1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
54 /* Local declarations. */
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity
= 20;
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
72 static struct pointer_map_t
*edge_to_cases
;
77 long num_merged_labels
;
80 static struct cfg_stats_d cfg_stats
;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto
;
85 /* Basic blocks and flowgraphs. */
86 static void make_blocks (gimple_seq
);
87 static void factor_computed_gotos (void);
90 static void make_edges (void);
91 static void make_cond_expr_edges (basic_block
);
92 static void make_gimple_switch_edges (basic_block
);
93 static void make_goto_expr_edges (basic_block
);
94 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
95 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
96 static unsigned int split_critical_edges (void);
98 /* Various helpers. */
99 static inline bool stmt_starts_bb_p (gimple
, gimple
);
100 static int gimple_verify_flow_info (void);
101 static void gimple_make_forwarder_block (edge
);
102 static void gimple_cfg2vcg (FILE *);
104 /* Flowgraph optimization and cleanup. */
105 static void gimple_merge_blocks (basic_block
, basic_block
);
106 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
107 static void remove_bb (basic_block
);
108 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
109 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
110 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
111 static tree
find_case_label_for_value (gimple
, tree
);
114 init_empty_tree_cfg_for_function (struct function
*fn
)
116 /* Initialize the basic block array. */
118 profile_status_for_function (fn
) = PROFILE_ABSENT
;
119 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
120 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
121 basic_block_info_for_function (fn
)
122 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
123 VEC_safe_grow_cleared (basic_block
, gc
,
124 basic_block_info_for_function (fn
),
125 initial_cfg_capacity
);
127 /* Build a mapping of labels to their associated blocks. */
128 label_to_block_map_for_function (fn
)
129 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
130 VEC_safe_grow_cleared (basic_block
, gc
,
131 label_to_block_map_for_function (fn
),
132 initial_cfg_capacity
);
134 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
135 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
136 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
137 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
139 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
140 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
141 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
142 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
146 init_empty_tree_cfg (void)
148 init_empty_tree_cfg_for_function (cfun
);
151 /*---------------------------------------------------------------------------
153 ---------------------------------------------------------------------------*/
155 /* Entry point to the CFG builder for trees. SEQ is the sequence of
156 statements to be added to the flowgraph. */
159 build_gimple_cfg (gimple_seq seq
)
161 /* Register specific gimple functions. */
162 gimple_register_cfg_hooks ();
164 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
166 init_empty_tree_cfg ();
168 found_computed_goto
= 0;
171 /* Computed gotos are hell to deal with, especially if there are
172 lots of them with a large number of destinations. So we factor
173 them to a common computed goto location before we build the
174 edge list. After we convert back to normal form, we will un-factor
175 the computed gotos since factoring introduces an unwanted jump. */
176 if (found_computed_goto
)
177 factor_computed_gotos ();
179 /* Make sure there is always at least one block, even if it's empty. */
180 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
181 create_empty_bb (ENTRY_BLOCK_PTR
);
183 /* Adjust the size of the array. */
184 if (VEC_length (basic_block
, basic_block_info
) < (size_t) n_basic_blocks
)
185 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, n_basic_blocks
);
187 /* To speed up statement iterator walks, we first purge dead labels. */
188 cleanup_dead_labels ();
190 /* Group case nodes to reduce the number of edges.
191 We do this after cleaning up dead labels because otherwise we miss
192 a lot of obvious case merging opportunities. */
193 group_case_labels ();
195 /* Create the edges of the flowgraph. */
197 cleanup_dead_labels ();
199 /* Debugging dumps. */
201 /* Write the flowgraph to a VCG file. */
203 int local_dump_flags
;
204 FILE *vcg_file
= dump_begin (TDI_vcg
, &local_dump_flags
);
207 gimple_cfg2vcg (vcg_file
);
208 dump_end (TDI_vcg
, vcg_file
);
212 #ifdef ENABLE_CHECKING
218 execute_build_cfg (void)
220 gimple_seq body
= gimple_body (current_function_decl
);
222 build_gimple_cfg (body
);
223 gimple_set_body (current_function_decl
, NULL
);
224 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
226 fprintf (dump_file
, "Scope blocks:\n");
227 dump_scope_blocks (dump_file
, dump_flags
);
232 struct gimple_opt_pass pass_build_cfg
=
238 execute_build_cfg
, /* execute */
241 0, /* static_pass_number */
242 TV_TREE_CFG
, /* tv_id */
243 PROP_gimple_leh
, /* properties_required */
244 PROP_cfg
, /* properties_provided */
245 0, /* properties_destroyed */
246 0, /* todo_flags_start */
247 TODO_verify_stmts
| TODO_cleanup_cfg
248 | TODO_dump_func
/* todo_flags_finish */
253 /* Return true if T is a computed goto. */
256 computed_goto_p (gimple t
)
258 return (gimple_code (t
) == GIMPLE_GOTO
259 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
263 /* Search the CFG for any computed gotos. If found, factor them to a
264 common computed goto site. Also record the location of that site so
265 that we can un-factor the gotos after we have converted back to
269 factor_computed_gotos (void)
272 tree factored_label_decl
= NULL
;
274 gimple factored_computed_goto_label
= NULL
;
275 gimple factored_computed_goto
= NULL
;
277 /* We know there are one or more computed gotos in this function.
278 Examine the last statement in each basic block to see if the block
279 ends with a computed goto. */
283 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
289 last
= gsi_stmt (gsi
);
291 /* Ignore the computed goto we create when we factor the original
293 if (last
== factored_computed_goto
)
296 /* If the last statement is a computed goto, factor it. */
297 if (computed_goto_p (last
))
301 /* The first time we find a computed goto we need to create
302 the factored goto block and the variable each original
303 computed goto will use for their goto destination. */
304 if (!factored_computed_goto
)
306 basic_block new_bb
= create_empty_bb (bb
);
307 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
309 /* Create the destination of the factored goto. Each original
310 computed goto will put its desired destination into this
311 variable and jump to the label we create immediately
313 var
= create_tmp_var (ptr_type_node
, "gotovar");
315 /* Build a label for the new block which will contain the
316 factored computed goto. */
317 factored_label_decl
= create_artificial_label ();
318 factored_computed_goto_label
319 = gimple_build_label (factored_label_decl
);
320 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
323 /* Build our new computed goto. */
324 factored_computed_goto
= gimple_build_goto (var
);
325 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
328 /* Copy the original computed goto's destination into VAR. */
329 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
330 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
332 /* And re-vector the computed goto to the new destination. */
333 gimple_goto_set_dest (last
, factored_label_decl
);
339 /* Build a flowgraph for the sequence of stmts SEQ. */
342 make_blocks (gimple_seq seq
)
344 gimple_stmt_iterator i
= gsi_start (seq
);
346 bool start_new_block
= true;
347 bool first_stmt_of_seq
= true;
348 basic_block bb
= ENTRY_BLOCK_PTR
;
350 while (!gsi_end_p (i
))
357 /* If the statement starts a new basic block or if we have determined
358 in a previous pass that we need to create a new block for STMT, do
360 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
362 if (!first_stmt_of_seq
)
363 seq
= gsi_split_seq_before (&i
);
364 bb
= create_basic_block (seq
, NULL
, bb
);
365 start_new_block
= false;
368 /* Now add STMT to BB and create the subgraphs for special statement
370 gimple_set_bb (stmt
, bb
);
372 if (computed_goto_p (stmt
))
373 found_computed_goto
= true;
375 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
377 if (stmt_ends_bb_p (stmt
))
378 start_new_block
= true;
381 first_stmt_of_seq
= false;
386 /* Create and return a new empty basic block after bb AFTER. */
389 create_bb (void *h
, void *e
, basic_block after
)
395 /* Create and initialize a new basic block. Since alloc_block uses
396 ggc_alloc_cleared to allocate a basic block, we do not have to
397 clear the newly allocated basic block here. */
400 bb
->index
= last_basic_block
;
402 bb
->il
.gimple
= GGC_CNEW (struct gimple_bb_info
);
403 set_bb_seq (bb
, h
? (gimple_seq
) h
: gimple_seq_alloc ());
405 /* Add the new block to the linked list of blocks. */
406 link_block (bb
, after
);
408 /* Grow the basic block array if needed. */
409 if ((size_t) last_basic_block
== VEC_length (basic_block
, basic_block_info
))
411 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
412 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, new_size
);
415 /* Add the newly created block to the array. */
416 SET_BASIC_BLOCK (last_basic_block
, bb
);
425 /*---------------------------------------------------------------------------
427 ---------------------------------------------------------------------------*/
429 /* Fold COND_EXPR_COND of each COND_EXPR. */
432 fold_cond_expr_cond (void)
438 gimple stmt
= last_stmt (bb
);
440 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
445 fold_defer_overflow_warnings ();
446 cond
= fold_binary (gimple_cond_code (stmt
), boolean_type_node
,
447 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
450 zerop
= integer_zerop (cond
);
451 onep
= integer_onep (cond
);
454 zerop
= onep
= false;
456 fold_undefer_overflow_warnings (zerop
|| onep
,
458 WARN_STRICT_OVERFLOW_CONDITIONAL
);
460 gimple_cond_make_false (stmt
);
462 gimple_cond_make_true (stmt
);
467 /* Join all the blocks in the flowgraph. */
473 struct omp_region
*cur_region
= NULL
;
475 /* Create an edge from entry to the first block with executable
477 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
479 /* Traverse the basic block array placing edges. */
482 gimple last
= last_stmt (bb
);
487 enum gimple_code code
= gimple_code (last
);
491 make_goto_expr_edges (bb
);
495 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
499 make_cond_expr_edges (bb
);
503 make_gimple_switch_edges (bb
);
507 make_eh_edges (last
);
512 /* If this function receives a nonlocal goto, then we need to
513 make edges from this call site to all the nonlocal goto
515 if (stmt_can_make_abnormal_goto (last
))
516 make_abnormal_goto_edges (bb
, true);
518 /* If this statement has reachable exception handlers, then
519 create abnormal edges to them. */
520 make_eh_edges (last
);
522 /* Some calls are known not to return. */
523 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
527 /* A GIMPLE_ASSIGN may throw internally and thus be considered
529 if (is_ctrl_altering_stmt (last
))
531 make_eh_edges (last
);
536 case GIMPLE_OMP_PARALLEL
:
537 case GIMPLE_OMP_TASK
:
539 case GIMPLE_OMP_SINGLE
:
540 case GIMPLE_OMP_MASTER
:
541 case GIMPLE_OMP_ORDERED
:
542 case GIMPLE_OMP_CRITICAL
:
543 case GIMPLE_OMP_SECTION
:
544 cur_region
= new_omp_region (bb
, code
, cur_region
);
548 case GIMPLE_OMP_SECTIONS
:
549 cur_region
= new_omp_region (bb
, code
, cur_region
);
553 case GIMPLE_OMP_SECTIONS_SWITCH
:
558 case GIMPLE_OMP_ATOMIC_LOAD
:
559 case GIMPLE_OMP_ATOMIC_STORE
:
564 case GIMPLE_OMP_RETURN
:
565 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
566 somewhere other than the next block. This will be
568 cur_region
->exit
= bb
;
569 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
570 cur_region
= cur_region
->outer
;
573 case GIMPLE_OMP_CONTINUE
:
574 cur_region
->cont
= bb
;
575 switch (cur_region
->type
)
578 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
579 succs edges as abnormal to prevent splitting
581 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
582 /* Make the loopback edge. */
583 make_edge (bb
, single_succ (cur_region
->entry
),
586 /* Create an edge from GIMPLE_OMP_FOR to exit, which
587 corresponds to the case that the body of the loop
588 is not executed at all. */
589 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
590 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
594 case GIMPLE_OMP_SECTIONS
:
595 /* Wire up the edges into and out of the nested sections. */
597 basic_block switch_bb
= single_succ (cur_region
->entry
);
599 struct omp_region
*i
;
600 for (i
= cur_region
->inner
; i
; i
= i
->next
)
602 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
603 make_edge (switch_bb
, i
->entry
, 0);
604 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
607 /* Make the loopback edge to the block with
608 GIMPLE_OMP_SECTIONS_SWITCH. */
609 make_edge (bb
, switch_bb
, 0);
611 /* Make the edge from the switch to exit. */
612 make_edge (switch_bb
, bb
->next_bb
, 0);
623 gcc_assert (!stmt_ends_bb_p (last
));
631 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
637 /* Fold COND_EXPR_COND of each COND_EXPR. */
638 fold_cond_expr_cond ();
642 /* Create the edges for a GIMPLE_COND starting at block BB. */
645 make_cond_expr_edges (basic_block bb
)
647 gimple entry
= last_stmt (bb
);
648 gimple then_stmt
, else_stmt
;
649 basic_block then_bb
, else_bb
;
650 tree then_label
, else_label
;
654 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
656 /* Entry basic blocks for each component. */
657 then_label
= gimple_cond_true_label (entry
);
658 else_label
= gimple_cond_false_label (entry
);
659 then_bb
= label_to_block (then_label
);
660 else_bb
= label_to_block (else_label
);
661 then_stmt
= first_stmt (then_bb
);
662 else_stmt
= first_stmt (else_bb
);
664 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
665 e
->goto_locus
= gimple_location (then_stmt
);
667 e
->goto_block
= gimple_block (then_stmt
);
668 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
671 e
->goto_locus
= gimple_location (else_stmt
);
673 e
->goto_block
= gimple_block (else_stmt
);
676 /* We do not need the labels anymore. */
677 gimple_cond_set_true_label (entry
, NULL_TREE
);
678 gimple_cond_set_false_label (entry
, NULL_TREE
);
682 /* Called for each element in the hash table (P) as we delete the
683 edge to cases hash table.
685 Clear all the TREE_CHAINs to prevent problems with copying of
686 SWITCH_EXPRs and structure sharing rules, then free the hash table
690 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
691 void *data ATTRIBUTE_UNUSED
)
695 for (t
= (tree
) *value
; t
; t
= next
)
697 next
= TREE_CHAIN (t
);
698 TREE_CHAIN (t
) = NULL
;
705 /* Start recording information mapping edges to case labels. */
708 start_recording_case_labels (void)
710 gcc_assert (edge_to_cases
== NULL
);
711 edge_to_cases
= pointer_map_create ();
714 /* Return nonzero if we are recording information for case labels. */
717 recording_case_labels_p (void)
719 return (edge_to_cases
!= NULL
);
722 /* Stop recording information mapping edges to case labels and
723 remove any information we have recorded. */
725 end_recording_case_labels (void)
727 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
728 pointer_map_destroy (edge_to_cases
);
729 edge_to_cases
= NULL
;
732 /* If we are inside a {start,end}_recording_cases block, then return
733 a chain of CASE_LABEL_EXPRs from T which reference E.
735 Otherwise return NULL. */
738 get_cases_for_edge (edge e
, gimple t
)
743 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
744 chains available. Return NULL so the caller can detect this case. */
745 if (!recording_case_labels_p ())
748 slot
= pointer_map_contains (edge_to_cases
, e
);
752 /* If we did not find E in the hash table, then this must be the first
753 time we have been queried for information about E & T. Add all the
754 elements from T to the hash table then perform the query again. */
756 n
= gimple_switch_num_labels (t
);
757 for (i
= 0; i
< n
; i
++)
759 tree elt
= gimple_switch_label (t
, i
);
760 tree lab
= CASE_LABEL (elt
);
761 basic_block label_bb
= label_to_block (lab
);
762 edge this_edge
= find_edge (e
->src
, label_bb
);
764 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
766 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
767 TREE_CHAIN (elt
) = (tree
) *slot
;
771 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
774 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
777 make_gimple_switch_edges (basic_block bb
)
779 gimple entry
= last_stmt (bb
);
782 n
= gimple_switch_num_labels (entry
);
784 for (i
= 0; i
< n
; ++i
)
786 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
787 basic_block label_bb
= label_to_block (lab
);
788 make_edge (bb
, label_bb
, 0);
793 /* Return the basic block holding label DEST. */
796 label_to_block_fn (struct function
*ifun
, tree dest
)
798 int uid
= LABEL_DECL_UID (dest
);
800 /* We would die hard when faced by an undefined label. Emit a label to
801 the very first basic block. This will hopefully make even the dataflow
802 and undefined variable warnings quite right. */
803 if ((errorcount
|| sorrycount
) && uid
< 0)
805 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
808 stmt
= gimple_build_label (dest
);
809 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
810 uid
= LABEL_DECL_UID (dest
);
812 if (VEC_length (basic_block
, ifun
->cfg
->x_label_to_block_map
)
813 <= (unsigned int) uid
)
815 return VEC_index (basic_block
, ifun
->cfg
->x_label_to_block_map
, uid
);
818 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
819 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
822 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
824 basic_block target_bb
;
825 gimple_stmt_iterator gsi
;
827 FOR_EACH_BB (target_bb
)
828 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
830 gimple label_stmt
= gsi_stmt (gsi
);
833 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
836 target
= gimple_label_label (label_stmt
);
838 /* Make an edge to every label block that has been marked as a
839 potential target for a computed goto or a non-local goto. */
840 if ((FORCED_LABEL (target
) && !for_call
)
841 || (DECL_NONLOCAL (target
) && for_call
))
843 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
849 /* Create edges for a goto statement at block BB. */
852 make_goto_expr_edges (basic_block bb
)
854 gimple_stmt_iterator last
= gsi_last_bb (bb
);
855 gimple goto_t
= gsi_stmt (last
);
857 /* A simple GOTO creates normal edges. */
858 if (simple_goto_p (goto_t
))
860 tree dest
= gimple_goto_dest (goto_t
);
861 edge e
= make_edge (bb
, label_to_block (dest
), EDGE_FALLTHRU
);
862 e
->goto_locus
= gimple_location (goto_t
);
864 e
->goto_block
= gimple_block (goto_t
);
865 gsi_remove (&last
, true);
869 /* A computed GOTO creates abnormal edges. */
870 make_abnormal_goto_edges (bb
, false);
874 /*---------------------------------------------------------------------------
876 ---------------------------------------------------------------------------*/
878 /* Cleanup useless labels in basic blocks. This is something we wish
879 to do early because it allows us to group case labels before creating
880 the edges for the CFG, and it speeds up block statement iterators in
882 We rerun this pass after CFG is created, to get rid of the labels that
883 are no longer referenced. After then we do not run it any more, since
884 (almost) no new labels should be created. */
886 /* A map from basic block index to the leading label of that block. */
887 static struct label_record
892 /* True if the label is referenced from somewhere. */
896 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
898 update_eh_label (struct eh_region
*region
)
900 tree old_label
= get_eh_region_tree_label (region
);
904 basic_block bb
= label_to_block (old_label
);
906 /* ??? After optimizing, there may be EH regions with labels
907 that have already been removed from the function body, so
908 there is no basic block for them. */
912 new_label
= label_for_bb
[bb
->index
].label
;
913 label_for_bb
[bb
->index
].used
= true;
914 set_eh_region_tree_label (region
, new_label
);
919 /* Given LABEL return the first label in the same basic block. */
922 main_block_label (tree label
)
924 basic_block bb
= label_to_block (label
);
925 tree main_label
= label_for_bb
[bb
->index
].label
;
927 /* label_to_block possibly inserted undefined label into the chain. */
930 label_for_bb
[bb
->index
].label
= label
;
934 label_for_bb
[bb
->index
].used
= true;
938 /* Cleanup redundant labels. This is a three-step process:
939 1) Find the leading label for each block.
940 2) Redirect all references to labels to the leading labels.
941 3) Cleanup all useless labels. */
944 cleanup_dead_labels (void)
947 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
949 /* Find a suitable label for each block. We use the first user-defined
950 label if there is one, or otherwise just the first label we see. */
953 gimple_stmt_iterator i
;
955 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
958 gimple stmt
= gsi_stmt (i
);
960 if (gimple_code (stmt
) != GIMPLE_LABEL
)
963 label
= gimple_label_label (stmt
);
965 /* If we have not yet seen a label for the current block,
966 remember this one and see if there are more labels. */
967 if (!label_for_bb
[bb
->index
].label
)
969 label_for_bb
[bb
->index
].label
= label
;
973 /* If we did see a label for the current block already, but it
974 is an artificially created label, replace it if the current
975 label is a user defined label. */
976 if (!DECL_ARTIFICIAL (label
)
977 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
979 label_for_bb
[bb
->index
].label
= label
;
985 /* Now redirect all jumps/branches to the selected label.
