expmed.c (expand_divmod): Always use a comparison for a division by a large unsigned...
[official-gcc.git] / gcc / reload1.c
blob180c394b421a95e9fb4ccb78ed70a74d5c37a2ae
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "addresses.h"
39 #include "basic-block.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "output.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "df.h"
49 #include "target.h"
50 #include "emit-rtl.h"
52 /* This file contains the reload pass of the compiler, which is
53 run after register allocation has been done. It checks that
54 each insn is valid (operands required to be in registers really
55 are in registers of the proper class) and fixes up invalid ones
56 by copying values temporarily into registers for the insns
57 that need them.
59 The results of register allocation are described by the vector
60 reg_renumber; the insns still contain pseudo regs, but reg_renumber
61 can be used to find which hard reg, if any, a pseudo reg is in.
63 The technique we always use is to free up a few hard regs that are
64 called ``reload regs'', and for each place where a pseudo reg
65 must be in a hard reg, copy it temporarily into one of the reload regs.
67 Reload regs are allocated locally for every instruction that needs
68 reloads. When there are pseudos which are allocated to a register that
69 has been chosen as a reload reg, such pseudos must be ``spilled''.
70 This means that they go to other hard regs, or to stack slots if no other
71 available hard regs can be found. Spilling can invalidate more
72 insns, requiring additional need for reloads, so we must keep checking
73 until the process stabilizes.
75 For machines with different classes of registers, we must keep track
76 of the register class needed for each reload, and make sure that
77 we allocate enough reload registers of each class.
79 The file reload.c contains the code that checks one insn for
80 validity and reports the reloads that it needs. This file
81 is in charge of scanning the entire rtl code, accumulating the
82 reload needs, spilling, assigning reload registers to use for
83 fixing up each insn, and generating the new insns to copy values
84 into the reload registers. */
86 /* During reload_as_needed, element N contains a REG rtx for the hard reg
87 into which reg N has been reloaded (perhaps for a previous insn). */
88 static rtx *reg_last_reload_reg;
90 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
91 for an output reload that stores into reg N. */
92 static regset_head reg_has_output_reload;
94 /* Indicates which hard regs are reload-registers for an output reload
95 in the current insn. */
96 static HARD_REG_SET reg_is_output_reload;
98 /* Element N is the constant value to which pseudo reg N is equivalent,
99 or zero if pseudo reg N is not equivalent to a constant.
100 find_reloads looks at this in order to replace pseudo reg N
101 with the constant it stands for. */
102 rtx *reg_equiv_constant;
104 /* Element N is an invariant value to which pseudo reg N is equivalent.
105 eliminate_regs_in_insn uses this to replace pseudos in particular
106 contexts. */
107 rtx *reg_equiv_invariant;
109 /* Element N is a memory location to which pseudo reg N is equivalent,
110 prior to any register elimination (such as frame pointer to stack
111 pointer). Depending on whether or not it is a valid address, this value
112 is transferred to either reg_equiv_address or reg_equiv_mem. */
113 rtx *reg_equiv_memory_loc;
115 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
116 collector can keep track of what is inside. */
117 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
119 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
120 This is used when the address is not valid as a memory address
121 (because its displacement is too big for the machine.) */
122 rtx *reg_equiv_address;
124 /* Element N is the memory slot to which pseudo reg N is equivalent,
125 or zero if pseudo reg N is not equivalent to a memory slot. */
126 rtx *reg_equiv_mem;
128 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
129 alternate representations of the location of pseudo reg N. */
130 rtx *reg_equiv_alt_mem_list;
132 /* Widest width in which each pseudo reg is referred to (via subreg). */
133 static unsigned int *reg_max_ref_width;
135 /* Element N is the list of insns that initialized reg N from its equivalent
136 constant or memory slot. */
137 rtx *reg_equiv_init;
138 int reg_equiv_init_size;
140 /* Vector to remember old contents of reg_renumber before spilling. */
141 static short *reg_old_renumber;
143 /* During reload_as_needed, element N contains the last pseudo regno reloaded
144 into hard register N. If that pseudo reg occupied more than one register,
145 reg_reloaded_contents points to that pseudo for each spill register in
146 use; all of these must remain set for an inheritance to occur. */
147 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
149 /* During reload_as_needed, element N contains the insn for which
150 hard register N was last used. Its contents are significant only
151 when reg_reloaded_valid is set for this register. */
152 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
154 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
155 static HARD_REG_SET reg_reloaded_valid;
156 /* Indicate if the register was dead at the end of the reload.
157 This is only valid if reg_reloaded_contents is set and valid. */
158 static HARD_REG_SET reg_reloaded_dead;
160 /* Indicate whether the register's current value is one that is not
161 safe to retain across a call, even for registers that are normally
162 call-saved. This is only meaningful for members of reg_reloaded_valid. */
163 static HARD_REG_SET reg_reloaded_call_part_clobbered;
165 /* Number of spill-regs so far; number of valid elements of spill_regs. */
166 static int n_spills;
168 /* In parallel with spill_regs, contains REG rtx's for those regs.
169 Holds the last rtx used for any given reg, or 0 if it has never
170 been used for spilling yet. This rtx is reused, provided it has
171 the proper mode. */
172 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
174 /* In parallel with spill_regs, contains nonzero for a spill reg
175 that was stored after the last time it was used.
176 The precise value is the insn generated to do the store. */
177 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
179 /* This is the register that was stored with spill_reg_store. This is a
180 copy of reload_out / reload_out_reg when the value was stored; if
181 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
182 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
184 /* This table is the inverse mapping of spill_regs:
185 indexed by hard reg number,
186 it contains the position of that reg in spill_regs,
187 or -1 for something that is not in spill_regs.
189 ?!? This is no longer accurate. */
190 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
192 /* This reg set indicates registers that can't be used as spill registers for
193 the currently processed insn. These are the hard registers which are live
194 during the insn, but not allocated to pseudos, as well as fixed
195 registers. */
196 static HARD_REG_SET bad_spill_regs;
198 /* These are the hard registers that can't be used as spill register for any
199 insn. This includes registers used for user variables and registers that
200 we can't eliminate. A register that appears in this set also can't be used
201 to retry register allocation. */
202 static HARD_REG_SET bad_spill_regs_global;
204 /* Describes order of use of registers for reloading
205 of spilled pseudo-registers. `n_spills' is the number of
206 elements that are actually valid; new ones are added at the end.
208 Both spill_regs and spill_reg_order are used on two occasions:
209 once during find_reload_regs, where they keep track of the spill registers
210 for a single insn, but also during reload_as_needed where they show all
211 the registers ever used by reload. For the latter case, the information
212 is calculated during finish_spills. */
213 static short spill_regs[FIRST_PSEUDO_REGISTER];
215 /* This vector of reg sets indicates, for each pseudo, which hard registers
216 may not be used for retrying global allocation because the register was
217 formerly spilled from one of them. If we allowed reallocating a pseudo to
218 a register that it was already allocated to, reload might not
219 terminate. */
220 static HARD_REG_SET *pseudo_previous_regs;
222 /* This vector of reg sets indicates, for each pseudo, which hard
223 registers may not be used for retrying global allocation because they
224 are used as spill registers during one of the insns in which the
225 pseudo is live. */
226 static HARD_REG_SET *pseudo_forbidden_regs;
228 /* All hard regs that have been used as spill registers for any insn are
229 marked in this set. */
230 static HARD_REG_SET used_spill_regs;
232 /* Index of last register assigned as a spill register. We allocate in
233 a round-robin fashion. */
234 static int last_spill_reg;
236 /* Nonzero if indirect addressing is supported on the machine; this means
237 that spilling (REG n) does not require reloading it into a register in
238 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
239 value indicates the level of indirect addressing supported, e.g., two
240 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
241 a hard register. */
242 static char spill_indirect_levels;
244 /* Nonzero if indirect addressing is supported when the innermost MEM is
245 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
246 which these are valid is the same as spill_indirect_levels, above. */
247 char indirect_symref_ok;
249 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
250 char double_reg_address_ok;
252 /* Record the stack slot for each spilled hard register. */
253 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
255 /* Width allocated so far for that stack slot. */
256 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
258 /* Record which pseudos needed to be spilled. */
259 static regset_head spilled_pseudos;
261 /* Record which pseudos changed their allocation in finish_spills. */
262 static regset_head changed_allocation_pseudos;
264 /* Used for communication between order_regs_for_reload and count_pseudo.
265 Used to avoid counting one pseudo twice. */
266 static regset_head pseudos_counted;
268 /* First uid used by insns created by reload in this function.
269 Used in find_equiv_reg. */
270 int reload_first_uid;
272 /* Flag set by local-alloc or global-alloc if anything is live in
273 a call-clobbered reg across calls. */
274 int caller_save_needed;
276 /* Set to 1 while reload_as_needed is operating.
277 Required by some machines to handle any generated moves differently. */
278 int reload_in_progress = 0;
280 /* These arrays record the insn_code of insns that may be needed to
281 perform input and output reloads of special objects. They provide a
282 place to pass a scratch register. */
283 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
284 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
286 /* This obstack is used for allocation of rtl during register elimination.
287 The allocated storage can be freed once find_reloads has processed the
288 insn. */
289 static struct obstack reload_obstack;
291 /* Points to the beginning of the reload_obstack. All insn_chain structures
292 are allocated first. */
293 static char *reload_startobj;
295 /* The point after all insn_chain structures. Used to quickly deallocate
296 memory allocated in copy_reloads during calculate_needs_all_insns. */
297 static char *reload_firstobj;
299 /* This points before all local rtl generated by register elimination.
300 Used to quickly free all memory after processing one insn. */
301 static char *reload_insn_firstobj;
303 /* List of insn_chain instructions, one for every insn that reload needs to
304 examine. */
305 struct insn_chain *reload_insn_chain;
307 /* List of all insns needing reloads. */
308 static struct insn_chain *insns_need_reload;
310 /* This structure is used to record information about register eliminations.
311 Each array entry describes one possible way of eliminating a register
312 in favor of another. If there is more than one way of eliminating a
313 particular register, the most preferred should be specified first. */
315 struct elim_table
317 int from; /* Register number to be eliminated. */
318 int to; /* Register number used as replacement. */
319 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
320 int can_eliminate; /* Nonzero if this elimination can be done. */
321 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
322 insns made by reload. */
323 HOST_WIDE_INT offset; /* Current offset between the two regs. */
324 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
325 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
326 rtx from_rtx; /* REG rtx for the register to be eliminated.
327 We cannot simply compare the number since
328 we might then spuriously replace a hard
329 register corresponding to a pseudo
330 assigned to the reg to be eliminated. */
331 rtx to_rtx; /* REG rtx for the replacement. */
334 static struct elim_table *reg_eliminate = 0;
336 /* This is an intermediate structure to initialize the table. It has
337 exactly the members provided by ELIMINABLE_REGS. */
338 static const struct elim_table_1
340 const int from;
341 const int to;
342 } reg_eliminate_1[] =
344 /* If a set of eliminable registers was specified, define the table from it.
345 Otherwise, default to the normal case of the frame pointer being
346 replaced by the stack pointer. */
348 #ifdef ELIMINABLE_REGS
349 ELIMINABLE_REGS;
350 #else
351 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
352 #endif
354 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
356 /* Record the number of pending eliminations that have an offset not equal
357 to their initial offset. If nonzero, we use a new copy of each
358 replacement result in any insns encountered. */
359 int num_not_at_initial_offset;
361 /* Count the number of registers that we may be able to eliminate. */
362 static int num_eliminable;
363 /* And the number of registers that are equivalent to a constant that
364 can be eliminated to frame_pointer / arg_pointer + constant. */
365 static int num_eliminable_invariants;
367 /* For each label, we record the offset of each elimination. If we reach
368 a label by more than one path and an offset differs, we cannot do the
369 elimination. This information is indexed by the difference of the
370 number of the label and the first label number. We can't offset the
371 pointer itself as this can cause problems on machines with segmented
372 memory. The first table is an array of flags that records whether we
373 have yet encountered a label and the second table is an array of arrays,
374 one entry in the latter array for each elimination. */
376 static int first_label_num;
377 static char *offsets_known_at;
378 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
380 /* Number of labels in the current function. */
382 static int num_labels;
384 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
385 static void maybe_fix_stack_asms (void);
386 static void copy_reloads (struct insn_chain *);
387 static void calculate_needs_all_insns (int);
388 static int find_reg (struct insn_chain *, int);
389 static void find_reload_regs (struct insn_chain *);
390 static void select_reload_regs (void);
391 static void delete_caller_save_insns (void);
393 static void spill_failure (rtx, enum reg_class);
394 static void count_spilled_pseudo (int, int, int);
395 static void delete_dead_insn (rtx);
396 static void alter_reg (int, int, bool);
397 static void set_label_offsets (rtx, rtx, int);
398 static void check_eliminable_occurrences (rtx);
399 static void elimination_effects (rtx, enum machine_mode);
400 static int eliminate_regs_in_insn (rtx, int);
401 static void update_eliminable_offsets (void);
402 static void mark_not_eliminable (rtx, const_rtx, void *);
403 static void set_initial_elim_offsets (void);
404 static bool verify_initial_elim_offsets (void);
405 static void set_initial_label_offsets (void);
406 static void set_offsets_for_label (rtx);
407 static void init_elim_table (void);
408 static void update_eliminables (HARD_REG_SET *);
409 static void spill_hard_reg (unsigned int, int);
410 static int finish_spills (int);
411 static void scan_paradoxical_subregs (rtx);
412 static void count_pseudo (int);
413 static void order_regs_for_reload (struct insn_chain *);
414 static void reload_as_needed (int);
415 static void forget_old_reloads_1 (rtx, const_rtx, void *);
416 static void forget_marked_reloads (regset);
417 static int reload_reg_class_lower (const void *, const void *);
418 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
419 enum machine_mode);
420 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
421 enum machine_mode);
422 static int reload_reg_free_p (unsigned int, int, enum reload_type);
423 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
424 rtx, rtx, int, int);
425 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
426 rtx, rtx, int, int);
427 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
428 static int allocate_reload_reg (struct insn_chain *, int, int);
429 static int conflicts_with_override (rtx);
430 static void failed_reload (rtx, int);
431 static int set_reload_reg (int, int);
432 static void choose_reload_regs_init (struct insn_chain *, rtx *);
433 static void choose_reload_regs (struct insn_chain *);
434 static void merge_assigned_reloads (rtx);
435 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
436 rtx, int);
437 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
438 int);
439 static void do_input_reload (struct insn_chain *, struct reload *, int);
440 static void do_output_reload (struct insn_chain *, struct reload *, int);
441 static void emit_reload_insns (struct insn_chain *);
442 static void delete_output_reload (rtx, int, int, rtx);
443 static void delete_address_reloads (rtx, rtx);
444 static void delete_address_reloads_1 (rtx, rtx, rtx);
445 static rtx inc_for_reload (rtx, rtx, rtx, int);
446 #ifdef AUTO_INC_DEC
447 static void add_auto_inc_notes (rtx, rtx);
448 #endif
449 static void copy_eh_notes (rtx, rtx);
450 static void substitute (rtx *, const_rtx, rtx);
451 static bool gen_reload_chain_without_interm_reg_p (int, int);
452 static int reloads_conflict (int, int);
453 static rtx gen_reload (rtx, rtx, int, enum reload_type);
454 static rtx emit_insn_if_valid_for_reload (rtx);
456 /* Initialize the reload pass. This is called at the beginning of compilation
457 and may be called again if the target is reinitialized. */
459 void
460 init_reload (void)
462 int i;
464 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
465 Set spill_indirect_levels to the number of levels such addressing is
466 permitted, zero if it is not permitted at all. */
468 rtx tem
469 = gen_rtx_MEM (Pmode,
470 gen_rtx_PLUS (Pmode,
471 gen_rtx_REG (Pmode,
472 LAST_VIRTUAL_REGISTER + 1),
473 GEN_INT (4)));
474 spill_indirect_levels = 0;
476 while (memory_address_p (QImode, tem))
478 spill_indirect_levels++;
479 tem = gen_rtx_MEM (Pmode, tem);
482 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
484 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
485 indirect_symref_ok = memory_address_p (QImode, tem);
487 /* See if reg+reg is a valid (and offsettable) address. */
489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
491 tem = gen_rtx_PLUS (Pmode,
492 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
493 gen_rtx_REG (Pmode, i));
495 /* This way, we make sure that reg+reg is an offsettable address. */
496 tem = plus_constant (tem, 4);
498 if (memory_address_p (QImode, tem))
500 double_reg_address_ok = 1;
501 break;
505 /* Initialize obstack for our rtl allocation. */
506 gcc_obstack_init (&reload_obstack);
507 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
509 INIT_REG_SET (&spilled_pseudos);
510 INIT_REG_SET (&changed_allocation_pseudos);
511 INIT_REG_SET (&pseudos_counted);
514 /* List of insn chains that are currently unused. */
515 static struct insn_chain *unused_insn_chains = 0;
517 /* Allocate an empty insn_chain structure. */
518 struct insn_chain *
519 new_insn_chain (void)
521 struct insn_chain *c;
523 if (unused_insn_chains == 0)
525 c = XOBNEW (&reload_obstack, struct insn_chain);
526 INIT_REG_SET (&c->live_throughout);
527 INIT_REG_SET (&c->dead_or_set);
529 else
531 c = unused_insn_chains;
532 unused_insn_chains = c->next;
534 c->is_caller_save_insn = 0;
535 c->need_operand_change = 0;
536 c->need_reload = 0;
537 c->need_elim = 0;
538 return c;
541 /* Small utility function to set all regs in hard reg set TO which are
542 allocated to pseudos in regset FROM. */
544 void
545 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
547 unsigned int regno;
548 reg_set_iterator rsi;
550 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
552 int r = reg_renumber[regno];
554 if (r < 0)
556 /* reload_combine uses the information from DF_LIVE_IN,
557 which might still contain registers that have not
558 actually been allocated since they have an
559 equivalence. */
560 gcc_assert (ira_conflicts_p || reload_completed);
562 else
563 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
567 /* Replace all pseudos found in LOC with their corresponding
568 equivalences. */
570 static void
571 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
573 rtx x = *loc;
574 enum rtx_code code;
575 const char *fmt;
576 int i, j;
578 if (! x)
579 return;
581 code = GET_CODE (x);
582 if (code == REG)
584 unsigned int regno = REGNO (x);
586 if (regno < FIRST_PSEUDO_REGISTER)
587 return;
589 x = eliminate_regs (x, mem_mode, usage);
590 if (x != *loc)
592 *loc = x;
593 replace_pseudos_in (loc, mem_mode, usage);
594 return;
597 if (reg_equiv_constant[regno])
598 *loc = reg_equiv_constant[regno];
599 else if (reg_equiv_mem[regno])
600 *loc = reg_equiv_mem[regno];
601 else if (reg_equiv_address[regno])
602 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
603 else
605 gcc_assert (!REG_P (regno_reg_rtx[regno])
606 || REGNO (regno_reg_rtx[regno]) != regno);
607 *loc = regno_reg_rtx[regno];
610 return;
612 else if (code == MEM)
614 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
615 return;
618 /* Process each of our operands recursively. */
619 fmt = GET_RTX_FORMAT (code);
620 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
621 if (*fmt == 'e')
622 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
623 else if (*fmt == 'E')
624 for (j = 0; j < XVECLEN (x, i); j++)
625 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
628 /* Determine if the current function has an exception receiver block
629 that reaches the exit block via non-exceptional edges */
631 static bool
632 has_nonexceptional_receiver (void)
634 edge e;
635 edge_iterator ei;
636 basic_block *tos, *worklist, bb;
638 /* If we're not optimizing, then just err on the safe side. */
639 if (!optimize)
640 return true;
642 /* First determine which blocks can reach exit via normal paths. */
643 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
645 FOR_EACH_BB (bb)
646 bb->flags &= ~BB_REACHABLE;
648 /* Place the exit block on our worklist. */
649 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
650 *tos++ = EXIT_BLOCK_PTR;
652 /* Iterate: find everything reachable from what we've already seen. */
653 while (tos != worklist)
655 bb = *--tos;
657 FOR_EACH_EDGE (e, ei, bb->preds)
658 if (!(e->flags & EDGE_ABNORMAL))
660 basic_block src = e->src;
662 if (!(src->flags & BB_REACHABLE))
664 src->flags |= BB_REACHABLE;
665 *tos++ = src;
669 free (worklist);
671 /* Now see if there's a reachable block with an exceptional incoming
672 edge. */
673 FOR_EACH_BB (bb)
674 if (bb->flags & BB_REACHABLE)
675 FOR_EACH_EDGE (e, ei, bb->preds)
676 if (e->flags & EDGE_ABNORMAL)
677 return true;
679 /* No exceptional block reached exit unexceptionally. */
680 return false;
684 /* Global variables used by reload and its subroutines. */
686 /* Set during calculate_needs if an insn needs register elimination. */
687 static int something_needs_elimination;
688 /* Set during calculate_needs if an insn needs an operand changed. */
689 static int something_needs_operands_changed;
691 /* Nonzero means we couldn't get enough spill regs. */
692 static int failure;
694 /* Temporary array of pseudo-register number. */
695 static int *temp_pseudo_reg_arr;
697 /* Main entry point for the reload pass.
699 FIRST is the first insn of the function being compiled.
701 GLOBAL nonzero means we were called from global_alloc
702 and should attempt to reallocate any pseudoregs that we
703 displace from hard regs we will use for reloads.
704 If GLOBAL is zero, we do not have enough information to do that,
705 so any pseudo reg that is spilled must go to the stack.
707 Return value is nonzero if reload failed
708 and we must not do any more for this function. */
711 reload (rtx first, int global)
713 int i, n;
714 rtx insn;
715 struct elim_table *ep;
716 basic_block bb;
718 /* Make sure even insns with volatile mem refs are recognizable. */
719 init_recog ();
721 failure = 0;
723 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
725 /* Make sure that the last insn in the chain
726 is not something that needs reloading. */
727 emit_note (NOTE_INSN_DELETED);
729 /* Enable find_equiv_reg to distinguish insns made by reload. */
730 reload_first_uid = get_max_uid ();
732 #ifdef SECONDARY_MEMORY_NEEDED
733 /* Initialize the secondary memory table. */
734 clear_secondary_mem ();
735 #endif
737 /* We don't have a stack slot for any spill reg yet. */
738 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
739 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
741 /* Initialize the save area information for caller-save, in case some
742 are needed. */
743 init_save_areas ();
745 /* Compute which hard registers are now in use
746 as homes for pseudo registers.
747 This is done here rather than (eg) in global_alloc
748 because this point is reached even if not optimizing. */
749 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
750 mark_home_live (i);
752 /* A function that has a nonlocal label that can reach the exit
753 block via non-exceptional paths must save all call-saved
754 registers. */
755 if (cfun->has_nonlocal_label
756 && has_nonexceptional_receiver ())
757 crtl->saves_all_registers = 1;
759 if (crtl->saves_all_registers)
760 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
761 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
762 df_set_regs_ever_live (i, true);
764 /* Find all the pseudo registers that didn't get hard regs
765 but do have known equivalent constants or memory slots.
766 These include parameters (known equivalent to parameter slots)
767 and cse'd or loop-moved constant memory addresses.
769 Record constant equivalents in reg_equiv_constant
770 so they will be substituted by find_reloads.
771 Record memory equivalents in reg_mem_equiv so they can
772 be substituted eventually by altering the REG-rtx's. */
774 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
775 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
776 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
777 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
778 reg_equiv_address = XCNEWVEC (rtx, max_regno);
779 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
780 reg_old_renumber = XCNEWVEC (short, max_regno);
781 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
782 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
783 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
785 CLEAR_HARD_REG_SET (bad_spill_regs_global);
787 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
788 to. Also find all paradoxical subregs and find largest such for
789 each pseudo. */
791 num_eliminable_invariants = 0;
792 for (insn = first; insn; insn = NEXT_INSN (insn))
794 rtx set = single_set (insn);
796 /* We may introduce USEs that we want to remove at the end, so
797 we'll mark them with QImode. Make sure there are no
798 previously-marked insns left by say regmove. */
799 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
800 && GET_MODE (insn) != VOIDmode)
801 PUT_MODE (insn, VOIDmode);
803 if (INSN_P (insn))
804 scan_paradoxical_subregs (PATTERN (insn));
806 if (set != 0 && REG_P (SET_DEST (set)))
808 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
809 rtx x;
811 if (! note)
812 continue;
814 i = REGNO (SET_DEST (set));
815 x = XEXP (note, 0);
817 if (i <= LAST_VIRTUAL_REGISTER)
818 continue;
820 if (! function_invariant_p (x)
821 || ! flag_pic
822 /* A function invariant is often CONSTANT_P but may
823 include a register. We promise to only pass
824 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
825 || (CONSTANT_P (x)
826 && LEGITIMATE_PIC_OPERAND_P (x)))
828 /* It can happen that a REG_EQUIV note contains a MEM
829 that is not a legitimate memory operand. As later
830 stages of reload assume that all addresses found
831 in the reg_equiv_* arrays were originally legitimate,
832 we ignore such REG_EQUIV notes. */
833 if (memory_operand (x, VOIDmode))
835 /* Always unshare the equivalence, so we can
836 substitute into this insn without touching the
837 equivalence. */
838 reg_equiv_memory_loc[i] = copy_rtx (x);
840 else if (function_invariant_p (x))
842 if (GET_CODE (x) == PLUS)
844 /* This is PLUS of frame pointer and a constant,
845 and might be shared. Unshare it. */
846 reg_equiv_invariant[i] = copy_rtx (x);
847 num_eliminable_invariants++;
849 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
851 reg_equiv_invariant[i] = x;
852 num_eliminable_invariants++;
854 else if (LEGITIMATE_CONSTANT_P (x))
855 reg_equiv_constant[i] = x;
856 else
858 reg_equiv_memory_loc[i]
859 = force_const_mem (GET_MODE (SET_DEST (set)), x);
860 if (! reg_equiv_memory_loc[i])
861 reg_equiv_init[i] = NULL_RTX;
864 else
866 reg_equiv_init[i] = NULL_RTX;
867 continue;
870 else
871 reg_equiv_init[i] = NULL_RTX;
875 if (dump_file)
876 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
877 if (reg_equiv_init[i])
879 fprintf (dump_file, "init_insns for %u: ", i);
880 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
881 fprintf (dump_file, "\n");
884 init_elim_table ();
886 first_label_num = get_first_label_num ();
887 num_labels = max_label_num () - first_label_num;
889 /* Allocate the tables used to store offset information at labels. */
890 /* We used to use alloca here, but the size of what it would try to
891 allocate would occasionally cause it to exceed the stack limit and
892 cause a core dump. */
893 offsets_known_at = XNEWVEC (char, num_labels);
894 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
896 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
897 stack slots to the pseudos that lack hard regs or equivalents.
898 Do not touch virtual registers. */
900 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
901 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
902 temp_pseudo_reg_arr[n++] = i;
904 if (ira_conflicts_p)
905 /* Ask IRA to order pseudo-registers for better stack slot
906 sharing. */
907 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
909 for (i = 0; i < n; i++)
910 alter_reg (temp_pseudo_reg_arr[i], -1, false);
912 /* If we have some registers we think can be eliminated, scan all insns to
913 see if there is an insn that sets one of these registers to something
914 other than itself plus a constant. If so, the register cannot be
915 eliminated. Doing this scan here eliminates an extra pass through the
916 main reload loop in the most common case where register elimination
917 cannot be done. */
918 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
919 if (INSN_P (insn))
920 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
922 maybe_fix_stack_asms ();
924 insns_need_reload = 0;
925 something_needs_elimination = 0;
927 /* Initialize to -1, which means take the first spill register. */
928 last_spill_reg = -1;
930 /* Spill any hard regs that we know we can't eliminate. */
931 CLEAR_HARD_REG_SET (used_spill_regs);
932 /* There can be multiple ways to eliminate a register;
933 they should be listed adjacently.
934 Elimination for any register fails only if all possible ways fail. */
935 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
937 int from = ep->from;
938 int can_eliminate = 0;
941 can_eliminate |= ep->can_eliminate;
942 ep++;
944 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
945 if (! can_eliminate)
946 spill_hard_reg (from, 1);
949 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
950 if (frame_pointer_needed)
951 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
952 #endif
953 finish_spills (global);
955 /* From now on, we may need to generate moves differently. We may also
956 allow modifications of insns which cause them to not be recognized.
957 Any such modifications will be cleaned up during reload itself. */
958 reload_in_progress = 1;
960 /* This loop scans the entire function each go-round
961 and repeats until one repetition spills no additional hard regs. */
962 for (;;)
964 int something_changed;
965 int did_spill;
966 HOST_WIDE_INT starting_frame_size;
968 starting_frame_size = get_frame_size ();
970 set_initial_elim_offsets ();
971 set_initial_label_offsets ();
973 /* For each pseudo register that has an equivalent location defined,
974 try to eliminate any eliminable registers (such as the frame pointer)
975 assuming initial offsets for the replacement register, which
976 is the normal case.
978 If the resulting location is directly addressable, substitute
979 the MEM we just got directly for the old REG.
981 If it is not addressable but is a constant or the sum of a hard reg
982 and constant, it is probably not addressable because the constant is
983 out of range, in that case record the address; we will generate
984 hairy code to compute the address in a register each time it is
985 needed. Similarly if it is a hard register, but one that is not
986 valid as an address register.
988 If the location is not addressable, but does not have one of the
989 above forms, assign a stack slot. We have to do this to avoid the
990 potential of producing lots of reloads if, e.g., a location involves
991 a pseudo that didn't get a hard register and has an equivalent memory
992 location that also involves a pseudo that didn't get a hard register.
994 Perhaps at some point we will improve reload_when_needed handling
995 so this problem goes away. But that's very hairy. */
997 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
998 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
1000 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
1002 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
1003 XEXP (x, 0)))
1004 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
1005 else if (CONSTANT_P (XEXP (x, 0))
1006 || (REG_P (XEXP (x, 0))
1007 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
1008 || (GET_CODE (XEXP (x, 0)) == PLUS
1009 && REG_P (XEXP (XEXP (x, 0), 0))
1010 && (REGNO (XEXP (XEXP (x, 0), 0))
1011 < FIRST_PSEUDO_REGISTER)
1012 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
1013 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
1014 else
1016 /* Make a new stack slot. Then indicate that something
1017 changed so we go back and recompute offsets for
1018 eliminable registers because the allocation of memory
1019 below might change some offset. reg_equiv_{mem,address}
1020 will be set up for this pseudo on the next pass around
1021 the loop. */
1022 reg_equiv_memory_loc[i] = 0;
1023 reg_equiv_init[i] = 0;
1024 alter_reg (i, -1, true);
1028 if (caller_save_needed)
1029 setup_save_areas ();
1031 /* If we allocated another stack slot, redo elimination bookkeeping. */
1032 if (starting_frame_size != get_frame_size ())
1033 continue;
1034 if (starting_frame_size && crtl->stack_alignment_needed)
1036 /* If we have a stack frame, we must align it now. The
1037 stack size may be a part of the offset computation for
1038 register elimination. So if this changes the stack size,
1039 then repeat the elimination bookkeeping. We don't
1040 realign when there is no stack, as that will cause a
1041 stack frame when none is needed should
1042 STARTING_FRAME_OFFSET not be already aligned to
1043 STACK_BOUNDARY. */
1044 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1045 if (starting_frame_size != get_frame_size ())
1046 continue;
1049 if (caller_save_needed)
1051 save_call_clobbered_regs ();
1052 /* That might have allocated new insn_chain structures. */
1053 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1056 calculate_needs_all_insns (global);
1058 if (! ira_conflicts_p)
1059 /* Don't do it for IRA. We need this info because we don't
1060 change live_throughout and dead_or_set for chains when IRA
1061 is used. */
1062 CLEAR_REG_SET (&spilled_pseudos);
1064 did_spill = 0;
1066 something_changed = 0;
1068 /* If we allocated any new memory locations, make another pass
1069 since it might have changed elimination offsets. */
1070 if (starting_frame_size != get_frame_size ())
1071 something_changed = 1;
1073 /* Even if the frame size remained the same, we might still have
1074 changed elimination offsets, e.g. if find_reloads called
1075 force_const_mem requiring the back end to allocate a constant
1076 pool base register that needs to be saved on the stack. */
1077 else if (!verify_initial_elim_offsets ())
1078 something_changed = 1;
1081 HARD_REG_SET to_spill;
1082 CLEAR_HARD_REG_SET (to_spill);
1083 update_eliminables (&to_spill);
1084 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
1086 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1087 if (TEST_HARD_REG_BIT (to_spill, i))
1089 spill_hard_reg (i, 1);
1090 did_spill = 1;
1092 /* Regardless of the state of spills, if we previously had
1093 a register that we thought we could eliminate, but now can
1094 not eliminate, we must run another pass.
