = E_Operator
then
1511 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1513 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1516 Op_Id
:= Homonym
(Op_Id
);
1521 end Analyze_Comparison_Op
;
1523 ---------------------------
1524 -- Analyze_Concatenation --
1525 ---------------------------
1527 procedure Analyze_Concatenation
(N
: Node_Id
) is
1529 -- We wish to avoid deep recursion, because concatenations are often
1530 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1531 -- operands nonrecursively until we find something that is not a
1532 -- concatenation (A in this case), or has already been analyzed. We
1533 -- analyze that, and then walk back up the tree following Parent
1534 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1535 -- work at each level. The Parent pointers allow us to avoid recursion,
1536 -- and thus avoid running out of memory.
1542 Candidate_Type
:= Empty
;
1544 -- The following code is equivalent to:
1546 -- Set_Etype (N, Any_Type);
1547 -- Analyze_Expression (Left_Opnd (N));
1548 -- Analyze_Concatenation_Rest (N);
1550 -- where the Analyze_Expression call recurses back here if the left
1551 -- operand is a concatenation.
1553 -- Walk down left operands
1556 Set_Etype
(NN
, Any_Type
);
1557 L
:= Left_Opnd
(NN
);
1558 exit when Nkind
(L
) /= N_Op_Concat
or else Analyzed
(L
);
1562 -- Now (given the above example) NN is A&B and L is A
1564 -- First analyze L ...
1566 Analyze_Expression
(L
);
1568 -- ... then walk NN back up until we reach N (where we started), calling
1569 -- Analyze_Concatenation_Rest along the way.
1572 Analyze_Concatenation_Rest
(NN
);
1576 end Analyze_Concatenation
;
1578 --------------------------------
1579 -- Analyze_Concatenation_Rest --
1580 --------------------------------
1582 -- If the only one-dimensional array type in scope is String,
1583 -- this is the resulting type of the operation. Otherwise there
1584 -- will be a concatenation operation defined for each user-defined
1585 -- one-dimensional array.
1587 procedure Analyze_Concatenation_Rest
(N
: Node_Id
) is
1588 L
: constant Node_Id
:= Left_Opnd
(N
);
1589 R
: constant Node_Id
:= Right_Opnd
(N
);
1590 Op_Id
: Entity_Id
:= Entity
(N
);
1595 Analyze_Expression
(R
);
1597 -- If the entity is present, the node appears in an instance, and
1598 -- denotes a predefined concatenation operation. The resulting type is
1599 -- obtained from the arguments when possible. If the arguments are
1600 -- aggregates, the array type and the concatenation type must be
1603 if Present
(Op_Id
) then
1604 if Ekind
(Op_Id
) = E_Operator
then
1605 LT
:= Base_Type
(Etype
(L
));
1606 RT
:= Base_Type
(Etype
(R
));
1608 if Is_Array_Type
(LT
)
1609 and then (RT
= LT
or else RT
= Base_Type
(Component_Type
(LT
)))
1611 Add_One_Interp
(N
, Op_Id
, LT
);
1613 elsif Is_Array_Type
(RT
)
1614 and then LT
= Base_Type
(Component_Type
(RT
))
1616 Add_One_Interp
(N
, Op_Id
, RT
);
1618 -- If one operand is a string type or a user-defined array type,
1619 -- and the other is a literal, result is of the specific type.
1622 (Root_Type
(LT
) = Standard_String
1623 or else Scope
(LT
) /= Standard_Standard
)
1624 and then Etype
(R
) = Any_String
1626 Add_One_Interp
(N
, Op_Id
, LT
);
1629 (Root_Type
(RT
) = Standard_String
1630 or else Scope
(RT
) /= Standard_Standard
)
1631 and then Etype
(L
) = Any_String
1633 Add_One_Interp
(N
, Op_Id
, RT
);
1635 elsif not Is_Generic_Type
(Etype
(Op_Id
)) then
1636 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1639 -- Type and its operations must be visible
1641 Set_Entity
(N
, Empty
);
1642 Analyze_Concatenation
(N
);
1646 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1650 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Concat
);
1651 while Present
(Op_Id
) loop
1652 if Ekind
(Op_Id
) = E_Operator
then
1654 -- Do not consider operators declared in dead code, they can
1655 -- not be part of the resolution.
1657 if Is_Eliminated
(Op_Id
) then
1660 Find_Concatenation_Types
(L
, R
, Op_Id
, N
);
1664 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1667 Op_Id
:= Homonym
(Op_Id
);
1672 end Analyze_Concatenation_Rest
;
1674 -------------------------
1675 -- Analyze_Equality_Op --
1676 -------------------------
1678 procedure Analyze_Equality_Op
(N
: Node_Id
) is
1679 Loc
: constant Source_Ptr
:= Sloc
(N
);
1680 L
: constant Node_Id
:= Left_Opnd
(N
);
1681 R
: constant Node_Id
:= Right_Opnd
(N
);
1685 Set_Etype
(N
, Any_Type
);
1686 Candidate_Type
:= Empty
;
1688 Analyze_Expression
(L
);
1689 Analyze_Expression
(R
);
1691 -- If the entity is set, the node is a generic instance with a non-local
1692 -- reference to the predefined operator or to a user-defined function.
1693 -- It can also be an inequality that is expanded into the negation of a
1694 -- call to a user-defined equality operator.
1696 -- For the predefined case, the result is Boolean, regardless of the
1697 -- type of the operands. The operands may even be limited, if they are
1698 -- generic actuals. If they are overloaded, label the left argument with
1699 -- the common type that must be present, or with the type of the formal
1700 -- of the user-defined function.
1702 if Present
(Entity
(N
)) then
1703 Op_Id
:= Entity
(N
);
1705 if Ekind
(Op_Id
) = E_Operator
then
1706 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
);
1708 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1711 if Is_Overloaded
(L
) then
1712 if Ekind
(Op_Id
) = E_Operator
then
1713 Set_Etype
(L
, Intersect_Types
(L
, R
));
1715 Set_Etype
(L
, Etype
(First_Formal
(Op_Id
)));
1720 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1721 while Present
(Op_Id
) loop
1722 if Ekind
(Op_Id
) = E_Operator
then
1723 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1725 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1728 Op_Id
:= Homonym
(Op_Id
);
1732 -- If there was no match, and the operator is inequality, this may
1733 -- be a case where inequality has not been made explicit, as for
1734 -- tagged types. Analyze the node as the negation of an equality
1735 -- operation. This cannot be done earlier, because before analysis
1736 -- we cannot rule out the presence of an explicit inequality.
1738 if Etype
(N
) = Any_Type
1739 and then Nkind
(N
) = N_Op_Ne
1741 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Eq
);
1742 while Present
(Op_Id
) loop
1743 if Ekind
(Op_Id
) = E_Operator
then
1744 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1746 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1749 Op_Id
:= Homonym
(Op_Id
);
1752 if Etype
(N
) /= Any_Type
then
1753 Op_Id
:= Entity
(N
);
1759 Left_Opnd
=> Left_Opnd
(N
),
1760 Right_Opnd
=> Right_Opnd
(N
))));
1762 Set_Entity
(Right_Opnd
(N
), Op_Id
);
1768 end Analyze_Equality_Op
;
1770 ----------------------------------
1771 -- Analyze_Explicit_Dereference --
1772 ----------------------------------
1774 procedure Analyze_Explicit_Dereference
(N
: Node_Id
) is
1775 Loc
: constant Source_Ptr
:= Sloc
(N
);
1776 P
: constant Node_Id
:= Prefix
(N
);
1782 function Is_Function_Type
return Boolean;
1783 -- Check whether node may be interpreted as an implicit function call
1785 ----------------------
1786 -- Is_Function_Type --
1787 ----------------------
1789 function Is_Function_Type
return Boolean is
1794 if not Is_Overloaded
(N
) then
1795 return Ekind
(Base_Type
(Etype
(N
))) = E_Subprogram_Type
1796 and then Etype
(Base_Type
(Etype
(N
))) /= Standard_Void_Type
;
1799 Get_First_Interp
(N
, I
, It
);
1800 while Present
(It
.Nam
) loop
1801 if Ekind
(Base_Type
(It
.Typ
)) /= E_Subprogram_Type
1802 or else Etype
(Base_Type
(It
.Typ
)) = Standard_Void_Type
1807 Get_Next_Interp
(I
, It
);
1812 end Is_Function_Type
;
1814 -- Start of processing for Analyze_Explicit_Dereference
1817 -- If source node, check SPARK restriction. We guard this with the
1818 -- source node check, because ???
1820 if Comes_From_Source
(N
) then
1821 Check_SPARK_Restriction
("explicit dereference is not allowed", N
);
1824 -- In formal verification mode, keep track of all reads and writes
1825 -- through explicit dereferences.
1827 if GNATprove_Mode
then
1828 SPARK_Specific
.Generate_Dereference
(N
);
1832 Set_Etype
(N
, Any_Type
);
1834 -- Test for remote access to subprogram type, and if so return
1835 -- after rewriting the original tree.
1837 if Remote_AST_E_Dereference
(P
) then
1841 -- Normal processing for other than remote access to subprogram type
1843 if not Is_Overloaded
(P
) then
1844 if Is_Access_Type
(Etype
(P
)) then
1846 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1847 -- avoid other problems caused by the Private_Subtype and it is
1848 -- safe to go to the Base_Type because this is the same as
1849 -- converting the access value to its Base_Type.
1852 DT
: Entity_Id
:= Designated_Type
(Etype
(P
));
1855 if Ekind
(DT
) = E_Private_Subtype
1856 and then Is_For_Access_Subtype
(DT
)
1858 DT
:= Base_Type
(DT
);
1861 -- An explicit dereference is a legal occurrence of an
1862 -- incomplete type imported through a limited_with clause,
1863 -- if the full view is visible.
1865 if From_Limited_With
(DT
)
1866 and then not From_Limited_With
(Scope
(DT
))
1868 (Is_Immediately_Visible
(Scope
(DT
))
1870 (Is_Child_Unit
(Scope
(DT
))
1871 and then Is_Visible_Lib_Unit
(Scope
(DT
))))
1873 Set_Etype
(N
, Available_View
(DT
));
1880 elsif Etype
(P
) /= Any_Type
then
1881 Error_Msg_N
("prefix of dereference must be an access type", N
);
1886 Get_First_Interp
(P
, I
, It
);
1887 while Present
(It
.Nam
) loop
1890 if Is_Access_Type
(T
) then
1891 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
1894 Get_Next_Interp
(I
, It
);
1897 -- Error if no interpretation of the prefix has an access type
1899 if Etype
(N
) = Any_Type
then
1901 ("access type required in prefix of explicit dereference", P
);
1902 Set_Etype
(N
, Any_Type
);
1908 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
1910 and then (Nkind
(Parent
(N
)) /= N_Function_Call
1911 or else N
/= Name
(Parent
(N
)))
1913 and then (Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1914 or else N
/= Name
(Parent
(N
)))
1916 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
1917 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
1919 (Attribute_Name
(Parent
(N
)) /= Name_Address
1921 Attribute_Name
(Parent
(N
)) /= Name_Access
))
1923 -- Name is a function call with no actuals, in a context that
1924 -- requires deproceduring (including as an actual in an enclosing
1925 -- function or procedure call). There are some pathological cases
1926 -- where the prefix might include functions that return access to
1927 -- subprograms and others that return a regular type. Disambiguation
1928 -- of those has to take place in Resolve.
1931 Make_Function_Call
(Loc
,
1932 Name
=> Make_Explicit_Dereference
(Loc
, P
),
1933 Parameter_Associations
=> New_List
);
1935 -- If the prefix is overloaded, remove operations that have formals,
1936 -- we know that this is a parameterless call.
1938 if Is_Overloaded
(P
) then
1939 Get_First_Interp
(P
, I
, It
);
1940 while Present
(It
.Nam
) loop
1943 if No
(First_Formal
(Base_Type
(Designated_Type
(T
)))) then
1949 Get_Next_Interp
(I
, It
);
1956 elsif not Is_Function_Type
1957 and then Is_Overloaded
(N
)
1959 -- The prefix may include access to subprograms and other access
1960 -- types. If the context selects the interpretation that is a
1961 -- function call (not a procedure call) we cannot rewrite the node
1962 -- yet, but we include the result of the call interpretation.
1964 Get_First_Interp
(N
, I
, It
);
1965 while Present
(It
.Nam
) loop
1966 if Ekind
(Base_Type
(It
.Typ
)) = E_Subprogram_Type
1967 and then Etype
(Base_Type
(It
.Typ
)) /= Standard_Void_Type
1968 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1970 Add_One_Interp
(N
, Etype
(It
.Typ
), Etype
(It
.Typ
));
1973 Get_Next_Interp
(I
, It
);
1977 -- A value of remote access-to-class-wide must not be dereferenced
1980 Validate_Remote_Access_To_Class_Wide_Type
(N
);
1981 end Analyze_Explicit_Dereference
;
1983 ------------------------
1984 -- Analyze_Expression --
1985 ------------------------
1987 procedure Analyze_Expression
(N
: Node_Id
) is
1990 -- If the expression is an indexed component that will be rewritten
1991 -- as a container indexing, it has already been analyzed.
1993 if Nkind
(N
) = N_Indexed_Component
1994 and then Present
(Generalized_Indexing
(N
))
2000 Check_Parameterless_Call
(N
);
2002 end Analyze_Expression
;
2004 -------------------------------------
2005 -- Analyze_Expression_With_Actions --
2006 -------------------------------------
2008 procedure Analyze_Expression_With_Actions
(N
: Node_Id
) is
2012 A
:= First
(Actions
(N
));
2013 while Present
(A
) loop
2018 Analyze_Expression
(Expression
(N
));
2019 Set_Etype
(N
, Etype
(Expression
(N
)));
2020 end Analyze_Expression_With_Actions
;
2022 ---------------------------
2023 -- Analyze_If_Expression --
2024 ---------------------------
2026 procedure Analyze_If_Expression
(N
: Node_Id
) is
2027 Condition
: constant Node_Id
:= First
(Expressions
(N
));
2028 Then_Expr
: constant Node_Id
:= Next
(Condition
);
2029 Else_Expr
: Node_Id
;
2032 -- Defend against error of missing expressions from previous error
2034 if No
(Then_Expr
) then
2035 Check_Error_Detected
;
2039 if Comes_From_Source
(N
) then
2040 Check_SPARK_Restriction
("if expression is not allowed", N
);
2043 Else_Expr
:= Next
(Then_Expr
);
2045 if Comes_From_Source
(N
) then
2046 Check_Compiler_Unit
("if expression", N
);
2049 -- Analyze and resolve the condition. We need to resolve this now so
2050 -- that it gets folded to True/False if possible, before we analyze
2051 -- the THEN/ELSE branches, because when analyzing these branches, we
2052 -- may call Is_Statically_Unevaluated, which expects the condition of
2053 -- an enclosing IF to have been analyze/resolved/evaluated.
2055 Analyze_Expression
(Condition
);
2056 Resolve
(Condition
, Any_Boolean
);
2058 -- Analyze THEN expression and (if present) ELSE expression. For those
2059 -- we delay resolution in the normal manner, because of overloading etc.
2061 Analyze_Expression
(Then_Expr
);
2063 if Present
(Else_Expr
) then
2064 Analyze_Expression
(Else_Expr
);
2067 -- If then expression not overloaded, then that decides the type
2069 if not Is_Overloaded
(Then_Expr
) then
2070 Set_Etype
(N
, Etype
(Then_Expr
));
2072 -- Case where then expression is overloaded
2080 Set_Etype
(N
, Any_Type
);
2082 -- Shouldn't the following statement be down in the ELSE of the
2083 -- following loop? ???
2085 Get_First_Interp
(Then_Expr
, I
, It
);
2087 -- if no Else_Expression the conditional must be boolean
2089 if No
(Else_Expr
) then
2090 Set_Etype
(N
, Standard_Boolean
);
2092 -- Else_Expression Present. For each possible intepretation of
2093 -- the Then_Expression, add it only if the Else_Expression has
2094 -- a compatible type.
2097 while Present
(It
.Nam
) loop
2098 if Has_Compatible_Type
(Else_Expr
, It
.Typ
) then
2099 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
2102 Get_Next_Interp
(I
, It
);
2107 end Analyze_If_Expression
;
2109 ------------------------------------
2110 -- Analyze_Indexed_Component_Form --
2111 ------------------------------------
2113 procedure Analyze_Indexed_Component_Form
(N
: Node_Id
) is
2114 P
: constant Node_Id
:= Prefix
(N
);
2115 Exprs
: constant List_Id
:= Expressions
(N
);
2121 procedure Process_Function_Call
;
2122 -- Prefix in indexed component form is an overloadable entity,
2123 -- so the node is a function call. Reformat it as such.
2125 procedure Process_Indexed_Component
;
2126 -- Prefix in indexed component form is actually an indexed component.
2127 -- This routine processes it, knowing that the prefix is already
2130 procedure Process_Indexed_Component_Or_Slice
;
2131 -- An indexed component with a single index may designate a slice if
2132 -- the index is a subtype mark. This routine disambiguates these two
2133 -- cases by resolving the prefix to see if it is a subtype mark.
2135 procedure Process_Overloaded_Indexed_Component
;
2136 -- If the prefix of an indexed component is overloaded, the proper
2137 -- interpretation is selected by the index types and the context.
2139 ---------------------------
2140 -- Process_Function_Call --
2141 ---------------------------
2143 procedure Process_Function_Call
is
2147 Change_Node
(N
, N_Function_Call
);
2149 Set_Parameter_Associations
(N
, Exprs
);
2151 -- Analyze actuals prior to analyzing the call itself
2153 Actual
:= First
(Parameter_Associations
(N
));
2154 while Present
(Actual
) loop
2156 Check_Parameterless_Call
(Actual
);
2158 -- Move to next actual. Note that we use Next, not Next_Actual
2159 -- here. The reason for this is a bit subtle. If a function call
2160 -- includes named associations, the parser recognizes the node as
2161 -- a call, and it is analyzed as such. If all associations are
2162 -- positional, the parser builds an indexed_component node, and
2163 -- it is only after analysis of the prefix that the construct
2164 -- is recognized as a call, in which case Process_Function_Call
2165 -- rewrites the node and analyzes the actuals. If the list of
2166 -- actuals is malformed, the parser may leave the node as an
2167 -- indexed component (despite the presence of named associations).
2168 -- The iterator Next_Actual is equivalent to Next if the list is
2169 -- positional, but follows the normalized chain of actuals when
2170 -- named associations are present. In this case normalization has
2171 -- not taken place, and actuals remain unanalyzed, which leads to
2172 -- subsequent crashes or loops if there is an attempt to continue
2173 -- analysis of the program.
2179 end Process_Function_Call
;
2181 -------------------------------
2182 -- Process_Indexed_Component --
2183 -------------------------------
2185 procedure Process_Indexed_Component
is
2187 Array_Type
: Entity_Id
;
2189 Pent
: Entity_Id
:= Empty
;
2192 Exp
:= First
(Exprs
);
2194 if Is_Overloaded
(P
) then
2195 Process_Overloaded_Indexed_Component
;
2198 Array_Type
:= Etype
(P
);
2200 if Is_Entity_Name
(P
) then
2202 elsif Nkind
(P
) = N_Selected_Component
2203 and then Is_Entity_Name
(Selector_Name
(P
))
2205 Pent
:= Entity
(Selector_Name
(P
));
2208 -- Prefix must be appropriate for an array type, taking into
2209 -- account a possible implicit dereference.
2211 if Is_Access_Type
(Array_Type
) then
2213 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2214 Array_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, P
);
2217 if Is_Array_Type
(Array_Type
) then
2220 elsif Present
(Pent
) and then Ekind
(Pent
) = E_Entry_Family
then
2222 Set_Etype
(N
, Any_Type
);
2224 if not Has_Compatible_Type
2225 (Exp
, Entry_Index_Type
(Pent
))
2227 Error_Msg_N
("invalid index type in entry name", N
);
2229 elsif Present
(Next
(Exp
)) then
2230 Error_Msg_N
("too many subscripts in entry reference", N
);
2233 Set_Etype
(N
, Etype
(P
));
2238 elsif Is_Record_Type
(Array_Type
)
2239 and then Remote_AST_I_Dereference
(P
)
2243 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2246 elsif Array_Type
= Any_Type
then
2247 Set_Etype
(N
, Any_Type
);
2249 -- In most cases the analysis of the prefix will have emitted
2250 -- an error already, but if the prefix may be interpreted as a
2251 -- call in prefixed notation, the report is left to the caller.
2252 -- To prevent cascaded errors, report only if no previous ones.
2254 if Serious_Errors_Detected
= 0 then
2255 Error_Msg_N
("invalid prefix in indexed component", P
);
2257 if Nkind
(P
) = N_Expanded_Name
then
2258 Error_Msg_NE
("\& is not visible", P
, Selector_Name
(P
));
2264 -- Here we definitely have a bad indexing
2267 if Nkind
(Parent
(N
)) = N_Requeue_Statement
2268 and then Present
(Pent
) and then Ekind
(Pent
) = E_Entry
2271 ("REQUEUE does not permit parameters", First
(Exprs
));
2273 elsif Is_Entity_Name
(P
)
2274 and then Etype
(P
) = Standard_Void_Type
2276 Error_Msg_NE
("incorrect use of&", P
, Entity
(P
));
2279 Error_Msg_N
("array type required in indexed component", P
);
2282 Set_Etype
(N
, Any_Type
);
2286 Index
:= First_Index
(Array_Type
);
2287 while Present
(Index
) and then Present
(Exp
) loop
2288 if not Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2289 Wrong_Type
(Exp
, Etype
(Index
));
2290 Set_Etype
(N
, Any_Type
);
2298 Set_Etype
(N
, Component_Type
(Array_Type
));
2299 Check_Implicit_Dereference
(N
, Etype
(N
));
2301 if Present
(Index
) then
2303 ("too few subscripts in array reference", First
(Exprs
));
2305 elsif Present
(Exp
) then
2306 Error_Msg_N
("too many subscripts in array reference", Exp
);
2309 end Process_Indexed_Component
;
2311 ----------------------------------------
2312 -- Process_Indexed_Component_Or_Slice --
2313 ----------------------------------------
2315 procedure Process_Indexed_Component_Or_Slice
is
2317 Exp
:= First
(Exprs
);
2318 while Present
(Exp
) loop
2319 Analyze_Expression
(Exp
);
2323 Exp
:= First
(Exprs
);
2325 -- If one index is present, and it is a subtype name, then the
2326 -- node denotes a slice (note that the case of an explicit range
2327 -- for a slice was already built as an N_Slice node in the first
2328 -- place, so that case is not handled here).
2330 -- We use a replace rather than a rewrite here because this is one
2331 -- of the cases in which the tree built by the parser is plain wrong.
2334 and then Is_Entity_Name
(Exp
)
2335 and then Is_Type
(Entity
(Exp
))
2338 Make_Slice
(Sloc
(N
),
2340 Discrete_Range
=> New_Copy
(Exp
)));
2343 -- Otherwise (more than one index present, or single index is not
2344 -- a subtype name), then we have the indexed component case.
2347 Process_Indexed_Component
;
2349 end Process_Indexed_Component_Or_Slice
;
2351 ------------------------------------------
2352 -- Process_Overloaded_Indexed_Component --
2353 ------------------------------------------
2355 procedure Process_Overloaded_Indexed_Component
is
2364 Set_Etype
(N
, Any_Type
);
2366 Get_First_Interp
(P
, I
, It
);
2367 while Present
(It
.Nam
) loop
2370 if Is_Access_Type
(Typ
) then
2371 Typ
:= Designated_Type
(Typ
);
2373 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2376 if Is_Array_Type
(Typ
) then
2378 -- Got a candidate: verify that index types are compatible
2380 Index
:= First_Index
(Typ
);
2382 Exp
:= First
(Exprs
);
2383 while Present
(Index
) and then Present
(Exp
) loop
2384 if Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2396 if Found
and then No
(Index
) and then No
(Exp
) then
2398 CT
: constant Entity_Id
:=
2399 Base_Type
(Component_Type
(Typ
));
2401 Add_One_Interp
(N
, CT
, CT
);
2402 Check_Implicit_Dereference
(N
, CT
);
2406 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2411 Get_Next_Interp
(I
, It
);
2414 if Etype
(N
) = Any_Type
then
2415 Error_Msg_N
("no legal interpretation for indexed component", N
);
2416 Set_Is_Overloaded
(N
, False);
2420 end Process_Overloaded_Indexed_Component
;
2422 -- Start of processing for Analyze_Indexed_Component_Form
2425 -- Get name of array, function or type
2429 -- If P is an explicit dereference whose prefix is of a remote access-
2430 -- to-subprogram type, then N has already been rewritten as a subprogram
2431 -- call and analyzed.