986 First do so for each block ending in a control statement. */
989 gimple stmt
= last_stmt (bb
);
993 switch (gimple_code (stmt
))
997 tree true_label
= gimple_cond_true_label (stmt
);
998 tree false_label
= gimple_cond_false_label (stmt
);
1001 gimple_cond_set_true_label (stmt
, main_block_label (true_label
));
1003 gimple_cond_set_false_label (stmt
, main_block_label (false_label
));
1009 size_t i
, n
= gimple_switch_num_labels (stmt
);
1011 /* Replace all destination labels. */
1012 for (i
= 0; i
< n
; ++i
)
1014 tree case_label
= gimple_switch_label (stmt
, i
);
1015 tree label
= main_block_label (CASE_LABEL (case_label
));
1016 CASE_LABEL (case_label
) = label
;
1021 /* We have to handle gotos until they're removed, and we don't
1022 remove them until after we've created the CFG edges. */
1024 if (!computed_goto_p (stmt
))
1026 tree new_dest
= main_block_label (gimple_goto_dest (stmt
));
1027 gimple_goto_set_dest (stmt
, new_dest
);
1036 for_each_eh_region (update_eh_label
);
1038 /* Finally, purge dead labels. All user-defined labels and labels that
1039 can be the target of non-local gotos and labels which have their
1040 address taken are preserved. */
1043 gimple_stmt_iterator i
;
1044 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1046 if (!label_for_this_bb
)
1049 /* If the main label of the block is unused, we may still remove it. */
1050 if (!label_for_bb
[bb
->index
].used
)
1051 label_for_this_bb
= NULL
;
1053 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1056 gimple stmt
= gsi_stmt (i
);
1058 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1061 label
= gimple_label_label (stmt
);
1063 if (label
== label_for_this_bb
1064 || !DECL_ARTIFICIAL (label
)
1065 || DECL_NONLOCAL (label
)
1066 || FORCED_LABEL (label
))
1069 gsi_remove (&i
, true);
1073 free (label_for_bb
);
1076 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1077 and scan the sorted vector of cases. Combine the ones jumping to the
1079 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1082 group_case_labels (void)
1088 gimple stmt
= last_stmt (bb
);
1089 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1091 int old_size
= gimple_switch_num_labels (stmt
);
1092 int i
, j
, new_size
= old_size
;
1093 tree default_case
= NULL_TREE
;
1094 tree default_label
= NULL_TREE
;
1097 /* The default label is always the first case in a switch
1098 statement after gimplification if it was not optimized
1100 if (!CASE_LOW (gimple_switch_default_label (stmt
))
1101 && !CASE_HIGH (gimple_switch_default_label (stmt
)))
1103 default_case
= gimple_switch_default_label (stmt
);
1104 default_label
= CASE_LABEL (default_case
);
1108 has_default
= false;
1110 /* Look for possible opportunities to merge cases. */
1115 while (i
< old_size
)
1117 tree base_case
, base_label
, base_high
;
1118 base_case
= gimple_switch_label (stmt
, i
);
1120 gcc_assert (base_case
);
1121 base_label
= CASE_LABEL (base_case
);
1123 /* Discard cases that have the same destination as the
1125 if (base_label
== default_label
)
1127 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1133 base_high
= CASE_HIGH (base_case
)
1134 ? CASE_HIGH (base_case
)
1135 : CASE_LOW (base_case
);
1138 /* Try to merge case labels. Break out when we reach the end
1139 of the label vector or when we cannot merge the next case
1140 label with the current one. */
1141 while (i
< old_size
)
1143 tree merge_case
= gimple_switch_label (stmt
, i
);
1144 tree merge_label
= CASE_LABEL (merge_case
);
1145 tree t
= int_const_binop (PLUS_EXPR
, base_high
,
1146 integer_one_node
, 1);
1148 /* Merge the cases if they jump to the same place,
1149 and their ranges are consecutive. */
1150 if (merge_label
== base_label
1151 && tree_int_cst_equal (CASE_LOW (merge_case
), t
))
1153 base_high
= CASE_HIGH (merge_case
) ?
1154 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1155 CASE_HIGH (base_case
) = base_high
;
1156 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1165 /* Compress the case labels in the label vector, and adjust the
1166 length of the vector. */
1167 for (i
= 0, j
= 0; i
< new_size
; i
++)
1169 while (! gimple_switch_label (stmt
, j
))
1171 gimple_switch_set_label (stmt
, i
,
1172 gimple_switch_label (stmt
, j
++));
1175 gcc_assert (new_size
<= old_size
);
1176 gimple_switch_set_num_labels (stmt
, new_size
);
1181 /* Checks whether we can merge block B into block A. */
1184 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1187 gimple_stmt_iterator gsi
;
1190 if (!single_succ_p (a
))
1193 if (single_succ_edge (a
)->flags
& EDGE_ABNORMAL
)
1196 if (single_succ (a
) != b
)
1199 if (!single_pred_p (b
))
1202 if (b
== EXIT_BLOCK_PTR
)
1205 /* If A ends by a statement causing exceptions or something similar, we
1206 cannot merge the blocks. */
1207 stmt
= last_stmt (a
);
1208 if (stmt
&& stmt_ends_bb_p (stmt
))
1211 /* Do not allow a block with only a non-local label to be merged. */
1213 && gimple_code (stmt
) == GIMPLE_LABEL
1214 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1217 /* It must be possible to eliminate all phi nodes in B. If ssa form
1218 is not up-to-date, we cannot eliminate any phis; however, if only
1219 some symbols as whole are marked for renaming, this is not a problem,
1220 as phi nodes for those symbols are irrelevant in updating anyway. */
1221 phis
= phi_nodes (b
);
1222 if (!gimple_seq_empty_p (phis
))
1224 gimple_stmt_iterator i
;
1226 if (name_mappings_registered_p ())
1229 for (i
= gsi_start (phis
); !gsi_end_p (i
); gsi_next (&i
))
1231 gimple phi
= gsi_stmt (i
);
1233 if (!is_gimple_reg (gimple_phi_result (phi
))
1234 && !may_propagate_copy (gimple_phi_result (phi
),
1235 gimple_phi_arg_def (phi
, 0)))
1240 /* Do not remove user labels. */
1241 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1243 stmt
= gsi_stmt (gsi
);
1244 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1246 if (!DECL_ARTIFICIAL (gimple_label_label (stmt
)))
1250 /* Protect the loop latches. */
1252 && b
->loop_father
->latch
== b
)
1258 /* Replaces all uses of NAME by VAL. */
1261 replace_uses_by (tree name
, tree val
)
1263 imm_use_iterator imm_iter
;
1268 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1270 if (gimple_code (stmt
) != GIMPLE_PHI
)
1271 push_stmt_changes (&stmt
);
1273 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1275 replace_exp (use
, val
);
1277 if (gimple_code (stmt
) == GIMPLE_PHI
)
1279 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1280 if (e
->flags
& EDGE_ABNORMAL
)
1282 /* This can only occur for virtual operands, since
1283 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1284 would prevent replacement. */
1285 gcc_assert (!is_gimple_reg (name
));
1286 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1291 if (gimple_code (stmt
) != GIMPLE_PHI
)
1295 fold_stmt_inplace (stmt
);
1296 if (cfgcleanup_altered_bbs
)
1297 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1299 /* FIXME. This should go in pop_stmt_changes. */
1300 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1302 tree op
= gimple_op (stmt
, i
);
1303 /* Operands may be empty here. For example, the labels
1304 of a GIMPLE_COND are nulled out following the creation
1305 of the corresponding CFG edges. */
1306 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1307 recompute_tree_invariant_for_addr_expr (op
);
1310 maybe_clean_or_replace_eh_stmt (stmt
, stmt
);
1312 pop_stmt_changes (&stmt
);
1316 gcc_assert (has_zero_uses (name
));
1318 /* Also update the trees stored in loop structures. */
1324 FOR_EACH_LOOP (li
, loop
, 0)
1326 substitute_in_loop_info (loop
, name
, val
);
1331 /* Merge block B into block A. */
1334 gimple_merge_blocks (basic_block a
, basic_block b
)
1336 gimple_stmt_iterator last
, gsi
, psi
;
1337 gimple_seq phis
= phi_nodes (b
);
1340 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1342 /* Remove all single-valued PHI nodes from block B of the form
1343 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1344 gsi
= gsi_last_bb (a
);
1345 for (psi
= gsi_start (phis
); !gsi_end_p (psi
); )
1347 gimple phi
= gsi_stmt (psi
);
1348 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1350 bool may_replace_uses
= !is_gimple_reg (def
)
1351 || may_propagate_copy (def
, use
);
1353 /* In case we maintain loop closed ssa form, do not propagate arguments
1354 of loop exit phi nodes. */
1356 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1357 && is_gimple_reg (def
)
1358 && TREE_CODE (use
) == SSA_NAME
1359 && a
->loop_father
!= b
->loop_father
)
1360 may_replace_uses
= false;
1362 if (!may_replace_uses
)
1364 gcc_assert (is_gimple_reg (def
));
1366 /* Note that just emitting the copies is fine -- there is no problem
1367 with ordering of phi nodes. This is because A is the single
1368 predecessor of B, therefore results of the phi nodes cannot
1369 appear as arguments of the phi nodes. */
1370 copy
= gimple_build_assign (def
, use
);
1371 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1372 remove_phi_node (&psi
, false);
1376 /* If we deal with a PHI for virtual operands, we can simply
1377 propagate these without fussing with folding or updating
1379 if (!is_gimple_reg (def
))
1381 imm_use_iterator iter
;
1382 use_operand_p use_p
;
1385 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1386 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1387 SET_USE (use_p
, use
);
1390 replace_uses_by (def
, use
);
1392 remove_phi_node (&psi
, true);
1396 /* Ensure that B follows A. */
1397 move_block_after (b
, a
);
1399 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1400 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1402 /* Remove labels from B and set gimple_bb to A for other statements. */
1403 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1405 if (gimple_code (gsi_stmt (gsi
)) == GIMPLE_LABEL
)
1407 gimple label
= gsi_stmt (gsi
);
1409 gsi_remove (&gsi
, false);
1411 /* Now that we can thread computed gotos, we might have
1412 a situation where we have a forced label in block B
1413 However, the label at the start of block B might still be
1414 used in other ways (think about the runtime checking for
1415 Fortran assigned gotos). So we can not just delete the
1416 label. Instead we move the label to the start of block A. */
1417 if (FORCED_LABEL (gimple_label_label (label
)))
1419 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1420 gsi_insert_before (&dest_gsi
, label
, GSI_NEW_STMT
);
1425 gimple_set_bb (gsi_stmt (gsi
), a
);
1430 /* Merge the sequences. */
1431 last
= gsi_last_bb (a
);
1432 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1433 set_bb_seq (b
, NULL
);
1435 if (cfgcleanup_altered_bbs
)
1436 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1440 /* Return the one of two successors of BB that is not reachable by a
1441 reached by a complex edge, if there is one. Else, return BB. We use
1442 this in optimizations that use post-dominators for their heuristics,
1443 to catch the cases in C++ where function calls are involved. */
1446 single_noncomplex_succ (basic_block bb
)
1449 if (EDGE_COUNT (bb
->succs
) != 2)
1452 e0
= EDGE_SUCC (bb
, 0);
1453 e1
= EDGE_SUCC (bb
, 1);
1454 if (e0
->flags
& EDGE_COMPLEX
)
1456 if (e1
->flags
& EDGE_COMPLEX
)
1463 /* Walk the function tree removing unnecessary statements.
1465 * Empty statement nodes are removed
1467 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1469 * Unnecessary COND_EXPRs are removed
1471 * Some unnecessary BIND_EXPRs are removed
1473 * GOTO_EXPRs immediately preceding destination are removed.
1475 Clearly more work could be done. The trick is doing the analysis
1476 and removal fast enough to be a net improvement in compile times.
1478 Note that when we remove a control structure such as a COND_EXPR
1479 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1480 to ensure we eliminate all the useless code. */
1489 gimple_stmt_iterator last_goto_gsi
;
1493 static void remove_useless_stmts_1 (gimple_stmt_iterator
*gsi
, struct rus_data
*);
1495 /* Given a statement sequence, find the first executable statement with
1496 location information, and warn that it is unreachable. When searching,
1497 descend into containers in execution order. */
1500 remove_useless_stmts_warn_notreached (gimple_seq stmts
)
1502 gimple_stmt_iterator gsi
;
1504 for (gsi
= gsi_start (stmts
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1506 gimple stmt
= gsi_stmt (gsi
);
1508 if (gimple_has_location (stmt
))
1510 location_t loc
= gimple_location (stmt
);
1511 if (LOCATION_LINE (loc
) > 0)
1513 warning (OPT_Wunreachable_code
, "%Hwill never be executed", &loc
);
1518 switch (gimple_code (stmt
))
1520 /* Unfortunately, we need the CFG now to detect unreachable
1521 branches in a conditional, so conditionals are not handled here. */
1524 if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt
)))
1526 if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt
)))
1531 return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt
));
1533 case GIMPLE_EH_FILTER
:
1534 return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt
));
1537 return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt
));
1547 /* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
1550 remove_useless_stmts_cond (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1552 gimple stmt
= gsi_stmt (*gsi
);
1554 /* The folded result must still be a conditional statement. */
1555 fold_stmt_inplace (stmt
);
1557 data
->may_branch
= true;
1559 /* Replace trivial conditionals with gotos. */
1560 if (gimple_cond_true_p (stmt
))
1562 /* Goto THEN label. */
1563 tree then_label
= gimple_cond_true_label (stmt
);
1565 gsi_replace (gsi
, gimple_build_goto (then_label
), false);
1566 data
->last_goto_gsi
= *gsi
;
1567 data
->last_was_goto
= true;
1568 data
->repeat
= true;
1570 else if (gimple_cond_false_p (stmt
))
1572 /* Goto ELSE label. */
1573 tree else_label
= gimple_cond_false_label (stmt
);
1575 gsi_replace (gsi
, gimple_build_goto (else_label
), false);
1576 data
->last_goto_gsi
= *gsi
;
1577 data
->last_was_goto
= true;
1578 data
->repeat
= true;
1582 tree then_label
= gimple_cond_true_label (stmt
);
1583 tree else_label
= gimple_cond_false_label (stmt
);
1585 if (then_label
== else_label
)
1587 /* Goto common destination. */
1588 gsi_replace (gsi
, gimple_build_goto (then_label
), false);
1589 data
->last_goto_gsi
= *gsi
;
1590 data
->last_was_goto
= true;
1591 data
->repeat
= true;
1597 data
->last_was_goto
= false;
1600 /* Helper for remove_useless_stmts_1.
1601 Handle the try-finally case for GIMPLE_TRY statements. */
1604 remove_useless_stmts_tf (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1606 bool save_may_branch
, save_may_throw
;
1607 bool this_may_branch
, this_may_throw
;
1609 gimple_seq eval_seq
, cleanup_seq
;
1610 gimple_stmt_iterator eval_gsi
, cleanup_gsi
;
1612 gimple stmt
= gsi_stmt (*gsi
);
1614 /* Collect may_branch and may_throw information for the body only. */
1615 save_may_branch
= data
->may_branch
;
1616 save_may_throw
= data
->may_throw
;
1617 data
->may_branch
= false;
1618 data
->may_throw
= false;
1619 data
->last_was_goto
= false;
1621 eval_seq
= gimple_try_eval (stmt
);
1622 eval_gsi
= gsi_start (eval_seq
);
1623 remove_useless_stmts_1 (&eval_gsi
, data
);
1625 this_may_branch
= data
->may_branch
;
1626 this_may_throw
= data
->may_throw
;
1627 data
->may_branch
|= save_may_branch
;
1628 data
->may_throw
|= save_may_throw
;
1629 data
->last_was_goto
= false;
1631 cleanup_seq
= gimple_try_cleanup (stmt
);
1632 cleanup_gsi
= gsi_start (cleanup_seq
);
1633 remove_useless_stmts_1 (&cleanup_gsi
, data
);
1635 /* If the body is empty, then we can emit the FINALLY block without
1636 the enclosing TRY_FINALLY_EXPR. */
1637 if (gimple_seq_empty_p (eval_seq
))
1639 gsi_insert_seq_before (gsi
, cleanup_seq
, GSI_SAME_STMT
);
1640 gsi_remove (gsi
, false);
1641 data
->repeat
= true;
1644 /* If the handler is empty, then we can emit the TRY block without
1645 the enclosing TRY_FINALLY_EXPR. */
1646 else if (gimple_seq_empty_p (cleanup_seq
))
1648 gsi_insert_seq_before (gsi
, eval_seq
, GSI_SAME_STMT
);
1649 gsi_remove (gsi
, false);
1650 data
->repeat
= true;
1653 /* If the body neither throws, nor branches, then we can safely
1654 string the TRY and FINALLY blocks together. */
1655 else if (!this_may_branch
&& !this_may_throw
)
1657 gsi_insert_seq_before (gsi
, eval_seq
, GSI_SAME_STMT
);
1658 gsi_insert_seq_before (gsi
, cleanup_seq
, GSI_SAME_STMT
);
1659 gsi_remove (gsi
, false);
1660 data
->repeat
= true;
1666 /* Helper for remove_useless_stmts_1.
