1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ S E T S --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Operations
;
32 (Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Operations
);
34 with Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Keys
;
35 pragma Elaborate_All
(Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Keys
);
37 with Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Set_Operations
;
39 (Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Set_Operations
);
41 with System
; use type System
.Address
;
43 package body Ada
.Containers
.Bounded_Ordered_Sets
is
45 ------------------------------
46 -- Access to Fields of Node --
47 ------------------------------
49 -- These subprograms provide functional notation for access to fields
50 -- of a node, and procedural notation for modifying these fields.
52 function Color
(Node
: Node_Type
) return Red_Black_Trees
.Color_Type
;
53 pragma Inline
(Color
);
55 function Left
(Node
: Node_Type
) return Count_Type
;
58 function Parent
(Node
: Node_Type
) return Count_Type
;
59 pragma Inline
(Parent
);
61 function Right
(Node
: Node_Type
) return Count_Type
;
62 pragma Inline
(Right
);
65 (Node
: in out Node_Type
;
66 Color
: Red_Black_Trees
.Color_Type
);
67 pragma Inline
(Set_Color
);
69 procedure Set_Left
(Node
: in out Node_Type
; Left
: Count_Type
);
70 pragma Inline
(Set_Left
);
72 procedure Set_Right
(Node
: in out Node_Type
; Right
: Count_Type
);
73 pragma Inline
(Set_Right
);
75 procedure Set_Parent
(Node
: in out Node_Type
; Parent
: Count_Type
);
76 pragma Inline
(Set_Parent
);
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Insert_Sans_Hint
83 (Container
: in out Set
;
84 New_Item
: Element_Type
;
85 Node
: out Count_Type
;
86 Inserted
: out Boolean);
88 procedure Insert_With_Hint
89 (Dst_Set
: in out Set
;
90 Dst_Hint
: Count_Type
;
92 Dst_Node
: out Count_Type
);
94 function Is_Greater_Element_Node
96 Right
: Node_Type
) return Boolean;
97 pragma Inline
(Is_Greater_Element_Node
);
99 function Is_Less_Element_Node
100 (Left
: Element_Type
;
101 Right
: Node_Type
) return Boolean;
102 pragma Inline
(Is_Less_Element_Node
);
104 function Is_Less_Node_Node
(L
, R
: Node_Type
) return Boolean;
105 pragma Inline
(Is_Less_Node_Node
);
107 procedure Replace_Element
108 (Container
: in out Set
;
110 Item
: Element_Type
);
112 --------------------------
113 -- Local Instantiations --
114 --------------------------
116 package Tree_Operations
is
117 new Red_Black_Trees
.Generic_Bounded_Operations
(Tree_Types
);
121 package Element_Keys
is
122 new Red_Black_Trees
.Generic_Bounded_Keys
123 (Tree_Operations
=> Tree_Operations
,
124 Key_Type
=> Element_Type
,
125 Is_Less_Key_Node
=> Is_Less_Element_Node
,
126 Is_Greater_Key_Node
=> Is_Greater_Element_Node
);
129 new Red_Black_Trees
.Generic_Bounded_Set_Operations
130 (Tree_Operations
=> Tree_Operations
,
133 Insert_With_Hint
=> Insert_With_Hint
,
134 Is_Less
=> Is_Less_Node_Node
);
140 function "<" (Left
, Right
: Cursor
) return Boolean is
142 if Left
.Node
= 0 then
143 raise Constraint_Error
with "Left cursor equals No_Element";
146 if Right
.Node
= 0 then
147 raise Constraint_Error
with "Right cursor equals No_Element";
150 pragma Assert
(Vet
(Left
.Container
.all, Left
.Node
),
151 "bad Left cursor in ""<""");
153 pragma Assert
(Vet
(Right
.Container
.all, Right
.Node
),
154 "bad Right cursor in ""<""");
157 LN
: Nodes_Type
renames Left
.Container
.Nodes
;
158 RN
: Nodes_Type
renames Right
.Container
.Nodes
;
160 return LN
(Left
.Node
).Element
< RN
(Right
.Node
).Element
;
164 function "<" (Left
: Cursor
; Right
: Element_Type
) return Boolean is
166 if Left
.Node
= 0 then
167 raise Constraint_Error
with "Left cursor equals No_Element";
170 pragma Assert
(Vet
(Left
.Container
.all, Left
.Node
),
171 "bad Left cursor in ""<""");
173 return Left
.Container
.Nodes
(Left
.Node
).Element
< Right
;
176 function "<" (Left
: Element_Type
; Right
: Cursor
) return Boolean is
178 if Right
.Node
= 0 then
179 raise Constraint_Error
with "Right cursor equals No_Element";
182 pragma Assert
(Vet
(Right
.Container
.all, Right
.Node
),
183 "bad Right cursor in ""<""");
185 return Left
< Right
.Container
.Nodes
(Right
.Node
).Element
;
192 function "=" (Left
, Right
: Set
) return Boolean is
193 function Is_Equal_Node_Node
(L
, R
: Node_Type
) return Boolean;
194 pragma Inline
(Is_Equal_Node_Node
);
197 new Tree_Operations
.Generic_Equal
(Is_Equal_Node_Node
);
199 ------------------------
200 -- Is_Equal_Node_Node --
201 ------------------------
203 function Is_Equal_Node_Node
(L
, R
: Node_Type
) return Boolean is
205 return L
.Element
= R
.Element
;
206 end Is_Equal_Node_Node
;
208 -- Start of processing for Is_Equal
211 return Is_Equal
(Left
, Right
);
218 function ">" (Left
, Right
: Cursor
) return Boolean is
220 if Left
.Node
= 0 then
221 raise Constraint_Error
with "Left cursor equals No_Element";
224 if Right
.Node
= 0 then
225 raise Constraint_Error
with "Right cursor equals No_Element";
228 pragma Assert
(Vet
(Left
.Container
.all, Left
.Node
),
229 "bad Left cursor in "">""");
231 pragma Assert
(Vet
(Right
.Container
.all, Right
.Node
),
232 "bad Right cursor in "">""");