2433 if Nkind
(N
) in N_Subprogram_Call
then
2436 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2437 -- the indexed component denotes a loop name, the indexed form is turned
2438 -- into an attribute reference.
2440 elsif Nkind
(N
) = N_Attribute_Reference
2441 and then Attribute_Name
(N
) = Name_Loop_Entry
2446 pragma Assert
(Nkind
(N
) = N_Indexed_Component
);
2448 P_T
:= Base_Type
(Etype
(P
));
2450 if Is_Entity_Name
(P
) and then Present
(Entity
(P
)) then
2453 if Is_Type
(U_N
) then
2455 -- Reformat node as a type conversion
2457 E
:= Remove_Head
(Exprs
);
2459 if Present
(First
(Exprs
)) then
2461 ("argument of type conversion must be single expression", N
);
2464 Change_Node
(N
, N_Type_Conversion
);
2465 Set_Subtype_Mark
(N
, P
);
2467 Set_Expression
(N
, E
);
2469 -- After changing the node, call for the specific Analysis
2470 -- routine directly, to avoid a double call to the expander.
2472 Analyze_Type_Conversion
(N
);
2476 if Is_Overloadable
(U_N
) then
2477 Process_Function_Call
;
2479 elsif Ekind
(Etype
(P
)) = E_Subprogram_Type
2480 or else (Is_Access_Type
(Etype
(P
))
2482 Ekind
(Designated_Type
(Etype
(P
))) =
2485 -- Call to access_to-subprogram with possible implicit dereference
2487 Process_Function_Call
;
2489 elsif Is_Generic_Subprogram
(U_N
) then
2491 -- A common beginner's (or C++ templates fan) error
2493 Error_Msg_N
("generic subprogram cannot be called", N
);
2494 Set_Etype
(N
, Any_Type
);
2498 Process_Indexed_Component_Or_Slice
;
2501 -- If not an entity name, prefix is an expression that may denote
2502 -- an array or an access-to-subprogram.
2505 if Ekind
(P_T
) = E_Subprogram_Type
2506 or else (Is_Access_Type
(P_T
)
2508 Ekind
(Designated_Type
(P_T
)) = E_Subprogram_Type
)
2510 Process_Function_Call
;
2512 elsif Nkind
(P
) = N_Selected_Component
2513 and then Present
(Entity
(Selector_Name
(P
)))
2514 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
2516 Process_Function_Call
;
2518 -- In ASIS mode within a generic, a prefixed call is analyzed and
2519 -- partially rewritten but the original indexed component has not
2520 -- yet been rewritten as a call. Perform the replacement now.
2522 elsif Nkind
(P
) = N_Selected_Component
2523 and then Nkind
(Parent
(P
)) = N_Function_Call
2526 Rewrite
(N
, Parent
(P
));
2530 -- Indexed component, slice, or a call to a member of a family
2531 -- entry, which will be converted to an entry call later.
2533 Process_Indexed_Component_Or_Slice
;
2537 Analyze_Dimension
(N
);
2538 end Analyze_Indexed_Component_Form
;
2540 ------------------------
2541 -- Analyze_Logical_Op --
2542 ------------------------
2544 procedure Analyze_Logical_Op
(N
: Node_Id
) is
2545 L
: constant Node_Id
:= Left_Opnd
(N
);
2546 R
: constant Node_Id
:= Right_Opnd
(N
);
2547 Op_Id
: Entity_Id
:= Entity
(N
);
2550 Set_Etype
(N
, Any_Type
);
2551 Candidate_Type
:= Empty
;
2553 Analyze_Expression
(L
);
2554 Analyze_Expression
(R
);
2556 if Present
(Op_Id
) then
2558 if Ekind
(Op_Id
) = E_Operator
then
2559 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2561 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2565 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2566 while Present
(Op_Id
) loop
2567 if Ekind
(Op_Id
) = E_Operator
then
2568 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2570 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2573 Op_Id
:= Homonym
(Op_Id
);
2578 end Analyze_Logical_Op
;
2580 ---------------------------
2581 -- Analyze_Membership_Op --
2582 ---------------------------
2584 procedure Analyze_Membership_Op
(N
: Node_Id
) is
2585 Loc
: constant Source_Ptr
:= Sloc
(N
);
2586 L
: constant Node_Id
:= Left_Opnd
(N
);
2587 R
: constant Node_Id
:= Right_Opnd
(N
);
2589 Index
: Interp_Index
;
2591 Found
: Boolean := False;
2595 procedure Try_One_Interp
(T1
: Entity_Id
);
2596 -- Routine to try one proposed interpretation. Note that the context
2597 -- of the operation plays no role in resolving the arguments, so that
2598 -- if there is more than one interpretation of the operands that is
2599 -- compatible with a membership test, the operation is ambiguous.
2601 --------------------
2602 -- Try_One_Interp --
2603 --------------------
2605 procedure Try_One_Interp
(T1
: Entity_Id
) is
2607 if Has_Compatible_Type
(R
, T1
) then
2609 and then Base_Type
(T1
) /= Base_Type
(T_F
)
2611 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
2613 if It
= No_Interp
then
2614 Ambiguous_Operands
(N
);
2615 Set_Etype
(L
, Any_Type
);
2632 procedure Analyze_Set_Membership
;
2633 -- If a set of alternatives is present, analyze each and find the
2634 -- common type to which they must all resolve.
2636 ----------------------------
2637 -- Analyze_Set_Membership --
2638 ----------------------------
2640 procedure Analyze_Set_Membership
is
2642 Index
: Interp_Index
;
2644 Candidate_Interps
: Node_Id
;
2645 Common_Type
: Entity_Id
:= Empty
;
2648 if Comes_From_Source
(N
) then
2649 Check_Compiler_Unit
("set membership", N
);
2653 Candidate_Interps
:= L
;
2655 if not Is_Overloaded
(L
) then
2656 Common_Type
:= Etype
(L
);
2658 Alt
:= First
(Alternatives
(N
));
2659 while Present
(Alt
) loop
2662 if not Has_Compatible_Type
(Alt
, Common_Type
) then
2663 Wrong_Type
(Alt
, Common_Type
);
2670 Alt
:= First
(Alternatives
(N
));
2671 while Present
(Alt
) loop
2673 if not Is_Overloaded
(Alt
) then
2674 Common_Type
:= Etype
(Alt
);
2677 Get_First_Interp
(Alt
, Index
, It
);
2678 while Present
(It
.Typ
) loop
2680 Has_Compatible_Type
(Candidate_Interps
, It
.Typ
)
2682 Remove_Interp
(Index
);
2685 Get_Next_Interp
(Index
, It
);
2688 Get_First_Interp
(Alt
, Index
, It
);
2691 Error_Msg_N
("alternative has no legal type", Alt
);
2695 -- If alternative is not overloaded, we have a unique type
2698 Set_Etype
(Alt
, It
.Typ
);
2699 Get_Next_Interp
(Index
, It
);
2702 Set_Is_Overloaded
(Alt
, False);
2703 Common_Type
:= Etype
(Alt
);
2706 Candidate_Interps
:= Alt
;
2713 Set_Etype
(N
, Standard_Boolean
);
2715 if Present
(Common_Type
) then
2716 Set_Etype
(L
, Common_Type
);
2717 Set_Is_Overloaded
(L
, False);
2720 Error_Msg_N
("cannot resolve membership operation", N
);
2722 end Analyze_Set_Membership
;
2724 -- Start of processing for Analyze_Membership_Op
2727 Analyze_Expression
(L
);
2729 if No
(R
) and then Ada_Version
>= Ada_2012
then
2730 Analyze_Set_Membership
;
2734 if Nkind
(R
) = N_Range
2735 or else (Nkind
(R
) = N_Attribute_Reference
2736 and then Attribute_Name
(R
) = Name_Range
)
2740 if not Is_Overloaded
(L
) then
2741 Try_One_Interp
(Etype
(L
));
2744 Get_First_Interp
(L
, Index
, It
);
2745 while Present
(It
.Typ
) loop
2746 Try_One_Interp
(It
.Typ
);
2747 Get_Next_Interp
(Index
, It
);
2751 -- If not a range, it can be a subtype mark, or else it is a degenerate
2752 -- membership test with a singleton value, i.e. a test for equality,
2753 -- if the types are compatible.
2758 if Is_Entity_Name
(R
)
2759 and then Is_Type
(Entity
(R
))
2762 Check_Fully_Declared
(Entity
(R
), R
);
2764 elsif Ada_Version
>= Ada_2012
2765 and then Has_Compatible_Type
(R
, Etype
(L
))
2767 if Nkind
(N
) = N_In
then
2783 -- In all versions of the language, if we reach this point there
2784 -- is a previous error that will be diagnosed below.
2790 -- Compatibility between expression and subtype mark or range is
2791 -- checked during resolution. The result of the operation is Boolean
2794 Set_Etype
(N
, Standard_Boolean
);
2796 if Comes_From_Source
(N
)
2797 and then Present
(Right_Opnd
(N
))
2798 and then Is_CPP_Class
(Etype
(Etype
(Right_Opnd
(N
))))
2800 Error_Msg_N
("membership test not applicable to cpp-class types", N
);
2802 end Analyze_Membership_Op
;
2808 procedure Analyze_Mod
(N
: Node_Id
) is
2810 -- A special warning check, if we have an expression of the form:
2811 -- expr mod 2 * literal
2812 -- where literal is 64 or less, then probably what was meant was
2813 -- expr mod 2 ** literal
2814 -- so issue an appropriate warning.
2816 if Warn_On_Suspicious_Modulus_Value
2817 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
2818 and then Intval
(Right_Opnd
(N
)) = Uint_2
2819 and then Nkind
(Parent
(N
)) = N_Op_Multiply
2820 and then Nkind
(Right_Opnd
(Parent
(N
))) = N_Integer_Literal
2821 and then Intval
(Right_Opnd
(Parent
(N
))) <= Uint_64
2824 ("suspicious MOD value, was '*'* intended'??M?", Parent
(N
));
2827 -- Remaining processing is same as for other arithmetic operators
2829 Analyze_Arithmetic_Op
(N
);
2832 ----------------------
2833 -- Analyze_Negation --
2834 ----------------------
2836 procedure Analyze_Negation
(N
: Node_Id
) is
2837 R
: constant Node_Id
:= Right_Opnd
(N
);
2838 Op_Id
: Entity_Id
:= Entity
(N
);
2841 Set_Etype
(N
, Any_Type
);
2842 Candidate_Type
:= Empty
;
2844 Analyze_Expression
(R
);
2846 if Present
(Op_Id
) then
2847 if Ekind
(Op_Id
) = E_Operator
then
2848 Find_Negation_Types
(R
, Op_Id
, N
);
2850 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2854 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2855 while Present
(Op_Id
) loop
2856 if Ekind
(Op_Id
) = E_Operator
then
2857 Find_Negation_Types
(R
, Op_Id
, N
);
2859 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
2862 Op_Id
:= Homonym
(Op_Id
);
2867 end Analyze_Negation
;
2873 procedure Analyze_Null
(N
: Node_Id
) is
2875 Check_SPARK_Restriction
("null is not allowed", N
);
2877 Set_Etype
(N
, Any_Access
);
2880 ----------------------
2881 -- Analyze_One_Call --
2882 ----------------------
2884 procedure Analyze_One_Call
2888 Success
: out Boolean;
2889 Skip_First
: Boolean := False)
2891 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
2892 Prev_T
: constant Entity_Id
:= Etype
(N
);
2894 Must_Skip
: constant Boolean := Skip_First
2895 or else Nkind
(Original_Node
(N
)) = N_Selected_Component
2897 (Nkind
(Original_Node
(N
)) = N_Indexed_Component
2898 and then Nkind
(Prefix
(Original_Node
(N
)))
2899 = N_Selected_Component
);
2900 -- The first formal must be omitted from the match when trying to find
2901 -- a primitive operation that is a possible interpretation, and also
2902 -- after the call has been rewritten, because the corresponding actual
2903 -- is already known to be compatible, and because this may be an
2904 -- indexing of a call with default parameters.
2908 Is_Indexed
: Boolean := False;
2909 Is_Indirect
: Boolean := False;
2910 Subp_Type
: constant Entity_Id
:= Etype
(Nam
);
2913 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean;
2914 -- There may be a user-defined operator that hides the current
2915 -- interpretation. We must check for this independently of the
2916 -- analysis of the call with the user-defined operation, because
2917 -- the parameter names may be wrong and yet the hiding takes place.
2918 -- This fixes a problem with ACATS test B34014O.
2920 -- When the type Address is a visible integer type, and the DEC
2921 -- system extension is visible, the predefined operator may be
2922 -- hidden as well, by one of the address operations in auxdec.
2923 -- Finally, The abstract operations on address do not hide the
2924 -- predefined operator (this is the purpose of making them abstract).
2926 procedure Indicate_Name_And_Type
;
2927 -- If candidate interpretation matches, indicate name and type of
2928 -- result on call node.
2930 ----------------------------
2931 -- Indicate_Name_And_Type --
2932 ----------------------------
2934 procedure Indicate_Name_And_Type
is
2936 Add_One_Interp
(N
, Nam
, Etype
(Nam
));
2937 Check_Implicit_Dereference
(N
, Etype
(Nam
));
2940 -- If the prefix of the call is a name, indicate the entity
2941 -- being called. If it is not a name, it is an expression that
2942 -- denotes an access to subprogram or else an entry or family. In
2943 -- the latter case, the name is a selected component, and the entity
2944 -- being called is noted on the selector.
2946 if not Is_Type
(Nam
) then
2947 if Is_Entity_Name
(Name
(N
)) then
2948 Set_Entity
(Name
(N
), Nam
);
2950 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2951 Set_Entity
(Selector_Name
(Name
(N
)), Nam
);
2955 if Debug_Flag_E
and not Report
then
2956 Write_Str
(" Overloaded call ");
2957 Write_Int
(Int
(N
));
2958 Write_Str
(" compatible with ");
2959 Write_Int
(Int
(Nam
));
2962 end Indicate_Name_And_Type
;
2964 ------------------------
2965 -- Operator_Hidden_By --
2966 ------------------------
2968 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean is
2969 Act1
: constant Node_Id
:= First_Actual
(N
);
2970 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
2971 Form1
: constant Entity_Id
:= First_Formal
(Fun
);
2972 Form2
: constant Entity_Id
:= Next_Formal
(Form1
);
2975 if Ekind
(Fun
) /= E_Function
or else Is_Abstract_Subprogram
(Fun
) then
2978 elsif not Has_Compatible_Type
(Act1
, Etype
(Form1
)) then
2981 elsif Present
(Form2
) then
2983 or else not Has_Compatible_Type
(Act2
, Etype
(Form2
))
2988 elsif Present
(Act2
) then
2992 -- Now we know that the arity of the operator matches the function,
2993 -- and the function call is a valid interpretation. The function
2994 -- hides the operator if it has the right signature, or if one of
2995 -- its operands is a non-abstract operation on Address when this is
2996 -- a visible integer type.
2998 return Hides_Op
(Fun
, Nam
)
2999 or else Is_Descendent_Of_Address
(Etype
(Form1
))
3002 and then Is_Descendent_Of_Address
(Etype
(Form2
)));
3003 end Operator_Hidden_By
;
3005 -- Start of processing for Analyze_One_Call
3010 -- If the subprogram has no formals or if all the formals have defaults,
3011 -- and the return type is an array type, the node may denote an indexing
3012 -- of the result of a parameterless call. In Ada 2005, the subprogram
3013 -- may have one non-defaulted formal, and the call may have been written
3014 -- in prefix notation, so that the rebuilt parameter list has more than
3017 if not Is_Overloadable
(Nam
)
3018 and then Ekind
(Nam
) /= E_Subprogram_Type
3019 and then Ekind
(Nam
) /= E_Entry_Family
3024 -- An indexing requires at least one actual. The name of the call cannot
3025 -- be an implicit indirect call, so it cannot be a generated explicit
3028 if not Is_Empty_List
(Actuals
)
3030 (Needs_No_Actuals
(Nam
)
3032 (Needs_One_Actual
(Nam
)
3033 and then Present
(Next_Actual
(First
(Actuals
)))))
3035 if Is_Array_Type
(Subp_Type
)
3037 (Nkind
(Name
(N
)) /= N_Explicit_Dereference
3038 or else Comes_From_Source
(Name
(N
)))
3040 Is_Indexed
:= Try_Indexed_Call
(N
, Nam
, Subp_Type
, Must_Skip
);
3042 elsif Is_Access_Type
(Subp_Type
)
3043 and then Is_Array_Type
(Designated_Type
(Subp_Type
))
3047 (N
, Nam
, Designated_Type
(Subp_Type
), Must_Skip
);
3049 -- The prefix can also be a parameterless function that returns an
3050 -- access to subprogram, in which case this is an indirect call.
3051 -- If this succeeds, an explicit dereference is added later on,
3052 -- in Analyze_Call or Resolve_Call.
3054 elsif Is_Access_Type
(Subp_Type
)
3055 and then Ekind
(Designated_Type
(Subp_Type
)) = E_Subprogram_Type
3057 Is_Indirect
:= Try_Indirect_Call
(N
, Nam
, Subp_Type
);
3062 -- If the call has been transformed into a slice, it is of the form
3063 -- F (Subtype) where F is parameterless. The node has been rewritten in
3064 -- Try_Indexed_Call and there is nothing else to do.
3067 and then Nkind
(N
) = N_Slice
3073 (N
, Nam
, (Report
and not Is_Indexed
and not Is_Indirect
), Norm_OK
);
3077 -- If an indirect call is a possible interpretation, indicate
3078 -- success to the caller. This may be an indexing of an explicit
3079 -- dereference of a call that returns an access type (see above).
3083 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
3084 and then Comes_From_Source
(Name
(N
)))
3089 -- Mismatch in number or names of parameters
3091 elsif Debug_Flag_E
then
3092 Write_Str
(" normalization fails in call ");
3093 Write_Int
(Int
(N
));
3094 Write_Str
(" with subprogram ");
3095 Write_Int
(Int
(Nam
));
3099 -- If the context expects a function call, discard any interpretation
3100 -- that is a procedure. If the node is not overloaded, leave as is for
3101 -- better error reporting when type mismatch is found.
3103 elsif Nkind
(N
) = N_Function_Call
3104 and then Is_Overloaded
(Name
(N
))
3105 and then Ekind
(Nam
) = E_Procedure
3109 -- Ditto for function calls in a procedure context
3111 elsif Nkind
(N
) = N_Procedure_Call_Statement
3112 and then Is_Overloaded
(Name
(N
))
3113 and then Etype
(Nam
) /= Standard_Void_Type
3117 elsif No
(Actuals
) then
3119 -- If Normalize succeeds, then there are default parameters for
3122 Indicate_Name_And_Type
;
3124 elsif Ekind
(Nam
) = E_Operator
then
3125 if Nkind
(N
) = N_Procedure_Call_Statement
then
3129 -- This can occur when the prefix of the call is an operator
3130 -- name or an expanded name whose selector is an operator name.
3132 Analyze_Operator_Call
(N
, Nam
);
3134 if Etype
(N
) /= Prev_T
then
3136 -- Check that operator is not hidden by a function interpretation
3138 if Is_Overloaded
(Name
(N
)) then
3144 Get_First_Interp
(Name
(N
), I
, It
);
3145 while Present
(It
.Nam
) loop
3146 if Operator_Hidden_By
(It
.Nam
) then
3147 Set_Etype
(N
, Prev_T
);
3151 Get_Next_Interp
(I
, It
);
3156 -- If operator matches formals, record its name on the call.
3157 -- If the operator is overloaded, Resolve will select the
3158 -- correct one from the list of interpretations. The call
3159 -- node itself carries the first candidate.
3161 Set_Entity
(Name
(N
), Nam
);
3164 elsif Report
and then Etype
(N
) = Any_Type
then
3165 Error_Msg_N
("incompatible arguments for operator", N
);
3169 -- Normalize_Actuals has chained the named associations in the
3170 -- correct order of the formals.
3172 Actual
:= First_Actual
(N
);
3173 Formal
:= First_Formal
(Nam
);
3175 -- If we are analyzing a call rewritten from object notation, skip
3176 -- first actual, which may be rewritten later as an explicit
3180 Next_Actual
(Actual
);
3181 Next_Formal
(Formal
);
3184 while Present
(Actual
) and then Present
(Formal
) loop
3185 if Nkind
(Parent
(Actual
)) /= N_Parameter_Association
3186 or else Chars
(Selector_Name
(Parent
(Actual
))) = Chars
(Formal
)
3188 -- The actual can be compatible with the formal, but we must
3189 -- also check that the context is not an address type that is
3190 -- visibly an integer type, as is the case in VMS_64. In this
3191 -- case the use of literals is illegal, except in the body of
3192 -- descendents of system, where arithmetic operations on
3193 -- address are of course used.
3195 if Has_Compatible_Type
(Actual
, Etype
(Formal
))
3197 (Etype
(Actual
) /= Universal_Integer
3198 or else not Is_Descendent_Of_Address
(Etype
(Formal
))
3200 Is_Predefined_File_Name
3201 (Unit_File_Name
(Get_Source_Unit
(N
))))
3203 Next_Actual
(Actual
);
3204 Next_Formal
(Formal
);
3206 -- In Allow_Integer_Address mode, we allow an actual integer to
3207 -- match a formal address type and vice versa. We only do this
3208 -- if we are certain that an error will otherwise be issued
3210 elsif Address_Integer_Convert_OK
3211 (Etype
(Actual
), Etype
(Formal
))
3212 and then (Report
and not Is_Indexed
and not Is_Indirect
)
3214 -- Handle this case by introducing an unchecked conversion
3217 Unchecked_Convert_To
(Etype
(Formal
),
3218 Relocate_Node
(Actual
)));
3219 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
3220 Next_Actual
(Actual
);
3221 Next_Formal
(Formal
);
3224 if Debug_Flag_E
then
3225 Write_Str
(" type checking fails in call ");
3226 Write_Int
(Int
(N
));
3227 Write_Str
(" with formal ");
3228 Write_Int
(Int
(Formal
));
3229 Write_Str
(" in subprogram ");
3230 Write_Int
(Int
(Nam
));
3234 -- Comment needed on the following test???
3236 if Report
and not Is_Indexed
and not Is_Indirect
then
3238 -- Ada 2005 (AI-251): Complete the error notification
3239 -- to help new Ada 2005 users.
3241 if Is_Class_Wide_Type
(Etype
(Formal
))
3242 and then Is_Interface
(Etype
(Etype
(Formal
)))
3243 and then not Interface_Present_In_Ancestor
3244 (Typ
=> Etype
(Actual
),
3245 Iface
=> Etype
(Etype
(Formal
)))
3248 ("(Ada 2005) does not implement interface }",
3249 Actual
, Etype
(Etype
(Formal
)));
3252 Wrong_Type
(Actual
, Etype
(Formal
));
3254 if Nkind
(Actual
) = N_Op_Eq
3255 and then Nkind
(Left_Opnd
(Actual
)) = N_Identifier
3257 Formal
:= First_Formal
(Nam
);
3258 while Present
(Formal
) loop
3259 if Chars
(Left_Opnd
(Actual
)) = Chars
(Formal
) then
3260 Error_Msg_N
-- CODEFIX
3261 ("possible misspelling of `='>`!", Actual
);
3265 Next_Formal
(Formal
);
3269 if All_Errors_Mode
then
3270 Error_Msg_Sloc
:= Sloc
(Nam
);
3272 if Etype
(Formal
) = Any_Type
then
3274 ("there is no legal actual parameter", Actual
);
3277 if Is_Overloadable
(Nam
)
3278 and then Present
(Alias
(Nam
))
3279 and then not Comes_From_Source
(Nam
)
3282 ("\\ =='> in call to inherited operation & #!",
3285 elsif Ekind
(Nam
) = E_Subprogram_Type
then
3287 Access_To_Subprogram_Typ
:
3288 constant Entity_Id
:=
3290 (Associated_Node_For_Itype
(Nam
));
3293 ("\\ =='> in call to dereference of &#!",
3294 Actual
, Access_To_Subprogram_Typ
);
3299 ("\\ =='> in call to &#!", Actual
, Nam
);
3309 -- Normalize_Actuals has verified that a default value exists
3310 -- for this formal. Current actual names a subsequent formal.