1667 Handle the try-catch case for GIMPLE_TRY statements. */
1670 remove_useless_stmts_tc (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1672 bool save_may_throw
, this_may_throw
;
1674 gimple_seq eval_seq
, cleanup_seq
, handler_seq
, failure_seq
;
1675 gimple_stmt_iterator eval_gsi
, cleanup_gsi
, handler_gsi
, failure_gsi
;
1677 gimple stmt
= gsi_stmt (*gsi
);
1679 /* Collect may_throw information for the body only. */
1680 save_may_throw
= data
->may_throw
;
1681 data
->may_throw
= false;
1682 data
->last_was_goto
= false;
1684 eval_seq
= gimple_try_eval (stmt
);
1685 eval_gsi
= gsi_start (eval_seq
);
1686 remove_useless_stmts_1 (&eval_gsi
, data
);
1688 this_may_throw
= data
->may_throw
;
1689 data
->may_throw
= save_may_throw
;
1691 cleanup_seq
= gimple_try_cleanup (stmt
);
1693 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1694 if (!this_may_throw
)
1696 if (warn_notreached
)
1698 remove_useless_stmts_warn_notreached (cleanup_seq
);
1700 gsi_insert_seq_before (gsi
, eval_seq
, GSI_SAME_STMT
);
1701 gsi_remove (gsi
, false);
1702 data
->repeat
= true;
1706 /* Process the catch clause specially. We may be able to tell that
1707 no exceptions propagate past this point. */
1709 this_may_throw
= true;
1710 cleanup_gsi
= gsi_start (cleanup_seq
);
1711 stmt
= gsi_stmt (cleanup_gsi
);
1712 data
->last_was_goto
= false;
1714 switch (gimple_code (stmt
))
1717 /* If the first element is a catch, they all must be. */
1718 while (!gsi_end_p (cleanup_gsi
))
1720 stmt
= gsi_stmt (cleanup_gsi
);
1721 /* If we catch all exceptions, then the body does not
1722 propagate exceptions past this point. */
1723 if (gimple_catch_types (stmt
) == NULL
)
1724 this_may_throw
= false;
1725 data
->last_was_goto
= false;
1726 handler_seq
= gimple_catch_handler (stmt
);
1727 handler_gsi
= gsi_start (handler_seq
);
1728 remove_useless_stmts_1 (&handler_gsi
, data
);
1729 gsi_next (&cleanup_gsi
);
1734 case GIMPLE_EH_FILTER
:
1735 /* If the first element is an eh_filter, it should stand alone. */
1736 if (gimple_eh_filter_must_not_throw (stmt
))
1737 this_may_throw
= false;
1738 else if (gimple_eh_filter_types (stmt
) == NULL
)
1739 this_may_throw
= false;
1740 failure_seq
= gimple_eh_filter_failure (stmt
);
1741 failure_gsi
= gsi_start (failure_seq
);
1742 remove_useless_stmts_1 (&failure_gsi
, data
);
1747 /* Otherwise this is a list of cleanup statements. */
1748 remove_useless_stmts_1 (&cleanup_gsi
, data
);
1750 /* If the cleanup is empty, then we can emit the TRY block without
1751 the enclosing TRY_CATCH_EXPR. */
1752 if (gimple_seq_empty_p (cleanup_seq
))
1754 gsi_insert_seq_before (gsi
, eval_seq
, GSI_SAME_STMT
);
1755 gsi_remove(gsi
, false);
1756 data
->repeat
= true;
1763 data
->may_throw
|= this_may_throw
;
1766 /* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
1769 remove_useless_stmts_bind (gimple_stmt_iterator
*gsi
, struct rus_data
*data ATTRIBUTE_UNUSED
)
1772 gimple_seq body_seq
, fn_body_seq
;
1773 gimple_stmt_iterator body_gsi
;
1775 gimple stmt
= gsi_stmt (*gsi
);
1777 /* First remove anything underneath the BIND_EXPR. */
1779 body_seq
= gimple_bind_body (stmt
);
1780 body_gsi
= gsi_start (body_seq
);
1781 remove_useless_stmts_1 (&body_gsi
, data
);
1783 /* If the GIMPLE_BIND has no variables, then we can pull everything
1784 up one level and remove the GIMPLE_BIND, unless this is the toplevel
1785 GIMPLE_BIND for the current function or an inlined function.
1787 When this situation occurs we will want to apply this
1788 optimization again. */
1789 block
= gimple_bind_block (stmt
);
1790 fn_body_seq
= gimple_body (current_function_decl
);
1791 if (gimple_bind_vars (stmt
) == NULL_TREE
1792 && (gimple_seq_empty_p (fn_body_seq
)
1793 || stmt
!= gimple_seq_first_stmt (fn_body_seq
))
1795 || ! BLOCK_ABSTRACT_ORIGIN (block
)
1796 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block
))
1799 tree var
= NULL_TREE
;
1800 /* Even if there are no gimple_bind_vars, there might be other
1801 decls in BLOCK_VARS rendering the GIMPLE_BIND not useless. */
1802 if (block
&& !BLOCK_NUM_NONLOCALIZED_VARS (block
))
1803 for (var
= BLOCK_VARS (block
); var
; var
= TREE_CHAIN (var
))
1804 if (TREE_CODE (var
) == IMPORTED_DECL
)
1806 if (var
|| (block
&& BLOCK_NUM_NONLOCALIZED_VARS (block
)))
1810 gsi_insert_seq_before (gsi
, body_seq
, GSI_SAME_STMT
);
1811 gsi_remove (gsi
, false);
1812 data
->repeat
= true;
1819 /* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
1822 remove_useless_stmts_goto (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1824 gimple stmt
= gsi_stmt (*gsi
);
1826 tree dest
= gimple_goto_dest (stmt
);
1828 data
->may_branch
= true;
1829 data
->last_was_goto
= false;
1831 /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
1832 if (TREE_CODE (dest
) == LABEL_DECL
)
1834 data
->last_goto_gsi
= *gsi
;
1835 data
->last_was_goto
= true;
1841 /* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
1844 remove_useless_stmts_label (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1846 gimple stmt
= gsi_stmt (*gsi
);
1848 tree label
= gimple_label_label (stmt
);
1850 data
->has_label
= true;
1852 /* We do want to jump across non-local label receiver code. */
1853 if (DECL_NONLOCAL (label
))
1854 data
->last_was_goto
= false;
1856 else if (data
->last_was_goto
1857 && gimple_goto_dest (gsi_stmt (data
->last_goto_gsi
)) == label
)
1859 /* Replace the preceding GIMPLE_GOTO statement with
1860 a GIMPLE_NOP, which will be subsequently removed.
1861 In this way, we avoid invalidating other iterators
1862 active on the statement sequence. */
1863 gsi_replace(&data
->last_goto_gsi
, gimple_build_nop(), false);
1864 data
->last_was_goto
= false;
1865 data
->repeat
= true;
1868 /* ??? Add something here to delete unused labels. */
1874 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1877 notice_special_calls (gimple call
)
1879 int flags
= gimple_call_flags (call
);
1881 if (flags
& ECF_MAY_BE_ALLOCA
)
1882 cfun
->calls_alloca
= true;
1883 if (flags
& ECF_RETURNS_TWICE
)
1884 cfun
->calls_setjmp
= true;
1888 /* Clear flags set by notice_special_calls. Used by dead code removal
1889 to update the flags. */
1892 clear_special_calls (void)
1894 cfun
->calls_alloca
= false;
1895 cfun
->calls_setjmp
= false;
1898 /* Remove useless statements from a statement sequence, and perform
1899 some preliminary simplifications. */
1902 remove_useless_stmts_1 (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1904 while (!gsi_end_p (*gsi
))
1906 gimple stmt
= gsi_stmt (*gsi
);
1908 switch (gimple_code (stmt
))
1911 remove_useless_stmts_cond (gsi
, data
);
1915 remove_useless_stmts_goto (gsi
, data
);
1919 remove_useless_stmts_label (gsi
, data
);
1924 stmt
= gsi_stmt (*gsi
);
1925 data
->last_was_goto
= false;
1926 if (stmt_could_throw_p (stmt
))
1927 data
->may_throw
= true;
1933 data
->last_was_goto
= false;
1939 stmt
= gsi_stmt (*gsi
);
1940 data
->last_was_goto
= false;
1941 if (is_gimple_call (stmt
))
1942 notice_special_calls (stmt
);
1944 /* We used to call update_gimple_call_flags here,
1945 which copied side-effects and nothrows status
1946 from the function decl to the call. In the new
1947 tuplified GIMPLE, the accessors for this information
1948 always consult the function decl, so this copying
1949 is no longer necessary. */
1950 if (stmt_could_throw_p (stmt
))
1951 data
->may_throw
= true;
1957 data
->last_was_goto
= false;
1958 data
->may_branch
= true;
1963 remove_useless_stmts_bind (gsi
, data
);
1967 if (gimple_try_kind (stmt
) == GIMPLE_TRY_CATCH
)
1968 remove_useless_stmts_tc (gsi
, data
);
1969 else if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
1970 remove_useless_stmts_tf (gsi
, data
);
1980 gsi_remove (gsi
, false);
1983 case GIMPLE_OMP_FOR
:
1985 gimple_seq pre_body_seq
= gimple_omp_for_pre_body (stmt
);
1986 gimple_stmt_iterator pre_body_gsi
= gsi_start (pre_body_seq
);
1988 remove_useless_stmts_1 (&pre_body_gsi
, data
);
1989 data
->last_was_goto
= false;
1992 case GIMPLE_OMP_CRITICAL
:
1993 case GIMPLE_OMP_CONTINUE
:
1994 case GIMPLE_OMP_MASTER
:
1995 case GIMPLE_OMP_ORDERED
:
1996 case GIMPLE_OMP_SECTION
:
1997 case GIMPLE_OMP_SECTIONS
:
1998 case GIMPLE_OMP_SINGLE
:
2000 gimple_seq body_seq
= gimple_omp_body (stmt
);
2001 gimple_stmt_iterator body_gsi
= gsi_start (body_seq
);
2003 remove_useless_stmts_1 (&body_gsi
, data
);
2004 data
->last_was_goto
= false;
2009 case GIMPLE_OMP_PARALLEL
:
2010 case GIMPLE_OMP_TASK
:
2012 /* Make sure the outermost GIMPLE_BIND isn't removed
2014 gimple_seq body_seq
= gimple_omp_body (stmt
);
2015 gimple bind
= gimple_seq_first_stmt (body_seq
);
2016 gimple_seq bind_seq
= gimple_bind_body (bind
);
2017 gimple_stmt_iterator bind_gsi
= gsi_start (bind_seq
);
2019 remove_useless_stmts_1 (&bind_gsi
, data
);
2020 data
->last_was_goto
= false;
2025 case GIMPLE_CHANGE_DYNAMIC_TYPE
:
2026 /* If we do not optimize remove GIMPLE_CHANGE_DYNAMIC_TYPE as
2027 expansion is confused about them and we only remove them
2028 during alias computation otherwise. */
2031 data
->last_was_goto
= false;
2032 gsi_remove (gsi
, false);
2038 data
->last_was_goto
= false;
2045 /* Walk the function tree, removing useless statements and performing
2046 some preliminary simplifications. */
2049 remove_useless_stmts (void)
2051 struct rus_data data
;
2053 clear_special_calls ();
2057 gimple_stmt_iterator gsi
;
2059 gsi
= gsi_start (gimple_body (current_function_decl
));
2060 memset (&data
, 0, sizeof (data
));
2061 remove_useless_stmts_1 (&gsi
, &data
);
2063 while (data
.repeat
);
2068 struct gimple_opt_pass pass_remove_useless_stmts
=
2072 "useless", /* name */
2074 remove_useless_stmts
, /* execute */
2077 0, /* static_pass_number */
2079 PROP_gimple_any
, /* properties_required */
2080 0, /* properties_provided */
2081 0, /* properties_destroyed */
2082 0, /* todo_flags_start */
2083 TODO_dump_func
/* todo_flags_finish */
2087 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2090 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2092 /* Since this block is no longer reachable, we can just delete all
2093 of its PHI nodes. */
2094 remove_phi_nodes (bb
);
2096 /* Remove edges to BB's successors. */
2097 while (EDGE_COUNT (bb
->succs
) > 0)
2098 remove_edge (EDGE_SUCC (bb
, 0));
2102 /* Remove statements of basic block BB. */
2105 remove_bb (basic_block bb
)
2107 gimple_stmt_iterator i
;
2108 source_location loc
= UNKNOWN_LOCATION
;
2112 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2113 if (dump_flags
& TDF_DETAILS
)
2115 dump_bb (bb
, dump_file
, 0);
2116 fprintf (dump_file
, "\n");
2122 struct loop
*loop
= bb
->loop_father
;
2124 /* If a loop gets removed, clean up the information associated
2126 if (loop
->latch
== bb
2127 || loop
->header
== bb
)
2128 free_numbers_of_iterations_estimates_loop (loop
);
2131 /* Remove all the instructions in the block. */
2132 if (bb_seq (bb
) != NULL
)
2134 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
);)
2136 gimple stmt
= gsi_stmt (i
);
2137 if (gimple_code (stmt
) == GIMPLE_LABEL
2138 && (FORCED_LABEL (gimple_label_label (stmt
))
2139 || DECL_NONLOCAL (gimple_label_label (stmt
))))
2142 gimple_stmt_iterator new_gsi
;
2144 /* A non-reachable non-local label may still be referenced.
2145 But it no longer needs to carry the extra semantics of
2147 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
2149 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
2150 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
2153 new_bb
= bb
->prev_bb
;
2154 new_gsi
= gsi_start_bb (new_bb
);
2155 gsi_remove (&i
, false);
2156 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2160 /* Release SSA definitions if we are in SSA. Note that we
2161 may be called when not in SSA. For example,
2162 final_cleanup calls this function via
2163 cleanup_tree_cfg. */
2164 if (gimple_in_ssa_p (cfun
))
2165 release_defs (stmt
);
2167 gsi_remove (&i
, true);
2170 /* Don't warn for removed gotos. Gotos are often removed due to
2171 jump threading, thus resulting in bogus warnings. Not great,
2172 since this way we lose warnings for gotos in the original
2173 program that are indeed unreachable. */
2174 if (gimple_code (stmt
) != GIMPLE_GOTO
2175 && gimple_has_location (stmt
)
2177 loc
= gimple_location (stmt
);
2181 /* If requested, give a warning that the first statement in the
2182 block is unreachable. We walk statements backwards in the
2183 loop above, so the last statement we process is the first statement
2185 if (loc
> BUILTINS_LOCATION
&& LOCATION_LINE (loc
) > 0)
2186 warning (OPT_Wunreachable_code
, "%Hwill never be executed", &loc
);
2188 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2189 bb
->il
.gimple
= NULL
;
2193 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2194 predicate VAL, return the edge that will be taken out of the block.
2195 If VAL does not match a unique edge, NULL is returned. */
2198 find_taken_edge (basic_block bb
, tree val
)
2202 stmt
= last_stmt (bb
);
2205 gcc_assert (is_ctrl_stmt (stmt
));
2210 if (!is_gimple_min_invariant (val
))
2213 if (gimple_code (stmt
) == GIMPLE_COND
)
2214 return find_taken_edge_cond_expr (bb
, val
);
2216 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2217 return find_taken_edge_switch_expr (bb
, val
);
2219 if (computed_goto_p (stmt
))
2221 /* Only optimize if the argument is a label, if the argument is
2222 not a label then we can not construct a proper CFG.
2224 It may be the case that we only need to allow the LABEL_REF to
2225 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2226 appear inside a LABEL_EXPR just to be safe. */
2227 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2228 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2229 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2236 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2237 statement, determine which of the outgoing edges will be taken out of the
2238 block. Return NULL if either edge may be taken. */
2241 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2246 dest
= label_to_block (val
);
2249 e
= find_edge (bb
, dest
);
2250 gcc_assert (e
!= NULL
);
2256 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2257 statement, determine which of the two edges will be taken out of the
2258 block. Return NULL if either edge may be taken. */
2261 find_taken_edge_cond_expr (basic_block bb
, tree val
)
2263 edge true_edge
, false_edge
;
2265 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
2267 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
2268 return (integer_zerop (val
) ? false_edge
: true_edge
);
2271 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2272 statement, determine which edge will be taken out of the block. Return
2273 NULL if any edge may be taken. */
2276 find_taken_edge_switch_expr (basic_block bb
, tree val
)
2278 basic_block dest_bb
;
2283 switch_stmt
= last_stmt (bb
);
2284 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2285 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2287 e
= find_edge (bb
, dest_bb
);
2293 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2294 We can make optimal use here of the fact that the case labels are
2295 sorted: We can do a binary search for a case matching VAL. */
2298 find_case_label_for_value (gimple switch_stmt
, tree val
)
2300 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2301 tree default_case
= gimple_switch_default_label (switch_stmt
);
2303 for (low
= 0, high
= n
; high
- low
> 1; )
2305 size_t i
= (high
+ low
) / 2;
2306 tree t
= gimple_switch_label (switch_stmt
, i
);
2309 /* Cache the result of comparing CASE_LOW and val. */
2310 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2317 if (CASE_HIGH (t
) == NULL
)
2319 /* A singe-valued case label. */
2325 /* A case range. We can only handle integer ranges. */
2326 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2331 return default_case
;
2335 /* Dump a basic block on stderr. */
2338 gimple_debug_bb (basic_block bb
)
2340 gimple_dump_bb (bb
, stderr
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2344 /* Dump basic block with index N on stderr. */
2347 gimple_debug_bb_n (int n
)
2349 gimple_debug_bb (BASIC_BLOCK (n
));
2350 return BASIC_BLOCK (n
);
2354 /* Dump the CFG on stderr.
2356 FLAGS are the same used by the tree dumping functions
2357 (see TDF_* in tree-pass.h). */
2360 gimple_debug_cfg (int flags
)
2362 gimple_dump_cfg (stderr
, flags
);
2366 /* Dump the program showing basic block boundaries on the given FILE.
2368 FLAGS are the same used by the tree dumping functions (see TDF_* in
2372 gimple_dump_cfg (FILE *file
, int flags
)
2374 if (flags
& TDF_DETAILS
)
2376 const char *funcname
2377 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2380 fprintf (file
, ";; Function %s\n\n", funcname
);
2381 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2382 n_basic_blocks
, n_edges
, last_basic_block
);
2384 brief_dump_cfg (file
);
2385 fprintf (file
, "\n");
2388 if (flags
& TDF_STATS
)
2389 dump_cfg_stats (file
);
2391 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2395 /* Dump CFG statistics on FILE. */
2398 dump_cfg_stats (FILE *file
)
2400 static long max_num_merged_labels
= 0;
2401 unsigned long size
, total
= 0;
2404 const char * const fmt_str
= "%-30s%-13s%12s\n";
2405 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2406 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2407 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2408 const char *funcname
2409 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2412 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2414 fprintf (file
, "---------------------------------------------------------\n");
2415 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2416 fprintf (file
, fmt_str
, "", " instances ", "used ");
2417 fprintf (file
, "---------------------------------------------------------\n");
2419 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2421 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2422 SCALE (size
), LABEL (size
));
2426 num_edges
+= EDGE_COUNT (bb
->succs
);
2427 size
= num_edges
* sizeof (struct edge_def
);
2429 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2431 fprintf (file
, "---------------------------------------------------------\n");
2432 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2434 fprintf (file
, "---------------------------------------------------------\n");
2435 fprintf (file
, "\n");
2437 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2438 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2440 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2441 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2443 fprintf (file
, "\n");
2447 /* Dump CFG statistics on stderr. Keep extern so that it's always
2448 linked in the final executable. */
2451 debug_cfg_stats (void)
2453 dump_cfg_stats (stderr
);
2457 /* Dump the flowgraph to a .vcg FILE. */
2460 gimple_cfg2vcg (FILE *file
)
2465 const char *funcname
2466 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2468 /* Write the file header. */
2469 fprintf (file
, "graph: { title: \"%s\"\n", funcname
);
2470 fprintf (file
, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2471 fprintf (file
, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2473 /* Write blocks and edges. */
2474 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2476 fprintf (file
, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2479 if (e
->flags
& EDGE_FAKE
)
2480 fprintf (file
, " linestyle: dotted priority: 10");
2482 fprintf (file
, " linestyle: solid priority: 100");
2484 fprintf (file
, " }\n");
2490 enum gimple_code head_code
, end_code
;
2491 const char *head_name
, *end_name
;
2494 gimple first
= first_stmt (bb
);
2495 gimple last
= last_stmt (bb
);
2499 head_code
= gimple_code (first
);
2500 head_name
= gimple_code_name
[head_code
];
2501 head_line
= get_lineno (first
);
2504 head_name
= "no-statement";
2508 end_code
= gimple_code (last
);
2509 end_name
= gimple_code_name
[end_code
];
2510 end_line
= get_lineno (last
);
2513 end_name
= "no-statement";
2515 fprintf (file
, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2516 bb
->index
, bb
->index
, head_name
, head_line
, end_name
,
2519 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2521 if (e
->dest
== EXIT_BLOCK_PTR
)
2522 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb
->index
);
2524 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb
->index
, e
->dest
->index
);
2526 if (e
->flags
& EDGE_FAKE
)
2527 fprintf (file
, " priority: 10 linestyle: dotted");
2529 fprintf (file
, " priority: 100 linestyle: solid");
2531 fprintf (file
, " }\n");
2534 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2538 fputs ("}\n\n", file
);
2543 /*---------------------------------------------------------------------------
2544 Miscellaneous helpers
2545 ---------------------------------------------------------------------------*/
2547 /* Return true if T represents a stmt that always transfers control. */
2550 is_ctrl_stmt (gimple t
)
2552 return gimple_code (t
) == GIMPLE_COND
2553 || gimple_code (t
) == GIMPLE_SWITCH
2554 || gimple_code (t
) == GIMPLE_GOTO
2555 || gimple_code (t
) == GIMPLE_RETURN
2556 || gimple_code (t
) == GIMPLE_RESX
;
2560 /* Return true if T is a statement that may alter the flow of control
2561 (e.g., a call to a non-returning function). */
2564 is_ctrl_altering_stmt (gimple t
)
2568 if (is_gimple_call (t
))
2570 int flags
= gimple_call_flags (t
);
2572 /* A non-pure/const call alters flow control if the current
2573 function has nonlocal labels. */
2574 if (!(flags
& (ECF_CONST
| ECF_PURE
))
2575 && cfun
->has_nonlocal_label
)
2578 /* A call also alters control flow if it does not return. */
2579 if (gimple_call_flags (t
) & ECF_NORETURN
)
2583 /* OpenMP directives alter control flow. */
2584 if (is_gimple_omp (t
))
2587 /* If a statement can throw, it alters control flow. */
2588 return stmt_can_throw_internal (t
);
2592 /* Return true if T is a simple local goto. */
2595 simple_goto_p (gimple t
)
2597 return (gimple_code (t
) == GIMPLE_GOTO
2598 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2602 /* Return true if T can make an abnormal transfer of control flow.
