* config/mips/mips.md (any_shift): New code macro.
[official-gcc.git] / gcc / final.c
blobfe4eaa67371599306eabd7caf62318b3bba2766e
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
123 /* Line number of last NOTE. */
124 static int last_linenum;
126 /* Highest line number in current block. */
127 static int high_block_linenum;
129 /* Likewise for function. */
130 static int high_function_linenum;
132 /* Filename of last NOTE. */
133 static const char *last_filename;
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
145 /* Compare optimization flag. */
147 static rtx last_ignored_compare = 0;
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
152 static int insn_counter = 0;
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
159 CC_STATUS cc_status;
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
164 CC_STATUS cc_prev_status;
165 #endif
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
188 int frame_pointer_needed;
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192 static int block_depth;
194 /* Nonzero if have enabled APP processing of our assembler output. */
196 static int app_on;
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
201 rtx final_sequence;
203 #ifdef ASSEMBLER_DIALECT
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
239 /* Initialize data in final at the beginning of a compilation. */
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
244 app_on = 0;
245 final_sequence = 0;
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
252 /* Default target function prologue and epilogue assembler output.
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
271 void
272 app_enable (void)
274 if (! app_on)
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
284 void
285 app_disable (void)
287 if (app_on)
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
298 #ifdef DELAY_SLOTS
300 dbr_sequence_length (void)
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
307 #endif
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
315 static int *insn_lengths;
317 varray_type insn_addresses_;
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
340 struct label_alignment
342 short alignment;
343 short max_skip;
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
350 /* Indicate that branch shortening hasn't yet been done. */
352 void
353 init_insn_lengths (void)
355 if (uid_shuid)
357 free (uid_shuid);
358 uid_shuid = 0;
360 if (insn_lengths)
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
371 free (uid_align);
372 uid_align = 0;
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
408 else
409 length = insn_default_length (insn);
410 break;
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
426 default:
427 break;
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533 static int min_labelno, max_labelno;
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541 /* For the benefit of port specific code do this also as a function. */
544 label_to_alignment (rtx label)
546 return LABEL_TO_ALIGNMENT (label);
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
589 int align_addr, new_align;
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
602 return fuzz;
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
618 insn_current_reference_address (rtx branch)
620 rtx dest, seq;
621 int seq_uid;
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (!JUMP_P (branch))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
645 else
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
652 #endif /* HAVE_ATTR_length */
654 void
655 compute_alignments (void)
657 int log, max_skip, max_log;
658 basic_block bb;
660 if (label_align)
662 free (label_align);
663 label_align = 0;
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
675 FOR_EACH_BB (bb)
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
681 if (!LABEL_P (label)
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
687 for (e = bb->pred; e; e = e->pred_next)
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
765 #endif
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
770 /* Free uid_shuid before reallocating it. */
771 free (uid_shuid);
773 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
775 if (max_labelno != max_label_num ())
777 int old = max_labelno;
778 int n_labels;
779 int n_old_labels;
781 max_labelno = max_label_num ();
783 n_labels = max_labelno - min_labelno + 1;
784 n_old_labels = old - min_labelno + 1;
786 label_align = xrealloc (label_align,
787 n_labels * sizeof (struct label_alignment));
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 if (n_old_labels > n_labels)
792 abort ();
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
804 max_log = 0;
805 max_skip = 0;
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
809 int log;
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
820 else if (LABEL_P (insn))
822 rtx next;
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && JUMP_P (next))
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
861 else if (BARRIER_P (insn))
863 rtx label;
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (LABEL_P (label))
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
875 break;
879 #ifdef HAVE_ATTR_length
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
888 varying_length = xcalloc (max_uid, sizeof (char));
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
902 int uid = INSN_UID (seq);
903 int log;
904 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
931 if (!JUMP_P (insn)
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 if (len <= 0)
937 abort ();
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
945 min = shuid;
946 min_lab = lab;
948 if (shuid > max)
950 max = shuid;
951 max_lab = lab;
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
976 uid = INSN_UID (insn);
978 insn_lengths[uid] = 0;
980 if (LABEL_P (insn))
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
993 if (NOTE_P (insn) || BARRIER_P (insn)
994 || LABEL_P (insn))
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1069 while (something_changed)
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1083 uid = INSN_UID (insn);
1085 if (LABEL_P (insn))
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && JUMP_P (insn)
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1170 else
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1184 if (! flags.base_after_vec && flags.max_after_vec)
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1192 else
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1214 continue;
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1218 if (! (varying_length[uid]))
1220 if (NONJUMP_INSN_P (insn)
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1223 int i;
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1233 insn_current_address += insn_lengths[inner_uid];
1236 else
1237 insn_current_address += insn_lengths[uid];
1239 continue;
1242 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1244 int i;
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1263 if (inner_length != insn_lengths[inner_uid])
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1272 else
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1285 if (new_length != insn_lengths[uid])
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1296 free (varying_length);
1298 #endif /* HAVE_ATTR_length */
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1306 static int
1307 asm_insn_count (rtx body)
1309 const char *template;
1310 int count = 1;
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1321 return count;
1323 #endif
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1339 block_depth = 0;
1341 this_is_asm_operands = 0;
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1346 high_block_linenum = high_function_linenum = last_linenum;
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1350 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1419 if (! NO_PROFILE_COUNTERS)
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1428 function_section (current_function_decl);
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1444 #endif
1445 #endif
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1458 #endif
1459 #endif
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1471 void
1472 final_end_function (void)
1474 app_disable ();
1476 (*debug_hooks->end_function) (high_function_linenum);
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1510 last_ignored_compare = 0;
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1522 if (last != 0
1523 #ifdef USE_MAPPED_LOCATION
1524 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1525 #else
1526 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1527 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1528 #endif
1531 delete_insn (insn); /* Use delete_note. */
1532 continue;
1534 last = insn;
1537 #endif
1539 for (insn = first; insn; insn = NEXT_INSN (insn))
1541 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1542 max_uid = INSN_UID (insn);
1543 #ifdef HAVE_cc0
1544 /* If CC tracking across branches is enabled, record the insn which
1545 jumps to each branch only reached from one place. */
1546 if (optimize && JUMP_P (insn))
1548 rtx lab = JUMP_LABEL (insn);
1549 if (lab && LABEL_NUSES (lab) == 1)
1551 LABEL_REFS (lab) = insn;
1554 #endif
1557 init_recog ();
1559 CC_STATUS_INIT;
1561 /* Output the insns. */
1562 for (insn = NEXT_INSN (first); insn;)
1564 #ifdef HAVE_ATTR_length
1565 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1567 /* This can be triggered by bugs elsewhere in the compiler if
1568 new insns are created after init_insn_lengths is called. */
1569 if (NOTE_P (insn))
1570 insn_current_address = -1;
1571 else
1572 abort ();
1574 else
1575 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1576 #endif /* HAVE_ATTR_length */
1578 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1582 const char *
1583 get_insn_template (int code, rtx insn)
1585 switch (insn_data[code].output_format)
1587 case INSN_OUTPUT_FORMAT_SINGLE:
1588 return insn_data[code].output.single;
1589 case INSN_OUTPUT_FORMAT_MULTI:
1590 return insn_data[code].output.multi[which_alternative];
1591 case INSN_OUTPUT_FORMAT_FUNCTION:
1592 if (insn == NULL)
1593 abort ();
1594 return (*insn_data[code].output.function) (recog_data.operand, insn);
1596 default:
1597 abort ();
1601 /* Emit the appropriate declaration for an alternate-entry-point
1602 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1603 LABEL_KIND != LABEL_NORMAL.
1605 The case fall-through in this function is intentional. */
1606 static void
1607 output_alternate_entry_point (FILE *file, rtx insn)
1609 const char *name = LABEL_NAME (insn);
1611 switch (LABEL_KIND (insn))
1613 case LABEL_WEAK_ENTRY:
1614 #ifdef ASM_WEAKEN_LABEL
1615 ASM_WEAKEN_LABEL (file, name);
1616 #endif
1617 case LABEL_GLOBAL_ENTRY:
1618 targetm.asm_out.globalize_label (file, name);
1619 case LABEL_STATIC_ENTRY:
1620 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1621 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1622 #endif
1623 ASM_OUTPUT_LABEL (file, name);
1624 break;
1626 case LABEL_NORMAL:
1627 default:
1628 abort ();
1632 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1633 note in the instruction chain (going forward) between the current
1634 instruction, and the next 'executable' instruction. */
1636 bool
1637 scan_ahead_for_unlikely_executed_note (rtx insn)
1639 rtx temp;
1640 int bb_note_count = 0;
1642 for (temp = insn; temp; temp = NEXT_INSN (temp))
1644 if (NOTE_P (temp)
1645 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1646 return true;
1647 if (NOTE_P (temp)
1648 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1650 bb_note_count++;
1651 if (bb_note_count > 1)
1652 return false;
1654 if (INSN_P (temp))
1655 return false;
1658 return false;
1661 /* The final scan for one insn, INSN.