3312 Next_Formal
(Formal
);
3316 -- On exit, all actuals match
3318 Indicate_Name_And_Type
;
3320 end Analyze_One_Call
;
3322 ---------------------------
3323 -- Analyze_Operator_Call --
3324 ---------------------------
3326 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
) is
3327 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
3328 Act1
: constant Node_Id
:= First_Actual
(N
);
3329 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
3332 -- Binary operator case
3334 if Present
(Act2
) then
3336 -- If more than two operands, then not binary operator after all
3338 if Present
(Next_Actual
(Act2
)) then
3342 -- Otherwise action depends on operator
3352 Find_Arithmetic_Types
(Act1
, Act2
, Op_Id
, N
);
3357 Find_Boolean_Types
(Act1
, Act2
, Op_Id
, N
);
3363 Find_Comparison_Types
(Act1
, Act2
, Op_Id
, N
);
3367 Find_Equality_Types
(Act1
, Act2
, Op_Id
, N
);
3369 when Name_Op_Concat
=>
3370 Find_Concatenation_Types
(Act1
, Act2
, Op_Id
, N
);
3372 -- Is this when others, or should it be an abort???
3378 -- Unary operator case
3382 when Name_Op_Subtract |
3385 Find_Unary_Types
(Act1
, Op_Id
, N
);
3388 Find_Negation_Types
(Act1
, Op_Id
, N
);
3390 -- Is this when others correct, or should it be an abort???
3396 end Analyze_Operator_Call
;
3398 -------------------------------------------
3399 -- Analyze_Overloaded_Selected_Component --
3400 -------------------------------------------
3402 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
) is
3403 Nam
: constant Node_Id
:= Prefix
(N
);
3404 Sel
: constant Node_Id
:= Selector_Name
(N
);
3411 Set_Etype
(Sel
, Any_Type
);
3413 Get_First_Interp
(Nam
, I
, It
);
3414 while Present
(It
.Typ
) loop
3415 if Is_Access_Type
(It
.Typ
) then
3416 T
:= Designated_Type
(It
.Typ
);
3417 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
3422 -- Locate the component. For a private prefix the selector can denote
3425 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
3427 -- If the prefix is a class-wide type, the visible components are
3428 -- those of the base type.
3430 if Is_Class_Wide_Type
(T
) then
3434 Comp
:= First_Entity
(T
);
3435 while Present
(Comp
) loop
3436 if Chars
(Comp
) = Chars
(Sel
)
3437 and then Is_Visible_Component
(Comp
)
3440 -- AI05-105: if the context is an object renaming with
3441 -- an anonymous access type, the expected type of the
3442 -- object must be anonymous. This is a name resolution rule.
3444 if Nkind
(Parent
(N
)) /= N_Object_Renaming_Declaration
3445 or else No
(Access_Definition
(Parent
(N
)))
3446 or else Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Type
3448 Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Subprogram_Type
3450 Set_Entity
(Sel
, Comp
);
3451 Set_Etype
(Sel
, Etype
(Comp
));
3452 Add_One_Interp
(N
, Etype
(Comp
), Etype
(Comp
));
3453 Check_Implicit_Dereference
(N
, Etype
(Comp
));
3455 -- This also specifies a candidate to resolve the name.
3456 -- Further overloading will be resolved from context.
3457 -- The selector name itself does not carry overloading
3460 Set_Etype
(Nam
, It
.Typ
);
3463 -- Named access type in the context of a renaming
3464 -- declaration with an access definition. Remove
3465 -- inapplicable candidate.
3474 elsif Is_Concurrent_Type
(T
) then
3475 Comp
:= First_Entity
(T
);
3476 while Present
(Comp
)
3477 and then Comp
/= First_Private_Entity
(T
)
3479 if Chars
(Comp
) = Chars
(Sel
) then
3480 if Is_Overloadable
(Comp
) then
3481 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
3483 Set_Entity_With_Checks
(Sel
, Comp
);
3484 Generate_Reference
(Comp
, Sel
);
3487 Set_Etype
(Sel
, Etype
(Comp
));
3488 Set_Etype
(N
, Etype
(Comp
));
3489 Set_Etype
(Nam
, It
.Typ
);
3491 -- For access type case, introduce explicit dereference for
3492 -- more uniform treatment of entry calls. Do this only once
3493 -- if several interpretations yield an access type.
3495 if Is_Access_Type
(Etype
(Nam
))
3496 and then Nkind
(Nam
) /= N_Explicit_Dereference
3498 Insert_Explicit_Dereference
(Nam
);
3500 (Warn_On_Dereference
, "?d?implicit dereference", N
);
3507 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
3510 Get_Next_Interp
(I
, It
);
3513 if Etype
(N
) = Any_Type
3514 and then not Try_Object_Operation
(N
)
3516 Error_Msg_NE
("undefined selector& for overloaded prefix", N
, Sel
);
3517 Set_Entity
(Sel
, Any_Id
);
3518 Set_Etype
(Sel
, Any_Type
);
3520 end Analyze_Overloaded_Selected_Component
;
3522 ----------------------------------
3523 -- Analyze_Qualified_Expression --
3524 ----------------------------------
3526 procedure Analyze_Qualified_Expression
(N
: Node_Id
) is
3527 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
3528 Expr
: constant Node_Id
:= Expression
(N
);
3534 Analyze_Expression
(Expr
);
3536 Set_Etype
(N
, Any_Type
);
3541 if T
= Any_Type
then
3545 Check_Fully_Declared
(T
, N
);
3547 -- If expected type is class-wide, check for exact match before
3548 -- expansion, because if the expression is a dispatching call it
3549 -- may be rewritten as explicit dereference with class-wide result.
3550 -- If expression is overloaded, retain only interpretations that
3551 -- will yield exact matches.
3553 if Is_Class_Wide_Type
(T
) then
3554 if not Is_Overloaded
(Expr
) then
3555 if Base_Type
(Etype
(Expr
)) /= Base_Type
(T
) then
3556 if Nkind
(Expr
) = N_Aggregate
then
3557 Error_Msg_N
("type of aggregate cannot be class-wide", Expr
);
3559 Wrong_Type
(Expr
, T
);
3564 Get_First_Interp
(Expr
, I
, It
);
3566 while Present
(It
.Nam
) loop
3567 if Base_Type
(It
.Typ
) /= Base_Type
(T
) then
3571 Get_Next_Interp
(I
, It
);
3577 end Analyze_Qualified_Expression
;
3579 -----------------------------------
3580 -- Analyze_Quantified_Expression --
3581 -----------------------------------
3583 procedure Analyze_Quantified_Expression
(N
: Node_Id
) is
3584 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean;
3585 -- If the iterator is part of a quantified expression, and the range is
3586 -- known to be statically empty, emit a warning and replace expression
3587 -- with its static value. Returns True if the replacement occurs.
3589 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean;
3590 -- Determine whether if expression If_Expr lacks an else part or if it
3591 -- has one, it evaluates to True.
3593 --------------------
3594 -- Is_Empty_Range --
3595 --------------------
3597 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean is
3598 Loc
: constant Source_Ptr
:= Sloc
(N
);
3601 if Is_Array_Type
(Typ
)
3602 and then Compile_Time_Known_Bounds
(Typ
)
3604 (Expr_Value
(Type_Low_Bound
(Etype
(First_Index
(Typ
)))) >
3605 Expr_Value
(Type_High_Bound
(Etype
(First_Index
(Typ
)))))
3607 Preanalyze_And_Resolve
(Condition
(N
), Standard_Boolean
);
3609 if All_Present
(N
) then
3611 ("??quantified expression with ALL "
3612 & "over a null range has value True", N
);
3613 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
3617 ("??quantified expression with SOME "
3618 & "over a null range has value False", N
);
3619 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
3630 -----------------------------
3631 -- No_Else_Or_Trivial_True --
3632 -----------------------------
3634 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean is
3635 Else_Expr
: constant Node_Id
:=
3636 Next
(Next
(First
(Expressions
(If_Expr
))));
3640 or else (Compile_Time_Known_Value
(Else_Expr
)
3641 and then Is_True
(Expr_Value
(Else_Expr
)));
3642 end No_Else_Or_Trivial_True
;
3646 Cond
: constant Node_Id
:= Condition
(N
);
3647 Loop_Id
: Entity_Id
;
3648 QE_Scop
: Entity_Id
;
3650 -- Start of processing for Analyze_Quantified_Expression
3653 Check_SPARK_Restriction
("quantified expression is not allowed", N
);
3655 -- Create a scope to emulate the loop-like behavior of the quantified
3656 -- expression. The scope is needed to provide proper visibility of the
3659 QE_Scop
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Sloc
(N
), 'L');
3660 Set_Etype
(QE_Scop
, Standard_Void_Type
);
3661 Set_Scope
(QE_Scop
, Current_Scope
);
3662 Set_Parent
(QE_Scop
, N
);
3664 Push_Scope
(QE_Scop
);
3666 -- All constituents are preanalyzed and resolved to avoid untimely
3667 -- generation of various temporaries and types. Full analysis and
3668 -- expansion is carried out when the quantified expression is
3669 -- transformed into an expression with actions.
3671 if Present
(Iterator_Specification
(N
)) then
3672 Preanalyze
(Iterator_Specification
(N
));
3674 -- Do not proceed with the analysis when the range of iteration is
3675 -- empty. The appropriate error is issued by Is_Empty_Range.
3677 if Is_Entity_Name
(Name
(Iterator_Specification
(N
)))
3678 and then Is_Empty_Range
(Etype
(Name
(Iterator_Specification
(N
))))
3683 else pragma Assert
(Present
(Loop_Parameter_Specification
(N
)));
3685 Loop_Par
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
3688 Preanalyze
(Loop_Par
);
3690 if Nkind
(Discrete_Subtype_Definition
(Loop_Par
)) = N_Function_Call
3691 and then Parent
(Loop_Par
) /= N
3693 -- The parser cannot distinguish between a loop specification
3694 -- and an iterator specification. If after pre-analysis the
3695 -- proper form has been recognized, rewrite the expression to
3696 -- reflect the right kind. This is needed for proper ASIS
3697 -- navigation. If expansion is enabled, the transformation is
3698 -- performed when the expression is rewritten as a loop.
3700 Set_Iterator_Specification
(N
,
3701 New_Copy_Tree
(Iterator_Specification
(Parent
(Loop_Par
))));
3703 Set_Defining_Identifier
(Iterator_Specification
(N
),
3704 Relocate_Node
(Defining_Identifier
(Loop_Par
)));
3705 Set_Name
(Iterator_Specification
(N
),
3706 Relocate_Node
(Discrete_Subtype_Definition
(Loop_Par
)));
3707 Set_Comes_From_Source
(Iterator_Specification
(N
),
3708 Comes_From_Source
(Loop_Parameter_Specification
(N
)));
3709 Set_Loop_Parameter_Specification
(N
, Empty
);
3714 Preanalyze_And_Resolve
(Cond
, Standard_Boolean
);
3717 Set_Etype
(N
, Standard_Boolean
);
3719 -- Verify that the loop variable is used within the condition of the
3720 -- quantified expression.
3722 if Present
(Iterator_Specification
(N
)) then
3723 Loop_Id
:= Defining_Identifier
(Iterator_Specification
(N
));
3725 Loop_Id
:= Defining_Identifier
(Loop_Parameter_Specification
(N
));
3728 if Warn_On_Suspicious_Contract
3729 and then not Referenced
(Loop_Id
, Cond
)
3731 Error_Msg_N
("?T?unused variable &", Loop_Id
);
3734 -- Diagnose a possible misuse of the SOME existential quantifier. When
3735 -- we have a quantified expression of the form:
3737 -- for some X => (if P then Q [else True])
3739 -- any value for X that makes P False results in the if expression being
3740 -- trivially True, and so also results in the the quantified expression
3741 -- being trivially True.
3743 if Warn_On_Suspicious_Contract
3744 and then not All_Present
(N
)
3745 and then Nkind
(Cond
) = N_If_Expression
3746 and then No_Else_Or_Trivial_True
(Cond
)
3748 Error_Msg_N
("?T?suspicious expression", N
);
3749 Error_Msg_N
("\\did you mean (for all X ='> (if P then Q))", N
);
3750 Error_Msg_N
("\\or (for some X ='> P and then Q) instead'?", N
);
3752 end Analyze_Quantified_Expression
;
3758 procedure Analyze_Range
(N
: Node_Id
) is
3759 L
: constant Node_Id
:= Low_Bound
(N
);
3760 H
: constant Node_Id
:= High_Bound
(N
);
3761 I1
, I2
: Interp_Index
;
3764 procedure Check_Common_Type
(T1
, T2
: Entity_Id
);
3765 -- Verify the compatibility of two types, and choose the
3766 -- non universal one if the other is universal.
3768 procedure Check_High_Bound
(T
: Entity_Id
);
3769 -- Test one interpretation of the low bound against all those
3770 -- of the high bound.
3772 procedure Check_Universal_Expression
(N
: Node_Id
);
3773 -- In Ada 83, reject bounds of a universal range that are not literals
3776 -----------------------
3777 -- Check_Common_Type --
3778 -----------------------
3780 procedure Check_Common_Type
(T1
, T2
: Entity_Id
) is
3782 if Covers
(T1
=> T1
, T2
=> T2
)
3784 Covers
(T1
=> T2
, T2
=> T1
)
3786 if T1
= Universal_Integer
3787 or else T1
= Universal_Real
3788 or else T1
= Any_Character
3790 Add_One_Interp
(N
, Base_Type
(T2
), Base_Type
(T2
));
3793 Add_One_Interp
(N
, T1
, T1
);
3796 Add_One_Interp
(N
, Base_Type
(T1
), Base_Type
(T1
));
3799 end Check_Common_Type
;
3801 ----------------------
3802 -- Check_High_Bound --
3803 ----------------------
3805 procedure Check_High_Bound
(T
: Entity_Id
) is
3807 if not Is_Overloaded
(H
) then
3808 Check_Common_Type
(T
, Etype
(H
));
3810 Get_First_Interp
(H
, I2
, It2
);
3811 while Present
(It2
.Typ
) loop
3812 Check_Common_Type
(T
, It2
.Typ
);
3813 Get_Next_Interp
(I2
, It2
);
3816 end Check_High_Bound
;
3818 -----------------------------
3819 -- Is_Universal_Expression --
3820 -----------------------------
3822 procedure Check_Universal_Expression
(N
: Node_Id
) is
3824 if Etype
(N
) = Universal_Integer
3825 and then Nkind
(N
) /= N_Integer_Literal
3826 and then not Is_Entity_Name
(N
)
3827 and then Nkind
(N
) /= N_Attribute_Reference
3829 Error_Msg_N
("illegal bound in discrete range", N
);
3831 end Check_Universal_Expression
;
3833 -- Start of processing for Analyze_Range
3836 Set_Etype
(N
, Any_Type
);
3837 Analyze_Expression
(L
);
3838 Analyze_Expression
(H
);
3840 if Etype
(L
) = Any_Type
or else Etype
(H
) = Any_Type
then
3844 if not Is_Overloaded
(L
) then
3845 Check_High_Bound
(Etype
(L
));
3847 Get_First_Interp
(L
, I1
, It1
);
3848 while Present
(It1
.Typ
) loop
3849 Check_High_Bound
(It1
.Typ
);
3850 Get_Next_Interp
(I1
, It1
);
3854 -- If result is Any_Type, then we did not find a compatible pair
3856 if Etype
(N
) = Any_Type
then
3857 Error_Msg_N
("incompatible types in range ", N
);
3861 if Ada_Version
= Ada_83
3863 (Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
3864 or else Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
)
3866 Check_Universal_Expression
(L
);
3867 Check_Universal_Expression
(H
);
3870 Check_Function_Writable_Actuals
(N
);
3873 -----------------------
3874 -- Analyze_Reference --
3875 -----------------------
3877 procedure Analyze_Reference
(N
: Node_Id
) is
3878 P
: constant Node_Id
:= Prefix
(N
);
3881 Acc_Type
: Entity_Id
;
3886 -- An interesting error check, if we take the 'Reference of an object
3887 -- for which a pragma Atomic or Volatile has been given, and the type
3888 -- of the object is not Atomic or Volatile, then we are in trouble. The
3889 -- problem is that no trace of the atomic/volatile status will remain
3890 -- for the backend to respect when it deals with the resulting pointer,
3891 -- since the pointer type will not be marked atomic (it is a pointer to
3892 -- the base type of the object).
3894 -- It is not clear if that can ever occur, but in case it does, we will
3895 -- generate an error message. Not clear if this message can ever be
3896 -- generated, and pretty clear that it represents a bug if it is, still
3897 -- seems worth checking, except in CodePeer mode where we do not really
3898 -- care and don't want to bother the user.
3902 if Is_Entity_Name
(P
)
3903 and then Is_Object_Reference
(P
)
3904 and then not CodePeer_Mode
3909 if (Has_Atomic_Components
(E
)
3910 and then not Has_Atomic_Components
(T
))
3912 (Has_Volatile_Components
(E
)
3913 and then not Has_Volatile_Components
(T
))
3914 or else (Is_Atomic
(E
) and then not Is_Atomic
(T
))
3915 or else (Is_Volatile
(E
) and then not Is_Volatile
(T
))
3917 Error_Msg_N
("cannot take reference to Atomic/Volatile object", N
);
3921 -- Carry on with normal processing
3923 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
3924 Set_Etype
(Acc_Type
, Acc_Type
);
3925 Set_Directly_Designated_Type
(Acc_Type
, Etype
(P
));
3926 Set_Etype
(N
, Acc_Type
);
3927 end Analyze_Reference
;
3929 --------------------------------
3930 -- Analyze_Selected_Component --
3931 --------------------------------
3933 -- Prefix is a record type or a task or protected type. In the latter case,
3934 -- the selector must denote a visible entry.
3936 procedure Analyze_Selected_Component
(N
: Node_Id
) is
3937 Name
: constant Node_Id
:= Prefix
(N
);
3938 Sel
: constant Node_Id
:= Selector_Name
(N
);
3941 Has_Candidate
: Boolean := False;
3944 Pent
: Entity_Id
:= Empty
;
3945 Prefix_Type
: Entity_Id
;
3947 Type_To_Use
: Entity_Id
;
3948 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3949 -- a class-wide type, we use its root type, whose components are
3950 -- present in the class-wide type.
3952 Is_Single_Concurrent_Object
: Boolean;
3953 -- Set True if the prefix is a single task or a single protected object
3955 procedure Find_Component_In_Instance
(Rec
: Entity_Id
);
3956 -- In an instance, a component of a private extension may not be visible
3957 -- while it was visible in the generic. Search candidate scope for a
3958 -- component with the proper identifier. This is only done if all other
3959 -- searches have failed. If a match is found, the Etype of both N and
3960 -- Sel are set from this component, and the entity of Sel is set to
3961 -- reference this component. If no match is found, Entity (Sel) remains
3964 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean;
3965 -- It is known that the parent of N denotes a subprogram call. Comp
3966 -- is an overloadable component of the concurrent type of the prefix.
3967 -- Determine whether all formals of the parent of N and Comp are mode
3968 -- conformant. If the parent node is not analyzed yet it may be an
3969 -- indexed component rather than a function call.
3971 --------------------------------
3972 -- Find_Component_In_Instance --
3973 --------------------------------
3975 procedure Find_Component_In_Instance
(Rec
: Entity_Id
) is
3979 Comp
:= First_Component
(Rec
);
3980 while Present
(Comp
) loop
3981 if Chars
(Comp
) = Chars
(Sel
) then
3982 Set_Entity_With_Checks
(Sel
, Comp
);
3983 Set_Etype
(Sel
, Etype
(Comp
));
3984 Set_Etype
(N
, Etype
(Comp
));
3988 Next_Component
(Comp
);
3991 -- If we fall through, no match, so no changes made
3994 end Find_Component_In_Instance
;
3996 ------------------------------
3997 -- Has_Mode_Conformant_Spec --
3998 ------------------------------
4000 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean is
4001 Comp_Param
: Entity_Id
;
4003 Param_Typ
: Entity_Id
;
4006 Comp_Param
:= First_Formal
(Comp
);
4008 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
4009 Param
:= First
(Expressions
(Parent
(N
)));
4011 Param
:= First
(Parameter_Associations
(Parent
(N
)));
4014 while Present
(Comp_Param
)
4015 and then Present
(Param
)
4017 Param_Typ
:= Find_Parameter_Type
(Param
);
4019 if Present
(Param_Typ
)
4021 not Conforming_Types
4022 (Etype
(Comp_Param
), Param_Typ
, Mode_Conformant
)
4027 Next_Formal
(Comp_Param
);
4031 -- One of the specs has additional formals; there is no match, unless
4032 -- this may be an indexing of a parameterless call.
4034 -- Note that when expansion is disabled, the corresponding record
4035 -- type of synchronized types is not constructed, so that there is
4036 -- no point is attempting an interpretation as a prefixed call, as
4037 -- this is bound to fail because the primitive operations will not
4038 -- be properly located.
4040 if Present
(Comp_Param
) or else Present
(Param
) then
4041 if Needs_No_Actuals
(Comp
)
4042 and then Is_Array_Type
(Etype
(Comp
))
4043 and then not Expander_Active
4052 end Has_Mode_Conformant_Spec
;
4054 -- Start of processing for Analyze_Selected_Component
4057 Set_Etype
(N
, Any_Type
);
4059 if Is_Overloaded
(Name
) then
4060 Analyze_Overloaded_Selected_Component
(N
);
4063 elsif Etype
(Name
) = Any_Type
then
4064 Set_Entity
(Sel
, Any_Id
);
4065 Set_Etype
(Sel
, Any_Type
);
4069 Prefix_Type
:= Etype
(Name
);
4072 if Is_Access_Type
(Prefix_Type
) then
4074 -- A RACW object can never be used as prefix of a selected component
4075 -- since that means it is dereferenced without being a controlling
4076 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4077 -- reporting an error, we must check whether this is actually a
4078 -- dispatching call in prefix form.
4080 if Is_Remote_Access_To_Class_Wide_Type
(Prefix_Type
)
4081 and then Comes_From_Source
(N
)
4083 if Try_Object_Operation
(N
) then
4087 ("invalid dereference of a remote access-to-class-wide value",
4091 -- Normal case of selected component applied to access type
4094 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4096 if Is_Entity_Name
(Name
) then
4097 Pent
:= Entity
(Name
);
4098 elsif Nkind
(Name
) = N_Selected_Component
4099 and then Is_Entity_Name
(Selector_Name
(Name
))
4101 Pent
:= Entity
(Selector_Name
(Name
));
4104 Prefix_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, Name
);
4107 -- If we have an explicit dereference of a remote access-to-class-wide
4108 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4109 -- have to check for the case of a prefix that is a controlling operand
4110 -- of a prefixed dispatching call, as the dereference is legal in that
4111 -- case. Normally this condition is checked in Validate_Remote_Access_
4112 -- To_Class_Wide_Type, but we have to defer the checking for selected
4113 -- component prefixes because of the prefixed dispatching call case.
4114 -- Note that implicit dereferences are checked for this just above.
4116 elsif Nkind
(Name
) = N_Explicit_Dereference
4117 and then Is_Remote_Access_To_Class_Wide_Type
(Etype
(Prefix
(Name
)))
4118 and then Comes_From_Source
(N
)
4120 if Try_Object_Operation
(N
) then
4124 ("invalid dereference of a remote access-to-class-wide value",
4129 -- (Ada 2005): if the prefix is the limited view of a type, and
4130 -- the context already includes the full view, use the full view
4131 -- in what follows, either to retrieve a component of to find
4132 -- a primitive operation. If the prefix is an explicit dereference,
4133 -- set the type of the prefix to reflect this transformation.
4134 -- If the non-limited view is itself an incomplete type, get the
4135 -- full view if available.
4137 if Is_Incomplete_Type
(Prefix_Type
)
4138 and then From_Limited_With
(Prefix_Type
)
4139 and then Present
(Non_Limited_View
(Prefix_Type
))
4141 Prefix_Type
:= Get_Full_View
(Non_Limited_View
(Prefix_Type
));
4143 if Nkind
(N
) = N_Explicit_Dereference
then
4144 Set_Etype
(Prefix
(N
), Prefix_Type
);
4147 elsif Ekind
(Prefix_Type
) = E_Class_Wide_Type
4148 and then From_Limited_With
(Prefix_Type
)
4149 and then Present
(Non_Limited_View
(Etype
(Prefix_Type
)))
4152 Class_Wide_Type
(Non_Limited_View
(Etype
(Prefix_Type
)));
4154 if Nkind
(N
) = N_Explicit_Dereference
then
4155 Set_Etype
(Prefix
(N
), Prefix_Type
);
4159 if Ekind
(Prefix_Type
) = E_Private_Subtype
then
4160 Prefix_Type
:= Base_Type
(Prefix_Type
);
4163 Type_To_Use
:= Prefix_Type
;
4165 -- For class-wide types, use the entity list of the root type. This
4166 -- indirection is specially important for private extensions because
4167 -- only the root type get switched (not the class-wide type).