234 -- L > R same as R < L
237 LN
: Nodes_Type
renames Left
.Container
.Nodes
;
238 RN
: Nodes_Type
renames Right
.Container
.Nodes
;
240 return RN
(Right
.Node
).Element
< LN
(Left
.Node
).Element
;
244 function ">" (Left
: Element_Type
; Right
: Cursor
) return Boolean is
246 if Right
.Node
= 0 then
247 raise Constraint_Error
with "Right cursor equals No_Element";
250 pragma Assert
(Vet
(Right
.Container
.all, Right
.Node
),
251 "bad Right cursor in "">""");
253 return Right
.Container
.Nodes
(Right
.Node
).Element
< Left
;
256 function ">" (Left
: Cursor
; Right
: Element_Type
) return Boolean is
258 if Left
.Node
= 0 then
259 raise Constraint_Error
with "Left cursor equals No_Element";
262 pragma Assert
(Vet
(Left
.Container
.all, Left
.Node
),
263 "bad Left cursor in "">""");
265 return Right
< Left
.Container
.Nodes
(Left
.Node
).Element
;
272 procedure Adjust
(Control
: in out Reference_Control_Type
) is
274 if Control
.Container
/= null then
276 C
: Set
renames Control
.Container
.all;
277 B
: Natural renames C
.Busy
;
278 L
: Natural renames C
.Lock
;
290 procedure Assign
(Target
: in out Set
; Source
: Set
) is
291 procedure Append_Element
(Source_Node
: Count_Type
);
293 procedure Append_Elements
is
294 new Tree_Operations
.Generic_Iteration
(Append_Element
);
300 procedure Append_Element
(Source_Node
: Count_Type
) is
301 SN
: Node_Type
renames Source
.Nodes
(Source_Node
);
303 procedure Set_Element
(Node
: in out Node_Type
);
304 pragma Inline
(Set_Element
);
306 function New_Node
return Count_Type
;
307 pragma Inline
(New_Node
);
309 procedure Insert_Post
is
310 new Element_Keys
.Generic_Insert_Post
(New_Node
);
312 procedure Unconditional_Insert_Sans_Hint
is
313 new Element_Keys
.Generic_Unconditional_Insert
(Insert_Post
);
315 procedure Unconditional_Insert_Avec_Hint
is
316 new Element_Keys
.Generic_Unconditional_Insert_With_Hint
318 Unconditional_Insert_Sans_Hint
);
320 procedure Allocate
is
321 new Tree_Operations
.Generic_Allocate
(Set_Element
);
327 function New_Node
return Count_Type
is
330 Allocate
(Target
, Result
);
338 procedure Set_Element
(Node
: in out Node_Type
) is
340 Node
.Element
:= SN
.Element
;
343 Target_Node
: Count_Type
;
345 -- Start of processing for Append_Element
348 Unconditional_Insert_Avec_Hint
352 Node
=> Target_Node
);
355 -- Start of processing for Assign
358 if Target
'Address = Source
'Address then
362 if Target
.Capacity
< Source
.Length
then
364 with "Target capacity is less than Source length";
368 Append_Elements
(Source
);
375 function Ceiling
(Container
: Set
; Item
: Element_Type
) return Cursor
is
376 Node
: constant Count_Type
:=
377 Element_Keys
.Ceiling
(Container
, Item
);
379 return (if Node
= 0 then No_Element
380 else Cursor
'(Container'Unrestricted_Access, Node));
387 procedure Clear (Container : in out Set) is
389 Tree_Operations.Clear_Tree (Container);
396 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
401 ------------------------
402 -- Constant_Reference --
403 ------------------------
405 function Constant_Reference
406 (Container : aliased Set;
407 Position : Cursor) return Constant_Reference_Type
410 if Position.Container = null then
411 raise Constraint_Error with "Position cursor has no element";
414 if Position.Container /= Container'Unrestricted_Access then
415 raise Program_Error with
416 "Position cursor designates wrong container";
420 (Vet (Container, Position.Node),
421 "bad cursor in Constant_Reference");
424 N : Node_Type renames Container.Nodes (Position.Node);
425 B : Natural renames Position.Container.Busy;
426 L : Natural renames Position.Container.Lock;
428 return R : constant Constant_Reference_Type :=
429 (Element => N.Element'Access,
430 Control => (Controlled with Container'Unrestricted_Access))
436 end Constant_Reference;
444 Item : Element_Type) return Boolean
447 return Find (Container, Item) /= No_Element;
454 function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
460 elsif Capacity >= Source.Length then
463 raise Capacity_Error with "Capacity value too small";
466 return Target : Set (Capacity => C) do
467 Assign (Target => Target, Source => Source);
475 procedure Delete (Container : in out Set; Position : in out Cursor) is
477 if Position.Node = 0 then
478 raise Constraint_Error with "Position cursor equals No_Element";
481 if Position.Container /= Container'Unrestricted_Access then
482 raise Program_Error with "Position cursor designates wrong set";
485 pragma Assert (Vet (Container, Position.Node),
486 "bad cursor in Delete");
488 Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
489 Tree_Operations.Free (Container, Position.Node);
491 Position := No_Element;
494 procedure Delete (Container : in out Set; Item : Element_Type) is
495 X : constant Count_Type := Element_Keys.Find (Container, Item);
499 raise Constraint_Error with "attempt to delete element not in set";
502 Tree_Operations.Delete_Node_Sans_Free (Container, X);
503 Tree_Operations.Free (Container, X);
510 procedure Delete_First (Container : in out Set) is
511 X : constant Count_Type := Container.First;
514 Tree_Operations.Delete_Node_Sans_Free (Container, X);
515 Tree_Operations.Free (Container, X);