1096 Consider pseudos which have an entry in reg_equiv_* which
1097 reference an eliminable register. We must make another pass
1098 to update reg_equiv_* so that we do not substitute in the
1099 old value from when we thought the elimination could be
1100 performed. */
1101 something_changed = 1;
1105 select_reload_regs ();
1106 if (failure)
1107 goto failed;
1109 if (insns_need_reload != 0 || did_spill)
1110 something_changed |= finish_spills (global);
1112 if (! something_changed)
1113 break;
1115 if (caller_save_needed)
1116 delete_caller_save_insns ();
1118 obstack_free (&reload_obstack, reload_firstobj);
1121 /* If global-alloc was run, notify it of any register eliminations we have
1122 done. */
1123 if (global)
1124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1125 if (ep->can_eliminate)
1126 mark_elimination (ep->from, ep->to);
1128 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1129 If that insn didn't set the register (i.e., it copied the register to
1130 memory), just delete that insn instead of the equivalencing insn plus
1131 anything now dead. If we call delete_dead_insn on that insn, we may
1132 delete the insn that actually sets the register if the register dies
1133 there and that is incorrect. */
1135 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1137 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1139 rtx list;
1140 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1142 rtx equiv_insn = XEXP (list, 0);
1144 /* If we already deleted the insn or if it may trap, we can't
1145 delete it. The latter case shouldn't happen, but can
1146 if an insn has a variable address, gets a REG_EH_REGION
1147 note added to it, and then gets converted into a load
1148 from a constant address. */
1149 if (NOTE_P (equiv_insn)
1150 || can_throw_internal (equiv_insn))
1152 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1153 delete_dead_insn (equiv_insn);
1154 else
1155 SET_INSN_DELETED (equiv_insn);
1160 /* Use the reload registers where necessary
1161 by generating move instructions to move the must-be-register
1162 values into or out of the reload registers. */
1164 if (insns_need_reload != 0 || something_needs_elimination
1165 || something_needs_operands_changed)
1167 HOST_WIDE_INT old_frame_size = get_frame_size ();
1169 reload_as_needed (global);
1171 gcc_assert (old_frame_size == get_frame_size ());
1173 gcc_assert (verify_initial_elim_offsets ());
1176 /* If we were able to eliminate the frame pointer, show that it is no
1177 longer live at the start of any basic block. If it ls live by
1178 virtue of being in a pseudo, that pseudo will be marked live
1179 and hence the frame pointer will be known to be live via that
1180 pseudo. */
1182 if (! frame_pointer_needed)
1183 FOR_EACH_BB (bb)
1184 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1186 /* Come here (with failure set nonzero) if we can't get enough spill
1187 regs. */
1188 failed:
1190 CLEAR_REG_SET (&changed_allocation_pseudos);
1191 CLEAR_REG_SET (&spilled_pseudos);
1192 reload_in_progress = 0;
1194 /* Now eliminate all pseudo regs by modifying them into
1195 their equivalent memory references.
1196 The REG-rtx's for the pseudos are modified in place,
1197 so all insns that used to refer to them now refer to memory.
1199 For a reg that has a reg_equiv_address, all those insns
1200 were changed by reloading so that no insns refer to it any longer;
1201 but the DECL_RTL of a variable decl may refer to it,
1202 and if so this causes the debugging info to mention the variable. */
1204 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1206 rtx addr = 0;
1208 if (reg_equiv_mem[i])
1209 addr = XEXP (reg_equiv_mem[i], 0);
1211 if (reg_equiv_address[i])
1212 addr = reg_equiv_address[i];
1214 if (addr)
1216 if (reg_renumber[i] < 0)
1218 rtx reg = regno_reg_rtx[i];
1220 REG_USERVAR_P (reg) = 0;
1221 PUT_CODE (reg, MEM);
1222 XEXP (reg, 0) = addr;
1223 if (reg_equiv_memory_loc[i])
1224 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1225 else
1227 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1228 MEM_ATTRS (reg) = 0;
1230 MEM_NOTRAP_P (reg) = 1;
1232 else if (reg_equiv_mem[i])
1233 XEXP (reg_equiv_mem[i], 0) = addr;
1237 /* We must set reload_completed now since the cleanup_subreg_operands call
1238 below will re-recognize each insn and reload may have generated insns
1239 which are only valid during and after reload. */
1240 reload_completed = 1;
1242 /* Make a pass over all the insns and delete all USEs which we inserted
1243 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1244 notes. Delete all CLOBBER insns, except those that refer to the return
1245 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1246 from misarranging variable-array code, and simplify (subreg (reg))
1247 operands. Strip and regenerate REG_INC notes that may have been moved
1248 around. */
1250 for (insn = first; insn; insn = NEXT_INSN (insn))
1251 if (INSN_P (insn))
1253 rtx *pnote;
1255 if (CALL_P (insn))
1256 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1257 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1259 if ((GET_CODE (PATTERN (insn)) == USE
1260 /* We mark with QImode USEs introduced by reload itself. */
1261 && (GET_MODE (insn) == QImode
1262 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1263 || (GET_CODE (PATTERN (insn)) == CLOBBER
1264 && (!MEM_P (XEXP (PATTERN (insn), 0))
1265 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1266 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1267 && XEXP (XEXP (PATTERN (insn), 0), 0)
1268 != stack_pointer_rtx))
1269 && (!REG_P (XEXP (PATTERN (insn), 0))
1270 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1272 delete_insn (insn);
1273 continue;
1276 /* Some CLOBBERs may survive until here and still reference unassigned
1277 pseudos with const equivalent, which may in turn cause ICE in later
1278 passes if the reference remains in place. */
1279 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1280 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1281 VOIDmode, PATTERN (insn));
1283 /* Discard obvious no-ops, even without -O. This optimization
1284 is fast and doesn't interfere with debugging. */
1285 if (NONJUMP_INSN_P (insn)
1286 && GET_CODE (PATTERN (insn)) == SET
1287 && REG_P (SET_SRC (PATTERN (insn)))
1288 && REG_P (SET_DEST (PATTERN (insn)))
1289 && (REGNO (SET_SRC (PATTERN (insn)))
1290 == REGNO (SET_DEST (PATTERN (insn)))))
1292 delete_insn (insn);
1293 continue;
1296 pnote = &REG_NOTES (insn);
1297 while (*pnote != 0)
1299 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1300 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1301 || REG_NOTE_KIND (*pnote) == REG_INC)
1302 *pnote = XEXP (*pnote, 1);
1303 else
1304 pnote = &XEXP (*pnote, 1);
1307 #ifdef AUTO_INC_DEC
1308 add_auto_inc_notes (insn, PATTERN (insn));
1309 #endif
1311 /* Simplify (subreg (reg)) if it appears as an operand. */
1312 cleanup_subreg_operands (insn);
1314 /* Clean up invalid ASMs so that they don't confuse later passes.
1315 See PR 21299. */
1316 if (asm_noperands (PATTERN (insn)) >= 0)
1318 extract_insn (insn);
1319 if (!constrain_operands (1))
1321 error_for_asm (insn,
1322 "%<asm%> operand has impossible constraints");
1323 delete_insn (insn);
1324 continue;
1329 /* If we are doing generic stack checking, give a warning if this
1330 function's frame size is larger than we expect. */
1331 if (flag_stack_check == GENERIC_STACK_CHECK)
1333 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1334 static int verbose_warned = 0;
1336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1337 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1338 size += UNITS_PER_WORD;
1340 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1342 warning (0, "frame size too large for reliable stack checking");
1343 if (! verbose_warned)
1345 warning (0, "try reducing the number of local variables");
1346 verbose_warned = 1;
1351 /* Indicate that we no longer have known memory locations or constants. */
1352 if (reg_equiv_constant)
1353 free (reg_equiv_constant);
1354 if (reg_equiv_invariant)
1355 free (reg_equiv_invariant);
1356 reg_equiv_constant = 0;
1357 reg_equiv_invariant = 0;
1358 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1359 reg_equiv_memory_loc = 0;
1361 free (temp_pseudo_reg_arr);
1363 if (offsets_known_at)
1364 free (offsets_known_at);
1365 if (offsets_at)
1366 free (offsets_at);
1368 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1369 if (reg_equiv_alt_mem_list[i])
1370 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1371 free (reg_equiv_alt_mem_list);
1373 free (reg_equiv_mem);
1374 reg_equiv_init = 0;
1375 free (reg_equiv_address);
1376 free (reg_max_ref_width);
1377 free (reg_old_renumber);
1378 free (pseudo_previous_regs);
1379 free (pseudo_forbidden_regs);
1381 CLEAR_HARD_REG_SET (used_spill_regs);
1382 for (i = 0; i < n_spills; i++)
1383 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1385 /* Free all the insn_chain structures at once. */
1386 obstack_free (&reload_obstack, reload_startobj);
1387 unused_insn_chains = 0;
1388 fixup_abnormal_edges ();
1390 /* Replacing pseudos with their memory equivalents might have
1391 created shared rtx. Subsequent passes would get confused
1392 by this, so unshare everything here. */
1393 unshare_all_rtl_again (first);
1395 #ifdef STACK_BOUNDARY
1396 /* init_emit has set the alignment of the hard frame pointer
1397 to STACK_BOUNDARY. It is very likely no longer valid if
1398 the hard frame pointer was used for register allocation. */
1399 if (!frame_pointer_needed)
1400 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1401 #endif
1403 return failure;
1406 /* Yet another special case. Unfortunately, reg-stack forces people to
1407 write incorrect clobbers in asm statements. These clobbers must not
1408 cause the register to appear in bad_spill_regs, otherwise we'll call
1409 fatal_insn later. We clear the corresponding regnos in the live
1410 register sets to avoid this.
1411 The whole thing is rather sick, I'm afraid. */
1413 static void
1414 maybe_fix_stack_asms (void)
1416 #ifdef STACK_REGS
1417 const char *constraints[MAX_RECOG_OPERANDS];
1418 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1419 struct insn_chain *chain;
1421 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1423 int i, noperands;
1424 HARD_REG_SET clobbered, allowed;
1425 rtx pat;
1427 if (! INSN_P (chain->insn)
1428 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1429 continue;
1430 pat = PATTERN (chain->insn);
1431 if (GET_CODE (pat) != PARALLEL)
1432 continue;
1434 CLEAR_HARD_REG_SET (clobbered);
1435 CLEAR_HARD_REG_SET (allowed);
1437 /* First, make a mask of all stack regs that are clobbered. */
1438 for (i = 0; i < XVECLEN (pat, 0); i++)
1440 rtx t = XVECEXP (pat, 0, i);
1441 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1442 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1445 /* Get the operand values and constraints out of the insn. */
1446 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1447 constraints, operand_mode, NULL);
1449 /* For every operand, see what registers are allowed. */
1450 for (i = 0; i < noperands; i++)
1452 const char *p = constraints[i];
1453 /* For every alternative, we compute the class of registers allowed
1454 for reloading in CLS, and merge its contents into the reg set
1455 ALLOWED. */
1456 int cls = (int) NO_REGS;
1458 for (;;)
1460 char c = *p;
1462 if (c == '\0' || c == ',' || c == '#')
1464 /* End of one alternative - mark the regs in the current
1465 class, and reset the class. */
1466 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1467 cls = NO_REGS;
1468 p++;
1469 if (c == '#')
1470 do {
1471 c = *p++;
1472 } while (c != '\0' && c != ',');
1473 if (c == '\0')
1474 break;
1475 continue;
1478 switch (c)
1480 case '=': case '+': case '*': case '%': case '?': case '!':
1481 case '0': case '1': case '2': case '3': case '4': case '<':
1482 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1483 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1484 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1485 case TARGET_MEM_CONSTRAINT:
1486 break;
1488 case 'p':
1489 cls = (int) reg_class_subunion[cls]
1490 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1491 break;
1493 case 'g':
1494 case 'r':
1495 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1496 break;
1498 default:
1499 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1500 cls = (int) reg_class_subunion[cls]
1501 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1502 else
1503 cls = (int) reg_class_subunion[cls]
1504 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1506 p += CONSTRAINT_LEN (c, p);
1509 /* Those of the registers which are clobbered, but allowed by the
1510 constraints, must be usable as reload registers. So clear them
1511 out of the life information. */
1512 AND_HARD_REG_SET (allowed, clobbered);
1513 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1514 if (TEST_HARD_REG_BIT (allowed, i))
1516 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1517 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1521 #endif
1524 /* Copy the global variables n_reloads and rld into the corresponding elts
1525 of CHAIN. */
1526 static void
1527 copy_reloads (struct insn_chain *chain)
1529 chain->n_reloads = n_reloads;
1530 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1531 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1532 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1535 /* Walk the chain of insns, and determine for each whether it needs reloads
1536 and/or eliminations. Build the corresponding insns_need_reload list, and
1537 set something_needs_elimination as appropriate. */
1538 static void
1539 calculate_needs_all_insns (int global)
1541 struct insn_chain **pprev_reload = &insns_need_reload;
1542 struct insn_chain *chain, *next = 0;
1544 something_needs_elimination = 0;
1546 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1547 for (chain = reload_insn_chain; chain != 0; chain = next)
1549 rtx insn = chain->insn;
1551 next = chain->next;
1553 /* Clear out the shortcuts. */
1554 chain->n_reloads = 0;
1555 chain->need_elim = 0;
1556 chain->need_reload = 0;
1557 chain->need_operand_change = 0;
1559 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1560 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1561 what effects this has on the known offsets at labels. */
1563 if (LABEL_P (insn) || JUMP_P (insn)
1564 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1565 set_label_offsets (insn, insn, 0);
1567 if (INSN_P (insn))
1569 rtx old_body = PATTERN (insn);
1570 int old_code = INSN_CODE (insn);
1571 rtx old_notes = REG_NOTES (insn);
1572 int did_elimination = 0;
1573 int operands_changed = 0;
1574 rtx set = single_set (insn);
1576 /* Skip insns that only set an equivalence. */
1577 if (set && REG_P (SET_DEST (set))
1578 && reg_renumber[REGNO (SET_DEST (set))] < 0
1579 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1580 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1581 && reg_equiv_init[REGNO (SET_DEST (set))])
1582 continue;
1584 /* If needed, eliminate any eliminable registers. */
1585 if (num_eliminable || num_eliminable_invariants)
1586 did_elimination = eliminate_regs_in_insn (insn, 0);
1588 /* Analyze the instruction. */
1589 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1590 global, spill_reg_order);
1592 /* If a no-op set needs more than one reload, this is likely
1593 to be something that needs input address reloads. We
1594 can't get rid of this cleanly later, and it is of no use
1595 anyway, so discard it now.
1596 We only do this when expensive_optimizations is enabled,
1597 since this complements reload inheritance / output
1598 reload deletion, and it can make debugging harder. */
1599 if (flag_expensive_optimizations && n_reloads > 1)
1601 rtx set = single_set (insn);
1602 if (set
1604 ((SET_SRC (set) == SET_DEST (set)
1605 && REG_P (SET_SRC (set))
1606 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1607 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1608 && reg_renumber[REGNO (SET_SRC (set))] < 0
1609 && reg_renumber[REGNO (SET_DEST (set))] < 0
1610 && reg_equiv_memory_loc[REGNO (SET_SRC (set))] != NULL
1611 && reg_equiv_memory_loc[REGNO (SET_DEST (set))] != NULL
1612 && rtx_equal_p (reg_equiv_memory_loc
1613 [REGNO (SET_SRC (set))],
1614 reg_equiv_memory_loc
1615 [REGNO (SET_DEST (set))]))))
1617 if (ira_conflicts_p)
1618 /* Inform IRA about the insn deletion. */
1619 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1620 REGNO (SET_SRC (set)));
1621 delete_insn (insn);
1622 /* Delete it from the reload chain. */
1623 if (chain->prev)
1624 chain->prev->next = next;
1625 else
1626 reload_insn_chain = next;
1627 if (next)
1628 next->prev = chain->prev;
1629 chain->next = unused_insn_chains;
1630 unused_insn_chains = chain;
1631 continue;
1634 if (num_eliminable)
1635 update_eliminable_offsets ();
1637 /* Remember for later shortcuts which insns had any reloads or
1638 register eliminations. */
1639 chain->need_elim = did_elimination;
1640 chain->need_reload = n_reloads > 0;
1641 chain->need_operand_change = operands_changed;
1643 /* Discard any register replacements done. */
1644 if (did_elimination)
1646 obstack_free (&reload_obstack, reload_insn_firstobj);
1647 PATTERN (insn) = old_body;
1648 INSN_CODE (insn) = old_code;
1649 REG_NOTES (insn) = old_notes;
1650 something_needs_elimination = 1;
1653 something_needs_operands_changed |= operands_changed;
1655 if (n_reloads != 0)
1657 copy_reloads (chain);
1658 *pprev_reload = chain;
1659 pprev_reload = &chain->next_need_reload;
1663 *pprev_reload = 0;
1666 /* Comparison function for qsort to decide which of two reloads
1667 should be handled first. *P1 and *P2 are the reload numbers. */
1669 static int
1670 reload_reg_class_lower (const void *r1p, const void *r2p)
1672 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1673 int t;
1675 /* Consider required reloads before optional ones. */
1676 t = rld[r1].optional - rld[r2].optional;
1677 if (t != 0)
1678 return t;
1680 /* Count all solitary classes before non-solitary ones. */
1681 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1682 - (reg_class_size[(int) rld[r1].rclass] == 1));
1683 if (t != 0)
1684 return t;
1686 /* Aside from solitaires, consider all multi-reg groups first. */
1687 t = rld[r2].nregs - rld[r1].nregs;
1688 if (t != 0)
1689 return t;
1691 /* Consider reloads in order of increasing reg-class number. */
1692 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1693 if (t != 0)
1694 return t;
1696 /* If reloads are equally urgent, sort by reload number,
1697 so that the results of qsort leave nothing to chance. */
1698 return r1 - r2;
1701 /* The cost of spilling each hard reg. */
1702 static int spill_cost[FIRST_PSEUDO_REGISTER];
1704 /* When spilling multiple hard registers, we use SPILL_COST for the first
1705 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1706 only the first hard reg for a multi-reg pseudo. */
1707 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1709 /* Map of hard regno to pseudo regno currently occupying the hard
1710 reg. */
1711 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1713 /* Update the spill cost arrays, considering that pseudo REG is live. */
1715 static void
1716 count_pseudo (int reg)
1718 int freq = REG_FREQ (reg);
1719 int r = reg_renumber[reg];
1720 int nregs;
1722 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1723 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1724 /* Ignore spilled pseudo-registers which can be here only if IRA
1725 is used. */
1726 || (ira_conflicts_p && r < 0))
1727 return;
1729 SET_REGNO_REG_SET (&pseudos_counted, reg);
1731 gcc_assert (r >= 0);
1733 spill_add_cost[r] += freq;
1734 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1735 while (nregs-- > 0)
1737 hard_regno_to_pseudo_regno[r + nregs] = reg;
1738 spill_cost[r + nregs] += freq;
1742 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1743 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1745 static void
1746 order_regs_for_reload (struct insn_chain *chain)
1748 unsigned i;
1749 HARD_REG_SET used_by_pseudos;
1750 HARD_REG_SET used_by_pseudos2;
1751 reg_set_iterator rsi;
1753 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1755 memset (spill_cost, 0, sizeof spill_cost);
1756 memset (spill_add_cost, 0, sizeof spill_add_cost);
1757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1758 hard_regno_to_pseudo_regno[i] = -1;
1760 /* Count number of uses of each hard reg by pseudo regs allocated to it
1761 and then order them by decreasing use. First exclude hard registers
1762 that are live in or across this insn. */
1764 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1765 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1766 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1767 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1769 /* Now find out which pseudos are allocated to it, and update
1770 hard_reg_n_uses. */
1771 CLEAR_REG_SET (&pseudos_counted);
1773 EXECUTE_IF_SET_IN_REG_SET
1774 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1776 count_pseudo (i);
1778 EXECUTE_IF_SET_IN_REG_SET
1779 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1781 count_pseudo (i);
1783 CLEAR_REG_SET (&pseudos_counted);
1786 /* Vector of reload-numbers showing the order in which the reloads should
1787 be processed. */
1788 static short reload_order[MAX_RELOADS];
1790 /* This is used to keep track of the spill regs used in one insn. */
1791 static HARD_REG_SET used_spill_regs_local;
1793 /* We decided to spill hard register SPILLED, which has a size of
1794 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1795 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1796 update SPILL_COST/SPILL_ADD_COST. */
1798 static void
1799 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1801 int freq = REG_FREQ (reg);
1802 int r = reg_renumber[reg];
1803 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1805 /* Ignore spilled pseudo-registers which can be here only if IRA is
1806 used. */
1807 if ((ira_conflicts_p && r < 0)
1808 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1809 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1810 return;
1812 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1814 spill_add_cost[r] -= freq;
1815 while (nregs-- > 0)
1817 hard_regno_to_pseudo_regno[r + nregs] = -1;
1818 spill_cost[r + nregs] -= freq;
1822 /* Find reload register to use for reload number ORDER. */
1824 static int
1825 find_reg (struct insn_chain *chain, int order)
1827 int rnum = reload_order[order];
1828 struct reload *rl = rld + rnum;
1829 int best_cost = INT_MAX;
1830 int best_reg = -1;
1831 unsigned int i, j, n;
1832 int k;
1833 HARD_REG_SET not_usable;
1834 HARD_REG_SET used_by_other_reload;
1835 reg_set_iterator rsi;
1836 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1837 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1839 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1840 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1841 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1843 CLEAR_HARD_REG_SET (used_by_other_reload);
1844 for (k = 0; k < order; k++)
1846 int other = reload_order[k];
1848 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1849 for (j = 0; j < rld[other].nregs; j++)
1850 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1853 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1855 #ifdef REG_ALLOC_ORDER
1856 unsigned int regno = reg_alloc_order[i];
1857 #else
1858 unsigned int regno = i;
1859 #endif
1861 if (! TEST_HARD_REG_BIT (not_usable, regno)
1862 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1863 && HARD_REGNO_MODE_OK (regno, rl->mode))
1865 int this_cost = spill_cost[regno];
1866 int ok = 1;
1867 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1869 for (j = 1; j < this_nregs; j++)
1871 this_cost += spill_add_cost[regno + j];
1872 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1873 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1874 ok = 0;
1876 if (! ok)
1877 continue;
1879 if (ira_conflicts_p)
1881 /* Ask IRA to find a better pseudo-register for
1882 spilling. */
1883 for (n = j = 0; j < this_nregs; j++)
1885 int r = hard_regno_to_pseudo_regno[regno + j];
1887 if (r < 0)
1888 continue;
1889 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1890 regno_pseudo_regs[n++] = r;
1892 regno_pseudo_regs[n++] = -1;
1893 if (best_reg < 0
1894 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1895 best_regno_pseudo_regs,
1896 rl->in, rl->out,
1897 chain->insn))
1899 best_reg = regno;
1900 for (j = 0;; j++)
1902 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1903 if (regno_pseudo_regs[j] < 0)
1904 break;
1907 continue;
1910 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1911 this_cost--;
1912 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1913 this_cost--;
1914 if (this_cost < best_cost
1915 /* Among registers with equal cost, prefer caller-saved ones, or
1916 use REG_ALLOC_ORDER if it is defined. */
1917 || (this_cost == best_cost
1918 #ifdef REG_ALLOC_ORDER
1919 && (inv_reg_alloc_order[regno]
1920 < inv_reg_alloc_order[best_reg])
1921 #else
1922 && call_used_regs[regno]
1923 && ! call_used_regs[best_reg]
1924 #endif
1927 best_reg = regno;
1928 best_cost = this_cost;
1932 if (best_reg == -1)
1933 return 0;
1935 if (dump_file)
1936 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1938 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1939 rl->regno = best_reg;
1941 EXECUTE_IF_SET_IN_REG_SET
1942 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1944 count_spilled_pseudo (best_reg, rl->nregs, j);
1947 EXECUTE_IF_SET_IN_REG_SET
1948 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1950 count_spilled_pseudo (best_reg, rl->nregs, j);
1953 for (i = 0; i < rl->nregs; i++)
1955 gcc_assert (spill_cost[best_reg + i] == 0);
1956 gcc_assert (spill_add_cost[best_reg + i] == 0);
1957 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1958 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1960 return 1;
1963 /* Find more reload regs to satisfy the remaining need of an insn, which
1964 is given by CHAIN.
1965 Do it by ascending class number, since otherwise a reg
1966 might be spilled for a big class and might fail to count
1967 for a smaller class even though it belongs to that class. */
1969 static void
1970 find_reload_regs (struct insn_chain *chain)
1972 int i;
1974 /* In order to be certain of getting the registers we need,
1975 we must sort the reloads into order of increasing register class.
1976 Then our grabbing of reload registers will parallel the process
1977 that provided the reload registers. */
1978 for (i = 0; i < chain->n_reloads; i++)
1980 /* Show whether this reload already has a hard reg. */
1981 if (chain->rld[i].reg_rtx)
1983 int regno = REGNO (chain->rld[i].reg_rtx);
1984 chain->rld[i].regno = regno;
1985 chain->rld[i].nregs
1986 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1988 else
1989 chain->rld[i].regno = -1;
1990 reload_order[i] = i;
1993 n_reloads = chain->n_reloads;
1994 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1996 CLEAR_HARD_REG_SET (used_spill_regs_local);
1998 if (dump_file)
1999 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2001 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2003 /* Compute the order of preference for hard registers to spill. */
2005 order_regs_for_reload (chain);
2007 for (i = 0; i < n_reloads; i++)
2009 int r = reload_order[i];
2011 /* Ignore reloads that got marked inoperative. */
2012 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2013 && ! rld[r].optional
2014 && rld[r].regno == -1)
2015 if (! find_reg (chain, i))
2017 if (dump_file)
2018 fprintf (dump_file, "reload failure for reload %d\n", r);
2019 spill_failure (chain->insn, rld[r].rclass);
2020 failure = 1;
2021 return;
2025 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2026 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2028 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2031 static void
2032 select_reload_regs (void)
2034 struct insn_chain *chain;
2036 /* Try to satisfy the needs for each insn. */
2037 for (chain = insns_need_reload; chain != 0;
2038 chain = chain->next_need_reload)
2039 find_reload_regs (chain);
2042 /* Delete all insns that were inserted by emit_caller_save_insns during
2043 this iteration. */
2044 static void
2045 delete_caller_save_insns (void)
2047 struct insn_chain *c = reload_insn_chain;
2049 while (c != 0)
2051 while (c != 0 && c->is_caller_save_insn)
2053 struct insn_chain *next = c->next;
2054 rtx insn = c->insn;
2056 if (c == reload_insn_chain)
2057 reload_insn_chain = next;
2058 delete_insn (insn);
2060 if (next)
2061 next->prev = c->prev;
2062 if (c->prev)
2063 c->prev->next = next;
2064 c->next = unused_insn_chains;
2065 unused_insn_chains = c;
2066 c = next;
2068 if (c != 0)
2069 c = c->next;
2073 /* Handle the failure to find a register to spill.
2074 INSN should be one of the insns which needed this particular spill reg. */
2076 static void
2077 spill_failure (rtx insn, enum reg_class rclass)
2079 if (asm_noperands (PATTERN (insn)) >= 0)
2080 error_for_asm (insn, "can't find a register in class %qs while "
2081 "reloading %<asm%>",
2082 reg_class_names[rclass]);
2083 else
2085 error ("unable to find a register to spill in class %qs",
2086 reg_class_names[rclass]);
2088 if (dump_file)
2090 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2091 debug_reload_to_stream (dump_file);
2093 fatal_insn ("this is the insn:", insn);
2097 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2098 data that is dead in INSN. */
2100 static void
2101 delete_dead_insn (rtx insn)
2103 rtx prev = prev_real_insn (insn);
2104 rtx prev_dest;
2106 /* If the previous insn sets a register that dies in our insn, delete it
2107 too. */
2108 if (prev && GET_CODE (PATTERN (prev)) == SET
2109 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2110 && reg_mentioned_p (prev_dest, PATTERN (insn))
2111 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2112 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2113 delete_dead_insn (prev);
2115 SET_INSN_DELETED (insn);
2118 /* Modify the home of pseudo-reg I.
2119 The new home is present in reg_renumber[I].
2121 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2122 or it may be -1, meaning there is none or it is not relevant.
2123 This is used so that all pseudos spilled from a given hard reg
2124 can share one stack slot. */
2126 static void
2127 alter_reg (int i, int from_reg, bool dont_share_p)
2129 /* When outputting an inline function, this can happen
2130 for a reg that isn't actually used. */
2131 if (regno_reg_rtx[i] == 0)
2132 return;
2134 /* If the reg got changed to a MEM at rtl-generation time,
2135 ignore it. */
2136 if (!REG_P (regno_reg_rtx[i]))
2137 return;
2139 /* Modify the reg-rtx to contain the new hard reg
2140 number or else to contain its pseudo reg number. */
2141 SET_REGNO (regno_reg_rtx[i],
2142 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2144 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2145 allocate a stack slot for it. */
2147 if (reg_renumber[i] < 0
2148 && REG_N_REFS (i) > 0
2149 && reg_equiv_constant[i] == 0
2150 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
2151 && reg_equiv_memory_loc[i] == 0)
2153 rtx x = NULL_RTX;
2154 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2155 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2156 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2157 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2158 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2159 int adjust = 0;
2161 if (ira_conflicts_p)
2163 /* Mark the spill for IRA. */
2164 SET_REGNO_REG_SET (&spilled_pseudos, i);
2165 if (!dont_share_p)
2166 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2169 if (x)
2172 /* Each pseudo reg has an inherent size which comes from its own mode,
2173 and a total size which provides room for paradoxical subregs
2174 which refer to the pseudo reg in wider modes.
2176 We can use a slot already allocated if it provides both
2177 enough inherent space and enough total space.
2178 Otherwise, we allocate a new slot, making sure that it has no less
2179 inherent space, and no less total space, then the previous slot. */
2180 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2182 rtx stack_slot;
2184 /* No known place to spill from => no slot to reuse. */
2185 x = assign_stack_local (mode, total_size,
2186 min_align > inherent_align
2187 || total_size > inherent_size ? -1 : 0);
2189 stack_slot = x;
2191 /* Cancel the big-endian correction done in assign_stack_local.
2192 Get the address of the beginning of the slot. This is so we
2193 can do a big-endian correction unconditionally below. */
2194 if (BYTES_BIG_ENDIAN)
2196 adjust = inherent_size - total_size;
2197 if (adjust)
2198 stack_slot
2199 = adjust_address_nv (x, mode_for_size (total_size
2200 * BITS_PER_UNIT,
2201 MODE_INT, 1),
2202 adjust);
2205 if (! dont_share_p && ira_conflicts_p)
2206 /* Inform IRA about allocation a new stack slot. */
2207 ira_mark_new_stack_slot (stack_slot, i, total_size);
2210 /* Reuse a stack slot if possible. */
2211 else if (spill_stack_slot[from_reg] != 0
2212 && spill_stack_slot_width[from_reg] >= total_size
2213 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2214 >= inherent_size)
2215 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2216 x = spill_stack_slot[from_reg];
2218 /* Allocate a bigger slot. */
2219 else
2221 /* Compute maximum size needed, both for inherent size
2222 and for total size. */
2223 rtx stack_slot;
2225 if (spill_stack_slot[from_reg])
2227 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2228 > inherent_size)
2229 mode = GET_MODE (spill_stack_slot[from_reg]);
2230 if (spill_stack_slot_width[from_reg] > total_size)
2231 total_size = spill_stack_slot_width[from_reg];
2232 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2233 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2236 /* Make a slot with that size. */
2237 x = assign_stack_local (mode, total_size,
2238 min_align > inherent_align
2239 || total_size > inherent_size ? -1 : 0);
2240 stack_slot = x;
2242 /* Cancel the big-endian correction done in assign_stack_local.