4169 if Is_Class_Wide_Type
(Prefix_Type
) then
4170 Type_To_Use
:= Root_Type
(Prefix_Type
);
4173 -- If the prefix is a single concurrent object, use its name in error
4174 -- messages, rather than that of its anonymous type.
4176 Is_Single_Concurrent_Object
:=
4177 Is_Concurrent_Type
(Prefix_Type
)
4178 and then Is_Internal_Name
(Chars
(Prefix_Type
))
4179 and then not Is_Derived_Type
(Prefix_Type
)
4180 and then Is_Entity_Name
(Name
);
4182 Comp
:= First_Entity
(Type_To_Use
);
4184 -- If the selector has an original discriminant, the node appears in
4185 -- an instance. Replace the discriminant with the corresponding one
4186 -- in the current discriminated type. For nested generics, this must
4187 -- be done transitively, so note the new original discriminant.
4189 if Nkind
(Sel
) = N_Identifier
4190 and then In_Instance
4191 and then Present
(Original_Discriminant
(Sel
))
4193 Comp
:= Find_Corresponding_Discriminant
(Sel
, Prefix_Type
);
4195 -- Mark entity before rewriting, for completeness and because
4196 -- subsequent semantic checks might examine the original node.
4198 Set_Entity
(Sel
, Comp
);
4199 Rewrite
(Selector_Name
(N
), New_Occurrence_Of
(Comp
, Sloc
(N
)));
4200 Set_Original_Discriminant
(Selector_Name
(N
), Comp
);
4201 Set_Etype
(N
, Etype
(Comp
));
4202 Check_Implicit_Dereference
(N
, Etype
(Comp
));
4204 if Is_Access_Type
(Etype
(Name
)) then
4205 Insert_Explicit_Dereference
(Name
);
4206 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4209 elsif Is_Record_Type
(Prefix_Type
) then
4211 -- Find component with given name. In an instance, if the node is
4212 -- known as a prefixed call, do not examine components whose
4213 -- visibility may be accidental.
4215 while Present
(Comp
) and then not Is_Prefixed_Call
(N
) loop
4216 if Chars
(Comp
) = Chars
(Sel
)
4217 and then Is_Visible_Component
(Comp
, N
)
4219 Set_Entity_With_Checks
(Sel
, Comp
);
4220 Set_Etype
(Sel
, Etype
(Comp
));
4222 if Ekind
(Comp
) = E_Discriminant
then
4223 if Is_Unchecked_Union
(Base_Type
(Prefix_Type
)) then
4225 ("cannot reference discriminant of unchecked union",
4229 if Is_Generic_Type
(Prefix_Type
)
4231 Is_Generic_Type
(Root_Type
(Prefix_Type
))
4233 Set_Original_Discriminant
(Sel
, Comp
);
4237 -- Resolve the prefix early otherwise it is not possible to
4238 -- build the actual subtype of the component: it may need
4239 -- to duplicate this prefix and duplication is only allowed
4240 -- on fully resolved expressions.
4244 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4245 -- subtypes in a package specification.
4248 -- limited with Pkg;
4250 -- type Acc_Inc is access Pkg.T;
4252 -- N : Natural := X.all.Comp; -- ERROR, limited view
4253 -- end Pkg; -- Comp is not visible
4255 if Nkind
(Name
) = N_Explicit_Dereference
4256 and then From_Limited_With
(Etype
(Prefix
(Name
)))
4257 and then not Is_Potentially_Use_Visible
(Etype
(Name
))
4258 and then Nkind
(Parent
(Cunit_Entity
(Current_Sem_Unit
))) =
4259 N_Package_Specification
4262 ("premature usage of incomplete}", Prefix
(Name
),
4263 Etype
(Prefix
(Name
)));
4266 -- We never need an actual subtype for the case of a selection
4267 -- for a indexed component of a non-packed array, since in
4268 -- this case gigi generates all the checks and can find the
4269 -- necessary bounds information.
4271 -- We also do not need an actual subtype for the case of a
4272 -- first, last, length, or range attribute applied to a
4273 -- non-packed array, since gigi can again get the bounds in
4274 -- these cases (gigi cannot handle the packed case, since it
4275 -- has the bounds of the packed array type, not the original
4276 -- bounds of the type). However, if the prefix is itself a
4277 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4278 -- as a dynamic-sized temporary, so we do generate an actual
4279 -- subtype for this case.
4281 Parent_N
:= Parent
(N
);
4283 if not Is_Packed
(Etype
(Comp
))
4285 ((Nkind
(Parent_N
) = N_Indexed_Component
4286 and then Nkind
(Name
) /= N_Selected_Component
)
4288 (Nkind
(Parent_N
) = N_Attribute_Reference
4290 Nam_In
(Attribute_Name
(Parent_N
), Name_First
,
4295 Set_Etype
(N
, Etype
(Comp
));
4297 -- If full analysis is not enabled, we do not generate an
4298 -- actual subtype, because in the absence of expansion
4299 -- reference to a formal of a protected type, for example,
4300 -- will not be properly transformed, and will lead to
4301 -- out-of-scope references in gigi.
4303 -- In all other cases, we currently build an actual subtype.
4304 -- It seems likely that many of these cases can be avoided,
4305 -- but right now, the front end makes direct references to the
4306 -- bounds (e.g. in generating a length check), and if we do
4307 -- not make an actual subtype, we end up getting a direct
4308 -- reference to a discriminant, which will not do.
4310 elsif Full_Analysis
then
4312 Build_Actual_Subtype_Of_Component
(Etype
(Comp
), N
);
4313 Insert_Action
(N
, Act_Decl
);
4315 if No
(Act_Decl
) then
4316 Set_Etype
(N
, Etype
(Comp
));
4319 -- Component type depends on discriminants. Enter the
4320 -- main attributes of the subtype.
4323 Subt
: constant Entity_Id
:=
4324 Defining_Identifier
(Act_Decl
);
4327 Set_Etype
(Subt
, Base_Type
(Etype
(Comp
)));
4328 Set_Ekind
(Subt
, Ekind
(Etype
(Comp
)));
4329 Set_Etype
(N
, Subt
);
4333 -- If Full_Analysis not enabled, just set the Etype
4336 Set_Etype
(N
, Etype
(Comp
));
4339 Check_Implicit_Dereference
(N
, Etype
(N
));
4343 -- If the prefix is a private extension, check only the visible
4344 -- components of the partial view. This must include the tag,
4345 -- which can appear in expanded code in a tag check.
4347 if Ekind
(Type_To_Use
) = E_Record_Type_With_Private
4348 and then Chars
(Selector_Name
(N
)) /= Name_uTag
4350 exit when Comp
= Last_Entity
(Type_To_Use
);
4356 -- Ada 2005 (AI-252): The selected component can be interpreted as
4357 -- a prefixed view of a subprogram. Depending on the context, this is
4358 -- either a name that can appear in a renaming declaration, or part
4359 -- of an enclosing call given in prefix form.
4361 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4362 -- selected component should resolve to a name.
4364 if Ada_Version
>= Ada_2005
4365 and then Is_Tagged_Type
(Prefix_Type
)
4366 and then not Is_Concurrent_Type
(Prefix_Type
)
4368 if Nkind
(Parent
(N
)) = N_Generic_Association
4369 or else Nkind
(Parent
(N
)) = N_Requeue_Statement
4370 or else Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
4372 if Find_Primitive_Operation
(N
) then
4376 elsif Try_Object_Operation
(N
) then
4380 -- If the transformation fails, it will be necessary to redo the
4381 -- analysis with all errors enabled, to indicate candidate
4382 -- interpretations and reasons for each failure ???
4386 elsif Is_Private_Type
(Prefix_Type
) then
4388 -- Allow access only to discriminants of the type. If the type has
4389 -- no full view, gigi uses the parent type for the components, so we
4390 -- do the same here.
4392 if No
(Full_View
(Prefix_Type
)) then
4393 Type_To_Use
:= Root_Type
(Base_Type
(Prefix_Type
));
4394 Comp
:= First_Entity
(Type_To_Use
);
4397 while Present
(Comp
) loop
4398 if Chars
(Comp
) = Chars
(Sel
) then
4399 if Ekind
(Comp
) = E_Discriminant
then
4400 Set_Entity_With_Checks
(Sel
, Comp
);
4401 Generate_Reference
(Comp
, Sel
);
4403 Set_Etype
(Sel
, Etype
(Comp
));
4404 Set_Etype
(N
, Etype
(Comp
));
4405 Check_Implicit_Dereference
(N
, Etype
(N
));
4407 if Is_Generic_Type
(Prefix_Type
)
4408 or else Is_Generic_Type
(Root_Type
(Prefix_Type
))
4410 Set_Original_Discriminant
(Sel
, Comp
);
4413 -- Before declaring an error, check whether this is tagged
4414 -- private type and a call to a primitive operation.
4416 elsif Ada_Version
>= Ada_2005
4417 and then Is_Tagged_Type
(Prefix_Type
)
4418 and then Try_Object_Operation
(N
)
4423 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4424 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
4425 Set_Entity
(Sel
, Any_Id
);
4426 Set_Etype
(N
, Any_Type
);
4435 elsif Is_Concurrent_Type
(Prefix_Type
) then
4437 -- Find visible operation with given name. For a protected type,
4438 -- the possible candidates are discriminants, entries or protected
4439 -- procedures. For a task type, the set can only include entries or
4440 -- discriminants if the task type is not an enclosing scope. If it
4441 -- is an enclosing scope (e.g. in an inner task) then all entities
4442 -- are visible, but the prefix must denote the enclosing scope, i.e.
4443 -- can only be a direct name or an expanded name.
4445 Set_Etype
(Sel
, Any_Type
);
4446 In_Scope
:= In_Open_Scopes
(Prefix_Type
);
4448 while Present
(Comp
) loop
4449 if Chars
(Comp
) = Chars
(Sel
) then
4450 if Is_Overloadable
(Comp
) then
4451 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
4453 -- If the prefix is tagged, the correct interpretation may
4454 -- lie in the primitive or class-wide operations of the
4455 -- type. Perform a simple conformance check to determine
4456 -- whether Try_Object_Operation should be invoked even if
4457 -- a visible entity is found.
4459 if Is_Tagged_Type
(Prefix_Type
)
4461 Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
4463 N_Indexed_Component
)
4464 and then Has_Mode_Conformant_Spec
(Comp
)
4466 Has_Candidate
:= True;
4469 -- Note: a selected component may not denote a component of a
4470 -- protected type (4.1.3(7)).
4472 elsif Ekind_In
(Comp
, E_Discriminant
, E_Entry_Family
)
4474 and then not Is_Protected_Type
(Prefix_Type
)
4475 and then Is_Entity_Name
(Name
))
4477 Set_Entity_With_Checks
(Sel
, Comp
);
4478 Generate_Reference
(Comp
, Sel
);
4480 -- The selector is not overloadable, so we have a candidate
4483 Has_Candidate
:= True;
4489 Set_Etype
(Sel
, Etype
(Comp
));
4490 Set_Etype
(N
, Etype
(Comp
));
4492 if Ekind
(Comp
) = E_Discriminant
then
4493 Set_Original_Discriminant
(Sel
, Comp
);
4496 -- For access type case, introduce explicit dereference for
4497 -- more uniform treatment of entry calls.
4499 if Is_Access_Type
(Etype
(Name
)) then
4500 Insert_Explicit_Dereference
(Name
);
4502 (Warn_On_Dereference
, "?d?implicit dereference", N
);
4508 exit when not In_Scope
4510 Comp
= First_Private_Entity
(Base_Type
(Prefix_Type
));
4513 -- If there is no visible entity with the given name or none of the
4514 -- visible entities are plausible interpretations, check whether
4515 -- there is some other primitive operation with that name.
4517 if Ada_Version
>= Ada_2005
4518 and then Is_Tagged_Type
(Prefix_Type
)
4520 if (Etype
(N
) = Any_Type
4521 or else not Has_Candidate
)
4522 and then Try_Object_Operation
(N
)
4526 -- If the context is not syntactically a procedure call, it
4527 -- may be a call to a primitive function declared outside of
4528 -- the synchronized type.
4530 -- If the context is a procedure call, there might still be
4531 -- an overloading between an entry and a primitive procedure
4532 -- declared outside of the synchronized type, called in prefix
4533 -- notation. This is harder to disambiguate because in one case
4534 -- the controlling formal is implicit ???
4536 elsif Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
4537 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
4538 and then Try_Object_Operation
(N
)
4543 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4544 -- entry or procedure of a tagged concurrent type we must check
4545 -- if there are class-wide subprograms covering the primitive. If
4546 -- true then Try_Object_Operation reports the error.
4549 and then Is_Concurrent_Type
(Prefix_Type
)
4550 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
4552 -- Duplicate the call. This is required to avoid problems with
4553 -- the tree transformations performed by Try_Object_Operation.
4554 -- Set properly the parent of the copied call, because it is
4555 -- about to be reanalyzed.
4559 Par
: constant Node_Id
:= New_Copy_Tree
(Parent
(N
));
4562 Set_Parent
(Par
, Parent
(Parent
(N
)));
4564 if Try_Object_Operation
4565 (Sinfo
.Name
(Par
), CW_Test_Only
=> True)
4573 if Etype
(N
) = Any_Type
and then Is_Protected_Type
(Prefix_Type
) then
4575 -- Case of a prefix of a protected type: selector might denote
4576 -- an invisible private component.
4578 Comp
:= First_Private_Entity
(Base_Type
(Prefix_Type
));
4579 while Present
(Comp
) and then Chars
(Comp
) /= Chars
(Sel
) loop
4583 if Present
(Comp
) then
4584 if Is_Single_Concurrent_Object
then
4585 Error_Msg_Node_2
:= Entity
(Name
);
4586 Error_Msg_NE
("invisible selector& for &", N
, Sel
);
4589 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4590 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
4596 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
4601 Error_Msg_NE
("invalid prefix in selected component&", N
, Sel
);
4604 -- If N still has no type, the component is not defined in the prefix
4606 if Etype
(N
) = Any_Type
then
4608 if Is_Single_Concurrent_Object
then
4609 Error_Msg_Node_2
:= Entity
(Name
);
4610 Error_Msg_NE
("no selector& for&", N
, Sel
);
4612 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
4614 -- If this is a derived formal type, the parent may have different
4615 -- visibility at this point. Try for an inherited component before
4616 -- reporting an error.
4618 elsif Is_Generic_Type
(Prefix_Type
)
4619 and then Ekind
(Prefix_Type
) = E_Record_Type_With_Private
4620 and then Prefix_Type
/= Etype
(Prefix_Type
)
4621 and then Is_Record_Type
(Etype
(Prefix_Type
))
4623 Set_Etype
(Prefix
(N
), Etype
(Prefix_Type
));
4624 Analyze_Selected_Component
(N
);
4627 -- Similarly, if this is the actual for a formal derived type, or
4628 -- a derived type thereof, the component inherited from the generic
4629 -- parent may not be visible in the actual, but the selected
4630 -- component is legal. Climb up the derivation chain of the generic
4631 -- parent type until we find the proper ancestor type.
4633 elsif In_Instance
and then Is_Tagged_Type
(Prefix_Type
) then
4635 Par
: Entity_Id
:= Prefix_Type
;
4637 -- Climb up derivation chain to generic actual subtype
4639 while not Is_Generic_Actual_Type
(Par
) loop
4640 if Ekind
(Par
) = E_Record_Type
then
4641 Par
:= Parent_Subtype
(Par
);
4644 exit when Par
= Etype
(Par
);
4649 if Present
(Par
) and then Is_Generic_Actual_Type
(Par
) then
4650 -- Now look for component in ancestor types
4652 Par
:= Generic_Parent_Type
(Declaration_Node
(Par
));
4654 Find_Component_In_Instance
(Par
);
4655 exit when Present
(Entity
(Sel
))
4656 or else Par
= Etype
(Par
);
4662 -- The search above must have eventually succeeded, since the
4663 -- selected component was legal in the generic.
4665 if No
(Entity
(Sel
)) then
4666 raise Program_Error
;
4670 -- Component not found, specialize error message when appropriate
4673 if Ekind
(Prefix_Type
) = E_Record_Subtype
then
4675 -- Check whether this is a component of the base type which
4676 -- is absent from a statically constrained subtype. This will
4677 -- raise constraint error at run time, but is not a compile-
4678 -- time error. When the selector is illegal for base type as
4679 -- well fall through and generate a compilation error anyway.
4681 Comp
:= First_Component
(Base_Type
(Prefix_Type
));
4682 while Present
(Comp
) loop
4683 if Chars
(Comp
) = Chars
(Sel
)
4684 and then Is_Visible_Component
(Comp
)
4686 Set_Entity_With_Checks
(Sel
, Comp
);
4687 Generate_Reference
(Comp
, Sel
);
4688 Set_Etype
(Sel
, Etype
(Comp
));
4689 Set_Etype
(N
, Etype
(Comp
));
4691 -- Emit appropriate message. The node will be replaced
4692 -- by an appropriate raise statement.
4694 -- Note that in SPARK mode, as with all calls to apply a
4695 -- compile time constraint error, this will be made into
4696 -- an error to simplify the processing of the formal
4697 -- verification backend.
4699 Apply_Compile_Time_Constraint_Error
4700 (N
, "component not present in }??",
4701 CE_Discriminant_Check_Failed
,
4702 Ent
=> Prefix_Type
, Rep
=> False);
4704 Set_Raises_Constraint_Error
(N
);
4708 Next_Component
(Comp
);
4713 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4714 Error_Msg_NE
("no selector& for}", N
, Sel
);
4716 -- Add information in the case of an incomplete prefix
4718 if Is_Incomplete_Type
(Type_To_Use
) then
4720 Inc
: constant Entity_Id
:= First_Subtype
(Type_To_Use
);
4723 if From_Limited_With
(Scope
(Type_To_Use
)) then
4725 ("\limited view of& has no components", N
, Inc
);
4729 ("\premature usage of incomplete type&", N
, Inc
);
4731 if Nkind
(Parent
(Inc
)) =
4732 N_Incomplete_Type_Declaration
4734 -- Record location of premature use in entity so that
4735 -- a continuation message is generated when the
4736 -- completion is seen.
4738 Set_Premature_Use
(Parent
(Inc
), N
);
4744 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
4747 Set_Entity
(Sel
, Any_Id
);
4748 Set_Etype
(Sel
, Any_Type
);
4750 end Analyze_Selected_Component
;
4752 ---------------------------
4753 -- Analyze_Short_Circuit --
4754 ---------------------------
4756 procedure Analyze_Short_Circuit
(N
: Node_Id
) is
4757 L
: constant Node_Id
:= Left_Opnd
(N
);
4758 R
: constant Node_Id
:= Right_Opnd
(N
);
4763 Analyze_Expression
(L
);
4764 Analyze_Expression
(R
);
4765 Set_Etype
(N
, Any_Type
);
4767 if not Is_Overloaded
(L
) then
4768 if Root_Type
(Etype
(L
)) = Standard_Boolean
4769 and then Has_Compatible_Type
(R
, Etype
(L
))
4771 Add_One_Interp
(N
, Etype
(L
), Etype
(L
));
4775 Get_First_Interp
(L
, Ind
, It
);
4776 while Present
(It
.Typ
) loop
4777 if Root_Type
(It
.Typ
) = Standard_Boolean
4778 and then Has_Compatible_Type
(R
, It
.Typ
)
4780 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
4783 Get_Next_Interp
(Ind
, It
);
4787 -- Here we have failed to find an interpretation. Clearly we know that
4788 -- it is not the case that both operands can have an interpretation of
4789 -- Boolean, but this is by far the most likely intended interpretation.
4790 -- So we simply resolve both operands as Booleans, and at least one of
4791 -- these resolutions will generate an error message, and we do not need
4792 -- to give another error message on the short circuit operation itself.
4794 if Etype
(N
) = Any_Type
then
4795 Resolve
(L
, Standard_Boolean
);
4796 Resolve
(R
, Standard_Boolean
);
4797 Set_Etype
(N
, Standard_Boolean
);
4799 end Analyze_Short_Circuit
;
4805 procedure Analyze_Slice
(N
: Node_Id
) is
4806 D
: constant Node_Id
:= Discrete_Range
(N
);
4807 P
: constant Node_Id
:= Prefix
(N
);
4808 Array_Type
: Entity_Id
;
4809 Index_Type
: Entity_Id
;
4811 procedure Analyze_Overloaded_Slice
;
4812 -- If the prefix is overloaded, select those interpretations that
4813 -- yield a one-dimensional array type.
4815 ------------------------------
4816 -- Analyze_Overloaded_Slice --
4817 ------------------------------
4819 procedure Analyze_Overloaded_Slice
is
4825 Set_Etype
(N
, Any_Type
);
4827 Get_First_Interp
(P
, I
, It
);
4828 while Present
(It
.Nam
) loop
4831 if Is_Access_Type
(Typ
) then
4832 Typ
:= Designated_Type
(Typ
);
4834 (Warn_On_Dereference
, "?d?implicit dereference", N
);
4837 if Is_Array_Type
(Typ
)
4838 and then Number_Dimensions
(Typ
) = 1
4839 and then Has_Compatible_Type
(D
, Etype
(First_Index
(Typ
)))
4841 Add_One_Interp
(N
, Typ
, Typ
);
4844 Get_Next_Interp
(I
, It
);
4847 if Etype
(N
) = Any_Type
then
4848 Error_Msg_N
("expect array type in prefix of slice", N
);
4850 end Analyze_Overloaded_Slice
;
4852 -- Start of processing for Analyze_Slice
4855 if Comes_From_Source
(N
) then
4856 Check_SPARK_Restriction
("slice is not allowed", N
);
4862 if Is_Overloaded
(P
) then
4863 Analyze_Overloaded_Slice
;
4866 Array_Type
:= Etype
(P
);
4867 Set_Etype
(N
, Any_Type
);
4869 if Is_Access_Type
(Array_Type
) then
4870 Array_Type
:= Designated_Type
(Array_Type
);
4871 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4874 if not Is_Array_Type
(Array_Type
) then
4875 Wrong_Type
(P
, Any_Array
);
4877 elsif Number_Dimensions
(Array_Type
) > 1 then
4879 ("type is not one-dimensional array in slice prefix", N
);
4882 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
4883 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
4885 Index_Type
:= Etype
(First_Index
(Array_Type
));
4888 if not Has_Compatible_Type
(D
, Index_Type
) then
4889 Wrong_Type
(D
, Index_Type
);
4891 Set_Etype
(N
, Array_Type
);
4897 -----------------------------
4898 -- Analyze_Type_Conversion --
4899 -----------------------------
4901 procedure Analyze_Type_Conversion
(N
: Node_Id
) is
4902 Expr
: constant Node_Id
:= Expression
(N
);
4906 -- If Conversion_OK is set, then the Etype is already set, and the
4907 -- only processing required is to analyze the expression. This is
4908 -- used to construct certain "illegal" conversions which are not
4909 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4910 -- Sinfo for further details.
4912 if Conversion_OK
(N
) then
4917 -- Otherwise full type analysis is required, as well as some semantic
4918 -- checks to make sure the argument of the conversion is appropriate.
4920 Find_Type
(Subtype_Mark
(N
));
4921 T
:= Entity
(Subtype_Mark
(N
));
4923 Check_Fully_Declared
(T
, N
);
4924 Analyze_Expression
(Expr
);
4925 Validate_Remote_Type_Type_Conversion
(N
);
4927 -- Only remaining step is validity checks on the argument. These
4928 -- are skipped if the conversion does not come from the source.
4930 if not Comes_From_Source
(N
) then
4933 -- If there was an error in a generic unit, no need to replicate the
4934 -- error message. Conversely, constant-folding in the generic may
4935 -- transform the argument of a conversion into a string literal, which
4936 -- is legal. Therefore the following tests are not performed in an
4937 -- instance. The same applies to an inlined body.