523 procedure Delete_Last (Container : in out Set) is
524 X : constant Count_Type := Container.Last;
527 Tree_Operations.Delete_Node_Sans_Free (Container, X);
528 Tree_Operations.Free (Container, X);
536 procedure Difference (Target : in out Set; Source : Set)
537 renames Set_Ops.Set_Difference;
539 function Difference (Left, Right : Set) return Set
540 renames Set_Ops.Set_Difference;
546 function Element (Position : Cursor) return Element_Type is
548 if Position.Node = 0 then
549 raise Constraint_Error with "Position cursor equals No_Element";
552 pragma Assert (Vet (Position.Container.all, Position.Node),
553 "bad cursor in Element");
555 return Position.Container.Nodes (Position.Node).Element;
558 -------------------------
559 -- Equivalent_Elements --
560 -------------------------
562 function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
564 return (if Left < Right or else Right < Left then False else True);
565 end Equivalent_Elements;
567 ---------------------
568 -- Equivalent_Sets --
569 ---------------------
571 function Equivalent_Sets (Left, Right : Set) return Boolean is
572 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean;
573 pragma Inline (Is_Equivalent_Node_Node);
575 function Is_Equivalent is
576 new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
578 -----------------------------
579 -- Is_Equivalent_Node_Node --
580 -----------------------------
582 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
584 return (if L.Element < R.Element then False
585 elsif R.Element < L.Element then False
587 end Is_Equivalent_Node_Node;
589 -- Start of processing for Equivalent_Sets
592 return Is_Equivalent (Left, Right);
599 procedure Exclude (Container : in out Set; Item : Element_Type) is
600 X : constant Count_Type := Element_Keys.Find (Container, Item);
603 Tree_Operations.Delete_Node_Sans_Free (Container, X);
604 Tree_Operations.Free (Container, X);
612 procedure Finalize (Object : in out Iterator) is
614 if Object.Container /= null then
616 B : Natural renames Object.Container.all.Busy;
623 procedure Finalize (Control : in out Reference_Control_Type) is
625 if Control.Container /= null then
627 C : Set renames Control.Container.all;
628 B : Natural renames C.Busy;
629 L : Natural renames C.Lock;
635 Control.Container := null;
643 function Find (Container : Set; Item : Element_Type) return Cursor is
644 Node : constant Count_Type := Element_Keys.Find (Container, Item);
646 return (if Node = 0 then No_Element
647 else Cursor'(Container
'Unrestricted_Access, Node
));
654 function First
(Container
: Set
) return Cursor
is
656 return (if Container
.First
= 0 then No_Element
657 else Cursor
'(Container'Unrestricted_Access, Container.First));
660 function First (Object : Iterator) return Cursor is
662 -- The value of the iterator object's Node component influences the
663 -- behavior of the First (and Last) selector function.
665 -- When the Node component is 0, this means the iterator object was
666 -- constructed without a start expression, in which case the (forward)
667 -- iteration starts from the (logical) beginning of the entire sequence
668 -- of items (corresponding to Container.First, for a forward iterator).
670 -- Otherwise, this is iteration over a partial sequence of items. When
671 -- the Node component is positive, the iterator object was constructed
672 -- with a start expression, that specifies the position from which the
673 -- (forward) partial iteration begins.
675 if Object.Node = 0 then
676 return Bounded_Ordered_Sets.First (Object.Container.all);
678 return Cursor'(Object
.Container
, Object
.Node
);
686 function First_Element
(Container
: Set
) return Element_Type
is
688 if Container
.First
= 0 then
689 raise Constraint_Error
with "set is empty";
692 return Container
.Nodes
(Container
.First
).Element
;
699 function Floor
(Container
: Set
; Item
: Element_Type
) return Cursor
is
700 Node
: constant Count_Type
:= Element_Keys
.Floor
(Container
, Item
);
702 return (if Node
= 0 then No_Element
703 else Cursor
'(Container'Unrestricted_Access, Node));
710 package body Generic_Keys is
712 -----------------------
713 -- Local Subprograms --
714 -----------------------
716 function Is_Greater_Key_Node
718 Right : Node_Type) return Boolean;
719 pragma Inline (Is_Greater_Key_Node);
721 function Is_Less_Key_Node
723 Right : Node_Type) return Boolean;
724 pragma Inline (Is_Less_Key_Node);
726 --------------------------
727 -- Local Instantiations --
728 --------------------------
731 new Red_Black_Trees.Generic_Bounded_Keys
732 (Tree_Operations => Tree_Operations,
733 Key_Type => Key_Type,
734 Is_Less_Key_Node => Is_Less_Key_Node,
735 Is_Greater_Key_Node => Is_Greater_Key_Node);
741 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
742 Node : constant Count_Type :=
743 Key_Keys.Ceiling (Container, Key);
745 return (if Node = 0 then No_Element
746 else Cursor'(Container
'Unrestricted_Access, Node
));
749 ------------------------
750 -- Constant_Reference --
751 ------------------------
753 function Constant_Reference
754 (Container
: aliased Set
;
755 Key
: Key_Type
) return Constant_Reference_Type
757 Node
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