2243 Get the address of the beginning of the slot. This is so we
2244 can do a big-endian correction unconditionally below. */
2245 if (BYTES_BIG_ENDIAN)
2247 adjust = GET_MODE_SIZE (mode) - total_size;
2248 if (adjust)
2249 stack_slot
2250 = adjust_address_nv (x, mode_for_size (total_size
2251 * BITS_PER_UNIT,
2252 MODE_INT, 1),
2253 adjust);
2256 spill_stack_slot[from_reg] = stack_slot;
2257 spill_stack_slot_width[from_reg] = total_size;
2260 /* On a big endian machine, the "address" of the slot
2261 is the address of the low part that fits its inherent mode. */
2262 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2263 adjust += (total_size - inherent_size);
2265 /* If we have any adjustment to make, or if the stack slot is the
2266 wrong mode, make a new stack slot. */
2267 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2269 /* Set all of the memory attributes as appropriate for a spill. */
2270 set_mem_attrs_for_spill (x);
2272 /* Save the stack slot for later. */
2273 reg_equiv_memory_loc[i] = x;
2277 /* Mark the slots in regs_ever_live for the hard regs used by
2278 pseudo-reg number REGNO, accessed in MODE. */
2280 static void
2281 mark_home_live_1 (int regno, enum machine_mode mode)
2283 int i, lim;
2285 i = reg_renumber[regno];
2286 if (i < 0)
2287 return;
2288 lim = end_hard_regno (mode, i);
2289 while (i < lim)
2290 df_set_regs_ever_live(i++, true);
2293 /* Mark the slots in regs_ever_live for the hard regs
2294 used by pseudo-reg number REGNO. */
2296 void
2297 mark_home_live (int regno)
2299 if (reg_renumber[regno] >= 0)
2300 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2303 /* This function handles the tracking of elimination offsets around branches.
2305 X is a piece of RTL being scanned.
2307 INSN is the insn that it came from, if any.
2309 INITIAL_P is nonzero if we are to set the offset to be the initial
2310 offset and zero if we are setting the offset of the label to be the
2311 current offset. */
2313 static void
2314 set_label_offsets (rtx x, rtx insn, int initial_p)
2316 enum rtx_code code = GET_CODE (x);
2317 rtx tem;
2318 unsigned int i;
2319 struct elim_table *p;
2321 switch (code)
2323 case LABEL_REF:
2324 if (LABEL_REF_NONLOCAL_P (x))
2325 return;
2327 x = XEXP (x, 0);
2329 /* ... fall through ... */
2331 case CODE_LABEL:
2332 /* If we know nothing about this label, set the desired offsets. Note
2333 that this sets the offset at a label to be the offset before a label
2334 if we don't know anything about the label. This is not correct for
2335 the label after a BARRIER, but is the best guess we can make. If
2336 we guessed wrong, we will suppress an elimination that might have
2337 been possible had we been able to guess correctly. */
2339 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2341 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2342 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2343 = (initial_p ? reg_eliminate[i].initial_offset
2344 : reg_eliminate[i].offset);
2345 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2348 /* Otherwise, if this is the definition of a label and it is
2349 preceded by a BARRIER, set our offsets to the known offset of
2350 that label. */
2352 else if (x == insn
2353 && (tem = prev_nonnote_insn (insn)) != 0
2354 && BARRIER_P (tem))
2355 set_offsets_for_label (insn);
2356 else
2357 /* If neither of the above cases is true, compare each offset
2358 with those previously recorded and suppress any eliminations
2359 where the offsets disagree. */
2361 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2362 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2363 != (initial_p ? reg_eliminate[i].initial_offset
2364 : reg_eliminate[i].offset))
2365 reg_eliminate[i].can_eliminate = 0;
2367 return;
2369 case JUMP_INSN:
2370 set_label_offsets (PATTERN (insn), insn, initial_p);
2372 /* ... fall through ... */
2374 case INSN:
2375 case CALL_INSN:
2376 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2377 to indirectly and hence must have all eliminations at their
2378 initial offsets. */
2379 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2380 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2381 set_label_offsets (XEXP (tem, 0), insn, 1);
2382 return;
2384 case PARALLEL:
2385 case ADDR_VEC:
2386 case ADDR_DIFF_VEC:
2387 /* Each of the labels in the parallel or address vector must be
2388 at their initial offsets. We want the first field for PARALLEL
2389 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2391 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2392 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2393 insn, initial_p);
2394 return;
2396 case SET:
2397 /* We only care about setting PC. If the source is not RETURN,
2398 IF_THEN_ELSE, or a label, disable any eliminations not at
2399 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2400 isn't one of those possibilities. For branches to a label,
2401 call ourselves recursively.
2403 Note that this can disable elimination unnecessarily when we have
2404 a non-local goto since it will look like a non-constant jump to
2405 someplace in the current function. This isn't a significant
2406 problem since such jumps will normally be when all elimination
2407 pairs are back to their initial offsets. */
2409 if (SET_DEST (x) != pc_rtx)
2410 return;
2412 switch (GET_CODE (SET_SRC (x)))
2414 case PC:
2415 case RETURN:
2416 return;
2418 case LABEL_REF:
2419 set_label_offsets (SET_SRC (x), insn, initial_p);
2420 return;
2422 case IF_THEN_ELSE:
2423 tem = XEXP (SET_SRC (x), 1);
2424 if (GET_CODE (tem) == LABEL_REF)
2425 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2426 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2427 break;
2429 tem = XEXP (SET_SRC (x), 2);
2430 if (GET_CODE (tem) == LABEL_REF)
2431 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2432 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2433 break;
2434 return;
2436 default:
2437 break;
2440 /* If we reach here, all eliminations must be at their initial
2441 offset because we are doing a jump to a variable address. */
2442 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2443 if (p->offset != p->initial_offset)
2444 p->can_eliminate = 0;
2445 break;
2447 default:
2448 break;
2452 /* Scan X and replace any eliminable registers (such as fp) with a
2453 replacement (such as sp), plus an offset.
2455 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2456 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2457 MEM, we are allowed to replace a sum of a register and the constant zero
2458 with the register, which we cannot do outside a MEM. In addition, we need
2459 to record the fact that a register is referenced outside a MEM.
2461 If INSN is an insn, it is the insn containing X. If we replace a REG
2462 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2463 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2464 the REG is being modified.
2466 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2467 That's used when we eliminate in expressions stored in notes.
2468 This means, do not set ref_outside_mem even if the reference
2469 is outside of MEMs.
2471 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2472 replacements done assuming all offsets are at their initial values. If
2473 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2474 encounter, return the actual location so that find_reloads will do
2475 the proper thing. */
2477 static rtx
2478 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2479 bool may_use_invariant)
2481 enum rtx_code code = GET_CODE (x);
2482 struct elim_table *ep;
2483 int regno;
2484 rtx new_rtx;
2485 int i, j;
2486 const char *fmt;
2487 int copied = 0;
2489 if (! current_function_decl)
2490 return x;
2492 switch (code)
2494 case CONST_INT:
2495 case CONST_DOUBLE:
2496 case CONST_FIXED:
2497 case CONST_VECTOR:
2498 case CONST:
2499 case SYMBOL_REF:
2500 case CODE_LABEL:
2501 case PC:
2502 case CC0:
2503 case ASM_INPUT:
2504 case ADDR_VEC:
2505 case ADDR_DIFF_VEC:
2506 case RETURN:
2507 return x;
2509 case REG:
2510 regno = REGNO (x);
2512 /* First handle the case where we encounter a bare register that
2513 is eliminable. Replace it with a PLUS. */
2514 if (regno < FIRST_PSEUDO_REGISTER)
2516 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2517 ep++)
2518 if (ep->from_rtx == x && ep->can_eliminate)
2519 return plus_constant (ep->to_rtx, ep->previous_offset);
2522 else if (reg_renumber && reg_renumber[regno] < 0
2523 && reg_equiv_invariant && reg_equiv_invariant[regno])
2525 if (may_use_invariant)
2526 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2527 mem_mode, insn, true);
2528 /* There exists at least one use of REGNO that cannot be
2529 eliminated. Prevent the defining insn from being deleted. */
2530 reg_equiv_init[regno] = NULL_RTX;
2531 alter_reg (regno, -1, true);
2533 return x;
2535 /* You might think handling MINUS in a manner similar to PLUS is a
2536 good idea. It is not. It has been tried multiple times and every
2537 time the change has had to have been reverted.
2539 Other parts of reload know a PLUS is special (gen_reload for example)
2540 and require special code to handle code a reloaded PLUS operand.
2542 Also consider backends where the flags register is clobbered by a
2543 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2544 lea instruction comes to mind). If we try to reload a MINUS, we
2545 may kill the flags register that was holding a useful value.
2547 So, please before trying to handle MINUS, consider reload as a
2548 whole instead of this little section as well as the backend issues. */
2549 case PLUS:
2550 /* If this is the sum of an eliminable register and a constant, rework
2551 the sum. */
2552 if (REG_P (XEXP (x, 0))
2553 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2554 && CONSTANT_P (XEXP (x, 1)))
2556 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2557 ep++)
2558 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2560 /* The only time we want to replace a PLUS with a REG (this
2561 occurs when the constant operand of the PLUS is the negative
2562 of the offset) is when we are inside a MEM. We won't want
2563 to do so at other times because that would change the
2564 structure of the insn in a way that reload can't handle.
2565 We special-case the commonest situation in
2566 eliminate_regs_in_insn, so just replace a PLUS with a
2567 PLUS here, unless inside a MEM. */
2568 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2569 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2570 return ep->to_rtx;
2571 else
2572 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2573 plus_constant (XEXP (x, 1),
2574 ep->previous_offset));
2577 /* If the register is not eliminable, we are done since the other
2578 operand is a constant. */
2579 return x;
2582 /* If this is part of an address, we want to bring any constant to the
2583 outermost PLUS. We will do this by doing register replacement in
2584 our operands and seeing if a constant shows up in one of them.
2586 Note that there is no risk of modifying the structure of the insn,
2587 since we only get called for its operands, thus we are either
2588 modifying the address inside a MEM, or something like an address
2589 operand of a load-address insn. */
2592 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2593 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2595 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2597 /* If one side is a PLUS and the other side is a pseudo that
2598 didn't get a hard register but has a reg_equiv_constant,
2599 we must replace the constant here since it may no longer
2600 be in the position of any operand. */
2601 if (GET_CODE (new0) == PLUS && REG_P (new1)
2602 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2603 && reg_renumber[REGNO (new1)] < 0
2604 && reg_equiv_constant != 0
2605 && reg_equiv_constant[REGNO (new1)] != 0)
2606 new1 = reg_equiv_constant[REGNO (new1)];
2607 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2608 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2609 && reg_renumber[REGNO (new0)] < 0
2610 && reg_equiv_constant[REGNO (new0)] != 0)
2611 new0 = reg_equiv_constant[REGNO (new0)];
2613 new_rtx = form_sum (new0, new1);
2615 /* As above, if we are not inside a MEM we do not want to
2616 turn a PLUS into something else. We might try to do so here
2617 for an addition of 0 if we aren't optimizing. */
2618 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2619 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2620 else
2621 return new_rtx;
2624 return x;
2626 case MULT:
2627 /* If this is the product of an eliminable register and a
2628 constant, apply the distribute law and move the constant out
2629 so that we have (plus (mult ..) ..). This is needed in order
2630 to keep load-address insns valid. This case is pathological.
2631 We ignore the possibility of overflow here. */
2632 if (REG_P (XEXP (x, 0))
2633 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2634 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2635 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2636 ep++)
2637 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2639 if (! mem_mode
2640 /* Refs inside notes don't count for this purpose. */
2641 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2642 || GET_CODE (insn) == INSN_LIST)))
2643 ep->ref_outside_mem = 1;
2645 return
2646 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2647 ep->previous_offset * INTVAL (XEXP (x, 1)));
2650 /* ... fall through ... */
2652 case CALL:
2653 case COMPARE:
2654 /* See comments before PLUS about handling MINUS. */
2655 case MINUS:
2656 case DIV: case UDIV:
2657 case MOD: case UMOD:
2658 case AND: case IOR: case XOR:
2659 case ROTATERT: case ROTATE:
2660 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2661 case NE: case EQ:
2662 case GE: case GT: case GEU: case GTU:
2663 case LE: case LT: case LEU: case LTU:
2665 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2666 rtx new1 = XEXP (x, 1)
2667 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2669 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2670 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2672 return x;
2674 case EXPR_LIST:
2675 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2676 if (XEXP (x, 0))
2678 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2679 if (new_rtx != XEXP (x, 0))
2681 /* If this is a REG_DEAD note, it is not valid anymore.
2682 Using the eliminated version could result in creating a
2683 REG_DEAD note for the stack or frame pointer. */
2684 if (REG_NOTE_KIND (x) == REG_DEAD)
2685 return (XEXP (x, 1)
2686 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2687 : NULL_RTX);
2689 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2693 /* ... fall through ... */
2695 case INSN_LIST:
2696 /* Now do eliminations in the rest of the chain. If this was
2697 an EXPR_LIST, this might result in allocating more memory than is
2698 strictly needed, but it simplifies the code. */
2699 if (XEXP (x, 1))
2701 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2702 if (new_rtx != XEXP (x, 1))
2703 return
2704 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2706 return x;
2708 case PRE_INC:
2709 case POST_INC:
2710 case PRE_DEC:
2711 case POST_DEC:
2712 /* We do not support elimination of a register that is modified.
2713 elimination_effects has already make sure that this does not
2714 happen. */
2715 return x;
2717 case PRE_MODIFY:
2718 case POST_MODIFY:
2719 /* We do not support elimination of a register that is modified.
2720 elimination_effects has already make sure that this does not
2721 happen. The only remaining case we need to consider here is
2722 that the increment value may be an eliminable register. */
2723 if (GET_CODE (XEXP (x, 1)) == PLUS
2724 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2726 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2727 insn, true);
2729 if (new_rtx != XEXP (XEXP (x, 1), 1))
2730 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2731 gen_rtx_PLUS (GET_MODE (x),
2732 XEXP (x, 0), new_rtx));
2734 return x;
2736 case STRICT_LOW_PART:
2737 case NEG: case NOT:
2738 case SIGN_EXTEND: case ZERO_EXTEND:
2739 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2740 case FLOAT: case FIX:
2741 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2742 case ABS:
2743 case SQRT:
2744 case FFS:
2745 case CLZ:
2746 case CTZ:
2747 case POPCOUNT:
2748 case PARITY:
2749 case BSWAP:
2750 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2751 if (new_rtx != XEXP (x, 0))
2752 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2753 return x;
2755 case SUBREG:
2756 /* Similar to above processing, but preserve SUBREG_BYTE.
2757 Convert (subreg (mem)) to (mem) if not paradoxical.
2758 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2759 pseudo didn't get a hard reg, we must replace this with the
2760 eliminated version of the memory location because push_reload
2761 may do the replacement in certain circumstances. */
2762 if (REG_P (SUBREG_REG (x))
2763 && (GET_MODE_SIZE (GET_MODE (x))
2764 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2765 && reg_equiv_memory_loc != 0
2766 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2768 new_rtx = SUBREG_REG (x);
2770 else
2771 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2773 if (new_rtx != SUBREG_REG (x))
2775 int x_size = GET_MODE_SIZE (GET_MODE (x));
2776 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2778 if (MEM_P (new_rtx)
2779 && ((x_size < new_size
2780 #ifdef WORD_REGISTER_OPERATIONS
2781 /* On these machines, combine can create rtl of the form
2782 (set (subreg:m1 (reg:m2 R) 0) ...)
2783 where m1 < m2, and expects something interesting to
2784 happen to the entire word. Moreover, it will use the
2785 (reg:m2 R) later, expecting all bits to be preserved.
2786 So if the number of words is the same, preserve the
2787 subreg so that push_reload can see it. */
2788 && ! ((x_size - 1) / UNITS_PER_WORD
2789 == (new_size -1 ) / UNITS_PER_WORD)
2790 #endif
2792 || x_size == new_size)
2794 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2795 else
2796 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2799 return x;
2801 case MEM:
2802 /* Our only special processing is to pass the mode of the MEM to our
2803 recursive call and copy the flags. While we are here, handle this
2804 case more efficiently. */
2805 return
2806 replace_equiv_address_nv (x,
2807 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2808 insn, true));
2810 case USE:
2811 /* Handle insn_list USE that a call to a pure function may generate. */
2812 new_rtx = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2813 if (new_rtx != XEXP (x, 0))
2814 return gen_rtx_USE (GET_MODE (x), new_rtx);
2815 return x;
2817 case CLOBBER:
2818 case ASM_OPERANDS:
2819 case SET:
2820 gcc_unreachable ();
2822 default:
2823 break;
2826 /* Process each of our operands recursively. If any have changed, make a
2827 copy of the rtx. */
2828 fmt = GET_RTX_FORMAT (code);
2829 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2831 if (*fmt == 'e')
2833 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2834 if (new_rtx != XEXP (x, i) && ! copied)
2836 x = shallow_copy_rtx (x);
2837 copied = 1;
2839 XEXP (x, i) = new_rtx;
2841 else if (*fmt == 'E')
2843 int copied_vec = 0;
2844 for (j = 0; j < XVECLEN (x, i); j++)
2846 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2847 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2849 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2850 XVEC (x, i)->elem);
2851 if (! copied)
2853 x = shallow_copy_rtx (x);
2854 copied = 1;
2856 XVEC (x, i) = new_v;
2857 copied_vec = 1;
2859 XVECEXP (x, i, j) = new_rtx;
2864 return x;
2868 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2870 return eliminate_regs_1 (x, mem_mode, insn, false);
2873 /* Scan rtx X for modifications of elimination target registers. Update
2874 the table of eliminables to reflect the changed state. MEM_MODE is
2875 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2877 static void
2878 elimination_effects (rtx x, enum machine_mode mem_mode)
2880 enum rtx_code code = GET_CODE (x);
2881 struct elim_table *ep;
2882 int regno;
2883 int i, j;
2884 const char *fmt;
2886 switch (code)
2888 case CONST_INT:
2889 case CONST_DOUBLE:
2890 case CONST_FIXED:
2891 case CONST_VECTOR:
2892 case CONST:
2893 case SYMBOL_REF:
2894 case CODE_LABEL:
2895 case PC:
2896 case CC0:
2897 case ASM_INPUT:
2898 case ADDR_VEC:
2899 case ADDR_DIFF_VEC:
2900 case RETURN:
2901 return;
2903 case REG:
2904 regno = REGNO (x);
2906 /* First handle the case where we encounter a bare register that
2907 is eliminable. Replace it with a PLUS. */
2908 if (regno < FIRST_PSEUDO_REGISTER)
2910 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2911 ep++)
2912 if (ep->from_rtx == x && ep->can_eliminate)
2914 if (! mem_mode)
2915 ep->ref_outside_mem = 1;
2916 return;
2920 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2921 && reg_equiv_constant[regno]
2922 && ! function_invariant_p (reg_equiv_constant[regno]))
2923 elimination_effects (reg_equiv_constant[regno], mem_mode);
2924 return;
2926 case PRE_INC:
2927 case POST_INC:
2928 case PRE_DEC:
2929 case POST_DEC:
2930 case POST_MODIFY:
2931 case PRE_MODIFY:
2932 /* If we modify the source of an elimination rule, disable it. */
2933 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2934 if (ep->from_rtx == XEXP (x, 0))
2935 ep->can_eliminate = 0;
2937 /* If we modify the target of an elimination rule by adding a constant,
2938 update its offset. If we modify the target in any other way, we'll
2939 have to disable the rule as well. */
2940 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2941 if (ep->to_rtx == XEXP (x, 0))
2943 int size = GET_MODE_SIZE (mem_mode);
2945 /* If more bytes than MEM_MODE are pushed, account for them. */
2946 #ifdef PUSH_ROUNDING
2947 if (ep->to_rtx == stack_pointer_rtx)
2948 size = PUSH_ROUNDING (size);
2949 #endif
2950 if (code == PRE_DEC || code == POST_DEC)
2951 ep->offset += size;
2952 else if (code == PRE_INC || code == POST_INC)
2953 ep->offset -= size;
2954 else if (code == PRE_MODIFY || code == POST_MODIFY)
2956 if (GET_CODE (XEXP (x, 1)) == PLUS
2957 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2958 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
2959 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2960 else
2961 ep->can_eliminate = 0;
2965 /* These two aren't unary operators. */
2966 if (code == POST_MODIFY || code == PRE_MODIFY)
2967 break;
2969 /* Fall through to generic unary operation case. */
2970 case STRICT_LOW_PART:
2971 case NEG: case NOT:
2972 case SIGN_EXTEND: case ZERO_EXTEND:
2973 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2974 case FLOAT: case FIX:
2975 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2976 case ABS:
2977 case SQRT:
2978 case FFS:
2979 case CLZ:
2980 case CTZ:
2981 case POPCOUNT:
2982 case PARITY:
2983 case BSWAP:
2984 elimination_effects (XEXP (x, 0), mem_mode);
2985 return;
2987 case SUBREG:
2988 if (REG_P (SUBREG_REG (x))
2989 && (GET_MODE_SIZE (GET_MODE (x))
2990 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2991 && reg_equiv_memory_loc != 0
2992 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2993 return;
2995 elimination_effects (SUBREG_REG (x), mem_mode);
2996 return;
2998 case USE:
2999 /* If using a register that is the source of an eliminate we still
3000 think can be performed, note it cannot be performed since we don't
3001 know how this register is used. */
3002 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3003 if (ep->from_rtx == XEXP (x, 0))
3004 ep->can_eliminate = 0;
3006 elimination_effects (XEXP (x, 0), mem_mode);
3007 return;
3009 case CLOBBER:
3010 /* If clobbering a register that is the replacement register for an
3011 elimination we still think can be performed, note that it cannot
3012 be performed. Otherwise, we need not be concerned about it. */
3013 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3014 if (ep->to_rtx == XEXP (x, 0))
3015 ep->can_eliminate = 0;
3017 elimination_effects (XEXP (x, 0), mem_mode);
3018 return;
3020 case SET:
3021 /* Check for setting a register that we know about. */
3022 if (REG_P (SET_DEST (x)))
3024 /* See if this is setting the replacement register for an
3025 elimination.
3027 If DEST is the hard frame pointer, we do nothing because we
3028 assume that all assignments to the frame pointer are for
3029 non-local gotos and are being done at a time when they are valid
3030 and do not disturb anything else. Some machines want to
3031 eliminate a fake argument pointer (or even a fake frame pointer)
3032 with either the real frame or the stack pointer. Assignments to
3033 the hard frame pointer must not prevent this elimination. */
3035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3036 ep++)
3037 if (ep->to_rtx == SET_DEST (x)
3038 && SET_DEST (x) != hard_frame_pointer_rtx)
3040 /* If it is being incremented, adjust the offset. Otherwise,
3041 this elimination can't be done. */
3042 rtx src = SET_SRC (x);
3044 if (GET_CODE (src) == PLUS
3045 && XEXP (src, 0) == SET_DEST (x)
3046 && GET_CODE (XEXP (src, 1)) == CONST_INT)
3047 ep->offset -= INTVAL (XEXP (src, 1));
3048 else
3049 ep->can_eliminate = 0;
3053 elimination_effects (SET_DEST (x), 0);
3054 elimination_effects (SET_SRC (x), 0);
3055 return;
3057 case MEM:
3058 /* Our only special processing is to pass the mode of the MEM to our
3059 recursive call. */
3060 elimination_effects (XEXP (x, 0), GET_MODE (x));
3061 return;
3063 default:
3064 break;
3067 fmt = GET_RTX_FORMAT (code);
3068 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3070 if (*fmt == 'e')
3071 elimination_effects (XEXP (x, i), mem_mode);
3072 else if (*fmt == 'E')
3073 for (j = 0; j < XVECLEN (x, i); j++)
3074 elimination_effects (XVECEXP (x, i, j), mem_mode);
3078 /* Descend through rtx X and verify that no references to eliminable registers
3079 remain. If any do remain, mark the involved register as not
3080 eliminable. */
3082 static void
3083 check_eliminable_occurrences (rtx x)
3085 const char *fmt;
3086 int i;
3087 enum rtx_code code;
3089 if (x == 0)
3090 return;
3092 code = GET_CODE (x);
3094 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3096 struct elim_table *ep;
3098 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3099 if (ep->from_rtx == x)
3100 ep->can_eliminate = 0;
3101 return;
3104 fmt = GET_RTX_FORMAT (code);
3105 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3107 if (*fmt == 'e')
3108 check_eliminable_occurrences (XEXP (x, i));
3109 else if (*fmt == 'E')
3111 int j;
3112 for (j = 0; j < XVECLEN (x, i); j++)
3113 check_eliminable_occurrences (XVECEXP (x, i, j));
3118 /* Scan INSN and eliminate all eliminable registers in it.
3120 If REPLACE is nonzero, do the replacement destructively. Also
3121 delete the insn as dead it if it is setting an eliminable register.
3123 If REPLACE is zero, do all our allocations in reload_obstack.
3125 If no eliminations were done and this insn doesn't require any elimination
3126 processing (these are not identical conditions: it might be updating sp,
3127 but not referencing fp; this needs to be seen during reload_as_needed so
3128 that the offset between fp and sp can be taken into consideration), zero
3129 is returned. Otherwise, 1 is returned. */
3131 static int
3132 eliminate_regs_in_insn (rtx insn, int replace)
3134 int icode = recog_memoized (insn);
3135 rtx old_body = PATTERN (insn);
3136 int insn_is_asm = asm_noperands (old_body) >= 0;
3137 rtx old_set = single_set (insn);
3138 rtx new_body;
3139 int val = 0;
3140 int i;
3141 rtx substed_operand[MAX_RECOG_OPERANDS];
3142 rtx orig_operand[MAX_RECOG_OPERANDS];
3143 struct elim_table *ep;
3144 rtx plus_src, plus_cst_src;
3146 if (! insn_is_asm && icode < 0)
3148 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3149 || GET_CODE (PATTERN (insn)) == CLOBBER
3150 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3151 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3152 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3153 return 0;
3156 if (old_set != 0 && REG_P (SET_DEST (old_set))
3157 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3159 /* Check for setting an eliminable register. */
3160 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3161 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3163 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3164 /* If this is setting the frame pointer register to the
3165 hardware frame pointer register and this is an elimination
3166 that will be done (tested above), this insn is really
3167 adjusting the frame pointer downward to compensate for
3168 the adjustment done before a nonlocal goto. */
3169 if (ep->from == FRAME_POINTER_REGNUM
3170 && ep->to == HARD_FRAME_POINTER_REGNUM)
3172 rtx base = SET_SRC (old_set);
3173 rtx base_insn = insn;
3174 HOST_WIDE_INT offset = 0;
3176 while (base != ep->to_rtx)
3178 rtx prev_insn, prev_set;
3180 if (GET_CODE (base) == PLUS
3181 && GET_CODE (XEXP (base, 1)) == CONST_INT)
3183 offset += INTVAL (XEXP (base, 1));
3184 base = XEXP (base, 0);
3186 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3187 && (prev_set = single_set (prev_insn)) != 0
3188 && rtx_equal_p (SET_DEST (prev_set), base))
3190 base = SET_SRC (prev_set);
3191 base_insn = prev_insn;
3193 else
3194 break;
3197 if (base == ep->to_rtx)
3199 rtx src
3200 = plus_constant (ep->to_rtx, offset - ep->offset);
3202 new_body = old_body;
3203 if (! replace)
3205 new_body = copy_insn (old_body);
3206 if (REG_NOTES (insn))
3207 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3209 PATTERN (insn) = new_body;
3210 old_set = single_set (insn);
3212 /* First see if this insn remains valid when we
3213 make the change. If not, keep the INSN_CODE
3214 the same and let reload fit it up. */
3215 validate_change (insn, &SET_SRC (old_set), src, 1);
3216 validate_change (insn, &SET_DEST (old_set),
3217 ep->to_rtx, 1);
3218 if (! apply_change_group ())
3220 SET_SRC (old_set) = src;
3221 SET_DEST (old_set) = ep->to_rtx;
3224 val = 1;
3225 goto done;
3228 #endif
3230 /* In this case this insn isn't serving a useful purpose. We
3231 will delete it in reload_as_needed once we know that this
3232 elimination is, in fact, being done.
3234 If REPLACE isn't set, we can't delete this insn, but needn't
3235 process it since it won't be used unless something changes. */
3236 if (replace)
3238 delete_dead_insn (insn);
3239 return 1;
3241 val = 1;
3242 goto done;
3246 /* We allow one special case which happens to work on all machines we
3247 currently support: a single set with the source or a REG_EQUAL
3248 note being a PLUS of an eliminable register and a constant. */
3249 plus_src = plus_cst_src = 0;
3250 if (old_set && REG_P (SET_DEST (old_set)))
3252 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3253 plus_src = SET_SRC (old_set);
3254 /* First see if the source is of the form (plus (...) CST). */
3255 if (plus_src
3256 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3257 plus_cst_src = plus_src;
3258 else if (REG_P (SET_SRC (old_set))
3259 || plus_src)
3261 /* Otherwise, see if we have a REG_EQUAL note of the form
3262 (plus (...) CST). */
3263 rtx links;
3264 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3266 if ((REG_NOTE_KIND (links) == REG_EQUAL
3267 || REG_NOTE_KIND (links) == REG_EQUIV)
3268 && GET_CODE (XEXP (links, 0)) == PLUS
3269 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3271 plus_cst_src = XEXP (links, 0);
3272 break;
3277 /* Check that the first operand of the PLUS is a hard reg or
3278 the lowpart subreg of one. */
3279 if (plus_cst_src)
3281 rtx reg = XEXP (plus_cst_src, 0);
3282 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3283 reg = SUBREG_REG (reg);
3285 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3286 plus_cst_src = 0;
3289 if (plus_cst_src)
3291 rtx reg = XEXP (plus_cst_src, 0);
3292 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3294 if (GET_CODE (reg) == SUBREG)
3295 reg = SUBREG_REG (reg);
3297 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3298 if (ep->from_rtx == reg && ep->can_eliminate)
3300 rtx to_rtx = ep->to_rtx;
3301 offset += ep->offset;
3302 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3304 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3305 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3306 to_rtx);
3307 /* If we have a nonzero offset, and the source is already
3308 a simple REG, the following transformation would
3309 increase the cost of the insn by replacing a simple REG
3310 with (plus (reg sp) CST). So try only when we already
3311 had a PLUS before. */
3312 if (offset == 0 || plus_src)
3314 rtx new_src = plus_constant (to_rtx, offset);
3316 new_body = old_body;
3317 if (! replace)
3319 new_body = copy_insn (old_body);
3320 if (REG_NOTES (insn))
3321 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3323 PATTERN (insn) = new_body;
3324 old_set = single_set (insn);
3326 /* First see if this insn remains valid when we make the
3327 change. If not, try to replace the whole pattern with
3328 a simple set (this may help if the original insn was a
3329 PARALLEL that was only recognized as single_set due to
3330 REG_UNUSED notes). If this isn't valid either, keep
3331 the INSN_CODE the same and let reload fix it up. */
3332 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3334 rtx new_pat = gen_rtx_SET (VOIDmode,
3335 SET_DEST (old_set), new_src);
3337 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3338 SET_SRC (old_set) = new_src;
3341 else
3342 break;
3344 val = 1;
3345 /* This can't have an effect on elimination offsets, so skip right
3346 to the end. */
3347 goto done;
3351 /* Determine the effects of this insn on elimination offsets. */
3352 elimination_effects (old_body, 0);
3354 /* Eliminate all eliminable registers occurring in operands that
3355 can be handled by reload. */
3356 extract_insn (insn);
3357 for (i = 0; i < recog_data.n_operands; i++)
3359 orig_operand[i] = recog_data.operand[i];
3360 substed_operand[i] = recog_data.operand[i];
3362 /* For an asm statement, every operand is eliminable. */
3363 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3365 bool is_set_src, in_plus;
3367 /* Check for setting a register that we know about. */
3368 if (recog_data.operand_type[i] != OP_IN
3369 && REG_P (orig_operand[i]))
3371 /* If we are assigning to a register that can be eliminated, it
3372 must be as part of a PARALLEL, since the code above handles
3373 single SETs. We must indicate that we can no longer
3374 eliminate this reg. */
3375 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3376 ep++)
3377 if (ep->from_rtx == orig_operand[i])
3378 ep->can_eliminate = 0;
3381 /* Companion to the above plus substitution, we can allow
3382 invariants as the source of a plain move. */
3383 is_set_src = false;
3384 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3385 is_set_src = true;
3386 in_plus = false;
3387 if (plus_src
3388 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3389 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3390 in_plus = true;
3392 substed_operand[i]
3393 = eliminate_regs_1 (recog_data.operand[i], 0,
3394 replace ? insn : NULL_RTX,
3395 is_set_src || in_plus);
3396 if (substed_operand[i] != orig_operand[i])
3397 val = 1;
3398 /* Terminate the search in check_eliminable_occurrences at
3399 this point. */
3400 *recog_data.operand_loc[i] = 0;
3402 /* If an output operand changed from a REG to a MEM and INSN is an
3403 insn, write a CLOBBER insn. */
3404 if (recog_data.operand_type[i] != OP_IN
3405 && REG_P (orig_operand[i])
3406 && MEM_P (substed_operand[i])
3407 && replace)
3408 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3412 for (i = 0; i < recog_data.n_dups; i++)
3413 *recog_data.dup_loc[i]
3414 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3416 /* If any eliminable remain, they aren't eliminable anymore. */
3417 check_eliminable_occurrences (old_body);
3419 /* Substitute the operands; the new values are in the substed_operand
3420 array. */
3421 for (i = 0; i < recog_data.n_operands; i++)
3422 *recog_data.operand_loc[i] = substed_operand[i];
3423 for (i = 0; i < recog_data.n_dups; i++)
3424 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3426 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3427 re-recognize the insn. We do this in case we had a simple addition
3428 but now can do this as a load-address. This saves an insn in this
3429 common case.