2603 Transfers of control flow associated with EH are excluded. */
2606 stmt_can_make_abnormal_goto (gimple t
)
2608 if (computed_goto_p (t
))
2610 if (is_gimple_call (t
))
2611 return gimple_has_side_effects (t
) && cfun
->has_nonlocal_label
;
2616 /* Return true if STMT should start a new basic block. PREV_STMT is
2617 the statement preceding STMT. It is used when STMT is a label or a
2618 case label. Labels should only start a new basic block if their
2619 previous statement wasn't a label. Otherwise, sequence of labels
2620 would generate unnecessary basic blocks that only contain a single
2624 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2629 /* Labels start a new basic block only if the preceding statement
2630 wasn't a label of the same type. This prevents the creation of
2631 consecutive blocks that have nothing but a single label. */
2632 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2634 /* Nonlocal and computed GOTO targets always start a new block. */
2635 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2636 || FORCED_LABEL (gimple_label_label (stmt
)))
2639 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2641 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2644 cfg_stats
.num_merged_labels
++;
2655 /* Return true if T should end a basic block. */
2658 stmt_ends_bb_p (gimple t
)
2660 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2663 /* Remove block annotations and other data structures. */
2666 delete_tree_cfg_annotations (void)
2668 label_to_block_map
= NULL
;
2672 /* Return the first statement in basic block BB. */
2675 first_stmt (basic_block bb
)
2677 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2678 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2681 /* Return the last statement in basic block BB. */
2684 last_stmt (basic_block bb
)
2686 gimple_stmt_iterator b
= gsi_last_bb (bb
);
2687 return !gsi_end_p (b
) ? gsi_stmt (b
) : NULL
;
2690 /* Return the last statement of an otherwise empty block. Return NULL
2691 if the block is totally empty, or if it contains more than one
2695 last_and_only_stmt (basic_block bb
)
2697 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2703 last
= gsi_stmt (i
);
2708 /* Empty statements should no longer appear in the instruction stream.
2709 Everything that might have appeared before should be deleted by
2710 remove_useless_stmts, and the optimizers should just gsi_remove
2711 instead of smashing with build_empty_stmt.
2713 Thus the only thing that should appear here in a block containing
2714 one executable statement is a label. */
2715 prev
= gsi_stmt (i
);
2716 if (gimple_code (prev
) == GIMPLE_LABEL
)
2722 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2725 reinstall_phi_args (edge new_edge
, edge old_edge
)
2727 edge_var_map_vector v
;
2730 gimple_stmt_iterator phis
;
2732 v
= redirect_edge_var_map_vector (old_edge
);
2736 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2737 VEC_iterate (edge_var_map
, v
, i
, vm
) && !gsi_end_p (phis
);
2738 i
++, gsi_next (&phis
))
2740 gimple phi
= gsi_stmt (phis
);
2741 tree result
= redirect_edge_var_map_result (vm
);
2742 tree arg
= redirect_edge_var_map_def (vm
);
2744 gcc_assert (result
== gimple_phi_result (phi
));
2746 add_phi_arg (phi
, arg
, new_edge
);
2749 redirect_edge_var_map_clear (old_edge
);
2752 /* Returns the basic block after which the new basic block created
2753 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2754 near its "logical" location. This is of most help to humans looking
2755 at debugging dumps. */
2758 split_edge_bb_loc (edge edge_in
)
2760 basic_block dest
= edge_in
->dest
;
2762 if (dest
->prev_bb
&& find_edge (dest
->prev_bb
, dest
))
2763 return edge_in
->src
;
2765 return dest
->prev_bb
;
2768 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2769 Abort on abnormal edges. */
2772 gimple_split_edge (edge edge_in
)
2774 basic_block new_bb
, after_bb
, dest
;
2777 /* Abnormal edges cannot be split. */
2778 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2780 dest
= edge_in
->dest
;
2782 after_bb
= split_edge_bb_loc (edge_in
);
2784 new_bb
= create_empty_bb (after_bb
);
2785 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2786 new_bb
->count
= edge_in
->count
;
2787 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2788 new_edge
->probability
= REG_BR_PROB_BASE
;
2789 new_edge
->count
= edge_in
->count
;
2791 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2792 gcc_assert (e
== edge_in
);
2793 reinstall_phi_args (new_edge
, e
);
2798 /* Callback for walk_tree, check that all elements with address taken are
2799 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2800 inside a PHI node. */
2803 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2810 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2811 #define CHECK_OP(N, MSG) \
2812 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2813 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2815 switch (TREE_CODE (t
))
2818 if (SSA_NAME_IN_FREE_LIST (t
))
2820 error ("SSA name in freelist but still referenced");
2826 x
= TREE_OPERAND (t
, 0);
2827 if (!is_gimple_reg (x
) && !is_gimple_min_invariant (x
))
2829 error ("Indirect reference's operand is not a register or a constant.");
2835 x
= fold (ASSERT_EXPR_COND (t
));
2836 if (x
== boolean_false_node
)
2838 error ("ASSERT_EXPR with an always-false condition");
2844 error ("MODIFY_EXPR not expected while having tuples.");
2850 bool old_side_effects
;
2852 bool new_side_effects
;
2854 gcc_assert (is_gimple_address (t
));
2856 old_constant
= TREE_CONSTANT (t
);
2857 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2859 recompute_tree_invariant_for_addr_expr (t
);
2860 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2861 new_constant
= TREE_CONSTANT (t
);
2863 if (old_constant
!= new_constant
)
2865 error ("constant not recomputed when ADDR_EXPR changed");
2868 if (old_side_effects
!= new_side_effects
)
2870 error ("side effects not recomputed when ADDR_EXPR changed");
2874 /* Skip any references (they will be checked when we recurse down the
2875 tree) and ensure that any variable used as a prefix is marked
2877 for (x
= TREE_OPERAND (t
, 0);
2878 handled_component_p (x
);
2879 x
= TREE_OPERAND (x
, 0))
2882 if (!(TREE_CODE (x
) == VAR_DECL
2883 || TREE_CODE (x
) == PARM_DECL
2884 || TREE_CODE (x
) == RESULT_DECL
))
2886 if (!TREE_ADDRESSABLE (x
))
2888 error ("address taken, but ADDRESSABLE bit not set");
2891 if (DECL_GIMPLE_REG_P (x
))
2893 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2901 x
= COND_EXPR_COND (t
);
2902 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2904 error ("non-integral used in condition");
2907 if (!is_gimple_condexpr (x
))
2909 error ("invalid conditional operand");
2914 case NON_LVALUE_EXPR
:
2918 case FIX_TRUNC_EXPR
:
2923 case TRUTH_NOT_EXPR
:
2924 CHECK_OP (0, "invalid operand to unary operator");
2931 case ARRAY_RANGE_REF
:
2933 case VIEW_CONVERT_EXPR
:
2934 /* We have a nest of references. Verify that each of the operands
2935 that determine where to reference is either a constant or a variable,
2936 verify that the base is valid, and then show we've already checked
2938 while (handled_component_p (t
))
2940 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2941 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2942 else if (TREE_CODE (t
) == ARRAY_REF
2943 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2945 CHECK_OP (1, "invalid array index");
2946 if (TREE_OPERAND (t
, 2))
2947 CHECK_OP (2, "invalid array lower bound");
2948 if (TREE_OPERAND (t
, 3))
2949 CHECK_OP (3, "invalid array stride");
2951 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
2953 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2954 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2956 error ("invalid position or size operand to BIT_FIELD_REF");
2959 else if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2960 && (TYPE_PRECISION (TREE_TYPE (t
))
2961 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2963 error ("integral result type precision does not match "
2964 "field size of BIT_FIELD_REF");
2967 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2968 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2969 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2971 error ("mode precision of non-integral result does not "
2972 "match field size of BIT_FIELD_REF");
2977 t
= TREE_OPERAND (t
, 0);
2980 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2982 error ("invalid reference prefix");
2989 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2990 POINTER_PLUS_EXPR. */
2991 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2993 error ("invalid operand to plus/minus, type is a pointer");
2996 CHECK_OP (0, "invalid operand to binary operator");
2997 CHECK_OP (1, "invalid operand to binary operator");
3000 case POINTER_PLUS_EXPR
:
3001 /* Check to make sure the first operand is a pointer or reference type. */
3002 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
3004 error ("invalid operand to pointer plus, first operand is not a pointer");
3007 /* Check to make sure the second operand is an integer with type of
3009 if (!useless_type_conversion_p (sizetype
,
3010 TREE_TYPE (TREE_OPERAND (t
, 1))))
3012 error ("invalid operand to pointer plus, second operand is not an "
3013 "integer with type of sizetype.");
3023 case UNORDERED_EXPR
:
3032 case TRUNC_DIV_EXPR
:
3034 case FLOOR_DIV_EXPR
:
3035 case ROUND_DIV_EXPR
:
3036 case TRUNC_MOD_EXPR
:
3038 case FLOOR_MOD_EXPR
:
3039 case ROUND_MOD_EXPR
:
3041 case EXACT_DIV_EXPR
:
3051 CHECK_OP (0, "invalid operand to binary operator");
3052 CHECK_OP (1, "invalid operand to binary operator");
3056 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
3069 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3070 Returns true if there is an error, otherwise false. */
3073 verify_types_in_gimple_min_lval (tree expr
)
3077 if (is_gimple_id (expr
))
3080 if (!INDIRECT_REF_P (expr
)
3081 && TREE_CODE (expr
) != TARGET_MEM_REF
)
3083 error ("invalid expression for min lvalue");
3087 /* TARGET_MEM_REFs are strange beasts. */
3088 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3091 op
= TREE_OPERAND (expr
, 0);
3092 if (!is_gimple_val (op
))
3094 error ("invalid operand in indirect reference");
3095 debug_generic_stmt (op
);
3098 if (!useless_type_conversion_p (TREE_TYPE (expr
),
3099 TREE_TYPE (TREE_TYPE (op
))))
3101 error ("type mismatch in indirect reference");
3102 debug_generic_stmt (TREE_TYPE (expr
));
3103 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3110 /* Verify if EXPR is a valid GIMPLE reference expression. Returns true
3111 if there is an error, otherwise false. */
3114 verify_types_in_gimple_reference (tree expr
)
3116 while (handled_component_p (expr
))
3118 tree op
= TREE_OPERAND (expr
, 0);
3120 if (TREE_CODE (expr
) == ARRAY_REF
3121 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3123 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3124 || (TREE_OPERAND (expr
, 2)
3125 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3126 || (TREE_OPERAND (expr
, 3)
3127 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3129 error ("invalid operands to array reference");
3130 debug_generic_stmt (expr
);
3135 /* Verify if the reference array element types are compatible. */
3136 if (TREE_CODE (expr
) == ARRAY_REF
3137 && !useless_type_conversion_p (TREE_TYPE (expr
),
3138 TREE_TYPE (TREE_TYPE (op
))))
3140 error ("type mismatch in array reference");
3141 debug_generic_stmt (TREE_TYPE (expr
));
3142 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3145 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3146 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3147 TREE_TYPE (TREE_TYPE (op
))))
3149 error ("type mismatch in array range reference");
3150 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3151 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3155 if ((TREE_CODE (expr
) == REALPART_EXPR
3156 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3157 && !useless_type_conversion_p (TREE_TYPE (expr
),
3158 TREE_TYPE (TREE_TYPE (op
))))
3160 error ("type mismatch in real/imagpart reference");
3161 debug_generic_stmt (TREE_TYPE (expr
));
3162 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3166 if (TREE_CODE (expr
) == COMPONENT_REF
3167 && !useless_type_conversion_p (TREE_TYPE (expr
),
3168 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3170 error ("type mismatch in component reference");
3171 debug_generic_stmt (TREE_TYPE (expr
));
3172 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3176 /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
3177 is nothing to verify. Gross mismatches at most invoke
3178 undefined behavior. */
3179 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
3180 && !handled_component_p (op
))
3186 return verify_types_in_gimple_min_lval (expr
);
3189 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3190 list of pointer-to types that is trivially convertible to DEST. */
3193 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3197 if (!TYPE_POINTER_TO (src_obj
))
3200 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3201 if (useless_type_conversion_p (dest
, src
))
3207 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3208 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3211 valid_fixed_convert_types_p (tree type1
, tree type2
)
3213 return (FIXED_POINT_TYPE_P (type1
)
3214 && (INTEGRAL_TYPE_P (type2
)
3215 || SCALAR_FLOAT_TYPE_P (type2
)
3216 || FIXED_POINT_TYPE_P (type2
)));
3219 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3220 is a problem, otherwise false. */
3223 verify_gimple_call (gimple stmt
)
3225 tree fn
= gimple_call_fn (stmt
);
3228 if (!POINTER_TYPE_P (TREE_TYPE (fn
))
3229 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3230 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
))
3232 error ("non-function in gimple call");
3236 if (gimple_call_lhs (stmt
)
3237 && !is_gimple_lvalue (gimple_call_lhs (stmt
)))
3239 error ("invalid LHS in gimple call");
3243 fntype
= TREE_TYPE (TREE_TYPE (fn
));
3244 if (gimple_call_lhs (stmt
)
3245 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3247 /* ??? At least C++ misses conversions at assignments from
3248 void * call results.
3249 ??? Java is completely off. Especially with functions
3250 returning java.lang.Object.
3251 For now simply allow arbitrary pointer type conversions. */
3252 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3253 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3255 error ("invalid conversion in gimple call");
3256 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3257 debug_generic_stmt (TREE_TYPE (fntype
));
3261 /* ??? The C frontend passes unpromoted arguments in case it
3262 didn't see a function declaration before the call. So for now
3263 leave the call arguments unverified. Once we gimplify
3264 unit-at-a-time we have a chance to fix this. */
3269 /* Verifies the gimple comparison with the result type TYPE and
3270 the operands OP0 and OP1. */
3273 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3275 tree op0_type
= TREE_TYPE (op0
);
3276 tree op1_type
= TREE_TYPE (op1
);
3278 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3280 error ("invalid operands in gimple comparison");
3284 /* For comparisons we do not have the operations type as the
3285 effective type the comparison is carried out in. Instead
3286 we require that either the first operand is trivially
3287 convertible into the second, or the other way around.
3288 The resulting type of a comparison may be any integral type.
3289 Because we special-case pointers to void we allow
3290 comparisons of pointers with the same mode as well. */
3291 if ((!useless_type_conversion_p (op0_type
, op1_type
)
3292 && !useless_type_conversion_p (op1_type
, op0_type
)
3293 && (!POINTER_TYPE_P (op0_type
)
3294 || !POINTER_TYPE_P (op1_type
)
3295 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3296 || !INTEGRAL_TYPE_P (type
))
3298 error ("type mismatch in comparison expression");
3299 debug_generic_expr (type
);
3300 debug_generic_expr (op0_type
);
3301 debug_generic_expr (op1_type
);
3308 /* Verify a gimple assignment statement STMT with an unary rhs.
3309 Returns true if anything is wrong. */
3312 verify_gimple_assign_unary (gimple stmt
)
3314 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3315 tree lhs
= gimple_assign_lhs (stmt
);
3316 tree lhs_type
= TREE_TYPE (lhs
);
3317 tree rhs1
= gimple_assign_rhs1 (stmt
);
3318 tree rhs1_type
= TREE_TYPE (rhs1
);
3320 if (!is_gimple_reg (lhs
)
3322 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3324 error ("non-register as LHS of unary operation");
3328 if (!is_gimple_val (rhs1
))
3330 error ("invalid operand in unary operation");
3334 /* First handle conversions. */
3339 /* Allow conversions between integral types and pointers only if
3340 there is no sign or zero extension involved.
3341 For targets were the precision of sizetype doesn't match that
3342 of pointers we need to allow arbitrary conversions from and
3344 if ((POINTER_TYPE_P (lhs_type
)
3345 && INTEGRAL_TYPE_P (rhs1_type
)
3346 && (TYPE_PRECISION (lhs_type
) >= TYPE_PRECISION (rhs1_type
)
3347 || rhs1_type
== sizetype
))
3348 || (POINTER_TYPE_P (rhs1_type
)
3349 && INTEGRAL_TYPE_P (lhs_type
)
3350 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3351 || lhs_type
== sizetype
)))
3354 /* Allow conversion from integer to offset type and vice versa. */
3355 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3356 && TREE_CODE (rhs1_type
) == INTEGER_TYPE
)
3357 || (TREE_CODE (lhs_type
) == INTEGER_TYPE
3358 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3361 /* Otherwise assert we are converting between types of the
3363 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3365 error ("invalid types in nop conversion");
3366 debug_generic_expr (lhs_type
);
3367 debug_generic_expr (rhs1_type
);
3374 case FIXED_CONVERT_EXPR
:
3376 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3377 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3379 error ("invalid types in fixed-point conversion");
3380 debug_generic_expr (lhs_type
);
3381 debug_generic_expr (rhs1_type
);
3390 if (!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3392 error ("invalid types in conversion to floating point");
3393 debug_generic_expr (lhs_type
);
3394 debug_generic_expr (rhs1_type
);
3401 case FIX_TRUNC_EXPR
:
3403 if (!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3405 error ("invalid types in conversion to integer");
3406 debug_generic_expr (lhs_type
);
3407 debug_generic_expr (rhs1_type
);
3414 case TRUTH_NOT_EXPR
:
3422 case NON_LVALUE_EXPR
:
3424 case REDUC_MAX_EXPR
:
3425 case REDUC_MIN_EXPR
:
3426 case REDUC_PLUS_EXPR
:
3427 case VEC_UNPACK_HI_EXPR
:
3428 case VEC_UNPACK_LO_EXPR
:
3429 case VEC_UNPACK_FLOAT_HI_EXPR
:
3430 case VEC_UNPACK_FLOAT_LO_EXPR
:
3437 /* For the remaining codes assert there is no conversion involved. */
3438 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3440 error ("non-trivial conversion in unary operation");
3441 debug_generic_expr (lhs_type
);
3442 debug_generic_expr (rhs1_type
);
3449 /* Verify a gimple assignment statement STMT with a binary rhs.
