1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "insn-config.h"
29 #include "addresses.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
40 #include "tree-pass.h"
45 struct du_chain
*next_chain
;
46 struct du_chain
*next_use
;
50 ENUM_BITFIELD(reg_class
) cl
: 16;
51 unsigned int need_caller_save_reg
:1;
52 unsigned int earlyclobber
:1;
58 terminate_overlapping_read
,
63 /* mark_access is for marking the destination regs in
64 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
65 note is updated properly. */
69 static const char * const scan_actions_name
[] =
72 "terminate_overlapping_read",
80 static struct obstack rename_obstack
;
82 static void do_replace (struct du_chain
*, int);
83 static void scan_rtx_reg (rtx
, rtx
*, enum reg_class
,
84 enum scan_actions
, enum op_type
, int);
85 static void scan_rtx_address (rtx
, rtx
*, enum reg_class
,
86 enum scan_actions
, enum machine_mode
);
87 static void scan_rtx (rtx
, rtx
*, enum reg_class
, enum scan_actions
,
89 static struct du_chain
*build_def_use (basic_block
);
90 static void dump_def_use_chain (struct du_chain
*);
91 static void note_sets (rtx
, const_rtx
, void *);
92 static void clear_dead_regs (HARD_REG_SET
*, enum reg_note
, rtx
);
93 static void merge_overlapping_regs (basic_block
, HARD_REG_SET
*,
96 /* Called through note_stores. Find sets of registers, and
97 record them in *DATA (which is actually a HARD_REG_SET *). */
100 note_sets (rtx x
, const_rtx set ATTRIBUTE_UNUSED
, void *data
)
102 HARD_REG_SET
*pset
= (HARD_REG_SET
*) data
;
104 if (GET_CODE (x
) == SUBREG
)
108 /* There must not be pseudos at this point. */
109 gcc_assert (HARD_REGISTER_P (x
));
110 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
113 /* Clear all registers from *PSET for which a note of kind KIND can be found
114 in the list NOTES. */
117 clear_dead_regs (HARD_REG_SET
*pset
, enum reg_note kind
, rtx notes
)
120 for (note
= notes
; note
; note
= XEXP (note
, 1))
121 if (REG_NOTE_KIND (note
) == kind
&& REG_P (XEXP (note
, 0)))
123 rtx reg
= XEXP (note
, 0);
124 /* There must not be pseudos at this point. */
125 gcc_assert (HARD_REGISTER_P (reg
));
126 remove_from_hard_reg_set (pset
, GET_MODE (reg
), REGNO (reg
));
130 /* For a def-use chain CHAIN in basic block B, find which registers overlap
131 its lifetime and set the corresponding bits in *PSET. */
134 merge_overlapping_regs (basic_block b
, HARD_REG_SET
*pset
,
135 struct du_chain
*chain
)
137 struct du_chain
*t
= chain
;
142 REG_SET_TO_HARD_REG_SET (live
, df_get_live_in (b
));
143 for (def_rec
= df_get_artificial_defs (b
->index
); *def_rec
; def_rec
++)
145 df_ref def
= *def_rec
;
146 if (DF_REF_FLAGS (def
) & DF_REF_AT_TOP
)
147 SET_HARD_REG_BIT (live
, DF_REF_REGNO (def
));
152 /* Search forward until the next reference to the register to be
154 while (insn
!= t
->insn
)
158 clear_dead_regs (&live
, REG_DEAD
, REG_NOTES (insn
));
159 note_stores (PATTERN (insn
), note_sets
, (void *) &live
);
160 /* Only record currently live regs if we are inside the
163 IOR_HARD_REG_SET (*pset
, live
);
164 clear_dead_regs (&live
, REG_UNUSED
, REG_NOTES (insn
));
166 insn
= NEXT_INSN (insn
);
169 IOR_HARD_REG_SET (*pset
, live
);
171 /* For the last reference, also merge in all registers set in the
173 @@@ We only have take earlyclobbered sets into account. */
175 note_stores (PATTERN (insn
), note_sets
, (void *) pset
);
181 /* Perform register renaming on the current function. */
184 regrename_optimize (void)
186 int tick
[FIRST_PSEUDO_REGISTER
];
191 df_set_flags (DF_LR_RUN_DCE
);
192 df_note_add_problem ();
194 df_set_flags (DF_DEFER_INSN_RESCAN
);
196 memset (tick
, 0, sizeof tick
);
198 gcc_obstack_init (&rename_obstack
);
199 first_obj
= XOBNEWVAR (&rename_obstack
, char, 0);
203 struct du_chain
*all_chains
= 0;
204 HARD_REG_SET unavailable
;
205 HARD_REG_SET regs_seen
;
207 CLEAR_HARD_REG_SET (unavailable
);
210 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
212 all_chains
= build_def_use (bb
);
215 dump_def_use_chain (all_chains
);
217 CLEAR_HARD_REG_SET (unavailable
);
218 /* Don't clobber traceback for noreturn functions. */
219 if (frame_pointer_needed
)
221 add_to_hard_reg_set (&unavailable
, Pmode
, FRAME_POINTER_REGNUM
);
222 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
223 add_to_hard_reg_set (&unavailable
, Pmode
, HARD_FRAME_POINTER_REGNUM
);
227 CLEAR_HARD_REG_SET (regs_seen
);
230 int new_reg
, best_new_reg
;
232 struct du_chain
*this_du
= all_chains
;
233 struct du_chain
*tmp
, *last
;
234 HARD_REG_SET this_unavailable
;
235 int reg
= REGNO (*this_du
->loc
);
238 all_chains
= this_du
->next_chain
;
242 #if 0 /* This just disables optimization opportunities. */
243 /* Only rename once we've seen the reg more than once. */
244 if (! TEST_HARD_REG_BIT (regs_seen
, reg
))
246 SET_HARD_REG_BIT (regs_seen
, reg
);
251 if (fixed_regs
[reg
] || global_regs
[reg
]
252 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
253 || (frame_pointer_needed
&& reg
== HARD_FRAME_POINTER_REGNUM
)
255 || (frame_pointer_needed
&& reg
== FRAME_POINTER_REGNUM
)
260 COPY_HARD_REG_SET (this_unavailable
, unavailable
);