3430 If re-recognition fails, the old insn code number will still be used,
3431 and some register operands may have changed into PLUS expressions.
3432 These will be handled by find_reloads by loading them into a register
3433 again. */
3435 if (val)
3437 /* If we aren't replacing things permanently and we changed something,
3438 make another copy to ensure that all the RTL is new. Otherwise
3439 things can go wrong if find_reload swaps commutative operands
3440 and one is inside RTL that has been copied while the other is not. */
3441 new_body = old_body;
3442 if (! replace)
3444 new_body = copy_insn (old_body);
3445 if (REG_NOTES (insn))
3446 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3448 PATTERN (insn) = new_body;
3450 /* If we had a move insn but now we don't, rerecognize it. This will
3451 cause spurious re-recognition if the old move had a PARALLEL since
3452 the new one still will, but we can't call single_set without
3453 having put NEW_BODY into the insn and the re-recognition won't
3454 hurt in this rare case. */
3455 /* ??? Why this huge if statement - why don't we just rerecognize the
3456 thing always? */
3457 if (! insn_is_asm
3458 && old_set != 0
3459 && ((REG_P (SET_SRC (old_set))
3460 && (GET_CODE (new_body) != SET
3461 || !REG_P (SET_SRC (new_body))))
3462 /* If this was a load from or store to memory, compare
3463 the MEM in recog_data.operand to the one in the insn.
3464 If they are not equal, then rerecognize the insn. */
3465 || (old_set != 0
3466 && ((MEM_P (SET_SRC (old_set))
3467 && SET_SRC (old_set) != recog_data.operand[1])
3468 || (MEM_P (SET_DEST (old_set))
3469 && SET_DEST (old_set) != recog_data.operand[0])))
3470 /* If this was an add insn before, rerecognize. */
3471 || GET_CODE (SET_SRC (old_set)) == PLUS))
3473 int new_icode = recog (PATTERN (insn), insn, 0);
3474 if (new_icode >= 0)
3475 INSN_CODE (insn) = new_icode;
3479 /* Restore the old body. If there were any changes to it, we made a copy
3480 of it while the changes were still in place, so we'll correctly return
3481 a modified insn below. */
3482 if (! replace)
3484 /* Restore the old body. */
3485 for (i = 0; i < recog_data.n_operands; i++)
3486 *recog_data.operand_loc[i] = orig_operand[i];
3487 for (i = 0; i < recog_data.n_dups; i++)
3488 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3491 /* Update all elimination pairs to reflect the status after the current
3492 insn. The changes we make were determined by the earlier call to
3493 elimination_effects.
3495 We also detect cases where register elimination cannot be done,
3496 namely, if a register would be both changed and referenced outside a MEM
3497 in the resulting insn since such an insn is often undefined and, even if
3498 not, we cannot know what meaning will be given to it. Note that it is
3499 valid to have a register used in an address in an insn that changes it
3500 (presumably with a pre- or post-increment or decrement).
3502 If anything changes, return nonzero. */
3504 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3506 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3507 ep->can_eliminate = 0;
3509 ep->ref_outside_mem = 0;
3511 if (ep->previous_offset != ep->offset)
3512 val = 1;
3515 done:
3516 /* If we changed something, perform elimination in REG_NOTES. This is
3517 needed even when REPLACE is zero because a REG_DEAD note might refer
3518 to a register that we eliminate and could cause a different number
3519 of spill registers to be needed in the final reload pass than in
3520 the pre-passes. */
3521 if (val && REG_NOTES (insn) != 0)
3522 REG_NOTES (insn)
3523 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3525 return val;
3528 /* Loop through all elimination pairs.
3529 Recalculate the number not at initial offset.
3531 Compute the maximum offset (minimum offset if the stack does not
3532 grow downward) for each elimination pair. */
3534 static void
3535 update_eliminable_offsets (void)
3537 struct elim_table *ep;
3539 num_not_at_initial_offset = 0;
3540 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3542 ep->previous_offset = ep->offset;
3543 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3544 num_not_at_initial_offset++;
3548 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3549 replacement we currently believe is valid, mark it as not eliminable if X
3550 modifies DEST in any way other than by adding a constant integer to it.
3552 If DEST is the frame pointer, we do nothing because we assume that
3553 all assignments to the hard frame pointer are nonlocal gotos and are being
3554 done at a time when they are valid and do not disturb anything else.
3555 Some machines want to eliminate a fake argument pointer with either the
3556 frame or stack pointer. Assignments to the hard frame pointer must not
3557 prevent this elimination.
3559 Called via note_stores from reload before starting its passes to scan
3560 the insns of the function. */
3562 static void
3563 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3565 unsigned int i;
3567 /* A SUBREG of a hard register here is just changing its mode. We should
3568 not see a SUBREG of an eliminable hard register, but check just in
3569 case. */
3570 if (GET_CODE (dest) == SUBREG)
3571 dest = SUBREG_REG (dest);
3573 if (dest == hard_frame_pointer_rtx)
3574 return;
3576 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3577 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3578 && (GET_CODE (x) != SET
3579 || GET_CODE (SET_SRC (x)) != PLUS
3580 || XEXP (SET_SRC (x), 0) != dest
3581 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3583 reg_eliminate[i].can_eliminate_previous
3584 = reg_eliminate[i].can_eliminate = 0;
3585 num_eliminable--;
3589 /* Verify that the initial elimination offsets did not change since the
3590 last call to set_initial_elim_offsets. This is used to catch cases
3591 where something illegal happened during reload_as_needed that could
3592 cause incorrect code to be generated if we did not check for it. */
3594 static bool
3595 verify_initial_elim_offsets (void)
3597 HOST_WIDE_INT t;
3599 if (!num_eliminable)
3600 return true;
3602 #ifdef ELIMINABLE_REGS
3604 struct elim_table *ep;
3606 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3608 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3609 if (t != ep->initial_offset)
3610 return false;
3613 #else
3614 INITIAL_FRAME_POINTER_OFFSET (t);
3615 if (t != reg_eliminate[0].initial_offset)
3616 return false;
3617 #endif
3619 return true;
3622 /* Reset all offsets on eliminable registers to their initial values. */
3624 static void
3625 set_initial_elim_offsets (void)
3627 struct elim_table *ep = reg_eliminate;
3629 #ifdef ELIMINABLE_REGS
3630 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3632 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3633 ep->previous_offset = ep->offset = ep->initial_offset;
3635 #else
3636 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3637 ep->previous_offset = ep->offset = ep->initial_offset;
3638 #endif
3640 num_not_at_initial_offset = 0;
3643 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3645 static void
3646 set_initial_eh_label_offset (rtx label)
3648 set_label_offsets (label, NULL_RTX, 1);
3651 /* Initialize the known label offsets.
3652 Set a known offset for each forced label to be at the initial offset
3653 of each elimination. We do this because we assume that all
3654 computed jumps occur from a location where each elimination is
3655 at its initial offset.
3656 For all other labels, show that we don't know the offsets. */
3658 static void
3659 set_initial_label_offsets (void)
3661 rtx x;
3662 memset (offsets_known_at, 0, num_labels);
3664 for (x = forced_labels; x; x = XEXP (x, 1))
3665 if (XEXP (x, 0))
3666 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3668 for_each_eh_label (set_initial_eh_label_offset);
3671 /* Set all elimination offsets to the known values for the code label given
3672 by INSN. */
3674 static void
3675 set_offsets_for_label (rtx insn)
3677 unsigned int i;
3678 int label_nr = CODE_LABEL_NUMBER (insn);
3679 struct elim_table *ep;
3681 num_not_at_initial_offset = 0;
3682 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3684 ep->offset = ep->previous_offset
3685 = offsets_at[label_nr - first_label_num][i];
3686 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3687 num_not_at_initial_offset++;
3691 /* See if anything that happened changes which eliminations are valid.
3692 For example, on the SPARC, whether or not the frame pointer can
3693 be eliminated can depend on what registers have been used. We need
3694 not check some conditions again (such as flag_omit_frame_pointer)
3695 since they can't have changed. */
3697 static void
3698 update_eliminables (HARD_REG_SET *pset)
3700 int previous_frame_pointer_needed = frame_pointer_needed;
3701 struct elim_table *ep;
3703 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3704 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3705 #ifdef ELIMINABLE_REGS
3706 || ! CAN_ELIMINATE (ep->from, ep->to)
3707 #endif
3709 ep->can_eliminate = 0;
3711 /* Look for the case where we have discovered that we can't replace
3712 register A with register B and that means that we will now be
3713 trying to replace register A with register C. This means we can
3714 no longer replace register C with register B and we need to disable
3715 such an elimination, if it exists. This occurs often with A == ap,
3716 B == sp, and C == fp. */
3718 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3720 struct elim_table *op;
3721 int new_to = -1;
3723 if (! ep->can_eliminate && ep->can_eliminate_previous)
3725 /* Find the current elimination for ep->from, if there is a
3726 new one. */
3727 for (op = reg_eliminate;
3728 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3729 if (op->from == ep->from && op->can_eliminate)
3731 new_to = op->to;
3732 break;
3735 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3736 disable it. */
3737 for (op = reg_eliminate;
3738 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3739 if (op->from == new_to && op->to == ep->to)
3740 op->can_eliminate = 0;
3744 /* See if any registers that we thought we could eliminate the previous
3745 time are no longer eliminable. If so, something has changed and we
3746 must spill the register. Also, recompute the number of eliminable
3747 registers and see if the frame pointer is needed; it is if there is
3748 no elimination of the frame pointer that we can perform. */
3750 frame_pointer_needed = 1;
3751 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3753 if (ep->can_eliminate
3754 && ep->from == FRAME_POINTER_REGNUM
3755 && ep->to != HARD_FRAME_POINTER_REGNUM
3756 && (! SUPPORTS_STACK_ALIGNMENT
3757 || ! crtl->stack_realign_needed))
3758 frame_pointer_needed = 0;
3760 if (! ep->can_eliminate && ep->can_eliminate_previous)
3762 ep->can_eliminate_previous = 0;
3763 SET_HARD_REG_BIT (*pset, ep->from);
3764 num_eliminable--;
3768 /* If we didn't need a frame pointer last time, but we do now, spill
3769 the hard frame pointer. */
3770 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3771 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3774 /* Return true if X is used as the target register of an elimination. */
3776 bool
3777 elimination_target_reg_p (rtx x)
3779 struct elim_table *ep;
3781 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3782 if (ep->to_rtx == x && ep->can_eliminate)
3783 return true;
3785 return false;
3788 /* Initialize the table of registers to eliminate.
3789 Pre-condition: global flag frame_pointer_needed has been set before
3790 calling this function. */
3792 static void
3793 init_elim_table (void)
3795 struct elim_table *ep;
3796 #ifdef ELIMINABLE_REGS
3797 const struct elim_table_1 *ep1;
3798 #endif
3800 if (!reg_eliminate)
3801 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3803 num_eliminable = 0;
3805 #ifdef ELIMINABLE_REGS
3806 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3807 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3809 ep->from = ep1->from;
3810 ep->to = ep1->to;
3811 ep->can_eliminate = ep->can_eliminate_previous
3812 = (CAN_ELIMINATE (ep->from, ep->to)
3813 && ! (ep->to == STACK_POINTER_REGNUM
3814 && frame_pointer_needed
3815 && (! SUPPORTS_STACK_ALIGNMENT
3816 || ! stack_realign_fp)));
3818 #else
3819 reg_eliminate[0].from = reg_eliminate_1[0].from;
3820 reg_eliminate[0].to = reg_eliminate_1[0].to;
3821 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3822 = ! frame_pointer_needed;
3823 #endif
3825 /* Count the number of eliminable registers and build the FROM and TO
3826 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3827 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3828 We depend on this. */
3829 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3831 num_eliminable += ep->can_eliminate;
3832 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3833 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3837 /* Kick all pseudos out of hard register REGNO.
3839 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3840 because we found we can't eliminate some register. In the case, no pseudos
3841 are allowed to be in the register, even if they are only in a block that
3842 doesn't require spill registers, unlike the case when we are spilling this
3843 hard reg to produce another spill register.
3845 Return nonzero if any pseudos needed to be kicked out. */
3847 static void
3848 spill_hard_reg (unsigned int regno, int cant_eliminate)
3850 int i;
3852 if (cant_eliminate)
3854 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3855 df_set_regs_ever_live (regno, true);
3858 /* Spill every pseudo reg that was allocated to this reg
3859 or to something that overlaps this reg. */
3861 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3862 if (reg_renumber[i] >= 0
3863 && (unsigned int) reg_renumber[i] <= regno
3864 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
3865 SET_REGNO_REG_SET (&spilled_pseudos, i);
3868 /* After find_reload_regs has been run for all insn that need reloads,
3869 and/or spill_hard_regs was called, this function is used to actually
3870 spill pseudo registers and try to reallocate them. It also sets up the
3871 spill_regs array for use by choose_reload_regs. */
3873 static int
3874 finish_spills (int global)
3876 struct insn_chain *chain;
3877 int something_changed = 0;
3878 unsigned i;
3879 reg_set_iterator rsi;
3881 /* Build the spill_regs array for the function. */
3882 /* If there are some registers still to eliminate and one of the spill regs
3883 wasn't ever used before, additional stack space may have to be
3884 allocated to store this register. Thus, we may have changed the offset
3885 between the stack and frame pointers, so mark that something has changed.
3887 One might think that we need only set VAL to 1 if this is a call-used
3888 register. However, the set of registers that must be saved by the
3889 prologue is not identical to the call-used set. For example, the
3890 register used by the call insn for the return PC is a call-used register,
3891 but must be saved by the prologue. */
3893 n_spills = 0;
3894 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3895 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3897 spill_reg_order[i] = n_spills;
3898 spill_regs[n_spills++] = i;
3899 if (num_eliminable && ! df_regs_ever_live_p (i))
3900 something_changed = 1;
3901 df_set_regs_ever_live (i, true);
3903 else
3904 spill_reg_order[i] = -1;
3906 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3907 if (! ira_conflicts_p || reg_renumber[i] >= 0)
3909 /* Record the current hard register the pseudo is allocated to
3910 in pseudo_previous_regs so we avoid reallocating it to the
3911 same hard reg in a later pass. */
3912 gcc_assert (reg_renumber[i] >= 0);
3914 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3915 /* Mark it as no longer having a hard register home. */
3916 reg_renumber[i] = -1;
3917 if (ira_conflicts_p)
3918 /* Inform IRA about the change. */
3919 ira_mark_allocation_change (i);
3920 /* We will need to scan everything again. */
3921 something_changed = 1;
3924 /* Retry global register allocation if possible. */
3925 if (global && ira_conflicts_p)
3927 unsigned int n;
3929 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3930 /* For every insn that needs reloads, set the registers used as spill
3931 regs in pseudo_forbidden_regs for every pseudo live across the
3932 insn. */
3933 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3935 EXECUTE_IF_SET_IN_REG_SET
3936 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3938 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3939 chain->used_spill_regs);
3941 EXECUTE_IF_SET_IN_REG_SET
3942 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3944 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3945 chain->used_spill_regs);
3949 /* Retry allocating the pseudos spilled in IRA and the
3950 reload. For each reg, merge the various reg sets that
3951 indicate which hard regs can't be used, and call
3952 ira_reassign_pseudos. */
3953 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
3954 if (reg_old_renumber[i] != reg_renumber[i])
3956 if (reg_renumber[i] < 0)
3957 temp_pseudo_reg_arr[n++] = i;
3958 else
3959 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3961 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
3962 bad_spill_regs_global,
3963 pseudo_forbidden_regs, pseudo_previous_regs,
3964 &spilled_pseudos))
3965 something_changed = 1;
3967 /* Fix up the register information in the insn chain.
3968 This involves deleting those of the spilled pseudos which did not get
3969 a new hard register home from the live_{before,after} sets. */
3970 for (chain = reload_insn_chain; chain; chain = chain->next)
3972 HARD_REG_SET used_by_pseudos;
3973 HARD_REG_SET used_by_pseudos2;
3975 if (! ira_conflicts_p)
3977 /* Don't do it for IRA because IRA and the reload still can
3978 assign hard registers to the spilled pseudos on next
3979 reload iterations. */
3980 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3981 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3983 /* Mark any unallocated hard regs as available for spills. That
3984 makes inheritance work somewhat better. */
3985 if (chain->need_reload)
3987 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3988 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3989 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3991 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3992 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3993 /* Value of chain->used_spill_regs from previous iteration
3994 may be not included in the value calculated here because
3995 of possible removing caller-saves insns (see function
3996 delete_caller_save_insns. */
3997 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3998 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4002 CLEAR_REG_SET (&changed_allocation_pseudos);
4003 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4004 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4006 int regno = reg_renumber[i];
4007 if (reg_old_renumber[i] == regno)
4008 continue;
4010 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4012 alter_reg (i, reg_old_renumber[i], false);
4013 reg_old_renumber[i] = regno;
4014 if (dump_file)
4016 if (regno == -1)
4017 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4018 else
4019 fprintf (dump_file, " Register %d now in %d.\n\n",
4020 i, reg_renumber[i]);
4024 return something_changed;
4027 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4029 static void
4030 scan_paradoxical_subregs (rtx x)
4032 int i;
4033 const char *fmt;
4034 enum rtx_code code = GET_CODE (x);
4036 switch (code)
4038 case REG:
4039 case CONST_INT:
4040 case CONST:
4041 case SYMBOL_REF:
4042 case LABEL_REF:
4043 case CONST_DOUBLE:
4044 case CONST_FIXED:
4045 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4046 case CC0:
4047 case PC:
4048 case USE:
4049 case CLOBBER:
4050 return;
4052 case SUBREG:
4053 if (REG_P (SUBREG_REG (x))
4054 && (GET_MODE_SIZE (GET_MODE (x))
4055 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4057 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4058 = GET_MODE_SIZE (GET_MODE (x));
4059 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4061 return;
4063 default:
4064 break;
4067 fmt = GET_RTX_FORMAT (code);
4068 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4070 if (fmt[i] == 'e')
4071 scan_paradoxical_subregs (XEXP (x, i));
4072 else if (fmt[i] == 'E')
4074 int j;
4075 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4076 scan_paradoxical_subregs (XVECEXP (x, i, j));
4081 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4082 examine all of the reload insns between PREV and NEXT exclusive, and
4083 annotate all that may trap. */
4085 static void
4086 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4088 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4089 rtx i;
4091 if (note == NULL)
4092 return;
4094 if (! may_trap_p (PATTERN (insn)))
4095 remove_note (insn, note);
4097 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
4098 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
4099 add_reg_note (i, REG_EH_REGION, XEXP (note, 0));
4102 /* Reload pseudo-registers into hard regs around each insn as needed.
4103 Additional register load insns are output before the insn that needs it
4104 and perhaps store insns after insns that modify the reloaded pseudo reg.
4106 reg_last_reload_reg and reg_reloaded_contents keep track of
4107 which registers are already available in reload registers.
4108 We update these for the reloads that we perform,
4109 as the insns are scanned. */
4111 static void
4112 reload_as_needed (int live_known)
4114 struct insn_chain *chain;
4115 #if defined (AUTO_INC_DEC)
4116 int i;
4117 #endif
4118 rtx x;
4120 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4121 memset (spill_reg_store, 0, sizeof spill_reg_store);
4122 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4123 INIT_REG_SET (&reg_has_output_reload);
4124 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4125 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4127 set_initial_elim_offsets ();
4129 for (chain = reload_insn_chain; chain; chain = chain->next)
4131 rtx prev = 0;
4132 rtx insn = chain->insn;
4133 rtx old_next = NEXT_INSN (insn);
4134 #ifdef AUTO_INC_DEC
4135 rtx old_prev = PREV_INSN (insn);
4136 #endif
4138 /* If we pass a label, copy the offsets from the label information
4139 into the current offsets of each elimination. */
4140 if (LABEL_P (insn))
4141 set_offsets_for_label (insn);
4143 else if (INSN_P (insn))
4145 regset_head regs_to_forget;
4146 INIT_REG_SET (&regs_to_forget);
4147 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4149 /* If this is a USE and CLOBBER of a MEM, ensure that any
4150 references to eliminable registers have been removed. */
4152 if ((GET_CODE (PATTERN (insn)) == USE
4153 || GET_CODE (PATTERN (insn)) == CLOBBER)
4154 && MEM_P (XEXP (PATTERN (insn), 0)))
4155 XEXP (XEXP (PATTERN (insn), 0), 0)
4156 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4157 GET_MODE (XEXP (PATTERN (insn), 0)),
4158 NULL_RTX);
4160 /* If we need to do register elimination processing, do so.
4161 This might delete the insn, in which case we are done. */
4162 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4164 eliminate_regs_in_insn (insn, 1);
4165 if (NOTE_P (insn))
4167 update_eliminable_offsets ();
4168 CLEAR_REG_SET (&regs_to_forget);
4169 continue;
4173 /* If need_elim is nonzero but need_reload is zero, one might think
4174 that we could simply set n_reloads to 0. However, find_reloads
4175 could have done some manipulation of the insn (such as swapping
4176 commutative operands), and these manipulations are lost during
4177 the first pass for every insn that needs register elimination.
4178 So the actions of find_reloads must be redone here. */
4180 if (! chain->need_elim && ! chain->need_reload
4181 && ! chain->need_operand_change)
4182 n_reloads = 0;
4183 /* First find the pseudo regs that must be reloaded for this insn.
4184 This info is returned in the tables reload_... (see reload.h).
4185 Also modify the body of INSN by substituting RELOAD
4186 rtx's for those pseudo regs. */
4187 else
4189 CLEAR_REG_SET (&reg_has_output_reload);
4190 CLEAR_HARD_REG_SET (reg_is_output_reload);
4192 find_reloads (insn, 1, spill_indirect_levels, live_known,
4193 spill_reg_order);
4196 if (n_reloads > 0)
4198 rtx next = NEXT_INSN (insn);
4199 rtx p;
4201 prev = PREV_INSN (insn);
4203 /* Now compute which reload regs to reload them into. Perhaps
4204 reusing reload regs from previous insns, or else output
4205 load insns to reload them. Maybe output store insns too.
4206 Record the choices of reload reg in reload_reg_rtx. */
4207 choose_reload_regs (chain);
4209 /* Merge any reloads that we didn't combine for fear of
4210 increasing the number of spill registers needed but now
4211 discover can be safely merged. */
4212 if (SMALL_REGISTER_CLASSES)
4213 merge_assigned_reloads (insn);
4215 /* Generate the insns to reload operands into or out of
4216 their reload regs. */
4217 emit_reload_insns (chain);
4219 /* Substitute the chosen reload regs from reload_reg_rtx
4220 into the insn's body (or perhaps into the bodies of other
4221 load and store insn that we just made for reloading
4222 and that we moved the structure into). */
4223 subst_reloads (insn);
4225 /* Adjust the exception region notes for loads and stores. */
4226 if (flag_non_call_exceptions && !CALL_P (insn))
4227 fixup_eh_region_note (insn, prev, next);
4229 /* If this was an ASM, make sure that all the reload insns
4230 we have generated are valid. If not, give an error
4231 and delete them. */
4232 if (asm_noperands (PATTERN (insn)) >= 0)
4233 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4234 if (p != insn && INSN_P (p)
4235 && GET_CODE (PATTERN (p)) != USE
4236 && (recog_memoized (p) < 0
4237 || (extract_insn (p), ! constrain_operands (1))))
4239 error_for_asm (insn,
4240 "%<asm%> operand requires "
4241 "impossible reload");
4242 delete_insn (p);
4246 if (num_eliminable && chain->need_elim)
4247 update_eliminable_offsets ();
4249 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4250 is no longer validly lying around to save a future reload.
4251 Note that this does not detect pseudos that were reloaded
4252 for this insn in order to be stored in
4253 (obeying register constraints). That is correct; such reload
4254 registers ARE still valid. */
4255 forget_marked_reloads (&regs_to_forget);
4256 CLEAR_REG_SET (&regs_to_forget);
4258 /* There may have been CLOBBER insns placed after INSN. So scan
4259 between INSN and NEXT and use them to forget old reloads. */
4260 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4261 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4262 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4264 #ifdef AUTO_INC_DEC
4265 /* Likewise for regs altered by auto-increment in this insn.
4266 REG_INC notes have been changed by reloading:
4267 find_reloads_address_1 records substitutions for them,
4268 which have been performed by subst_reloads above. */
4269 for (i = n_reloads - 1; i >= 0; i--)
4271 rtx in_reg = rld[i].in_reg;
4272 if (in_reg)
4274 enum rtx_code code = GET_CODE (in_reg);
4275 /* PRE_INC / PRE_DEC will have the reload register ending up
4276 with the same value as the stack slot, but that doesn't
4277 hold true for POST_INC / POST_DEC. Either we have to
4278 convert the memory access to a true POST_INC / POST_DEC,
4279 or we can't use the reload register for inheritance. */
4280 if ((code == POST_INC || code == POST_DEC)
4281 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4282 REGNO (rld[i].reg_rtx))
4283 /* Make sure it is the inc/dec pseudo, and not
4284 some other (e.g. output operand) pseudo. */
4285 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4286 == REGNO (XEXP (in_reg, 0))))
4289 rtx reload_reg = rld[i].reg_rtx;
4290 enum machine_mode mode = GET_MODE (reload_reg);
4291 int n = 0;
4292 rtx p;
4294 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4296 /* We really want to ignore REG_INC notes here, so
4297 use PATTERN (p) as argument to reg_set_p . */
4298 if (reg_set_p (reload_reg, PATTERN (p)))
4299 break;
4300 n = count_occurrences (PATTERN (p), reload_reg, 0);
4301 if (! n)
4302 continue;
4303 if (n == 1)
4305 n = validate_replace_rtx (reload_reg,
4306 gen_rtx_fmt_e (code,
4307 mode,
4308 reload_reg),
4311 /* We must also verify that the constraints
4312 are met after the replacement. */
4313 extract_insn (p);
4314 if (n)
4315 n = constrain_operands (1);
4316 else
4317 break;
4319 /* If the constraints were not met, then
4320 undo the replacement. */
4321 if (!n)
4323 validate_replace_rtx (gen_rtx_fmt_e (code,
4324 mode,
4325 reload_reg),
4326 reload_reg, p);
4327 break;
4331 break;
4333 if (n == 1)
4335 add_reg_note (p, REG_INC, reload_reg);
4336 /* Mark this as having an output reload so that the
4337 REG_INC processing code below won't invalidate
4338 the reload for inheritance. */
4339 SET_HARD_REG_BIT (reg_is_output_reload,
4340 REGNO (reload_reg));
4341 SET_REGNO_REG_SET (&reg_has_output_reload,
4342 REGNO (XEXP (in_reg, 0)));
4344 else
4345 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4346 NULL);
4348 else if ((code == PRE_INC || code == PRE_DEC)
4349 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4350 REGNO (rld[i].reg_rtx))
4351 /* Make sure it is the inc/dec pseudo, and not
4352 some other (e.g. output operand) pseudo. */
4353 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4354 == REGNO (XEXP (in_reg, 0))))
4356 SET_HARD_REG_BIT (reg_is_output_reload,
4357 REGNO (rld[i].reg_rtx));
4358 SET_REGNO_REG_SET (&reg_has_output_reload,
4359 REGNO (XEXP (in_reg, 0)));
4361 else if (code == PRE_INC || code == PRE_DEC
4362 || code == POST_INC || code == POST_DEC)
4364 int in_regno = REGNO (XEXP (in_reg, 0));
4366 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4368 int in_hard_regno;
4369 bool forget_p = true;
4371 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4372 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4373 in_hard_regno))
4375 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4376 x != old_next;
4377 x = NEXT_INSN (x))
4378 if (x == reg_reloaded_insn[in_hard_regno])
4380 forget_p = false;
4381 break;
4384 /* If for some reasons, we didn't set up
4385 reg_last_reload_reg in this insn,
4386 invalidate inheritance from previous
4387 insns for the incremented/decremented
4388 register. Such registers will be not in
4389 reg_has_output_reload. Invalidate it
4390 also if the corresponding element in
4391 reg_reloaded_insn is also
4392 invalidated. */
4393 if (forget_p)
4394 forget_old_reloads_1 (XEXP (in_reg, 0),
4395 NULL_RTX, NULL);
4400 /* If a pseudo that got a hard register is auto-incremented,
4401 we must purge records of copying it into pseudos without
4402 hard registers. */
4403 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4404 if (REG_NOTE_KIND (x) == REG_INC)
4406 /* See if this pseudo reg was reloaded in this insn.
4407 If so, its last-reload info is still valid
4408 because it is based on this insn's reload. */
4409 for (i = 0; i < n_reloads; i++)
4410 if (rld[i].out == XEXP (x, 0))
4411 break;
4413 if (i == n_reloads)
4414 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4416 #endif
4418 /* A reload reg's contents are unknown after a label. */
4419 if (LABEL_P (insn))
4420 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4422 /* Don't assume a reload reg is still good after a call insn
4423 if it is a call-used reg, or if it contains a value that will
4424 be partially clobbered by the call. */
4425 else if (CALL_P (insn))
4427 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4428 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4432 /* Clean up. */
4433 free (reg_last_reload_reg);
4434 CLEAR_REG_SET (&reg_has_output_reload);
4437 /* Discard all record of any value reloaded from X,
4438 or reloaded in X from someplace else;
4439 unless X is an output reload reg of the current insn.
4441 X may be a hard reg (the reload reg)
4442 or it may be a pseudo reg that was reloaded from.
4444 When DATA is non-NULL just mark the registers in regset
4445 to be forgotten later. */
4447 static void
4448 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4449 void *data)
4451 unsigned int regno;
4452 unsigned int nr;
4453 regset regs = (regset) data;
4455 /* note_stores does give us subregs of hard regs,
4456 subreg_regno_offset requires a hard reg. */
4457 while (GET_CODE (x) == SUBREG)
4459 /* We ignore the subreg offset when calculating the regno,
4460 because we are using the entire underlying hard register
4461 below. */
4462 x = SUBREG_REG (x);
4465 if (!REG_P (x))
4466 return;
4468 regno = REGNO (x);
4470 if (regno >= FIRST_PSEUDO_REGISTER)
4471 nr = 1;
4472 else
4474 unsigned int i;
4476 nr = hard_regno_nregs[regno][GET_MODE (x)];
4477 /* Storing into a spilled-reg invalidates its contents.
4478 This can happen if a block-local pseudo is allocated to that reg
4479 and it wasn't spilled because this block's total need is 0.