3450 Returns true if anything is wrong. */
3453 verify_gimple_assign_binary (gimple stmt
)
3455 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3456 tree lhs
= gimple_assign_lhs (stmt
);
3457 tree lhs_type
= TREE_TYPE (lhs
);
3458 tree rhs1
= gimple_assign_rhs1 (stmt
);
3459 tree rhs1_type
= TREE_TYPE (rhs1
);
3460 tree rhs2
= gimple_assign_rhs2 (stmt
);
3461 tree rhs2_type
= TREE_TYPE (rhs2
);
3463 if (!is_gimple_reg (lhs
)
3465 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3467 error ("non-register as LHS of binary operation");
3471 if (!is_gimple_val (rhs1
)
3472 || !is_gimple_val (rhs2
))
3474 error ("invalid operands in binary operation");
3478 /* First handle operations that involve different types. */
3483 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3484 || !(INTEGRAL_TYPE_P (rhs1_type
)
3485 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3486 || !(INTEGRAL_TYPE_P (rhs2_type
)
3487 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3489 error ("type mismatch in complex expression");
3490 debug_generic_expr (lhs_type
);
3491 debug_generic_expr (rhs1_type
);
3492 debug_generic_expr (rhs2_type
);
3501 if (FIXED_POINT_TYPE_P (rhs1_type
)
3502 && INTEGRAL_TYPE_P (rhs2_type
)
3503 && useless_type_conversion_p (lhs_type
, rhs1_type
))
3510 if (!INTEGRAL_TYPE_P (rhs1_type
)
3511 || !INTEGRAL_TYPE_P (rhs2_type
)
3512 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3514 error ("type mismatch in shift expression");
3515 debug_generic_expr (lhs_type
);
3516 debug_generic_expr (rhs1_type
);
3517 debug_generic_expr (rhs2_type
);
3524 case VEC_LSHIFT_EXPR
:
3525 case VEC_RSHIFT_EXPR
:
3527 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3528 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3529 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
)))
3530 || (!INTEGRAL_TYPE_P (rhs2_type
)
3531 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3532 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3533 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3535 error ("type mismatch in vector shift expression");
3536 debug_generic_expr (lhs_type
);
3537 debug_generic_expr (rhs1_type
);
3538 debug_generic_expr (rhs2_type
);
3545 case POINTER_PLUS_EXPR
:
3547 if (!POINTER_TYPE_P (rhs1_type
)
3548 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3549 || !useless_type_conversion_p (sizetype
, rhs2_type
))
3551 error ("type mismatch in pointer plus expression");
3552 debug_generic_stmt (lhs_type
);
3553 debug_generic_stmt (rhs1_type
);
3554 debug_generic_stmt (rhs2_type
);
3561 case TRUTH_ANDIF_EXPR
:
3562 case TRUTH_ORIF_EXPR
:
3565 case TRUTH_AND_EXPR
:
3567 case TRUTH_XOR_EXPR
:
3569 /* We allow any kind of integral typed argument and result. */
3570 if (!INTEGRAL_TYPE_P (rhs1_type
)
3571 || !INTEGRAL_TYPE_P (rhs2_type
)
3572 || !INTEGRAL_TYPE_P (lhs_type
))
3574 error ("type mismatch in binary truth expression");
3575 debug_generic_expr (lhs_type
);
3576 debug_generic_expr (rhs1_type
);
3577 debug_generic_expr (rhs2_type
);
3590 case UNORDERED_EXPR
:
3598 /* Comparisons are also binary, but the result type is not
3599 connected to the operand types. */
3600 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3605 if (POINTER_TYPE_P (lhs_type
)
3606 || POINTER_TYPE_P (rhs1_type
)
3607 || POINTER_TYPE_P (rhs2_type
))
3609 error ("invalid (pointer) operands to plus/minus");
3613 /* Continue with generic binary expression handling. */
3618 case TRUNC_DIV_EXPR
:
3620 case FLOOR_DIV_EXPR
:
3621 case ROUND_DIV_EXPR
:
3622 case TRUNC_MOD_EXPR
:
3624 case FLOOR_MOD_EXPR
:
3625 case ROUND_MOD_EXPR
:
3627 case EXACT_DIV_EXPR
:
3633 case WIDEN_SUM_EXPR
:
3634 case WIDEN_MULT_EXPR
:
3635 case VEC_WIDEN_MULT_HI_EXPR
:
3636 case VEC_WIDEN_MULT_LO_EXPR
:
3637 case VEC_PACK_TRUNC_EXPR
:
3638 case VEC_PACK_SAT_EXPR
:
3639 case VEC_PACK_FIX_TRUNC_EXPR
:
3640 case VEC_EXTRACT_EVEN_EXPR
:
3641 case VEC_EXTRACT_ODD_EXPR
:
3642 case VEC_INTERLEAVE_HIGH_EXPR
:
3643 case VEC_INTERLEAVE_LOW_EXPR
:
3644 /* Continue with generic binary expression handling. */
3651 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3652 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3654 error ("type mismatch in binary expression");
3655 debug_generic_stmt (lhs_type
);
3656 debug_generic_stmt (rhs1_type
);
3657 debug_generic_stmt (rhs2_type
);
3664 /* Verify a gimple assignment statement STMT with a single rhs.
3665 Returns true if anything is wrong. */
3668 verify_gimple_assign_single (gimple stmt
)
3670 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3671 tree lhs
= gimple_assign_lhs (stmt
);
3672 tree lhs_type
= TREE_TYPE (lhs
);
3673 tree rhs1
= gimple_assign_rhs1 (stmt
);
3674 tree rhs1_type
= TREE_TYPE (rhs1
);
3677 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3679 error ("non-trivial conversion at assignment");
3680 debug_generic_expr (lhs_type
);
3681 debug_generic_expr (rhs1_type
);
3685 if (handled_component_p (lhs
))
3686 res
|= verify_types_in_gimple_reference (lhs
);
3688 /* Special codes we cannot handle via their class. */
3693 tree op
= TREE_OPERAND (rhs1
, 0);
3694 if (!is_gimple_addressable (op
))
3696 error ("invalid operand in unary expression");
3700 if (!one_pointer_to_useless_type_conversion_p (lhs_type
,
3703 error ("type mismatch in address expression");
3704 debug_generic_stmt (lhs_type
);
3705 debug_generic_stmt (TYPE_POINTER_TO (TREE_TYPE (op
)));
3709 return verify_types_in_gimple_reference (op
);
3716 case ALIGN_INDIRECT_REF
:
3717 case MISALIGNED_INDIRECT_REF
:
3719 case ARRAY_RANGE_REF
:
3720 case VIEW_CONVERT_EXPR
:
3723 case TARGET_MEM_REF
:
3724 if (!is_gimple_reg (lhs
)
3725 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3727 error ("invalid rhs for gimple memory store");
3728 debug_generic_stmt (lhs
);
3729 debug_generic_stmt (rhs1
);
3732 return res
|| verify_types_in_gimple_reference (rhs1
);
3744 /* tcc_declaration */
3749 if (!is_gimple_reg (lhs
)
3750 && !is_gimple_reg (rhs1
)
3751 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3753 error ("invalid rhs for gimple memory store");
3754 debug_generic_stmt (lhs
);
3755 debug_generic_stmt (rhs1
);
3764 case WITH_SIZE_EXPR
:
3767 case POLYNOMIAL_CHREC
:
3770 case REALIGN_LOAD_EXPR
:
3780 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3781 is a problem, otherwise false. */
3784 verify_gimple_assign (gimple stmt
)
3786 switch (gimple_assign_rhs_class (stmt
))
3788 case GIMPLE_SINGLE_RHS
:
3789 return verify_gimple_assign_single (stmt
);
3791 case GIMPLE_UNARY_RHS
:
3792 return verify_gimple_assign_unary (stmt
);
3794 case GIMPLE_BINARY_RHS
:
3795 return verify_gimple_assign_binary (stmt
);
3802 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3803 is a problem, otherwise false. */
3806 verify_gimple_return (gimple stmt
)
3808 tree op
= gimple_return_retval (stmt
);
3809 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
3811 /* We cannot test for present return values as we do not fix up missing
3812 return values from the original source. */
3816 if (!is_gimple_val (op
)
3817 && TREE_CODE (op
) != RESULT_DECL
)
3819 error ("invalid operand in return statement");
3820 debug_generic_stmt (op
);
3824 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
))
3825 /* ??? With C++ we can have the situation that the result
3826 decl is a reference type while the return type is an aggregate. */
3827 && !(TREE_CODE (op
) == RESULT_DECL
3828 && TREE_CODE (TREE_TYPE (op
)) == REFERENCE_TYPE
3829 && useless_type_conversion_p (restype
, TREE_TYPE (TREE_TYPE (op
)))))
3831 error ("invalid conversion in return statement");
3832 debug_generic_stmt (restype
);
3833 debug_generic_stmt (TREE_TYPE (op
));
3841 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3842 is a problem, otherwise false. */
3845 verify_gimple_goto (gimple stmt
)
3847 tree dest
= gimple_goto_dest (stmt
);
3849 /* ??? We have two canonical forms of direct goto destinations, a
3850 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3851 if (TREE_CODE (dest
) != LABEL_DECL
3852 && (!is_gimple_val (dest
)
3853 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
3855 error ("goto destination is neither a label nor a pointer");
3862 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3863 is a problem, otherwise false. */
3866 verify_gimple_switch (gimple stmt
)
3868 if (!is_gimple_val (gimple_switch_index (stmt
)))
3870 error ("invalid operand to switch statement");
3871 debug_generic_stmt (gimple_switch_index (stmt
));
3879 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3880 and false otherwise. */
3883 verify_gimple_phi (gimple stmt
)
3885 tree type
= TREE_TYPE (gimple_phi_result (stmt
));
3888 if (!is_gimple_variable (gimple_phi_result (stmt
)))
3890 error ("Invalid PHI result");
3894 for (i
= 0; i
< gimple_phi_num_args (stmt
); i
++)
3896 tree arg
= gimple_phi_arg_def (stmt
, i
);
3897 if ((is_gimple_reg (gimple_phi_result (stmt
))
3898 && !is_gimple_val (arg
))
3899 || (!is_gimple_reg (gimple_phi_result (stmt
))
3900 && !is_gimple_addressable (arg
)))
3902 error ("Invalid PHI argument");
3903 debug_generic_stmt (arg
);
3906 if (!useless_type_conversion_p (type
, TREE_TYPE (arg
)))
3908 error ("Incompatible types in PHI argument");
3909 debug_generic_stmt (type
);
3910 debug_generic_stmt (TREE_TYPE (arg
));
3919 /* Verify the GIMPLE statement STMT. Returns true if there is an
3920 error, otherwise false. */
3923 verify_types_in_gimple_stmt (gimple stmt
)
3925 if (is_gimple_omp (stmt
))
3927 /* OpenMP directives are validated by the FE and never operated
3928 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
3929 non-gimple expressions when the main index variable has had
3930 its address taken. This does not affect the loop itself
3931 because the header of an GIMPLE_OMP_FOR is merely used to determine
3932 how to setup the parallel iteration. */
3936 switch (gimple_code (stmt
))
3939 return verify_gimple_assign (stmt
);
3942 return TREE_CODE (gimple_label_label (stmt
)) != LABEL_DECL
;
3945 return verify_gimple_call (stmt
);
3948 return verify_gimple_comparison (boolean_type_node
,
3949 gimple_cond_lhs (stmt
),
3950 gimple_cond_rhs (stmt
));
3953 return verify_gimple_goto (stmt
);
3956 return verify_gimple_switch (stmt
);
3959 return verify_gimple_return (stmt
);
3964 case GIMPLE_CHANGE_DYNAMIC_TYPE
:
3965 return (!is_gimple_val (gimple_cdt_location (stmt
))
3966 || !POINTER_TYPE_P (TREE_TYPE (gimple_cdt_location (stmt
))));
3969 return verify_gimple_phi (stmt
);
3971 /* Tuples that do not have tree operands. */
3974 case GIMPLE_PREDICT
:
3982 /* Verify the GIMPLE statements inside the sequence STMTS. */
3985 verify_types_in_gimple_seq_2 (gimple_seq stmts
)
3987 gimple_stmt_iterator ittr
;
3990 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
3992 gimple stmt
= gsi_stmt (ittr
);
3994 switch (gimple_code (stmt
))
3997 err
|= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt
));
4001 err
|= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt
));
4002 err
|= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt
));
4005 case GIMPLE_EH_FILTER
:
4006 err
|= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt
));
4010 err
|= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt
));
4015 bool err2
= verify_types_in_gimple_stmt (stmt
);
4017 debug_gimple_stmt (stmt
);
4027 /* Verify the GIMPLE statements inside the statement list STMTS. */
4030 verify_types_in_gimple_seq (gimple_seq stmts
)
4032 if (verify_types_in_gimple_seq_2 (stmts
))
4033 internal_error ("verify_gimple failed");
4037 /* Verify STMT, return true if STMT is not in GIMPLE form.
4038 TODO: Implement type checking. */
4041 verify_stmt (gimple_stmt_iterator
*gsi
)
4044 struct walk_stmt_info wi
;
4045 bool last_in_block
= gsi_one_before_end_p (*gsi
);
4046 gimple stmt
= gsi_stmt (*gsi
);
4048 if (is_gimple_omp (stmt
))
4050 /* OpenMP directives are validated by the FE and never operated
4051 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4052 non-gimple expressions when the main index variable has had
4053 its address taken. This does not affect the loop itself
4054 because the header of an GIMPLE_OMP_FOR is merely used to determine
4055 how to setup the parallel iteration. */
4059 /* FIXME. The C frontend passes unpromoted arguments in case it
4060 didn't see a function declaration before the call. */
4061 if (is_gimple_call (stmt
))
4065 if (!is_gimple_call_addr (gimple_call_fn (stmt
)))
4067 error ("invalid function in call statement");
4071 decl
= gimple_call_fndecl (stmt
);
4073 && TREE_CODE (decl
) == FUNCTION_DECL
4074 && DECL_LOOPING_CONST_OR_PURE_P (decl
)
4075 && (!DECL_PURE_P (decl
))
4076 && (!TREE_READONLY (decl
)))
4078 error ("invalid pure const state for function");
4083 memset (&wi
, 0, sizeof (wi
));
4084 addr
= walk_gimple_op (gsi_stmt (*gsi
), verify_expr
, &wi
);
4087 debug_generic_expr (addr
);
4088 inform (input_location
, "in statement");
4089 debug_gimple_stmt (stmt
);
4093 /* If the statement is marked as part of an EH region, then it is
4094 expected that the statement could throw. Verify that when we
4095 have optimizations that simplify statements such that we prove
4096 that they cannot throw, that we update other data structures
4098 if (lookup_stmt_eh_region (stmt
) >= 0)
4100 if (!stmt_could_throw_p (stmt
))
4102 error ("statement marked for throw, but doesn%'t");
4105 if (!last_in_block
&& stmt_can_throw_internal (stmt
))
4107 error ("statement marked for throw in middle of block");
4115 debug_gimple_stmt (stmt
);
4120 /* Return true when the T can be shared. */
4123 tree_node_can_be_shared (tree t
)
4125 if (IS_TYPE_OR_DECL_P (t
)
4126 || is_gimple_min_invariant (t
)
4127 || TREE_CODE (t
) == SSA_NAME
4128 || t
== error_mark_node
4129 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4132 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4135 while (((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
4136 && is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
4137 || TREE_CODE (t
) == COMPONENT_REF
4138 || TREE_CODE (t
) == REALPART_EXPR
4139 || TREE_CODE (t
) == IMAGPART_EXPR
)
4140 t
= TREE_OPERAND (t
, 0);
4149 /* Called via walk_gimple_stmt. Verify tree sharing. */
4152 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4154 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4155 struct pointer_set_t
*visited
= (struct pointer_set_t
*) wi
->info
;
4157 if (tree_node_can_be_shared (*tp
))
4159 *walk_subtrees
= false;
4163 if (pointer_set_insert (visited
, *tp
))
4170 static bool eh_error_found
;
4172 verify_eh_throw_stmt_node (void **slot
, void *data
)
4174 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4175 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4177 if (!pointer_set_contains (visited
, node
->stmt
))
4179 error ("Dead STMT in EH table");
4180 debug_gimple_stmt (node
->stmt
);
4181 eh_error_found
= true;
4187 /* Verify the GIMPLE statements in every basic block. */
4193 gimple_stmt_iterator gsi
;
4195 struct pointer_set_t
*visited
, *visited_stmts
;
4197 struct walk_stmt_info wi
;
4199 timevar_push (TV_TREE_STMT_VERIFY
);
4200 visited
= pointer_set_create ();
4201 visited_stmts
= pointer_set_create ();
4203 memset (&wi
, 0, sizeof (wi
));
4204 wi
.info
= (void *) visited
;
4211 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4213 phi
= gsi_stmt (gsi
);
4214 pointer_set_insert (visited_stmts
, phi
);
4215 if (gimple_bb (phi
) != bb
)
4217 error ("gimple_bb (phi) is set to a wrong basic block");
4221 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4223 tree t
= gimple_phi_arg_def (phi
, i
);
4228 error ("missing PHI def");
4229 debug_gimple_stmt (phi
);
4233 /* Addressable variables do have SSA_NAMEs but they
4234 are not considered gimple values. */
4235 else if (TREE_CODE (t
) != SSA_NAME
4236 && TREE_CODE (t
) != FUNCTION_DECL
4237 && !is_gimple_min_invariant (t
))
4239 error ("PHI argument is not a GIMPLE value");
4240 debug_gimple_stmt (phi
);
4241 debug_generic_expr (t
);
4245 addr
= walk_tree (&t
, verify_node_sharing
, visited
, NULL
);
4248 error ("incorrect sharing of tree nodes");
4249 debug_gimple_stmt (phi
);
4250 debug_generic_expr (addr
);
4256 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); )
4258 gimple stmt
= gsi_stmt (gsi
);
4260 if (gimple_code (stmt
) == GIMPLE_WITH_CLEANUP_EXPR
4261 || gimple_code (stmt
) == GIMPLE_BIND
)
4263 error ("invalid GIMPLE statement");
4264 debug_gimple_stmt (stmt
);
4268 pointer_set_insert (visited_stmts
, stmt
);
4270 if (gimple_bb (stmt
) != bb
)
4272 error ("gimple_bb (stmt) is set to a wrong basic block");
4276 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4278 tree decl
= gimple_label_label (stmt
);
4279 int uid
= LABEL_DECL_UID (decl
);
4282 || VEC_index (basic_block
, label_to_block_map
, uid
) != bb
)
4284 error ("incorrect entry in label_to_block_map.\n");
4289 err
|= verify_stmt (&gsi
);
4290 addr
= walk_gimple_op (gsi_stmt (gsi
), verify_node_sharing
, &wi
);
4293 error ("incorrect sharing of tree nodes");
4294 debug_gimple_stmt (stmt
);
4295 debug_generic_expr (addr
);
4302 eh_error_found
= false;
4303 if (get_eh_throw_stmt_table (cfun
))
4304 htab_traverse (get_eh_throw_stmt_table (cfun
),
4305 verify_eh_throw_stmt_node
,
4308 if (err
| eh_error_found
)
4309 internal_error ("verify_stmts failed");
4311 pointer_set_destroy (visited
);
4312 pointer_set_destroy (visited_stmts
);
4313 verify_histograms ();
4314 timevar_pop (TV_TREE_STMT_VERIFY
);
4318 /* Verifies that the flow information is OK. */
4321 gimple_verify_flow_info (void)
4325 gimple_stmt_iterator gsi
;
4330 if (ENTRY_BLOCK_PTR
->il
.gimple
)
4332 error ("ENTRY_BLOCK has IL associated with it");
4336 if (EXIT_BLOCK_PTR
->il
.gimple
)
4338 error ("EXIT_BLOCK has IL associated with it");
4342 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4343 if (e
->flags
& EDGE_FALLTHRU
)
4345 error ("fallthru to exit from bb %d", e
->src
->index
);
4351 bool found_ctrl_stmt
= false;
4355 /* Skip labels on the start of basic block. */
4356 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4359 gimple prev_stmt
= stmt
;
4361 stmt
= gsi_stmt (gsi
);
4363 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4366 label
= gimple_label_label (stmt
);
4367 if (prev_stmt
&& DECL_NONLOCAL (label
))
4369 error ("nonlocal label ");
4370 print_generic_expr (stderr
, label
, 0);
4371 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4376 if (label_to_block (label
) != bb
)
4379 print_generic_expr (stderr
, label
, 0);
4380 fprintf (stderr
, " to block does not match in bb %d",
4385 if (decl_function_context (label
) != current_function_decl
)
4388 print_generic_expr (stderr
, label
, 0);
4389 fprintf (stderr
, " has incorrect context in bb %d",
4395 /* Verify that body of basic block BB is free of control flow. */
4396 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4398 gimple stmt
= gsi_stmt (gsi
);
4400 if (found_ctrl_stmt
)
4402 error ("control flow in the middle of basic block %d",
4407 if (stmt_ends_bb_p (stmt
))
4408 found_ctrl_stmt
= true;
4410 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4413 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4414 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4419 gsi
= gsi_last_bb (bb
);
4420 if (gsi_end_p (gsi
))
4423 stmt
= gsi_stmt (gsi
);
4425 err
|= verify_eh_edges (stmt
);
4427 if (is_ctrl_stmt (stmt
))
4429 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4430 if (e
->flags
& EDGE_FALLTHRU
)
4432 error ("fallthru edge after a control statement in bb %d",
4438 if (gimple_code (stmt
) != GIMPLE_COND
)
4440 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4441 after anything else but if statement. */
4442 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4443 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4445 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4451 switch (gimple_code (stmt
))
4458 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4462 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4463 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4464 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4465 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4466 || EDGE_COUNT (bb
->succs
) >= 3)
4468 error ("wrong outgoing edge flags at end of bb %d",
4476 if (simple_goto_p (stmt
))
4478 error ("explicit goto at end of bb %d", bb
->index
);
4483 /* FIXME. We should double check that the labels in the
4484 destination blocks have their address taken. */
4485 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4486 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4487 | EDGE_FALSE_VALUE
))
4488 || !(e
->flags
& EDGE_ABNORMAL
))
4490 error ("wrong outgoing edge flags at end of bb %d",
4498 if (!single_succ_p (bb
)
4499 || (single_succ_edge (bb
)->flags
4500 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
4501 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4503 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
4506 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
4508 error ("return edge does not point to exit in bb %d",
4520 n
= gimple_switch_num_labels (stmt
);
4522 /* Mark all the destination basic blocks. */
4523 for (i
= 0; i
< n
; ++i
)
4525 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4526 basic_block label_bb
= label_to_block (lab
);
4527 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
4528 label_bb
->aux
= (void *)1;
4531 /* Verify that the case labels are sorted. */
4532 prev
= gimple_switch_label (stmt
, 0);
4533 for (i
= 1; i
< n
; ++i
)
4535 tree c
= gimple_switch_label (stmt
, i
);
4538 error ("found default case not at the start of "
4544 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
4546 error ("case labels not sorted: ");
4547 print_generic_expr (stderr
, prev
, 0);
4548 fprintf (stderr
," is greater than ");
4549 print_generic_expr (stderr
, c
, 0);
4550 fprintf (stderr
," but comes before it.\n");
4555 /* VRP will remove the default case if it can prove it will
4556 never be executed. So do not verify there always exists
4557 a default case here. */
4559 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4563 error ("extra outgoing edge %d->%d",
4564 bb
->index
, e
->dest
->index
);
4568 e
->dest
->aux
= (void *)2;
4569 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
4570 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4572 error ("wrong outgoing edge flags at end of bb %d",
4578 /* Check that we have all of them. */
4579 for (i
= 0; i
< n
; ++i
)
4581 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4582 basic_block label_bb
= label_to_block (lab
);
4584 if (label_bb
->aux
!= (void *)2)
4586 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
4591 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4592 e
->dest
->aux
= (void *)0;
4599 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
4600 verify_dominators (CDI_DOMINATORS
);
4606 /* Updates phi nodes after creating a forwarder block joined
4607 by edge FALLTHRU. */
4610 gimple_make_forwarder_block (edge fallthru
)
4614 basic_block dummy
, bb
;
4616 gimple_stmt_iterator gsi
;
4618 dummy
= fallthru
->src
;
4619 bb
= fallthru
->dest
;
4621 if (single_pred_p (bb
))
4624 /* If we redirected a branch we must create new PHI nodes at the
4626 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4628 gimple phi
, new_phi
;
4630 phi
= gsi_stmt (gsi
);
4631 var
= gimple_phi_result (phi
);
4632 new_phi
= create_phi_node (var
, bb
);
4633 SSA_NAME_DEF_STMT (var
) = new_phi
;
4634 gimple_phi_set_result (phi
, make_ssa_name (SSA_NAME_VAR (var
), phi
));
4635 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
);
4638 /* Add the arguments we have stored on edges. */
4639 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4644 flush_pending_stmts (e
);
4649 /* Return a non-special label in the head of basic block BLOCK.