4939 elsif In_Instance
or In_Inlined_Body
then
4942 elsif Nkind
(Expr
) = N_Null
then
4943 Error_Msg_N
("argument of conversion cannot be null", N
);
4944 Error_Msg_N
("\use qualified expression instead", N
);
4945 Set_Etype
(N
, Any_Type
);
4947 elsif Nkind
(Expr
) = N_Aggregate
then
4948 Error_Msg_N
("argument of conversion cannot be aggregate", N
);
4949 Error_Msg_N
("\use qualified expression instead", N
);
4951 elsif Nkind
(Expr
) = N_Allocator
then
4952 Error_Msg_N
("argument of conversion cannot be an allocator", N
);
4953 Error_Msg_N
("\use qualified expression instead", N
);
4955 elsif Nkind
(Expr
) = N_String_Literal
then
4956 Error_Msg_N
("argument of conversion cannot be string literal", N
);
4957 Error_Msg_N
("\use qualified expression instead", N
);
4959 elsif Nkind
(Expr
) = N_Character_Literal
then
4960 if Ada_Version
= Ada_83
then
4963 Error_Msg_N
("argument of conversion cannot be character literal",
4965 Error_Msg_N
("\use qualified expression instead", N
);
4968 elsif Nkind
(Expr
) = N_Attribute_Reference
4970 Nam_In
(Attribute_Name
(Expr
), Name_Access
,
4971 Name_Unchecked_Access
,
4972 Name_Unrestricted_Access
)
4974 Error_Msg_N
("argument of conversion cannot be access", N
);
4975 Error_Msg_N
("\use qualified expression instead", N
);
4977 end Analyze_Type_Conversion
;
4979 ----------------------
4980 -- Analyze_Unary_Op --
4981 ----------------------
4983 procedure Analyze_Unary_Op
(N
: Node_Id
) is
4984 R
: constant Node_Id
:= Right_Opnd
(N
);
4985 Op_Id
: Entity_Id
:= Entity
(N
);
4988 Set_Etype
(N
, Any_Type
);
4989 Candidate_Type
:= Empty
;
4991 Analyze_Expression
(R
);
4993 if Present
(Op_Id
) then
4994 if Ekind
(Op_Id
) = E_Operator
then
4995 Find_Unary_Types
(R
, Op_Id
, N
);
4997 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
5001 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
5002 while Present
(Op_Id
) loop
5003 if Ekind
(Op_Id
) = E_Operator
then
5004 if No
(Next_Entity
(First_Entity
(Op_Id
))) then
5005 Find_Unary_Types
(R
, Op_Id
, N
);
5008 elsif Is_Overloadable
(Op_Id
) then
5009 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
5012 Op_Id
:= Homonym
(Op_Id
);
5017 end Analyze_Unary_Op
;
5019 ----------------------------------
5020 -- Analyze_Unchecked_Expression --
5021 ----------------------------------
5023 procedure Analyze_Unchecked_Expression
(N
: Node_Id
) is
5025 Analyze
(Expression
(N
), Suppress
=> All_Checks
);
5026 Set_Etype
(N
, Etype
(Expression
(N
)));
5027 Save_Interps
(Expression
(N
), N
);
5028 end Analyze_Unchecked_Expression
;
5030 ---------------------------------------
5031 -- Analyze_Unchecked_Type_Conversion --
5032 ---------------------------------------
5034 procedure Analyze_Unchecked_Type_Conversion
(N
: Node_Id
) is
5036 Find_Type
(Subtype_Mark
(N
));
5037 Analyze_Expression
(Expression
(N
));
5038 Set_Etype
(N
, Entity
(Subtype_Mark
(N
)));
5039 end Analyze_Unchecked_Type_Conversion
;
5041 ------------------------------------
5042 -- Analyze_User_Defined_Binary_Op --
5043 ------------------------------------
5045 procedure Analyze_User_Defined_Binary_Op
5050 -- Only do analysis if the operator Comes_From_Source, since otherwise
5051 -- the operator was generated by the expander, and all such operators
5052 -- always refer to the operators in package Standard.
5054 if Comes_From_Source
(N
) then
5056 F1
: constant Entity_Id
:= First_Formal
(Op_Id
);
5057 F2
: constant Entity_Id
:= Next_Formal
(F1
);
5060 -- Verify that Op_Id is a visible binary function. Note that since
5061 -- we know Op_Id is overloaded, potentially use visible means use
5062 -- visible for sure (RM 9.4(11)).
5064 if Ekind
(Op_Id
) = E_Function
5065 and then Present
(F2
)
5066 and then (Is_Immediately_Visible
(Op_Id
)
5067 or else Is_Potentially_Use_Visible
(Op_Id
))
5068 and then Has_Compatible_Type
(Left_Opnd
(N
), Etype
(F1
))
5069 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F2
))
5071 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
5073 -- If the left operand is overloaded, indicate that the current
5074 -- type is a viable candidate. This is redundant in most cases,
5075 -- but for equality and comparison operators where the context
5076 -- does not impose a type on the operands, setting the proper
5077 -- type is necessary to avoid subsequent ambiguities during
5078 -- resolution, when both user-defined and predefined operators
5079 -- may be candidates.
5081 if Is_Overloaded
(Left_Opnd
(N
)) then
5082 Set_Etype
(Left_Opnd
(N
), Etype
(F1
));
5085 if Debug_Flag_E
then
5086 Write_Str
("user defined operator ");
5087 Write_Name
(Chars
(Op_Id
));
5088 Write_Str
(" on node ");
5089 Write_Int
(Int
(N
));
5095 end Analyze_User_Defined_Binary_Op
;
5097 -----------------------------------
5098 -- Analyze_User_Defined_Unary_Op --
5099 -----------------------------------
5101 procedure Analyze_User_Defined_Unary_Op
5106 -- Only do analysis if the operator Comes_From_Source, since otherwise
5107 -- the operator was generated by the expander, and all such operators
5108 -- always refer to the operators in package Standard.
5110 if Comes_From_Source
(N
) then
5112 F
: constant Entity_Id
:= First_Formal
(Op_Id
);
5115 -- Verify that Op_Id is a visible unary function. Note that since
5116 -- we know Op_Id is overloaded, potentially use visible means use
5117 -- visible for sure (RM 9.4(11)).
5119 if Ekind
(Op_Id
) = E_Function
5120 and then No
(Next_Formal
(F
))
5121 and then (Is_Immediately_Visible
(Op_Id
)
5122 or else Is_Potentially_Use_Visible
(Op_Id
))
5123 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F
))
5125 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
5129 end Analyze_User_Defined_Unary_Op
;
5131 ---------------------------
5132 -- Check_Arithmetic_Pair --
5133 ---------------------------
5135 procedure Check_Arithmetic_Pair
5136 (T1
, T2
: Entity_Id
;
5140 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
5142 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean;
5143 -- Check whether the fixed-point type Typ has a user-defined operator
5144 -- (multiplication or division) that should hide the corresponding
5145 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5146 -- such operators more visible and therefore useful.
5148 -- If the name of the operation is an expanded name with prefix
5149 -- Standard, the predefined universal fixed operator is available,
5150 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5152 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
;
5153 -- Get specific type (i.e. non-universal type if there is one)
5159 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean is
5160 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
5166 -- If the universal_fixed operation is given explicitly the rule
5167 -- concerning primitive operations of the type do not apply.
5169 if Nkind
(N
) = N_Function_Call
5170 and then Nkind
(Name
(N
)) = N_Expanded_Name
5171 and then Entity
(Prefix
(Name
(N
))) = Standard_Standard
5176 -- The operation is treated as primitive if it is declared in the
5177 -- same scope as the type, and therefore on the same entity chain.
5179 Ent
:= Next_Entity
(Typ
);
5180 while Present
(Ent
) loop
5181 if Chars
(Ent
) = Chars
(Op
) then
5182 F1
:= First_Formal
(Ent
);
5183 F2
:= Next_Formal
(F1
);
5185 -- The operation counts as primitive if either operand or
5186 -- result are of the given base type, and both operands are
5187 -- fixed point types.
5189 if (Base_Type
(Etype
(F1
)) = Bas
5190 and then Is_Fixed_Point_Type
(Etype
(F2
)))
5193 (Base_Type
(Etype
(F2
)) = Bas
5194 and then Is_Fixed_Point_Type
(Etype
(F1
)))
5197 (Base_Type
(Etype
(Ent
)) = Bas
5198 and then Is_Fixed_Point_Type
(Etype
(F1
))
5199 and then Is_Fixed_Point_Type
(Etype
(F2
)))
5215 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
is
5217 if T1
= Universal_Integer
or else T1
= Universal_Real
then
5218 return Base_Type
(T2
);
5220 return Base_Type
(T1
);
5224 -- Start of processing for Check_Arithmetic_Pair
5227 if Nam_In
(Op_Name
, Name_Op_Add
, Name_Op_Subtract
) then
5228 if Is_Numeric_Type
(T1
)
5229 and then Is_Numeric_Type
(T2
)
5230 and then (Covers
(T1
=> T1
, T2
=> T2
)
5232 Covers
(T1
=> T2
, T2
=> T1
))
5234 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
5237 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
) then
5238 if Is_Fixed_Point_Type
(T1
)
5239 and then (Is_Fixed_Point_Type
(T2
) or else T2
= Universal_Real
)
5241 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5242 -- and no further processing is required (this is the case of an
5243 -- operator constructed by Exp_Fixd for a fixed point operation)
5244 -- Otherwise add one interpretation with universal fixed result
5245 -- If the operator is given in functional notation, it comes
5246 -- from source and Fixed_As_Integer cannot apply.
5248 if (Nkind
(N
) not in N_Op
5249 or else not Treat_Fixed_As_Integer
(N
))
5251 (not Has_Fixed_Op
(T1
, Op_Id
)
5252 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
5254 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
5257 elsif Is_Fixed_Point_Type
(T2
)
5258 and then (Nkind
(N
) not in N_Op
5259 or else not Treat_Fixed_As_Integer
(N
))
5260 and then T1
= Universal_Real
5262 (not Has_Fixed_Op
(T1
, Op_Id
)
5263 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
5265 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
5267 elsif Is_Numeric_Type
(T1
)
5268 and then Is_Numeric_Type
(T2
)
5269 and then (Covers
(T1
=> T1
, T2
=> T2
)
5271 Covers
(T1
=> T2
, T2
=> T1
))
5273 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
5275 elsif Is_Fixed_Point_Type
(T1
)
5276 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5277 or else T2
= Universal_Integer
)
5279 Add_One_Interp
(N
, Op_Id
, T1
);
5281 elsif T2
= Universal_Real
5282 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
5283 and then Op_Name
= Name_Op_Multiply
5285 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
5287 elsif T1
= Universal_Real
5288 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5290 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
5292 elsif Is_Fixed_Point_Type
(T2
)
5293 and then (Base_Type
(T1
) = Base_Type
(Standard_Integer
)
5294 or else T1
= Universal_Integer
)
5295 and then Op_Name
= Name_Op_Multiply
5297 Add_One_Interp
(N
, Op_Id
, T2
);
5299 elsif T1
= Universal_Real
and then T2
= Universal_Integer
then
5300 Add_One_Interp
(N
, Op_Id
, T1
);
5302 elsif T2
= Universal_Real
5303 and then T1
= Universal_Integer
5304 and then Op_Name
= Name_Op_Multiply
5306 Add_One_Interp
(N
, Op_Id
, T2
);
5309 elsif Op_Name
= Name_Op_Mod
or else Op_Name
= Name_Op_Rem
then
5311 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5312 -- set does not require any special processing, since the Etype is
5313 -- already set (case of operation constructed by Exp_Fixed).
5315 if Is_Integer_Type
(T1
)
5316 and then (Covers
(T1
=> T1
, T2
=> T2
)
5318 Covers
(T1
=> T2
, T2
=> T1
))
5320 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
5323 elsif Op_Name
= Name_Op_Expon
then
5324 if Is_Numeric_Type
(T1
)
5325 and then not Is_Fixed_Point_Type
(T1
)
5326 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5327 or else T2
= Universal_Integer
)
5329 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
5332 else pragma Assert
(Nkind
(N
) in N_Op_Shift
);
5334 -- If not one of the predefined operators, the node may be one
5335 -- of the intrinsic functions. Its kind is always specific, and
5336 -- we can use it directly, rather than the name of the operation.
5338 if Is_Integer_Type
(T1
)
5339 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5340 or else T2
= Universal_Integer
)
5342 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
5345 end Check_Arithmetic_Pair
;
5347 -------------------------------
5348 -- Check_Misspelled_Selector --
5349 -------------------------------
5351 procedure Check_Misspelled_Selector
5352 (Prefix
: Entity_Id
;
5355 Max_Suggestions
: constant := 2;
5356 Nr_Of_Suggestions
: Natural := 0;
5358 Suggestion_1
: Entity_Id
:= Empty
;
5359 Suggestion_2
: Entity_Id
:= Empty
;
5364 -- All the components of the prefix of selector Sel are matched against
5365 -- Sel and a count is maintained of possible misspellings. When at
5366 -- the end of the analysis there are one or two (not more) possible
5367 -- misspellings, these misspellings will be suggested as possible
5370 if not (Is_Private_Type
(Prefix
) or else Is_Record_Type
(Prefix
)) then
5372 -- Concurrent types should be handled as well ???
5377 Comp
:= First_Entity
(Prefix
);
5378 while Nr_Of_Suggestions
<= Max_Suggestions
and then Present
(Comp
) loop
5379 if Is_Visible_Component
(Comp
) then
5380 if Is_Bad_Spelling_Of
(Chars
(Comp
), Chars
(Sel
)) then
5381 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
5383 case Nr_Of_Suggestions
is
5384 when 1 => Suggestion_1
:= Comp
;
5385 when 2 => Suggestion_2
:= Comp
;
5386 when others => exit;
5391 Comp
:= Next_Entity
(Comp
);
5394 -- Report at most two suggestions
5396 if Nr_Of_Suggestions
= 1 then
5397 Error_Msg_NE
-- CODEFIX
5398 ("\possible misspelling of&", Sel
, Suggestion_1
);
5400 elsif Nr_Of_Suggestions
= 2 then
5401 Error_Msg_Node_2
:= Suggestion_2
;
5402 Error_Msg_NE
-- CODEFIX
5403 ("\possible misspelling of& or&", Sel
, Suggestion_1
);
5405 end Check_Misspelled_Selector
;
5407 ----------------------
5408 -- Defined_In_Scope --
5409 ----------------------
5411 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean
5413 S1
: constant Entity_Id
:= Scope
(Base_Type
(T
));
5416 or else (S1
= System_Aux_Id
and then S
= Scope
(S1
));
5417 end Defined_In_Scope
;
5423 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
) is
5429 Void_Interp_Seen
: Boolean := False;
5432 pragma Warnings
(Off
, Boolean);
5435 if Ada_Version
>= Ada_2005
then
5436 Actual
:= First_Actual
(N
);
5437 while Present
(Actual
) loop
5439 -- Ada 2005 (AI-50217): Post an error in case of premature
5440 -- usage of an entity from the limited view.
5442 if not Analyzed
(Etype
(Actual
))
5443 and then From_Limited_With
(Etype
(Actual
))
5445 Error_Msg_Qual_Level
:= 1;
5447 ("missing with_clause for scope of imported type&",
5448 Actual
, Etype
(Actual
));
5449 Error_Msg_Qual_Level
:= 0;
5452 Next_Actual
(Actual
);
5456 -- Analyze each candidate call again, with full error reporting
5460 ("no candidate interpretations match the actuals:!", Nam
);
5461 Err_Mode
:= All_Errors_Mode
;
5462 All_Errors_Mode
:= True;
5464 -- If this is a call to an operation of a concurrent type,
5465 -- the failed interpretations have been removed from the
5466 -- name. Recover them to provide full diagnostics.
5468 if Nkind
(Parent
(Nam
)) = N_Selected_Component
then
5469 Set_Entity
(Nam
, Empty
);
5470 New_Nam
:= New_Copy_Tree
(Parent
(Nam
));
5471 Set_Is_Overloaded
(New_Nam
, False);
5472 Set_Is_Overloaded
(Selector_Name
(New_Nam
), False);
5473 Set_Parent
(New_Nam
, Parent
(Parent
(Nam
)));
5474 Analyze_Selected_Component
(New_Nam
);
5475 Get_First_Interp
(Selector_Name
(New_Nam
), X
, It
);
5477 Get_First_Interp
(Nam
, X
, It
);
5480 while Present
(It
.Nam
) loop
5481 if Etype
(It
.Nam
) = Standard_Void_Type
then
5482 Void_Interp_Seen
:= True;
5485 Analyze_One_Call
(N
, It
.Nam
, True, Success
);
5486 Get_Next_Interp
(X
, It
);
5489 if Nkind
(N
) = N_Function_Call
then
5490 Get_First_Interp
(Nam
, X
, It
);
5491 while Present
(It
.Nam
) loop
5492 if Ekind_In
(It
.Nam
, E_Function
, E_Operator
) then
5495 Get_Next_Interp
(X
, It
);
5499 -- If all interpretations are procedures, this deserves a
5500 -- more precise message. Ditto if this appears as the prefix
5501 -- of a selected component, which may be a lexical error.
5504 ("\context requires function call, found procedure name", Nam
);
5506 if Nkind
(Parent
(N
)) = N_Selected_Component
5507 and then N
= Prefix
(Parent
(N
))
5509 Error_Msg_N
-- CODEFIX
5510 ("\period should probably be semicolon", Parent
(N
));
5513 elsif Nkind
(N
) = N_Procedure_Call_Statement
5514 and then not Void_Interp_Seen
5517 "\function name found in procedure call", Nam
);
5520 All_Errors_Mode
:= Err_Mode
;
5523 ---------------------------
5524 -- Find_Arithmetic_Types --
5525 ---------------------------
5527 procedure Find_Arithmetic_Types
5532 Index1
: Interp_Index
;
5533 Index2
: Interp_Index
;
5537 procedure Check_Right_Argument
(T
: Entity_Id
);
5538 -- Check right operand of operator
5540 --------------------------
5541 -- Check_Right_Argument --
5542 --------------------------
5544 procedure Check_Right_Argument
(T
: Entity_Id
) is
5546 if not Is_Overloaded
(R
) then
5547 Check_Arithmetic_Pair
(T
, Etype
(R
), Op_Id
, N
);
5549 Get_First_Interp
(R
, Index2
, It2
);
5550 while Present
(It2
.Typ
) loop
5551 Check_Arithmetic_Pair
(T
, It2
.Typ
, Op_Id
, N
);
5552 Get_Next_Interp
(Index2
, It2
);
5555 end Check_Right_Argument
;
5557 -- Start of processing for Find_Arithmetic_Types
5560 if not Is_Overloaded
(L
) then
5561 Check_Right_Argument
(Etype
(L
));
5564 Get_First_Interp
(L
, Index1
, It1
);
5565 while Present
(It1
.Typ
) loop
5566 Check_Right_Argument
(It1
.Typ
);
5567 Get_Next_Interp
(Index1
, It1
);
5571 end Find_Arithmetic_Types
;
5573 ------------------------
5574 -- Find_Boolean_Types --
5575 ------------------------
5577 procedure Find_Boolean_Types
5582 Index
: Interp_Index
;
5585 procedure Check_Numeric_Argument
(T
: Entity_Id
);
5586 -- Special case for logical operations one of whose operands is an
5587 -- integer literal. If both are literal the result is any modular type.
5589 ----------------------------
5590 -- Check_Numeric_Argument --
5591 ----------------------------
5593 procedure Check_Numeric_Argument
(T
: Entity_Id
) is
5595 if T
= Universal_Integer
then
5596 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
5598 elsif Is_Modular_Integer_Type
(T
) then
5599 Add_One_Interp
(N
, Op_Id
, T
);
5601 end Check_Numeric_Argument
;
5603 -- Start of processing for Find_Boolean_Types
5606 if not Is_Overloaded
(L
) then
5607 if Etype
(L
) = Universal_Integer
5608 or else Etype
(L
) = Any_Modular
5610 if not Is_Overloaded
(R
) then
5611 Check_Numeric_Argument
(Etype
(R
));
5614 Get_First_Interp
(R
, Index
, It
);
5615 while Present
(It
.Typ
) loop
5616 Check_Numeric_Argument
(It
.Typ
);
5617 Get_Next_Interp
(Index
, It
);
5621 -- If operands are aggregates, we must assume that they may be
5622 -- boolean arrays, and leave disambiguation for the second pass.
5623 -- If only one is an aggregate, verify that the other one has an
5624 -- interpretation as a boolean array
5626 elsif Nkind
(L
) = N_Aggregate
then
5627 if Nkind
(R
) = N_Aggregate
then
5628 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
5630 elsif not Is_Overloaded
(R
) then
5631 if Valid_Boolean_Arg
(Etype
(R
)) then
5632 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
5636 Get_First_Interp
(R
, Index
, It
);
5637 while Present
(It
.Typ
) loop
5638 if Valid_Boolean_Arg
(It
.Typ
) then
5639 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5642 Get_Next_Interp
(Index
, It
);
5646 elsif Valid_Boolean_Arg
(Etype
(L
))
5647 and then Has_Compatible_Type
(R
, Etype
(L
))
5649 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
5653 Get_First_Interp
(L
, Index
, It
);
5654 while Present
(It
.Typ
) loop
5655 if Valid_Boolean_Arg
(It
.Typ
)
5656 and then Has_Compatible_Type
(R
, It
.Typ
)
5658 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5661 Get_Next_Interp
(Index
, It
);
5664 end Find_Boolean_Types
;
5666 ---------------------------
5667 -- Find_Comparison_Types --
5668 ---------------------------
5670 procedure Find_Comparison_Types
5675 Index
: Interp_Index
;
5677 Found
: Boolean := False;
5680 Scop
: Entity_Id
:= Empty
;
5682 procedure Try_One_Interp
(T1
: Entity_Id
);
5683 -- Routine to try one proposed interpretation. Note that the context
5684 -- of the operator plays no role in resolving the arguments, so that
5685 -- if there is more than one interpretation of the operands that is
5686 -- compatible with comparison, the operation is ambiguous.
5688 --------------------
5689 -- Try_One_Interp --
5690 --------------------
5692 procedure Try_One_Interp
(T1
: Entity_Id
) is
5695 -- If the operator is an expanded name, then the type of the operand
5696 -- must be defined in the corresponding scope. If the type is
5697 -- universal, the context will impose the correct type.
5700 and then not Defined_In_Scope
(T1
, Scop
)
5701 and then T1
/= Universal_Integer
5702 and then T1
/= Universal_Real
5703 and then T1
/= Any_String
5704 and then T1
/= Any_Composite
5709 if Valid_Comparison_Arg
(T1
) and then Has_Compatible_Type
(R
, T1
) then
5710 if Found
and then Base_Type
(T1
) /= Base_Type
(T_F
) then
5711 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
5713 if It
= No_Interp
then
5714 Ambiguous_Operands
(N
);
5715 Set_Etype
(L
, Any_Type
);
5729 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
5734 -- Start of processing for Find_Comparison_Types
5737 -- If left operand is aggregate, the right operand has to
5738 -- provide a usable type for it.
5740 if Nkind
(L
) = N_Aggregate
and then Nkind
(R
) /= N_Aggregate
then
5741 Find_Comparison_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
5745 if Nkind
(N
) = N_Function_Call
5746 and then Nkind
(Name
(N
)) = N_Expanded_Name
5748 Scop
:= Entity
(Prefix
(Name
(N
)));
5750 -- The prefix may be a package renaming, and the subsequent test
5751 -- requires the original package.
5753 if Ekind
(Scop
) = E_Package
5754 and then Present
(Renamed_Entity
(Scop
))
5756 Scop
:= Renamed_Entity
(Scop
);
5757 Set_Entity
(Prefix
(Name
(N
)), Scop
);
5761 if not Is_Overloaded
(L
) then
5762 Try_One_Interp
(Etype
(L
));
5765 Get_First_Interp
(L
, Index
, It
);
5766 while Present
(It
.Typ
) loop
5767 Try_One_Interp
(It
.Typ
);
5768 Get_Next_Interp
(Index
, It
);
5771 end Find_Comparison_Types
;
5773 ----------------------------------------
5774 -- Find_Non_Universal_Interpretations --
5775 ----------------------------------------
5777 procedure Find_Non_Universal_Interpretations
5783 Index
: Interp_Index
;
5787 if T1
= Universal_Integer
or else T1
= Universal_Real
5789 -- If the left operand of an equality operator is null, the visibility
5790 -- of the operator must be determined from the interpretation of the
5791 -- right operand. This processing must be done for Any_Access, which
5792 -- is the internal representation of the type of the literal null.