4480 Then some insn might have an optional reload and use this reg. */
4481 if (!regs)
4482 for (i = 0; i < nr; i++)
4483 /* But don't do this if the reg actually serves as an output
4484 reload reg in the current instruction. */
4485 if (n_reloads == 0
4486 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4488 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4489 spill_reg_store[regno + i] = 0;
4493 if (regs)
4494 while (nr-- > 0)
4495 SET_REGNO_REG_SET (regs, regno + nr);
4496 else
4498 /* Since value of X has changed,
4499 forget any value previously copied from it. */
4501 while (nr-- > 0)
4502 /* But don't forget a copy if this is the output reload
4503 that establishes the copy's validity. */
4504 if (n_reloads == 0
4505 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4506 reg_last_reload_reg[regno + nr] = 0;
4510 /* Forget the reloads marked in regset by previous function. */
4511 static void
4512 forget_marked_reloads (regset regs)
4514 unsigned int reg;
4515 reg_set_iterator rsi;
4516 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4518 if (reg < FIRST_PSEUDO_REGISTER
4519 /* But don't do this if the reg actually serves as an output
4520 reload reg in the current instruction. */
4521 && (n_reloads == 0
4522 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4524 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4525 spill_reg_store[reg] = 0;
4527 if (n_reloads == 0
4528 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4529 reg_last_reload_reg[reg] = 0;
4533 /* The following HARD_REG_SETs indicate when each hard register is
4534 used for a reload of various parts of the current insn. */
4536 /* If reg is unavailable for all reloads. */
4537 static HARD_REG_SET reload_reg_unavailable;
4538 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4539 static HARD_REG_SET reload_reg_used;
4540 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4541 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4542 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4543 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4544 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4545 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4546 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4547 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4548 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4549 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4550 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4551 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4552 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4553 static HARD_REG_SET reload_reg_used_in_op_addr;
4554 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4555 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4556 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4557 static HARD_REG_SET reload_reg_used_in_insn;
4558 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4559 static HARD_REG_SET reload_reg_used_in_other_addr;
4561 /* If reg is in use as a reload reg for any sort of reload. */
4562 static HARD_REG_SET reload_reg_used_at_all;
4564 /* If reg is use as an inherited reload. We just mark the first register
4565 in the group. */
4566 static HARD_REG_SET reload_reg_used_for_inherit;
4568 /* Records which hard regs are used in any way, either as explicit use or
4569 by being allocated to a pseudo during any point of the current insn. */
4570 static HARD_REG_SET reg_used_in_insn;
4572 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4573 TYPE. MODE is used to indicate how many consecutive regs are
4574 actually used. */
4576 static void
4577 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4578 enum machine_mode mode)
4580 unsigned int nregs = hard_regno_nregs[regno][mode];
4581 unsigned int i;
4583 for (i = regno; i < nregs + regno; i++)
4585 switch (type)
4587 case RELOAD_OTHER:
4588 SET_HARD_REG_BIT (reload_reg_used, i);
4589 break;
4591 case RELOAD_FOR_INPUT_ADDRESS:
4592 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4593 break;
4595 case RELOAD_FOR_INPADDR_ADDRESS:
4596 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4597 break;
4599 case RELOAD_FOR_OUTPUT_ADDRESS:
4600 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4601 break;
4603 case RELOAD_FOR_OUTADDR_ADDRESS:
4604 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4605 break;
4607 case RELOAD_FOR_OPERAND_ADDRESS:
4608 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4609 break;
4611 case RELOAD_FOR_OPADDR_ADDR:
4612 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4613 break;
4615 case RELOAD_FOR_OTHER_ADDRESS:
4616 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4617 break;
4619 case RELOAD_FOR_INPUT:
4620 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4621 break;
4623 case RELOAD_FOR_OUTPUT:
4624 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4625 break;
4627 case RELOAD_FOR_INSN:
4628 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4629 break;
4632 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4636 /* Similarly, but show REGNO is no longer in use for a reload. */
4638 static void
4639 clear_reload_reg_in_use (unsigned int regno, int opnum,
4640 enum reload_type type, enum machine_mode mode)
4642 unsigned int nregs = hard_regno_nregs[regno][mode];
4643 unsigned int start_regno, end_regno, r;
4644 int i;
4645 /* A complication is that for some reload types, inheritance might
4646 allow multiple reloads of the same types to share a reload register.
4647 We set check_opnum if we have to check only reloads with the same
4648 operand number, and check_any if we have to check all reloads. */
4649 int check_opnum = 0;
4650 int check_any = 0;
4651 HARD_REG_SET *used_in_set;
4653 switch (type)
4655 case RELOAD_OTHER:
4656 used_in_set = &reload_reg_used;
4657 break;
4659 case RELOAD_FOR_INPUT_ADDRESS:
4660 used_in_set = &reload_reg_used_in_input_addr[opnum];
4661 break;
4663 case RELOAD_FOR_INPADDR_ADDRESS:
4664 check_opnum = 1;
4665 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4666 break;
4668 case RELOAD_FOR_OUTPUT_ADDRESS:
4669 used_in_set = &reload_reg_used_in_output_addr[opnum];
4670 break;
4672 case RELOAD_FOR_OUTADDR_ADDRESS:
4673 check_opnum = 1;
4674 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4675 break;
4677 case RELOAD_FOR_OPERAND_ADDRESS:
4678 used_in_set = &reload_reg_used_in_op_addr;
4679 break;
4681 case RELOAD_FOR_OPADDR_ADDR:
4682 check_any = 1;
4683 used_in_set = &reload_reg_used_in_op_addr_reload;
4684 break;
4686 case RELOAD_FOR_OTHER_ADDRESS:
4687 used_in_set = &reload_reg_used_in_other_addr;
4688 check_any = 1;
4689 break;
4691 case RELOAD_FOR_INPUT:
4692 used_in_set = &reload_reg_used_in_input[opnum];
4693 break;
4695 case RELOAD_FOR_OUTPUT:
4696 used_in_set = &reload_reg_used_in_output[opnum];
4697 break;
4699 case RELOAD_FOR_INSN:
4700 used_in_set = &reload_reg_used_in_insn;
4701 break;
4702 default:
4703 gcc_unreachable ();
4705 /* We resolve conflicts with remaining reloads of the same type by
4706 excluding the intervals of reload registers by them from the
4707 interval of freed reload registers. Since we only keep track of
4708 one set of interval bounds, we might have to exclude somewhat
4709 more than what would be necessary if we used a HARD_REG_SET here.
4710 But this should only happen very infrequently, so there should
4711 be no reason to worry about it. */
4713 start_regno = regno;
4714 end_regno = regno + nregs;
4715 if (check_opnum || check_any)
4717 for (i = n_reloads - 1; i >= 0; i--)
4719 if (rld[i].when_needed == type
4720 && (check_any || rld[i].opnum == opnum)
4721 && rld[i].reg_rtx)
4723 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4724 unsigned int conflict_end
4725 = end_hard_regno (rld[i].mode, conflict_start);
4727 /* If there is an overlap with the first to-be-freed register,
4728 adjust the interval start. */
4729 if (conflict_start <= start_regno && conflict_end > start_regno)
4730 start_regno = conflict_end;
4731 /* Otherwise, if there is a conflict with one of the other
4732 to-be-freed registers, adjust the interval end. */
4733 if (conflict_start > start_regno && conflict_start < end_regno)
4734 end_regno = conflict_start;
4739 for (r = start_regno; r < end_regno; r++)
4740 CLEAR_HARD_REG_BIT (*used_in_set, r);
4743 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4744 specified by OPNUM and TYPE. */
4746 static int
4747 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4749 int i;
4751 /* In use for a RELOAD_OTHER means it's not available for anything. */
4752 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4753 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4754 return 0;
4756 switch (type)
4758 case RELOAD_OTHER:
4759 /* In use for anything means we can't use it for RELOAD_OTHER. */
4760 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4761 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4762 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4763 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4764 return 0;
4766 for (i = 0; i < reload_n_operands; i++)
4767 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4768 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4769 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4770 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4771 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4772 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4773 return 0;
4775 return 1;
4777 case RELOAD_FOR_INPUT:
4778 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4779 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4780 return 0;
4782 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4783 return 0;
4785 /* If it is used for some other input, can't use it. */
4786 for (i = 0; i < reload_n_operands; i++)
4787 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4788 return 0;
4790 /* If it is used in a later operand's address, can't use it. */
4791 for (i = opnum + 1; i < reload_n_operands; i++)
4792 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4793 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4794 return 0;
4796 return 1;
4798 case RELOAD_FOR_INPUT_ADDRESS:
4799 /* Can't use a register if it is used for an input address for this
4800 operand or used as an input in an earlier one. */
4801 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4802 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4803 return 0;
4805 for (i = 0; i < opnum; i++)
4806 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4807 return 0;
4809 return 1;
4811 case RELOAD_FOR_INPADDR_ADDRESS:
4812 /* Can't use a register if it is used for an input address
4813 for this operand or used as an input in an earlier
4814 one. */
4815 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4816 return 0;
4818 for (i = 0; i < opnum; i++)
4819 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4820 return 0;
4822 return 1;
4824 case RELOAD_FOR_OUTPUT_ADDRESS:
4825 /* Can't use a register if it is used for an output address for this
4826 operand or used as an output in this or a later operand. Note
4827 that multiple output operands are emitted in reverse order, so
4828 the conflicting ones are those with lower indices. */
4829 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4830 return 0;
4832 for (i = 0; i <= opnum; i++)
4833 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4834 return 0;
4836 return 1;
4838 case RELOAD_FOR_OUTADDR_ADDRESS:
4839 /* Can't use a register if it is used for an output address
4840 for this operand or used as an output in this or a
4841 later operand. Note that multiple output operands are
4842 emitted in reverse order, so the conflicting ones are
4843 those with lower indices. */
4844 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4845 return 0;
4847 for (i = 0; i <= opnum; i++)
4848 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4849 return 0;
4851 return 1;
4853 case RELOAD_FOR_OPERAND_ADDRESS:
4854 for (i = 0; i < reload_n_operands; i++)
4855 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4856 return 0;
4858 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4859 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4861 case RELOAD_FOR_OPADDR_ADDR:
4862 for (i = 0; i < reload_n_operands; i++)
4863 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4864 return 0;
4866 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4868 case RELOAD_FOR_OUTPUT:
4869 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4870 outputs, or an operand address for this or an earlier output.
4871 Note that multiple output operands are emitted in reverse order,
4872 so the conflicting ones are those with higher indices. */
4873 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4874 return 0;
4876 for (i = 0; i < reload_n_operands; i++)
4877 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4878 return 0;
4880 for (i = opnum; i < reload_n_operands; i++)
4881 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4882 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4883 return 0;
4885 return 1;
4887 case RELOAD_FOR_INSN:
4888 for (i = 0; i < reload_n_operands; i++)
4889 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4890 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4891 return 0;
4893 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4894 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4896 case RELOAD_FOR_OTHER_ADDRESS:
4897 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4899 default:
4900 gcc_unreachable ();
4904 /* Return 1 if the value in reload reg REGNO, as used by a reload
4905 needed for the part of the insn specified by OPNUM and TYPE,
4906 is still available in REGNO at the end of the insn.
4908 We can assume that the reload reg was already tested for availability
4909 at the time it is needed, and we should not check this again,
4910 in case the reg has already been marked in use. */
4912 static int
4913 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4915 int i;
4917 switch (type)
4919 case RELOAD_OTHER:
4920 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4921 its value must reach the end. */
4922 return 1;
4924 /* If this use is for part of the insn,
4925 its value reaches if no subsequent part uses the same register.
4926 Just like the above function, don't try to do this with lots
4927 of fallthroughs. */
4929 case RELOAD_FOR_OTHER_ADDRESS:
4930 /* Here we check for everything else, since these don't conflict
4931 with anything else and everything comes later. */
4933 for (i = 0; i < reload_n_operands; i++)
4934 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4935 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4936 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4937 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4938 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4939 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4940 return 0;
4942 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4943 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4944 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4945 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4947 case RELOAD_FOR_INPUT_ADDRESS:
4948 case RELOAD_FOR_INPADDR_ADDRESS:
4949 /* Similar, except that we check only for this and subsequent inputs
4950 and the address of only subsequent inputs and we do not need
4951 to check for RELOAD_OTHER objects since they are known not to
4952 conflict. */
4954 for (i = opnum; i < reload_n_operands; i++)
4955 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4956 return 0;
4958 for (i = opnum + 1; i < reload_n_operands; i++)
4959 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4960 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4961 return 0;
4963 for (i = 0; i < reload_n_operands; i++)
4964 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4965 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4966 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4967 return 0;
4969 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4970 return 0;
4972 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4973 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4974 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4976 case RELOAD_FOR_INPUT:
4977 /* Similar to input address, except we start at the next operand for
4978 both input and input address and we do not check for
4979 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4980 would conflict. */
4982 for (i = opnum + 1; i < reload_n_operands; i++)
4983 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4984 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4985 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4986 return 0;
4988 /* ... fall through ... */
4990 case RELOAD_FOR_OPERAND_ADDRESS:
4991 /* Check outputs and their addresses. */
4993 for (i = 0; i < reload_n_operands; i++)
4994 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4995 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4996 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4997 return 0;
4999 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5001 case RELOAD_FOR_OPADDR_ADDR:
5002 for (i = 0; i < reload_n_operands; i++)
5003 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5004 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5005 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5006 return 0;
5008 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5009 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5010 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5012 case RELOAD_FOR_INSN:
5013 /* These conflict with other outputs with RELOAD_OTHER. So
5014 we need only check for output addresses. */
5016 opnum = reload_n_operands;
5018 /* ... fall through ... */
5020 case RELOAD_FOR_OUTPUT:
5021 case RELOAD_FOR_OUTPUT_ADDRESS:
5022 case RELOAD_FOR_OUTADDR_ADDRESS:
5023 /* We already know these can't conflict with a later output. So the
5024 only thing to check are later output addresses.
5025 Note that multiple output operands are emitted in reverse order,
5026 so the conflicting ones are those with lower indices. */
5027 for (i = 0; i < opnum; i++)
5028 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5029 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5030 return 0;
5032 return 1;
5034 default:
5035 gcc_unreachable ();
5039 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5040 every register in the range [REGNO, REGNO + NREGS). */
5042 static bool
5043 reload_regs_reach_end_p (unsigned int regno, int nregs,
5044 int opnum, enum reload_type type)
5046 int i;
5048 for (i = 0; i < nregs; i++)
5049 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
5050 return false;
5051 return true;
5055 /* Returns whether R1 and R2 are uniquely chained: the value of one
5056 is used by the other, and that value is not used by any other
5057 reload for this insn. This is used to partially undo the decision
5058 made in find_reloads when in the case of multiple
5059 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5060 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5061 reloads. This code tries to avoid the conflict created by that
5062 change. It might be cleaner to explicitly keep track of which
5063 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5064 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5065 this after the fact. */
5066 static bool
5067 reloads_unique_chain_p (int r1, int r2)
5069 int i;
5071 /* We only check input reloads. */
5072 if (! rld[r1].in || ! rld[r2].in)
5073 return false;
5075 /* Avoid anything with output reloads. */
5076 if (rld[r1].out || rld[r2].out)
5077 return false;
5079 /* "chained" means one reload is a component of the other reload,
5080 not the same as the other reload. */
5081 if (rld[r1].opnum != rld[r2].opnum
5082 || rtx_equal_p (rld[r1].in, rld[r2].in)
5083 || rld[r1].optional || rld[r2].optional
5084 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5085 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5086 return false;
5088 for (i = 0; i < n_reloads; i ++)
5089 /* Look for input reloads that aren't our two */
5090 if (i != r1 && i != r2 && rld[i].in)
5092 /* If our reload is mentioned at all, it isn't a simple chain. */
5093 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5094 return false;
5096 return true;
5100 /* The recursive function change all occurrences of WHAT in *WHERE
5101 onto REPL. */
5102 static void
5103 substitute (rtx *where, const_rtx what, rtx repl)
5105 const char *fmt;
5106 int i;
5107 enum rtx_code code;
5109 if (*where == 0)
5110 return;
5112 if (*where == what || rtx_equal_p (*where, what))
5114 *where = repl;
5115 return;
5118 code = GET_CODE (*where);
5119 fmt = GET_RTX_FORMAT (code);
5120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5122 if (fmt[i] == 'E')
5124 int j;
5126 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5127 substitute (&XVECEXP (*where, i, j), what, repl);
5129 else if (fmt[i] == 'e')
5130 substitute (&XEXP (*where, i), what, repl);
5134 /* The function returns TRUE if chain of reload R1 and R2 (in any
5135 order) can be evaluated without usage of intermediate register for
5136 the reload containing another reload. It is important to see
5137 gen_reload to understand what the function is trying to do. As an
5138 example, let us have reload chain
5140 r2: const
5141 r1: <something> + const
5143 and reload R2 got reload reg HR. The function returns true if
5144 there is a correct insn HR = HR + <something>. Otherwise,
5145 gen_reload will use intermediate register (and this is the reload
5146 reg for R1) to reload <something>.
5148 We need this function to find a conflict for chain reloads. In our
5149 example, if HR = HR + <something> is incorrect insn, then we cannot
5150 use HR as a reload register for R2. If we do use it then we get a
5151 wrong code:
5153 HR = const
5154 HR = <something>
5155 HR = HR + HR
5158 static bool
5159 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5161 bool result;
5162 int regno, n, code;
5163 rtx out, in, tem, insn;
5164 rtx last = get_last_insn ();
5166 /* Make r2 a component of r1. */
5167 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5169 n = r1;
5170 r1 = r2;
5171 r2 = n;
5173 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5174 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5175 gcc_assert (regno >= 0);
5176 out = gen_rtx_REG (rld[r1].mode, regno);
5177 in = copy_rtx (rld[r1].in);
5178 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5180 /* If IN is a paradoxical SUBREG, remove it and try to put the
5181 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5182 if (GET_CODE (in) == SUBREG
5183 && (GET_MODE_SIZE (GET_MODE (in))
5184 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
5185 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
5186 in = SUBREG_REG (in), out = tem;
5188 if (GET_CODE (in) == PLUS
5189 && (REG_P (XEXP (in, 0))
5190 || GET_CODE (XEXP (in, 0)) == SUBREG
5191 || MEM_P (XEXP (in, 0)))
5192 && (REG_P (XEXP (in, 1))
5193 || GET_CODE (XEXP (in, 1)) == SUBREG
5194 || CONSTANT_P (XEXP (in, 1))
5195 || MEM_P (XEXP (in, 1))))
5197 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5198 code = recog_memoized (insn);
5199 result = false;
5201 if (code >= 0)
5203 extract_insn (insn);
5204 /* We want constrain operands to treat this insn strictly in
5205 its validity determination, i.e., the way it would after
5206 reload has completed. */
5207 result = constrain_operands (1);
5210 delete_insns_since (last);
5211 return result;
5214 /* It looks like other cases in gen_reload are not possible for
5215 chain reloads or do need an intermediate hard registers. */
5216 return true;
5219 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5220 Return 0 otherwise.
5222 This function uses the same algorithm as reload_reg_free_p above. */
5224 static int
5225 reloads_conflict (int r1, int r2)
5227 enum reload_type r1_type = rld[r1].when_needed;
5228 enum reload_type r2_type = rld[r2].when_needed;
5229 int r1_opnum = rld[r1].opnum;
5230 int r2_opnum = rld[r2].opnum;
5232 /* RELOAD_OTHER conflicts with everything. */
5233 if (r2_type == RELOAD_OTHER)
5234 return 1;
5236 /* Otherwise, check conflicts differently for each type. */
5238 switch (r1_type)
5240 case RELOAD_FOR_INPUT:
5241 return (r2_type == RELOAD_FOR_INSN
5242 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5243 || r2_type == RELOAD_FOR_OPADDR_ADDR
5244 || r2_type == RELOAD_FOR_INPUT
5245 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5246 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5247 && r2_opnum > r1_opnum));
5249 case RELOAD_FOR_INPUT_ADDRESS:
5250 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5251 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5253 case RELOAD_FOR_INPADDR_ADDRESS:
5254 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5255 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5257 case RELOAD_FOR_OUTPUT_ADDRESS:
5258 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5259 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5261 case RELOAD_FOR_OUTADDR_ADDRESS:
5262 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5263 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5265 case RELOAD_FOR_OPERAND_ADDRESS:
5266 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5267 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5268 && (!reloads_unique_chain_p (r1, r2)
5269 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5271 case RELOAD_FOR_OPADDR_ADDR:
5272 return (r2_type == RELOAD_FOR_INPUT
5273 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5275 case RELOAD_FOR_OUTPUT:
5276 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5277 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5278 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5279 && r2_opnum >= r1_opnum));
5281 case RELOAD_FOR_INSN:
5282 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5283 || r2_type == RELOAD_FOR_INSN
5284 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5286 case RELOAD_FOR_OTHER_ADDRESS:
5287 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5289 case RELOAD_OTHER:
5290 return 1;
5292 default:
5293 gcc_unreachable ();
5297 /* Indexed by reload number, 1 if incoming value
5298 inherited from previous insns. */
5299 static char reload_inherited[MAX_RELOADS];
5301 /* For an inherited reload, this is the insn the reload was inherited from,
5302 if we know it. Otherwise, this is 0. */
5303 static rtx reload_inheritance_insn[MAX_RELOADS];
5305 /* If nonzero, this is a place to get the value of the reload,
5306 rather than using reload_in. */
5307 static rtx reload_override_in[MAX_RELOADS];
5309 /* For each reload, the hard register number of the register used,
5310 or -1 if we did not need a register for this reload. */
5311 static int reload_spill_index[MAX_RELOADS];
5313 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5314 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5316 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5317 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5319 /* Subroutine of free_for_value_p, used to check a single register.
5320 START_REGNO is the starting regno of the full reload register
5321 (possibly comprising multiple hard registers) that we are considering. */
5323 static int
5324 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5325 enum reload_type type, rtx value, rtx out,
5326 int reloadnum, int ignore_address_reloads)
5328 int time1;
5329 /* Set if we see an input reload that must not share its reload register
5330 with any new earlyclobber, but might otherwise share the reload
5331 register with an output or input-output reload. */
5332 int check_earlyclobber = 0;
5333 int i;
5334 int copy = 0;
5336 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5337 return 0;
5339 if (out == const0_rtx)
5341 copy = 1;
5342 out = NULL_RTX;
5345 /* We use some pseudo 'time' value to check if the lifetimes of the
5346 new register use would overlap with the one of a previous reload
5347 that is not read-only or uses a different value.
5348 The 'time' used doesn't have to be linear in any shape or form, just
5349 monotonic.
5350 Some reload types use different 'buckets' for each operand.
5351 So there are MAX_RECOG_OPERANDS different time values for each
5352 such reload type.
5353 We compute TIME1 as the time when the register for the prospective
5354 new reload ceases to be live, and TIME2 for each existing
5355 reload as the time when that the reload register of that reload
5356 becomes live.
5357 Where there is little to be gained by exact lifetime calculations,
5358 we just make conservative assumptions, i.e. a longer lifetime;
5359 this is done in the 'default:' cases. */
5360 switch (type)
5362 case RELOAD_FOR_OTHER_ADDRESS:
5363 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5364 time1 = copy ? 0 : 1;
5365 break;
5366 case RELOAD_OTHER:
5367 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5368 break;
5369 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5370 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5371 respectively, to the time values for these, we get distinct time
5372 values. To get distinct time values for each operand, we have to
5373 multiply opnum by at least three. We round that up to four because
5374 multiply by four is often cheaper. */
5375 case RELOAD_FOR_INPADDR_ADDRESS:
5376 time1 = opnum * 4 + 2;
5377 break;
5378 case RELOAD_FOR_INPUT_ADDRESS:
5379 time1 = opnum * 4 + 3;
5380 break;
5381 case RELOAD_FOR_INPUT:
5382 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5383 executes (inclusive). */
5384 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5385 break;
5386 case RELOAD_FOR_OPADDR_ADDR:
5387 /* opnum * 4 + 4
5388 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5389 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5390 break;
5391 case RELOAD_FOR_OPERAND_ADDRESS:
5392 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5393 is executed. */
5394 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5395 break;
5396 case RELOAD_FOR_OUTADDR_ADDRESS:
5397 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5398 break;
5399 case RELOAD_FOR_OUTPUT_ADDRESS:
5400 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5401 break;
5402 default:
5403 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5406 for (i = 0; i < n_reloads; i++)
5408 rtx reg = rld[i].reg_rtx;
5409 if (reg && REG_P (reg)
5410 && ((unsigned) regno - true_regnum (reg)
5411 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5412 && i != reloadnum)
5414 rtx other_input = rld[i].in;
5416 /* If the other reload loads the same input value, that
5417 will not cause a conflict only if it's loading it into
5418 the same register. */
5419 if (true_regnum (reg) != start_regno)
5420 other_input = NULL_RTX;
5421 if (! other_input || ! rtx_equal_p (other_input, value)
5422 || rld[i].out || out)
5424 int time2;
5425 switch (rld[i].when_needed)
5427 case RELOAD_FOR_OTHER_ADDRESS:
5428 time2 = 0;
5429 break;
5430 case RELOAD_FOR_INPADDR_ADDRESS:
5431 /* find_reloads makes sure that a
5432 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5433 by at most one - the first -
5434 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5435 address reload is inherited, the address address reload
5436 goes away, so we can ignore this conflict. */
5437 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5438 && ignore_address_reloads
5439 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5440 Then the address address is still needed to store
5441 back the new address. */
5442 && ! rld[reloadnum].out)
5443 continue;
5444 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5445 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5446 reloads go away. */
5447 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5448 && ignore_address_reloads
5449 /* Unless we are reloading an auto_inc expression. */
5450 && ! rld[reloadnum].out)
5451 continue;
5452 time2 = rld[i].opnum * 4 + 2;
5453 break;
5454 case RELOAD_FOR_INPUT_ADDRESS:
5455 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5456 && ignore_address_reloads
5457 && ! rld[reloadnum].out)
5458 continue;
5459 time2 = rld[i].opnum * 4 + 3;
5460 break;
5461 case RELOAD_FOR_INPUT:
5462 time2 = rld[i].opnum * 4 + 4;
5463 check_earlyclobber = 1;
5464 break;
5465 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5466 == MAX_RECOG_OPERAND * 4 */
5467 case RELOAD_FOR_OPADDR_ADDR:
5468 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5469 && ignore_address_reloads
5470 && ! rld[reloadnum].out)
5471 continue;
5472 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5473 break;
5474 case RELOAD_FOR_OPERAND_ADDRESS:
5475 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5476 check_earlyclobber = 1;
5477 break;
5478 case RELOAD_FOR_INSN:
5479 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5480 break;
5481 case RELOAD_FOR_OUTPUT:
5482 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5483 instruction is executed. */
5484 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5485 break;
5486 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5487 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5488 value. */
5489 case RELOAD_FOR_OUTADDR_ADDRESS:
5490 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5491 && ignore_address_reloads
5492 && ! rld[reloadnum].out)
5493 continue;
5494 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5495 break;
5496 case RELOAD_FOR_OUTPUT_ADDRESS:
5497 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5498 break;
5499 case RELOAD_OTHER:
5500 /* If there is no conflict in the input part, handle this
5501 like an output reload. */
5502 if (! rld[i].in || rtx_equal_p (other_input, value))
5504 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5505 /* Earlyclobbered outputs must conflict with inputs. */
5506 if (earlyclobber_operand_p (rld[i].out))
5507 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5509 break;
5511 time2 = 1;
5512 /* RELOAD_OTHER might be live beyond instruction execution,
5513 but this is not obvious when we set time2 = 1. So check
5514 here if there might be a problem with the new reload
5515 clobbering the register used by the RELOAD_OTHER. */
5516 if (out)
5517 return 0;
5518 break;
5519 default:
5520 return 0;
5522 if ((time1 >= time2
5523 && (! rld[i].in || rld[i].out
5524 || ! rtx_equal_p (other_input, value)))
5525 || (out && rld[reloadnum].out_reg
5526 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5527 return 0;
5532 /* Earlyclobbered outputs must conflict with inputs. */
5533 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5534 return 0;
5536 return 1;
5539 /* Return 1 if the value in reload reg REGNO, as used by a reload
5540 needed for the part of the insn specified by OPNUM and TYPE,
5541 may be used to load VALUE into it.
5543 MODE is the mode in which the register is used, this is needed to
5544 determine how many hard regs to test.
5546 Other read-only reloads with the same value do not conflict
5547 unless OUT is nonzero and these other reloads have to live while
5548 output reloads live.
5549 If OUT is CONST0_RTX, this is a special case: it means that the
5550 test should not be for using register REGNO as reload register, but
5551 for copying from register REGNO into the reload register.
5553 RELOADNUM is the number of the reload we want to load this value for;
5554 a reload does not conflict with itself.
5556 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5557 reloads that load an address for the very reload we are considering.
5559 The caller has to make sure that there is no conflict with the return
5560 register. */
5562 static int
5563 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5564 enum reload_type type, rtx value, rtx out, int reloadnum,
5565 int ignore_address_reloads)
5567 int nregs = hard_regno_nregs[regno][mode];
5568 while (nregs-- > 0)
5569 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5570 value, out, reloadnum,
5571 ignore_address_reloads))
5572 return 0;
5573 return 1;
5576 /* Return nonzero if the rtx X is invariant over the current function. */
5577 /* ??? Actually, the places where we use this expect exactly what is
5578 tested here, and not everything that is function invariant. In
5579 particular, the frame pointer and arg pointer are special cased;
5580 pic_offset_table_rtx is not, and we must not spill these things to
5581 memory. */
5584 function_invariant_p (const_rtx x)
5586 if (CONSTANT_P (x))
5587 return 1;
5588 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5589 return 1;
5590 if (GET_CODE (x) == PLUS
5591 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5592 && CONSTANT_P (XEXP (x, 1)))
5593 return 1;
5594 return 0;
5597 /* Determine whether the reload reg X overlaps any rtx'es used for
5598 overriding inheritance. Return nonzero if so. */
5600 static int
5601 conflicts_with_override (rtx x)
5603 int i;
5604 for (i = 0; i < n_reloads; i++)
5605 if (reload_override_in[i]
5606 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5607 return 1;
5608 return 0;
5611 /* Give an error message saying we failed to find a reload for INSN,
5612 and clear out reload R. */
5613 static void
5614 failed_reload (rtx insn, int r)
5616 if (asm_noperands (PATTERN (insn)) < 0)
5617 /* It's the compiler's fault. */
5618 fatal_insn ("could not find a spill register", insn);
5620 /* It's the user's fault; the operand's mode and constraint
5621 don't match. Disable this reload so we don't crash in final. */
5622 error_for_asm (insn,
5623 "%<asm%> operand constraint incompatible with operand size");
5624 rld[r].in = 0;
5625 rld[r].out = 0;
5626 rld[r].reg_rtx = 0;
5627 rld[r].optional = 1;
5628 rld[r].secondary_p = 1;
5631 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5632 for reload R. If it's valid, get an rtx for it. Return nonzero if
5633 successful. */
5634 static int
5635 set_reload_reg (int i, int r)
5637 int regno;
5638 rtx reg = spill_reg_rtx[i];
5640 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5641 spill_reg_rtx[i] = reg
5642 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5644 regno = true_regnum (reg);
5646 /* Detect when the reload reg can't hold the reload mode.
5647 This used to be one `if', but Sequent compiler can't handle that. */
5648 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5650 enum machine_mode test_mode = VOIDmode;
5651 if (rld[r].in)
5652 test_mode = GET_MODE (rld[r].in);
5653 /* If rld[r].in has VOIDmode, it means we will load it
5654 in whatever mode the reload reg has: to wit, rld[r].mode.
5655 We have already tested that for validity. */
5656 /* Aside from that, we need to test that the expressions
5657 to reload from or into have modes which are valid for this
5658 reload register. Otherwise the reload insns would be invalid. */
5659 if (! (rld[r].in != 0 && test_mode != VOIDmode
5660 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5661 if (! (rld[r].out != 0
5662 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5664 /* The reg is OK. */
5665 last_spill_reg = i;
5667 /* Mark as in use for this insn the reload regs we use
5668 for this. */
5669 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5670 rld[r].when_needed, rld[r].mode);
5672 rld[r].reg_rtx = reg;
5673 reload_spill_index[r] = spill_regs[i];
5674 return 1;
5677 return 0;
5680 /* Find a spill register to use as a reload register for reload R.
5681 LAST_RELOAD is nonzero if this is the last reload for the insn being
5682 processed.
5684 Set rld[R].reg_rtx to the register allocated.
5686 We return 1 if successful, or 0 if we couldn't find a spill reg and
5687 we didn't change anything. */
5689 static int
5690 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5691 int last_reload)
5693 int i, pass, count;
5695 /* If we put this reload ahead, thinking it is a group,
5696 then insist on finding a group. Otherwise we can grab a
5697 reg that some other reload needs.
5698 (That can happen when we have a 68000 DATA_OR_FP_REG
5699 which is a group of data regs or one fp reg.)
5700 We need not be so restrictive if there are no more reloads
5701 for this insn.
5703 ??? Really it would be nicer to have smarter handling
5704 for that kind of reg class, where a problem like this is normal.
5705 Perhaps those classes should be avoided for reloading
5706 by use of more alternatives. */
5708 int force_group = rld[r].nregs > 1 && ! last_reload;
5710 /* If we want a single register and haven't yet found one,
5711 take any reg in the right class and not in use.
5712 If we want a consecutive group, here is where we look for it.
5714 We use two passes so we can first look for reload regs to
5715 reuse, which are already in use for other reloads in this insn,
5716 and only then use additional registers.
5717 I think that maximizing reuse is needed to make sure we don't
5718 run out of reload regs. Suppose we have three reloads, and
5719 reloads A and B can share regs. These need two regs.