4650 Create one if it doesn't exist. */
4653 gimple_block_label (basic_block bb
)
4655 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
4660 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
4662 stmt
= gsi_stmt (i
);
4663 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4665 label
= gimple_label_label (stmt
);
4666 if (!DECL_NONLOCAL (label
))
4669 gsi_move_before (&i
, &s
);
4674 label
= create_artificial_label ();
4675 stmt
= gimple_build_label (label
);
4676 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
4681 /* Attempt to perform edge redirection by replacing a possibly complex
4682 jump instruction by a goto or by removing the jump completely.
4683 This can apply only if all edges now point to the same block. The
4684 parameters and return values are equivalent to
4685 redirect_edge_and_branch. */
4688 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
4690 basic_block src
= e
->src
;
4691 gimple_stmt_iterator i
;
4694 /* We can replace or remove a complex jump only when we have exactly
4696 if (EDGE_COUNT (src
->succs
) != 2
4697 /* Verify that all targets will be TARGET. Specifically, the
4698 edge that is not E must also go to TARGET. */
4699 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
4702 i
= gsi_last_bb (src
);
4706 stmt
= gsi_stmt (i
);
4708 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
4710 gsi_remove (&i
, true);
4711 e
= ssa_redirect_edge (e
, target
);
4712 e
->flags
= EDGE_FALLTHRU
;
4720 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4721 edge representing the redirected branch. */
4724 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
4726 basic_block bb
= e
->src
;
4727 gimple_stmt_iterator gsi
;
4731 if (e
->flags
& EDGE_ABNORMAL
)
4734 if (e
->src
!= ENTRY_BLOCK_PTR
4735 && (ret
= gimple_try_redirect_by_replacing_jump (e
, dest
)))
4738 if (e
->dest
== dest
)
4741 gsi
= gsi_last_bb (bb
);
4742 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
4744 switch (stmt
? gimple_code (stmt
) : ERROR_MARK
)
4747 /* For COND_EXPR, we only need to redirect the edge. */
4751 /* No non-abnormal edges should lead from a non-simple goto, and
4752 simple ones should be represented implicitly. */
4757 tree label
= gimple_block_label (dest
);
4758 tree cases
= get_cases_for_edge (e
, stmt
);
4760 /* If we have a list of cases associated with E, then use it
4761 as it's a lot faster than walking the entire case vector. */
4764 edge e2
= find_edge (e
->src
, dest
);
4771 CASE_LABEL (cases
) = label
;
4772 cases
= TREE_CHAIN (cases
);
4775 /* If there was already an edge in the CFG, then we need
4776 to move all the cases associated with E to E2. */
4779 tree cases2
= get_cases_for_edge (e2
, stmt
);
4781 TREE_CHAIN (last
) = TREE_CHAIN (cases2
);
4782 TREE_CHAIN (cases2
) = first
;
4787 size_t i
, n
= gimple_switch_num_labels (stmt
);
4789 for (i
= 0; i
< n
; i
++)
4791 tree elt
= gimple_switch_label (stmt
, i
);
4792 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
4793 CASE_LABEL (elt
) = label
;
4801 gsi_remove (&gsi
, true);
4802 e
->flags
|= EDGE_FALLTHRU
;
4805 case GIMPLE_OMP_RETURN
:
4806 case GIMPLE_OMP_CONTINUE
:
4807 case GIMPLE_OMP_SECTIONS_SWITCH
:
4808 case GIMPLE_OMP_FOR
:
4809 /* The edges from OMP constructs can be simply redirected. */
4813 /* Otherwise it must be a fallthru edge, and we don't need to
4814 do anything besides redirecting it. */
4815 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
4819 /* Update/insert PHI nodes as necessary. */
4821 /* Now update the edges in the CFG. */
4822 e
= ssa_redirect_edge (e
, dest
);
4827 /* Returns true if it is possible to remove edge E by redirecting
4828 it to the destination of the other edge from E->src. */
4831 gimple_can_remove_branch_p (const_edge e
)
4833 if (e
->flags
& EDGE_ABNORMAL
)
4839 /* Simple wrapper, as we can always redirect fallthru edges. */
4842 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
4844 e
= gimple_redirect_edge_and_branch (e
, dest
);
4851 /* Splits basic block BB after statement STMT (but at least after the
4852 labels). If STMT is NULL, BB is split just after the labels. */
4855 gimple_split_block (basic_block bb
, void *stmt
)
4857 gimple_stmt_iterator gsi
;
4858 gimple_stmt_iterator gsi_tgt
;
4865 new_bb
= create_empty_bb (bb
);
4867 /* Redirect the outgoing edges. */
4868 new_bb
->succs
= bb
->succs
;
4870 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
4873 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
4876 /* Move everything from GSI to the new basic block. */
4877 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4879 act
= gsi_stmt (gsi
);
4880 if (gimple_code (act
) == GIMPLE_LABEL
)
4893 if (gsi_end_p (gsi
))
4896 /* Split the statement list - avoid re-creating new containers as this
4897 brings ugly quadratic memory consumption in the inliner.
4898 (We are still quadratic since we need to update stmt BB pointers,
4900 list
= gsi_split_seq_before (&gsi
);
4901 set_bb_seq (new_bb
, list
);
4902 for (gsi_tgt
= gsi_start (list
);
4903 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
4904 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
4910 /* Moves basic block BB after block AFTER. */
4913 gimple_move_block_after (basic_block bb
, basic_block after
)
4915 if (bb
->prev_bb
== after
)
4919 link_block (bb
, after
);
4925 /* Return true if basic_block can be duplicated. */
4928 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
4933 /* Create a duplicate of the basic block BB. NOTE: This does not
4934 preserve SSA form. */
4937 gimple_duplicate_bb (basic_block bb
)
4940 gimple_stmt_iterator gsi
, gsi_tgt
;
4941 gimple_seq phis
= phi_nodes (bb
);
4942 gimple phi
, stmt
, copy
;
4944 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
4946 /* Copy the PHI nodes. We ignore PHI node arguments here because
4947 the incoming edges have not been setup yet. */
4948 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4950 phi
= gsi_stmt (gsi
);
4951 copy
= create_phi_node (gimple_phi_result (phi
), new_bb
);
4952 create_new_def_for (gimple_phi_result (copy
), copy
,
4953 gimple_phi_result_ptr (copy
));
4956 gsi_tgt
= gsi_start_bb (new_bb
);
4957 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4959 def_operand_p def_p
;
4960 ssa_op_iter op_iter
;
4963 stmt
= gsi_stmt (gsi
);
4964 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4967 /* Create a new copy of STMT and duplicate STMT's virtual
4969 copy
= gimple_copy (stmt
);
4970 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
4971 region
= lookup_stmt_eh_region (stmt
);
4973 add_stmt_to_eh_region (copy
, region
);
4974 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
4976 /* Create new names for all the definitions created by COPY and
4977 add replacement mappings for each new name. */
4978 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
4979 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
4985 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
4988 add_phi_args_after_copy_edge (edge e_copy
)
4990 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
4993 gimple phi
, phi_copy
;
4995 gimple_stmt_iterator psi
, psi_copy
;
4997 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5000 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5002 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5003 dest
= get_bb_original (e_copy
->dest
);
5005 dest
= e_copy
->dest
;
5007 e
= find_edge (bb
, dest
);
5010 /* During loop unrolling the target of the latch edge is copied.
5011 In this case we are not looking for edge to dest, but to
5012 duplicated block whose original was dest. */
5013 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5015 if ((e
->dest
->flags
& BB_DUPLICATED
)
5016 && get_bb_original (e
->dest
) == dest
)
5020 gcc_assert (e
!= NULL
);
5023 for (psi
= gsi_start_phis (e
->dest
),
5024 psi_copy
= gsi_start_phis (e_copy
->dest
);
5026 gsi_next (&psi
), gsi_next (&psi_copy
))
5028 phi
= gsi_stmt (psi
);
5029 phi_copy
= gsi_stmt (psi_copy
);
5030 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5031 add_phi_arg (phi_copy
, def
, e_copy
);
5036 /* Basic block BB_COPY was created by code duplication. Add phi node
5037 arguments for edges going out of BB_COPY. The blocks that were
5038 duplicated have BB_DUPLICATED set. */
5041 add_phi_args_after_copy_bb (basic_block bb_copy
)
5046 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5048 add_phi_args_after_copy_edge (e_copy
);
5052 /* Blocks in REGION_COPY array of length N_REGION were created by
5053 duplication of basic blocks. Add phi node arguments for edges
5054 going from these blocks. If E_COPY is not NULL, also add
5055 phi node arguments for its destination.*/
5058 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5063 for (i
= 0; i
< n_region
; i
++)
5064 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5066 for (i
= 0; i
< n_region
; i
++)
5067 add_phi_args_after_copy_bb (region_copy
[i
]);
5069 add_phi_args_after_copy_edge (e_copy
);
5071 for (i
= 0; i
< n_region
; i
++)
5072 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5075 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5076 important exit edge EXIT. By important we mean that no SSA name defined
5077 inside region is live over the other exit edges of the region. All entry
5078 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5079 to the duplicate of the region. SSA form, dominance and loop information
5080 is updated. The new basic blocks are stored to REGION_COPY in the same
5081 order as they had in REGION, provided that REGION_COPY is not NULL.
5082 The function returns false if it is unable to copy the region,
5086 gimple_duplicate_sese_region (edge entry
, edge exit
,
5087 basic_block
*region
, unsigned n_region
,
5088 basic_block
*region_copy
)
5091 bool free_region_copy
= false, copying_header
= false;
5092 struct loop
*loop
= entry
->dest
->loop_father
;
5094 VEC (basic_block
, heap
) *doms
;
5096 int total_freq
= 0, entry_freq
= 0;
5097 gcov_type total_count
= 0, entry_count
= 0;
5099 if (!can_copy_bbs_p (region
, n_region
))
5102 /* Some sanity checking. Note that we do not check for all possible
5103 missuses of the functions. I.e. if you ask to copy something weird,
5104 it will work, but the state of structures probably will not be
5106 for (i
= 0; i
< n_region
; i
++)
5108 /* We do not handle subloops, i.e. all the blocks must belong to the
5110 if (region
[i
]->loop_father
!= loop
)
5113 if (region
[i
] != entry
->dest
5114 && region
[i
] == loop
->header
)
5118 set_loop_copy (loop
, loop
);
5120 /* In case the function is used for loop header copying (which is the primary
5121 use), ensure that EXIT and its copy will be new latch and entry edges. */
5122 if (loop
->header
== entry
->dest
)
5124 copying_header
= true;
5125 set_loop_copy (loop
, loop_outer (loop
));
5127 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5130 for (i
= 0; i
< n_region
; i
++)
5131 if (region
[i
] != exit
->src
5132 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5138 region_copy
= XNEWVEC (basic_block
, n_region
);
5139 free_region_copy
= true;
5142 gcc_assert (!need_ssa_update_p (cfun
));
5144 /* Record blocks outside the region that are dominated by something
5147 initialize_original_copy_tables ();
5149 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5151 if (entry
->dest
->count
)
5153 total_count
= entry
->dest
->count
;
5154 entry_count
= entry
->count
;
5155 /* Fix up corner cases, to avoid division by zero or creation of negative
5157 if (entry_count
> total_count
)
5158 entry_count
= total_count
;
5162 total_freq
= entry
->dest
->frequency
;
5163 entry_freq
= EDGE_FREQUENCY (entry
);
5164 /* Fix up corner cases, to avoid division by zero or creation of negative
5166 if (total_freq
== 0)
5168 else if (entry_freq
> total_freq
)
5169 entry_freq
= total_freq
;
5172 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5173 split_edge_bb_loc (entry
));
5176 scale_bbs_frequencies_gcov_type (region
, n_region
,
5177 total_count
- entry_count
,
5179 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5184 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5186 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5191 loop
->header
= exit
->dest
;
5192 loop
->latch
= exit
->src
;
5195 /* Redirect the entry and add the phi node arguments. */
5196 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5197 gcc_assert (redirected
!= NULL
);
5198 flush_pending_stmts (entry
);
5200 /* Concerning updating of dominators: We must recount dominators
5201 for entry block and its copy. Anything that is outside of the
5202 region, but was dominated by something inside needs recounting as
5204 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5205 VEC_safe_push (basic_block
, heap
, doms
, get_bb_original (entry
->dest
));
5206 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5207 VEC_free (basic_block
, heap
, doms
);
5209 /* Add the other PHI node arguments. */
5210 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5212 /* Update the SSA web. */
5213 update_ssa (TODO_update_ssa
);
5215 if (free_region_copy
)
5218 free_original_copy_tables ();
5222 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5223 are stored to REGION_COPY in the same order in that they appear
5224 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5225 the region, EXIT an exit from it. The condition guarding EXIT
5226 is moved to ENTRY. Returns true if duplication succeeds, false
5252 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5253 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5254 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5257 bool free_region_copy
= false;
5258 struct loop
*loop
= exit
->dest
->loop_father
;
5259 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5260 basic_block switch_bb
, entry_bb
, nentry_bb
;
5261 VEC (basic_block
, heap
) *doms
;
5262 int total_freq
= 0, exit_freq
= 0;
5263 gcov_type total_count
= 0, exit_count
= 0;
5264 edge exits
[2], nexits
[2], e
;
5265 gimple_stmt_iterator gsi
;
5269 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5271 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5273 if (!can_copy_bbs_p (region
, n_region
))
5276 /* Some sanity checking. Note that we do not check for all possible
5277 missuses of the functions. I.e. if you ask to copy something weird
5278 (e.g., in the example, if there is a jump from inside to the middle
5279 of some_code, or come_code defines some of the values used in cond)
5280 it will work, but the resulting code will not be correct. */
5281 for (i
= 0; i
< n_region
; i
++)
5283 /* We do not handle subloops, i.e. all the blocks must belong to the
5285 if (region
[i
]->loop_father
!= orig_loop
)
5288 if (region
[i
] == orig_loop
->latch
)
5292 initialize_original_copy_tables ();
5293 set_loop_copy (orig_loop
, loop
);
5297 region_copy
= XNEWVEC (basic_block
, n_region
);
5298 free_region_copy
= true;
5301 gcc_assert (!need_ssa_update_p (cfun
));
5303 /* Record blocks outside the region that are dominated by something
5305 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5307 if (exit
->src
->count
)
5309 total_count
= exit
->src
->count
;
5310 exit_count
= exit
->count
;
5311 /* Fix up corner cases, to avoid division by zero or creation of negative
5313 if (exit_count
> total_count
)
5314 exit_count
= total_count
;
5318 total_freq
= exit
->src
->frequency
;
5319 exit_freq
= EDGE_FREQUENCY (exit
);
5320 /* Fix up corner cases, to avoid division by zero or creation of negative
5322 if (total_freq
== 0)
5324 if (exit_freq
> total_freq
)
5325 exit_freq
= total_freq
;
5328 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5329 split_edge_bb_loc (exit
));
5332 scale_bbs_frequencies_gcov_type (region
, n_region
,
5333 total_count
- exit_count
,
5335 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5340 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5342 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5345 /* Create the switch block, and put the exit condition to it. */
5346 entry_bb
= entry
->dest
;
5347 nentry_bb
= get_bb_copy (entry_bb
);
5348 if (!last_stmt (entry
->src
)
5349 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5350 switch_bb
= entry
->src
;
5352 switch_bb
= split_edge (entry
);
5353 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5355 gsi
= gsi_last_bb (switch_bb
);
5356 cond_stmt
= last_stmt (exit
->src
);
5357 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5358 cond_stmt
= gimple_copy (cond_stmt
);
5359 gimple_cond_set_lhs (cond_stmt
, unshare_expr (gimple_cond_lhs (cond_stmt
)));
5360 gimple_cond_set_rhs (cond_stmt
, unshare_expr (gimple_cond_rhs (cond_stmt
)));
5361 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5363 sorig
= single_succ_edge (switch_bb
);
5364 sorig
->flags
= exits
[1]->flags
;
5365 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5367 /* Register the new edge from SWITCH_BB in loop exit lists. */
5368 rescan_loop_exit (snew
, true, false);
5370 /* Add the PHI node arguments. */
5371 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5373 /* Get rid of now superfluous conditions and associated edges (and phi node
5375 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
5376 PENDING_STMT (e
) = NULL
;
5377 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
5378 PENDING_STMT (e
) = NULL
;
5380 /* Anything that is outside of the region, but was dominated by something
5381 inside needs to update dominance info. */
5382 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5383 VEC_free (basic_block
, heap
, doms
);
5385 /* Update the SSA web. */
5386 update_ssa (TODO_update_ssa
);
5388 if (free_region_copy
)
5391 free_original_copy_tables ();
5395 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5396 adding blocks when the dominator traversal reaches EXIT. This
5397 function silently assumes that ENTRY strictly dominates EXIT. */
5400 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
5401 VEC(basic_block
,heap
) **bbs_p
)
5405 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
5407 son
= next_dom_son (CDI_DOMINATORS
, son
))
5409 VEC_safe_push (basic_block
, heap
, *bbs_p
, son
);
5411 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
5415 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5416 The duplicates are recorded in VARS_MAP. */
5419 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
5422 tree t
= *tp
, new_t
;
5423 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
5426 if (DECL_CONTEXT (t
) == to_context
)
5429 loc
= pointer_map_contains (vars_map
, t
);
5433 loc
= pointer_map_insert (vars_map
, t
);
5437 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
5438 f
->local_decls
= tree_cons (NULL_TREE
, new_t
, f
->local_decls
);
5442 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
5443 new_t
= copy_node (t
);
5445 DECL_CONTEXT (new_t
) = to_context
;
5450 new_t
= (tree
) *loc
;
5456 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5457 VARS_MAP maps old ssa names and var_decls to the new ones. */
5460 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
5464 tree new_name
, decl
= SSA_NAME_VAR (name
);
5466 gcc_assert (is_gimple_reg (name
));
5468 loc
= pointer_map_contains (vars_map
, name
);
5472 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
5474 push_cfun (DECL_STRUCT_FUNCTION (to_context
));
5475 if (gimple_in_ssa_p (cfun
))
5476 add_referenced_var (decl
);
5478 new_name
= make_ssa_name (decl
, SSA_NAME_DEF_STMT (name
));
5479 if (SSA_NAME_IS_DEFAULT_DEF (name
))
5480 set_default_def (decl
, new_name
);
5483 loc
= pointer_map_insert (vars_map
, name
);
5487 new_name
= (tree
) *loc
;
5498 struct pointer_map_t
*vars_map
;
5499 htab_t new_label_map
;
5503 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5504 contained in *TP if it has been ORIG_BLOCK previously and change the
5505 DECL_CONTEXT of every local variable referenced in *TP. */
5508 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
5510 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5511 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5515 /* We should never have TREE_BLOCK set on non-statements. */
5516 gcc_assert (!TREE_BLOCK (t
));
5518 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
5520 if (TREE_CODE (t
) == SSA_NAME
)
5521 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
5522 else if (TREE_CODE (t
) == LABEL_DECL
)
5524 if (p
->new_label_map
)
5526 struct tree_map in
, *out
;
5528 out
= (struct tree_map
*)
5529 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
5534 DECL_CONTEXT (t
) = p
->to_context
;
5536 else if (p
->remap_decls_p
)
5538 /* Replace T with its duplicate. T should no longer appear in the
5539 parent function, so this looks wasteful; however, it may appear
5540 in referenced_vars, and more importantly, as virtual operands of
5541 statements, and in alias lists of other variables. It would be
5542 quite difficult to expunge it from all those places. ??? It might
5543 suffice to do this for addressable variables. */
5544 if ((TREE_CODE (t
) == VAR_DECL
5545 && !is_global_var (t
))
5546 || TREE_CODE (t
) == CONST_DECL
)
5547 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
5550 && gimple_in_ssa_p (cfun
))
5552 push_cfun (DECL_STRUCT_FUNCTION (p
->to_context
));
5553 add_referenced_var (*tp
);
5559 else if (TYPE_P (t
))
5565 /* Like move_stmt_op, but for gimple statements.