1662 Args are same as in `final', except that INSN
1663 is the insn being scanned.
1664 Value returned is the next insn to be scanned.
1666 NOPEEPHOLES is the flag to disallow peephole processing (currently
1667 used for within delayed branch sequence output).
1669 SEEN is used to track the end of the prologue, for emitting
1670 debug information. We force the emission of a line note after
1671 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1672 at the beginning of the second basic block, whichever comes
1673 first. */
1676 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1677 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1678 int *seen)
1680 #ifdef HAVE_cc0
1681 rtx set;
1682 #endif
1684 insn_counter++;
1686 /* Ignore deleted insns. These can occur when we split insns (due to a
1687 template of "#") while not optimizing. */
1688 if (INSN_DELETED_P (insn))
1689 return NEXT_INSN (insn);
1691 switch (GET_CODE (insn))
1693 case NOTE:
1694 if (prescan > 0)
1695 break;
1697 switch (NOTE_LINE_NUMBER (insn))
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_LOOP_BEG:
1701 case NOTE_INSN_LOOP_END:
1702 case NOTE_INSN_FUNCTION_END:
1703 case NOTE_INSN_REPEATED_LINE_NUMBER:
1704 case NOTE_INSN_EXPECTED_VALUE:
1705 break;
1707 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1709 /* The presence of this note indicates that this basic block
1710 belongs in the "cold" section of the .o file. If we are
1711 not already writing to the cold section we need to change
1712 to it. */
1714 unlikely_text_section ();
1715 break;
1717 case NOTE_INSN_BASIC_BLOCK:
1719 /* If we are performing the optimization that partitions
1720 basic blocks into hot & cold sections of the .o file,
1721 then at the start of each new basic block, before
1722 beginning to write code for the basic block, we need to
1723 check to see whether the basic block belongs in the hot
1724 or cold section of the .o file, and change the section we
1725 are writing to appropriately. */
1727 if (flag_reorder_blocks_and_partition
1728 && !scan_ahead_for_unlikely_executed_note (insn))
1729 function_section (current_function_decl);
1731 #ifdef TARGET_UNWIND_INFO
1732 targetm.asm_out.unwind_emit (asm_out_file, insn);
1733 #endif
1735 if (flag_debug_asm)
1736 fprintf (asm_out_file, "\t%s basic block %d\n",
1737 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1739 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1741 *seen |= SEEN_EMITTED;
1742 last_filename = NULL;
1744 else
1745 *seen |= SEEN_BB;
1747 break;
1749 case NOTE_INSN_EH_REGION_BEG:
1750 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1751 NOTE_EH_HANDLER (insn));
1752 break;
1754 case NOTE_INSN_EH_REGION_END:
1755 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1756 NOTE_EH_HANDLER (insn));
1757 break;
1759 case NOTE_INSN_PROLOGUE_END:
1760 targetm.asm_out.function_end_prologue (file);
1761 profile_after_prologue (file);
1763 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1765 *seen |= SEEN_EMITTED;
1766 last_filename = NULL;
1768 else
1769 *seen |= SEEN_NOTE;
1771 break;
1773 case NOTE_INSN_EPILOGUE_BEG:
1774 targetm.asm_out.function_begin_epilogue (file);
1775 break;
1777 case NOTE_INSN_FUNCTION_BEG:
1778 app_disable ();
1779 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1781 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1783 *seen |= SEEN_EMITTED;
1784 last_filename = NULL;
1786 else
1787 *seen |= SEEN_NOTE;
1789 break;
1791 case NOTE_INSN_BLOCK_BEG:
1792 if (debug_info_level == DINFO_LEVEL_NORMAL
1793 || debug_info_level == DINFO_LEVEL_VERBOSE
1794 || write_symbols == DWARF2_DEBUG
1795 || write_symbols == VMS_AND_DWARF2_DEBUG
1796 || write_symbols == VMS_DEBUG)
1798 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1800 app_disable ();
1801 ++block_depth;
1802 high_block_linenum = last_linenum;
1804 /* Output debugging info about the symbol-block beginning. */
1805 (*debug_hooks->begin_block) (last_linenum, n);
1807 /* Mark this block as output. */
1808 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1810 break;
1812 case NOTE_INSN_BLOCK_END:
1813 if (debug_info_level == DINFO_LEVEL_NORMAL
1814 || debug_info_level == DINFO_LEVEL_VERBOSE
1815 || write_symbols == DWARF2_DEBUG
1816 || write_symbols == VMS_AND_DWARF2_DEBUG
1817 || write_symbols == VMS_DEBUG)
1819 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1821 app_disable ();
1823 /* End of a symbol-block. */
1824 --block_depth;
1825 if (block_depth < 0)
1826 abort ();
1828 (*debug_hooks->end_block) (high_block_linenum, n);
1830 break;
1832 case NOTE_INSN_DELETED_LABEL:
1833 /* Emit the label. We may have deleted the CODE_LABEL because
1834 the label could be proved to be unreachable, though still
1835 referenced (in the form of having its address taken. */
1836 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1837 break;
1839 case NOTE_INSN_VAR_LOCATION:
1840 (*debug_hooks->var_location) (insn);
1841 break;
1843 case 0:
1844 break;
1846 default:
1847 if (NOTE_LINE_NUMBER (insn) <= 0)
1848 abort ();
1849 break;
1851 break;
1853 case BARRIER:
1854 #if defined (DWARF2_UNWIND_INFO)
1855 if (dwarf2out_do_frame ())
1856 dwarf2out_frame_debug (insn);
1857 #endif
1858 break;
1860 case CODE_LABEL:
1861 /* The target port might emit labels in the output function for
1862 some insn, e.g. sh.c output_branchy_insn. */
1863 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1865 int align = LABEL_TO_ALIGNMENT (insn);
1866 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1867 int max_skip = LABEL_TO_MAX_SKIP (insn);
1868 #endif
1870 if (align && NEXT_INSN (insn))
1872 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1873 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1874 #else
1875 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1876 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1877 #else
1878 ASM_OUTPUT_ALIGN (file, align);
1879 #endif
1880 #endif
1883 #ifdef HAVE_cc0
1884 CC_STATUS_INIT;
1885 /* If this label is reached from only one place, set the condition
1886 codes from the instruction just before the branch. */
1888 /* Disabled because some insns set cc_status in the C output code
1889 and NOTICE_UPDATE_CC alone can set incorrect status. */
1890 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1892 rtx jump = LABEL_REFS (insn);
1893 rtx barrier = prev_nonnote_insn (insn);
1894 rtx prev;
1895 /* If the LABEL_REFS field of this label has been set to point
1896 at a branch, the predecessor of the branch is a regular
1897 insn, and that branch is the only way to reach this label,
1898 set the condition codes based on the branch and its
1899 predecessor. */
1900 if (barrier && BARRIER_P (barrier)
1901 && jump && JUMP_P (jump)
1902 && (prev = prev_nonnote_insn (jump))
1903 && NONJUMP_INSN_P (prev))
1905 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1906 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1909 #endif
1910 if (prescan > 0)
1911 break;
1913 if (LABEL_NAME (insn))
1914 (*debug_hooks->label) (insn);
1916 /* If we are doing the optimization that partitions hot & cold
1917 basic blocks into separate sections of the .o file, we need
1918 to ensure the jump table ends up in the correct section... */
1920 if (flag_reorder_blocks_and_partition
1921 && targetm.have_named_sections)
1923 rtx tmp_table, tmp_label;
1924 if (LABEL_P (insn)
1925 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1927 /* Do nothing; Do NOT change the current section. */
1929 else if (scan_ahead_for_unlikely_executed_note (insn))
1930 unlikely_text_section ();
1931 else if (in_unlikely_text_section ())
1932 function_section (current_function_decl);
1935 if (app_on)
1937 fputs (ASM_APP_OFF, file);
1938 app_on = 0;
1940 if (NEXT_INSN (insn) != 0
1941 && JUMP_P (NEXT_INSN (insn)))
1943 rtx nextbody = PATTERN (NEXT_INSN (insn));
1945 /* If this label is followed by a jump-table,
1946 make sure we put the label in the read-only section. Also
1947 possibly write the label and jump table together. */
1949 if (GET_CODE (nextbody) == ADDR_VEC
1950 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1952 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1953 /* In this case, the case vector is being moved by the
1954 target, so don't output the label at all. Leave that
1955 to the back end macros. */
1956 #else
1957 if (! JUMP_TABLES_IN_TEXT_SECTION)
1959 int log_align;
1961 targetm.asm_out.function_rodata_section (current_function_decl);
1963 #ifdef ADDR_VEC_ALIGN
1964 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1965 #else
1966 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1967 #endif
1968 ASM_OUTPUT_ALIGN (file, log_align);
1970 else
1971 function_section (current_function_decl);
1973 #ifdef ASM_OUTPUT_CASE_LABEL
1974 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1975 NEXT_INSN (insn));
1976 #else
1977 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1978 #endif
1979 #endif
1980 break;
1983 if (LABEL_ALT_ENTRY_P (insn))
1984 output_alternate_entry_point (file, insn);
1985 else
1986 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1987 break;
1989 default:
1991 rtx body = PATTERN (insn);
1992 int insn_code_number;
1993 const char *template;
1995 /* An INSN, JUMP_INSN or CALL_INSN.