5720 Suppose A and B are given different regs.
5721 That leaves none for C. */
5722 for (pass = 0; pass < 2; pass++)
5724 /* I is the index in spill_regs.
5725 We advance it round-robin between insns to use all spill regs
5726 equally, so that inherited reloads have a chance
5727 of leapfrogging each other. */
5729 i = last_spill_reg;
5731 for (count = 0; count < n_spills; count++)
5733 int rclass = (int) rld[r].rclass;
5734 int regnum;
5736 i++;
5737 if (i >= n_spills)
5738 i -= n_spills;
5739 regnum = spill_regs[i];
5741 if ((reload_reg_free_p (regnum, rld[r].opnum,
5742 rld[r].when_needed)
5743 || (rld[r].in
5744 /* We check reload_reg_used to make sure we
5745 don't clobber the return register. */
5746 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5747 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5748 rld[r].when_needed, rld[r].in,
5749 rld[r].out, r, 1)))
5750 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
5751 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5752 /* Look first for regs to share, then for unshared. But
5753 don't share regs used for inherited reloads; they are
5754 the ones we want to preserve. */
5755 && (pass
5756 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5757 regnum)
5758 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5759 regnum))))
5761 int nr = hard_regno_nregs[regnum][rld[r].mode];
5762 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5763 (on 68000) got us two FP regs. If NR is 1,
5764 we would reject both of them. */
5765 if (force_group)
5766 nr = rld[r].nregs;
5767 /* If we need only one reg, we have already won. */
5768 if (nr == 1)
5770 /* But reject a single reg if we demand a group. */
5771 if (force_group)
5772 continue;
5773 break;
5775 /* Otherwise check that as many consecutive regs as we need
5776 are available here. */
5777 while (nr > 1)
5779 int regno = regnum + nr - 1;
5780 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
5781 && spill_reg_order[regno] >= 0
5782 && reload_reg_free_p (regno, rld[r].opnum,
5783 rld[r].when_needed)))
5784 break;
5785 nr--;
5787 if (nr == 1)
5788 break;
5792 /* If we found something on pass 1, omit pass 2. */
5793 if (count < n_spills)
5794 break;
5797 /* We should have found a spill register by now. */
5798 if (count >= n_spills)
5799 return 0;
5801 /* I is the index in SPILL_REG_RTX of the reload register we are to
5802 allocate. Get an rtx for it and find its register number. */
5804 return set_reload_reg (i, r);
5807 /* Initialize all the tables needed to allocate reload registers.
5808 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5809 is the array we use to restore the reg_rtx field for every reload. */
5811 static void
5812 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5814 int i;
5816 for (i = 0; i < n_reloads; i++)
5817 rld[i].reg_rtx = save_reload_reg_rtx[i];
5819 memset (reload_inherited, 0, MAX_RELOADS);
5820 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5821 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5823 CLEAR_HARD_REG_SET (reload_reg_used);
5824 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5825 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5826 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5827 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5828 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5830 CLEAR_HARD_REG_SET (reg_used_in_insn);
5832 HARD_REG_SET tmp;
5833 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5834 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5835 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5836 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5837 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5838 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5841 for (i = 0; i < reload_n_operands; i++)
5843 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5844 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5845 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5846 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5847 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5848 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5851 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5853 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5855 for (i = 0; i < n_reloads; i++)
5856 /* If we have already decided to use a certain register,
5857 don't use it in another way. */
5858 if (rld[i].reg_rtx)
5859 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5860 rld[i].when_needed, rld[i].mode);
5863 /* Assign hard reg targets for the pseudo-registers we must reload
5864 into hard regs for this insn.
5865 Also output the instructions to copy them in and out of the hard regs.
5867 For machines with register classes, we are responsible for
5868 finding a reload reg in the proper class. */
5870 static void
5871 choose_reload_regs (struct insn_chain *chain)
5873 rtx insn = chain->insn;
5874 int i, j;
5875 unsigned int max_group_size = 1;
5876 enum reg_class group_class = NO_REGS;
5877 int pass, win, inheritance;
5879 rtx save_reload_reg_rtx[MAX_RELOADS];
5881 /* In order to be certain of getting the registers we need,
5882 we must sort the reloads into order of increasing register class.
5883 Then our grabbing of reload registers will parallel the process
5884 that provided the reload registers.
5886 Also note whether any of the reloads wants a consecutive group of regs.
5887 If so, record the maximum size of the group desired and what
5888 register class contains all the groups needed by this insn. */
5890 for (j = 0; j < n_reloads; j++)
5892 reload_order[j] = j;
5893 if (rld[j].reg_rtx != NULL_RTX)
5895 gcc_assert (REG_P (rld[j].reg_rtx)
5896 && HARD_REGISTER_P (rld[j].reg_rtx));
5897 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5899 else
5900 reload_spill_index[j] = -1;
5902 if (rld[j].nregs > 1)
5904 max_group_size = MAX (rld[j].nregs, max_group_size);
5905 group_class
5906 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
5909 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5912 if (n_reloads > 1)
5913 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5915 /* If -O, try first with inheritance, then turning it off.
5916 If not -O, don't do inheritance.
5917 Using inheritance when not optimizing leads to paradoxes
5918 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5919 because one side of the comparison might be inherited. */
5920 win = 0;
5921 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5923 choose_reload_regs_init (chain, save_reload_reg_rtx);
5925 /* Process the reloads in order of preference just found.
5926 Beyond this point, subregs can be found in reload_reg_rtx.
5928 This used to look for an existing reloaded home for all of the
5929 reloads, and only then perform any new reloads. But that could lose
5930 if the reloads were done out of reg-class order because a later
5931 reload with a looser constraint might have an old home in a register
5932 needed by an earlier reload with a tighter constraint.
5934 To solve this, we make two passes over the reloads, in the order
5935 described above. In the first pass we try to inherit a reload
5936 from a previous insn. If there is a later reload that needs a
5937 class that is a proper subset of the class being processed, we must
5938 also allocate a spill register during the first pass.
5940 Then make a second pass over the reloads to allocate any reloads
5941 that haven't been given registers yet. */
5943 for (j = 0; j < n_reloads; j++)
5945 int r = reload_order[j];
5946 rtx search_equiv = NULL_RTX;
5948 /* Ignore reloads that got marked inoperative. */
5949 if (rld[r].out == 0 && rld[r].in == 0
5950 && ! rld[r].secondary_p)
5951 continue;
5953 /* If find_reloads chose to use reload_in or reload_out as a reload
5954 register, we don't need to chose one. Otherwise, try even if it
5955 found one since we might save an insn if we find the value lying
5956 around.
5957 Try also when reload_in is a pseudo without a hard reg. */
5958 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5959 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5960 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5961 && !MEM_P (rld[r].in)
5962 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5963 continue;
5965 #if 0 /* No longer needed for correct operation.
5966 It might give better code, or might not; worth an experiment? */
5967 /* If this is an optional reload, we can't inherit from earlier insns
5968 until we are sure that any non-optional reloads have been allocated.
5969 The following code takes advantage of the fact that optional reloads
5970 are at the end of reload_order. */
5971 if (rld[r].optional != 0)
5972 for (i = 0; i < j; i++)
5973 if ((rld[reload_order[i]].out != 0
5974 || rld[reload_order[i]].in != 0
5975 || rld[reload_order[i]].secondary_p)
5976 && ! rld[reload_order[i]].optional
5977 && rld[reload_order[i]].reg_rtx == 0)
5978 allocate_reload_reg (chain, reload_order[i], 0);
5979 #endif
5981 /* First see if this pseudo is already available as reloaded
5982 for a previous insn. We cannot try to inherit for reloads
5983 that are smaller than the maximum number of registers needed
5984 for groups unless the register we would allocate cannot be used
5985 for the groups.
5987 We could check here to see if this is a secondary reload for
5988 an object that is already in a register of the desired class.
5989 This would avoid the need for the secondary reload register.
5990 But this is complex because we can't easily determine what
5991 objects might want to be loaded via this reload. So let a
5992 register be allocated here. In `emit_reload_insns' we suppress
5993 one of the loads in the case described above. */
5995 if (inheritance)
5997 int byte = 0;
5998 int regno = -1;
5999 enum machine_mode mode = VOIDmode;
6001 if (rld[r].in == 0)
6003 else if (REG_P (rld[r].in))
6005 regno = REGNO (rld[r].in);
6006 mode = GET_MODE (rld[r].in);
6008 else if (REG_P (rld[r].in_reg))
6010 regno = REGNO (rld[r].in_reg);
6011 mode = GET_MODE (rld[r].in_reg);
6013 else if (GET_CODE (rld[r].in_reg) == SUBREG
6014 && REG_P (SUBREG_REG (rld[r].in_reg)))
6016 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6017 if (regno < FIRST_PSEUDO_REGISTER)
6018 regno = subreg_regno (rld[r].in_reg);
6019 else
6020 byte = SUBREG_BYTE (rld[r].in_reg);
6021 mode = GET_MODE (rld[r].in_reg);
6023 #ifdef AUTO_INC_DEC
6024 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6025 && REG_P (XEXP (rld[r].in_reg, 0)))
6027 regno = REGNO (XEXP (rld[r].in_reg, 0));
6028 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6029 rld[r].out = rld[r].in;
6031 #endif
6032 #if 0
6033 /* This won't work, since REGNO can be a pseudo reg number.
6034 Also, it takes much more hair to keep track of all the things
6035 that can invalidate an inherited reload of part of a pseudoreg. */
6036 else if (GET_CODE (rld[r].in) == SUBREG
6037 && REG_P (SUBREG_REG (rld[r].in)))
6038 regno = subreg_regno (rld[r].in);
6039 #endif
6041 if (regno >= 0
6042 && reg_last_reload_reg[regno] != 0
6043 #ifdef CANNOT_CHANGE_MODE_CLASS
6044 /* Verify that the register it's in can be used in
6045 mode MODE. */
6046 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6047 GET_MODE (reg_last_reload_reg[regno]),
6048 mode)
6049 #endif
6052 enum reg_class rclass = rld[r].rclass, last_class;
6053 rtx last_reg = reg_last_reload_reg[regno];
6054 enum machine_mode need_mode;
6056 i = REGNO (last_reg);
6057 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6058 last_class = REGNO_REG_CLASS (i);
6060 if (byte == 0)
6061 need_mode = mode;
6062 else
6063 need_mode
6064 = smallest_mode_for_size
6065 (GET_MODE_BITSIZE (mode) + byte * BITS_PER_UNIT,
6066 GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
6067 ? MODE_INT : GET_MODE_CLASS (mode));
6069 if ((GET_MODE_SIZE (GET_MODE (last_reg))
6070 >= GET_MODE_SIZE (need_mode))
6071 && reg_reloaded_contents[i] == regno
6072 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6073 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6074 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6075 /* Even if we can't use this register as a reload
6076 register, we might use it for reload_override_in,
6077 if copying it to the desired class is cheap
6078 enough. */
6079 || ((REGISTER_MOVE_COST (mode, last_class, rclass)
6080 < MEMORY_MOVE_COST (mode, rclass, 1))
6081 && (secondary_reload_class (1, rclass, mode,
6082 last_reg)
6083 == NO_REGS)
6084 #ifdef SECONDARY_MEMORY_NEEDED
6085 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6086 mode)
6087 #endif
6090 && (rld[r].nregs == max_group_size
6091 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6093 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6094 rld[r].when_needed, rld[r].in,
6095 const0_rtx, r, 1))
6097 /* If a group is needed, verify that all the subsequent
6098 registers still have their values intact. */
6099 int nr = hard_regno_nregs[i][rld[r].mode];
6100 int k;
6102 for (k = 1; k < nr; k++)
6103 if (reg_reloaded_contents[i + k] != regno
6104 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6105 break;
6107 if (k == nr)
6109 int i1;
6110 int bad_for_class;
6112 last_reg = (GET_MODE (last_reg) == mode
6113 ? last_reg : gen_rtx_REG (mode, i));
6115 bad_for_class = 0;
6116 for (k = 0; k < nr; k++)
6117 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6118 i+k);
6120 /* We found a register that contains the
6121 value we need. If this register is the
6122 same as an `earlyclobber' operand of the
6123 current insn, just mark it as a place to
6124 reload from since we can't use it as the
6125 reload register itself. */
6127 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6128 if (reg_overlap_mentioned_for_reload_p
6129 (reg_last_reload_reg[regno],
6130 reload_earlyclobbers[i1]))
6131 break;
6133 if (i1 != n_earlyclobbers
6134 || ! (free_for_value_p (i, rld[r].mode,
6135 rld[r].opnum,
6136 rld[r].when_needed, rld[r].in,
6137 rld[r].out, r, 1))
6138 /* Don't use it if we'd clobber a pseudo reg. */
6139 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6140 && rld[r].out
6141 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6142 /* Don't clobber the frame pointer. */
6143 || (i == HARD_FRAME_POINTER_REGNUM
6144 && frame_pointer_needed
6145 && rld[r].out)
6146 /* Don't really use the inherited spill reg
6147 if we need it wider than we've got it. */
6148 || (GET_MODE_SIZE (rld[r].mode)
6149 > GET_MODE_SIZE (mode))
6150 || bad_for_class
6152 /* If find_reloads chose reload_out as reload
6153 register, stay with it - that leaves the
6154 inherited register for subsequent reloads. */
6155 || (rld[r].out && rld[r].reg_rtx
6156 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6158 if (! rld[r].optional)
6160 reload_override_in[r] = last_reg;
6161 reload_inheritance_insn[r]
6162 = reg_reloaded_insn[i];
6165 else
6167 int k;
6168 /* We can use this as a reload reg. */
6169 /* Mark the register as in use for this part of
6170 the insn. */
6171 mark_reload_reg_in_use (i,
6172 rld[r].opnum,
6173 rld[r].when_needed,
6174 rld[r].mode);
6175 rld[r].reg_rtx = last_reg;
6176 reload_inherited[r] = 1;
6177 reload_inheritance_insn[r]
6178 = reg_reloaded_insn[i];
6179 reload_spill_index[r] = i;
6180 for (k = 0; k < nr; k++)
6181 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6182 i + k);
6189 /* Here's another way to see if the value is already lying around. */
6190 if (inheritance
6191 && rld[r].in != 0
6192 && ! reload_inherited[r]
6193 && rld[r].out == 0
6194 && (CONSTANT_P (rld[r].in)
6195 || GET_CODE (rld[r].in) == PLUS
6196 || REG_P (rld[r].in)
6197 || MEM_P (rld[r].in))
6198 && (rld[r].nregs == max_group_size
6199 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6200 search_equiv = rld[r].in;
6201 /* If this is an output reload from a simple move insn, look
6202 if an equivalence for the input is available. */
6203 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
6205 rtx set = single_set (insn);
6207 if (set
6208 && rtx_equal_p (rld[r].out, SET_DEST (set))
6209 && CONSTANT_P (SET_SRC (set)))
6210 search_equiv = SET_SRC (set);
6213 if (search_equiv)
6215 rtx equiv
6216 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6217 -1, NULL, 0, rld[r].mode);
6218 int regno = 0;
6220 if (equiv != 0)
6222 if (REG_P (equiv))
6223 regno = REGNO (equiv);
6224 else
6226 /* This must be a SUBREG of a hard register.
6227 Make a new REG since this might be used in an
6228 address and not all machines support SUBREGs
6229 there. */
6230 gcc_assert (GET_CODE (equiv) == SUBREG);
6231 regno = subreg_regno (equiv);
6232 equiv = gen_rtx_REG (rld[r].mode, regno);
6233 /* If we choose EQUIV as the reload register, but the
6234 loop below decides to cancel the inheritance, we'll
6235 end up reloading EQUIV in rld[r].mode, not the mode
6236 it had originally. That isn't safe when EQUIV isn't
6237 available as a spill register since its value might
6238 still be live at this point. */
6239 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6240 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6241 equiv = 0;
6245 /* If we found a spill reg, reject it unless it is free
6246 and of the desired class. */
6247 if (equiv != 0)
6249 int regs_used = 0;
6250 int bad_for_class = 0;
6251 int max_regno = regno + rld[r].nregs;
6253 for (i = regno; i < max_regno; i++)
6255 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6257 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6261 if ((regs_used
6262 && ! free_for_value_p (regno, rld[r].mode,
6263 rld[r].opnum, rld[r].when_needed,
6264 rld[r].in, rld[r].out, r, 1))
6265 || bad_for_class)
6266 equiv = 0;
6269 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6270 equiv = 0;
6272 /* We found a register that contains the value we need.
6273 If this register is the same as an `earlyclobber' operand
6274 of the current insn, just mark it as a place to reload from
6275 since we can't use it as the reload register itself. */
6277 if (equiv != 0)
6278 for (i = 0; i < n_earlyclobbers; i++)
6279 if (reg_overlap_mentioned_for_reload_p (equiv,
6280 reload_earlyclobbers[i]))
6282 if (! rld[r].optional)
6283 reload_override_in[r] = equiv;
6284 equiv = 0;
6285 break;
6288 /* If the equiv register we have found is explicitly clobbered
6289 in the current insn, it depends on the reload type if we
6290 can use it, use it for reload_override_in, or not at all.
6291 In particular, we then can't use EQUIV for a
6292 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6294 if (equiv != 0)
6296 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6297 switch (rld[r].when_needed)
6299 case RELOAD_FOR_OTHER_ADDRESS:
6300 case RELOAD_FOR_INPADDR_ADDRESS:
6301 case RELOAD_FOR_INPUT_ADDRESS:
6302 case RELOAD_FOR_OPADDR_ADDR:
6303 break;
6304 case RELOAD_OTHER:
6305 case RELOAD_FOR_INPUT:
6306 case RELOAD_FOR_OPERAND_ADDRESS:
6307 if (! rld[r].optional)
6308 reload_override_in[r] = equiv;
6309 /* Fall through. */
6310 default:
6311 equiv = 0;
6312 break;
6314 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6315 switch (rld[r].when_needed)
6317 case RELOAD_FOR_OTHER_ADDRESS:
6318 case RELOAD_FOR_INPADDR_ADDRESS:
6319 case RELOAD_FOR_INPUT_ADDRESS:
6320 case RELOAD_FOR_OPADDR_ADDR:
6321 case RELOAD_FOR_OPERAND_ADDRESS:
6322 case RELOAD_FOR_INPUT:
6323 break;
6324 case RELOAD_OTHER:
6325 if (! rld[r].optional)
6326 reload_override_in[r] = equiv;
6327 /* Fall through. */
6328 default:
6329 equiv = 0;
6330 break;
6334 /* If we found an equivalent reg, say no code need be generated
6335 to load it, and use it as our reload reg. */
6336 if (equiv != 0
6337 && (regno != HARD_FRAME_POINTER_REGNUM
6338 || !frame_pointer_needed))
6340 int nr = hard_regno_nregs[regno][rld[r].mode];
6341 int k;
6342 rld[r].reg_rtx = equiv;
6343 reload_spill_index[r] = regno;
6344 reload_inherited[r] = 1;
6346 /* If reg_reloaded_valid is not set for this register,
6347 there might be a stale spill_reg_store lying around.
6348 We must clear it, since otherwise emit_reload_insns
6349 might delete the store. */
6350 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6351 spill_reg_store[regno] = NULL_RTX;
6352 /* If any of the hard registers in EQUIV are spill
6353 registers, mark them as in use for this insn. */
6354 for (k = 0; k < nr; k++)
6356 i = spill_reg_order[regno + k];
6357 if (i >= 0)
6359 mark_reload_reg_in_use (regno, rld[r].opnum,
6360 rld[r].when_needed,
6361 rld[r].mode);
6362 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6363 regno + k);
6369 /* If we found a register to use already, or if this is an optional
6370 reload, we are done. */
6371 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6372 continue;
6374 #if 0
6375 /* No longer needed for correct operation. Might or might
6376 not give better code on the average. Want to experiment? */
6378 /* See if there is a later reload that has a class different from our
6379 class that intersects our class or that requires less register
6380 than our reload. If so, we must allocate a register to this
6381 reload now, since that reload might inherit a previous reload
6382 and take the only available register in our class. Don't do this
6383 for optional reloads since they will force all previous reloads
6384 to be allocated. Also don't do this for reloads that have been
6385 turned off. */
6387 for (i = j + 1; i < n_reloads; i++)
6389 int s = reload_order[i];
6391 if ((rld[s].in == 0 && rld[s].out == 0
6392 && ! rld[s].secondary_p)
6393 || rld[s].optional)
6394 continue;
6396 if ((rld[s].rclass != rld[r].rclass
6397 && reg_classes_intersect_p (rld[r].rclass,
6398 rld[s].rclass))
6399 || rld[s].nregs < rld[r].nregs)
6400 break;
6403 if (i == n_reloads)
6404 continue;
6406 allocate_reload_reg (chain, r, j == n_reloads - 1);
6407 #endif
6410 /* Now allocate reload registers for anything non-optional that
6411 didn't get one yet. */
6412 for (j = 0; j < n_reloads; j++)
6414 int r = reload_order[j];
6416 /* Ignore reloads that got marked inoperative. */
6417 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6418 continue;
6420 /* Skip reloads that already have a register allocated or are
6421 optional. */
6422 if (rld[r].reg_rtx != 0 || rld[r].optional)
6423 continue;
6425 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6426 break;
6429 /* If that loop got all the way, we have won. */
6430 if (j == n_reloads)
6432 win = 1;
6433 break;
6436 /* Loop around and try without any inheritance. */
6439 if (! win)
6441 /* First undo everything done by the failed attempt
6442 to allocate with inheritance. */
6443 choose_reload_regs_init (chain, save_reload_reg_rtx);
6445 /* Some sanity tests to verify that the reloads found in the first
6446 pass are identical to the ones we have now. */
6447 gcc_assert (chain->n_reloads == n_reloads);
6449 for (i = 0; i < n_reloads; i++)
6451 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6452 continue;
6453 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6454 for (j = 0; j < n_spills; j++)
6455 if (spill_regs[j] == chain->rld[i].regno)
6456 if (! set_reload_reg (j, i))
6457 failed_reload (chain->insn, i);
6461 /* If we thought we could inherit a reload, because it seemed that
6462 nothing else wanted the same reload register earlier in the insn,
6463 verify that assumption, now that all reloads have been assigned.
6464 Likewise for reloads where reload_override_in has been set. */
6466 /* If doing expensive optimizations, do one preliminary pass that doesn't
6467 cancel any inheritance, but removes reloads that have been needed only
6468 for reloads that we know can be inherited. */
6469 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6471 for (j = 0; j < n_reloads; j++)
6473 int r = reload_order[j];
6474 rtx check_reg;
6475 if (reload_inherited[r] && rld[r].reg_rtx)
6476 check_reg = rld[r].reg_rtx;
6477 else if (reload_override_in[r]
6478 && (REG_P (reload_override_in[r])
6479 || GET_CODE (reload_override_in[r]) == SUBREG))
6480 check_reg = reload_override_in[r];
6481 else
6482 continue;
6483 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6484 rld[r].opnum, rld[r].when_needed, rld[r].in,
6485 (reload_inherited[r]
6486 ? rld[r].out : const0_rtx),
6487 r, 1))
6489 if (pass)
6490 continue;
6491 reload_inherited[r] = 0;
6492 reload_override_in[r] = 0;
6494 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6495 reload_override_in, then we do not need its related
6496 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6497 likewise for other reload types.
6498 We handle this by removing a reload when its only replacement
6499 is mentioned in reload_in of the reload we are going to inherit.
6500 A special case are auto_inc expressions; even if the input is
6501 inherited, we still need the address for the output. We can
6502 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6503 If we succeeded removing some reload and we are doing a preliminary
6504 pass just to remove such reloads, make another pass, since the
6505 removal of one reload might allow us to inherit another one. */
6506 else if (rld[r].in
6507 && rld[r].out != rld[r].in
6508 && remove_address_replacements (rld[r].in) && pass)
6509 pass = 2;
6513 /* Now that reload_override_in is known valid,
6514 actually override reload_in. */
6515 for (j = 0; j < n_reloads; j++)
6516 if (reload_override_in[j])
6517 rld[j].in = reload_override_in[j];
6519 /* If this reload won't be done because it has been canceled or is
6520 optional and not inherited, clear reload_reg_rtx so other
6521 routines (such as subst_reloads) don't get confused. */
6522 for (j = 0; j < n_reloads; j++)
6523 if (rld[j].reg_rtx != 0
6524 && ((rld[j].optional && ! reload_inherited[j])
6525 || (rld[j].in == 0 && rld[j].out == 0
6526 && ! rld[j].secondary_p)))
6528 int regno = true_regnum (rld[j].reg_rtx);
6530 if (spill_reg_order[regno] >= 0)
6531 clear_reload_reg_in_use (regno, rld[j].opnum,
6532 rld[j].when_needed, rld[j].mode);
6533 rld[j].reg_rtx = 0;
6534 reload_spill_index[j] = -1;
6537 /* Record which pseudos and which spill regs have output reloads. */
6538 for (j = 0; j < n_reloads; j++)
6540 int r = reload_order[j];
6542 i = reload_spill_index[r];
6544 /* I is nonneg if this reload uses a register.
6545 If rld[r].reg_rtx is 0, this is an optional reload
6546 that we opted to ignore. */
6547 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6548 && rld[r].reg_rtx != 0)
6550 int nregno = REGNO (rld[r].out_reg);
6551 int nr = 1;
6553 if (nregno < FIRST_PSEUDO_REGISTER)
6554 nr = hard_regno_nregs[nregno][rld[r].mode];
6556 while (--nr >= 0)
6557 SET_REGNO_REG_SET (&reg_has_output_reload,
6558 nregno + nr);
6560 if (i >= 0)
6562 nr = hard_regno_nregs[i][rld[r].mode];
6563 while (--nr >= 0)
6564 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6567 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6568 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6569 || rld[r].when_needed == RELOAD_FOR_INSN);
6574 /* Deallocate the reload register for reload R. This is called from
6575 remove_address_replacements. */
6577 void
6578 deallocate_reload_reg (int r)
6580 int regno;
6582 if (! rld[r].reg_rtx)
6583 return;
6584 regno = true_regnum (rld[r].reg_rtx);
6585 rld[r].reg_rtx = 0;
6586 if (spill_reg_order[regno] >= 0)
6587 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6588 rld[r].mode);
6589 reload_spill_index[r] = -1;
6592 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6593 reloads of the same item for fear that we might not have enough reload
6594 registers. However, normally they will get the same reload register
6595 and hence actually need not be loaded twice.
6597 Here we check for the most common case of this phenomenon: when we have
6598 a number of reloads for the same object, each of which were allocated
6599 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6600 reload, and is not modified in the insn itself. If we find such,
6601 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6602 This will not increase the number of spill registers needed and will
6603 prevent redundant code. */
6605 static void
6606 merge_assigned_reloads (rtx insn)
6608 int i, j;
6610 /* Scan all the reloads looking for ones that only load values and
6611 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6612 assigned and not modified by INSN. */
6614 for (i = 0; i < n_reloads; i++)
6616 int conflicting_input = 0;
6617 int max_input_address_opnum = -1;
6618 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6620 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6621 || rld[i].out != 0 || rld[i].reg_rtx == 0
6622 || reg_set_p (rld[i].reg_rtx, insn))
6623 continue;
6625 /* Look at all other reloads. Ensure that the only use of this
6626 reload_reg_rtx is in a reload that just loads the same value
6627 as we do. Note that any secondary reloads must be of the identical
6628 class since the values, modes, and result registers are the
6629 same, so we need not do anything with any secondary reloads. */
6631 for (j = 0; j < n_reloads; j++)
6633 if (i == j || rld[j].reg_rtx == 0
6634 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6635 rld[i].reg_rtx))
6636 continue;
6638 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6639 && rld[j].opnum > max_input_address_opnum)
6640 max_input_address_opnum = rld[j].opnum;
6642 /* If the reload regs aren't exactly the same (e.g, different modes)
6643 or if the values are different, we can't merge this reload.
6644 But if it is an input reload, we might still merge
6645 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6647 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6648 || rld[j].out != 0 || rld[j].in == 0
6649 || ! rtx_equal_p (rld[i].in, rld[j].in))
6651 if (rld[j].when_needed != RELOAD_FOR_INPUT
6652 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6653 || rld[i].opnum > rld[j].opnum)
6654 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6655 break;
6656 conflicting_input = 1;
6657 if (min_conflicting_input_opnum > rld[j].opnum)
6658 min_conflicting_input_opnum = rld[j].opnum;
6662 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6663 we, in fact, found any matching reloads. */
6665 if (j == n_reloads
6666 && max_input_address_opnum <= min_conflicting_input_opnum)
6668 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6670 for (j = 0; j < n_reloads; j++)
6671 if (i != j && rld[j].reg_rtx != 0
6672 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6673 && (! conflicting_input
6674 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6675 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6677 rld[i].when_needed = RELOAD_OTHER;
6678 rld[j].in = 0;
6679 reload_spill_index[j] = -1;
6680 transfer_replacements (i, j);
6683 /* If this is now RELOAD_OTHER, look for any reloads that
6684 load parts of this operand and set them to
6685 RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6686 RELOAD_OTHER for outputs. Note that this test is
6687 equivalent to looking for reloads for this operand
6688 number.
6690 We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6691 it may share registers with a RELOAD_FOR_INPUT, so we can
6692 not change it to RELOAD_FOR_OTHER_ADDRESS. We should
6693 never need to, since we do not modify RELOAD_FOR_OUTPUT.