5794 or else T1
= Any_Access
5796 if not Is_Overloaded
(R
) then
5797 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
, Base_Type
(Etype
(R
)));
5799 Get_First_Interp
(R
, Index
, It
);
5800 while Present
(It
.Typ
) loop
5801 if Covers
(It
.Typ
, T1
) then
5803 (N
, Op_Id
, Standard_Boolean
, Base_Type
(It
.Typ
));
5806 Get_Next_Interp
(Index
, It
);
5810 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
, Base_Type
(T1
));
5812 end Find_Non_Universal_Interpretations
;
5814 ------------------------------
5815 -- Find_Concatenation_Types --
5816 ------------------------------
5818 procedure Find_Concatenation_Types
5823 Op_Type
: constant Entity_Id
:= Etype
(Op_Id
);
5826 if Is_Array_Type
(Op_Type
)
5827 and then not Is_Limited_Type
(Op_Type
)
5829 and then (Has_Compatible_Type
(L
, Op_Type
)
5831 Has_Compatible_Type
(L
, Component_Type
(Op_Type
)))
5833 and then (Has_Compatible_Type
(R
, Op_Type
)
5835 Has_Compatible_Type
(R
, Component_Type
(Op_Type
)))
5837 Add_One_Interp
(N
, Op_Id
, Op_Type
);
5839 end Find_Concatenation_Types
;
5841 -------------------------
5842 -- Find_Equality_Types --
5843 -------------------------
5845 procedure Find_Equality_Types
5850 Index
: Interp_Index
;
5852 Found
: Boolean := False;
5855 Scop
: Entity_Id
:= Empty
;
5857 procedure Try_One_Interp
(T1
: Entity_Id
);
5858 -- The context of the equality operator plays no role in resolving the
5859 -- arguments, so that if there is more than one interpretation of the
5860 -- operands that is compatible with equality, the construct is ambiguous
5861 -- and an error can be emitted now, after trying to disambiguate, i.e.
5862 -- applying preference rules.
5864 --------------------
5865 -- Try_One_Interp --
5866 --------------------
5868 procedure Try_One_Interp
(T1
: Entity_Id
) is
5869 Bas
: constant Entity_Id
:= Base_Type
(T1
);
5872 -- If the operator is an expanded name, then the type of the operand
5873 -- must be defined in the corresponding scope. If the type is
5874 -- universal, the context will impose the correct type. An anonymous
5875 -- type for a 'Access reference is also universal in this sense, as
5876 -- the actual type is obtained from context.
5878 -- In Ada 2005, the equality operator for anonymous access types
5879 -- is declared in Standard, and preference rules apply to it.
5881 if Present
(Scop
) then
5882 if Defined_In_Scope
(T1
, Scop
)
5883 or else T1
= Universal_Integer
5884 or else T1
= Universal_Real
5885 or else T1
= Any_Access
5886 or else T1
= Any_String
5887 or else T1
= Any_Composite
5888 or else (Ekind
(T1
) = E_Access_Subprogram_Type
5889 and then not Comes_From_Source
(T1
))
5893 elsif Ekind
(T1
) = E_Anonymous_Access_Type
5894 and then Scop
= Standard_Standard
5899 -- The scope does not contain an operator for the type
5904 -- If we have infix notation, the operator must be usable. Within
5905 -- an instance, if the type is already established we know it is
5906 -- correct. If an operand is universal it is compatible with any
5909 elsif In_Open_Scopes
(Scope
(Bas
))
5910 or else Is_Potentially_Use_Visible
(Bas
)
5911 or else In_Use
(Bas
)
5912 or else (In_Use
(Scope
(Bas
)) and then not Is_Hidden
(Bas
))
5914 -- In an instance, the type may have been immediately visible.
5915 -- Either the types are compatible, or one operand is universal
5916 -- (numeric or null).
5918 or else (In_Instance
5920 (First_Subtype
(T1
) = First_Subtype
(Etype
(R
))
5921 or else Nkind
(R
) = N_Null
5923 (Is_Numeric_Type
(T1
)
5924 and then Is_Universal_Numeric_Type
(Etype
(R
)))))
5926 -- In Ada 2005, the equality on anonymous access types is declared
5927 -- in Standard, and is always visible.
5929 or else Ekind
(T1
) = E_Anonymous_Access_Type
5934 -- Save candidate type for subsequent error message, if any
5936 if not Is_Limited_Type
(T1
) then
5937 Candidate_Type
:= T1
;
5943 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5944 -- Do not allow anonymous access types in equality operators.
5946 if Ada_Version
< Ada_2005
5947 and then Ekind
(T1
) = E_Anonymous_Access_Type
5952 -- If the right operand has a type compatible with T1, check for an
5953 -- acceptable interpretation, unless T1 is limited (no predefined
5954 -- equality available), or this is use of a "/=" for a tagged type.
5955 -- In the latter case, possible interpretations of equality need
5956 -- to be considered, we don't want the default inequality declared
5957 -- in Standard to be chosen, and the "/=" will be rewritten as a
5958 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
5959 -- that that rewriting happens during analysis rather than being
5960 -- delayed until expansion (this is needed for ASIS, which only sees
5961 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
5962 -- is Name_Op_Eq then we still proceed with the interpretation,
5963 -- because that indicates the potential rewriting case where the
5964 -- interpretation to consider is actually "=" and the node may be
5965 -- about to be rewritten by Analyze_Equality_Op.
5967 if T1
/= Standard_Void_Type
5968 and then Has_Compatible_Type
(R
, T1
)
5971 ((not Is_Limited_Type
(T1
)
5972 and then not Is_Limited_Composite
(T1
))
5976 and then not Is_Limited_Type
(Component_Type
(T1
))
5977 and then Available_Full_View_Of_Component
(T1
)))
5980 (Nkind
(N
) /= N_Op_Ne
5981 or else not Is_Tagged_Type
(T1
)
5982 or else Chars
(Op_Id
) = Name_Op_Eq
)
5985 and then Base_Type
(T1
) /= Base_Type
(T_F
)
5987 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
5989 if It
= No_Interp
then
5990 Ambiguous_Operands
(N
);
5991 Set_Etype
(L
, Any_Type
);
6004 if not Analyzed
(L
) then
6008 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
6010 -- Case of operator was not visible, Etype still set to Any_Type
6012 if Etype
(N
) = Any_Type
then
6016 elsif Scop
= Standard_Standard
6017 and then Ekind
(T1
) = E_Anonymous_Access_Type
6023 -- Start of processing for Find_Equality_Types
6026 -- If left operand is aggregate, the right operand has to
6027 -- provide a usable type for it.
6029 if Nkind
(L
) = N_Aggregate
6030 and then Nkind
(R
) /= N_Aggregate
6032 Find_Equality_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
6036 if Nkind
(N
) = N_Function_Call
6037 and then Nkind
(Name
(N
)) = N_Expanded_Name
6039 Scop
:= Entity
(Prefix
(Name
(N
)));
6041 -- The prefix may be a package renaming, and the subsequent test
6042 -- requires the original package.
6044 if Ekind
(Scop
) = E_Package
6045 and then Present
(Renamed_Entity
(Scop
))
6047 Scop
:= Renamed_Entity
(Scop
);
6048 Set_Entity
(Prefix
(Name
(N
)), Scop
);
6052 if not Is_Overloaded
(L
) then
6053 Try_One_Interp
(Etype
(L
));
6056 Get_First_Interp
(L
, Index
, It
);
6057 while Present
(It
.Typ
) loop
6058 Try_One_Interp
(It
.Typ
);
6059 Get_Next_Interp
(Index
, It
);
6062 end Find_Equality_Types
;
6064 -------------------------
6065 -- Find_Negation_Types --
6066 -------------------------
6068 procedure Find_Negation_Types
6073 Index
: Interp_Index
;
6077 if not Is_Overloaded
(R
) then
6078 if Etype
(R
) = Universal_Integer
then
6079 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
6080 elsif Valid_Boolean_Arg
(Etype
(R
)) then
6081 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
6085 Get_First_Interp
(R
, Index
, It
);
6086 while Present
(It
.Typ
) loop
6087 if Valid_Boolean_Arg
(It
.Typ
) then
6088 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
6091 Get_Next_Interp
(Index
, It
);
6094 end Find_Negation_Types
;
6096 ------------------------------
6097 -- Find_Primitive_Operation --
6098 ------------------------------
6100 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean is
6101 Obj
: constant Node_Id
:= Prefix
(N
);
6102 Op
: constant Node_Id
:= Selector_Name
(N
);
6109 Set_Etype
(Op
, Any_Type
);
6111 if Is_Access_Type
(Etype
(Obj
)) then
6112 Typ
:= Designated_Type
(Etype
(Obj
));
6117 if Is_Class_Wide_Type
(Typ
) then
6118 Typ
:= Root_Type
(Typ
);
6121 Prims
:= Primitive_Operations
(Typ
);
6123 Prim
:= First_Elmt
(Prims
);
6124 while Present
(Prim
) loop
6125 if Chars
(Node
(Prim
)) = Chars
(Op
) then
6126 Add_One_Interp
(Op
, Node
(Prim
), Etype
(Node
(Prim
)));
6127 Set_Etype
(N
, Etype
(Node
(Prim
)));
6133 -- Now look for class-wide operations of the type or any of its
6134 -- ancestors by iterating over the homonyms of the selector.
6137 Cls_Type
: constant Entity_Id
:= Class_Wide_Type
(Typ
);
6141 Hom
:= Current_Entity
(Op
);
6142 while Present
(Hom
) loop
6143 if (Ekind
(Hom
) = E_Procedure
6145 Ekind
(Hom
) = E_Function
)
6146 and then Scope
(Hom
) = Scope
(Typ
)
6147 and then Present
(First_Formal
(Hom
))
6149 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
6151 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
6153 Ekind
(Etype
(First_Formal
(Hom
))) =
6154 E_Anonymous_Access_Type
6157 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
6160 Add_One_Interp
(Op
, Hom
, Etype
(Hom
));
6161 Set_Etype
(N
, Etype
(Hom
));
6164 Hom
:= Homonym
(Hom
);
6168 return Etype
(Op
) /= Any_Type
;
6169 end Find_Primitive_Operation
;
6171 ----------------------
6172 -- Find_Unary_Types --
6173 ----------------------
6175 procedure Find_Unary_Types
6180 Index
: Interp_Index
;
6184 if not Is_Overloaded
(R
) then
6185 if Is_Numeric_Type
(Etype
(R
)) then
6187 -- In an instance a generic actual may be a numeric type even if
6188 -- the formal in the generic unit was not. In that case, the
6189 -- predefined operator was not a possible interpretation in the
6190 -- generic, and cannot be one in the instance, unless the operator
6191 -- is an actual of an instance.
6195 not Is_Numeric_Type
(Corresponding_Generic_Type
(Etype
(R
)))
6199 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(R
)));
6204 Get_First_Interp
(R
, Index
, It
);
6205 while Present
(It
.Typ
) loop
6206 if Is_Numeric_Type
(It
.Typ
) then
6210 (Corresponding_Generic_Type
(Etype
(It
.Typ
)))
6215 Add_One_Interp
(N
, Op_Id
, Base_Type
(It
.Typ
));
6219 Get_Next_Interp
(Index
, It
);
6222 end Find_Unary_Types
;
6228 function Junk_Operand
(N
: Node_Id
) return Boolean is
6232 if Error_Posted
(N
) then
6236 -- Get entity to be tested
6238 if Is_Entity_Name
(N
)
6239 and then Present
(Entity
(N
))
6243 -- An odd case, a procedure name gets converted to a very peculiar
6244 -- function call, and here is where we detect this happening.
6246 elsif Nkind
(N
) = N_Function_Call
6247 and then Is_Entity_Name
(Name
(N
))
6248 and then Present
(Entity
(Name
(N
)))
6252 -- Another odd case, there are at least some cases of selected
6253 -- components where the selected component is not marked as having
6254 -- an entity, even though the selector does have an entity
6256 elsif Nkind
(N
) = N_Selected_Component
6257 and then Present
(Entity
(Selector_Name
(N
)))
6259 Enode
:= Selector_Name
(N
);
6265 -- Now test the entity we got to see if it is a bad case
6267 case Ekind
(Entity
(Enode
)) is
6271 ("package name cannot be used as operand", Enode
);
6273 when Generic_Unit_Kind
=>
6275 ("generic unit name cannot be used as operand", Enode
);
6279 ("subtype name cannot be used as operand", Enode
);
6283 ("entry name cannot be used as operand", Enode
);
6287 ("procedure name cannot be used as operand", Enode
);
6291 ("exception name cannot be used as operand", Enode
);
6293 when E_Block | E_Label | E_Loop
=>
6295 ("label name cannot be used as operand", Enode
);
6305 --------------------
6306 -- Operator_Check --
6307 --------------------
6309 procedure Operator_Check
(N
: Node_Id
) is
6311 Remove_Abstract_Operations
(N
);
6313 -- Test for case of no interpretation found for operator
6315 if Etype
(N
) = Any_Type
then
6319 Op_Id
: Entity_Id
:= Empty
;
6322 R
:= Right_Opnd
(N
);
6324 if Nkind
(N
) in N_Binary_Op
then
6330 -- If either operand has no type, then don't complain further,
6331 -- since this simply means that we have a propagated error.
6334 or else Etype
(R
) = Any_Type
6335 or else (Nkind
(N
) in N_Binary_Op
and then Etype
(L
) = Any_Type
)
6337 -- For the rather unusual case where one of the operands is
6338 -- a Raise_Expression, whose initial type is Any_Type, use
6339 -- the type of the other operand.
6341 if Nkind
(L
) = N_Raise_Expression
then
6342 Set_Etype
(L
, Etype
(R
));
6343 Set_Etype
(N
, Etype
(R
));
6345 elsif Nkind
(R
) = N_Raise_Expression
then
6346 Set_Etype
(R
, Etype
(L
));
6347 Set_Etype
(N
, Etype
(L
));
6352 -- We explicitly check for the case of concatenation of component
6353 -- with component to avoid reporting spurious matching array types
6354 -- that might happen to be lurking in distant packages (such as
6355 -- run-time packages). This also prevents inconsistencies in the
6356 -- messages for certain ACVC B tests, which can vary depending on
6357 -- types declared in run-time interfaces. Another improvement when
6358 -- aggregates are present is to look for a well-typed operand.
6360 elsif Present
(Candidate_Type
)
6361 and then (Nkind
(N
) /= N_Op_Concat
6362 or else Is_Array_Type
(Etype
(L
))
6363 or else Is_Array_Type
(Etype
(R
)))
6365 if Nkind
(N
) = N_Op_Concat
then
6366 if Etype
(L
) /= Any_Composite
6367 and then Is_Array_Type
(Etype
(L
))
6369 Candidate_Type
:= Etype
(L
);
6371 elsif Etype
(R
) /= Any_Composite
6372 and then Is_Array_Type
(Etype
(R
))
6374 Candidate_Type
:= Etype
(R
);
6378 Error_Msg_NE
-- CODEFIX
6379 ("operator for} is not directly visible!",
6380 N
, First_Subtype
(Candidate_Type
));
6383 U
: constant Node_Id
:=
6384 Cunit
(Get_Source_Unit
(Candidate_Type
));
6386 if Unit_Is_Visible
(U
) then
6387 Error_Msg_N
-- CODEFIX
6388 ("use clause would make operation legal!", N
);
6390 Error_Msg_NE
-- CODEFIX
6391 ("add with_clause and use_clause for&!",
6392 N
, Defining_Entity
(Unit
(U
)));
6397 -- If either operand is a junk operand (e.g. package name), then
6398 -- post appropriate error messages, but do not complain further.
6400 -- Note that the use of OR in this test instead of OR ELSE is
6401 -- quite deliberate, we may as well check both operands in the
6402 -- binary operator case.
6404 elsif Junk_Operand
(R
)
6405 or -- really mean OR here and not OR ELSE, see above
6406 (Nkind
(N
) in N_Binary_Op
and then Junk_Operand
(L
))
6410 -- If we have a logical operator, one of whose operands is
6411 -- Boolean, then we know that the other operand cannot resolve to
6412 -- Boolean (since we got no interpretations), but in that case we
6413 -- pretty much know that the other operand should be Boolean, so
6414 -- resolve it that way (generating an error)
6416 elsif Nkind_In
(N
, N_Op_And
, N_Op_Or
, N_Op_Xor
) then
6417 if Etype
(L
) = Standard_Boolean
then
6418 Resolve
(R
, Standard_Boolean
);
6420 elsif Etype
(R
) = Standard_Boolean
then
6421 Resolve
(L
, Standard_Boolean
);
6425 -- For an arithmetic operator or comparison operator, if one
6426 -- of the operands is numeric, then we know the other operand
6427 -- is not the same numeric type. If it is a non-numeric type,
6428 -- then probably it is intended to match the other operand.
6430 elsif Nkind_In
(N
, N_Op_Add
,
6436 Nkind_In
(N
, N_Op_Lt
,
6442 -- If Allow_Integer_Address is active, check whether the
6443 -- operation becomes legal after converting an operand.
6445 if Is_Numeric_Type
(Etype
(L
))
6446 and then not Is_Numeric_Type
(Etype
(R
))
6448 if Address_Integer_Convert_OK
(Etype
(R
), Etype
(L
)) then
6450 Unchecked_Convert_To
(Etype
(L
), Relocate_Node
(R
)));
6451 Analyze_Arithmetic_Op
(N
);
6454 Resolve
(R
, Etype
(L
));
6458 elsif Is_Numeric_Type
(Etype
(R
))
6459 and then not Is_Numeric_Type
(Etype
(L
))
6461 if Address_Integer_Convert_OK
(Etype
(L
), Etype
(R
)) then
6463 Unchecked_Convert_To
(Etype
(R
), Relocate_Node
(L
)));
6464 Analyze_Arithmetic_Op
(N
);
6468 Resolve
(L
, Etype
(R
));
6473 elsif Allow_Integer_Address
6474 and then Is_Descendent_Of_Address
(Etype
(L
))
6475 and then Is_Descendent_Of_Address
(Etype
(R
))
6476 and then not Error_Posted
(N
)
6479 Addr_Type
: constant Entity_Id
:= Etype
(L
);
6483 Unchecked_Convert_To
(
6484 Standard_Integer
, Relocate_Node
(L
)));
6486 Unchecked_Convert_To
(
6487 Standard_Integer
, Relocate_Node
(R
)));
6488 Analyze_Arithmetic_Op
(N
);
6490 -- If this is an operand in an enclosing arithmetic
6491 -- operation, Convert the result as an address so that
6492 -- arithmetic folding of address can continue.
6494 if Nkind
(Parent
(N
)) in N_Op
then
6496 Unchecked_Convert_To
(Addr_Type
, Relocate_Node
(N
)));
6503 -- Comparisons on A'Access are common enough to deserve a
6506 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
6507 and then Ekind
(Etype
(L
)) = E_Access_Attribute_Type
6508 and then Ekind
(Etype
(R
)) = E_Access_Attribute_Type
6511 ("two access attributes cannot be compared directly", N
);
6513 ("\use qualified expression for one of the operands",
6517 -- Another one for C programmers
6519 elsif Nkind
(N
) = N_Op_Concat
6520 and then Valid_Boolean_Arg
(Etype
(L
))
6521 and then Valid_Boolean_Arg
(Etype
(R
))
6523 Error_Msg_N
("invalid operands for concatenation", N
);
6524 Error_Msg_N
-- CODEFIX
6525 ("\maybe AND was meant", N
);
6528 -- A special case for comparison of access parameter with null
6530 elsif Nkind
(N
) = N_Op_Eq
6531 and then Is_Entity_Name
(L
)
6532 and then Nkind
(Parent
(Entity
(L
))) = N_Parameter_Specification
6533 and then Nkind
(Parameter_Type
(Parent
(Entity
(L
)))) =
6535 and then Nkind
(R
) = N_Null
6537 Error_Msg_N
("access parameter is not allowed to be null", L
);
6538 Error_Msg_N
("\(call would raise Constraint_Error)", L
);
6541 -- Another special case for exponentiation, where the right
6542 -- operand must be Natural, independently of the base.
6544 elsif Nkind
(N
) = N_Op_Expon
6545 and then Is_Numeric_Type
(Etype
(L
))
6546 and then not Is_Overloaded
(R
)
6548 First_Subtype
(Base_Type
(Etype
(R
))) /= Standard_Integer
6549 and then Base_Type
(Etype
(R
)) /= Universal_Integer
6551 if Ada_Version
>= Ada_2012
6552 and then Has_Dimension_System
(Etype
(L
))
6555 ("exponent for dimensioned type must be a rational" &
6556 ", found}", R
, Etype
(R
));
6559 ("exponent must be of type Natural, found}", R
, Etype
(R
));
6565 -- If we fall through then just give general message. Note that in
6566 -- the following messages, if the operand is overloaded we choose
6567 -- an arbitrary type to complain about, but that is probably more
6568 -- useful than not giving a type at all.
6570 if Nkind
(N
) in N_Unary_Op
then
6571 Error_Msg_Node_2
:= Etype
(R
);
6572 Error_Msg_N
("operator& not defined for}", N
);
6576 if Nkind
(N
) in N_Binary_Op
then
6577 if not Is_Overloaded
(L
)
6578 and then not Is_Overloaded
(R
)
6579 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
6581 Error_Msg_Node_2
:= First_Subtype
(Etype
(R
));
6582 Error_Msg_N
("there is no applicable operator& for}", N
);
6585 -- Another attempt to find a fix: one of the candidate
6586 -- interpretations may not be use-visible. This has
6587 -- already been checked for predefined operators, so
6588 -- we examine only user-defined functions.
6590 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
6592 while Present
(Op_Id
) loop
6593 if Ekind
(Op_Id
) /= E_Operator
6594 and then Is_Overloadable
(Op_Id
)
6596 if not Is_Immediately_Visible
(Op_Id
)
6597 and then not In_Use
(Scope
(Op_Id
))
6598 and then not Is_Abstract_Subprogram
(Op_Id
)
6599 and then not Is_Hidden
(Op_Id
)
6600 and then Ekind
(Scope
(Op_Id
)) = E_Package
6603 (L
, Etype
(First_Formal
(Op_Id
)))
6605 (Next_Formal
(First_Formal
(Op_Id
)))
6609 Etype
(Next_Formal
(First_Formal
(Op_Id
))))
6612 ("No legal interpretation for operator&", N
);
6614 ("\use clause on& would make operation legal",
6620 Op_Id
:= Homonym
(Op_Id
);
6624 Error_Msg_N
("invalid operand types for operator&", N
);
6626 if Nkind
(N
) /= N_Op_Concat
then
6627 Error_Msg_NE
("\left operand has}!", N
, Etype
(L
));
6628 Error_Msg_NE
("\right operand has}!", N
, Etype
(R
));
6630 -- For concatenation operators it is more difficult to
6631 -- determine which is the wrong operand. It is worth
6632 -- flagging explicitly an access type, for those who
6633 -- might think that a dereference happens here.
6635 elsif Is_Access_Type
(Etype
(L
)) then
6636 Error_Msg_N
("\left operand is access type", N
);
6638 elsif Is_Access_Type
(Etype
(R
)) then
6639 Error_Msg_N
("\right operand is access type", N
);
6649 -----------------------------------------
6650 -- Process_Implicit_Dereference_Prefix --
6651 -----------------------------------------
6653 function Process_Implicit_Dereference_Prefix
6655 P
: Entity_Id
) return Entity_Id
6658 Typ
: constant Entity_Id
:= Designated_Type
(Etype
(P
));
6662 and then (Operating_Mode
= Check_Semantics
or else not Expander_Active
)
6664 -- We create a dummy reference to E to ensure that the reference is
6665 -- not considered as part of an assignment (an implicit dereference
6666 -- can never assign to its prefix). The Comes_From_Source attribute
6667 -- needs to be propagated for accurate warnings.
6669 Ref
:= New_Occurrence_Of
(E
, Sloc
(P
));
6670 Set_Comes_From_Source
(Ref
, Comes_From_Source
(P
));
6671 Generate_Reference
(E
, Ref
);
6674 -- An implicit dereference is a legal occurrence of an incomplete type
6675 -- imported through a limited_with clause, if the full view is visible.
6677 if From_Limited_With
(Typ
)
6678 and then not From_Limited_With
(Scope
(Typ
))
6680 (Is_Immediately_Visible
(Scope
(Typ
))
6682 (Is_Child_Unit
(Scope
(Typ
))
6683 and then Is_Visible_Lib_Unit
(Scope
(Typ
))))
6685 return Available_View
(Typ
);
6689 end Process_Implicit_Dereference_Prefix
;
6691 --------------------------------
6692 -- Remove_Abstract_Operations --
6693 --------------------------------
6695 procedure Remove_Abstract_Operations
(N
: Node_Id
) is
6696 Abstract_Op
: Entity_Id
:= Empty
;
6697 Address_Descendent
: Boolean := False;
6701 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6702 -- activate this if either extensions are enabled, or if the abstract
6703 -- operation in question comes from a predefined file. This latter test
6704 -- allows us to use abstract to make operations invisible to users. In
6705 -- particular, if type Address is non-private and abstract subprograms
6706 -- are used to hide its operators, they will be truly hidden.
6708 type Operand_Position
is (First_Op
, Second_Op
);
6709 Univ_Type
: constant Entity_Id
:= Universal_Interpretation
(N
);
6711 procedure Remove_Address_Interpretations
(Op
: Operand_Position
);
6712 -- Ambiguities may arise when the operands are literal and the address
6713 -- operations in s-auxdec are visible. In that case, remove the
6714 -- interpretation of a literal as Address, to retain the semantics
6715 -- of Address as a private type.