5567 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5568 contained in the current statement in *GSI_P and change the
5569 DECL_CONTEXT of every local variable referenced in the current
5573 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
5574 struct walk_stmt_info
*wi
)
5576 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5577 gimple stmt
= gsi_stmt (*gsi_p
);
5578 tree block
= gimple_block (stmt
);
5580 if (p
->orig_block
== NULL_TREE
5581 || block
== p
->orig_block
5582 || block
== NULL_TREE
)
5583 gimple_set_block (stmt
, p
->new_block
);
5584 #ifdef ENABLE_CHECKING
5585 else if (block
!= p
->new_block
)
5587 while (block
&& block
!= p
->orig_block
)
5588 block
= BLOCK_SUPERCONTEXT (block
);
5593 if (is_gimple_omp (stmt
)
5594 && gimple_code (stmt
) != GIMPLE_OMP_RETURN
5595 && gimple_code (stmt
) != GIMPLE_OMP_CONTINUE
)
5597 /* Do not remap variables inside OMP directives. Variables
5598 referenced in clauses and directive header belong to the
5599 parent function and should not be moved into the child
5601 bool save_remap_decls_p
= p
->remap_decls_p
;
5602 p
->remap_decls_p
= false;
5603 *handled_ops_p
= true;
5605 walk_gimple_seq (gimple_omp_body (stmt
), move_stmt_r
, move_stmt_op
, wi
);
5607 p
->remap_decls_p
= save_remap_decls_p
;
5613 /* Marks virtual operands of all statements in basic blocks BBS for
5617 mark_virtual_ops_in_bb (basic_block bb
)
5619 gimple_stmt_iterator gsi
;
5621 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5622 mark_virtual_ops_for_renaming (gsi_stmt (gsi
));
5624 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5625 mark_virtual_ops_for_renaming (gsi_stmt (gsi
));
5628 /* Move basic block BB from function CFUN to function DEST_FN. The
5629 block is moved out of the original linked list and placed after
5630 block AFTER in the new list. Also, the block is removed from the
5631 original array of blocks and placed in DEST_FN's array of blocks.
5632 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5633 updated to reflect the moved edges.
5635 The local variables are remapped to new instances, VARS_MAP is used
5636 to record the mapping. */
5639 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
5640 basic_block after
, bool update_edge_count_p
,
5641 struct move_stmt_d
*d
, int eh_offset
)
5643 struct control_flow_graph
*cfg
;
5646 gimple_stmt_iterator si
;
5647 unsigned old_len
, new_len
;
5649 /* Remove BB from dominance structures. */
5650 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
5652 remove_bb_from_loops (bb
);
5654 /* Link BB to the new linked list. */
5655 move_block_after (bb
, after
);
5657 /* Update the edge count in the corresponding flowgraphs. */
5658 if (update_edge_count_p
)
5659 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5661 cfun
->cfg
->x_n_edges
--;
5662 dest_cfun
->cfg
->x_n_edges
++;
5665 /* Remove BB from the original basic block array. */
5666 VEC_replace (basic_block
, cfun
->cfg
->x_basic_block_info
, bb
->index
, NULL
);
5667 cfun
->cfg
->x_n_basic_blocks
--;
5669 /* Grow DEST_CFUN's basic block array if needed. */
5670 cfg
= dest_cfun
->cfg
;
5671 cfg
->x_n_basic_blocks
++;
5672 if (bb
->index
>= cfg
->x_last_basic_block
)
5673 cfg
->x_last_basic_block
= bb
->index
+ 1;
5675 old_len
= VEC_length (basic_block
, cfg
->x_basic_block_info
);
5676 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
5678 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
5679 VEC_safe_grow_cleared (basic_block
, gc
, cfg
->x_basic_block_info
,
5683 VEC_replace (basic_block
, cfg
->x_basic_block_info
,
5686 /* Remap the variables in phi nodes. */
5687 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
5689 gimple phi
= gsi_stmt (si
);
5691 tree op
= PHI_RESULT (phi
);
5694 if (!is_gimple_reg (op
))
5696 /* Remove the phi nodes for virtual operands (alias analysis will be
5697 run for the new function, anyway). */
5698 remove_phi_node (&si
, true);
5702 SET_PHI_RESULT (phi
,
5703 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5704 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
5706 op
= USE_FROM_PTR (use
);
5707 if (TREE_CODE (op
) == SSA_NAME
)
5708 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5714 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5716 gimple stmt
= gsi_stmt (si
);
5718 struct walk_stmt_info wi
;
5720 memset (&wi
, 0, sizeof (wi
));
5722 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
5724 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5726 tree label
= gimple_label_label (stmt
);
5727 int uid
= LABEL_DECL_UID (label
);
5729 gcc_assert (uid
> -1);
5731 old_len
= VEC_length (basic_block
, cfg
->x_label_to_block_map
);
5732 if (old_len
<= (unsigned) uid
)
5734 new_len
= 3 * uid
/ 2 + 1;
5735 VEC_safe_grow_cleared (basic_block
, gc
,
5736 cfg
->x_label_to_block_map
, new_len
);
5739 VEC_replace (basic_block
, cfg
->x_label_to_block_map
, uid
, bb
);
5740 VEC_replace (basic_block
, cfun
->cfg
->x_label_to_block_map
, uid
, NULL
);
5742 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
5744 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
5745 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
5747 else if (gimple_code (stmt
) == GIMPLE_RESX
&& eh_offset
!= 0)
5748 gimple_resx_set_region (stmt
, gimple_resx_region (stmt
) + eh_offset
);
5750 region
= lookup_stmt_eh_region (stmt
);
5753 add_stmt_to_eh_region_fn (dest_cfun
, stmt
, region
+ eh_offset
);
5754 remove_stmt_from_eh_region (stmt
);
5755 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
5756 gimple_remove_stmt_histograms (cfun
, stmt
);
5759 /* We cannot leave any operands allocated from the operand caches of
5760 the current function. */
5761 free_stmt_operands (stmt
);
5762 push_cfun (dest_cfun
);
5767 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5770 tree block
= e
->goto_block
;
5771 if (d
->orig_block
== NULL_TREE
5772 || block
== d
->orig_block
)
5773 e
->goto_block
= d
->new_block
;
5774 #ifdef ENABLE_CHECKING
5775 else if (block
!= d
->new_block
)
5777 while (block
&& block
!= d
->orig_block
)
5778 block
= BLOCK_SUPERCONTEXT (block
);
5785 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5786 the outermost EH region. Use REGION as the incoming base EH region. */
5789 find_outermost_region_in_block (struct function
*src_cfun
,
5790 basic_block bb
, int region
)
5792 gimple_stmt_iterator si
;
5794 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5796 gimple stmt
= gsi_stmt (si
);
5799 if (gimple_code (stmt
) == GIMPLE_RESX
)
5800 stmt_region
= gimple_resx_region (stmt
);
5802 stmt_region
= lookup_stmt_eh_region_fn (src_cfun
, stmt
);
5803 if (stmt_region
> 0)
5806 region
= stmt_region
;
5807 else if (stmt_region
!= region
)
5809 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
5810 gcc_assert (region
!= -1);
5819 new_label_mapper (tree decl
, void *data
)
5821 htab_t hash
= (htab_t
) data
;
5825 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
5827 m
= XNEW (struct tree_map
);
5828 m
->hash
= DECL_UID (decl
);
5829 m
->base
.from
= decl
;
5830 m
->to
= create_artificial_label ();
5831 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
5832 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
5833 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
5835 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
5836 gcc_assert (*slot
== NULL
);
5843 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
5847 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
5852 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &TREE_CHAIN (*tp
))
5855 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
5857 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
5860 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
5862 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
5863 DECL_HAS_VALUE_EXPR_P (t
) = 1;
5865 TREE_CHAIN (t
) = TREE_CHAIN (*tp
);
5870 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
5871 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
5874 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
5875 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
5876 single basic block in the original CFG and the new basic block is
5877 returned. DEST_CFUN must not have a CFG yet.
5879 Note that the region need not be a pure SESE region. Blocks inside
5880 the region may contain calls to abort/exit. The only restriction
5881 is that ENTRY_BB should be the only entry point and it must
5884 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
5885 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
5886 to the new function.
5888 All local variables referenced in the region are assumed to be in
5889 the corresponding BLOCK_VARS and unexpanded variable lists
5890 associated with DEST_CFUN. */
5893 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
5894 basic_block exit_bb
, tree orig_block
)
5896 VEC(basic_block
,heap
) *bbs
, *dom_bbs
;
5897 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
5898 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
5899 struct function
*saved_cfun
= cfun
;
5900 int *entry_flag
, *exit_flag
, eh_offset
;
5901 unsigned *entry_prob
, *exit_prob
;
5902 unsigned i
, num_entry_edges
, num_exit_edges
;
5905 htab_t new_label_map
;
5906 struct pointer_map_t
*vars_map
;
5907 struct loop
*loop
= entry_bb
->loop_father
;
5908 struct move_stmt_d d
;
5910 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
5912 gcc_assert (entry_bb
!= exit_bb
5914 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
5916 /* Collect all the blocks in the region. Manually add ENTRY_BB
5917 because it won't be added by dfs_enumerate_from. */
5919 VEC_safe_push (basic_block
, heap
, bbs
, entry_bb
);
5920 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
5922 /* The blocks that used to be dominated by something in BBS will now be
5923 dominated by the new block. */
5924 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
5925 VEC_address (basic_block
, bbs
),
5926 VEC_length (basic_block
, bbs
));
5928 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
5929 the predecessor edges to ENTRY_BB and the successor edges to
5930 EXIT_BB so that we can re-attach them to the new basic block that
5931 will replace the region. */
5932 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
5933 entry_pred
= (basic_block
*) xcalloc (num_entry_edges
, sizeof (basic_block
));
5934 entry_flag
= (int *) xcalloc (num_entry_edges
, sizeof (int));
5935 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
5937 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
5939 entry_prob
[i
] = e
->probability
;
5940 entry_flag
[i
] = e
->flags
;
5941 entry_pred
[i
++] = e
->src
;
5947 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
5948 exit_succ
= (basic_block
*) xcalloc (num_exit_edges
,
5949 sizeof (basic_block
));
5950 exit_flag
= (int *) xcalloc (num_exit_edges
, sizeof (int));
5951 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
5953 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
5955 exit_prob
[i
] = e
->probability
;
5956 exit_flag
[i
] = e
->flags
;
5957 exit_succ
[i
++] = e
->dest
;
5969 /* Switch context to the child function to initialize DEST_FN's CFG. */
5970 gcc_assert (dest_cfun
->cfg
== NULL
);
5971 push_cfun (dest_cfun
);
5973 init_empty_tree_cfg ();
5975 /* Initialize EH information for the new function. */
5977 new_label_map
= NULL
;
5982 for (i
= 0; VEC_iterate (basic_block
, bbs
, i
, bb
); i
++)
5983 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
5985 init_eh_for_function ();
5988 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
5989 eh_offset
= duplicate_eh_regions (saved_cfun
, new_label_mapper
,
5990 new_label_map
, region
, 0);
5996 /* Move blocks from BBS into DEST_CFUN. */
5997 gcc_assert (VEC_length (basic_block
, bbs
) >= 2);
5998 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
5999 vars_map
= pointer_map_create ();
6001 memset (&d
, 0, sizeof (d
));
6002 d
.vars_map
= vars_map
;
6003 d
.from_context
= cfun
->decl
;
6004 d
.to_context
= dest_cfun
->decl
;
6005 d
.new_label_map
= new_label_map
;
6006 d
.remap_decls_p
= true;
6007 d
.orig_block
= orig_block
;
6008 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6010 for (i
= 0; VEC_iterate (basic_block
, bbs
, i
, bb
); i
++)
6012 /* No need to update edge counts on the last block. It has
6013 already been updated earlier when we detached the region from
6014 the original CFG. */
6015 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
, eh_offset
);
6019 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6023 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6025 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6026 = BLOCK_SUBBLOCKS (orig_block
);
6027 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6028 block
; block
= BLOCK_CHAIN (block
))
6029 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6030 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6033 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6034 vars_map
, dest_cfun
->decl
);
6037 htab_delete (new_label_map
);
6038 pointer_map_destroy (vars_map
);
6040 /* Rewire the entry and exit blocks. The successor to the entry
6041 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6042 the child function. Similarly, the predecessor of DEST_FN's
6043 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6044 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6045 various CFG manipulation function get to the right CFG.
6047 FIXME, this is silly. The CFG ought to become a parameter to
6049 push_cfun (dest_cfun
);
6050 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6052 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6055 /* Back in the original function, the SESE region has disappeared,
6056 create a new basic block in its place. */
6057 bb
= create_empty_bb (entry_pred
[0]);
6059 add_bb_to_loop (bb
, loop
);
6060 for (i
= 0; i
< num_entry_edges
; i
++)
6062 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6063 e
->probability
= entry_prob
[i
];
6066 for (i
= 0; i
< num_exit_edges
; i
++)
6068 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6069 e
->probability
= exit_prob
[i
];
6072 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6073 for (i
= 0; VEC_iterate (basic_block
, dom_bbs
, i
, abb
); i
++)
6074 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6075 VEC_free (basic_block
, heap
, dom_bbs
);
6086 VEC_free (basic_block
, heap
, bbs
);
6092 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6096 dump_function_to_file (tree fn
, FILE *file
, int flags
)
6098 tree arg
, vars
, var
;
6099 struct function
*dsf
;
6100 bool ignore_topmost_bind
= false, any_var
= false;
6104 fprintf (file
, "%s (", lang_hooks
.decl_printable_name (fn
, 2));
6106 arg
= DECL_ARGUMENTS (fn
);
6109 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6110 fprintf (file
, " ");
6111 print_generic_expr (file
, arg
, dump_flags
);
6112 if (flags
& TDF_VERBOSE
)
6113 print_node (file
, "", arg
, 4);
6114 if (TREE_CHAIN (arg
))
6115 fprintf (file
, ", ");
6116 arg
= TREE_CHAIN (arg
);
6118 fprintf (file
, ")\n");
6120 if (flags
& TDF_VERBOSE
)
6121 print_node (file
, "", fn
, 2);
6123 dsf
= DECL_STRUCT_FUNCTION (fn
);
6124 if (dsf
&& (flags
& TDF_DETAILS
))
6125 dump_eh_tree (file
, dsf
);
6127 if (flags
& TDF_RAW
&& !gimple_has_body_p (fn
))
6129 dump_node (fn
, TDF_SLIM
| flags
, file
);
6133 /* Switch CFUN to point to FN. */
6134 push_cfun (DECL_STRUCT_FUNCTION (fn
));
6136 /* When GIMPLE is lowered, the variables are no longer available in
6137 BIND_EXPRs, so display them separately. */
6138 if (cfun
&& cfun
->decl
== fn
&& cfun
->local_decls
)
6140 ignore_topmost_bind
= true;
6142 fprintf (file
, "{\n");
6143 for (vars
= cfun
->local_decls
; vars
; vars
= TREE_CHAIN (vars
))
6145 var
= TREE_VALUE (vars
);
6147 print_generic_decl (file
, var
, flags
);
6148 if (flags
& TDF_VERBOSE
)
6149 print_node (file
, "", var
, 4);
6150 fprintf (file
, "\n");
6156 if (cfun
&& cfun
->decl
== fn
&& cfun
->cfg
&& basic_block_info
)
6158 /* If the CFG has been built, emit a CFG-based dump. */
6159 check_bb_profile (ENTRY_BLOCK_PTR
, file
);
6160 if (!ignore_topmost_bind
)
6161 fprintf (file
, "{\n");
6163 if (any_var
&& n_basic_blocks
)
6164 fprintf (file
, "\n");
6167 gimple_dump_bb (bb
, file
, 2, flags
);
6169 fprintf (file
, "}\n");
6170 check_bb_profile (EXIT_BLOCK_PTR
, file
);
6172 else if (DECL_SAVED_TREE (fn
) == NULL
)
6174 /* The function is now in GIMPLE form but the CFG has not been
6175 built yet. Emit the single sequence of GIMPLE statements
6176 that make up its body. */
6177 gimple_seq body
= gimple_body (fn
);
6179 if (gimple_seq_first_stmt (body
)
6180 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6181 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6182 print_gimple_seq (file
, body
, 0, flags
);
6185 if (!ignore_topmost_bind
)
6186 fprintf (file
, "{\n");
6189 fprintf (file
, "\n");
6191 print_gimple_seq (file
, body
, 2, flags
);
6192 fprintf (file
, "}\n");
6199 /* Make a tree based dump. */
6200 chain
= DECL_SAVED_TREE (fn
);
6202 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
6204 if (ignore_topmost_bind
)
6206 chain
= BIND_EXPR_BODY (chain
);
6214 if (!ignore_topmost_bind
)
6215 fprintf (file
, "{\n");
6220 fprintf (file
, "\n");
6222 print_generic_stmt_indented (file
, chain
, flags
, indent
);
6223 if (ignore_topmost_bind
)
6224 fprintf (file
, "}\n");
6227 fprintf (file
, "\n\n");
6234 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6237 debug_function (tree fn
, int flags
)
6239 dump_function_to_file (fn
, stderr
, flags
);
6243 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6246 print_pred_bbs (FILE *file
, basic_block bb
)
6251 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6252 fprintf (file
, "bb_%d ", e
->src
->index
);
6256 /* Print on FILE the indexes for the successors of basic_block BB. */
6259 print_succ_bbs (FILE *file
, basic_block bb
)
6264 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6265 fprintf (file
, "bb_%d ", e
->dest
->index
);
6268 /* Print to FILE the basic block BB following the VERBOSITY level. */
6271 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
6273 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
6274 memset ((void *) s_indent
, ' ', (size_t) indent
);
6275 s_indent
[indent
] = '\0';
6277 /* Print basic_block's header. */
6280 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
6281 print_pred_bbs (file
, bb
);
6282 fprintf (file
, "}, succs = {");
6283 print_succ_bbs (file
, bb
);
6284 fprintf (file
, "})\n");
6287 /* Print basic_block's body. */
6290 fprintf (file
, "%s {\n", s_indent
);
6291 gimple_dump_bb (bb
, file
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
6292 fprintf (file
, "%s }\n", s_indent
);
6296 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
6298 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6299 VERBOSITY level this outputs the contents of the loop, or just its
6303 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6311 s_indent
= (char *) alloca ((size_t) indent
+ 1);
6312 memset ((void *) s_indent
, ' ', (size_t) indent
);
6313 s_indent
[indent
] = '\0';
6315 /* Print loop's header. */
6316 fprintf (file
, "%sloop_%d (header = %d, latch = %d", s_indent
,
6317 loop
->num
, loop
->header
->index
, loop
->latch
->index
);
6318 fprintf (file
, ", niter = ");
6319 print_generic_expr (file
, loop
->nb_iterations
, 0);
6321 if (loop
->any_upper_bound
)
6323 fprintf (file
, ", upper_bound = ");
6324 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
6327 if (loop
->any_estimate
)
6329 fprintf (file
, ", estimate = ");
6330 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
6332 fprintf (file
, ")\n");
6334 /* Print loop's body. */
6337 fprintf (file
, "%s{\n", s_indent
);
6339 if (bb
->loop_father
== loop
)
6340 print_loops_bb (file
, bb
, indent
, verbosity
);
6342 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
6343 fprintf (file
, "%s}\n", s_indent
);
6347 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6348 spaces. Following VERBOSITY level this outputs the contents of the
6349 loop, or just its structure. */
6352 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6357 print_loop (file
, loop
, indent
, verbosity
);
6358 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
6361 /* Follow a CFG edge from the entry point of the program, and on entry
6362 of a loop, pretty print the loop structure on FILE. */
6365 print_loops (FILE *file
, int verbosity
)
6369 bb
= ENTRY_BLOCK_PTR
;
6370 if (bb
&& bb
->loop_father
)
6371 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
6375 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6378 debug_loops (int verbosity
)
6380 print_loops (stderr
, verbosity
);
6383 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6386 debug_loop (struct loop
*loop
, int verbosity
)
6388 print_loop (stderr
, loop
, 0, verbosity
);
6391 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6395 debug_loop_num (unsigned num
, int verbosity
)
6397 debug_loop (get_loop (num
), verbosity
);
6400 /* Return true if BB ends with a call, possibly followed by some
6401 instructions that must stay with the call. Return false,
6405 gimple_block_ends_with_call_p (basic_block bb
)
6407 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
6408 return is_gimple_call (gsi_stmt (gsi
));
6412 /* Return true if BB ends with a conditional branch. Return false,
6416 gimple_block_ends_with_condjump_p (const_basic_block bb
)
6418 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
6419 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
6423 /* Return true if we need to add fake edge to exit at statement T.