6695 It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6696 instruction is assigned the same register as the earlier
6697 RELOAD_FOR_OTHER_ADDRESS instruction. Merging these two
6698 instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6699 instruction to be deleted later on. */
6701 if (rld[i].when_needed == RELOAD_OTHER)
6702 for (j = 0; j < n_reloads; j++)
6703 if (rld[j].in != 0
6704 && rld[j].when_needed != RELOAD_OTHER
6705 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6706 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6707 && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
6708 && (! conflicting_input
6709 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6710 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6711 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6712 rld[i].in))
6714 int k;
6716 rld[j].when_needed
6717 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6718 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6719 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6721 /* Check to see if we accidentally converted two
6722 reloads that use the same reload register with
6723 different inputs to the same type. If so, the
6724 resulting code won't work. */
6725 if (rld[j].reg_rtx)
6726 for (k = 0; k < j; k++)
6727 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6728 || rld[k].when_needed != rld[j].when_needed
6729 || !rtx_equal_p (rld[k].reg_rtx,
6730 rld[j].reg_rtx)
6731 || rtx_equal_p (rld[k].in,
6732 rld[j].in));
6738 /* These arrays are filled by emit_reload_insns and its subroutines. */
6739 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6740 static rtx other_input_address_reload_insns = 0;
6741 static rtx other_input_reload_insns = 0;
6742 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6743 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6744 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6745 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6746 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6747 static rtx operand_reload_insns = 0;
6748 static rtx other_operand_reload_insns = 0;
6749 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6751 /* Values to be put in spill_reg_store are put here first. */
6752 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6753 static HARD_REG_SET reg_reloaded_died;
6755 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6756 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6757 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6758 adjusted register, and return true. Otherwise, return false. */
6759 static bool
6760 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6761 enum reg_class new_class,
6762 enum machine_mode new_mode)
6765 rtx reg;
6767 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6769 unsigned regno = REGNO (reg);
6771 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6772 continue;
6773 if (GET_MODE (reg) != new_mode)
6775 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6776 continue;
6777 if (hard_regno_nregs[regno][new_mode]
6778 > hard_regno_nregs[regno][GET_MODE (reg)])
6779 continue;
6780 reg = reload_adjust_reg_for_mode (reg, new_mode);
6782 *reload_reg = reg;
6783 return true;
6785 return false;
6788 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6789 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6790 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6791 adjusted register, and return true. Otherwise, return false. */
6792 static bool
6793 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6794 enum insn_code icode)
6797 enum reg_class new_class = scratch_reload_class (icode);
6798 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6800 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6801 new_class, new_mode);
6804 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6805 has the number J. OLD contains the value to be used as input. */
6807 static void
6808 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6809 rtx old, int j)
6811 rtx insn = chain->insn;
6812 rtx reloadreg;
6813 rtx oldequiv_reg = 0;
6814 rtx oldequiv = 0;
6815 int special = 0;
6816 enum machine_mode mode;
6817 rtx *where;
6819 /* delete_output_reload is only invoked properly if old contains
6820 the original pseudo register. Since this is replaced with a
6821 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6822 find the pseudo in RELOAD_IN_REG. */
6823 if (reload_override_in[j]
6824 && REG_P (rl->in_reg))
6826 oldequiv = old;
6827 old = rl->in_reg;
6829 if (oldequiv == 0)
6830 oldequiv = old;
6831 else if (REG_P (oldequiv))
6832 oldequiv_reg = oldequiv;
6833 else if (GET_CODE (oldequiv) == SUBREG)
6834 oldequiv_reg = SUBREG_REG (oldequiv);
6836 reloadreg = reload_reg_rtx_for_input[j];
6837 mode = GET_MODE (reloadreg);
6839 /* If we are reloading from a register that was recently stored in
6840 with an output-reload, see if we can prove there was
6841 actually no need to store the old value in it. */
6843 if (optimize && REG_P (oldequiv)
6844 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6845 && spill_reg_store[REGNO (oldequiv)]
6846 && REG_P (old)
6847 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6848 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6849 rl->out_reg)))
6850 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6852 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
6853 OLDEQUIV. */
6855 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6856 oldequiv = SUBREG_REG (oldequiv);
6857 if (GET_MODE (oldequiv) != VOIDmode
6858 && mode != GET_MODE (oldequiv))
6859 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6861 /* Switch to the right place to emit the reload insns. */
6862 switch (rl->when_needed)
6864 case RELOAD_OTHER:
6865 where = &other_input_reload_insns;
6866 break;
6867 case RELOAD_FOR_INPUT:
6868 where = &input_reload_insns[rl->opnum];
6869 break;
6870 case RELOAD_FOR_INPUT_ADDRESS:
6871 where = &input_address_reload_insns[rl->opnum];
6872 break;
6873 case RELOAD_FOR_INPADDR_ADDRESS:
6874 where = &inpaddr_address_reload_insns[rl->opnum];
6875 break;
6876 case RELOAD_FOR_OUTPUT_ADDRESS:
6877 where = &output_address_reload_insns[rl->opnum];
6878 break;
6879 case RELOAD_FOR_OUTADDR_ADDRESS:
6880 where = &outaddr_address_reload_insns[rl->opnum];
6881 break;
6882 case RELOAD_FOR_OPERAND_ADDRESS:
6883 where = &operand_reload_insns;
6884 break;
6885 case RELOAD_FOR_OPADDR_ADDR:
6886 where = &other_operand_reload_insns;
6887 break;
6888 case RELOAD_FOR_OTHER_ADDRESS:
6889 where = &other_input_address_reload_insns;
6890 break;
6891 default:
6892 gcc_unreachable ();
6895 push_to_sequence (*where);
6897 /* Auto-increment addresses must be reloaded in a special way. */
6898 if (rl->out && ! rl->out_reg)
6900 /* We are not going to bother supporting the case where a
6901 incremented register can't be copied directly from
6902 OLDEQUIV since this seems highly unlikely. */
6903 gcc_assert (rl->secondary_in_reload < 0);
6905 if (reload_inherited[j])
6906 oldequiv = reloadreg;
6908 old = XEXP (rl->in_reg, 0);
6910 if (optimize && REG_P (oldequiv)
6911 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6912 && spill_reg_store[REGNO (oldequiv)]
6913 && REG_P (old)
6914 && (dead_or_set_p (insn,
6915 spill_reg_stored_to[REGNO (oldequiv)])
6916 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6917 old)))
6918 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6920 /* Prevent normal processing of this reload. */
6921 special = 1;
6922 /* Output a special code sequence for this case. */
6923 new_spill_reg_store[REGNO (reloadreg)]
6924 = inc_for_reload (reloadreg, oldequiv, rl->out,
6925 rl->inc);
6928 /* If we are reloading a pseudo-register that was set by the previous
6929 insn, see if we can get rid of that pseudo-register entirely
6930 by redirecting the previous insn into our reload register. */
6932 else if (optimize && REG_P (old)
6933 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6934 && dead_or_set_p (insn, old)
6935 /* This is unsafe if some other reload
6936 uses the same reg first. */
6937 && ! conflicts_with_override (reloadreg)
6938 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6939 rl->when_needed, old, rl->out, j, 0))
6941 rtx temp = PREV_INSN (insn);
6942 while (temp && NOTE_P (temp))
6943 temp = PREV_INSN (temp);
6944 if (temp
6945 && NONJUMP_INSN_P (temp)
6946 && GET_CODE (PATTERN (temp)) == SET
6947 && SET_DEST (PATTERN (temp)) == old
6948 /* Make sure we can access insn_operand_constraint. */
6949 && asm_noperands (PATTERN (temp)) < 0
6950 /* This is unsafe if operand occurs more than once in current
6951 insn. Perhaps some occurrences aren't reloaded. */
6952 && count_occurrences (PATTERN (insn), old, 0) == 1)
6954 rtx old = SET_DEST (PATTERN (temp));
6955 /* Store into the reload register instead of the pseudo. */
6956 SET_DEST (PATTERN (temp)) = reloadreg;
6958 /* Verify that resulting insn is valid. */
6959 extract_insn (temp);
6960 if (constrain_operands (1))
6962 /* If the previous insn is an output reload, the source is
6963 a reload register, and its spill_reg_store entry will
6964 contain the previous destination. This is now
6965 invalid. */
6966 if (REG_P (SET_SRC (PATTERN (temp)))
6967 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6969 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6970 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6973 /* If these are the only uses of the pseudo reg,
6974 pretend for GDB it lives in the reload reg we used. */
6975 if (REG_N_DEATHS (REGNO (old)) == 1
6976 && REG_N_SETS (REGNO (old)) == 1)
6978 reg_renumber[REGNO (old)] = REGNO (reloadreg);
6979 if (ira_conflicts_p)
6980 /* Inform IRA about the change. */
6981 ira_mark_allocation_change (REGNO (old));
6982 alter_reg (REGNO (old), -1, false);
6984 special = 1;
6986 else
6988 SET_DEST (PATTERN (temp)) = old;
6993 /* We can't do that, so output an insn to load RELOADREG. */
6995 /* If we have a secondary reload, pick up the secondary register
6996 and icode, if any. If OLDEQUIV and OLD are different or
6997 if this is an in-out reload, recompute whether or not we
6998 still need a secondary register and what the icode should
6999 be. If we still need a secondary register and the class or
7000 icode is different, go back to reloading from OLD if using
7001 OLDEQUIV means that we got the wrong type of register. We
7002 cannot have different class or icode due to an in-out reload
7003 because we don't make such reloads when both the input and
7004 output need secondary reload registers. */
7006 if (! special && rl->secondary_in_reload >= 0)
7008 rtx second_reload_reg = 0;
7009 rtx third_reload_reg = 0;
7010 int secondary_reload = rl->secondary_in_reload;
7011 rtx real_oldequiv = oldequiv;
7012 rtx real_old = old;
7013 rtx tmp;
7014 enum insn_code icode;
7015 enum insn_code tertiary_icode = CODE_FOR_nothing;
7017 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7018 and similarly for OLD.
7019 See comments in get_secondary_reload in reload.c. */
7020 /* If it is a pseudo that cannot be replaced with its
7021 equivalent MEM, we must fall back to reload_in, which
7022 will have all the necessary substitutions registered.
7023 Likewise for a pseudo that can't be replaced with its
7024 equivalent constant.
7026 Take extra care for subregs of such pseudos. Note that
7027 we cannot use reg_equiv_mem in this case because it is
7028 not in the right mode. */
7030 tmp = oldequiv;
7031 if (GET_CODE (tmp) == SUBREG)
7032 tmp = SUBREG_REG (tmp);
7033 if (REG_P (tmp)
7034 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7035 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7036 || reg_equiv_constant[REGNO (tmp)] != 0))
7038 if (! reg_equiv_mem[REGNO (tmp)]
7039 || num_not_at_initial_offset
7040 || GET_CODE (oldequiv) == SUBREG)
7041 real_oldequiv = rl->in;
7042 else
7043 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
7046 tmp = old;
7047 if (GET_CODE (tmp) == SUBREG)
7048 tmp = SUBREG_REG (tmp);
7049 if (REG_P (tmp)
7050 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7051 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7052 || reg_equiv_constant[REGNO (tmp)] != 0))
7054 if (! reg_equiv_mem[REGNO (tmp)]
7055 || num_not_at_initial_offset
7056 || GET_CODE (old) == SUBREG)
7057 real_old = rl->in;
7058 else
7059 real_old = reg_equiv_mem[REGNO (tmp)];
7062 second_reload_reg = rld[secondary_reload].reg_rtx;
7063 if (rld[secondary_reload].secondary_in_reload >= 0)
7065 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7067 third_reload_reg = rld[tertiary_reload].reg_rtx;
7068 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7069 /* We'd have to add more code for quartary reloads. */
7070 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7072 icode = rl->secondary_in_icode;
7074 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7075 || (rl->in != 0 && rl->out != 0))
7077 secondary_reload_info sri, sri2;
7078 enum reg_class new_class, new_t_class;
7080 sri.icode = CODE_FOR_nothing;
7081 sri.prev_sri = NULL;
7082 new_class = targetm.secondary_reload (1, real_oldequiv, rl->rclass,
7083 mode, &sri);
7085 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7086 second_reload_reg = 0;
7087 else if (new_class == NO_REGS)
7089 if (reload_adjust_reg_for_icode (&second_reload_reg,
7090 third_reload_reg, sri.icode))
7091 icode = sri.icode, third_reload_reg = 0;
7092 else
7093 oldequiv = old, real_oldequiv = real_old;
7095 else if (sri.icode != CODE_FOR_nothing)
7096 /* We currently lack a way to express this in reloads. */
7097 gcc_unreachable ();
7098 else
7100 sri2.icode = CODE_FOR_nothing;
7101 sri2.prev_sri = &sri;
7102 new_t_class = targetm.secondary_reload (1, real_oldequiv,
7103 new_class, mode, &sri);
7104 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7106 if (reload_adjust_reg_for_temp (&second_reload_reg,
7107 third_reload_reg,
7108 new_class, mode))
7109 third_reload_reg = 0, tertiary_icode = sri2.icode;
7110 else
7111 oldequiv = old, real_oldequiv = real_old;
7113 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7115 rtx intermediate = second_reload_reg;
7117 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7118 new_class, mode)
7119 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7120 sri2.icode))
7122 second_reload_reg = intermediate;
7123 tertiary_icode = sri2.icode;
7125 else
7126 oldequiv = old, real_oldequiv = real_old;
7128 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7130 rtx intermediate = second_reload_reg;
7132 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7133 new_class, mode)
7134 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7135 new_t_class, mode))
7137 second_reload_reg = intermediate;
7138 tertiary_icode = sri2.icode;
7140 else
7141 oldequiv = old, real_oldequiv = real_old;
7143 else
7144 /* This could be handled more intelligently too. */
7145 oldequiv = old, real_oldequiv = real_old;
7149 /* If we still need a secondary reload register, check
7150 to see if it is being used as a scratch or intermediate
7151 register and generate code appropriately. If we need
7152 a scratch register, use REAL_OLDEQUIV since the form of
7153 the insn may depend on the actual address if it is
7154 a MEM. */
7156 if (second_reload_reg)
7158 if (icode != CODE_FOR_nothing)
7160 /* We'd have to add extra code to handle this case. */
7161 gcc_assert (!third_reload_reg);
7163 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7164 second_reload_reg));
7165 special = 1;
7167 else
7169 /* See if we need a scratch register to load the
7170 intermediate register (a tertiary reload). */
7171 if (tertiary_icode != CODE_FOR_nothing)
7173 emit_insn ((GEN_FCN (tertiary_icode)
7174 (second_reload_reg, real_oldequiv,
7175 third_reload_reg)));
7177 else if (third_reload_reg)
7179 gen_reload (third_reload_reg, real_oldequiv,
7180 rl->opnum,
7181 rl->when_needed);
7182 gen_reload (second_reload_reg, third_reload_reg,
7183 rl->opnum,
7184 rl->when_needed);
7186 else
7187 gen_reload (second_reload_reg, real_oldequiv,
7188 rl->opnum,
7189 rl->when_needed);
7191 oldequiv = second_reload_reg;
7196 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7198 rtx real_oldequiv = oldequiv;
7200 if ((REG_P (oldequiv)
7201 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7202 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
7203 || reg_equiv_constant[REGNO (oldequiv)] != 0))
7204 || (GET_CODE (oldequiv) == SUBREG
7205 && REG_P (SUBREG_REG (oldequiv))
7206 && (REGNO (SUBREG_REG (oldequiv))
7207 >= FIRST_PSEUDO_REGISTER)
7208 && ((reg_equiv_memory_loc
7209 [REGNO (SUBREG_REG (oldequiv))] != 0)
7210 || (reg_equiv_constant
7211 [REGNO (SUBREG_REG (oldequiv))] != 0)))
7212 || (CONSTANT_P (oldequiv)
7213 && (PREFERRED_RELOAD_CLASS (oldequiv,
7214 REGNO_REG_CLASS (REGNO (reloadreg)))
7215 == NO_REGS)))
7216 real_oldequiv = rl->in;
7217 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7218 rl->when_needed);
7221 if (flag_non_call_exceptions)
7222 copy_eh_notes (insn, get_insns ());
7224 /* End this sequence. */
7225 *where = get_insns ();
7226 end_sequence ();
7228 /* Update reload_override_in so that delete_address_reloads_1
7229 can see the actual register usage. */
7230 if (oldequiv_reg)
7231 reload_override_in[j] = oldequiv;
7234 /* Generate insns to for the output reload RL, which is for the insn described
7235 by CHAIN and has the number J. */
7236 static void
7237 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7238 int j)
7240 rtx reloadreg;
7241 rtx insn = chain->insn;
7242 int special = 0;
7243 rtx old = rl->out;
7244 enum machine_mode mode;
7245 rtx p;
7246 rtx rl_reg_rtx;
7248 if (rl->when_needed == RELOAD_OTHER)
7249 start_sequence ();
7250 else
7251 push_to_sequence (output_reload_insns[rl->opnum]);
7253 rl_reg_rtx = reload_reg_rtx_for_output[j];
7254 mode = GET_MODE (rl_reg_rtx);
7256 reloadreg = rl_reg_rtx;
7258 /* If we need two reload regs, set RELOADREG to the intermediate
7259 one, since it will be stored into OLD. We might need a secondary
7260 register only for an input reload, so check again here. */
7262 if (rl->secondary_out_reload >= 0)
7264 rtx real_old = old;
7265 int secondary_reload = rl->secondary_out_reload;
7266 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7268 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7269 && reg_equiv_mem[REGNO (old)] != 0)
7270 real_old = reg_equiv_mem[REGNO (old)];
7272 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7274 rtx second_reloadreg = reloadreg;
7275 reloadreg = rld[secondary_reload].reg_rtx;
7277 /* See if RELOADREG is to be used as a scratch register
7278 or as an intermediate register. */
7279 if (rl->secondary_out_icode != CODE_FOR_nothing)
7281 /* We'd have to add extra code to handle this case. */
7282 gcc_assert (tertiary_reload < 0);
7284 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7285 (real_old, second_reloadreg, reloadreg)));
7286 special = 1;
7288 else
7290 /* See if we need both a scratch and intermediate reload
7291 register. */
7293 enum insn_code tertiary_icode
7294 = rld[secondary_reload].secondary_out_icode;
7296 /* We'd have to add more code for quartary reloads. */
7297 gcc_assert (tertiary_reload < 0
7298 || rld[tertiary_reload].secondary_out_reload < 0);
7300 if (GET_MODE (reloadreg) != mode)
7301 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7303 if (tertiary_icode != CODE_FOR_nothing)
7305 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7306 rtx tem;
7308 /* Copy primary reload reg to secondary reload reg.
7309 (Note that these have been swapped above, then
7310 secondary reload reg to OLD using our insn.) */
7312 /* If REAL_OLD is a paradoxical SUBREG, remove it
7313 and try to put the opposite SUBREG on
7314 RELOADREG. */
7315 if (GET_CODE (real_old) == SUBREG
7316 && (GET_MODE_SIZE (GET_MODE (real_old))
7317 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
7318 && 0 != (tem = gen_lowpart_common
7319 (GET_MODE (SUBREG_REG (real_old)),
7320 reloadreg)))
7321 real_old = SUBREG_REG (real_old), reloadreg = tem;
7323 gen_reload (reloadreg, second_reloadreg,
7324 rl->opnum, rl->when_needed);
7325 emit_insn ((GEN_FCN (tertiary_icode)
7326 (real_old, reloadreg, third_reloadreg)));
7327 special = 1;
7330 else
7332 /* Copy between the reload regs here and then to
7333 OUT later. */
7335 gen_reload (reloadreg, second_reloadreg,
7336 rl->opnum, rl->when_needed);
7337 if (tertiary_reload >= 0)
7339 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7341 gen_reload (third_reloadreg, reloadreg,
7342 rl->opnum, rl->when_needed);
7343 reloadreg = third_reloadreg;
7350 /* Output the last reload insn. */
7351 if (! special)
7353 rtx set;
7355 /* Don't output the last reload if OLD is not the dest of
7356 INSN and is in the src and is clobbered by INSN. */
7357 if (! flag_expensive_optimizations
7358 || !REG_P (old)
7359 || !(set = single_set (insn))
7360 || rtx_equal_p (old, SET_DEST (set))
7361 || !reg_mentioned_p (old, SET_SRC (set))
7362 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7363 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7364 gen_reload (old, reloadreg, rl->opnum,
7365 rl->when_needed);
7368 /* Look at all insns we emitted, just to be safe. */
7369 for (p = get_insns (); p; p = NEXT_INSN (p))
7370 if (INSN_P (p))
7372 rtx pat = PATTERN (p);
7374 /* If this output reload doesn't come from a spill reg,
7375 clear any memory of reloaded copies of the pseudo reg.
7376 If this output reload comes from a spill reg,
7377 reg_has_output_reload will make this do nothing. */
7378 note_stores (pat, forget_old_reloads_1, NULL);
7380 if (reg_mentioned_p (rl_reg_rtx, pat))
7382 rtx set = single_set (insn);
7383 if (reload_spill_index[j] < 0
7384 && set
7385 && SET_SRC (set) == rl_reg_rtx)
7387 int src = REGNO (SET_SRC (set));
7389 reload_spill_index[j] = src;
7390 SET_HARD_REG_BIT (reg_is_output_reload, src);
7391 if (find_regno_note (insn, REG_DEAD, src))
7392 SET_HARD_REG_BIT (reg_reloaded_died, src);
7394 if (HARD_REGISTER_P (rl_reg_rtx))
7396 int s = rl->secondary_out_reload;
7397 set = single_set (p);
7398 /* If this reload copies only to the secondary reload
7399 register, the secondary reload does the actual
7400 store. */
7401 if (s >= 0 && set == NULL_RTX)
7402 /* We can't tell what function the secondary reload
7403 has and where the actual store to the pseudo is
7404 made; leave new_spill_reg_store alone. */
7406 else if (s >= 0
7407 && SET_SRC (set) == rl_reg_rtx
7408 && SET_DEST (set) == rld[s].reg_rtx)
7410 /* Usually the next instruction will be the
7411 secondary reload insn; if we can confirm
7412 that it is, setting new_spill_reg_store to
7413 that insn will allow an extra optimization. */
7414 rtx s_reg = rld[s].reg_rtx;
7415 rtx next = NEXT_INSN (p);
7416 rld[s].out = rl->out;
7417 rld[s].out_reg = rl->out_reg;
7418 set = single_set (next);
7419 if (set && SET_SRC (set) == s_reg
7420 && ! new_spill_reg_store[REGNO (s_reg)])
7422 SET_HARD_REG_BIT (reg_is_output_reload,
7423 REGNO (s_reg));
7424 new_spill_reg_store[REGNO (s_reg)] = next;
7427 else
7428 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7433 if (rl->when_needed == RELOAD_OTHER)
7435 emit_insn (other_output_reload_insns[rl->opnum]);
7436 other_output_reload_insns[rl->opnum] = get_insns ();
7438 else
7439 output_reload_insns[rl->opnum] = get_insns ();
7441 if (flag_non_call_exceptions)
7442 copy_eh_notes (insn, get_insns ());
7444 end_sequence ();
7447 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7448 and has the number J. */
7449 static void
7450 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7452 rtx insn = chain->insn;
7453 rtx old = (rl->in && MEM_P (rl->in)
7454 ? rl->in_reg : rl->in);
7455 rtx reg_rtx = rl->reg_rtx;
7457 if (old && reg_rtx)
7459 enum machine_mode mode;
7461 /* Determine the mode to reload in.
7462 This is very tricky because we have three to choose from.
7463 There is the mode the insn operand wants (rl->inmode).
7464 There is the mode of the reload register RELOADREG.
7465 There is the intrinsic mode of the operand, which we could find
7466 by stripping some SUBREGs.
7467 It turns out that RELOADREG's mode is irrelevant:
7468 we can change that arbitrarily.
7470 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7471 then the reload reg may not support QImode moves, so use SImode.
7472 If foo is in memory due to spilling a pseudo reg, this is safe,
7473 because the QImode value is in the least significant part of a
7474 slot big enough for a SImode. If foo is some other sort of
7475 memory reference, then it is impossible to reload this case,
7476 so previous passes had better make sure this never happens.
7478 Then consider a one-word union which has SImode and one of its
7479 members is a float, being fetched as (SUBREG:SF union:SI).
7480 We must fetch that as SFmode because we could be loading into
7481 a float-only register. In this case OLD's mode is correct.
7483 Consider an immediate integer: it has VOIDmode. Here we need
7484 to get a mode from something else.
7486 In some cases, there is a fourth mode, the operand's
7487 containing mode. If the insn specifies a containing mode for
7488 this operand, it overrides all others.
7490 I am not sure whether the algorithm here is always right,
7491 but it does the right things in those cases. */
7493 mode = GET_MODE (old);
7494 if (mode == VOIDmode)
7495 mode = rl->inmode;
7497 /* We cannot use gen_lowpart_common since it can do the wrong thing
7498 when REG_RTX has a multi-word mode. Note that REG_RTX must
7499 always be a REG here. */
7500 if (GET_MODE (reg_rtx) != mode)
7501 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7503 reload_reg_rtx_for_input[j] = reg_rtx;
7505 if (old != 0
7506 /* AUTO_INC reloads need to be handled even if inherited. We got an
7507 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7508 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7509 && ! rtx_equal_p (reg_rtx, old)
7510 && reg_rtx != 0)
7511 emit_input_reload_insns (chain, rld + j, old, j);
7513 /* When inheriting a wider reload, we have a MEM in rl->in,
7514 e.g. inheriting a SImode output reload for
7515 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7516 if (optimize && reload_inherited[j] && rl->in
7517 && MEM_P (rl->in)
7518 && MEM_P (rl->in_reg)
7519 && reload_spill_index[j] >= 0
7520 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7521 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7523 /* If we are reloading a register that was recently stored in with an
7524 output-reload, see if we can prove there was
7525 actually no need to store the old value in it. */
7527 if (optimize
7528 && (reload_inherited[j] || reload_override_in[j])
7529 && reg_rtx
7530 && REG_P (reg_rtx)
7531 && spill_reg_store[REGNO (reg_rtx)] != 0
7532 #if 0
7533 /* There doesn't seem to be any reason to restrict this to pseudos
7534 and doing so loses in the case where we are copying from a
7535 register of the wrong class. */
7536 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7537 #endif
7538 /* The insn might have already some references to stackslots
7539 replaced by MEMs, while reload_out_reg still names the
7540 original pseudo. */
7541 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7542 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7543 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7546 /* Do output reloading for reload RL, which is for the insn described by
7547 CHAIN and has the number J.
7548 ??? At some point we need to support handling output reloads of
7549 JUMP_INSNs or insns that set cc0. */
7550 static void
7551 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7553 rtx note, old;
7554 rtx insn = chain->insn;
7555 /* If this is an output reload that stores something that is
7556 not loaded in this same reload, see if we can eliminate a previous
7557 store. */
7558 rtx pseudo = rl->out_reg;
7559 rtx reg_rtx = rl->reg_rtx;
7561 if (rl->out && reg_rtx)
7563 enum machine_mode mode;
7565 /* Determine the mode to reload in.
7566 See comments above (for input reloading). */
7567 mode = GET_MODE (rl->out);
7568 if (mode == VOIDmode)
7570 /* VOIDmode should never happen for an output. */
7571 if (asm_noperands (PATTERN (insn)) < 0)
7572 /* It's the compiler's fault. */
7573 fatal_insn ("VOIDmode on an output", insn);
7574 error_for_asm (insn, "output operand is constant in %<asm%>");
7575 /* Prevent crash--use something we know is valid. */
7576 mode = word_mode;
7577 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7579 if (GET_MODE (reg_rtx) != mode)
7580 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7582 reload_reg_rtx_for_output[j] = reg_rtx;
7584 if (pseudo
7585 && optimize
7586 && REG_P (pseudo)
7587 && ! rtx_equal_p (rl->in_reg, pseudo)
7588 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7589 && reg_last_reload_reg[REGNO (pseudo)])
7591 int pseudo_no = REGNO (pseudo);
7592 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7594 /* We don't need to test full validity of last_regno for
7595 inherit here; we only want to know if the store actually
7596 matches the pseudo. */
7597 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7598 && reg_reloaded_contents[last_regno] == pseudo_no
7599 && spill_reg_store[last_regno]
7600 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7601 delete_output_reload (insn, j, last_regno, reg_rtx);
7604 old = rl->out_reg;
7605 if (old == 0
7606 || reg_rtx == 0
7607 || rtx_equal_p (old, reg_rtx))
7608 return;
7610 /* An output operand that dies right away does need a reload,
7611 but need not be copied from it. Show the new location in the
7612 REG_UNUSED note. */
7613 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7614 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7616 XEXP (note, 0) = reg_rtx;
7617 return;
7619 /* Likewise for a SUBREG of an operand that dies. */
7620 else if (GET_CODE (old) == SUBREG
7621 && REG_P (SUBREG_REG (old))
7622 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7623 SUBREG_REG (old))))
7625 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7626 return;
7628 else if (GET_CODE (old) == SCRATCH)
7629 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7630 but we don't want to make an output reload. */
7631 return;
7633 /* If is a JUMP_INSN, we can't support output reloads yet. */
7634 gcc_assert (NONJUMP_INSN_P (insn));
7636 emit_output_reload_insns (chain, rld + j, j);
7639 /* A reload copies values of MODE from register SRC to register DEST.
7640 Return true if it can be treated for inheritance purposes like a
7641 group of reloads, each one reloading a single hard register. The
7642 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7643 occupy the same number of hard registers. */
7645 static bool
7646 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7647 int src ATTRIBUTE_UNUSED,
7648 enum machine_mode mode ATTRIBUTE_UNUSED)
7650 #ifdef CANNOT_CHANGE_MODE_CLASS
7651 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7652 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7653 #else
7654 return true;
7655 #endif
7658 /* Output insns to reload values in and out of the chosen reload regs. */
7660 static void
7661 emit_reload_insns (struct insn_chain *chain)
7663 rtx insn = chain->insn;
7665 int j;
7667 CLEAR_HARD_REG_SET (reg_reloaded_died);
7669 for (j = 0; j < reload_n_operands; j++)
7670 input_reload_insns[j] = input_address_reload_insns[j]
7671 = inpaddr_address_reload_insns[j]
7672 = output_reload_insns[j] = output_address_reload_insns[j]
7673 = outaddr_address_reload_insns[j]
7674 = other_output_reload_insns[j] = 0;
7675 other_input_address_reload_insns = 0;
7676 other_input_reload_insns = 0;
7677 operand_reload_insns = 0;
7678 other_operand_reload_insns = 0;
7680 /* Dump reloads into the dump file. */
7681 if (dump_file)
7683 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7684 debug_reload_to_stream (dump_file);
7687 /* Now output the instructions to copy the data into and out of the
7688 reload registers. Do these in the order that the reloads were reported,
7689 since reloads of base and index registers precede reloads of operands
7690 and the operands may need the base and index registers reloaded. */
7692 for (j = 0; j < n_reloads; j++)
7694 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7696 unsigned int i;
7698 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7699 new_spill_reg_store[i] = 0;
7702 do_input_reload (chain, rld + j, j);
7703 do_output_reload (chain, rld + j, j);
7706 /* Now write all the insns we made for reloads in the order expected by
7707 the allocation functions. Prior to the insn being reloaded, we write
7708 the following reloads:
7710 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7712 RELOAD_OTHER reloads.
7714 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7715 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7716 RELOAD_FOR_INPUT reload for the operand.
7718 RELOAD_FOR_OPADDR_ADDRS reloads.
7720 RELOAD_FOR_OPERAND_ADDRESS reloads.
7722 After the insn being reloaded, we write the following:
7724 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7725 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7726 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7727 reloads for the operand. The RELOAD_OTHER output reloads are
7728 output in descending order by reload number. */
7730 emit_insn_before (other_input_address_reload_insns, insn);
7731 emit_insn_before (other_input_reload_insns, insn);
7733 for (j = 0; j < reload_n_operands; j++)
7735 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7736 emit_insn_before (input_address_reload_insns[j], insn);
7737 emit_insn_before (input_reload_insns[j], insn);
7740 emit_insn_before (other_operand_reload_insns, insn);
7741 emit_insn_before (operand_reload_insns, insn);
7743 for (j = 0; j < reload_n_operands; j++)
7745 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7746 x = emit_insn_after (output_address_reload_insns[j], x);
7747 x = emit_insn_after (output_reload_insns[j], x);
7748 emit_insn_after (other_output_reload_insns[j], x);
7751 /* For all the spill regs newly reloaded in this instruction,
7752 record what they were reloaded from, so subsequent instructions
7753 can inherit the reloads.
7755 Update spill_reg_store for the reloads of this insn.
7756 Copy the elements that were updated in the loop above. */
7758 for (j = 0; j < n_reloads; j++)
7760 int r = reload_order[j];
7761 int i = reload_spill_index[r];
7763 /* If this is a non-inherited input reload from a pseudo, we must
7764 clear any memory of a previous store to the same pseudo. Only do
7765 something if there will not be an output reload for the pseudo
7766 being reloaded. */
7767 if (rld[r].in_reg != 0
7768 && ! (reload_inherited[r] || reload_override_in[r]))
7770 rtx reg = rld[r].in_reg;
7772 if (GET_CODE (reg) == SUBREG)
7773 reg = SUBREG_REG (reg);
7775 if (REG_P (reg)
7776 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7777 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7779 int nregno = REGNO (reg);
7781 if (reg_last_reload_reg[nregno])
7783 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7785 if (reg_reloaded_contents[last_regno] == nregno)
7786 spill_reg_store[last_regno] = 0;
7791 /* I is nonneg if this reload used a register.