761 raise Constraint_Error
with "key not in set";
765 Cur
: Cursor
:= Find
(Container
, Key
);
766 pragma Unmodified
(Cur
);
768 N
: Node_Type
renames Container
.Nodes
(Node
);
769 B
: Natural renames Cur
.Container
.Busy
;
770 L
: Natural renames Cur
.Container
.Lock
;
773 return R
: constant Constant_Reference_Type
:=
774 (Element
=> N
.Element
'Access,
775 Control
=> (Controlled
with Container
'Unrestricted_Access))
781 end Constant_Reference
;
787 function Contains
(Container
: Set
; Key
: Key_Type
) return Boolean is
789 return Find
(Container
, Key
) /= No_Element
;
796 procedure Delete
(Container
: in out Set
; Key
: Key_Type
) is
797 X
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
801 raise Constraint_Error
with "attempt to delete key not in set";
804 Tree_Operations
.Delete_Node_Sans_Free
(Container
, X
);
805 Tree_Operations
.Free
(Container
, X
);
812 function Element
(Container
: Set
; Key
: Key_Type
) return Element_Type
is
813 Node
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
817 raise Constraint_Error
with "key not in set";
820 return Container
.Nodes
(Node
).Element
;
823 ---------------------
824 -- Equivalent_Keys --
825 ---------------------
827 function Equivalent_Keys
(Left
, Right
: Key_Type
) return Boolean is
829 return (if Left
< Right
or else Right
< Left
then False else True);
836 procedure Exclude
(Container
: in out Set
; Key
: Key_Type
) is
837 X
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
840 Tree_Operations
.Delete_Node_Sans_Free
(Container
, X
);
841 Tree_Operations
.Free
(Container
, X
);
849 function Find
(Container
: Set
; Key
: Key_Type
) return Cursor
is
850 Node
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
852 return (if Node
= 0 then No_Element
853 else Cursor
'(Container'Unrestricted_Access, Node));
860 function Floor (Container : Set; Key : Key_Type) return Cursor is
861 Node : constant Count_Type := Key_Keys.Floor (Container, Key);
863 return (if Node = 0 then No_Element
864 else Cursor'(Container
'Unrestricted_Access, Node
));
867 -------------------------
868 -- Is_Greater_Key_Node --
869 -------------------------
871 function Is_Greater_Key_Node
873 Right
: Node_Type
) return Boolean
876 return Key
(Right
.Element
) < Left
;
877 end Is_Greater_Key_Node
;
879 ----------------------
880 -- Is_Less_Key_Node --
881 ----------------------
883 function Is_Less_Key_Node
885 Right
: Node_Type
) return Boolean
888 return Left
< Key
(Right
.Element
);
889 end Is_Less_Key_Node
;
895 function Key
(Position
: Cursor
) return Key_Type
is
897 if Position
.Node
= 0 then
898 raise Constraint_Error
with
899 "Position cursor equals No_Element";
902 pragma Assert
(Vet
(Position
.Container
.all, Position
.Node
),
903 "bad cursor in Key");
905 return Key
(Position
.Container
.Nodes
(Position
.Node
).Element
);
913 (Stream
: not null access Root_Stream_Type
'Class;
914 Item
: out Reference_Type
)
917 raise Program_Error
with "attempt to stream reference";
920 ------------------------------
921 -- Reference_Preserving_Key --
922 ------------------------------
924 function Reference_Preserving_Key
925 (Container
: aliased in out Set
;
926 Position
: Cursor
) return Reference_Type
929 if Position
.Container
= null then
930 raise Constraint_Error
with "Position cursor has no element";
933 if Position
.Container
/= Container
'Unrestricted_Access then
934 raise Program_Error
with
935 "Position cursor designates wrong container";
939 (Vet
(Container
, Position
.Node
),
940 "bad cursor in function Reference_Preserving_Key");
942 -- Some form of finalization will be required in order to actually
943 -- check that the key-part of the element designated by Position has
947 N
: Node_Type
renames Container
.Nodes
(Position
.Node
);
949 return (Element
=> N
.Element
'Access);
951 end Reference_Preserving_Key
;
953 function Reference_Preserving_Key
954 (Container
: aliased in out Set
;
955 Key
: Key_Type
) return Reference_Type
957 Node
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
961 raise Constraint_Error
with "key not in set";
965 N
: Node_Type
renames Container
.Nodes
(Node
);
967 return (Element
=> N
.Element
'Access);
969 end Reference_Preserving_Key
;
976 (Container
: in out Set
;
978 New_Item
: Element_Type
)
980 Node
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
984 raise Constraint_Error
with
985 "attempt to replace key not in set";
988 Replace_Element
(Container
, Node
, New_Item
);
991 -----------------------------------
992 -- Update_Element_Preserving_Key --
993 -----------------------------------
995 procedure Update_Element_Preserving_Key
996 (Container
: in out Set
;
998 Process
: not null access procedure (Element
: in out Element_Type
))
1001 if Position
.Node
= 0 then
1002 raise Constraint_Error
with
1003 "Position cursor equals No_Element";
1006 if Position
.Container
/= Container
'Unrestricted_Access then
1007 raise Program_Error
with
1008 "Position cursor designates wrong set";
1011 pragma Assert
(Vet
(Container
, Position
.Node
),
1012 "bad cursor in Update_Element_Preserving_Key");
1014 -- Per AI05-0022, the container implementation is required to detect
1015 -- element tampering by a generic actual subprogram.