262 /* Find last entry on chain (which has the need_caller_save bit),
263 count number of uses, and narrow the set of registers we can
266 for (last
= this_du
; last
->next_use
; last
= last
->next_use
)
269 IOR_COMPL_HARD_REG_SET (this_unavailable
,
270 reg_class_contents
[last
->cl
]);
275 IOR_COMPL_HARD_REG_SET (this_unavailable
,
276 reg_class_contents
[last
->cl
]);
278 if (this_du
->need_caller_save_reg
)
279 IOR_HARD_REG_SET (this_unavailable
, call_used_reg_set
);
281 merge_overlapping_regs (bb
, &this_unavailable
, this_du
);
283 /* Now potential_regs is a reasonable approximation, let's
284 have a closer look at each register still in there. */
285 for (new_reg
= 0; new_reg
< FIRST_PSEUDO_REGISTER
; new_reg
++)
287 int nregs
= hard_regno_nregs
[new_reg
][GET_MODE (*this_du
->loc
)];
289 for (i
= nregs
- 1; i
>= 0; --i
)
290 if (TEST_HARD_REG_BIT (this_unavailable
, new_reg
+ i
)
291 || fixed_regs
[new_reg
+ i
]
292 || global_regs
[new_reg
+ i
]
293 /* Can't use regs which aren't saved by the prologue. */
294 || (! df_regs_ever_live_p (new_reg
+ i
)
295 && ! call_used_regs
[new_reg
+ i
])
296 #ifdef LEAF_REGISTERS
297 /* We can't use a non-leaf register if we're in a
299 || (current_function_is_leaf
300 && !LEAF_REGISTERS
[new_reg
+ i
])
302 #ifdef HARD_REGNO_RENAME_OK
303 || ! HARD_REGNO_RENAME_OK (reg
+ i
, new_reg
+ i
)
310 /* See whether it accepts all modes that occur in
311 definition and uses. */
312 for (tmp
= this_du
; tmp
; tmp
= tmp
->next_use
)
313 if (! HARD_REGNO_MODE_OK (new_reg
, GET_MODE (*tmp
->loc
))
314 || (tmp
->need_caller_save_reg
315 && ! (HARD_REGNO_CALL_PART_CLOBBERED
316 (reg
, GET_MODE (*tmp
->loc
)))
317 && (HARD_REGNO_CALL_PART_CLOBBERED
318 (new_reg
, GET_MODE (*tmp
->loc
)))))
322 if (tick
[best_new_reg
] > tick
[new_reg
])
323 best_new_reg
= new_reg
;
329 fprintf (dump_file
, "Register %s in insn %d",
330 reg_names
[reg
], INSN_UID (last
->insn
));
331 if (last
->need_caller_save_reg
)
332 fprintf (dump_file
, " crosses a call");
335 if (best_new_reg
== reg
)
337 tick
[reg
] = ++this_tick
;
339 fprintf (dump_file
, "; no available better choice\n");
344 fprintf (dump_file
, ", renamed as %s\n", reg_names
[best_new_reg
]);
346 do_replace (this_du
, best_new_reg
);
347 tick
[best_new_reg
] = ++this_tick
;
348 df_set_regs_ever_live (best_new_reg
, true);
351 obstack_free (&rename_obstack
, first_obj
);
354 obstack_free (&rename_obstack
, NULL
);
357 fputc ('\n', dump_file
);
361 do_replace (struct du_chain
*chain
, int reg
)
365 unsigned int regno
= ORIGINAL_REGNO (*chain
->loc
);
366 struct reg_attrs
* attr
= REG_ATTRS (*chain
->loc
);
367 int reg_ptr
= REG_POINTER (*chain
->loc
);
369 *chain
->loc
= gen_raw_REG (GET_MODE (*chain
->loc
), reg
);
370 if (regno
>= FIRST_PSEUDO_REGISTER
)
371 ORIGINAL_REGNO (*chain
->loc
) = regno
;
372 REG_ATTRS (*chain
->loc
) = attr
;
373 REG_POINTER (*chain
->loc
) = reg_ptr
;
374 df_insn_rescan (chain
->insn
);
375 chain
= chain
->next_use
;
380 static struct du_chain
*open_chains
;
381 static struct du_chain
*closed_chains
;
384 scan_rtx_reg (rtx insn
, rtx
*loc
, enum reg_class cl
,
385 enum scan_actions action
, enum op_type type
, int earlyclobber
)
389 enum machine_mode mode
= GET_MODE (x
);
390 int this_regno
= REGNO (x
);
391 int this_nregs
= hard_regno_nregs
[this_regno
][mode
];
393 if (action
== mark_write
)
397 struct du_chain
*this_du
= XOBNEW (&rename_obstack
, struct du_chain
);
398 this_du
->next_use
= 0;
399 this_du
->next_chain
= open_chains
;
401 this_du
->insn
= insn
;
403 this_du
->need_caller_save_reg
= 0;
404 this_du
->earlyclobber
= earlyclobber
;
405 open_chains
= this_du
;
410 if ((type
== OP_OUT
) != (action
== terminate_write
|| action
== mark_access
))
413 for (p
= &open_chains
; *p
;)
415 struct du_chain
*this_du
= *p
;
417 /* Check if the chain has been terminated if it has then skip to
420 This can happen when we've already appended the location to
421 the chain in Step 3, but are trying to hide in-out operands
422 from terminate_write in Step 5. */
424 if (*this_du
->loc
== cc0_rtx
)
425 p
= &this_du
->next_chain
;
428 int regno
= REGNO (*this_du
->loc
);
429 int nregs
= hard_regno_nregs
[regno
][GET_MODE (*this_du
->loc
)];
430 int exact_match
= (regno
== this_regno
&& nregs
== this_nregs
);
432 if (regno
+ nregs
<= this_regno
433 || this_regno
+ this_nregs
<= regno
)
435 p
= &this_du
->next_chain
;
439 if (action
== mark_read
|| action
== mark_access
)
441 gcc_assert (exact_match
);
443 /* ??? Class NO_REGS can happen if the md file makes use of
444 EXTRA_CONSTRAINTS to match registers. Which is arguably
445 wrong, but there we are. Since we know not what this may
446 be replaced with, terminate the chain. */
449 this_du
= XOBNEW (&rename_obstack
, struct du_chain
);
450 this_du
->next_use
= 0;
451 this_du
->next_chain
= (*p
)->next_chain
;
453 this_du
->insn
= insn
;
455 this_du
->need_caller_save_reg
= 0;
463 if (action
!= terminate_overlapping_read
|| ! exact_match
)
465 struct du_chain
*next
= this_du
->next_chain
;
467 /* Whether the terminated chain can be used for renaming
468 depends on the action and this being an exact match.