6424 Helper function for gimple_flow_call_edges_add. */
6427 need_fake_edge_p (gimple t
)
6429 tree fndecl
= NULL_TREE
;
6432 /* NORETURN and LONGJMP calls already have an edge to exit.
6433 CONST and PURE calls do not need one.
6434 We don't currently check for CONST and PURE here, although
6435 it would be a good idea, because those attributes are
6436 figured out from the RTL in mark_constant_function, and
6437 the counter incrementation code from -fprofile-arcs
6438 leads to different results from -fbranch-probabilities. */
6439 if (is_gimple_call (t
))
6441 fndecl
= gimple_call_fndecl (t
);
6442 call_flags
= gimple_call_flags (t
);
6445 if (is_gimple_call (t
)
6447 && DECL_BUILT_IN (fndecl
)
6448 && (call_flags
& ECF_NOTHROW
)
6449 && !(call_flags
& ECF_RETURNS_TWICE
)
6450 /* fork() doesn't really return twice, but the effect of
6451 wrapping it in __gcov_fork() which calls __gcov_flush()
6452 and clears the counters before forking has the same
6453 effect as returning twice. Force a fake edge. */
6454 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
6455 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
6458 if (is_gimple_call (t
)
6459 && !(call_flags
& ECF_NORETURN
))
6462 if (gimple_code (t
) == GIMPLE_ASM
6463 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
6470 /* Add fake edges to the function exit for any non constant and non
6471 noreturn calls, volatile inline assembly in the bitmap of blocks
6472 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6473 the number of blocks that were split.
6475 The goal is to expose cases in which entering a basic block does
6476 not imply that all subsequent instructions must be executed. */
6479 gimple_flow_call_edges_add (sbitmap blocks
)
6482 int blocks_split
= 0;
6483 int last_bb
= last_basic_block
;
6484 bool check_last_block
= false;
6486 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
6490 check_last_block
= true;
6492 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
6494 /* In the last basic block, before epilogue generation, there will be
6495 a fallthru edge to EXIT. Special care is required if the last insn
6496 of the last basic block is a call because make_edge folds duplicate
6497 edges, which would result in the fallthru edge also being marked
6498 fake, which would result in the fallthru edge being removed by
6499 remove_fake_edges, which would result in an invalid CFG.
6501 Moreover, we can't elide the outgoing fake edge, since the block
6502 profiler needs to take this into account in order to solve the minimal
6503 spanning tree in the case that the call doesn't return.
6505 Handle this by adding a dummy instruction in a new last basic block. */
6506 if (check_last_block
)
6508 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
6509 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
6512 if (!gsi_end_p (gsi
))
6515 if (t
&& need_fake_edge_p (t
))
6519 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6522 gsi_insert_on_edge (e
, gimple_build_nop ());
6523 gsi_commit_edge_inserts ();
6528 /* Now add fake edges to the function exit for any non constant
6529 calls since there is no way that we can determine if they will
6531 for (i
= 0; i
< last_bb
; i
++)
6533 basic_block bb
= BASIC_BLOCK (i
);
6534 gimple_stmt_iterator gsi
;
6535 gimple stmt
, last_stmt
;
6540 if (blocks
&& !TEST_BIT (blocks
, i
))
6543 gsi
= gsi_last_bb (bb
);
6544 if (!gsi_end_p (gsi
))
6546 last_stmt
= gsi_stmt (gsi
);
6549 stmt
= gsi_stmt (gsi
);
6550 if (need_fake_edge_p (stmt
))
6554 /* The handling above of the final block before the
6555 epilogue should be enough to verify that there is
6556 no edge to the exit block in CFG already.
6557 Calling make_edge in such case would cause us to
6558 mark that edge as fake and remove it later. */
6559 #ifdef ENABLE_CHECKING
6560 if (stmt
== last_stmt
)
6562 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6563 gcc_assert (e
== NULL
);
6567 /* Note that the following may create a new basic block
6568 and renumber the existing basic blocks. */
6569 if (stmt
!= last_stmt
)
6571 e
= split_block (bb
, stmt
);
6575 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
6579 while (!gsi_end_p (gsi
));
6584 verify_flow_info ();
6586 return blocks_split
;
6589 /* Purge dead abnormal call edges from basic block BB. */
6592 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
6594 bool changed
= gimple_purge_dead_eh_edges (bb
);
6596 if (cfun
->has_nonlocal_label
)
6598 gimple stmt
= last_stmt (bb
);
6602 if (!(stmt
&& stmt_can_make_abnormal_goto (stmt
)))
6603 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
6605 if (e
->flags
& EDGE_ABNORMAL
)
6614 /* See gimple_purge_dead_eh_edges below. */
6616 free_dominance_info (CDI_DOMINATORS
);
6622 /* Stores all basic blocks dominated by BB to DOM_BBS. */
6625 get_all_dominated_blocks (basic_block bb
, VEC (basic_block
, heap
) **dom_bbs
)
6629 VEC_safe_push (basic_block
, heap
, *dom_bbs
, bb
);
6630 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
6632 son
= next_dom_son (CDI_DOMINATORS
, son
))
6633 get_all_dominated_blocks (son
, dom_bbs
);
6636 /* Removes edge E and all the blocks dominated by it, and updates dominance
6637 information. The IL in E->src needs to be updated separately.
6638 If dominance info is not available, only the edge E is removed.*/
6641 remove_edge_and_dominated_blocks (edge e
)
6643 VEC (basic_block
, heap
) *bbs_to_remove
= NULL
;
6644 VEC (basic_block
, heap
) *bbs_to_fix_dom
= NULL
;
6648 bool none_removed
= false;
6650 basic_block bb
, dbb
;
6653 if (!dom_info_available_p (CDI_DOMINATORS
))
6659 /* No updating is needed for edges to exit. */
6660 if (e
->dest
== EXIT_BLOCK_PTR
)
6662 if (cfgcleanup_altered_bbs
)
6663 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6668 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6669 that is not dominated by E->dest, then this set is empty. Otherwise,
6670 all the basic blocks dominated by E->dest are removed.
6672 Also, to DF_IDOM we store the immediate dominators of the blocks in
6673 the dominance frontier of E (i.e., of the successors of the
6674 removed blocks, if there are any, and of E->dest otherwise). */
6675 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
6680 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
6682 none_removed
= true;
6687 df
= BITMAP_ALLOC (NULL
);
6688 df_idom
= BITMAP_ALLOC (NULL
);
6691 bitmap_set_bit (df_idom
,
6692 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
6695 get_all_dominated_blocks (e
->dest
, &bbs_to_remove
);
6696 for (i
= 0; VEC_iterate (basic_block
, bbs_to_remove
, i
, bb
); i
++)
6698 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
6700 if (f
->dest
!= EXIT_BLOCK_PTR
)
6701 bitmap_set_bit (df
, f
->dest
->index
);
6704 for (i
= 0; VEC_iterate (basic_block
, bbs_to_remove
, i
, bb
); i
++)
6705 bitmap_clear_bit (df
, bb
->index
);
6707 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
6709 bb
= BASIC_BLOCK (i
);
6710 bitmap_set_bit (df_idom
,
6711 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
6715 if (cfgcleanup_altered_bbs
)
6717 /* Record the set of the altered basic blocks. */
6718 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6719 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
6722 /* Remove E and the cancelled blocks. */
6727 for (i
= 0; VEC_iterate (basic_block
, bbs_to_remove
, i
, bb
); i
++)
6728 delete_basic_block (bb
);
6731 /* Update the dominance information. The immediate dominator may change only
6732 for blocks whose immediate dominator belongs to DF_IDOM:
6734 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6735 removal. Let Z the arbitrary block such that idom(Z) = Y and
6736 Z dominates X after the removal. Before removal, there exists a path P
6737 from Y to X that avoids Z. Let F be the last edge on P that is
6738 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6739 dominates W, and because of P, Z does not dominate W), and W belongs to
6740 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6741 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
6743 bb
= BASIC_BLOCK (i
);
6744 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
6746 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
6747 VEC_safe_push (basic_block
, heap
, bbs_to_fix_dom
, dbb
);
6750 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
6753 BITMAP_FREE (df_idom
);
6754 VEC_free (basic_block
, heap
, bbs_to_remove
);
6755 VEC_free (basic_block
, heap
, bbs_to_fix_dom
);
6758 /* Purge dead EH edges from basic block BB. */
6761 gimple_purge_dead_eh_edges (basic_block bb
)
6763 bool changed
= false;
6766 gimple stmt
= last_stmt (bb
);
6768 if (stmt
&& stmt_can_throw_internal (stmt
))
6771 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
6773 if (e
->flags
& EDGE_EH
)
6775 remove_edge_and_dominated_blocks (e
);
6786 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
6788 bool changed
= false;
6792 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
6794 basic_block bb
= BASIC_BLOCK (i
);
6796 /* Earlier gimple_purge_dead_eh_edges could have removed
6797 this basic block already. */
6798 gcc_assert (bb
|| changed
);
6800 changed
|= gimple_purge_dead_eh_edges (bb
);
6806 /* This function is called whenever a new edge is created or
6810 gimple_execute_on_growing_pred (edge e
)
6812 basic_block bb
= e
->dest
;
6815 reserve_phi_args_for_new_edge (bb
);
6818 /* This function is called immediately before edge E is removed from
6819 the edge vector E->dest->preds. */
6822 gimple_execute_on_shrinking_pred (edge e
)
6824 if (phi_nodes (e
->dest
))
6825 remove_phi_args (e
);
6828 /*---------------------------------------------------------------------------
6829 Helper functions for Loop versioning
6830 ---------------------------------------------------------------------------*/
6832 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
6833 of 'first'. Both of them are dominated by 'new_head' basic block. When
6834 'new_head' was created by 'second's incoming edge it received phi arguments
6835 on the edge by split_edge(). Later, additional edge 'e' was created to
6836 connect 'new_head' and 'first'. Now this routine adds phi args on this
6837 additional edge 'e' that new_head to second edge received as part of edge
6841 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
6842 basic_block new_head
, edge e
)
6845 gimple_stmt_iterator psi1
, psi2
;
6847 edge e2
= find_edge (new_head
, second
);
6849 /* Because NEW_HEAD has been created by splitting SECOND's incoming
6850 edge, we should always have an edge from NEW_HEAD to SECOND. */
6851 gcc_assert (e2
!= NULL
);
6853 /* Browse all 'second' basic block phi nodes and add phi args to
6854 edge 'e' for 'first' head. PHI args are always in correct order. */
6856 for (psi2
= gsi_start_phis (second
),
6857 psi1
= gsi_start_phis (first
);
6858 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
6859 gsi_next (&psi2
), gsi_next (&psi1
))
6861 phi1
= gsi_stmt (psi1
);
6862 phi2
= gsi_stmt (psi2
);
6863 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
6864 add_phi_arg (phi1
, def
, e
);
6869 /* Adds a if else statement to COND_BB with condition COND_EXPR.
6870 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
6871 the destination of the ELSE part. */
6874 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
6875 basic_block second_head ATTRIBUTE_UNUSED
,
6876 basic_block cond_bb
, void *cond_e
)
6878 gimple_stmt_iterator gsi
;
6879 gimple new_cond_expr
;
6880 tree cond_expr
= (tree
) cond_e
;
6883 /* Build new conditional expr */
6884 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
6885 NULL_TREE
, NULL_TREE
);
6887 /* Add new cond in cond_bb. */
6888 gsi
= gsi_last_bb (cond_bb
);
6889 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
6891 /* Adjust edges appropriately to connect new head with first head
6892 as well as second head. */
6893 e0
= single_succ_edge (cond_bb
);
6894 e0
->flags
&= ~EDGE_FALLTHRU
;
6895 e0
->flags
|= EDGE_FALSE_VALUE
;
6898 struct cfg_hooks gimple_cfg_hooks
= {
6900 gimple_verify_flow_info
,
6901 gimple_dump_bb
, /* dump_bb */
6902 create_bb
, /* create_basic_block */
6903 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
6904 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
6905 gimple_can_remove_branch_p
, /* can_remove_branch_p */
6906 remove_bb
, /* delete_basic_block */
6907 gimple_split_block
, /* split_block */
6908 gimple_move_block_after
, /* move_block_after */
6909 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
6910 gimple_merge_blocks
, /* merge_blocks */
6911 gimple_predict_edge
, /* predict_edge */
6912 gimple_predicted_by_p
, /* predicted_by_p */
6913 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
6914 gimple_duplicate_bb
, /* duplicate_block */
6915 gimple_split_edge
, /* split_edge */
6916 gimple_make_forwarder_block
, /* make_forward_block */
6917 NULL
, /* tidy_fallthru_edge */
6918 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
6919 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
6920 gimple_flow_call_edges_add
, /* flow_call_edges_add */
6921 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
6922 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
6923 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
6924 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
6925 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
6926 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
6927 flush_pending_stmts
/* flush_pending_stmts */
6931 /* Split all critical edges. */
6934 split_critical_edges (void)
6940 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
6941 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
6942 mappings around the calls to split_edge. */
6943 start_recording_case_labels ();
6946 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6947 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
6952 end_recording_case_labels ();
6956 struct gimple_opt_pass pass_split_crit_edges
=
6960 "crited", /* name */
6962 split_critical_edges
, /* execute */
6965 0, /* static_pass_number */
6966 TV_TREE_SPLIT_EDGES
, /* tv_id */
6967 PROP_cfg
, /* properties required */
6968 PROP_no_crit_edges
, /* properties_provided */
6969 0, /* properties_destroyed */
6970 0, /* todo_flags_start */
6971 TODO_dump_func
/* todo_flags_finish */
6976 /* Build a ternary operation and gimplify it. Emit code before GSI.
6977 Return the gimple_val holding the result. */
6980 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
6981 tree type
, tree a
, tree b
, tree c
)
6985 ret
= fold_build3 (code
, type
, a
, b
, c
);
6988 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
6992 /* Build a binary operation and gimplify it. Emit code before GSI.
6993 Return the gimple_val holding the result. */
6996 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
6997 tree type
, tree a
, tree b
)
7001 ret
= fold_build2 (code
, type
, a
, b
);
7004 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7008 /* Build a unary operation and gimplify it. Emit code before GSI.
7009 Return the gimple_val holding the result. */
7012 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7017 ret
= fold_build1 (code
, type
, a
);
7020 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7026 /* Emit return warnings. */
7029 execute_warn_function_return (void)
7031 source_location location
;
7036 /* If we have a path to EXIT, then we do return. */
7037 if (TREE_THIS_VOLATILE (cfun
->decl
)
7038 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7040 location
= UNKNOWN_LOCATION
;
7041 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7043 last
= last_stmt (e
->src
);
7044 if (gimple_code (last
) == GIMPLE_RETURN
7045 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7048 if (location
== UNKNOWN_LOCATION
)
7049 location
= cfun
->function_end_locus
;
7050 warning (0, "%H%<noreturn%> function does return", &location
);
7053 /* If we see "return;" in some basic block, then we do reach the end
7054 without returning a value. */
7055 else if (warn_return_type
7056 && !TREE_NO_WARNING (cfun
->decl
)
7057 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7058 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7060 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7062 gimple last
= last_stmt (e
->src
);
7063 if (gimple_code (last
) == GIMPLE_RETURN
7064 && gimple_return_retval (last
) == NULL
7065 && !gimple_no_warning_p (last
))
7067 location
= gimple_location (last
);
7068 if (location
== UNKNOWN_LOCATION
)
7069 location
= cfun
->function_end_locus
;
7070 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7071 TREE_NO_WARNING (cfun
->decl
) = 1;
7080 /* Given a basic block B which ends with a conditional and has
7081 precisely two successors, determine which of the edges is taken if
7082 the conditional is true and which is taken if the conditional is
7083 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7086 extract_true_false_edges_from_block (basic_block b
,
7090 edge e
= EDGE_SUCC (b
, 0);
7092 if (e
->flags
& EDGE_TRUE_VALUE
)
7095 *false_edge
= EDGE_SUCC (b
, 1);
7100 *true_edge
= EDGE_SUCC (b
, 1);
7104 struct gimple_opt_pass pass_warn_function_return
=
7110 execute_warn_function_return
, /* execute */
7113 0, /* static_pass_number */
7115 PROP_cfg
, /* properties_required */
7116 0, /* properties_provided */
7117 0, /* properties_destroyed */
7118 0, /* todo_flags_start */
7119 0 /* todo_flags_finish */
7123 /* Emit noreturn warnings. */
7126 execute_warn_function_noreturn (void)
7128 if (warn_missing_noreturn
7129 && !TREE_THIS_VOLATILE (cfun
->decl
)
7130 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0
7131 && !lang_hooks
.missing_noreturn_ok_p (cfun
->decl
))
7132 warning (OPT_Wmissing_noreturn
, "%Jfunction might be possible candidate "
7133 "for attribute %<noreturn%>",
7138 struct gimple_opt_pass pass_warn_function_noreturn
=
7144 execute_warn_function_noreturn
, /* execute */
7147 0, /* static_pass_number */
7149 PROP_cfg
, /* properties_required */
7150 0, /* properties_provided */
7151 0, /* properties_destroyed */
7152 0, /* todo_flags_start */
7153 0 /* todo_flags_finish */