1996 First check for special kinds that recog doesn't recognize. */
1998 if (GET_CODE (body) == USE /* These are just declarations. */
1999 || GET_CODE (body) == CLOBBER)
2000 break;
2002 #ifdef HAVE_cc0
2004 /* If there is a REG_CC_SETTER note on this insn, it means that
2005 the setting of the condition code was done in the delay slot
2006 of the insn that branched here. So recover the cc status
2007 from the insn that set it. */
2009 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2010 if (note)
2012 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2013 cc_prev_status = cc_status;
2016 #endif
2018 /* Detect insns that are really jump-tables
2019 and output them as such. */
2021 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2023 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2024 int vlen, idx;
2025 #endif
2027 if (prescan > 0)
2028 break;
2030 if (app_on)
2032 fputs (ASM_APP_OFF, file);
2033 app_on = 0;
2036 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2037 if (GET_CODE (body) == ADDR_VEC)
2039 #ifdef ASM_OUTPUT_ADDR_VEC
2040 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2041 #else
2042 abort ();
2043 #endif
2045 else
2047 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2048 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2049 #else
2050 abort ();
2051 #endif
2053 #else
2054 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2055 for (idx = 0; idx < vlen; idx++)
2057 if (GET_CODE (body) == ADDR_VEC)
2059 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2060 ASM_OUTPUT_ADDR_VEC_ELT
2061 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2062 #else
2063 abort ();
2064 #endif
2066 else
2068 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2069 ASM_OUTPUT_ADDR_DIFF_ELT
2070 (file,
2071 body,
2072 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2073 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2074 #else
2075 abort ();
2076 #endif
2079 #ifdef ASM_OUTPUT_CASE_END
2080 ASM_OUTPUT_CASE_END (file,
2081 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2082 insn);
2083 #endif
2084 #endif
2086 function_section (current_function_decl);
2088 break;
2090 /* Output this line note if it is the first or the last line
2091 note in a row. */
2092 if (notice_source_line (insn))
2094 (*debug_hooks->source_line) (last_linenum, last_filename);
2097 if (GET_CODE (body) == ASM_INPUT)
2099 const char *string = XSTR (body, 0);
2101 /* There's no telling what that did to the condition codes. */
2102 CC_STATUS_INIT;
2103 if (prescan > 0)
2104 break;
2106 if (string[0])
2108 if (! app_on)
2110 fputs (ASM_APP_ON, file);
2111 app_on = 1;
2113 fprintf (asm_out_file, "\t%s\n", string);
2115 break;
2118 /* Detect `asm' construct with operands. */
2119 if (asm_noperands (body) >= 0)
2121 unsigned int noperands = asm_noperands (body);
2122 rtx *ops = alloca (noperands * sizeof (rtx));
2123 const char *string;
2125 /* There's no telling what that did to the condition codes. */
2126 CC_STATUS_INIT;
2127 if (prescan > 0)
2128 break;
2130 /* Get out the operand values. */
2131 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2132 /* Inhibit aborts on what would otherwise be compiler bugs. */
2133 insn_noperands = noperands;
2134 this_is_asm_operands = insn;
2136 #ifdef FINAL_PRESCAN_INSN
2137 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2138 #endif
2140 /* Output the insn using them. */
2141 if (string[0])
2143 if (! app_on)
2145 fputs (ASM_APP_ON, file);
2146 app_on = 1;
2148 output_asm_insn (string, ops);
2151 this_is_asm_operands = 0;
2152 break;
2155 if (prescan <= 0 && app_on)
2157 fputs (ASM_APP_OFF, file);
2158 app_on = 0;
2161 if (GET_CODE (body) == SEQUENCE)
2163 /* A delayed-branch sequence */
2164 int i;
2165 rtx next;
2167 if (prescan > 0)
2168 break;
2169 final_sequence = body;
2171 /* Record the delay slots' frame information before the branch.
2172 This is needed for delayed calls: see execute_cfa_program(). */
2173 #if defined (DWARF2_UNWIND_INFO)
2174 if (dwarf2out_do_frame ())
2175 for (i = 1; i < XVECLEN (body, 0); i++)
2176 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2177 #endif
2179 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2180 force the restoration of a comparison that was previously
2181 thought unnecessary. If that happens, cancel this sequence
2182 and cause that insn to be restored. */
2184 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2185 if (next != XVECEXP (body, 0, 1))
2187 final_sequence = 0;
2188 return next;
2191 for (i = 1; i < XVECLEN (body, 0); i++)
2193 rtx insn = XVECEXP (body, 0, i);
2194 rtx next = NEXT_INSN (insn);
2195 /* We loop in case any instruction in a delay slot gets
2196 split. */
2198 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2199 while (insn != next);
2201 #ifdef DBR_OUTPUT_SEQEND
2202 DBR_OUTPUT_SEQEND (file);
2203 #endif
2204 final_sequence = 0;
2206 /* If the insn requiring the delay slot was a CALL_INSN, the
2207 insns in the delay slot are actually executed before the
2208 called function. Hence we don't preserve any CC-setting
2209 actions in these insns and the CC must be marked as being
2210 clobbered by the function. */
2211 if (CALL_P (XVECEXP (body, 0, 0)))
2213 CC_STATUS_INIT;
2215 break;
2218 /* We have a real machine instruction as rtl. */
2220 body = PATTERN (insn);
2222 #ifdef HAVE_cc0
2223 set = single_set (insn);
2225 /* Check for redundant test and compare instructions
2226 (when the condition codes are already set up as desired).
2227 This is done only when optimizing; if not optimizing,
2228 it should be possible for the user to alter a variable
2229 with the debugger in between statements
2230 and the next statement should reexamine the variable
2231 to compute the condition codes. */
2233 if (optimize)
2235 if (set
2236 && GET_CODE (SET_DEST (set)) == CC0
2237 && insn != last_ignored_compare)
2239 if (GET_CODE (SET_SRC (set)) == SUBREG)
2240 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2241 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2243 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2244 XEXP (SET_SRC (set), 0)
2245 = alter_subreg (&XEXP (SET_SRC (set), 0));
2246 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2247 XEXP (SET_SRC (set), 1)
2248 = alter_subreg (&XEXP (SET_SRC (set), 1));
2250 if ((cc_status.value1 != 0
2251 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2252 || (cc_status.value2 != 0
2253 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2255 /* Don't delete insn if it has an addressing side-effect. */
2256 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2257 /* or if anything in it is volatile. */
2258 && ! volatile_refs_p (PATTERN (insn)))
2260 /* We don't really delete the insn; just ignore it. */
2261 last_ignored_compare = insn;
2262 break;
2267 #endif
2269 #ifndef STACK_REGS
2270 /* Don't bother outputting obvious no-ops, even without -O.
2271 This optimization is fast and doesn't interfere with debugging.
2272 Don't do this if the insn is in a delay slot, since this
2273 will cause an improper number of delay insns to be written. */
2274 if (final_sequence == 0
2275 && prescan >= 0
2276 && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET
2277 && REG_P (SET_SRC (body))
2278 && REG_P (SET_DEST (body))
2279 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2280 break;
2281 #endif
2283 #ifdef HAVE_cc0
2284 /* If this is a conditional branch, maybe modify it
2285 if the cc's are in a nonstandard state
2286 so that it accomplishes the same thing that it would
2287 do straightforwardly if the cc's were set up normally. */
2289 if (cc_status.flags != 0
2290 && JUMP_P (insn)
2291 && GET_CODE (body) == SET
2292 && SET_DEST (body) == pc_rtx
2293 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2294 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2295 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2296 /* This is done during prescan; it is not done again
2297 in final scan when prescan has been done. */
2298 && prescan >= 0)
2300 /* This function may alter the contents of its argument
2301 and clear some of the cc_status.flags bits.