1018 N
: Node_Type
renames Container
.Nodes
(Position
.Node
);
1019 E
: Element_Type
renames N
.Element
;
1020 K
: constant Key_Type
:= Key
(E
);
1022 B
: Natural renames Container
.Busy
;
1023 L
: Natural renames Container
.Lock
;
1033 Eq
:= Equivalent_Keys
(K
, Key
(E
));
1049 Tree_Operations
.Delete_Node_Sans_Free
(Container
, Position
.Node
);
1050 Tree_Operations
.Free
(Container
, Position
.Node
);
1052 raise Program_Error
with "key was modified";
1053 end Update_Element_Preserving_Key
;
1060 (Stream
: not null access Root_Stream_Type
'Class;
1061 Item
: Reference_Type
)
1064 raise Program_Error
with "attempt to stream reference";
1072 function Has_Element
(Position
: Cursor
) return Boolean is
1074 return Position
/= No_Element
;
1081 procedure Include
(Container
: in out Set
; New_Item
: Element_Type
) is
1086 Insert
(Container
, New_Item
, Position
, Inserted
);
1088 if not Inserted
then
1089 if Container
.Lock
> 0 then
1090 raise Program_Error
with
1091 "attempt to tamper with elements (set is locked)";
1094 Container
.Nodes
(Position
.Node
).Element
:= New_Item
;
1103 (Container
: in out Set
;
1104 New_Item
: Element_Type
;
1105 Position
: out Cursor
;
1106 Inserted
: out Boolean)
1115 Position
.Container
:= Container
'Unrestricted_Access;
1119 (Container
: in out Set
;
1120 New_Item
: Element_Type
)
1123 pragma Unreferenced
(Position
);
1128 Insert
(Container
, New_Item
, Position
, Inserted
);
1130 if not Inserted
then
1131 raise Constraint_Error
with
1132 "attempt to insert element already in set";
1136 ----------------------
1137 -- Insert_Sans_Hint --
1138 ----------------------
1140 procedure Insert_Sans_Hint
1141 (Container
: in out Set
;
1142 New_Item
: Element_Type
;
1143 Node
: out Count_Type
;
1144 Inserted
: out Boolean)
1146 procedure Set_Element
(Node
: in out Node_Type
);
1147 pragma Inline
(Set_Element
);
1149 function New_Node
return Count_Type
;
1150 pragma Inline
(New_Node
);
1152 procedure Insert_Post
is
1153 new Element_Keys
.Generic_Insert_Post
(New_Node
);
1155 procedure Conditional_Insert_Sans_Hint
is
1156 new Element_Keys
.Generic_Conditional_Insert
(Insert_Post
);
1158 procedure Allocate
is
1159 new Tree_Operations
.Generic_Allocate
(Set_Element
);
1165 function New_Node
return Count_Type
is
1166 Result
: Count_Type
;
1168 Allocate
(Container
, Result
);
1176 procedure Set_Element
(Node
: in out Node_Type
) is
1178 Node
.Element
:= New_Item
;
1181 -- Start of processing for Insert_Sans_Hint
1184 Conditional_Insert_Sans_Hint
1189 end Insert_Sans_Hint
;
1191 ----------------------
1192 -- Insert_With_Hint --
1193 ----------------------
1195 procedure Insert_With_Hint
1196 (Dst_Set
: in out Set
;
1197 Dst_Hint
: Count_Type
;
1198 Src_Node
: Node_Type
;
1199 Dst_Node
: out Count_Type
)
1202 pragma Unreferenced
(Success
);
1204 procedure Set_Element
(Node
: in out Node_Type
);
1205 pragma Inline
(Set_Element
);
1207 function New_Node
return Count_Type
;
1208 pragma Inline
(New_Node
);
1210 procedure Insert_Post
is
1211 new Element_Keys
.Generic_Insert_Post
(New_Node
);
1213 procedure Insert_Sans_Hint
is
1214 new Element_Keys
.Generic_Conditional_Insert
(Insert_Post
);
1216 procedure Local_Insert_With_Hint
is
1217 new Element_Keys
.Generic_Conditional_Insert_With_Hint
1221 procedure Allocate
is
1222 new Tree_Operations
.Generic_Allocate
(Set_Element
);
1228 function New_Node
return Count_Type
is
1229 Result
: Count_Type
;
1231 Allocate
(Dst_Set
, Result
);
1239 procedure Set_Element
(Node
: in out Node_Type
) is
1241 Node
.Element
:= Src_Node
.Element
;
1244 -- Start of processing for Insert_With_Hint
1247 Local_Insert_With_Hint
1253 end Insert_With_Hint
;
1259 procedure Intersection
(Target
: in out Set
; Source
: Set
)
1260 renames Set_Ops
.Set_Intersection
;
1262 function Intersection
(Left
, Right
: Set
) return Set
1263 renames Set_Ops
.Set_Intersection
;
1269 function Is_Empty
(Container
: Set
) return Boolean is
1271 return Container
.Length
= 0;
1274 -----------------------------
1275 -- Is_Greater_Element_Node --
1276 -----------------------------
1278 function Is_Greater_Element_Node
1279 (Left
: Element_Type
;
1280 Right
: Node_Type
) return Boolean
1283 -- Compute e > node same as node < e
1285 return Right
.Element
< Left
;
1286 end Is_Greater_Element_Node
;
1288 --------------------------
1289 -- Is_Less_Element_Node --
1290 --------------------------
1292 function Is_Less_Element_Node
1293 (Left
: Element_Type
;
1294 Right
: Node_Type
) return Boolean
1297 return Left
< Right
.Element
;
1298 end Is_Less_Element_Node
;
1300 -----------------------
1301 -- Is_Less_Node_Node --
1302 -----------------------
1304 function Is_Less_Node_Node
(L
, R
: Node_Type
) return Boolean is
1306 return L
.Element
< R
.Element
;
1307 end Is_Less_Node_Node
;
1313 function Is_Subset
(Subset
: Set
; Of_Set
: Set
) return Boolean
1314 renames Set_Ops
.Set_Subset
;
1322 Process
: not null access procedure (Position
: Cursor
))
1324 procedure Process_Node
(Node
: Count_Type
);
1325 pragma Inline
(Process_Node
);
1327 procedure Local_Iterate
is
1328 new Tree_Operations
.Generic_Iteration
(Process_Node
);
1334 procedure Process_Node
(Node
: Count_Type
) is
1336 Process
(Cursor
'(Container'Unrestricted_Access, Node));
1339 S : Set renames Container'Unrestricted_Access.all;
1340 B : Natural renames S.Busy;
1342 -- Start of processing for Iterate
1358 function Iterate (Container : Set)
1359 return Set_Iterator_Interfaces.Reversible_Iterator'class
1361 B : Natural renames Container'Unrestricted_Access.all.Busy;
1364 -- The value of the Node component influences the behavior of the First
1365 -- and Last selector functions of the iterator object. When the Node
1366 -- component is 0 (as is the case here), this means the iterator object
1367 -- was constructed without a start expression. This is a complete
1368 -- iterator, meaning that the iteration starts from the (logical)
1369 -- beginning of the sequence of items.