469 In either case, we remove this element from open_chains. */
471 if ((action
== terminate_dead
|| action
== terminate_write
)
474 this_du
->next_chain
= closed_chains
;
475 closed_chains
= this_du
;
478 "Closing chain %s at insn %d (%s)\n",
479 reg_names
[REGNO (*this_du
->loc
)], INSN_UID (insn
),
480 scan_actions_name
[(int) action
]);
486 "Discarding chain %s at insn %d (%s)\n",
487 reg_names
[REGNO (*this_du
->loc
)], INSN_UID (insn
),
488 scan_actions_name
[(int) action
]);
493 p
= &this_du
->next_chain
;
498 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
499 BASE_REG_CLASS depending on how the register is being considered. */
502 scan_rtx_address (rtx insn
, rtx
*loc
, enum reg_class cl
,
503 enum scan_actions action
, enum machine_mode mode
)
506 RTX_CODE code
= GET_CODE (x
);
510 if (action
== mark_write
|| action
== mark_access
)
517 rtx orig_op0
= XEXP (x
, 0);
518 rtx orig_op1
= XEXP (x
, 1);
519 RTX_CODE code0
= GET_CODE (orig_op0
);
520 RTX_CODE code1
= GET_CODE (orig_op1
);
525 enum rtx_code index_code
= SCRATCH
;
527 if (GET_CODE (op0
) == SUBREG
)
529 op0
= SUBREG_REG (op0
);
530 code0
= GET_CODE (op0
);
533 if (GET_CODE (op1
) == SUBREG
)
535 op1
= SUBREG_REG (op1
);
536 code1
= GET_CODE (op1
);
539 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
540 || code0
== ZERO_EXTEND
|| code1
== MEM
)
544 index_code
= GET_CODE (*locI
);
546 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
547 || code1
== ZERO_EXTEND
|| code0
== MEM
)
551 index_code
= GET_CODE (*locI
);
553 else if (code0
== CONST_INT
|| code0
== CONST
554 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
557 index_code
= GET_CODE (XEXP (x
, 0));
559 else if (code1
== CONST_INT
|| code1
== CONST
560 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
563 index_code
= GET_CODE (XEXP (x
, 1));
565 else if (code0
== REG
&& code1
== REG
)
568 unsigned regno0
= REGNO (op0
), regno1
= REGNO (op1
);
570 if (REGNO_OK_FOR_INDEX_P (regno1
)
571 && regno_ok_for_base_p (regno0
, mode
, PLUS
, REG
))
573 else if (REGNO_OK_FOR_INDEX_P (regno0
)
574 && regno_ok_for_base_p (regno1
, mode
, PLUS
, REG
))
576 else if (regno_ok_for_base_p (regno0
, mode
, PLUS
, REG
)
577 || REGNO_OK_FOR_INDEX_P (regno1
))
579 else if (regno_ok_for_base_p (regno1
, mode
, PLUS
, REG
))
584 locI
= &XEXP (x
, index_op
);
585 locB
= &XEXP (x
, !index_op
);
586 index_code
= GET_CODE (*locI
);
588 else if (code0
== REG
)
592 index_code
= GET_CODE (*locI
);
594 else if (code1
== REG
)
598 index_code
= GET_CODE (*locI
);
602 scan_rtx_address (insn
, locI
, INDEX_REG_CLASS
, action
, mode
);
604 scan_rtx_address (insn
, locB
, base_reg_class (mode
, PLUS
, index_code
),
617 /* If the target doesn't claim to handle autoinc, this must be
618 something special, like a stack push. Kill this chain. */
619 action
= terminate_all_read
;
624 scan_rtx_address (insn
, &XEXP (x
, 0),
625 base_reg_class (GET_MODE (x
), MEM
, SCRATCH
), action
,
630 scan_rtx_reg (insn
, loc
, cl
, action
, OP_IN
, 0);
637 fmt
= GET_RTX_FORMAT (code
);
638 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
641 scan_rtx_address (insn
, &XEXP (x
, i
), cl
, action
, mode
);
642 else if (fmt
[i
] == 'E')
643 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
644 scan_rtx_address (insn
, &XVECEXP (x
, i
, j
), cl
, action
, mode
);
649 scan_rtx (rtx insn
, rtx
*loc
, enum reg_class cl
,
650 enum scan_actions action
, enum op_type type
, int earlyclobber
)
654 enum rtx_code code
= GET_CODE (x
);
672 scan_rtx_reg (insn
, loc
, cl
, action
, type
, earlyclobber
);
676 scan_rtx_address (insn
, &XEXP (x
, 0),
677 base_reg_class (GET_MODE (x
), MEM
, SCRATCH
), action
,
682 scan_rtx (insn
, &SET_SRC (x
), cl
, action
, OP_IN
, 0);
683 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
684 GET_CODE (PATTERN (insn
)) == COND_EXEC
? OP_INOUT
: OP_OUT
, 0);
687 case STRICT_LOW_PART
:
688 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
, OP_INOUT
, earlyclobber
);
693 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
,
694 type
== OP_IN
? OP_IN
: OP_INOUT
, earlyclobber
);
695 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, OP_IN
, 0);
696 scan_rtx (insn
, &XEXP (x
, 2), cl
, action
, OP_IN
, 0);
705 /* Should only happen inside MEM. */
709 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
710 GET_CODE (PATTERN (insn
)) == COND_EXEC
? OP_INOUT
: OP_OUT
, 0);
714 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
, type
, 0);
716 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, type
, 0);
723 fmt
= GET_RTX_FORMAT (code
);
724 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
727 scan_rtx (insn
, &XEXP (x
, i
), cl
, action
, type
, 0);
728 else if (fmt
[i
] == 'E')
729 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
730 scan_rtx (insn
, &XVECEXP (x
, i
, j
), cl
, action
, type
, 0);
734 /* Build def/use chain. */
736 static struct du_chain
*
737 build_def_use (basic_block bb
)
741 open_chains
= closed_chains
= NULL
;
743 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
749 rtx old_operands
[MAX_RECOG_OPERANDS
];
750 rtx old_dups
[MAX_DUP_OPERANDS
];
755 /* Process the insn, determining its effect on the def-use
756 chains. We perform the following steps with the register
757 references in the insn:
758 (1) Any read that overlaps an open chain, but doesn't exactly
759 match, causes that chain to be closed. We can't deal
761 (2) Any read outside an operand causes any chain it overlaps
762 with to be closed, since we can't replace it.
763 (3) Any read inside an operand is added if there's already
764 an open chain for it.
765 (4) For any REG_DEAD note we find, close open chains that
767 (5) For any write we find, close open chains that overlap it.
768 (6) For any write we find in an operand, make a new chain.
769 (7) For any REG_UNUSED, close any chains we just opened. */
771 icode
= recog_memoized (insn
);
773 if (! constrain_operands (1))
774 fatal_insn_not_found (insn
);
775 preprocess_constraints ();
776 alt
= which_alternative
;
777 n_ops
= recog_data
.n_operands
;
779 /* Simplify the code below by rewriting things to reflect
780 matching constraints. Also promote OP_OUT to OP_INOUT
781 in predicated instructions. */
783 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
784 for (i
= 0; i
< n_ops
; ++i
)
786 int matches
= recog_op_alt
[i
][alt
].matches
;
788 recog_op_alt
[i
][alt
].cl
= recog_op_alt
[matches
][alt
].cl
;
789 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
790 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
791 recog_data
.operand_type
[i
] = OP_INOUT
;
794 /* Step 1: Close chains for which we have overlapping reads. */
795 for (i
= 0; i
< n_ops
; i
++)
796 scan_rtx (insn
, recog_data
.operand_loc
[i
],
797 NO_REGS
, terminate_overlapping_read
,
798 recog_data
.operand_type
[i
], 0);
800 /* Step 2: Close chains for which we have reads outside operands.