2302 It may also return 1 meaning condition now always true
2303 or -1 meaning condition now always false
2304 or 2 meaning condition nontrivial but altered. */
2305 int result = alter_cond (XEXP (SET_SRC (body), 0));
2306 /* If condition now has fixed value, replace the IF_THEN_ELSE
2307 with its then-operand or its else-operand. */
2308 if (result == 1)
2309 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2310 if (result == -1)
2311 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2313 /* The jump is now either unconditional or a no-op.
2314 If it has become a no-op, don't try to output it.
2315 (It would not be recognized.) */
2316 if (SET_SRC (body) == pc_rtx)
2318 delete_insn (insn);
2319 break;
2321 else if (GET_CODE (SET_SRC (body)) == RETURN)
2322 /* Replace (set (pc) (return)) with (return). */
2323 PATTERN (insn) = body = SET_SRC (body);
2325 /* Rerecognize the instruction if it has changed. */
2326 if (result != 0)
2327 INSN_CODE (insn) = -1;
2330 /* Make same adjustments to instructions that examine the
2331 condition codes without jumping and instructions that
2332 handle conditional moves (if this machine has either one). */
2334 if (cc_status.flags != 0
2335 && set != 0)
2337 rtx cond_rtx, then_rtx, else_rtx;
2339 if (!JUMP_P (insn)
2340 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2342 cond_rtx = XEXP (SET_SRC (set), 0);
2343 then_rtx = XEXP (SET_SRC (set), 1);
2344 else_rtx = XEXP (SET_SRC (set), 2);
2346 else
2348 cond_rtx = SET_SRC (set);
2349 then_rtx = const_true_rtx;
2350 else_rtx = const0_rtx;
2353 switch (GET_CODE (cond_rtx))
2355 case GTU:
2356 case GT:
2357 case LTU:
2358 case LT:
2359 case GEU:
2360 case GE:
2361 case LEU:
2362 case LE:
2363 case EQ:
2364 case NE:
2366 int result;
2367 if (XEXP (cond_rtx, 0) != cc0_rtx)
2368 break;
2369 result = alter_cond (cond_rtx);
2370 if (result == 1)
2371 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2372 else if (result == -1)
2373 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2374 else if (result == 2)
2375 INSN_CODE (insn) = -1;
2376 if (SET_DEST (set) == SET_SRC (set))
2377 delete_insn (insn);
2379 break;
2381 default:
2382 break;
2386 #endif
2388 #ifdef HAVE_peephole
2389 /* Do machine-specific peephole optimizations if desired. */
2391 if (optimize && !flag_no_peephole && !nopeepholes)
2393 rtx next = peephole (insn);
2394 /* When peepholing, if there were notes within the peephole,
2395 emit them before the peephole. */
2396 if (next != 0 && next != NEXT_INSN (insn))
2398 rtx note, prev = PREV_INSN (insn);
2400 for (note = NEXT_INSN (insn); note != next;
2401 note = NEXT_INSN (note))
2402 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2404 /* In case this is prescan, put the notes
2405 in proper position for later rescan. */
2406 note = NEXT_INSN (insn);
2407 PREV_INSN (note) = prev;
2408 NEXT_INSN (prev) = note;
2409 NEXT_INSN (PREV_INSN (next)) = insn;
2410 PREV_INSN (insn) = PREV_INSN (next);
2411 NEXT_INSN (insn) = next;
2412 PREV_INSN (next) = insn;
2415 /* PEEPHOLE might have changed this. */
2416 body = PATTERN (insn);
2418 #endif
2420 /* Try to recognize the instruction.
2421 If successful, verify that the operands satisfy the
2422 constraints for the instruction. Crash if they don't,
2423 since `reload' should have changed them so that they do. */
2425 insn_code_number = recog_memoized (insn);
2426 cleanup_subreg_operands (insn);
2428 /* Dump the insn in the assembly for debugging. */
2429 if (flag_dump_rtl_in_asm)
2431 print_rtx_head = ASM_COMMENT_START;
2432 print_rtl_single (asm_out_file, insn);
2433 print_rtx_head = "";
2436 if (! constrain_operands_cached (1))
2437 fatal_insn_not_found (insn);
2439 /* Some target machines need to prescan each insn before
2440 it is output. */
2442 #ifdef FINAL_PRESCAN_INSN
2443 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2444 #endif
2446 #ifdef HAVE_conditional_execution
2447 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2448 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2449 else
2450 current_insn_predicate = NULL_RTX;
2451 #endif
2453 #ifdef HAVE_cc0
2454 cc_prev_status = cc_status;
2456 /* Update `cc_status' for this instruction.
2457 The instruction's output routine may change it further.
2458 If the output routine for a jump insn needs to depend
2459 on the cc status, it should look at cc_prev_status. */
2461 NOTICE_UPDATE_CC (body, insn);
2462 #endif
2464 current_output_insn = debug_insn = insn;
2466 #if defined (DWARF2_UNWIND_INFO)
2467 if (CALL_P (insn) && dwarf2out_do_frame ())
2468 dwarf2out_frame_debug (insn);
2469 #endif
2471 /* Find the proper template for this insn. */
2472 template = get_insn_template (insn_code_number, insn);
2474 /* If the C code returns 0, it means that it is a jump insn
2475 which follows a deleted test insn, and that test insn
2476 needs to be reinserted. */
2477 if (template == 0)
2479 rtx prev;
2481 if (prev_nonnote_insn (insn) != last_ignored_compare)
2482 abort ();
2484 /* We have already processed the notes between the setter and
2485 the user. Make sure we don't process them again, this is
2486 particularly important if one of the notes is a block
2487 scope note or an EH note. */
2488 for (prev = insn;
2489 prev != last_ignored_compare;
2490 prev = PREV_INSN (prev))
2492 if (NOTE_P (prev))
2493 delete_insn (prev); /* Use delete_note. */
2496 return prev;
2499 /* If the template is the string "#", it means that this insn must
2500 be split. */
2501 if (template[0] == '#' && template[1] == '\0')
2503 rtx new = try_split (body, insn, 0);
2505 /* If we didn't split the insn, go away. */
2506 if (new == insn && PATTERN (new) == body)
2507 fatal_insn ("could not split insn", insn);
2509 #ifdef HAVE_ATTR_length
2510 /* This instruction should have been split in shorten_branches,
2511 to ensure that we would have valid length info for the
2512 splitees. */
2513 abort ();
2514 #endif
2516 return new;
2519 if (prescan > 0)
2520 break;
2522 #ifdef TARGET_UNWIND_INFO
2523 /* ??? This will put the directives in the wrong place if
2524 get_insn_template outputs assembly directly. However calling it
2525 before get_insn_template breaks if the insns is split. */
2526 targetm.asm_out.unwind_emit (asm_out_file, insn);
2527 #endif
2529 /* Output assembler code from the template. */
2530 output_asm_insn (template, recog_data.operand);
2532 /* If necessary, report the effect that the instruction has on
2533 the unwind info. We've already done this for delay slots
2534 and call instructions. */
2535 #if defined (DWARF2_UNWIND_INFO)
2536 if (NONJUMP_INSN_P (insn)
2537 #if !defined (HAVE_prologue)
2538 && !ACCUMULATE_OUTGOING_ARGS
2539 #endif
2540 && final_sequence == 0
2541 && dwarf2out_do_frame ())
2542 dwarf2out_frame_debug (insn);
2543 #endif
2545 current_output_insn = debug_insn = 0;
2548 return NEXT_INSN (insn);
2551 /* Output debugging info to the assembler file FILE
2552 based on the NOTE-insn INSN, assumed to be a line number. */
2554 static bool
2555 notice_source_line (rtx insn)
2557 const char *filename = insn_file (insn);
2558 int linenum = insn_line (insn);
2560 if (filename && (filename != last_filename || last_linenum != linenum))
2562 last_filename = filename;
2563 last_linenum = linenum;
2564 high_block_linenum = MAX (last_linenum, high_block_linenum);
2565 high_function_linenum = MAX (last_linenum, high_function_linenum);
2566 return true;
2568 return false;
2571 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2572 directly to the desired hard register. */
2574 void
2575 cleanup_subreg_operands (rtx insn)
2577 int i;
2578 extract_insn_cached (insn);
2579 for (i = 0; i < recog_data.n_operands; i++)
2581 /* The following test cannot use recog_data.operand when testing
2582 for a SUBREG: the underlying object might have been changed
2583 already if we are inside a match_operator expression that
2584 matches the else clause. Instead we test the underlying
2585 expression directly. */
2586 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2587 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2588 else if (GET_CODE (recog_data.operand[i]) == PLUS
2589 || GET_CODE (recog_data.operand[i]) == MULT
2590 || MEM_P (recog_data.operand[i]))
2591 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2594 for (i = 0; i < recog_data.n_dups; i++)
2596 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2597 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2598 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2599 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2600 || MEM_P (*recog_data.dup_loc[i]))
2601 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2605 /* If X is a SUBREG, replace it with a REG or a MEM,
2606 based on the thing it is a subreg of. */
2609 alter_subreg (rtx *xp)
2611 rtx x = *xp;
2612 rtx y = SUBREG_REG (x);
2614 /* simplify_subreg does not remove subreg from volatile references.