7792 If rld[r].reg_rtx is 0, this is an optional reload
7793 that we opted to ignore. */
7795 if (i >= 0 && rld[r].reg_rtx != 0)
7797 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7798 int k;
7800 /* For a multi register reload, we need to check if all or part
7801 of the value lives to the end. */
7802 for (k = 0; k < nr; k++)
7803 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7804 rld[r].when_needed))
7805 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7807 /* Maybe the spill reg contains a copy of reload_out. */
7808 if (rld[r].out != 0
7809 && (REG_P (rld[r].out)
7810 #ifdef AUTO_INC_DEC
7811 || ! rld[r].out_reg
7812 #endif
7813 || REG_P (rld[r].out_reg)))
7815 rtx reg;
7816 enum machine_mode mode;
7817 int regno, nregs;
7819 reg = reload_reg_rtx_for_output[r];
7820 mode = GET_MODE (reg);
7821 regno = REGNO (reg);
7822 nregs = hard_regno_nregs[regno][mode];
7823 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7824 rld[r].when_needed))
7826 rtx out = (REG_P (rld[r].out)
7827 ? rld[r].out
7828 : rld[r].out_reg
7829 ? rld[r].out_reg
7830 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7831 int out_regno = REGNO (out);
7832 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
7833 : hard_regno_nregs[out_regno][mode]);
7834 bool piecemeal;
7836 spill_reg_store[regno] = new_spill_reg_store[regno];
7837 spill_reg_stored_to[regno] = out;
7838 reg_last_reload_reg[out_regno] = reg;
7840 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
7841 && nregs == out_nregs
7842 && inherit_piecemeal_p (out_regno, regno, mode));
7844 /* If OUT_REGNO is a hard register, it may occupy more than
7845 one register. If it does, say what is in the
7846 rest of the registers assuming that both registers
7847 agree on how many words the object takes. If not,
7848 invalidate the subsequent registers. */
7850 if (HARD_REGISTER_NUM_P (out_regno))
7851 for (k = 1; k < out_nregs; k++)
7852 reg_last_reload_reg[out_regno + k]
7853 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7855 /* Now do the inverse operation. */
7856 for (k = 0; k < nregs; k++)
7858 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7859 reg_reloaded_contents[regno + k]
7860 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
7861 ? out_regno
7862 : out_regno + k);
7863 reg_reloaded_insn[regno + k] = insn;
7864 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7865 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7866 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7867 regno + k);
7868 else
7869 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7870 regno + k);
7874 /* Maybe the spill reg contains a copy of reload_in. Only do
7875 something if there will not be an output reload for
7876 the register being reloaded. */
7877 else if (rld[r].out_reg == 0
7878 && rld[r].in != 0
7879 && ((REG_P (rld[r].in)
7880 && !HARD_REGISTER_P (rld[r].in)
7881 && !REGNO_REG_SET_P (&reg_has_output_reload,
7882 REGNO (rld[r].in)))
7883 || (REG_P (rld[r].in_reg)
7884 && !REGNO_REG_SET_P (&reg_has_output_reload,
7885 REGNO (rld[r].in_reg))))
7886 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
7888 rtx reg;
7889 enum machine_mode mode;
7890 int regno, nregs;
7892 reg = reload_reg_rtx_for_input[r];
7893 mode = GET_MODE (reg);
7894 regno = REGNO (reg);
7895 nregs = hard_regno_nregs[regno][mode];
7896 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7897 rld[r].when_needed))
7899 int in_regno;
7900 int in_nregs;
7901 rtx in;
7902 bool piecemeal;
7904 if (REG_P (rld[r].in)
7905 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7906 in = rld[r].in;
7907 else if (REG_P (rld[r].in_reg))
7908 in = rld[r].in_reg;
7909 else
7910 in = XEXP (rld[r].in_reg, 0);
7911 in_regno = REGNO (in);
7913 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
7914 : hard_regno_nregs[in_regno][mode]);
7916 reg_last_reload_reg[in_regno] = reg;
7918 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
7919 && nregs == in_nregs
7920 && inherit_piecemeal_p (regno, in_regno, mode));
7922 if (HARD_REGISTER_NUM_P (in_regno))
7923 for (k = 1; k < in_nregs; k++)
7924 reg_last_reload_reg[in_regno + k]
7925 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7927 /* Unless we inherited this reload, show we haven't
7928 recently done a store.
7929 Previous stores of inherited auto_inc expressions
7930 also have to be discarded. */
7931 if (! reload_inherited[r]
7932 || (rld[r].out && ! rld[r].out_reg))
7933 spill_reg_store[regno] = 0;
7935 for (k = 0; k < nregs; k++)
7937 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7938 reg_reloaded_contents[regno + k]
7939 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
7940 ? in_regno
7941 : in_regno + k);
7942 reg_reloaded_insn[regno + k] = insn;
7943 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7944 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7945 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7946 regno + k);
7947 else
7948 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7949 regno + k);
7955 /* The following if-statement was #if 0'd in 1.34 (or before...).
7956 It's reenabled in 1.35 because supposedly nothing else
7957 deals with this problem. */
7959 /* If a register gets output-reloaded from a non-spill register,
7960 that invalidates any previous reloaded copy of it.
7961 But forget_old_reloads_1 won't get to see it, because
7962 it thinks only about the original insn. So invalidate it here.
7963 Also do the same thing for RELOAD_OTHER constraints where the
7964 output is discarded. */
7965 if (i < 0
7966 && ((rld[r].out != 0
7967 && (REG_P (rld[r].out)
7968 || (MEM_P (rld[r].out)
7969 && REG_P (rld[r].out_reg))))
7970 || (rld[r].out == 0 && rld[r].out_reg
7971 && REG_P (rld[r].out_reg))))
7973 rtx out = ((rld[r].out && REG_P (rld[r].out))
7974 ? rld[r].out : rld[r].out_reg);
7975 int out_regno = REGNO (out);
7976 enum machine_mode mode = GET_MODE (out);
7978 /* REG_RTX is now set or clobbered by the main instruction.
7979 As the comment above explains, forget_old_reloads_1 only
7980 sees the original instruction, and there is no guarantee
7981 that the original instruction also clobbered REG_RTX.
7982 For example, if find_reloads sees that the input side of
7983 a matched operand pair dies in this instruction, it may
7984 use the input register as the reload register.
7986 Calling forget_old_reloads_1 is a waste of effort if
7987 REG_RTX is also the output register.
7989 If we know that REG_RTX holds the value of a pseudo
7990 register, the code after the call will record that fact. */
7991 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
7992 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
7994 if (!HARD_REGISTER_NUM_P (out_regno))
7996 rtx src_reg, store_insn = NULL_RTX;
7998 reg_last_reload_reg[out_regno] = 0;
8000 /* If we can find a hard register that is stored, record
8001 the storing insn so that we may delete this insn with
8002 delete_output_reload. */
8003 src_reg = reload_reg_rtx_for_output[r];
8005 /* If this is an optional reload, try to find the source reg
8006 from an input reload. */
8007 if (! src_reg)
8009 rtx set = single_set (insn);
8010 if (set && SET_DEST (set) == rld[r].out)
8012 int k;
8014 src_reg = SET_SRC (set);
8015 store_insn = insn;
8016 for (k = 0; k < n_reloads; k++)
8018 if (rld[k].in == src_reg)
8020 src_reg = reload_reg_rtx_for_input[k];
8021 break;
8026 else
8027 store_insn = new_spill_reg_store[REGNO (src_reg)];
8028 if (src_reg && REG_P (src_reg)
8029 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8031 int src_regno, src_nregs, k;
8032 rtx note;
8034 gcc_assert (GET_MODE (src_reg) == mode);
8035 src_regno = REGNO (src_reg);
8036 src_nregs = hard_regno_nregs[src_regno][mode];
8037 /* The place where to find a death note varies with
8038 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8039 necessarily checked exactly in the code that moves
8040 notes, so just check both locations. */
8041 note = find_regno_note (insn, REG_DEAD, src_regno);
8042 if (! note && store_insn)
8043 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8044 for (k = 0; k < src_nregs; k++)
8046 spill_reg_store[src_regno + k] = store_insn;
8047 spill_reg_stored_to[src_regno + k] = out;
8048 reg_reloaded_contents[src_regno + k] = out_regno;
8049 reg_reloaded_insn[src_regno + k] = store_insn;
8050 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8051 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8052 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8053 mode))
8054 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8055 src_regno + k);
8056 else
8057 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8058 src_regno + k);
8059 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8060 if (note)
8061 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8062 else
8063 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8065 reg_last_reload_reg[out_regno] = src_reg;
8066 /* We have to set reg_has_output_reload here, or else
8067 forget_old_reloads_1 will clear reg_last_reload_reg
8068 right away. */
8069 SET_REGNO_REG_SET (&reg_has_output_reload,
8070 out_regno);
8073 else
8075 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8077 for (k = 0; k < out_nregs; k++)
8078 reg_last_reload_reg[out_regno + k] = 0;
8082 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8085 /* Go through the motions to emit INSN and test if it is strictly valid.
8086 Return the emitted insn if valid, else return NULL. */
8088 static rtx
8089 emit_insn_if_valid_for_reload (rtx insn)
8091 rtx last = get_last_insn ();
8092 int code;
8094 insn = emit_insn (insn);
8095 code = recog_memoized (insn);
8097 if (code >= 0)
8099 extract_insn (insn);
8100 /* We want constrain operands to treat this insn strictly in its
8101 validity determination, i.e., the way it would after reload has
8102 completed. */
8103 if (constrain_operands (1))
8104 return insn;
8107 delete_insns_since (last);
8108 return NULL;
8111 /* Emit code to perform a reload from IN (which may be a reload register) to
8112 OUT (which may also be a reload register). IN or OUT is from operand
8113 OPNUM with reload type TYPE.
8115 Returns first insn emitted. */
8117 static rtx
8118 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8120 rtx last = get_last_insn ();
8121 rtx tem;
8123 /* If IN is a paradoxical SUBREG, remove it and try to put the
8124 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8125 if (GET_CODE (in) == SUBREG
8126 && (GET_MODE_SIZE (GET_MODE (in))
8127 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
8128 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
8129 in = SUBREG_REG (in), out = tem;
8130 else if (GET_CODE (out) == SUBREG
8131 && (GET_MODE_SIZE (GET_MODE (out))
8132 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
8133 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
8134 out = SUBREG_REG (out), in = tem;
8136 /* How to do this reload can get quite tricky. Normally, we are being
8137 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8138 register that didn't get a hard register. In that case we can just
8139 call emit_move_insn.
8141 We can also be asked to reload a PLUS that adds a register or a MEM to
8142 another register, constant or MEM. This can occur during frame pointer
8143 elimination and while reloading addresses. This case is handled by
8144 trying to emit a single insn to perform the add. If it is not valid,
8145 we use a two insn sequence.
8147 Or we can be asked to reload an unary operand that was a fragment of
8148 an addressing mode, into a register. If it isn't recognized as-is,
8149 we try making the unop operand and the reload-register the same:
8150 (set reg:X (unop:X expr:Y))
8151 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8153 Finally, we could be called to handle an 'o' constraint by putting
8154 an address into a register. In that case, we first try to do this
8155 with a named pattern of "reload_load_address". If no such pattern
8156 exists, we just emit a SET insn and hope for the best (it will normally
8157 be valid on machines that use 'o').
8159 This entire process is made complex because reload will never
8160 process the insns we generate here and so we must ensure that
8161 they will fit their constraints and also by the fact that parts of
8162 IN might be being reloaded separately and replaced with spill registers.
8163 Because of this, we are, in some sense, just guessing the right approach
8164 here. The one listed above seems to work.
8166 ??? At some point, this whole thing needs to be rethought. */
8168 if (GET_CODE (in) == PLUS
8169 && (REG_P (XEXP (in, 0))
8170 || GET_CODE (XEXP (in, 0)) == SUBREG
8171 || MEM_P (XEXP (in, 0)))
8172 && (REG_P (XEXP (in, 1))
8173 || GET_CODE (XEXP (in, 1)) == SUBREG
8174 || CONSTANT_P (XEXP (in, 1))
8175 || MEM_P (XEXP (in, 1))))
8177 /* We need to compute the sum of a register or a MEM and another
8178 register, constant, or MEM, and put it into the reload
8179 register. The best possible way of doing this is if the machine
8180 has a three-operand ADD insn that accepts the required operands.
8182 The simplest approach is to try to generate such an insn and see if it
8183 is recognized and matches its constraints. If so, it can be used.
8185 It might be better not to actually emit the insn unless it is valid,
8186 but we need to pass the insn as an operand to `recog' and
8187 `extract_insn' and it is simpler to emit and then delete the insn if
8188 not valid than to dummy things up. */
8190 rtx op0, op1, tem, insn;
8191 int code;
8193 op0 = find_replacement (&XEXP (in, 0));
8194 op1 = find_replacement (&XEXP (in, 1));
8196 /* Since constraint checking is strict, commutativity won't be
8197 checked, so we need to do that here to avoid spurious failure
8198 if the add instruction is two-address and the second operand
8199 of the add is the same as the reload reg, which is frequently
8200 the case. If the insn would be A = B + A, rearrange it so
8201 it will be A = A + B as constrain_operands expects. */
8203 if (REG_P (XEXP (in, 1))
8204 && REGNO (out) == REGNO (XEXP (in, 1)))
8205 tem = op0, op0 = op1, op1 = tem;
8207 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8208 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8210 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8211 if (insn)
8212 return insn;
8214 /* If that failed, we must use a conservative two-insn sequence.
8216 Use a move to copy one operand into the reload register. Prefer
8217 to reload a constant, MEM or pseudo since the move patterns can
8218 handle an arbitrary operand. If OP1 is not a constant, MEM or
8219 pseudo and OP1 is not a valid operand for an add instruction, then
8220 reload OP1.
8222 After reloading one of the operands into the reload register, add
8223 the reload register to the output register.
8225 If there is another way to do this for a specific machine, a
8226 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8227 we emit below. */
8229 code = (int) optab_handler (add_optab, GET_MODE (out))->insn_code;
8231 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8232 || (REG_P (op1)
8233 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8234 || (code != CODE_FOR_nothing
8235 && ! ((*insn_data[code].operand[2].predicate)
8236 (op1, insn_data[code].operand[2].mode))))
8237 tem = op0, op0 = op1, op1 = tem;
8239 gen_reload (out, op0, opnum, type);
8241 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8242 This fixes a problem on the 32K where the stack pointer cannot
8243 be used as an operand of an add insn. */
8245 if (rtx_equal_p (op0, op1))
8246 op1 = out;
8248 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8249 if (insn)
8251 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8252 set_unique_reg_note (insn, REG_EQUIV, in);
8253 return insn;
8256 /* If that failed, copy the address register to the reload register.
8257 Then add the constant to the reload register. */
8259 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8260 gen_reload (out, op1, opnum, type);
8261 insn = emit_insn (gen_add2_insn (out, op0));
8262 set_unique_reg_note (insn, REG_EQUIV, in);
8265 #ifdef SECONDARY_MEMORY_NEEDED
8266 /* If we need a memory location to do the move, do it that way. */
8267 else if ((REG_P (in)
8268 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8269 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8270 && (REG_P (out)
8271 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8272 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8273 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8274 REGNO_REG_CLASS (reg_or_subregno (out)),
8275 GET_MODE (out)))
8277 /* Get the memory to use and rewrite both registers to its mode. */
8278 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8280 if (GET_MODE (loc) != GET_MODE (out))
8281 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8283 if (GET_MODE (loc) != GET_MODE (in))
8284 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8286 gen_reload (loc, in, opnum, type);
8287 gen_reload (out, loc, opnum, type);
8289 #endif
8290 else if (REG_P (out) && UNARY_P (in))
8292 rtx insn;
8293 rtx op1;
8294 rtx out_moded;
8295 rtx set;
8297 op1 = find_replacement (&XEXP (in, 0));
8298 if (op1 != XEXP (in, 0))
8299 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8301 /* First, try a plain SET. */
8302 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8303 if (set)
8304 return set;
8306 /* If that failed, move the inner operand to the reload
8307 register, and try the same unop with the inner expression
8308 replaced with the reload register. */
8310 if (GET_MODE (op1) != GET_MODE (out))
8311 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8312 else
8313 out_moded = out;
8315 gen_reload (out_moded, op1, opnum, type);
8317 insn
8318 = gen_rtx_SET (VOIDmode, out,
8319 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8320 out_moded));
8321 insn = emit_insn_if_valid_for_reload (insn);
8322 if (insn)
8324 set_unique_reg_note (insn, REG_EQUIV, in);
8325 return insn;
8328 fatal_insn ("Failure trying to reload:", set);
8330 /* If IN is a simple operand, use gen_move_insn. */
8331 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8333 tem = emit_insn (gen_move_insn (out, in));
8334 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8335 mark_jump_label (in, tem, 0);
8338 #ifdef HAVE_reload_load_address
8339 else if (HAVE_reload_load_address)
8340 emit_insn (gen_reload_load_address (out, in));
8341 #endif
8343 /* Otherwise, just write (set OUT IN) and hope for the best. */
8344 else
8345 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8347 /* Return the first insn emitted.
8348 We can not just return get_last_insn, because there may have
8349 been multiple instructions emitted. Also note that gen_move_insn may
8350 emit more than one insn itself, so we can not assume that there is one
8351 insn emitted per emit_insn_before call. */
8353 return last ? NEXT_INSN (last) : get_insns ();
8356 /* Delete a previously made output-reload whose result we now believe
8357 is not needed. First we double-check.
8359 INSN is the insn now being processed.
8360 LAST_RELOAD_REG is the hard register number for which we want to delete
8361 the last output reload.
8362 J is the reload-number that originally used REG. The caller has made
8363 certain that reload J doesn't use REG any longer for input.
8364 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8366 static void
8367 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8369 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8370 rtx reg = spill_reg_stored_to[last_reload_reg];
8371 int k;
8372 int n_occurrences;
8373 int n_inherited = 0;
8374 rtx i1;
8375 rtx substed;
8377 /* It is possible that this reload has been only used to set another reload
8378 we eliminated earlier and thus deleted this instruction too. */
8379 if (INSN_DELETED_P (output_reload_insn))
8380 return;
8382 /* Get the raw pseudo-register referred to. */
8384 while (GET_CODE (reg) == SUBREG)
8385 reg = SUBREG_REG (reg);
8386 substed = reg_equiv_memory_loc[REGNO (reg)];
8388 /* This is unsafe if the operand occurs more often in the current
8389 insn than it is inherited. */
8390 for (k = n_reloads - 1; k >= 0; k--)
8392 rtx reg2 = rld[k].in;
8393 if (! reg2)
8394 continue;
8395 if (MEM_P (reg2) || reload_override_in[k])
8396 reg2 = rld[k].in_reg;
8397 #ifdef AUTO_INC_DEC
8398 if (rld[k].out && ! rld[k].out_reg)
8399 reg2 = XEXP (rld[k].in_reg, 0);
8400 #endif
8401 while (GET_CODE (reg2) == SUBREG)
8402 reg2 = SUBREG_REG (reg2);
8403 if (rtx_equal_p (reg2, reg))
8405 if (reload_inherited[k] || reload_override_in[k] || k == j)
8406 n_inherited++;
8407 else
8408 return;
8411 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8412 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8413 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8414 reg, 0);
8415 if (substed)
8416 n_occurrences += count_occurrences (PATTERN (insn),
8417 eliminate_regs (substed, 0,
8418 NULL_RTX), 0);
8419 for (i1 = reg_equiv_alt_mem_list[REGNO (reg)]; i1; i1 = XEXP (i1, 1))
8421 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8422 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8424 if (n_occurrences > n_inherited)
8425 return;
8427 /* If the pseudo-reg we are reloading is no longer referenced
8428 anywhere between the store into it and here,
8429 and we're within the same basic block, then the value can only
8430 pass through the reload reg and end up here.
8431 Otherwise, give up--return. */
8432 for (i1 = NEXT_INSN (output_reload_insn);
8433 i1 != insn; i1 = NEXT_INSN (i1))
8435 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8436 return;
8437 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8438 && reg_mentioned_p (reg, PATTERN (i1)))
8440 /* If this is USE in front of INSN, we only have to check that
8441 there are no more references than accounted for by inheritance. */
8442 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8444 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8445 i1 = NEXT_INSN (i1);
8447 if (n_occurrences <= n_inherited && i1 == insn)
8448 break;
8449 return;
8453 /* We will be deleting the insn. Remove the spill reg information. */
8454 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8456 spill_reg_store[last_reload_reg + k] = 0;
8457 spill_reg_stored_to[last_reload_reg + k] = 0;
8460 /* The caller has already checked that REG dies or is set in INSN.
8461 It has also checked that we are optimizing, and thus some
8462 inaccuracies in the debugging information are acceptable.
8463 So we could just delete output_reload_insn. But in some cases
8464 we can improve the debugging information without sacrificing
8465 optimization - maybe even improving the code: See if the pseudo
8466 reg has been completely replaced with reload regs. If so, delete
8467 the store insn and forget we had a stack slot for the pseudo. */
8468 if (rld[j].out != rld[j].in
8469 && REG_N_DEATHS (REGNO (reg)) == 1
8470 && REG_N_SETS (REGNO (reg)) == 1
8471 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8472 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8474 rtx i2;
8476 /* We know that it was used only between here and the beginning of
8477 the current basic block. (We also know that the last use before
8478 INSN was the output reload we are thinking of deleting, but never
8479 mind that.) Search that range; see if any ref remains. */
8480 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8482 rtx set = single_set (i2);
8484 /* Uses which just store in the pseudo don't count,
8485 since if they are the only uses, they are dead. */
8486 if (set != 0 && SET_DEST (set) == reg)
8487 continue;
8488 if (LABEL_P (i2)
8489 || JUMP_P (i2))
8490 break;
8491 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8492 && reg_mentioned_p (reg, PATTERN (i2)))
8494 /* Some other ref remains; just delete the output reload we
8495 know to be dead. */
8496 delete_address_reloads (output_reload_insn, insn);
8497 delete_insn (output_reload_insn);
8498 return;
8502 /* Delete the now-dead stores into this pseudo. Note that this
8503 loop also takes care of deleting output_reload_insn. */
8504 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8506 rtx set = single_set (i2);
8508 if (set != 0 && SET_DEST (set) == reg)
8510 delete_address_reloads (i2, insn);
8511 delete_insn (i2);
8513 if (LABEL_P (i2)
8514 || JUMP_P (i2))
8515 break;
8518 /* For the debugging info, say the pseudo lives in this reload reg. */
8519 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8520 if (ira_conflicts_p)
8521 /* Inform IRA about the change. */
8522 ira_mark_allocation_change (REGNO (reg));
8523 alter_reg (REGNO (reg), -1, false);
8525 else
8527 delete_address_reloads (output_reload_insn, insn);
8528 delete_insn (output_reload_insn);
8532 /* We are going to delete DEAD_INSN. Recursively delete loads of
8533 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8534 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8535 static void
8536 delete_address_reloads (rtx dead_insn, rtx current_insn)
8538 rtx set = single_set (dead_insn);
8539 rtx set2, dst, prev, next;
8540 if (set)
8542 rtx dst = SET_DEST (set);
8543 if (MEM_P (dst))
8544 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8546 /* If we deleted the store from a reloaded post_{in,de}c expression,
8547 we can delete the matching adds. */
8548 prev = PREV_INSN (dead_insn);
8549 next = NEXT_INSN (dead_insn);
8550 if (! prev || ! next)
8551 return;
8552 set = single_set (next);
8553 set2 = single_set (prev);
8554 if (! set || ! set2
8555 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8556 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8557 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8558 return;
8559 dst = SET_DEST (set);
8560 if (! rtx_equal_p (dst, SET_DEST (set2))
8561 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8562 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8563 || (INTVAL (XEXP (SET_SRC (set), 1))
8564 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8565 return;
8566 delete_related_insns (prev);
8567 delete_related_insns (next);
8570 /* Subfunction of delete_address_reloads: process registers found in X. */
8571 static void
8572 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8574 rtx prev, set, dst, i2;
8575 int i, j;
8576 enum rtx_code code = GET_CODE (x);
8578 if (code != REG)
8580 const char *fmt = GET_RTX_FORMAT (code);
8581 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8583 if (fmt[i] == 'e')
8584 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8585 else if (fmt[i] == 'E')
8587 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8588 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8589 current_insn);
8592 return;
8595 if (spill_reg_order[REGNO (x)] < 0)
8596 return;
8598 /* Scan backwards for the insn that sets x. This might be a way back due
8599 to inheritance. */
8600 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8602 code = GET_CODE (prev);
8603 if (code == CODE_LABEL || code == JUMP_INSN)
8604 return;
8605 if (!INSN_P (prev))
8606 continue;
8607 if (reg_set_p (x, PATTERN (prev)))
8608 break;
8609 if (reg_referenced_p (x, PATTERN (prev)))
8610 return;
8612 if (! prev || INSN_UID (prev) < reload_first_uid)
8613 return;
8614 /* Check that PREV only sets the reload register. */
8615 set = single_set (prev);
8616 if (! set)
8617 return;
8618 dst = SET_DEST (set);
8619 if (!REG_P (dst)
8620 || ! rtx_equal_p (dst, x))
8621 return;
8622 if (! reg_set_p (dst, PATTERN (dead_insn)))
8624 /* Check if DST was used in a later insn -
8625 it might have been inherited. */
8626 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8628 if (LABEL_P (i2))
8629 break;
8630 if (! INSN_P (i2))
8631 continue;
8632 if (reg_referenced_p (dst, PATTERN (i2)))
8634 /* If there is a reference to the register in the current insn,
8635 it might be loaded in a non-inherited reload. If no other
8636 reload uses it, that means the register is set before
8637 referenced. */
8638 if (i2 == current_insn)
8640 for (j = n_reloads - 1; j >= 0; j--)
8641 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8642 || reload_override_in[j] == dst)
8643 return;
8644 for (j = n_reloads - 1; j >= 0; j--)
8645 if (rld[j].in && rld[j].reg_rtx == dst)
8646 break;
8647 if (j >= 0)
8648 break;
8650 return;
8652 if (JUMP_P (i2))
8653 break;
8654 /* If DST is still live at CURRENT_INSN, check if it is used for
8655 any reload. Note that even if CURRENT_INSN sets DST, we still
8656 have to check the reloads. */
8657 if (i2 == current_insn)
8659 for (j = n_reloads - 1; j >= 0; j--)
8660 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8661 || reload_override_in[j] == dst)
8662 return;
8663 /* ??? We can't finish the loop here, because dst might be
8664 allocated to a pseudo in this block if no reload in this
8665 block needs any of the classes containing DST - see
8666 spill_hard_reg. There is no easy way to tell this, so we
8667 have to scan till the end of the basic block. */
8669 if (reg_set_p (dst, PATTERN (i2)))
8670 break;
8673 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8674 reg_reloaded_contents[REGNO (dst)] = -1;
8675 delete_insn (prev);
8678 /* Output reload-insns to reload VALUE into RELOADREG.
8679 VALUE is an autoincrement or autodecrement RTX whose operand
8680 is a register or memory location;
8681 so reloading involves incrementing that location.
8682 IN is either identical to VALUE, or some cheaper place to reload from.
8684 INC_AMOUNT is the number to increment or decrement by (always positive).
8685 This cannot be deduced from VALUE.
8687 Return the instruction that stores into RELOADREG. */
8689 static rtx
8690 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8692 /* REG or MEM to be copied and incremented. */
8693 rtx incloc = find_replacement (&XEXP (value, 0));
8694 /* Nonzero if increment after copying. */
8695 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8696 || GET_CODE (value) == POST_MODIFY);
8697 rtx last;
8698 rtx inc;
8699 rtx add_insn;
8700 int code;
8701 rtx store;
8702 rtx real_in = in == value ? incloc : in;
8704 /* No hard register is equivalent to this register after
8705 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8706 we could inc/dec that register as well (maybe even using it for
8707 the source), but I'm not sure it's worth worrying about. */
8708 if (REG_P (incloc))
8709 reg_last_reload_reg[REGNO (incloc)] = 0;
8711 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8713 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8714 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8716 else
8718 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8719 inc_amount = -inc_amount;
8721 inc = GEN_INT (inc_amount);
8724 /* If this is post-increment, first copy the location to the reload reg. */
8725 if (post && real_in != reloadreg)
8726 emit_insn (gen_move_insn (reloadreg, real_in));
8728 if (in == value)
8730 /* See if we can directly increment INCLOC. Use a method similar to
8731 that in gen_reload. */
8733 last = get_last_insn ();
8734 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8735 gen_rtx_PLUS (GET_MODE (incloc),
8736 incloc, inc)));
8738 code = recog_memoized (add_insn);
8739 if (code >= 0)
8741 extract_insn (add_insn);
8742 if (constrain_operands (1))
8744 /* If this is a pre-increment and we have incremented the value
8745 where it lives, copy the incremented value to RELOADREG to
8746 be used as an address. */
8748 if (! post)
8749 emit_insn (gen_move_insn (reloadreg, incloc));
8751 return add_insn;
8754 delete_insns_since (last);
8757 /* If couldn't do the increment directly, must increment in RELOADREG.
8758 The way we do this depends on whether this is pre- or post-increment.
8759 For pre-increment, copy INCLOC to the reload register, increment it
8760 there, then save back. */
8762 if (! post)
8764 if (in != reloadreg)
8765 emit_insn (gen_move_insn (reloadreg, real_in));
8766 emit_insn (gen_add2_insn (reloadreg, inc));
8767 store = emit_insn (gen_move_insn (incloc, reloadreg));
8769 else
8771 /* Postincrement.
8772 Because this might be a jump insn or a compare, and because RELOADREG
8773 may not be available after the insn in an input reload, we must do
8774 the incrementation before the insn being reloaded for.
8776 We have already copied IN to RELOADREG. Increment the copy in
8777 RELOADREG, save that back, then decrement RELOADREG so it has
8778 the original value. */
8780 emit_insn (gen_add2_insn (reloadreg, inc));
8781 store = emit_insn (gen_move_insn (incloc, reloadreg));
8782 if (GET_CODE (inc) == CONST_INT)
8783 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
8784 else
8785 emit_insn (gen_sub2_insn (reloadreg, inc));
8788 return store;
8791 #ifdef AUTO_INC_DEC
8792 static void
8793 add_auto_inc_notes (rtx insn, rtx x)
8795 enum rtx_code code = GET_CODE (x);
8796 const char *fmt;
8797 int i, j;
8799 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8801 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
8802 return;
8805 /* Scan all the operand sub-expressions. */
8806 fmt = GET_RTX_FORMAT (code);
8807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8809 if (fmt[i] == 'e')
8810 add_auto_inc_notes (insn, XEXP (x, i));
8811 else if (fmt[i] == 'E')
8812 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8813 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8816 #endif
8818 /* Copy EH notes from an insn to its reloads. */
8819 static void
8820 copy_eh_notes (rtx insn, rtx x)
8822 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8823 if (eh_note)
8825 for (; x != 0; x = NEXT_INSN (x))
8827 if (may_trap_p (PATTERN (x)))
8828 add_reg_note (x, REG_EH_REGION, XEXP (eh_note, 0));
8833 /* This is used by reload pass, that does emit some instructions after
8834 abnormal calls moving basic block end, but in fact it wants to emit
8835 them on the edge. Looks for abnormal call edges, find backward the
8836 proper call and fix the damage.
8838 Similar handle instructions throwing exceptions internally. */
8839 void
8840 fixup_abnormal_edges (void)
8842 bool inserted = false;
8843 basic_block bb;
8845 FOR_EACH_BB (bb)
8847 edge e;
8848 edge_iterator ei;
8850 /* Look for cases we are interested in - calls or instructions causing
8851 exceptions. */
8852 FOR_EACH_EDGE (e, ei, bb->succs)
8854 if (e->flags & EDGE_ABNORMAL_CALL)
8855 break;
8856 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8857 == (EDGE_ABNORMAL | EDGE_EH))
8858 break;
8860 if (e && !CALL_P (BB_END (bb))
8861 && !can_throw_internal (BB_END (bb)))
8863 rtx insn;
8865 /* Get past the new insns generated. Allow notes, as the insns
8866 may be already deleted. */
8867 insn = BB_END (bb);
8868 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8869 && !can_throw_internal (insn)
8870 && insn != BB_HEAD (bb))
8871 insn = PREV_INSN (insn);
8873 if (CALL_P (insn) || can_throw_internal (insn))
8875 rtx stop, next;
8877 stop = NEXT_INSN (BB_END (bb));
8878 BB_END (bb) = insn;
8879 insn = NEXT_INSN (insn);
8881 FOR_EACH_EDGE (e, ei, bb->succs)
8882 if (e->flags & EDGE_FALLTHRU)
8883 break;
8885 while (insn && insn != stop)
8887 next = NEXT_INSN (insn);
8888 if (INSN_P (insn))
8890 delete_insn (insn);
8892 /* Sometimes there's still the return value USE.
8893 If it's placed after a trapping call (i.e. that
8894 call is the last insn anyway), we have no fallthru
8895 edge. Simply delete this use and don't try to insert
8896 on the non-existent edge. */
8897 if (GET_CODE (PATTERN (insn)) != USE)
8899 /* We're not deleting it, we're moving it. */
8900 INSN_DELETED_P (insn) = 0;
8901 PREV_INSN (insn) = NULL_RTX;
8902 NEXT_INSN (insn) = NULL_RTX;
8904 insert_insn_on_edge (insn, e);
8905 inserted = true;
8908 else if (!BARRIER_P (insn))
8909 set_block_for_insn (insn, NULL);
8910 insn = next;
8914 /* It may be that we don't find any such trapping insn. In this
8915 case we discovered quite late that the insn that had been
8916 marked as can_throw_internal in fact couldn't trap at all.
8917 So we should in fact delete the EH edges out of the block. */
8918 else
8919 purge_dead_edges (bb);
8923 /* We've possibly turned single trapping insn into multiple ones. */
8924 if (flag_non_call_exceptions)
8926 sbitmap blocks;
8927 blocks = sbitmap_alloc (last_basic_block);
8928 sbitmap_ones (blocks);
8929 find_many_sub_basic_blocks (blocks);
8930 sbitmap_free (blocks);
8933 if (inserted)
8934 commit_edge_insertions ();
8936 #ifdef ENABLE_CHECKING
8937 /* Verify that we didn't turn one trapping insn into many, and that
8938 we found and corrected all of the problems wrt fixups on the
8939 fallthru edge. */
8940 verify_flow_info ();
8941 #endif