801 We do this by munging all operands into CC0, and closing
802 everything remaining. */
804 for (i
= 0; i
< n_ops
; i
++)
806 old_operands
[i
] = recog_data
.operand
[i
];
807 /* Don't squash match_operator or match_parallel here, since
808 we don't know that all of the contained registers are
809 reachable by proper operands. */
810 if (recog_data
.constraints
[i
][0] == '\0')
812 *recog_data
.operand_loc
[i
] = cc0_rtx
;
814 for (i
= 0; i
< recog_data
.n_dups
; i
++)
816 old_dups
[i
] = *recog_data
.dup_loc
[i
];
817 *recog_data
.dup_loc
[i
] = cc0_rtx
;
820 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_all_read
,
823 for (i
= 0; i
< recog_data
.n_dups
; i
++)
824 *recog_data
.dup_loc
[i
] = old_dups
[i
];
825 for (i
= 0; i
< n_ops
; i
++)
826 *recog_data
.operand_loc
[i
] = old_operands
[i
];
827 if (recog_data
.n_dups
)
828 df_insn_rescan (insn
);
830 /* Step 2B: Can't rename function call argument registers. */
831 if (CALL_P (insn
) && CALL_INSN_FUNCTION_USAGE (insn
))
832 scan_rtx (insn
, &CALL_INSN_FUNCTION_USAGE (insn
),
833 NO_REGS
, terminate_all_read
, OP_IN
, 0);
835 /* Step 2C: Can't rename asm operands that were originally
837 if (asm_noperands (PATTERN (insn
)) > 0)
838 for (i
= 0; i
< n_ops
; i
++)
840 rtx
*loc
= recog_data
.operand_loc
[i
];
844 && REGNO (op
) == ORIGINAL_REGNO (op
)
845 && (recog_data
.operand_type
[i
] == OP_IN
846 || recog_data
.operand_type
[i
] == OP_INOUT
))
847 scan_rtx (insn
, loc
, NO_REGS
, terminate_all_read
, OP_IN
, 0);
850 /* Step 3: Append to chains for reads inside operands. */
851 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
853 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
854 rtx
*loc
= (i
< n_ops
855 ? recog_data
.operand_loc
[opn
]
856 : recog_data
.dup_loc
[i
- n_ops
]);
857 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
858 enum op_type type
= recog_data
.operand_type
[opn
];
860 /* Don't scan match_operand here, since we've no reg class
861 information to pass down. Any operands that we could
862 substitute in will be represented elsewhere. */
863 if (recog_data
.constraints
[opn
][0] == '\0')
866 if (recog_op_alt
[opn
][alt
].is_address
)
867 scan_rtx_address (insn
, loc
, cl
, mark_read
, VOIDmode
);
869 scan_rtx (insn
, loc
, cl
, mark_read
, type
, 0);
872 /* Step 3B: Record updates for regs in REG_INC notes, and
873 source regs in REG_FRAME_RELATED_EXPR notes. */
874 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
875 if (REG_NOTE_KIND (note
) == REG_INC
876 || REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
877 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_read
,
880 /* Step 4: Close chains for registers that die here. */
881 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
882 if (REG_NOTE_KIND (note
) == REG_DEAD
)
883 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
886 /* Step 4B: If this is a call, any chain live at this point
887 requires a caller-saved reg. */
891 for (p
= open_chains
; p
; p
= p
->next_chain
)
892 p
->need_caller_save_reg
= 1;
895 /* Step 5: Close open chains that overlap writes. Similar to
896 step 2, we hide in-out operands, since we do not want to
897 close these chains. */
899 for (i
= 0; i
< n_ops
; i
++)
901 old_operands
[i
] = recog_data
.operand
[i
];
902 if (recog_data
.operand_type
[i
] == OP_INOUT
)
903 *recog_data
.operand_loc
[i
] = cc0_rtx
;
905 for (i
= 0; i
< recog_data
.n_dups
; i
++)
907 int opn
= recog_data
.dup_num
[i
];
908 old_dups
[i
] = *recog_data
.dup_loc
[i
];
909 if (recog_data
.operand_type
[opn
] == OP_INOUT
)
910 *recog_data
.dup_loc
[i
] = cc0_rtx
;
913 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_write
, OP_IN
, 0);
915 for (i
= 0; i
< recog_data
.n_dups
; i
++)
916 *recog_data
.dup_loc
[i
] = old_dups
[i
];
917 for (i
= 0; i
< n_ops
; i
++)
918 *recog_data
.operand_loc
[i
] = old_operands
[i
];
920 /* Step 6: Begin new chains for writes inside operands. */
921 /* ??? Many targets have output constraints on the SET_DEST
922 of a call insn, which is stupid, since these are certainly
923 ABI defined hard registers. Don't change calls at all.
924 Similarly take special care for asm statement that originally
925 referenced hard registers. */
926 if (asm_noperands (PATTERN (insn
)) > 0)
928 for (i
= 0; i
< n_ops
; i
++)
929 if (recog_data
.operand_type
[i
] == OP_OUT
)
931 rtx
*loc
= recog_data
.operand_loc
[i
];
933 enum reg_class cl
= recog_op_alt
[i
][alt
].cl
;
936 && REGNO (op
) == ORIGINAL_REGNO (op
))
939 scan_rtx (insn
, loc
, cl
, mark_write
, OP_OUT
,
940 recog_op_alt
[i
][alt
].earlyclobber
);
943 else if (!CALL_P (insn
))
944 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
946 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
947 rtx
*loc
= (i
< n_ops
948 ? recog_data
.operand_loc
[opn
]
949 : recog_data
.dup_loc
[i
- n_ops
]);
950 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
952 if (recog_data
.operand_type
[opn
] == OP_OUT
)
953 scan_rtx (insn
, loc
, cl
, mark_write
, OP_OUT
,
954 recog_op_alt
[opn
][alt
].earlyclobber
);
957 /* Step 6B: Record destination regs in REG_FRAME_RELATED_EXPR
959 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
960 if (REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
961 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_access
,
964 /* Step 7: Close chains for registers that were never
966 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
967 if (REG_NOTE_KIND (note
) == REG_UNUSED
)
968 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
971 if (insn
== BB_END (bb
))
975 /* Since we close every chain when we find a REG_DEAD note, anything that
976 is still open lives past the basic block, so it can't be renamed. */
977 return closed_chains
;
980 /* Dump all def/use chains in CHAINS to DUMP_FILE. They are
981 printed in reverse order as that's how we build them. */
984 dump_def_use_chain (struct du_chain
*chains
)
988 struct du_chain
*this_du
= chains
;
989 int r
= REGNO (*this_du
->loc
);
990 int nregs
= hard_regno_nregs
[r
][GET_MODE (*this_du
->loc
)];
991 fprintf (dump_file
, "Register %s (%d):", reg_names
[r
], nregs
);
994 fprintf (dump_file
, " %d [%s]", INSN_UID (this_du
->insn
),
995 reg_class_names
[this_du
->cl
]);
996 this_du
= this_du
->next_use
;
998 fprintf (dump_file
, "\n");
999 chains
= chains
->next_chain
;
1003 /* The following code does forward propagation of hard register copies.