1371 -- Note: For a forward iterator, Container.First is the beginning, and
1372 -- for a reverse iterator, Container.Last is the beginning.
1374 return It : constant Iterator :=
1375 Iterator'(Limited_Controlled
with
1376 Container
=> Container
'Unrestricted_Access,
1383 function Iterate
(Container
: Set
; Start
: Cursor
)
1384 return Set_Iterator_Interfaces
.Reversible_Iterator
'class
1386 B
: Natural renames Container
'Unrestricted_Access.all.Busy
;
1389 -- It was formerly the case that when Start = No_Element, the partial
1390 -- iterator was defined to behave the same as for a complete iterator,
1391 -- and iterate over the entire sequence of items. However, those
1392 -- semantics were unintuitive and arguably error-prone (it is too easy
1393 -- to accidentally create an endless loop), and so they were changed,
1394 -- per the ARG meeting in Denver on 2011/11. However, there was no
1395 -- consensus about what positive meaning this corner case should have,
1396 -- and so it was decided to simply raise an exception. This does imply,
1397 -- however, that it is not possible to use a partial iterator to specify
1398 -- an empty sequence of items.
1400 if Start
= No_Element
then
1401 raise Constraint_Error
with
1402 "Start position for iterator equals No_Element";
1405 if Start
.Container
/= Container
'Unrestricted_Access then
1406 raise Program_Error
with
1407 "Start cursor of Iterate designates wrong set";
1410 pragma Assert
(Vet
(Container
, Start
.Node
),
1411 "Start cursor of Iterate is bad");
1413 -- The value of the Node component influences the behavior of the First
1414 -- and Last selector functions of the iterator object. When the Node
1415 -- component is positive (as is the case here), it means that this
1416 -- is a partial iteration, over a subset of the complete sequence of
1417 -- items. The iterator object was constructed with a start expression,
1418 -- indicating the position from which the iteration begins. (Note that
1419 -- the start position has the same value irrespective of whether this
1420 -- is a forward or reverse iteration.)
1422 return It
: constant Iterator
:=
1423 Iterator
'(Limited_Controlled with
1424 Container => Container'Unrestricted_Access,
1435 function Last (Container : Set) return Cursor is
1437 return (if Container.Last = 0 then No_Element
1438 else Cursor'(Container
'Unrestricted_Access, Container
.Last
));
1441 function Last
(Object
: Iterator
) return Cursor
is
1443 -- The value of the iterator object's Node component influences the
1444 -- behavior of the Last (and First) selector function.
1446 -- When the Node component is 0, this means the iterator object was
1447 -- constructed without a start expression, in which case the (reverse)
1448 -- iteration starts from the (logical) beginning of the entire sequence
1449 -- (corresponding to Container.Last, for a reverse iterator).
1451 -- Otherwise, this is iteration over a partial sequence of items. When
1452 -- the Node component is positive, the iterator object was constructed
1453 -- with a start expression, that specifies the position from which the
1454 -- (reverse) partial iteration begins.
