[gcc/]
[official-gcc.git] / gcc / ada / s-explli.adb
blobb19aaf5bfbb94e76a2627c3d7d3caf73fa78354e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . E X P L L I --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 package body System.Exp_LLI is
34 ---------------------------
35 -- Exp_Long_Long_Integer --
36 ---------------------------
38 -- Note that negative exponents get a constraint error because the
39 -- subtype of the Right argument (the exponent) is Natural.
41 function Exp_Long_Long_Integer
42 (Left : Long_Long_Integer;
43 Right : Natural)
44 return Long_Long_Integer
46 Result : Long_Long_Integer := 1;
47 Factor : Long_Long_Integer := Left;
48 Exp : Natural := Right;
50 begin
51 -- We use the standard logarithmic approach, Exp gets shifted right
52 -- testing successive low order bits and Factor is the value of the
53 -- base raised to the next power of 2.
55 -- Note: it is not worth special casing base values -1, 0, +1 since
56 -- the expander does this when the base is a literal, and other cases
57 -- will be extremely rare.
59 if Exp /= 0 then
60 loop
61 if Exp rem 2 /= 0 then
62 declare
63 pragma Unsuppress (All_Checks);
64 begin
65 Result := Result * Factor;
66 end;
67 end if;
69 Exp := Exp / 2;
70 exit when Exp = 0;
72 declare
73 pragma Unsuppress (All_Checks);
74 begin
75 Factor := Factor * Factor;
76 end;
77 end loop;
78 end if;
80 return Result;
81 end Exp_Long_Long_Integer;
83 end System.Exp_LLI;