1004 The object is to eliminate as many dependencies as possible, so that
1005 we have the most scheduling freedom. As a side effect, we also clean
1006 up some silly register allocation decisions made by reload. This
1007 code may be obsoleted by a new register allocator. */
1009 /* For each register, we have a list of registers that contain the same
1010 value. The OLDEST_REGNO field points to the head of the list, and
1011 the NEXT_REGNO field runs through the list. The MODE field indicates
1012 what mode the data is known to be in; this field is VOIDmode when the
1013 register is not known to contain valid data. */
1015 struct value_data_entry
1017 enum machine_mode mode
;
1018 unsigned int oldest_regno
;
1019 unsigned int next_regno
;
1024 struct value_data_entry e
[FIRST_PSEUDO_REGISTER
];
1025 unsigned int max_value_regs
;
1028 static void kill_value_one_regno (unsigned, struct value_data
*);
1029 static void kill_value_regno (unsigned, unsigned, struct value_data
*);
1030 static void kill_value (rtx
, struct value_data
*);
1031 static void set_value_regno (unsigned, enum machine_mode
, struct value_data
*);
1032 static void init_value_data (struct value_data
*);
1033 static void kill_clobbered_value (rtx
, const_rtx
, void *);
1034 static void kill_set_value (rtx
, const_rtx
, void *);
1035 static int kill_autoinc_value (rtx
*, void *);
1036 static void copy_value (rtx
, rtx
, struct value_data
*);
1037 static bool mode_change_ok (enum machine_mode
, enum machine_mode
,
1039 static rtx
maybe_mode_change (enum machine_mode
, enum machine_mode
,
1040 enum machine_mode
, unsigned int, unsigned int);
1041 static rtx
find_oldest_value_reg (enum reg_class
, rtx
, struct value_data
*);
1042 static bool replace_oldest_value_reg (rtx
*, enum reg_class
, rtx
,
1043 struct value_data
*);
1044 static bool replace_oldest_value_addr (rtx
*, enum reg_class
,
1045 enum machine_mode
, rtx
,
1046 struct value_data
*);
1047 static bool replace_oldest_value_mem (rtx
, rtx
, struct value_data
*);
1048 static bool copyprop_hardreg_forward_1 (basic_block
, struct value_data
*);
1049 extern void debug_value_data (struct value_data
*);
1050 #ifdef ENABLE_CHECKING
1051 static void validate_value_data (struct value_data
*);
1054 /* Kill register REGNO. This involves removing it from any value
1055 lists, and resetting the value mode to VOIDmode. This is only a
1056 helper function; it does not handle any hard registers overlapping
1060 kill_value_one_regno (unsigned int regno
, struct value_data
*vd
)
1062 unsigned int i
, next
;
1064 if (vd
->e
[regno
].oldest_regno
!= regno
)
1066 for (i
= vd
->e
[regno
].oldest_regno
;
1067 vd
->e
[i
].next_regno
!= regno
;
1068 i
= vd
->e
[i
].next_regno
)
1070 vd
->e
[i
].next_regno
= vd
->e
[regno
].next_regno
;
1072 else if ((next
= vd
->e
[regno
].next_regno
) != INVALID_REGNUM
)
1074 for (i
= next
; i
!= INVALID_REGNUM
; i
= vd
->e
[i
].next_regno
)
1075 vd
->e
[i
].oldest_regno
= next
;
1078 vd
->e
[regno
].mode
= VOIDmode
;
1079 vd
->e
[regno
].oldest_regno
= regno
;
1080 vd
->e
[regno
].next_regno
= INVALID_REGNUM
;
1082 #ifdef ENABLE_CHECKING
1083 validate_value_data (vd
);
1087 /* Kill the value in register REGNO for NREGS, and any other registers
1088 whose values overlap. */
1091 kill_value_regno (unsigned int regno
, unsigned int nregs
,
1092 struct value_data
*vd
)
1096 /* Kill the value we're told to kill. */
1097 for (j
= 0; j
< nregs
; ++j
)
1098 kill_value_one_regno (regno
+ j
, vd
);
1100 /* Kill everything that overlapped what we're told to kill. */
1101 if (regno
< vd
->max_value_regs
)
1104 j
= regno
- vd
->max_value_regs
;
1105 for (; j
< regno
; ++j
)
1108 if (vd
->e
[j
].mode
== VOIDmode
)
1110 n
= hard_regno_nregs
[j
][vd
->e
[j
].mode
];
1112 for (i
= 0; i
< n
; ++i
)
1113 kill_value_one_regno (j
+ i
, vd
);
1117 /* Kill X. This is a convenience function wrapping kill_value_regno
1118 so that we mind the mode the register is in. */
1121 kill_value (rtx x
, struct value_data
*vd
)
1125 if (GET_CODE (x
) == SUBREG
)
1127 x
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
),
1128 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
1130 x
= SUBREG_REG (orig_rtx
);
1134 unsigned int regno
= REGNO (x
);
1135 unsigned int n
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1137 kill_value_regno (regno
, n
, vd
);
1141 /* Remember that REGNO is valid in MODE. */
1144 set_value_regno (unsigned int regno
, enum machine_mode mode
,
1145 struct value_data
*vd
)
1149 vd
->e
[regno
].mode
= mode
;
1151 nregs
= hard_regno_nregs
[regno
][mode
];
1152 if (nregs
> vd
->max_value_regs
)
1153 vd
->max_value_regs
= nregs
;
1156 /* Initialize VD such that there are no known relationships between regs. */
1159 init_value_data (struct value_data
*vd
)
1162 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1164 vd
->e
[i
].mode
= VOIDmode
;
1165 vd
->e
[i
].oldest_regno
= i
;
1166 vd
->e
[i
].next_regno
= INVALID_REGNUM
;
1168 vd
->max_value_regs
= 0;
1171 /* Called through note_stores. If X is clobbered, kill its value. */
1174 kill_clobbered_value (rtx x
, const_rtx set
, void *data
)
1176 struct value_data
*const vd
= (struct value_data
*) data
;
1177 if (GET_CODE (set
) == CLOBBER
)
1181 /* Called through note_stores. If X is set, not clobbered, kill its
1182 current value and install it as the root of its own value list. */
1185 kill_set_value (rtx x
, const_rtx set
, void *data
)
1187 struct value_data
*const vd
= (struct value_data
*) data
;
1188 if (GET_CODE (set
) != CLOBBER
)
1192 set_value_regno (REGNO (x
), GET_MODE (x
), vd
);
1196 /* Called through for_each_rtx. Kill any register used as the base of an
1197 auto-increment expression, and install that register as the root of its
1201 kill_autoinc_value (rtx
*px
, void *data
)
1204 struct value_data
*const vd
= (struct value_data
*) data
;
1206 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
1210 set_value_regno (REGNO (x
), Pmode
, vd
);
1217 /* Assert that SRC has been copied to DEST. Adjust the data structures
1218 to reflect that SRC contains an older copy of the shared value. */
1221 copy_value (rtx dest
, rtx src
, struct value_data
*vd
)
1223 unsigned int dr
= REGNO (dest
);
1224 unsigned int sr
= REGNO (src
);
1225 unsigned int dn
, sn
;
1228 /* ??? At present, it's possible to see noop sets. It'd be nice if
1229 this were cleaned up beforehand... */
1233 /* Do not propagate copies to the stack pointer, as that can leave
1234 memory accesses with no scheduling dependency on the stack update. */
1235 if (dr
== STACK_POINTER_REGNUM
)
1238 /* Likewise with the frame pointer, if we're using one. */
1239 if (frame_pointer_needed
&& dr
== HARD_FRAME_POINTER_REGNUM
)
1242 /* Do not propagate copies to fixed or global registers, patterns
1243 can be relying to see particular fixed register or users can
1244 expect the chosen global register in asm. */
1245 if (fixed_regs
[dr
] || global_regs
[dr
])
1248 /* If SRC and DEST overlap, don't record anything. */
1249 dn
= hard_regno_nregs
[dr
][GET_MODE (dest
)];
1250 sn
= hard_regno_nregs
[sr
][GET_MODE (dest
)];
1251 if ((dr
> sr
&& dr
< sr
+ sn
)
1252 || (sr
> dr
&& sr
< dr
+ dn
))
1255 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1256 assign it now and assume the value came from an input argument
1258 if (vd
->e
[sr
].mode
== VOIDmode
)
1259 set_value_regno (sr
, vd
->e
[dr
].mode
, vd
);
1261 /* If we are narrowing the input to a smaller number of hard regs,
1262 and it is in big endian, we are really extracting a high part.
1263 Since we generally associate a low part of a value with the value itself,
1264 we must not do the same for the high part.
1265 Note we can still get low parts for the same mode combination through
1266 a two-step copy involving differently sized hard regs.
1267 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1268 (set (reg:DI r0) (reg:DI fr0))
1269 (set (reg:SI fr2) (reg:SI r0))
1270 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1271 (set (reg:SI fr2) (reg:SI fr0))
1272 loads the high part of (reg:DI fr0) into fr2.