2615 We are required to. */
2616 if (MEM_P (y))
2617 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2618 else
2620 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2621 SUBREG_BYTE (x));
2623 if (new != 0)
2624 *xp = new;
2625 /* Simplify_subreg can't handle some REG cases, but we have to. */
2626 else if (REG_P (y))
2628 unsigned int regno = subreg_hard_regno (x, 1);
2629 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2631 else
2632 abort ();
2635 return *xp;
2638 /* Do alter_subreg on all the SUBREGs contained in X. */
2640 static rtx
2641 walk_alter_subreg (rtx *xp)
2643 rtx x = *xp;
2644 switch (GET_CODE (x))
2646 case PLUS:
2647 case MULT:
2648 case AND:
2649 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2650 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2651 break;
2653 case MEM:
2654 case ZERO_EXTEND:
2655 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2656 break;
2658 case SUBREG:
2659 return alter_subreg (xp);
2661 default:
2662 break;
2665 return *xp;
2668 #ifdef HAVE_cc0
2670 /* Given BODY, the body of a jump instruction, alter the jump condition
2671 as required by the bits that are set in cc_status.flags.
2672 Not all of the bits there can be handled at this level in all cases.
2674 The value is normally 0.
2675 1 means that the condition has become always true.
2676 -1 means that the condition has become always false.
2677 2 means that COND has been altered. */
2679 static int
2680 alter_cond (rtx cond)
2682 int value = 0;
2684 if (cc_status.flags & CC_REVERSED)
2686 value = 2;
2687 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2690 if (cc_status.flags & CC_INVERTED)
2692 value = 2;
2693 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2696 if (cc_status.flags & CC_NOT_POSITIVE)
2697 switch (GET_CODE (cond))
2699 case LE:
2700 case LEU:
2701 case GEU:
2702 /* Jump becomes unconditional. */
2703 return 1;
2705 case GT:
2706 case GTU:
2707 case LTU:
2708 /* Jump becomes no-op. */
2709 return -1;
2711 case GE:
2712 PUT_CODE (cond, EQ);
2713 value = 2;
2714 break;
2716 case LT:
2717 PUT_CODE (cond, NE);
2718 value = 2;
2719 break;
2721 default:
2722 break;
2725 if (cc_status.flags & CC_NOT_NEGATIVE)
2726 switch (GET_CODE (cond))
2728 case GE:
2729 case GEU:
2730 /* Jump becomes unconditional. */
2731 return 1;
2733 case LT:
2734 case LTU:
2735 /* Jump becomes no-op. */
2736 return -1;
2738 case LE:
2739 case LEU:
2740 PUT_CODE (cond, EQ);
2741 value = 2;
2742 break;
2744 case GT:
2745 case GTU:
2746 PUT_CODE (cond, NE);
2747 value = 2;
2748 break;
2750 default:
2751 break;
2754 if (cc_status.flags & CC_NO_OVERFLOW)
2755 switch (GET_CODE (cond))
2757 case GEU:
2758 /* Jump becomes unconditional. */
2759 return 1;
2761 case LEU:
2762 PUT_CODE (cond, EQ);
2763 value = 2;
2764 break;
2766 case GTU:
2767 PUT_CODE (cond, NE);
2768 value = 2;
2769 break;
2771 case LTU:
2772 /* Jump becomes no-op. */
2773 return -1;
2775 default:
2776 break;
2779 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2780 switch (GET_CODE (cond))
2782 default:
2783 abort ();
2785 case NE:
2786 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2787 value = 2;
2788 break;
2790 case EQ:
2791 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2792 value = 2;
2793 break;
2796 if (cc_status.flags & CC_NOT_SIGNED)
2797 /* The flags are valid if signed condition operators are converted
2798 to unsigned. */
2799 switch (GET_CODE (cond))
2801 case LE:
2802 PUT_CODE (cond, LEU);
2803 value = 2;
2804 break;
2806 case LT:
2807 PUT_CODE (cond, LTU);
2808 value = 2;
2809 break;
2811 case GT:
2812 PUT_CODE (cond, GTU);
2813 value = 2;
2814 break;
2816 case GE:
2817 PUT_CODE (cond, GEU);
2818 value = 2;
2819 break;
2821 default:
2822 break;
2825 return value;
2827 #endif
2829 /* Report inconsistency between the assembler template and the operands.
2830 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2832 void
2833 output_operand_lossage (const char *msgid, ...)
2835 char *fmt_string;
2836 char *new_message;
2837 const char *pfx_str;
2838 va_list ap;
2840 va_start (ap, msgid);
2842 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2843 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2844 vasprintf (&new_message, fmt_string, ap);
2846 if (this_is_asm_operands)
2847 error_for_asm (this_is_asm_operands, "%s", new_message);
2848 else
2849 internal_error ("%s", new_message);
2851 free (fmt_string);
2852 free (new_message);
2853 va_end (ap);
2856 /* Output of assembler code from a template, and its subroutines. */
2858 /* Annotate the assembly with a comment describing the pattern and
2859 alternative used. */
2861 static void
2862 output_asm_name (void)
2864 if (debug_insn)
2866 int num = INSN_CODE (debug_insn);
2867 fprintf (asm_out_file, "\t%s %d\t%s",
2868 ASM_COMMENT_START, INSN_UID (debug_insn),
2869 insn_data[num].name);
2870 if (insn_data[num].n_alternatives > 1)
2871 fprintf (asm_out_file, "/%d", which_alternative + 1);
2872 #ifdef HAVE_ATTR_length
2873 fprintf (asm_out_file, "\t[length = %d]",
2874 get_attr_length (debug_insn));
2875 #endif
2876 /* Clear this so only the first assembler insn
2877 of any rtl insn will get the special comment for -dp. */
2878 debug_insn = 0;
2882 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2883 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2884 corresponds to the address of the object and 0 if to the object. */
2886 static tree
2887 get_mem_expr_from_op (rtx op, int *paddressp)
2889 tree expr;
2890 int inner_addressp;
2892 *paddressp = 0;
2894 if (REG_P (op))
2895 return REG_EXPR (op);
2896 else if (!MEM_P (op))
2897 return 0;
2899 if (MEM_EXPR (op) != 0)
2900 return MEM_EXPR (op);
2902 /* Otherwise we have an address, so indicate it and look at the address. */
2903 *paddressp = 1;
2904 op = XEXP (op, 0);
2906 /* First check if we have a decl for the address, then look at the right side
2907 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2908 But don't allow the address to itself be indirect. */
2909 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2910 return expr;
2911 else if (GET_CODE (op) == PLUS
2912 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2913 return expr;
2915 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2916 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2917 op = XEXP (op, 0);
2919 expr = get_mem_expr_from_op (op, &inner_addressp);
2920 return inner_addressp ? 0 : expr;
2923 /* Output operand names for assembler instructions. OPERANDS is the
2924 operand vector, OPORDER is the order to write the operands, and NOPS
2925 is the number of operands to write. */
2927 static void
2928 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2930 int wrote = 0;
2931 int i;
2933 for (i = 0; i < nops; i++)
2935 int addressp;
2936 rtx op = operands[oporder[i]];
2937 tree expr = get_mem_expr_from_op (op, &addressp);
2939 fprintf (asm_out_file, "%c%s",
2940 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2941 wrote = 1;
2942 if (expr)
2944 fprintf (asm_out_file, "%s",
2945 addressp ? "*" : "");
2946 print_mem_expr (asm_out_file, expr);
2947 wrote = 1;
2949 else if (REG_P (op) && ORIGINAL_REGNO (op)
2950 && ORIGINAL_REGNO (op) != REGNO (op))
2951 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2955 /* Output text from TEMPLATE to the assembler output file,
2956 obeying %-directions to substitute operands taken from
2957 the vector OPERANDS.
2959 %N (for N a digit) means print operand N in usual manner.
2960 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2961 and print the label name with no punctuation.
2962 %cN means require operand N to be a constant
2963 and print the constant expression with no punctuation.
2964 %aN means expect operand N to be a memory address
2965 (not a memory reference!) and print a reference
2966 to that address.