1456 if Object
.Node
= 0 then
1457 return Bounded_Ordered_Sets
.Last
(Object
.Container
.all);
1459 return Cursor
'(Object.Container, Object.Node);
1467 function Last_Element (Container : Set) return Element_Type is
1469 if Container.Last = 0 then
1470 raise Constraint_Error with "set is empty";
1473 return Container.Nodes (Container.Last).Element;
1480 function Left (Node : Node_Type) return Count_Type is
1489 function Length (Container : Set) return Count_Type is
1491 return Container.Length;
1498 procedure Move (Target : in out Set; Source : in out Set) is
1500 if Target'Address = Source'Address then
1504 if Source.Busy > 0 then
1505 raise Program_Error with
1506 "attempt to tamper with cursors (container is busy)";
1509 Target.Assign (Source);
1517 function Next (Position : Cursor) return Cursor is
1519 if Position = No_Element then
1523 pragma Assert (Vet (Position.Container.all, Position.Node),
1524 "bad cursor in Next");
1527 Node : constant Count_Type :=
1528 Tree_Operations.Next (Position.Container.all, Position.Node);
1535 return Cursor'(Position
.Container
, Node
);
1539 procedure Next
(Position
: in out Cursor
) is
1541 Position
:= Next
(Position
);
1544 function Next
(Object
: Iterator
; Position
: Cursor
) return Cursor
is
1546 if Position
.Container
= null then
1550 if Position
.Container
/= Object
.Container
then
1551 raise Program_Error
with
1552 "Position cursor of Next designates wrong set";
1555 return Next
(Position
);
1562 function Overlap
(Left
, Right
: Set
) return Boolean
1563 renames Set_Ops
.Set_Overlap
;
1569 function Parent
(Node
: Node_Type
) return Count_Type
is
1578 function Previous
(Position
: Cursor
) return Cursor
is
1580 if Position
= No_Element
then
1584 pragma Assert
(Vet
(Position
.Container
.all, Position
.Node
),
1585 "bad cursor in Previous");
1588 Node
: constant Count_Type
:=
1589 Tree_Operations
.Previous
(Position
.Container
.all, Position
.Node
);
1591 return (if Node
= 0 then No_Element
1592 else Cursor
'(Position.Container, Node));
1596 procedure Previous (Position : in out Cursor) is
1598 Position := Previous (Position);
1601 function Previous (Object : Iterator; Position : Cursor) return Cursor is
1603 if Position.Container = null then
1607 if Position.Container /= Object.Container then
1608 raise Program_Error with
1609 "Position cursor of Previous designates wrong set";
1612 return Previous (Position);
1619 procedure Query_Element
1621 Process : not null access procedure (Element : Element_Type))
1624 if Position.Node = 0 then
1625 raise Constraint_Error with "Position cursor equals No_Element";
1628 pragma Assert (Vet (Position.Container.all, Position.Node),
1629 "bad cursor in Query_Element");
1632 S : Set renames Position.Container.all;
1633 B : Natural renames S.Busy;
1634 L : Natural renames S.Lock;
1641 Process (S.Nodes (Position.Node).Element);
1659 (Stream : not null access Root_Stream_Type'Class;
1660 Container : out Set)
1662 procedure Read_Element (Node : in out Node_Type);
1663 pragma Inline (Read_Element);
1665 procedure Allocate is
1666 new Tree_Operations.Generic_Allocate (Read_Element);
1668 procedure Read_Elements is
1669 new Tree_Operations.Generic_Read (Allocate);
1675 procedure Read_Element (Node : in out Node_Type) is
1677 Element_Type'Read (Stream, Node.Element);
1680 -- Start of processing for Read
1683 Read_Elements (Stream, Container);
1687 (Stream : not null access Root_Stream_Type'Class;
1691 raise Program_Error with "attempt to stream set cursor";
1695 (Stream : not null access Root_Stream_Type'Class;
1696 Item : out Constant_Reference_Type)
1699 raise Program_Error with "attempt to stream reference";
1706 procedure Replace (Container : in out Set; New_Item : Element_Type) is
1707 Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
1711 raise Constraint_Error with
1712 "attempt to replace element not in set";
1715 if Container.Lock > 0 then
1716 raise Program_Error with
1717 "attempt to tamper with elements (set is locked)";
1720 Container.Nodes (Node).Element := New_Item;
1723 ---------------------
1724 -- Replace_Element --
1725 ---------------------
1727 procedure Replace_Element
1728 (Container : in out Set;
1730 Item : Element_Type)
1732 pragma Assert (Index /= 0);
1734 function New_Node return Count_Type;
1735 pragma Inline (New_Node);
1737 procedure Local_Insert_Post is
1738 new Element_Keys.Generic_Insert_Post (New_Node);
1740 procedure Local_Insert_Sans_Hint is
1741 new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1743 procedure Local_Insert_With_Hint is
1744 new Element_Keys.Generic_Conditional_Insert_With_Hint
1746 Local_Insert_Sans_Hint);
1748 Nodes : Nodes_Type renames Container.Nodes;
1749 Node : Node_Type renames Nodes (Index);
1755 function New_Node return Count_Type is
1757 Node.Element := Item;
1758 Node.Color := Red_Black_Trees.Red;
1766 Result : Count_Type;
1770 -- Per AI05-0022, the container implementation is required to detect
1771 -- element tampering by a generic actual subprogram.
1773 B : Natural renames Container.Busy;
1774 L : Natural renames Container.Lock;
1776 -- Start of processing for Replace_Element
1779 -- Replace_Element assigns value Item to the element designated by Node,
1780 -- per certain semantic constraints, described as follows.
1782 -- If Item is equivalent to the element, then element is replaced and
1783 -- there's nothing else to do. This is the easy case.
1785 -- If Item is not equivalent, then the node will (possibly) have to move
1786 -- to some other place in the tree. This is slighly more complicated,
1787 -- because we must ensure that Item is not equivalent to some other
1788 -- element in the tree (in which case, the replacement is not allowed).
1790 -- Determine whether Item is equivalent to element on the specified
1797 Compare := (if Item < Node.Element then False
1798 elsif Node.Element < Item then False
1813 -- Item is equivalent to the node's element, so we will not have to
1816 if Container.Lock > 0 then
1817 raise Program_Error with
1818 "attempt to tamper with elements (set is locked)";
1821 Node.Element := Item;
1825 -- The replacement Item is not equivalent to the element on the
1826 -- specified node, which means that it will need to be re-inserted in a
1827 -- different position in the tree. We must now determine whether Item is
1828 -- equivalent to some other element in the tree (which would prohibit
1829 -- the assignment and hence the move).
1831 -- Ceiling returns the smallest element equivalent or greater than the
1832 -- specified Item; if there is no such element, then it returns 0.
1834 Hint := Element_Keys.Ceiling (Container, Item);
1836 if Hint /= 0 then -- Item <= Nodes (Hint).Element
1841 Compare := Item < Nodes (Hint).Element;
1853 -- Item is equivalent to Nodes (Hint).Element
1857 -- Ceiling returns an element that is equivalent or greater than
1858 -- Item. If Item is "not less than" the element, then by
1859 -- elimination we know that Item is equivalent to the element.