1274 We can't properly represent the latter case in our tables, so don't
1275 record anything then. */
1276 else if (sn
< (unsigned int) hard_regno_nregs
[sr
][vd
->e
[sr
].mode
]
1277 && (GET_MODE_SIZE (vd
->e
[sr
].mode
) > UNITS_PER_WORD
1278 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
))
1281 /* If SRC had been assigned a mode narrower than the copy, we can't
1282 link DEST into the chain, because not all of the pieces of the
1283 copy came from oldest_regno. */
1284 else if (sn
> (unsigned int) hard_regno_nregs
[sr
][vd
->e
[sr
].mode
])
1287 /* Link DR at the end of the value chain used by SR. */
1289 vd
->e
[dr
].oldest_regno
= vd
->e
[sr
].oldest_regno
;
1291 for (i
= sr
; vd
->e
[i
].next_regno
!= INVALID_REGNUM
; i
= vd
->e
[i
].next_regno
)
1293 vd
->e
[i
].next_regno
= dr
;
1295 #ifdef ENABLE_CHECKING
1296 validate_value_data (vd
);
1300 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1303 mode_change_ok (enum machine_mode orig_mode
, enum machine_mode new_mode
,
1304 unsigned int regno ATTRIBUTE_UNUSED
)
1306 if (GET_MODE_SIZE (orig_mode
) < GET_MODE_SIZE (new_mode
))
1309 #ifdef CANNOT_CHANGE_MODE_CLASS
1310 return !REG_CANNOT_CHANGE_MODE_P (regno
, orig_mode
, new_mode
);
1316 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1317 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1319 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1322 maybe_mode_change (enum machine_mode orig_mode
, enum machine_mode copy_mode
,
1323 enum machine_mode new_mode
, unsigned int regno
,
1324 unsigned int copy_regno ATTRIBUTE_UNUSED
)
1326 if (GET_MODE_SIZE (copy_mode
) < GET_MODE_SIZE (orig_mode
)
1327 && GET_MODE_SIZE (copy_mode
) < GET_MODE_SIZE (new_mode
))
1330 if (orig_mode
== new_mode
)
1331 return gen_rtx_raw_REG (new_mode
, regno
);
1332 else if (mode_change_ok (orig_mode
, new_mode
, regno
))
1334 int copy_nregs
= hard_regno_nregs
[copy_regno
][copy_mode
];
1335 int use_nregs
= hard_regno_nregs
[copy_regno
][new_mode
];
1337 = GET_MODE_SIZE (copy_mode
) / copy_nregs
* (copy_nregs
- use_nregs
);
1339 = GET_MODE_SIZE (orig_mode
) - GET_MODE_SIZE (new_mode
) - copy_offset
;
1340 int byteoffset
= offset
% UNITS_PER_WORD
;
1341 int wordoffset
= offset
- byteoffset
;
1343 offset
= ((WORDS_BIG_ENDIAN
? wordoffset
: 0)
1344 + (BYTES_BIG_ENDIAN
? byteoffset
: 0));
1345 return gen_rtx_raw_REG (new_mode
,
1346 regno
+ subreg_regno_offset (regno
, orig_mode
,
1353 /* Find the oldest copy of the value contained in REGNO that is in
1354 register class CL and has mode MODE. If found, return an rtx
1355 of that oldest register, otherwise return NULL. */
1358 find_oldest_value_reg (enum reg_class cl
, rtx reg
, struct value_data
*vd
)
1360 unsigned int regno
= REGNO (reg
);
1361 enum machine_mode mode
= GET_MODE (reg
);
1364 /* If we are accessing REG in some mode other that what we set it in,
1365 make sure that the replacement is valid. In particular, consider
1366 (set (reg:DI r11) (...))
1367 (set (reg:SI r9) (reg:SI r11))
1368 (set (reg:SI r10) (...))
1369 (set (...) (reg:DI r9))
1370 Replacing r9 with r11 is invalid. */
1371 if (mode
!= vd
->e
[regno
].mode
)
1373 if (hard_regno_nregs
[regno
][mode
]
1374 > hard_regno_nregs
[regno
][vd
->e
[regno
].mode
])
1378 for (i
= vd
->e
[regno
].oldest_regno
; i
!= regno
; i
= vd
->e
[i
].next_regno
)
1380 enum machine_mode oldmode
= vd
->e
[i
].mode
;
1383 if (!in_hard_reg_set_p (reg_class_contents
[cl
], mode
, i
))
1386 new_rtx
= maybe_mode_change (oldmode
, vd
->e
[regno
].mode
, mode
, i
, regno
);
1389 ORIGINAL_REGNO (new_rtx
) = ORIGINAL_REGNO (reg
);
1390 REG_ATTRS (new_rtx
) = REG_ATTRS (reg
);
1391 REG_POINTER (new_rtx
) = REG_POINTER (reg
);
1399 /* If possible, replace the register at *LOC with the oldest register
1400 in register class CL. Return true if successfully replaced. */
1403 replace_oldest_value_reg (rtx
*loc
, enum reg_class cl
, rtx insn
,
1404 struct value_data
*vd
)
1406 rtx new_rtx
= find_oldest_value_reg (cl
, *loc
, vd
);
1410 fprintf (dump_file
, "insn %u: replaced reg %u with %u\n",
1411 INSN_UID (insn
), REGNO (*loc
), REGNO (new_rtx
));
1413 validate_change (insn
, loc
, new_rtx
, 1);
1419 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1420 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1421 BASE_REG_CLASS depending on how the register is being considered. */
1424 replace_oldest_value_addr (rtx
*loc
, enum reg_class cl
,
1425 enum machine_mode mode
, rtx insn
,
1426 struct value_data
*vd
)
1429 RTX_CODE code
= GET_CODE (x
);
1432 bool changed
= false;
1438 rtx orig_op0
= XEXP (x
, 0);
1439 rtx orig_op1
= XEXP (x
, 1);
1440 RTX_CODE code0
= GET_CODE (orig_op0
);
1441 RTX_CODE code1
= GET_CODE (orig_op1
);
1446 enum rtx_code index_code
= SCRATCH
;
1448 if (GET_CODE (op0
) == SUBREG
)
1450 op0
= SUBREG_REG (op0
);
1451 code0
= GET_CODE (op0
);
1454 if (GET_CODE (op1
) == SUBREG
)
1456 op1
= SUBREG_REG (op1
);
1457 code1
= GET_CODE (op1
);
1460 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
1461 || code0
== ZERO_EXTEND
|| code1
== MEM
)
1463 locI
= &XEXP (x
, 0);
1464 locB
= &XEXP (x
, 1);
1465 index_code
= GET_CODE (*locI
);
1467 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
1468 || code1
== ZERO_EXTEND
|| code0
== MEM
)
1470 locI
= &XEXP (x
, 1);
1471 locB
= &XEXP (x
, 0);
1472 index_code
= GET_CODE (*locI
);
1474 else if (code0
== CONST_INT
|| code0
== CONST
1475 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
1477 locB
= &XEXP (x
, 1);
1478 index_code
= GET_CODE (XEXP (x
, 0));
1480 else if (code1
== CONST_INT
|| code1
== CONST
1481 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
1483 locB
= &XEXP (x
, 0);
1484 index_code
= GET_CODE (XEXP (x
, 1));
1486 else if (code0
== REG
&& code1
== REG
)
1489 unsigned regno0
= REGNO (op0
), regno1
= REGNO (op1
);
1491 if (REGNO_OK_FOR_INDEX_P (regno1
)
1492 && regno_ok_for_base_p (regno0
, mode
, PLUS
, REG
))
1494 else if (REGNO_OK_FOR_INDEX_P (regno0
)
1495 && regno_ok_for_base_p (regno1
, mode
, PLUS
, REG
))
1497 else if (regno_ok_for_base_p (regno0