2967 %nN means expect operand N to be a constant
2968 and print a constant expression for minus the value
2969 of the operand, with no other punctuation. */
2971 void
2972 output_asm_insn (const char *template, rtx *operands)
2974 const char *p;
2975 int c;
2976 #ifdef ASSEMBLER_DIALECT
2977 int dialect = 0;
2978 #endif
2979 int oporder[MAX_RECOG_OPERANDS];
2980 char opoutput[MAX_RECOG_OPERANDS];
2981 int ops = 0;
2983 /* An insn may return a null string template
2984 in a case where no assembler code is needed. */
2985 if (*template == 0)
2986 return;
2988 memset (opoutput, 0, sizeof opoutput);
2989 p = template;
2990 putc ('\t', asm_out_file);
2992 #ifdef ASM_OUTPUT_OPCODE
2993 ASM_OUTPUT_OPCODE (asm_out_file, p);
2994 #endif
2996 while ((c = *p++))
2997 switch (c)
2999 case '\n':
3000 if (flag_verbose_asm)
3001 output_asm_operand_names (operands, oporder, ops);
3002 if (flag_print_asm_name)
3003 output_asm_name ();
3005 ops = 0;
3006 memset (opoutput, 0, sizeof opoutput);
3008 putc (c, asm_out_file);
3009 #ifdef ASM_OUTPUT_OPCODE
3010 while ((c = *p) == '\t')
3012 putc (c, asm_out_file);
3013 p++;
3015 ASM_OUTPUT_OPCODE (asm_out_file, p);
3016 #endif
3017 break;
3019 #ifdef ASSEMBLER_DIALECT
3020 case '{':
3022 int i;
3024 if (dialect)
3025 output_operand_lossage ("nested assembly dialect alternatives");
3026 else
3027 dialect = 1;
3029 /* If we want the first dialect, do nothing. Otherwise, skip
3030 DIALECT_NUMBER of strings ending with '|'. */
3031 for (i = 0; i < dialect_number; i++)
3033 while (*p && *p != '}' && *p++ != '|')
3035 if (*p == '}')
3036 break;
3037 if (*p == '|')
3038 p++;
3041 if (*p == '\0')
3042 output_operand_lossage ("unterminated assembly dialect alternative");
3044 break;
3046 case '|':
3047 if (dialect)
3049 /* Skip to close brace. */
3052 if (*p == '\0')
3054 output_operand_lossage ("unterminated assembly dialect alternative");
3055 break;
3058 while (*p++ != '}');
3059 dialect = 0;
3061 else
3062 putc (c, asm_out_file);
3063 break;
3065 case '}':
3066 if (! dialect)
3067 putc (c, asm_out_file);
3068 dialect = 0;
3069 break;
3070 #endif
3072 case '%':
3073 /* %% outputs a single %. */
3074 if (*p == '%')
3076 p++;
3077 putc (c, asm_out_file);
3079 /* %= outputs a number which is unique to each insn in the entire
3080 compilation. This is useful for making local labels that are
3081 referred to more than once in a given insn. */
3082 else if (*p == '=')
3084 p++;
3085 fprintf (asm_out_file, "%d", insn_counter);
3087 /* % followed by a letter and some digits
3088 outputs an operand in a special way depending on the letter.
3089 Letters `acln' are implemented directly.
3090 Other letters are passed to `output_operand' so that
3091 the PRINT_OPERAND macro can define them. */
3092 else if (ISALPHA (*p))
3094 int letter = *p++;
3095 c = atoi (p);
3097 if (! ISDIGIT (*p))
3098 output_operand_lossage ("operand number missing after %%-letter");
3099 else if (this_is_asm_operands
3100 && (c < 0 || (unsigned int) c >= insn_noperands))
3101 output_operand_lossage ("operand number out of range");
3102 else if (letter == 'l')
3103 output_asm_label (operands[c]);
3104 else if (letter == 'a')
3105 output_address (operands[c]);
3106 else if (letter == 'c')
3108 if (CONSTANT_ADDRESS_P (operands[c]))
3109 output_addr_const (asm_out_file, operands[c]);
3110 else
3111 output_operand (operands[c], 'c');
3113 else if (letter == 'n')
3115 if (GET_CODE (operands[c]) == CONST_INT)
3116 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3117 - INTVAL (operands[c]));
3118 else
3120 putc ('-', asm_out_file);
3121 output_addr_const (asm_out_file, operands[c]);
3124 else
3125 output_operand (operands[c], letter);
3127 if (!opoutput[c])
3128 oporder[ops++] = c;
3129 opoutput[c] = 1;
3131 while (ISDIGIT (c = *p))
3132 p++;
3134 /* % followed by a digit outputs an operand the default way. */
3135 else if (ISDIGIT (*p))
3137 c = atoi (p);
3138 if (this_is_asm_operands
3139 && (c < 0 || (unsigned int) c >= insn_noperands))
3140 output_operand_lossage ("operand number out of range");
3141 else
3142 output_operand (operands[c], 0);
3144 if (!opoutput[c])
3145 oporder[ops++] = c;
3146 opoutput[c] = 1;
3148 while (ISDIGIT (c = *p))
3149 p++;
3151 /* % followed by punctuation: output something for that
3152 punctuation character alone, with no operand.
3153 The PRINT_OPERAND macro decides what is actually done. */
3154 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3155 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3156 output_operand (NULL_RTX, *p++);
3157 #endif
3158 else
3159 output_operand_lossage ("invalid %%-code");
3160 break;
3162 default:
3163 putc (c, asm_out_file);
3166 /* Write out the variable names for operands, if we know them. */
3167 if (flag_verbose_asm)
3168 output_asm_operand_names (operands, oporder, ops);
3169 if (flag_print_asm_name)
3170 output_asm_name ();
3172 putc ('\n', asm_out_file);
3175 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3177 void
3178 output_asm_label (rtx x)
3180 char buf[256];
3182 if (GET_CODE (x) == LABEL_REF)
3183 x = XEXP (x, 0);
3184 if (LABEL_P (x)
3185 || (NOTE_P (x)
3186 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3187 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3188 else
3189 output_operand_lossage ("`%%l' operand isn't a label");
3191 assemble_name (asm_out_file, buf);
3194 /* Print operand X using machine-dependent assembler syntax.
3195 The macro PRINT_OPERAND is defined just to control this function.
3196 CODE is a non-digit that preceded the operand-number in the % spec,
3197 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3198 between the % and the digits.
3199 When CODE is a non-letter, X is 0.
3201 The meanings of the letters are machine-dependent and controlled
3202 by PRINT_OPERAND. */
3204 static void
3205 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3207 if (x && GET_CODE (x) == SUBREG)
3208 x = alter_subreg (&x);
3210 /* If X is a pseudo-register, abort now rather than writing trash to the
3211 assembler file. */
3213 if (x && REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3214 abort ();
3216 PRINT_OPERAND (asm_out_file, x, code);
3219 /* Print a memory reference operand for address X
3220 using machine-dependent assembler syntax.
3221 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3223 void
3224 output_address (rtx x)
3226 walk_alter_subreg (&x);
3227 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3230 /* Print an integer constant expression in assembler syntax.