6717 ------------------------------------
6718 -- Remove_Address_Interpretations --
6719 ------------------------------------
6721 procedure Remove_Address_Interpretations
(Op
: Operand_Position
) is
6725 if Is_Overloaded
(N
) then
6726 Get_First_Interp
(N
, I
, It
);
6727 while Present
(It
.Nam
) loop
6728 Formal
:= First_Entity
(It
.Nam
);
6730 if Op
= Second_Op
then
6731 Formal
:= Next_Entity
(Formal
);
6734 if Is_Descendent_Of_Address
(Etype
(Formal
)) then
6735 Address_Descendent
:= True;
6739 Get_Next_Interp
(I
, It
);
6742 end Remove_Address_Interpretations
;
6744 -- Start of processing for Remove_Abstract_Operations
6747 if Is_Overloaded
(N
) then
6748 if Debug_Flag_V
then
6749 Write_Str
("Remove_Abstract_Operations: ");
6750 Write_Overloads
(N
);
6753 Get_First_Interp
(N
, I
, It
);
6755 while Present
(It
.Nam
) loop
6756 if Is_Overloadable
(It
.Nam
)
6757 and then Is_Abstract_Subprogram
(It
.Nam
)
6758 and then not Is_Dispatching_Operation
(It
.Nam
)
6760 Abstract_Op
:= It
.Nam
;
6762 if Is_Descendent_Of_Address
(It
.Typ
) then
6763 Address_Descendent
:= True;
6767 -- In Ada 2005, this operation does not participate in overload
6768 -- resolution. If the operation is defined in a predefined
6769 -- unit, it is one of the operations declared abstract in some
6770 -- variants of System, and it must be removed as well.
6772 elsif Ada_Version
>= Ada_2005
6773 or else Is_Predefined_File_Name
6774 (Unit_File_Name
(Get_Source_Unit
(It
.Nam
)))
6781 Get_Next_Interp
(I
, It
);
6784 if No
(Abstract_Op
) then
6786 -- If some interpretation yields an integer type, it is still
6787 -- possible that there are address interpretations. Remove them
6788 -- if one operand is a literal, to avoid spurious ambiguities
6789 -- on systems where Address is a visible integer type.
6791 if Is_Overloaded
(N
)
6792 and then Nkind
(N
) in N_Op
6793 and then Is_Integer_Type
(Etype
(N
))
6795 if Nkind
(N
) in N_Binary_Op
then
6796 if Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
6797 Remove_Address_Interpretations
(Second_Op
);
6799 elsif Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
6800 Remove_Address_Interpretations
(First_Op
);
6805 elsif Nkind
(N
) in N_Op
then
6807 -- Remove interpretations that treat literals as addresses. This
6808 -- is never appropriate, even when Address is defined as a visible
6809 -- Integer type. The reason is that we would really prefer Address
6810 -- to behave as a private type, even in this case, which is there
6811 -- only to accommodate oddities of VMS address sizes. If Address
6812 -- is a visible integer type, we get lots of overload ambiguities.
6814 if Nkind
(N
) in N_Binary_Op
then
6816 U1
: constant Boolean :=
6817 Present
(Universal_Interpretation
(Right_Opnd
(N
)));
6818 U2
: constant Boolean :=
6819 Present
(Universal_Interpretation
(Left_Opnd
(N
)));
6823 Remove_Address_Interpretations
(Second_Op
);
6827 Remove_Address_Interpretations
(First_Op
);
6830 if not (U1
and U2
) then
6832 -- Remove corresponding predefined operator, which is
6833 -- always added to the overload set.
6835 Get_First_Interp
(N
, I
, It
);
6836 while Present
(It
.Nam
) loop
6837 if Scope
(It
.Nam
) = Standard_Standard
6838 and then Base_Type
(It
.Typ
) =
6839 Base_Type
(Etype
(Abstract_Op
))
6844 Get_Next_Interp
(I
, It
);
6847 elsif Is_Overloaded
(N
)
6848 and then Present
(Univ_Type
)
6850 -- If both operands have a universal interpretation,
6851 -- it is still necessary to remove interpretations that
6852 -- yield Address. Any remaining ambiguities will be
6853 -- removed in Disambiguate.
6855 Get_First_Interp
(N
, I
, It
);
6856 while Present
(It
.Nam
) loop
6857 if Is_Descendent_Of_Address
(It
.Typ
) then
6860 elsif not Is_Type
(It
.Nam
) then
6861 Set_Entity
(N
, It
.Nam
);
6864 Get_Next_Interp
(I
, It
);
6870 elsif Nkind
(N
) = N_Function_Call
6872 (Nkind
(Name
(N
)) = N_Operator_Symbol
6874 (Nkind
(Name
(N
)) = N_Expanded_Name
6876 Nkind
(Selector_Name
(Name
(N
))) = N_Operator_Symbol
))
6880 Arg1
: constant Node_Id
:= First
(Parameter_Associations
(N
));
6881 U1
: constant Boolean :=
6882 Present
(Universal_Interpretation
(Arg1
));
6883 U2
: constant Boolean :=
6884 Present
(Next
(Arg1
)) and then
6885 Present
(Universal_Interpretation
(Next
(Arg1
)));
6889 Remove_Address_Interpretations
(First_Op
);
6893 Remove_Address_Interpretations
(Second_Op
);
6896 if not (U1
and U2
) then
6897 Get_First_Interp
(N
, I
, It
);
6898 while Present
(It
.Nam
) loop
6899 if Scope
(It
.Nam
) = Standard_Standard
6900 and then It
.Typ
= Base_Type
(Etype
(Abstract_Op
))
6905 Get_Next_Interp
(I
, It
);
6911 -- If the removal has left no valid interpretations, emit an error
6912 -- message now and label node as illegal.
6914 if Present
(Abstract_Op
) then
6915 Get_First_Interp
(N
, I
, It
);
6919 -- Removal of abstract operation left no viable candidate
6921 Set_Etype
(N
, Any_Type
);
6922 Error_Msg_Sloc
:= Sloc
(Abstract_Op
);
6924 ("cannot call abstract operation& declared#", N
, Abstract_Op
);
6926 -- In Ada 2005, an abstract operation may disable predefined
6927 -- operators. Since the context is not yet known, we mark the
6928 -- predefined operators as potentially hidden. Do not include
6929 -- predefined operators when addresses are involved since this
6930 -- case is handled separately.
6932 elsif Ada_Version
>= Ada_2005
and then not Address_Descendent
then
6933 while Present
(It
.Nam
) loop
6934 if Is_Numeric_Type
(It
.Typ
)
6935 and then Scope
(It
.Typ
) = Standard_Standard
6937 Set_Abstract_Op
(I
, Abstract_Op
);
6940 Get_Next_Interp
(I
, It
);
6945 if Debug_Flag_V
then
6946 Write_Str
("Remove_Abstract_Operations done: ");
6947 Write_Overloads
(N
);
6950 end Remove_Abstract_Operations
;
6952 ----------------------------
6953 -- Try_Container_Indexing --
6954 ----------------------------
6956 function Try_Container_Indexing
6959 Exprs
: List_Id
) return Boolean
6961 Loc
: constant Source_Ptr
:= Sloc
(N
);
6965 Func_Name
: Node_Id
;
6970 -- Check whether type has a specified indexing aspect
6974 if Is_Variable
(Prefix
) then
6976 Find_Value_Of_Aspect
(Etype
(Prefix
), Aspect_Variable_Indexing
);
6979 if No
(Func_Name
) then
6981 Find_Value_Of_Aspect
(Etype
(Prefix
), Aspect_Constant_Indexing
);
6984 -- If aspect does not exist the expression is illegal. Error is
6985 -- diagnosed in caller.
6987 if No
(Func_Name
) then
6989 -- The prefix itself may be an indexing of a container: rewrite
6990 -- as such and re-analyze.
6992 if Has_Implicit_Dereference
(Etype
(Prefix
)) then
6993 Build_Explicit_Dereference
6994 (Prefix
, First_Discriminant
(Etype
(Prefix
)));
6995 return Try_Container_Indexing
(N
, Prefix
, Exprs
);
7001 -- If the container type is derived from another container type, the
7002 -- value of the inherited aspect is the Reference operation declared
7003 -- for the parent type.
7005 -- However, Reference is also a primitive operation of the type, and
7006 -- the inherited operation has a different signature. We retrieve the
7007 -- right one from the list of primitive operations of the derived type.
7009 -- Note that predefined containers are typically all derived from one
7010 -- of the Controlled types. The code below is motivated by containers
7011 -- that are derived from other types with a Reference aspect.
7013 -- Additional machinery may be needed for types that have several user-
7014 -- defined Reference operations with different signatures ???
7016 elsif Is_Derived_Type
(Etype
(Prefix
))
7017 and then Etype
(First_Formal
(Entity
(Func_Name
))) /= Etype
(Prefix
)
7019 Func
:= Find_Prim_Op
(Etype
(Prefix
), Chars
(Func_Name
));
7020 Func_Name
:= New_Occurrence_Of
(Func
, Loc
);
7023 Assoc
:= New_List
(Relocate_Node
(Prefix
));
7025 -- A generalized indexing may have nore than one index expression, so
7026 -- transfer all of them to the argument list to be used in the call.
7027 -- Note that there may be named associations, in which case the node
7028 -- was rewritten earlier as a call, and has been transformed back into
7029 -- an indexed expression to share the following processing.
7031 -- The generalized indexing node is the one on which analysis and
7032 -- resolution take place. Before expansion the original node is replaced
7033 -- with the generalized indexing node, which is a call, possibly with
7034 -- a dereference operation.
7036 if Comes_From_Source
(N
) then
7037 Check_Compiler_Unit
("generalized indexing", N
);
7043 Arg
:= First
(Exprs
);
7044 while Present
(Arg
) loop
7045 Append
(Relocate_Node
(Arg
), Assoc
);
7050 if not Is_Overloaded
(Func_Name
) then
7051 Func
:= Entity
(Func_Name
);
7053 Make_Function_Call
(Loc
,
7054 Name
=> New_Occurrence_Of
(Func
, Loc
),
7055 Parameter_Associations
=> Assoc
);
7056 Set_Parent
(Indexing
, Parent
(N
));
7057 Set_Generalized_Indexing
(N
, Indexing
);
7059 Set_Etype
(N
, Etype
(Indexing
));
7061 -- If the return type of the indexing function is a reference type,
7062 -- add the dereference as a possible interpretation. Note that the
7063 -- indexing aspect may be a function that returns the element type
7064 -- with no intervening implicit dereference, and that the reference
7065 -- discriminant is not the first discriminant.
7067 if Has_Discriminants
(Etype
(Func
)) then
7068 Disc
:= First_Discriminant
(Etype
(Func
));
7069 while Present
(Disc
) loop
7071 Elmt_Type
: Entity_Id
;
7073 if Has_Implicit_Dereference
(Disc
) then
7074 Elmt_Type
:= Designated_Type
(Etype
(Disc
));
7075 Add_One_Interp
(Indexing
, Disc
, Elmt_Type
);
7076 Add_One_Interp
(N
, Disc
, Elmt_Type
);
7081 Next_Discriminant
(Disc
);
7087 Make_Function_Call
(Loc
,
7088 Name
=> Make_Identifier
(Loc
, Chars
(Func_Name
)),
7089 Parameter_Associations
=> Assoc
);
7091 Set_Parent
(Indexing
, Parent
(N
));
7092 Set_Generalized_Indexing
(N
, Indexing
);
7100 Get_First_Interp
(Func_Name
, I
, It
);
7101 Set_Etype
(Indexing
, Any_Type
);
7102 while Present
(It
.Nam
) loop
7103 Analyze_One_Call
(Indexing
, It
.Nam
, False, Success
);
7106 Set_Etype
(Name
(Indexing
), It
.Typ
);
7107 Set_Entity
(Name
(Indexing
), It
.Nam
);
7108 Set_Etype
(N
, Etype
(Indexing
));
7110 -- Add implicit dereference interpretation
7112 if Has_Discriminants
(Etype
(It
.Nam
)) then
7113 Disc
:= First_Discriminant
(Etype
(It
.Nam
));
7114 while Present
(Disc
) loop
7115 if Has_Implicit_Dereference
(Disc
) then
7117 (Indexing
, Disc
, Designated_Type
(Etype
(Disc
)));
7119 (N
, Disc
, Designated_Type
(Etype
(Disc
)));
7123 Next_Discriminant
(Disc
);
7130 Get_Next_Interp
(I
, It
);
7135 if Etype
(Indexing
) = Any_Type
then
7137 ("container cannot be indexed with&", N
, Etype
(First
(Exprs
)));
7138 Rewrite
(N
, New_Occurrence_Of
(Any_Id
, Loc
));
7142 end Try_Container_Indexing
;
7144 -----------------------
7145 -- Try_Indirect_Call --
7146 -----------------------
7148 function Try_Indirect_Call
7151 Typ
: Entity_Id
) return Boolean
7157 pragma Warnings
(Off
, Call_OK
);
7160 Normalize_Actuals
(N
, Designated_Type
(Typ
), False, Call_OK
);
7162 Actual
:= First_Actual
(N
);
7163 Formal
:= First_Formal
(Designated_Type
(Typ
));
7164 while Present
(Actual
) and then Present
(Formal
) loop
7165 if not Has_Compatible_Type
(Actual
, Etype
(Formal
)) then
7170 Next_Formal
(Formal
);
7173 if No
(Actual
) and then No
(Formal
) then
7174 Add_One_Interp
(N
, Nam
, Etype
(Designated_Type
(Typ
)));
7176 -- Nam is a candidate interpretation for the name in the call,
7177 -- if it is not an indirect call.
7179 if not Is_Type
(Nam
)
7180 and then Is_Entity_Name
(Name
(N
))
7182 Set_Entity
(Name
(N
), Nam
);
7190 end Try_Indirect_Call
;
7192 ----------------------
7193 -- Try_Indexed_Call --
7194 ----------------------
7196 function Try_Indexed_Call
7200 Skip_First
: Boolean) return Boolean
7202 Loc
: constant Source_Ptr
:= Sloc
(N
);
7203 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
7208 Actual
:= First
(Actuals
);
7210 -- If the call was originally written in prefix form, skip the first
7211 -- actual, which is obviously not defaulted.
7217 Index
:= First_Index
(Typ
);
7218 while Present
(Actual
) and then Present
(Index
) loop
7220 -- If the parameter list has a named association, the expression
7221 -- is definitely a call and not an indexed component.
7223 if Nkind
(Actual
) = N_Parameter_Association
then
7227 if Is_Entity_Name
(Actual
)
7228 and then Is_Type
(Entity
(Actual
))
7229 and then No
(Next
(Actual
))
7231 -- A single actual that is a type name indicates a slice if the
7232 -- type is discrete, and an error otherwise.
7234 if Is_Discrete_Type
(Entity
(Actual
)) then
7238 Make_Function_Call
(Loc
,
7239 Name
=> Relocate_Node
(Name
(N
))),
7241 New_Occurrence_Of
(Entity
(Actual
), Sloc
(Actual
))));
7246 Error_Msg_N
("invalid use of type in expression", Actual
);
7247 Set_Etype
(N
, Any_Type
);
7252 elsif not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
7260 if No
(Actual
) and then No
(Index
) then
7261 Add_One_Interp
(N
, Nam
, Component_Type
(Typ
));
7263 -- Nam is a candidate interpretation for the name in the call,
7264 -- if it is not an indirect call.
7266 if not Is_Type
(Nam
)
7267 and then Is_Entity_Name
(Name
(N
))
7269 Set_Entity
(Name
(N
), Nam
);
7276 end Try_Indexed_Call
;
7278 --------------------------
7279 -- Try_Object_Operation --
7280 --------------------------
7282 function Try_Object_Operation
7283 (N
: Node_Id
; CW_Test_Only
: Boolean := False) return Boolean
7285 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
7286 Is_Subprg_Call
: constant Boolean := K
in N_Subprogram_Call
;
7287 Loc
: constant Source_Ptr
:= Sloc
(N
);
7288 Obj
: constant Node_Id
:= Prefix
(N
);
7290 Subprog
: constant Node_Id
:=
7291 Make_Identifier
(Sloc
(Selector_Name
(N
)),
7292 Chars
=> Chars
(Selector_Name
(N
)));
7293 -- Identifier on which possible interpretations will be collected
7295 Report_Error
: Boolean := False;
7296 -- If no candidate interpretation matches the context, redo analysis
7297 -- with Report_Error True to provide additional information.
7300 Candidate
: Entity_Id
:= Empty
;
7301 New_Call_Node
: Node_Id
:= Empty
;
7302 Node_To_Replace
: Node_Id
;
7303 Obj_Type
: Entity_Id
:= Etype
(Obj
);
7304 Success
: Boolean := False;
7306 function Valid_Candidate
7309 Subp
: Entity_Id
) return Entity_Id
;
7310 -- If the subprogram is a valid interpretation, record it, and add
7311 -- to the list of interpretations of Subprog. Otherwise return Empty.
7313 procedure Complete_Object_Operation
7314 (Call_Node
: Node_Id
;
7315 Node_To_Replace
: Node_Id
);
7316 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7317 -- Call_Node, insert the object (or its dereference) as the first actual
7318 -- in the call, and complete the analysis of the call.
7320 procedure Report_Ambiguity
(Op
: Entity_Id
);
7321 -- If a prefixed procedure call is ambiguous, indicate whether the
7322 -- call includes an implicit dereference or an implicit 'Access.
7324 procedure Transform_Object_Operation
7325 (Call_Node
: out Node_Id
;
7326 Node_To_Replace
: out Node_Id
);
7327 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
7328 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7329 -- either N or the parent of N, and Subprog is a reference to the
7330 -- subprogram we are trying to match.
7332 function Try_Class_Wide_Operation
7333 (Call_Node
: Node_Id
;
7334 Node_To_Replace
: Node_Id
) return Boolean;
7335 -- Traverse all ancestor types looking for a class-wide subprogram
7336 -- for which the current operation is a valid non-dispatching call.
7338 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
);
7339 -- If prefix is overloaded, its interpretation may include different
7340 -- tagged types, and we must examine the primitive operations and
7341 -- the class-wide operations of each in order to find candidate
7342 -- interpretations for the call as a whole.
7344 function Try_Primitive_Operation
7345 (Call_Node
: Node_Id
;
7346 Node_To_Replace
: Node_Id
) return Boolean;
7347 -- Traverse the list of primitive subprograms looking for a dispatching
7348 -- operation for which the current node is a valid call .
7350 ---------------------
7351 -- Valid_Candidate --
7352 ---------------------
7354 function Valid_Candidate
7357 Subp
: Entity_Id
) return Entity_Id
7359 Arr_Type
: Entity_Id
;
7360 Comp_Type
: Entity_Id
;
7363 -- If the subprogram is a valid interpretation, record it in global
7364 -- variable Subprog, to collect all possible overloadings.
7367 if Subp
/= Entity
(Subprog
) then
7368 Add_One_Interp
(Subprog
, Subp
, Etype
(Subp
));
7372 -- If the call may be an indexed call, retrieve component type of
7373 -- resulting expression, and add possible interpretation.
7378 if Nkind
(Call
) = N_Function_Call
7379 and then Nkind
(Parent
(N
)) = N_Indexed_Component
7380 and then Needs_One_Actual
(Subp
)
7382 if Is_Array_Type
(Etype
(Subp
)) then
7383 Arr_Type
:= Etype
(Subp
);
7385 elsif Is_Access_Type
(Etype
(Subp
))
7386 and then Is_Array_Type
(Designated_Type
(Etype
(Subp
)))
7388 Arr_Type
:= Designated_Type
(Etype
(Subp
));
7392 if Present
(Arr_Type
) then
7394 -- Verify that the actuals (excluding the object) match the types
7402 Actual
:= Next
(First_Actual
(Call
));
7403 Index
:= First_Index
(Arr_Type
);
7404 while Present
(Actual
) and then Present
(Index
) loop
7405 if not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
7410 Next_Actual
(Actual
);
7416 and then Present
(Arr_Type
)
7418 Comp_Type
:= Component_Type
(Arr_Type
);
7422 if Present
(Comp_Type
)
7423 and then Etype
(Subprog
) /= Comp_Type
7425 Add_One_Interp
(Subprog
, Subp
, Comp_Type
);
7429 if Etype
(Call
) /= Any_Type
then
7434 end Valid_Candidate
;
7436 -------------------------------
7437 -- Complete_Object_Operation --
7438 -------------------------------
7440 procedure Complete_Object_Operation
7441 (Call_Node
: Node_Id
;
7442 Node_To_Replace
: Node_Id
)
7444 Control
: constant Entity_Id
:= First_Formal
(Entity
(Subprog
));
7445 Formal_Type
: constant Entity_Id
:= Etype
(Control
);
7446 First_Actual
: Node_Id
;
7449 -- Place the name of the operation, with its interpretations,
7450 -- on the rewritten call.
7452 Set_Name
(Call_Node
, Subprog
);
7454 First_Actual
:= First
(Parameter_Associations
(Call_Node
));
7456 -- For cross-reference purposes, treat the new node as being in the
7457 -- source if the original one is. Set entity and type, even though
7458 -- they may be overwritten during resolution if overloaded.
7460 Set_Comes_From_Source
(Subprog
, Comes_From_Source
(N
));
7461 Set_Comes_From_Source
(Call_Node
, Comes_From_Source
(N
));
7463 if Nkind
(N
) = N_Selected_Component
7464 and then not Inside_A_Generic
7466 Set_Entity
(Selector_Name
(N
), Entity
(Subprog
));
7467 Set_Etype
(Selector_Name
(N
), Etype
(Entity
(Subprog
)));
7470 -- If need be, rewrite first actual as an explicit dereference. If
7471 -- the call is overloaded, the rewriting can only be done once the
7472 -- primitive operation is identified.
7474 if Is_Overloaded
(Subprog
) then
7476 -- The prefix itself may be overloaded, and its interpretations
7477 -- must be propagated to the new actual in the call.
7479 if Is_Overloaded
(Obj
) then
7480 Save_Interps
(Obj
, First_Actual
);
7483 Rewrite
(First_Actual
, Obj
);
7485 elsif not Is_Access_Type
(Formal_Type
)
7486 and then Is_Access_Type
(Etype
(Obj
))
7488 Rewrite
(First_Actual
,
7489 Make_Explicit_Dereference
(Sloc
(Obj
), Obj
));
7490 Analyze
(First_Actual
);
7492 -- If we need to introduce an explicit dereference, verify that
7493 -- the resulting actual is compatible with the mode of the formal.
7495 if Ekind
(First_Formal
(Entity
(Subprog
))) /= E_In_Parameter
7496 and then Is_Access_Constant
(Etype
(Obj
))
7499 ("expect variable in call to&", Prefix
(N
), Entity
(Subprog
));
7502 -- Conversely, if the formal is an access parameter and the object
7503 -- is not, replace the actual with a 'Access reference. Its analysis
7504 -- will check that the object is aliased.
7506 elsif Is_Access_Type
(Formal_Type
)
7507 and then not Is_Access_Type
(Etype
(Obj
))
7509 -- A special case: A.all'access is illegal if A is an access to a
7510 -- constant and the context requires an access to a variable.
7512 if not Is_Access_Constant
(Formal_Type
) then
7513 if (Nkind
(Obj
) = N_Explicit_Dereference
7514 and then Is_Access_Constant
(Etype
(Prefix
(Obj
))))
7515 or else not Is_Variable
(Obj
)
7518 ("actual for& must be a variable", Obj
, Control
);
7522 Rewrite
(First_Actual
,
7523 Make_Attribute_Reference
(Loc
,
7524 Attribute_Name
=> Name_Access
,
7525 Prefix
=> Relocate_Node
(Obj
)));
7527 if not Is_Aliased_View
(Obj
) then
7529 ("object in prefixed call to& must be aliased"
7530 & " (RM-2005 4.3.1 (13))",
7531 Prefix
(First_Actual
), Subprog
);
7534 Analyze
(First_Actual
);
7537 if Is_Overloaded
(Obj
) then
7538 Save_Interps
(Obj
, First_Actual
);
7541 Rewrite
(First_Actual
, Obj
);
7544 Rewrite
(Node_To_Replace
, Call_Node
);
7546 -- Propagate the interpretations collected in subprog to the new
7547 -- function call node, to be resolved from context.
7549 if Is_Overloaded
(Subprog
) then
7550 Save_Interps
(Subprog
, Node_To_Replace
);
7553 -- The type of the subprogram may be a limited view obtained
7554 -- transitively from another unit. If full view is available,
7555 -- use it to analyze call.