1861 -- But this means that it is not possible to assign the value of
1862 -- Item to the specified element (on Node), because a different
1863 -- element (on Hint) equivalent to Item already exsits. (Were we
1864 -- to change Node's element value, we would have to move Node, but
1865 -- we would be unable to move the Node, because its new position
1866 -- in the tree is already occupied by an equivalent element.)
1868 raise Program_Error with "attempt to replace existing element";
1871 -- Item is not equivalent to any other element in the tree
1872 -- (specifically, it is less than Nodes (Hint).Element), so it is
1873 -- safe to assign the value of Item to Node.Element. This means that
1874 -- the node will have to move to a different position in the tree
1875 -- (because its element will have a different value).
1877 -- The nearest (greater) neighbor of Item is Hint. This will be the
1878 -- insertion position of Node (because its element will have Item as
1881 -- If Node equals Hint, the relative position of Node does not
1882 -- change. This allows us to perform an optimization: we need not
1883 -- remove Node from the tree and then reinsert it with its new value,
1884 -- because it would only be placed in the exact same position.
1886 if Hint = Index then
1887 if Container.Lock > 0 then
1888 raise Program_Error with
1889 "attempt to tamper with elements (set is locked)";
1892 Node.Element := Item;
1897 -- If we get here, it is because Item was greater than all elements in
1898 -- the tree (Hint = 0), or because Item was less than some element at a
1899 -- different place in the tree (Item < Nodes (Hint).Element and Hint /=
1900 -- Index). In either case, we remove Node from the tree and then insert
1901 -- Item into the tree, onto the same Node.
1903 Tree_Operations.Delete_Node_Sans_Free (Container, Index);
1905 Local_Insert_With_Hint
1910 Inserted => Inserted);
1912 pragma Assert (Inserted);
1913 pragma Assert (Result = Index);
1914 end Replace_Element;
1916 procedure Replace_Element
1917 (Container : in out Set;
1919 New_Item : Element_Type)
1922 if Position.Node = 0 then
1923 raise Constraint_Error with
1924 "Position cursor equals No_Element";
1927 if Position.Container /= Container'Unrestricted_Access then
1928 raise Program_Error with
1929 "Position cursor designates wrong set";
1932 pragma Assert (Vet (Container, Position.Node),
1933 "bad cursor in Replace_Element");
1935 Replace_Element (Container, Position.Node, New_Item);
1936 end Replace_Element;
1938 ---------------------
1939 -- Reverse_Iterate --
1940 ---------------------
1942 procedure Reverse_Iterate
1944 Process : not null access procedure (Position : Cursor))
1946 procedure Process_Node (Node : Count_Type);
1947 pragma Inline (Process_Node);
1949 procedure Local_Reverse_Iterate is
1950 new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1956 procedure Process_Node (Node : Count_Type) is
1958 Process (Cursor'(Container
'Unrestricted_Access, Node
));
1961 S
: Set
renames Container
'Unrestricted_Access.all;
1962 B
: Natural renames S
.Busy
;
1964 -- Start of processing for Reverse_Iterate
1970 Local_Reverse_Iterate
(S
);
1978 end Reverse_Iterate
;
1984 function Right
(Node
: Node_Type
) return Count_Type
is
1994 (Node
: in out Node_Type
;
1995 Color
: Red_Black_Trees
.Color_Type
)
1998 Node
.Color
:= Color
;
2005 procedure Set_Left
(Node
: in out Node_Type
; Left
: Count_Type
) is
2014 procedure Set_Parent
(Node
: in out Node_Type
; Parent
: Count_Type
) is
2016 Node
.Parent
:= Parent
;
2023 procedure Set_Right
(Node
: in out Node_Type
; Right
: Count_Type
) is
2025 Node
.Right
:= Right
;
2028 --------------------------
2029 -- Symmetric_Difference --
2030 --------------------------
2032 procedure Symmetric_Difference
(Target
: in out Set
; Source
: Set
)
2033 renames Set_Ops
.Set_Symmetric_Difference
;
2035 function Symmetric_Difference
(Left
, Right
: Set
) return Set
2036 renames Set_Ops
.Set_Symmetric_Difference
;
2042 function To_Set
(New_Item
: Element_Type
) return Set
is
2046 return S
: Set
(1) do
2047 Insert_Sans_Hint
(S
, New_Item
, Node
, Inserted
);
2048 pragma Assert
(Inserted
);
2056 procedure Union
(Target
: in out Set
; Source
: Set
)
2057 renames Set_Ops
.Set_Union
;
2059 function Union
(Left
, Right
: Set
) return Set
2060 renames Set_Ops
.Set_Union
;
2067 (Stream
: not null access Root_Stream_Type
'Class;
2070 procedure Write_Element
2071 (Stream
: not null access Root_Stream_Type
'Class;
2073 pragma Inline
(Write_Element
);
2075 procedure Write_Elements
is
2076 new Tree_Operations
.Generic_Write
(Write_Element
);
2082 procedure Write_Element
2083 (Stream
: not null access Root_Stream_Type
'Class;
2087 Element_Type
'Write (Stream
, Node
.Element
);
2090 -- Start of processing for Write
2093 Write_Elements
(Stream
, Container
);
2097 (Stream
: not null access Root_Stream_Type
'Class;
2101 raise Program_Error
with "attempt to stream set cursor";
2105 (Stream
: not null access Root_Stream_Type
'Class;
2106 Item
: Constant_Reference_Type
)
2109 raise Program_Error
with "attempt to stream reference";
2112 end Ada
.Containers
.Bounded_Ordered_Sets
;