3231 Addition and subtraction are the only arithmetic
3232 that may appear in these expressions. */
3234 void
3235 output_addr_const (FILE *file, rtx x)
3237 char buf[256];
3239 restart:
3240 switch (GET_CODE (x))
3242 case PC:
3243 putc ('.', file);
3244 break;
3246 case SYMBOL_REF:
3247 if (SYMBOL_REF_DECL (x))
3248 mark_decl_referenced (SYMBOL_REF_DECL (x));
3249 #ifdef ASM_OUTPUT_SYMBOL_REF
3250 ASM_OUTPUT_SYMBOL_REF (file, x);
3251 #else
3252 assemble_name (file, XSTR (x, 0));
3253 #endif
3254 break;
3256 case LABEL_REF:
3257 x = XEXP (x, 0);
3258 /* Fall through. */
3259 case CODE_LABEL:
3260 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3261 #ifdef ASM_OUTPUT_LABEL_REF
3262 ASM_OUTPUT_LABEL_REF (file, buf);
3263 #else
3264 assemble_name (file, buf);
3265 #endif
3266 break;
3268 case CONST_INT:
3269 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3270 break;
3272 case CONST:
3273 /* This used to output parentheses around the expression,
3274 but that does not work on the 386 (either ATT or BSD assembler). */
3275 output_addr_const (file, XEXP (x, 0));
3276 break;
3278 case CONST_DOUBLE:
3279 if (GET_MODE (x) == VOIDmode)
3281 /* We can use %d if the number is one word and positive. */
3282 if (CONST_DOUBLE_HIGH (x))
3283 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3284 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3285 else if (CONST_DOUBLE_LOW (x) < 0)
3286 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3287 else
3288 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3290 else
3291 /* We can't handle floating point constants;
3292 PRINT_OPERAND must handle them. */
3293 output_operand_lossage ("floating constant misused");
3294 break;
3296 case PLUS:
3297 /* Some assemblers need integer constants to appear last (eg masm). */
3298 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3300 output_addr_const (file, XEXP (x, 1));
3301 if (INTVAL (XEXP (x, 0)) >= 0)
3302 fprintf (file, "+");
3303 output_addr_const (file, XEXP (x, 0));
3305 else
3307 output_addr_const (file, XEXP (x, 0));
3308 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3309 || INTVAL (XEXP (x, 1)) >= 0)
3310 fprintf (file, "+");
3311 output_addr_const (file, XEXP (x, 1));
3313 break;
3315 case MINUS:
3316 /* Avoid outputting things like x-x or x+5-x,
3317 since some assemblers can't handle that. */
3318 x = simplify_subtraction (x);
3319 if (GET_CODE (x) != MINUS)
3320 goto restart;
3322 output_addr_const (file, XEXP (x, 0));
3323 fprintf (file, "-");
3324 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3325 || GET_CODE (XEXP (x, 1)) == PC
3326 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3327 output_addr_const (file, XEXP (x, 1));
3328 else
3330 fputs (targetm.asm_out.open_paren, file);
3331 output_addr_const (file, XEXP (x, 1));
3332 fputs (targetm.asm_out.close_paren, file);
3334 break;
3336 case ZERO_EXTEND:
3337 case SIGN_EXTEND:
3338 case SUBREG:
3339 output_addr_const (file, XEXP (x, 0));
3340 break;
3342 default:
3343 #ifdef OUTPUT_ADDR_CONST_EXTRA
3344 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3345 break;
3347 fail:
3348 #endif
3349 output_operand_lossage ("invalid expression as operand");
3353 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3354 %R prints the value of REGISTER_PREFIX.
3355 %L prints the value of LOCAL_LABEL_PREFIX.
3356 %U prints the value of USER_LABEL_PREFIX.
3357 %I prints the value of IMMEDIATE_PREFIX.
3358 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3359 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3361 We handle alternate assembler dialects here, just like output_asm_insn. */
3363 void
3364 asm_fprintf (FILE *file, const char *p, ...)
3366 char buf[10];
3367 char *q, c;
3368 va_list argptr;
3370 va_start (argptr, p);
3372 buf[0] = '%';
3374 while ((c = *p++))
3375 switch (c)
3377 #ifdef ASSEMBLER_DIALECT
3378 case '{':
3380 int i;
3382 /* If we want the first dialect, do nothing. Otherwise, skip
3383 DIALECT_NUMBER of strings ending with '|'. */
3384 for (i = 0; i < dialect_number; i++)
3386 while (*p && *p++ != '|')
3389 if (*p == '|')
3390 p++;
3393 break;
3395 case '|':
3396 /* Skip to close brace. */
3397 while (*p && *p++ != '}')
3399 break;
3401 case '}':
3402 break;
3403 #endif
3405 case '%':
3406 c = *p++;
3407 q = &buf[1];
3408 while (strchr ("-+ #0", c))
3410 *q++ = c;
3411 c = *p++;
3413 while (ISDIGIT (c) || c == '.')
3415 *q++ = c;
3416 c = *p++;
3418 switch (c)
3420 case '%':
3421 putc ('%', file);
3422 break;
3424 case 'd': case 'i': case 'u':
3425 case 'x': case 'X': case 'o':
3426 case 'c':
3427 *q++ = c;
3428 *q = 0;
3429 fprintf (file, buf, va_arg (argptr, int));
3430 break;
3432 case 'w':
3433 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3434 'o' cases, but we do not check for those cases. It
3435 means that the value is a HOST_WIDE_INT, which may be
3436 either `long' or `long long'. */
3437 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3438 q += strlen (HOST_WIDE_INT_PRINT);
3439 *q++ = *p++;
3440 *q = 0;
3441 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3442 break;
3444 case 'l':
3445 *q++ = c;
3446 #ifdef HAVE_LONG_LONG
3447 if (*p == 'l')
3449 *q++ = *p++;
3450 *q++ = *p++;
3451 *q = 0;
3452 fprintf (file, buf, va_arg (argptr, long long));
3454 else
3455 #endif
3457 *q++ = *p++;
3458 *q = 0;
3459 fprintf (file, buf, va_arg (argptr, long));
3462 break;
3464 case 's':
3465 *q++ = c;
3466 *q = 0;
3467 fprintf (file, buf, va_arg (argptr, char *));
3468 break;
3470 case 'O':
3471 #ifdef ASM_OUTPUT_OPCODE
3472 ASM_OUTPUT_OPCODE (asm_out_file, p);
3473 #endif
3474 break;
3476 case 'R':
3477 #ifdef REGISTER_PREFIX
3478 fprintf (file, "%s", REGISTER_PREFIX);
3479 #endif
3480 break;
3482 case 'I':
3483 #ifdef IMMEDIATE_PREFIX
3484 fprintf (file, "%s", IMMEDIATE_PREFIX);
3485 #endif
3486 break;
3488 case 'L':
3489 #ifdef LOCAL_LABEL_PREFIX
3490 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3491 #endif
3492 break;
3494 case 'U':
3495 fputs (user_label_prefix, file);
3496 break;
3498 #ifdef ASM_FPRINTF_EXTENSIONS
3499 /* Uppercase letters are reserved for general use by asm_fprintf
3500 and so are not available to target specific code. In order to
3501 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3502 they are defined here. As they get turned into real extensions
3503 to asm_fprintf they should be removed from this list. */
3504 case 'A': case 'B': case 'C': case 'D': case 'E':
3505 case 'F': case 'G': case 'H': case 'J': case 'K':
3506 case 'M': case 'N': case 'P': case 'Q': case 'S':
3507 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3508 break;
3510 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3511 #endif
3512 default:
3513 abort ();
3515 break;
3517 default:
3518 putc (c, file);
3520 va_end (argptr);
3523 /* Split up a CONST_DOUBLE or integer constant rtx
3524 into two rtx's for single words,
3525 storing in *FIRST the word that comes first in memory in the target
3526 and in *SECOND the other. */
3528 void
3529 split_double (rtx value, rtx *first, rtx *second)
3531 if (GET_CODE (value) == CONST_INT)
3533 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3535 /* In this case the CONST_INT holds both target words.
3536 Extract the bits from it into two word-sized pieces.
3537 Sign extend each half to HOST_WIDE_INT. */
3538 unsigned HOST_WIDE_INT low, high;
3539 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3541 /* Set sign_bit to the most significant bit of a word. */
3542 sign_bit = 1;
3543 sign_bit <<= BITS_PER_WORD - 1;
3545 /* Set mask so that all bits of the word are set. We could
3546 have used 1 << BITS_PER_WORD instead of basing the
3547 calculation on sign_bit. However, on machines where
3548 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3549 compiler warning, even though the code would never be
3550 executed. */
3551 mask = sign_bit << 1;
3552 mask--;
3554 /* Set sign_extend as any remaining bits. */
3555 sign_extend = ~mask;
3557 /* Pick the lower word and sign-extend it. */
3558 low = INTVAL (value);
3559 low &= mask;
3560 if (low & sign_bit)
3561 low |= sign_extend;
3563 /* Pick the higher word, shifted to the least significant
3564 bits, and sign-extend it. */
3565 high = INTVAL (value);
3566 high >>= BITS_PER_WORD - 1;
3567 high >>= 1;
3568 high &= mask;
3569 if (high & sign_bit)
3570 high |= sign_extend;
3572 /* Store the words in the target machine order. */
3573 if (WORDS_BIG_ENDIAN)
3575 *first = GEN_INT (high);
3576 *second = GEN_INT (low);
3578 else
3580 *first = GEN_INT (low);
3581 *second = GEN_INT (high);
3584 else
3586 /* The rule for using CONST_INT for a wider mode
3587 is that we regard the value as signed.
3588 So sign-extend it. */
3589 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3590 if (WORDS_BIG_ENDIAN)
3592 *first = high;
3593 *second = value;
3595 else
3597 *first = value;
3598 *second = high;
3602 else if (GET_CODE (value) != CONST_DOUBLE)
3604 if (WORDS_BIG_ENDIAN)
3606 *first = const0_rtx;
3607 *second = value;
3609 else
3611 *first = value;
3612 *second = const0_rtx;
3615 else if (GET_MODE (value) == VOIDmode
3616 /* This is the old way we did CONST_DOUBLE integers. */
3617 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3619 /* In an integer, the words are defined as most and least significant.