7558 T
: constant Entity_Id
:= Etype
(Subprog
);
7560 if From_Limited_With
(T
) then
7561 Set_Etype
(Entity
(Subprog
), Available_View
(T
));
7565 Analyze
(Node_To_Replace
);
7567 -- If the operation has been rewritten into a call, which may get
7568 -- subsequently an explicit dereference, preserve the type on the
7569 -- original node (selected component or indexed component) for
7570 -- subsequent legality tests, e.g. Is_Variable. which examines
7571 -- the original node.
7573 if Nkind
(Node_To_Replace
) = N_Function_Call
then
7575 (Original_Node
(Node_To_Replace
), Etype
(Node_To_Replace
));
7578 end Complete_Object_Operation
;
7580 ----------------------
7581 -- Report_Ambiguity --
7582 ----------------------
7584 procedure Report_Ambiguity
(Op
: Entity_Id
) is
7585 Access_Actual
: constant Boolean :=
7586 Is_Access_Type
(Etype
(Prefix
(N
)));
7587 Access_Formal
: Boolean := False;
7590 Error_Msg_Sloc
:= Sloc
(Op
);
7592 if Present
(First_Formal
(Op
)) then
7593 Access_Formal
:= Is_Access_Type
(Etype
(First_Formal
(Op
)));
7596 if Access_Formal
and then not Access_Actual
then
7597 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
7599 ("\possible interpretation "
7600 & "(inherited, with implicit 'Access) #", N
);
7603 ("\possible interpretation (with implicit 'Access) #", N
);
7606 elsif not Access_Formal
and then Access_Actual
then
7607 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
7609 ("\possible interpretation "
7610 & "(inherited, with implicit dereference) #", N
);
7613 ("\possible interpretation (with implicit dereference) #", N
);
7617 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
7618 Error_Msg_N
("\possible interpretation (inherited)#", N
);
7620 Error_Msg_N
-- CODEFIX
7621 ("\possible interpretation#", N
);
7624 end Report_Ambiguity
;
7626 --------------------------------
7627 -- Transform_Object_Operation --
7628 --------------------------------
7630 procedure Transform_Object_Operation
7631 (Call_Node
: out Node_Id
;
7632 Node_To_Replace
: out Node_Id
)
7634 Dummy
: constant Node_Id
:= New_Copy
(Obj
);
7635 -- Placeholder used as a first parameter in the call, replaced
7636 -- eventually by the proper object.
7638 Parent_Node
: constant Node_Id
:= Parent
(N
);
7644 -- Common case covering 1) Call to a procedure and 2) Call to a
7645 -- function that has some additional actuals.
7647 if Nkind
(Parent_Node
) in N_Subprogram_Call
7649 -- N is a selected component node containing the name of the
7650 -- subprogram. If N is not the name of the parent node we must
7651 -- not replace the parent node by the new construct. This case
7652 -- occurs when N is a parameterless call to a subprogram that
7653 -- is an actual parameter of a call to another subprogram. For
7655 -- Some_Subprogram (..., Obj.Operation, ...)
7657 and then Name
(Parent_Node
) = N
7659 Node_To_Replace
:= Parent_Node
;
7661 Actuals
:= Parameter_Associations
(Parent_Node
);
7663 if Present
(Actuals
) then
7664 Prepend
(Dummy
, Actuals
);
7666 Actuals
:= New_List
(Dummy
);
7669 if Nkind
(Parent_Node
) = N_Procedure_Call_Statement
then
7671 Make_Procedure_Call_Statement
(Loc
,
7672 Name
=> New_Copy
(Subprog
),
7673 Parameter_Associations
=> Actuals
);
7677 Make_Function_Call
(Loc
,
7678 Name
=> New_Copy
(Subprog
),
7679 Parameter_Associations
=> Actuals
);
7682 -- Before analysis, a function call appears as an indexed component
7683 -- if there are no named associations.
7685 elsif Nkind
(Parent_Node
) = N_Indexed_Component
7686 and then N
= Prefix
(Parent_Node
)
7688 Node_To_Replace
:= Parent_Node
;
7689 Actuals
:= Expressions
(Parent_Node
);
7691 Actual
:= First
(Actuals
);
7692 while Present
(Actual
) loop
7697 Prepend
(Dummy
, Actuals
);
7700 Make_Function_Call
(Loc
,
7701 Name
=> New_Copy
(Subprog
),
7702 Parameter_Associations
=> Actuals
);
7704 -- Parameterless call: Obj.F is rewritten as F (Obj)
7707 Node_To_Replace
:= N
;
7710 Make_Function_Call
(Loc
,
7711 Name
=> New_Copy
(Subprog
),
7712 Parameter_Associations
=> New_List
(Dummy
));
7714 end Transform_Object_Operation
;
7716 ------------------------------
7717 -- Try_Class_Wide_Operation --
7718 ------------------------------
7720 function Try_Class_Wide_Operation
7721 (Call_Node
: Node_Id
;
7722 Node_To_Replace
: Node_Id
) return Boolean
7724 Anc_Type
: Entity_Id
;
7725 Matching_Op
: Entity_Id
:= Empty
;
7728 procedure Traverse_Homonyms
7729 (Anc_Type
: Entity_Id
;
7730 Error
: out Boolean);
7731 -- Traverse the homonym chain of the subprogram searching for those
7732 -- homonyms whose first formal has the Anc_Type's class-wide type,
7733 -- or an anonymous access type designating the class-wide type. If
7734 -- an ambiguity is detected, then Error is set to True.
7736 procedure Traverse_Interfaces
7737 (Anc_Type
: Entity_Id
;
7738 Error
: out Boolean);
7739 -- Traverse the list of interfaces, if any, associated with Anc_Type
7740 -- and search for acceptable class-wide homonyms associated with each
7741 -- interface. If an ambiguity is detected, then Error is set to True.
7743 -----------------------
7744 -- Traverse_Homonyms --
7745 -----------------------
7747 procedure Traverse_Homonyms
7748 (Anc_Type
: Entity_Id
;
7749 Error
: out Boolean)
7751 Cls_Type
: Entity_Id
;
7759 Cls_Type
:= Class_Wide_Type
(Anc_Type
);
7761 Hom
:= Current_Entity
(Subprog
);
7763 -- Find a non-hidden operation whose first parameter is of the
7764 -- class-wide type, a subtype thereof, or an anonymous access
7765 -- to same. If in an instance, the operation can be considered
7766 -- even if hidden (it may be hidden because the instantiation
7767 -- is expanded after the containing package has been analyzed).
7769 while Present
(Hom
) loop
7770 if Ekind_In
(Hom
, E_Procedure
, E_Function
)
7771 and then (not Is_Hidden
(Hom
) or else In_Instance
)
7772 and then Scope
(Hom
) = Scope
(Anc_Type
)
7773 and then Present
(First_Formal
(Hom
))
7775 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
7777 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
7779 Ekind
(Etype
(First_Formal
(Hom
))) =
7780 E_Anonymous_Access_Type
7783 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
7786 -- If the context is a procedure call, ignore functions
7787 -- in the name of the call.
7789 if Ekind
(Hom
) = E_Function
7790 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
7791 and then N
= Name
(Parent
(N
))
7795 -- If the context is a function call, ignore procedures
7796 -- in the name of the call.
7798 elsif Ekind
(Hom
) = E_Procedure
7799 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
7804 Set_Etype
(Call_Node
, Any_Type
);
7805 Set_Is_Overloaded
(Call_Node
, False);
7808 if No
(Matching_Op
) then
7809 Hom_Ref
:= New_Occurrence_Of
(Hom
, Sloc
(Subprog
));
7810 Set_Etype
(Call_Node
, Any_Type
);
7811 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
7813 Set_Name
(Call_Node
, Hom_Ref
);
7818 Report
=> Report_Error
,
7820 Skip_First
=> True);
7823 Valid_Candidate
(Success
, Call_Node
, Hom
);
7829 Report
=> Report_Error
,
7831 Skip_First
=> True);
7833 if Present
(Valid_Candidate
(Success
, Call_Node
, Hom
))
7834 and then Nkind
(Call_Node
) /= N_Function_Call
7836 Error_Msg_NE
("ambiguous call to&", N
, Hom
);
7837 Report_Ambiguity
(Matching_Op
);
7838 Report_Ambiguity
(Hom
);
7846 Hom
:= Homonym
(Hom
);
7848 end Traverse_Homonyms
;
7850 -------------------------
7851 -- Traverse_Interfaces --
7852 -------------------------
7854 procedure Traverse_Interfaces
7855 (Anc_Type
: Entity_Id
;
7856 Error
: out Boolean)
7858 Intface_List
: constant List_Id
:=
7859 Abstract_Interface_List
(Anc_Type
);
7865 if Is_Non_Empty_List
(Intface_List
) then
7866 Intface
:= First
(Intface_List
);
7867 while Present
(Intface
) loop
7869 -- Look for acceptable class-wide homonyms associated with
7872 Traverse_Homonyms
(Etype
(Intface
), Error
);
7878 -- Continue the search by looking at each of the interface's
7879 -- associated interface ancestors.
7881 Traverse_Interfaces
(Etype
(Intface
), Error
);
7890 end Traverse_Interfaces
;
7892 -- Start of processing for Try_Class_Wide_Operation
7895 -- If we are searching only for conflicting class-wide subprograms
7896 -- then initialize directly Matching_Op with the target entity.
7898 if CW_Test_Only
then
7899 Matching_Op
:= Entity
(Selector_Name
(N
));
7902 -- Loop through ancestor types (including interfaces), traversing
7903 -- the homonym chain of the subprogram, trying out those homonyms
7904 -- whose first formal has the class-wide type of the ancestor, or
7905 -- an anonymous access type designating the class-wide type.
7907 Anc_Type
:= Obj_Type
;
7909 -- Look for a match among homonyms associated with the ancestor
7911 Traverse_Homonyms
(Anc_Type
, Error
);
7917 -- Continue the search for matches among homonyms associated with
7918 -- any interfaces implemented by the ancestor.
7920 Traverse_Interfaces
(Anc_Type
, Error
);
7926 exit when Etype
(Anc_Type
) = Anc_Type
;
7927 Anc_Type
:= Etype
(Anc_Type
);
7930 if Present
(Matching_Op
) then
7931 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
7934 return Present
(Matching_Op
);
7935 end Try_Class_Wide_Operation
;
7937 -----------------------------------
7938 -- Try_One_Prefix_Interpretation --
7939 -----------------------------------
7941 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
) is
7945 if Is_Access_Type
(Obj_Type
) then
7946 Obj_Type
:= Designated_Type
(Obj_Type
);
7949 if Ekind
(Obj_Type
) = E_Private_Subtype
then
7950 Obj_Type
:= Base_Type
(Obj_Type
);
7953 if Is_Class_Wide_Type
(Obj_Type
) then
7954 Obj_Type
:= Etype
(Class_Wide_Type
(Obj_Type
));
7957 -- The type may have be obtained through a limited_with clause,
7958 -- in which case the primitive operations are available on its
7959 -- non-limited view. If still incomplete, retrieve full view.
7961 if Ekind
(Obj_Type
) = E_Incomplete_Type
7962 and then From_Limited_With
(Obj_Type
)
7964 Obj_Type
:= Get_Full_View
(Non_Limited_View
(Obj_Type
));
7967 -- If the object is not tagged, or the type is still an incomplete
7968 -- type, this is not a prefixed call.
7970 if not Is_Tagged_Type
(Obj_Type
)
7971 or else Is_Incomplete_Type
(Obj_Type
)
7977 Dup_Call_Node
: constant Node_Id
:= New_Copy
(New_Call_Node
);
7978 CW_Result
: Boolean;
7979 Prim_Result
: Boolean;
7980 pragma Unreferenced
(CW_Result
);
7983 if not CW_Test_Only
then
7985 Try_Primitive_Operation
7986 (Call_Node
=> New_Call_Node
,
7987 Node_To_Replace
=> Node_To_Replace
);
7990 -- Check if there is a class-wide subprogram covering the
7991 -- primitive. This check must be done even if a candidate
7992 -- was found in order to report ambiguous calls.
7994 if not (Prim_Result
) then
7996 Try_Class_Wide_Operation
7997 (Call_Node
=> New_Call_Node
,
7998 Node_To_Replace
=> Node_To_Replace
);
8000 -- If we found a primitive we search for class-wide subprograms
8001 -- using a duplicate of the call node (done to avoid missing its
8002 -- decoration if there is no ambiguity).
8006 Try_Class_Wide_Operation
8007 (Call_Node
=> Dup_Call_Node
,
8008 Node_To_Replace
=> Node_To_Replace
);
8011 end Try_One_Prefix_Interpretation
;
8013 -----------------------------
8014 -- Try_Primitive_Operation --
8015 -----------------------------
8017 function Try_Primitive_Operation
8018 (Call_Node
: Node_Id
;
8019 Node_To_Replace
: Node_Id
) return Boolean
8022 Prim_Op
: Entity_Id
;
8023 Matching_Op
: Entity_Id
:= Empty
;
8024 Prim_Op_Ref
: Node_Id
:= Empty
;
8026 Corr_Type
: Entity_Id
:= Empty
;
8027 -- If the prefix is a synchronized type, the controlling type of
8028 -- the primitive operation is the corresponding record type, else
8029 -- this is the object type itself.
8031 Success
: Boolean := False;
8033 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
;
8034 -- For tagged types the candidate interpretations are found in
8035 -- the list of primitive operations of the type and its ancestors.
8036 -- For formal tagged types we have to find the operations declared
8037 -- in the same scope as the type (including in the generic formal
8038 -- part) because the type itself carries no primitive operations,
8039 -- except for formal derived types that inherit the operations of
8040 -- the parent and progenitors.
8042 -- If the context is a generic subprogram body, the generic formals
8043 -- are visible by name, but are not in the entity list of the
8044 -- subprogram because that list starts with the subprogram formals.
8045 -- We retrieve the candidate operations from the generic declaration.
8047 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean;
8048 -- An operation that overrides an inherited operation in the private
8049 -- part of its package may be hidden, but if the inherited operation
8050 -- is visible a direct call to it will dispatch to the private one,
8051 -- which is therefore a valid candidate.
8053 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean;
8054 -- Verify that the prefix, dereferenced if need be, is a valid
8055 -- controlling argument in a call to Op. The remaining actuals
8056 -- are checked in the subsequent call to Analyze_One_Call.
8058 ------------------------------
8059 -- Collect_Generic_Type_Ops --
8060 ------------------------------
8062 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
is
8063 Bas
: constant Entity_Id
:= Base_Type
(T
);
8064 Candidates
: constant Elist_Id
:= New_Elmt_List
;
8068 procedure Check_Candidate
;
8069 -- The operation is a candidate if its first parameter is a
8070 -- controlling operand of the desired type.
8072 -----------------------
8073 -- Check_Candidate; --
8074 -----------------------
8076 procedure Check_Candidate
is
8078 Formal
:= First_Formal
(Subp
);
8081 and then Is_Controlling_Formal
(Formal
)
8083 (Base_Type
(Etype
(Formal
)) = Bas
8085 (Is_Access_Type
(Etype
(Formal
))
8086 and then Designated_Type
(Etype
(Formal
)) = Bas
))
8088 Append_Elmt
(Subp
, Candidates
);
8090 end Check_Candidate
;
8092 -- Start of processing for Collect_Generic_Type_Ops
8095 if Is_Derived_Type
(T
) then
8096 return Primitive_Operations
(T
);
8098 elsif Ekind_In
(Scope
(T
), E_Procedure
, E_Function
) then
8100 -- Scan the list of generic formals to find subprograms
8101 -- that may have a first controlling formal of the type.
8103 if Nkind
(Unit_Declaration_Node
(Scope
(T
))) =
8104 N_Generic_Subprogram_Declaration
8111 First
(Generic_Formal_Declarations
8112 (Unit_Declaration_Node
(Scope
(T
))));
8113 while Present
(Decl
) loop
8114 if Nkind
(Decl
) in N_Formal_Subprogram_Declaration
then
8115 Subp
:= Defining_Entity
(Decl
);
8126 -- Scan the list of entities declared in the same scope as
8127 -- the type. In general this will be an open scope, given that
8128 -- the call we are analyzing can only appear within a generic
8129 -- declaration or body (either the one that declares T, or a
8132 -- For a subtype representing a generic actual type, go to the
8135 if Is_Generic_Actual_Type
(T
) then
8136 Subp
:= First_Entity
(Scope
(Base_Type
(T
)));
8138 Subp
:= First_Entity
(Scope
(T
));
8141 while Present
(Subp
) loop
8142 if Is_Overloadable
(Subp
) then
8151 end Collect_Generic_Type_Ops
;
8153 ---------------------------
8154 -- Is_Private_Overriding --
8155 ---------------------------
8157 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean is
8158 Visible_Op
: constant Entity_Id
:= Homonym
(Op
);
8161 return Present
(Visible_Op
)
8162 and then Scope
(Op
) = Scope
(Visible_Op
)
8163 and then not Comes_From_Source
(Visible_Op
)
8164 and then Alias
(Visible_Op
) = Op
8165 and then not Is_Hidden
(Visible_Op
);
8166 end Is_Private_Overriding
;
8168 -----------------------------
8169 -- Valid_First_Argument_Of --
8170 -----------------------------
8172 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean is
8173 Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
8176 if Is_Concurrent_Type
(Typ
)
8177 and then Present
(Corresponding_Record_Type
(Typ
))
8179 Typ
:= Corresponding_Record_Type
(Typ
);
8182 -- Simple case. Object may be a subtype of the tagged type or
8183 -- may be the corresponding record of a synchronized type.
8185 return Obj_Type
= Typ
8186 or else Base_Type
(Obj_Type
) = Typ
8187 or else Corr_Type
= Typ
8189 -- Prefix can be dereferenced
8192 (Is_Access_Type
(Corr_Type
)
8193 and then Designated_Type
(Corr_Type
) = Typ
)
8195 -- Formal is an access parameter, for which the object
8196 -- can provide an access.
8199 (Ekind
(Typ
) = E_Anonymous_Access_Type
8201 Base_Type
(Designated_Type
(Typ
)) = Base_Type
(Corr_Type
));
8202 end Valid_First_Argument_Of
;
8204 -- Start of processing for Try_Primitive_Operation
8207 -- Look for subprograms in the list of primitive operations. The name
8208 -- must be identical, and the kind of call indicates the expected
8209 -- kind of operation (function or procedure). If the type is a
8210 -- (tagged) synchronized type, the primitive ops are attached to the
8211 -- corresponding record (base) type.
8213 if Is_Concurrent_Type
(Obj_Type
) then
8214 if Present
(Corresponding_Record_Type
(Obj_Type
)) then
8215 Corr_Type
:= Base_Type
(Corresponding_Record_Type
(Obj_Type
));
8216 Elmt
:= First_Elmt
(Primitive_Operations
(Corr_Type
));
8218 Corr_Type
:= Obj_Type
;
8219 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
8222 elsif not Is_Generic_Type
(Obj_Type
) then
8223 Corr_Type
:= Obj_Type
;
8224 Elmt
:= First_Elmt
(Primitive_Operations
(Obj_Type
));
8227 Corr_Type
:= Obj_Type
;
8228 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
8231 while Present
(Elmt
) loop
8232 Prim_Op
:= Node
(Elmt
);
8234 if Chars
(Prim_Op
) = Chars
(Subprog
)
8235 and then Present
(First_Formal
(Prim_Op
))
8236 and then Valid_First_Argument_Of
(Prim_Op
)
8238 (Nkind
(Call_Node
) = N_Function_Call
)
8240 (Ekind
(Prim_Op
) = E_Function
)
8242 -- Ada 2005 (AI-251): If this primitive operation corresponds
8243 -- to an immediate ancestor interface there is no need to add
8244 -- it to the list of interpretations; the corresponding aliased
8245 -- primitive is also in this list of primitive operations and
8246 -- will be used instead.
8248 if (Present
(Interface_Alias
(Prim_Op
))
8249 and then Is_Ancestor
(Find_Dispatching_Type
8250 (Alias
(Prim_Op
)), Corr_Type
))
8252 -- Do not consider hidden primitives unless the type is in an
8253 -- open scope or we are within an instance, where visibility
8254 -- is known to be correct, or else if this is an overriding
8255 -- operation in the private part for an inherited operation.
8257 or else (Is_Hidden
(Prim_Op
)
8258 and then not Is_Immediately_Visible
(Obj_Type
)
8259 and then not In_Instance
8260 and then not Is_Private_Overriding
(Prim_Op
))
8265 Set_Etype
(Call_Node
, Any_Type
);
8266 Set_Is_Overloaded
(Call_Node
, False);
8268 if No
(Matching_Op
) then
8269 Prim_Op_Ref
:= New_Occurrence_Of
(Prim_Op
, Sloc
(Subprog
));
8270 Candidate
:= Prim_Op
;
8272 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
8274 Set_Name
(Call_Node
, Prim_Op_Ref
);
8280 Report
=> Report_Error
,
8282 Skip_First
=> True);
8284 Matching_Op
:= Valid_Candidate
(Success
, Call_Node
, Prim_Op
);
8286 -- More than one interpretation, collect for subsequent
8287 -- disambiguation. If this is a procedure call and there
8288 -- is another match, report ambiguity now.
8294 Report
=> Report_Error
,
8296 Skip_First
=> True);
8298 if Present
(Valid_Candidate
(Success
, Call_Node
, Prim_Op
))
8299 and then Nkind
(Call_Node
) /= N_Function_Call
8301 Error_Msg_NE
("ambiguous call to&", N
, Prim_Op
);
8302 Report_Ambiguity
(Matching_Op
);
8303 Report_Ambiguity
(Prim_Op
);
8313 if Present
(Matching_Op
) then
8314 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
8317 return Present
(Matching_Op
);
8318 end Try_Primitive_Operation
;
8320 -- Start of processing for Try_Object_Operation
8323 Analyze_Expression
(Obj
);
8325 -- Analyze the actuals if node is known to be a subprogram call
8327 if Is_Subprg_Call
and then N
= Name
(Parent
(N
)) then
8328 Actual
:= First
(Parameter_Associations
(Parent
(N
)));
8329 while Present
(Actual
) loop
8330 Analyze_Expression
(Actual
);
8335 -- Build a subprogram call node, using a copy of Obj as its first
8336 -- actual. This is a placeholder, to be replaced by an explicit
8337 -- dereference when needed.
8339 Transform_Object_Operation
8340 (Call_Node
=> New_Call_Node
,
8341 Node_To_Replace
=> Node_To_Replace
);
8343 Set_Etype
(New_Call_Node
, Any_Type
);
8344 Set_Etype
(Subprog
, Any_Type
);
8345 Set_Parent
(New_Call_Node
, Parent
(Node_To_Replace
));
8347 if not Is_Overloaded
(Obj
) then
8348 Try_One_Prefix_Interpretation
(Obj_Type
);
8355 Get_First_Interp
(Obj
, I
, It
);
8356 while Present
(It
.Nam
) loop
8357 Try_One_Prefix_Interpretation
(It
.Typ
);
8358 Get_Next_Interp
(I
, It
);
8363 if Etype
(New_Call_Node
) /= Any_Type
then
8365 -- No need to complete the tree transformations if we are only
8366 -- searching for conflicting class-wide subprograms
8368 if CW_Test_Only
then
8371 Complete_Object_Operation
8372 (Call_Node
=> New_Call_Node
,
8373 Node_To_Replace
=> Node_To_Replace
);
8377 elsif Present
(Candidate
) then
8379 -- The argument list is not type correct. Re-analyze with error
8380 -- reporting enabled, and use one of the possible candidates.
8381 -- In All_Errors_Mode, re-analyze all failed interpretations.
8383 if All_Errors_Mode
then
8384 Report_Error
:= True;
8385 if Try_Primitive_Operation
8386 (Call_Node
=> New_Call_Node
,
8387 Node_To_Replace
=> Node_To_Replace
)
8390 Try_Class_Wide_Operation
8391 (Call_Node
=> New_Call_Node
,
8392 Node_To_Replace
=> Node_To_Replace
)
8399 (N
=> New_Call_Node
,
8403 Skip_First
=> True);
8406 -- No need for further errors
8411 -- There was no candidate operation, so report it as an error
8412 -- in the caller: Analyze_Selected_Component.
8416 end Try_Object_Operation
;
8422 procedure wpo
(T
: Entity_Id
) is
8427 if not Is_Tagged_Type
(T
) then
8431 E
:= First_Elmt
(Primitive_Operations
(Base_Type
(T
)));
8432 while Present
(E
) loop
8434 Write_Int
(Int
(Op
));
8435 Write_Str
(" === ");
8436 Write_Name
(Chars
(Op
));
8438 Write_Name
(Chars
(Scope
(Op
)));