, mode
, PLUS
, REG
)
1498 || REGNO_OK_FOR_INDEX_P (regno1
))
1500 else if (regno_ok_for_base_p (regno1
, mode
, PLUS
, REG
))
1505 locI
= &XEXP (x
, index_op
);
1506 locB
= &XEXP (x
, !index_op
);
1507 index_code
= GET_CODE (*locI
);
1509 else if (code0
== REG
)
1511 locI
= &XEXP (x
, 0);
1512 locB
= &XEXP (x
, 1);
1513 index_code
= GET_CODE (*locI
);
1515 else if (code1
== REG
)
1517 locI
= &XEXP (x
, 1);
1518 locB
= &XEXP (x
, 0);
1519 index_code
= GET_CODE (*locI
);
1523 changed
|= replace_oldest_value_addr (locI
, INDEX_REG_CLASS
, mode
,
1526 changed
|= replace_oldest_value_addr (locB
,
1527 base_reg_class (mode
, PLUS
,
1542 return replace_oldest_value_mem (x
, insn
, vd
);
1545 return replace_oldest_value_reg (loc
, cl
, insn
, vd
);
1551 fmt
= GET_RTX_FORMAT (code
);
1552 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1555 changed
|= replace_oldest_value_addr (&XEXP (x
, i
), cl
, mode
,
1557 else if (fmt
[i
] == 'E')
1558 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1559 changed
|= replace_oldest_value_addr (&XVECEXP (x
, i
, j
), cl
,
1566 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1569 replace_oldest_value_mem (rtx x
, rtx insn
, struct value_data
*vd
)
1571 return replace_oldest_value_addr (&XEXP (x
, 0),
1572 base_reg_class (GET_MODE (x
), MEM
,
1574 GET_MODE (x
), insn
, vd
);
1577 /* Perform the forward copy propagation on basic block BB. */
1580 copyprop_hardreg_forward_1 (basic_block bb
, struct value_data
*vd
)
1582 bool changed
= false;
1585 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
1587 int n_ops
, i
, alt
, predicated
;
1588 bool is_asm
, any_replacements
;
1590 bool replaced
[MAX_RECOG_OPERANDS
];
1592 if (! INSN_P (insn
))
1594 if (insn
== BB_END (bb
))
1600 set
= single_set (insn
);
1601 extract_insn (insn
);
1602 if (! constrain_operands (1))
1603 fatal_insn_not_found (insn
);
1604 preprocess_constraints ();
1605 alt
= which_alternative
;
1606 n_ops
= recog_data
.n_operands
;
1607 is_asm
= asm_noperands (PATTERN (insn
)) >= 0;
1609 /* Simplify the code below by rewriting things to reflect
1610 matching constraints. Also promote OP_OUT to OP_INOUT
1611 in predicated instructions. */
1613 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
1614 for (i
= 0; i
< n_ops
; ++i
)
1616 int matches
= recog_op_alt
[i
][alt
].matches
;
1618 recog_op_alt
[i
][alt
].cl
= recog_op_alt
[matches
][alt
].cl
;
1619 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
1620 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
1621 recog_data
.operand_type
[i
] = OP_INOUT
;
1624 /* For each earlyclobber operand, zap the value data. */
1625 for (i
= 0; i
< n_ops
; i
++)
1626 if (recog_op_alt
[i
][alt
].earlyclobber
)
1627 kill_value (recog_data
.operand
[i
], vd
);
1629 /* Within asms, a clobber cannot overlap inputs or outputs.
1630 I wouldn't think this were true for regular insns, but
1631 scan_rtx treats them like that... */
1632 note_stores (PATTERN (insn
), kill_clobbered_value
, vd
);
1634 /* Kill all auto-incremented values. */
1635 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1636 for_each_rtx (&PATTERN (insn
), kill_autoinc_value
, vd
);
1638 /* Kill all early-clobbered operands. */
1639 for (i
= 0; i
< n_ops
; i
++)
1640 if (recog_op_alt
[i
][alt
].earlyclobber
)
1641 kill_value (recog_data
.operand
[i
], vd
);
1643 /* Special-case plain move instructions, since we may well
1644 be able to do the move from a different register class. */
1645 if (set
&& REG_P (SET_SRC (set
)))
1647 rtx src
= SET_SRC (set
);
1648 unsigned int regno
= REGNO (src
);
1649 enum machine_mode mode
= GET_MODE (src
);
1653 /* If we are accessing SRC in some mode other that what we
1654 set it in, make sure that the replacement is valid. */
1655 if (mode
!= vd
->e
[regno
].mode
)
1657 if (hard_regno_nregs
[regno
][mode
]
1658 > hard_regno_nregs
[regno
][vd
->e
[regno
].mode
])
1659 goto no_move_special_case
;
1662 /* If the destination is also a register, try to find a source
1663 register in the same class. */
1664 if (REG_P (SET_DEST (set
)))
1666 new_rtx
= find_oldest_value_reg (REGNO_REG_CLASS (regno
), src
, vd
);
1667 if (new_rtx
&& validate_change (insn
, &SET_SRC (set
), new_rtx
, 0))
1671 "insn %u: replaced reg %u with %u\n",
1672 INSN_UID (insn
), regno
, REGNO (new_rtx
));
1674 goto did_replacement
;
1678 /* Otherwise, try all valid registers and see if its valid. */
1679 for (i
= vd
->e
[regno
].oldest_regno
; i
!= regno
;
1680 i
= vd
->e
[i
].next_regno
)
1682 new_rtx
= maybe_mode_change (vd
->e
[i
].mode
, vd
->e
[regno
].mode
,
1684 if (new_rtx
!= NULL_RTX
)
1686 if (validate_change (insn
, &SET_SRC (set
), new_rtx
, 0))
1688 ORIGINAL_REGNO (new_rtx
) = ORIGINAL_REGNO (src
);
1689 REG_ATTRS (new_rtx
) = REG_ATTRS (src
);
1690 REG_POINTER (new_rtx
) = REG_POINTER (src
);
1693 "insn %u: replaced reg %u with %u\n",
1694 INSN_UID (insn
), regno
, REGNO (new_rtx
));
1696 goto did_replacement
;
1701 no_move_special_case
:
1703 any_replacements
= false;
1705 /* For each input operand, replace a hard register with the
1706 eldest live copy that's in an appropriate register class. */
1707 for (i
= 0; i
< n_ops
; i
++)
1709 replaced
[i
] = false;
1711 /* Don't scan match_operand here, since we've no reg class
1712 information to pass down. Any operands that we could
1713 substitute in will be represented elsewhere. */
1714 if (recog_data
.constraints
[i
][0] == '\0')
1717 /* Don't replace in asms intentionally referencing hard regs. */
1718 if (is_asm
&& REG_P (recog_data
.operand
[i
])
1719 && (REGNO (recog_data
.operand
[i
])
1720 == ORIGINAL_REGNO (recog_data
.operand
[i
])))
1723 if (recog_data
.operand_type
[i
] == OP_IN
)
1725 if (recog_op_alt
[i
][alt
].is_address
)
1727 = replace_oldest_value_addr (recog_data
.operand_loc
[i
],
1728 recog_op_alt
[i
][alt
].cl
,
1729 VOIDmode
, insn
, vd
);
1730 else if (REG_P (recog_data
.operand
[i
]))
1732 = replace_oldest_value_reg (recog_data
.operand_loc
[i
],
1733 recog_op_alt
[i
][alt
].cl
,