3620 So order them by the target's convention. */
3621 if (WORDS_BIG_ENDIAN)
3623 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3624 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3626 else
3628 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3629 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3632 else
3634 REAL_VALUE_TYPE r;
3635 long l[2];
3636 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3638 /* Note, this converts the REAL_VALUE_TYPE to the target's
3639 format, splits up the floating point double and outputs
3640 exactly 32 bits of it into each of l[0] and l[1] --
3641 not necessarily BITS_PER_WORD bits. */
3642 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3644 /* If 32 bits is an entire word for the target, but not for the host,
3645 then sign-extend on the host so that the number will look the same
3646 way on the host that it would on the target. See for instance
3647 simplify_unary_operation. The #if is needed to avoid compiler
3648 warnings. */
3650 #if HOST_BITS_PER_LONG > 32
3651 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3653 if (l[0] & ((long) 1 << 31))
3654 l[0] |= ((long) (-1) << 32);
3655 if (l[1] & ((long) 1 << 31))
3656 l[1] |= ((long) (-1) << 32);
3658 #endif
3660 *first = GEN_INT (l[0]);
3661 *second = GEN_INT (l[1]);
3665 /* Return nonzero if this function has no function calls. */
3668 leaf_function_p (void)
3670 rtx insn;
3671 rtx link;
3673 if (current_function_profile || profile_arc_flag)
3674 return 0;
3676 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3678 if (CALL_P (insn)
3679 && ! SIBLING_CALL_P (insn))
3680 return 0;
3681 if (NONJUMP_INSN_P (insn)
3682 && GET_CODE (PATTERN (insn)) == SEQUENCE
3683 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3684 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3685 return 0;
3687 for (link = current_function_epilogue_delay_list;
3688 link;
3689 link = XEXP (link, 1))
3691 insn = XEXP (link, 0);
3693 if (CALL_P (insn)
3694 && ! SIBLING_CALL_P (insn))
3695 return 0;
3696 if (NONJUMP_INSN_P (insn)
3697 && GET_CODE (PATTERN (insn)) == SEQUENCE
3698 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3699 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3700 return 0;
3703 return 1;
3706 /* Return 1 if branch is a forward branch.
3707 Uses insn_shuid array, so it works only in the final pass. May be used by
3708 output templates to customary add branch prediction hints.
3711 final_forward_branch_p (rtx insn)
3713 int insn_id, label_id;
3714 if (!uid_shuid)
3715 abort ();
3716 insn_id = INSN_SHUID (insn);
3717 label_id = INSN_SHUID (JUMP_LABEL (insn));
3718 /* We've hit some insns that does not have id information available. */
3719 if (!insn_id || !label_id)
3720 abort ();
3721 return insn_id < label_id;
3724 /* On some machines, a function with no call insns
3725 can run faster if it doesn't create its own register window.
3726 When output, the leaf function should use only the "output"
3727 registers. Ordinarily, the function would be compiled to use
3728 the "input" registers to find its arguments; it is a candidate
3729 for leaf treatment if it uses only the "input" registers.
3730 Leaf function treatment means renumbering so the function
3731 uses the "output" registers instead. */
3733 #ifdef LEAF_REGISTERS
3735 /* Return 1 if this function uses only the registers that can be
3736 safely renumbered. */
3739 only_leaf_regs_used (void)
3741 int i;
3742 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3744 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3745 if ((regs_ever_live[i] || global_regs[i])
3746 && ! permitted_reg_in_leaf_functions[i])
3747 return 0;
3749 if (current_function_uses_pic_offset_table
3750 && pic_offset_table_rtx != 0
3751 && REG_P (pic_offset_table_rtx)
3752 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3753 return 0;
3755 return 1;
3758 /* Scan all instructions and renumber all registers into those
3759 available in leaf functions. */
3761 static void
3762 leaf_renumber_regs (rtx first)
3764 rtx insn;
3766 /* Renumber only the actual patterns.
3767 The reg-notes can contain frame pointer refs,
3768 and renumbering them could crash, and should not be needed. */
3769 for (insn = first; insn; insn = NEXT_INSN (insn))
3770 if (INSN_P (insn))
3771 leaf_renumber_regs_insn (PATTERN (insn));
3772 for (insn = current_function_epilogue_delay_list;
3773 insn;
3774 insn = XEXP (insn, 1))
3775 if (INSN_P (XEXP (insn, 0)))
3776 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3779 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3780 available in leaf functions. */
3782 void
3783 leaf_renumber_regs_insn (rtx in_rtx)
3785 int i, j;
3786 const char *format_ptr;
3788 if (in_rtx == 0)
3789 return;
3791 /* Renumber all input-registers into output-registers.
3792 renumbered_regs would be 1 for an output-register;
3793 they */
3795 if (REG_P (in_rtx))
3797 int newreg;
3799 /* Don't renumber the same reg twice. */
3800 if (in_rtx->used)
3801 return;
3803 newreg = REGNO (in_rtx);
3804 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3805 to reach here as part of a REG_NOTE. */
3806 if (newreg >= FIRST_PSEUDO_REGISTER)
3808 in_rtx->used = 1;
3809 return;
3811 newreg = LEAF_REG_REMAP (newreg);
3812 if (newreg < 0)
3813 abort ();
3814 regs_ever_live[REGNO (in_rtx)] = 0;
3815 regs_ever_live[newreg] = 1;
3816 REGNO (in_rtx) = newreg;
3817 in_rtx->used = 1;
3820 if (INSN_P (in_rtx))
3822 /* Inside a SEQUENCE, we find insns.
3823 Renumber just the patterns of these insns,
3824 just as we do for the top-level insns. */
3825 leaf_renumber_regs_insn (PATTERN (in_rtx));
3826 return;
3829 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3831 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3832 switch (*format_ptr++)
3834 case 'e':
3835 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3836 break;
3838 case 'E':
3839 if (NULL != XVEC (in_rtx, i))
3841 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3842 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3844 break;
3846 case 'S':
3847 case 's':
3848 case '0':
3849 case 'i':
3850 case 'w':
3851 case 'n':
3852 case 'u':
3853 break;
3855 default:
3856 abort ();
3859 #endif
3862 /* When -gused is used, emit debug info for only used symbols. But in
3863 addition to the standard intercepted debug_hooks there are some direct
3864 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3865 Those routines may also be called from a higher level intercepted routine. So
3866 to prevent recording data for an inner call to one of these for an intercept,
3867 we maintain an intercept nesting counter (debug_nesting). We only save the
3868 intercepted arguments if the nesting is 1. */
3869 int debug_nesting = 0;
3871 static tree *symbol_queue;
3872 int symbol_queue_index = 0;
3873 static int symbol_queue_size = 0;
3875 /* Generate the symbols for any queued up type symbols we encountered
3876 while generating the type info for some originally used symbol.
3877 This might generate additional entries in the queue. Only when
3878 the nesting depth goes to 0 is this routine called. */
3880 void
3881 debug_flush_symbol_queue (void)
3883 int i;
3885 /* Make sure that additionally queued items are not flushed
3886 prematurely. */
3888 ++debug_nesting;
3890 for (i = 0; i < symbol_queue_index; ++i)
3892 /* If we pushed queued symbols then such symbols are must be
3893 output no matter what anyone else says. Specifically,
3894 we need to make sure dbxout_symbol() thinks the symbol was
3895 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3896 which may be set for outside reasons. */
3897 int saved_tree_used = TREE_USED (symbol_queue[i]);
3898 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3899 TREE_USED (symbol_queue[i]) = 1;
3900 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3902 #ifdef DBX_DEBUGGING_INFO
3903 dbxout_symbol (symbol_queue[i], 0);
3904 #endif
3906 TREE_USED (symbol_queue[i]) = saved_tree_used;
3907 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3910 symbol_queue_index = 0;
3911 --debug_nesting;
3914 /* Queue a type symbol needed as part of the definition of a decl
3915 symbol. These symbols are generated when debug_flush_symbol_queue()
3916 is called. */
3918 void
3919 debug_queue_symbol (tree decl)
3921 if (symbol_queue_index >= symbol_queue_size)
3923 symbol_queue_size += 10;
3924 symbol_queue = xrealloc (symbol_queue,
3925 symbol_queue_size * sizeof (tree));
3928 symbol_queue[symbol_queue_index++] = decl;
3931 /* Free symbol queue. */
3932 void
3933 debug_free_queue (void)
3935 if (symbol_queue)
3937 free (symbol_queue);
3938 symbol_queue = NULL;
3939 symbol_queue_size = 0;