1735 else if (MEM_P (recog_data
.operand
[i
]))
1736 replaced
[i
] = replace_oldest_value_mem (recog_data
.operand
[i
],
1739 else if (MEM_P (recog_data
.operand
[i
]))
1740 replaced
[i
] = replace_oldest_value_mem (recog_data
.operand
[i
],
1743 /* If we performed any replacement, update match_dups. */
1749 new_rtx
= *recog_data
.operand_loc
[i
];
1750 recog_data
.operand
[i
] = new_rtx
;
1751 for (j
= 0; j
< recog_data
.n_dups
; j
++)
1752 if (recog_data
.dup_num
[j
] == i
)
1753 validate_unshare_change (insn
, recog_data
.dup_loc
[j
], new_rtx
, 1);
1755 any_replacements
= true;
1759 if (any_replacements
)
1761 if (! apply_change_group ())
1763 for (i
= 0; i
< n_ops
; i
++)
1766 rtx old
= *recog_data
.operand_loc
[i
];
1767 recog_data
.operand
[i
] = old
;
1772 "insn %u: reg replacements not verified\n",
1780 /* Clobber call-clobbered registers. */
1782 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1783 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1784 kill_value_regno (i
, 1, vd
);
1786 /* Notice stores. */
1787 note_stores (PATTERN (insn
), kill_set_value
, vd
);
1789 /* Notice copies. */
1790 if (set
&& REG_P (SET_DEST (set
)) && REG_P (SET_SRC (set
)))
1791 copy_value (SET_DEST (set
), SET_SRC (set
), vd
);
1793 if (insn
== BB_END (bb
))
1800 /* Main entry point for the forward copy propagation optimization. */
1803 copyprop_hardreg_forward (void)
1805 struct value_data
*all_vd
;
1809 all_vd
= XNEWVEC (struct value_data
, last_basic_block
);
1811 visited
= sbitmap_alloc (last_basic_block
);
1812 sbitmap_zero (visited
);
1816 SET_BIT (visited
, bb
->index
);
1818 /* If a block has a single predecessor, that we've already
1819 processed, begin with the value data that was live at
1820 the end of the predecessor block. */
1821 /* ??? Ought to use more intelligent queuing of blocks. */
1822 if (single_pred_p (bb
)
1823 && TEST_BIT (visited
, single_pred (bb
)->index
)
1824 && ! (single_pred_edge (bb
)->flags
& (EDGE_ABNORMAL_CALL
| EDGE_EH
)))
1825 all_vd
[bb
->index
] = all_vd
[single_pred (bb
)->index
];
1827 init_value_data (all_vd
+ bb
->index
);
1829 copyprop_hardreg_forward_1 (bb
, all_vd
+ bb
->index
);
1832 sbitmap_free (visited
);
1836 /* Dump the value chain data to stderr. */
1839 debug_value_data (struct value_data
*vd
)
1844 CLEAR_HARD_REG_SET (set
);
1846 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1847 if (vd
->e
[i
].oldest_regno
== i
)
1849 if (vd
->e
[i
].mode
== VOIDmode
)
1851 if (vd
->e
[i
].next_regno
!= INVALID_REGNUM
)
1852 fprintf (stderr
, "[%u] Bad next_regno for empty chain (%u)\n",
1853 i
, vd
->e
[i
].next_regno
);
1857 SET_HARD_REG_BIT (set
, i
);
1858 fprintf (stderr
, "[%u %s] ", i
, GET_MODE_NAME (vd
->e
[i
].mode
));
1860 for (j
= vd
->e
[i
].next_regno
;
1861 j
!= INVALID_REGNUM
;
1862 j
= vd
->e
[j
].next_regno
)
1864 if (TEST_HARD_REG_BIT (set
, j
))
1866 fprintf (stderr
, "[%u] Loop in regno chain\n", j
);
1870 if (vd
->e
[j
].oldest_regno
!= i
)
1872 fprintf (stderr
, "[%u] Bad oldest_regno (%u)\n",
1873 j
, vd
->e
[j
].oldest_regno
);
1876 SET_HARD_REG_BIT (set
, j
);
1877 fprintf (stderr
, "[%u %s] ", j
, GET_MODE_NAME (vd
->e
[j
].mode
));
1879 fputc ('\n', stderr
);
1882 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1883 if (! TEST_HARD_REG_BIT (set
, i
)
1884 && (vd
->e
[i
].mode
!= VOIDmode
1885 || vd
->e
[i
].oldest_regno
!= i
1886 || vd
->e
[i
].next_regno
!= INVALID_REGNUM
))
1887 fprintf (stderr
, "[%u] Non-empty reg in chain (%s %u %i)\n",
1888 i
, GET_MODE_NAME (vd
->e
[i
].mode
), vd
->e
[i
].oldest_regno
,
1889 vd
->e
[i
].next_regno
);
1892 #ifdef ENABLE_CHECKING
1894 validate_value_data (struct value_data
*vd
)
1899 CLEAR_HARD_REG_SET (set
);
1901 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1902 if (vd
->e
[i
].oldest_regno
== i
)
1904 if (vd
->e
[i
].mode
== VOIDmode
)
1906 if (vd
->e
[i
].next_regno
!= INVALID_REGNUM
)
1907 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1908 i
, vd
->e
[i
].next_regno
);
1912 SET_HARD_REG_BIT (set
, i
);
1914 for (j
= vd
->e
[i
].next_regno
;
1915 j
!= INVALID_REGNUM
;
1916 j
= vd
->e
[j
].next_regno
)
1918 if (TEST_HARD_REG_BIT (set
, j
))
1919 internal_error ("validate_value_data: Loop in regno chain (%u)",
1921 if (vd
->e
[j
].oldest_regno
!= i
)
1922 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1923 j
, vd
->e
[j
].oldest_regno
);
1925 SET_HARD_REG_BIT (set
, j
);
1929 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1930 if (! TEST_HARD_REG_BIT (set
, i
)
1931 && (vd
->e
[i
].mode
!= VOIDmode
1932 || vd
->e
[i
].oldest_regno
!= i
1933 || vd
->e
[i
].next_regno
!= INVALID_REGNUM
))
1934 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1935 i
, GET_MODE_NAME (vd
->e
[i
].mode
), vd
->e
[i
].oldest_regno
,
1936 vd
->e
[i
].next_regno
);
1941 gate_handle_regrename (void)
1943 return (optimize
> 0 && (flag_rename_registers
));
1947 /* Run the regrename and cprop passes. */
1949 rest_of_handle_regrename (void)
1951 regrename_optimize ();
1955 struct rtl_opt_pass pass_regrename
=
1960 gate_handle_regrename
, /* gate */
1961 rest_of_handle_regrename
, /* execute */
1964 0, /* static_pass_number */
1965 TV_RENAME_REGISTERS
, /* tv_id */
1966 0, /* properties_required */
1967 0, /* properties_provided */
1968 0, /* properties_destroyed */
1969 0, /* todo_flags_start */
1970 TODO_df_finish
| TODO_verify_rtl_sharing
|
1971 TODO_dump_func
/* todo_flags_finish */
1976 gate_handle_cprop (void)
1978 return (optimize
> 0 && (flag_cprop_registers
));
1982 /* Run the regrename and cprop passes. */
1984 rest_of_handle_cprop (void)
1986 copyprop_hardreg_forward ();
1990 struct rtl_opt_pass pass_cprop_hardreg
=
1994 "cprop_hardreg", /* name */
1995 gate_handle_cprop
, /* gate */
1996 rest_of_handle_cprop
, /* execute */
1999 0, /* static_pass_number */
2000 TV_RENAME_REGISTERS
, /* tv_id */
2001 0, /* properties_required */
2002 0, /* properties_provided */
2003 0, /* properties_destroyed */
2004 0, /* todo_flags_start */
2005 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */