1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
34 #include "diagnostic.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph
;
44 /* Loop structure of the program. Used to analyze scalar evolutions
45 inside adjust_range_with_scev. */
46 static struct loops
*cfg_loops
;
48 /* Local functions. */
49 static int compare_values (tree val1
, tree val2
);
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
58 /* Basic block where the assertion would be inserted. */
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si
;
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code
;
71 /* Value being compared against. */
74 /* Next node in the linked list. */
75 struct assert_locus_d
*next
;
78 typedef struct assert_locus_d
*assert_locus_t
;
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for
;
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t
*asserts_for
;
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited
;
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t
**vr_value
;
98 /* Return true if ARG is marked with the nonnull attribute in the
99 current function signature. */
102 nonnull_arg_p (tree arg
)
104 tree t
, attrs
, fntype
;
105 unsigned HOST_WIDE_INT arg_num
;
107 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
109 fntype
= TREE_TYPE (current_function_decl
);
110 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
112 /* If "nonnull" wasn't specified, we know nothing about the argument. */
113 if (attrs
== NULL_TREE
)
116 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
117 if (TREE_VALUE (attrs
) == NULL_TREE
)
120 /* Get the position number for ARG in the function signature. */
121 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
123 t
= TREE_CHAIN (t
), arg_num
++)
129 gcc_assert (t
== arg
);
131 /* Now see if ARG_NUM is mentioned in the nonnull list. */
132 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
134 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
142 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
145 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
146 tree max
, bitmap equiv
)
148 #if defined ENABLE_CHECKING
149 /* Check the validity of the range. */
150 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
154 gcc_assert (min
&& max
);
156 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
157 gcc_assert (min
!= TYPE_MIN_VALUE (TREE_TYPE (min
))
158 || max
!= TYPE_MAX_VALUE (TREE_TYPE (max
)));
160 cmp
= compare_values (min
, max
);
161 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
164 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
165 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
167 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
168 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
175 /* Since updating the equivalence set involves deep copying the
176 bitmaps, only do it if absolutely necessary. */
177 if (vr
->equiv
== NULL
)
178 vr
->equiv
= BITMAP_ALLOC (NULL
);
180 if (equiv
!= vr
->equiv
)
182 if (equiv
&& !bitmap_empty_p (equiv
))
183 bitmap_copy (vr
->equiv
, equiv
);
185 bitmap_clear (vr
->equiv
);
190 /* Copy value range FROM into value range TO. */
193 copy_value_range (value_range_t
*to
, value_range_t
*from
)
195 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
199 /* Set value range VR to a non-NULL range of type TYPE. */
202 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
204 tree zero
= build_int_cst (type
, 0);
205 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
209 /* Set value range VR to a NULL range of type TYPE. */
212 set_value_range_to_null (value_range_t
*vr
, tree type
)
214 tree zero
= build_int_cst (type
, 0);
215 set_value_range (vr
, VR_RANGE
, zero
, zero
, vr
->equiv
);
219 /* Set value range VR to VR_VARYING. */
222 set_value_range_to_varying (value_range_t
*vr
)
224 vr
->type
= VR_VARYING
;
225 vr
->min
= vr
->max
= NULL_TREE
;
227 bitmap_clear (vr
->equiv
);
231 /* Set value range VR to VR_UNDEFINED. */
234 set_value_range_to_undefined (value_range_t
*vr
)
236 vr
->type
= VR_UNDEFINED
;
237 vr
->min
= vr
->max
= NULL_TREE
;
239 bitmap_clear (vr
->equiv
);
243 /* Return value range information for VAR. Create an empty range
246 static value_range_t
*
247 get_value_range (tree var
)
251 unsigned ver
= SSA_NAME_VERSION (var
);
257 /* Create a default value range. */
258 vr_value
[ver
] = vr
= xmalloc (sizeof (*vr
));
259 memset (vr
, 0, sizeof (*vr
));
261 /* Allocate an equivalence set. */
262 vr
->equiv
= BITMAP_ALLOC (NULL
);
264 /* If VAR is a default definition, the variable can take any value
266 sym
= SSA_NAME_VAR (var
);
267 if (var
== default_def (sym
))
269 /* Try to use the "nonnull" attribute to create ~[0, 0]
270 anti-ranges for pointers. Note that this is only valid with
271 default definitions of PARM_DECLs. */
272 if (TREE_CODE (sym
) == PARM_DECL
273 && POINTER_TYPE_P (TREE_TYPE (sym
))
274 && nonnull_arg_p (sym
))
275 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
277 set_value_range_to_varying (vr
);
284 /* Update the value range and equivalence set for variable VAR to
285 NEW_VR. Return true if NEW_VR is different from VAR's previous
288 NOTE: This function assumes that NEW_VR is a temporary value range
289 object created for the sole purpose of updating VAR's range. The
290 storage used by the equivalence set from NEW_VR will be freed by
291 this function. Do not call update_value_range when NEW_VR
292 is the range object associated with another SSA name. */
295 update_value_range (tree var
, value_range_t
*new_vr
)
297 value_range_t
*old_vr
;
300 /* Update the value range, if necessary. */
301 old_vr
= get_value_range (var
);
302 is_new
= old_vr
->type
!= new_vr
->type
303 || old_vr
->min
!= new_vr
->min
304 || old_vr
->max
!= new_vr
->max
305 || (old_vr
->equiv
== NULL
&& new_vr
->equiv
)
306 || (old_vr
->equiv
&& new_vr
->equiv
== NULL
)
307 || (!bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
));
310 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
313 BITMAP_FREE (new_vr
->equiv
);
314 new_vr
->equiv
= NULL
;
320 /* Add VAR and VAR's equivalence set to EQUIV. */
323 add_equivalence (bitmap equiv
, tree var
)
325 unsigned ver
= SSA_NAME_VERSION (var
);
326 value_range_t
*vr
= vr_value
[ver
];
328 bitmap_set_bit (equiv
, ver
);
330 bitmap_ior_into (equiv
, vr
->equiv
);
334 /* Return true if VR is ~[0, 0]. */
337 range_is_nonnull (value_range_t
*vr
)
339 return vr
->type
== VR_ANTI_RANGE
340 && integer_zerop (vr
->min
)
341 && integer_zerop (vr
->max
);
345 /* Return true if VR is [0, 0]. */
348 range_is_null (value_range_t
*vr
)
350 return vr
->type
== VR_RANGE
351 && integer_zerop (vr
->min
)
352 && integer_zerop (vr
->max
);
356 /* Return true if value range VR involves at least one symbol. */
359 symbolic_range_p (value_range_t
*vr
)
361 return (!is_gimple_min_invariant (vr
->min
)
362 || !is_gimple_min_invariant (vr
->max
));
366 /* Like tree_expr_nonzero_p, but this function uses value ranges
370 vrp_expr_computes_nonzero (tree expr
)
372 if (tree_expr_nonzero_p (expr
))
375 /* If we have an expression of the form &X->a, then the expression
376 is nonnull if X is nonnull. */
377 if (TREE_CODE (expr
) == ADDR_EXPR
)
379 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
381 if (base
!= NULL_TREE
382 && TREE_CODE (base
) == INDIRECT_REF
383 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
385 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
386 if (range_is_nonnull (vr
))
395 /* Compare two values VAL1 and VAL2. Return
397 -2 if VAL1 and VAL2 cannot be compared at compile-time,
400 +1 if VAL1 > VAL2, and
403 This is similar to tree_int_cst_compare but supports pointer values
404 and values that cannot be compared at compile time. */
407 compare_values (tree val1
, tree val2
)
412 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
414 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
415 == POINTER_TYPE_P (TREE_TYPE (val2
)));
417 /* Do some limited symbolic comparisons. */
418 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
420 /* We can determine some comparisons against +INF and -INF even
421 if the other value is an expression. */
422 if (val1
== TYPE_MAX_VALUE (TREE_TYPE (val1
))
423 && TREE_CODE (val2
) == MINUS_EXPR
)
425 /* +INF > NAME - CST. */
428 else if (val1
== TYPE_MIN_VALUE (TREE_TYPE (val1
))
429 && TREE_CODE (val2
) == PLUS_EXPR
)
431 /* -INF < NAME + CST. */
434 else if (TREE_CODE (val1
) == MINUS_EXPR
435 && val2
== TYPE_MAX_VALUE (TREE_TYPE (val2
)))
437 /* NAME - CST < +INF. */
440 else if (TREE_CODE (val1
) == PLUS_EXPR
441 && val2
== TYPE_MIN_VALUE (TREE_TYPE (val2
)))
443 /* NAME + CST > -INF. */
448 if ((TREE_CODE (val1
) == SSA_NAME
449 || TREE_CODE (val1
) == PLUS_EXPR
450 || TREE_CODE (val1
) == MINUS_EXPR
)
451 && (TREE_CODE (val2
) == SSA_NAME
452 || TREE_CODE (val2
) == PLUS_EXPR
453 || TREE_CODE (val2
) == MINUS_EXPR
))
457 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
458 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
459 same name, return -2. */
460 if (TREE_CODE (val1
) == SSA_NAME
)
467 n1
= TREE_OPERAND (val1
, 0);
468 c1
= TREE_OPERAND (val1
, 1);
471 if (TREE_CODE (val2
) == SSA_NAME
)
478 n2
= TREE_OPERAND (val2
, 0);
479 c2
= TREE_OPERAND (val2
, 1);
482 /* Both values must use the same name. */
486 if (TREE_CODE (val1
) == SSA_NAME
)
488 if (TREE_CODE (val2
) == SSA_NAME
)
491 else if (TREE_CODE (val2
) == PLUS_EXPR
)
492 /* NAME < NAME + CST */
494 else if (TREE_CODE (val2
) == MINUS_EXPR
)
495 /* NAME > NAME - CST */
498 else if (TREE_CODE (val1
) == PLUS_EXPR
)
500 if (TREE_CODE (val2
) == SSA_NAME
)
501 /* NAME + CST > NAME */
503 else if (TREE_CODE (val2
) == PLUS_EXPR
)
504 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
505 return compare_values (c1
, c2
);
506 else if (TREE_CODE (val2
) == MINUS_EXPR
)
507 /* NAME + CST1 > NAME - CST2 */
510 else if (TREE_CODE (val1
) == MINUS_EXPR
)
512 if (TREE_CODE (val2
) == SSA_NAME
)
513 /* NAME - CST < NAME */
515 else if (TREE_CODE (val2
) == PLUS_EXPR
)
516 /* NAME - CST1 < NAME + CST2 */
518 else if (TREE_CODE (val2
) == MINUS_EXPR
)
519 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
520 C1 and C2 are swapped in the call to compare_values. */
521 return compare_values (c2
, c1
);
527 /* We cannot compare non-constants. */
528 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
531 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
533 /* We cannot compare overflowed values. */
534 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
537 return tree_int_cst_compare (val1
, val2
);
543 /* First see if VAL1 and VAL2 are not the same. */
544 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
547 /* If VAL1 is a lower address than VAL2, return -1. */
548 t
= fold_binary (LT_EXPR
, boolean_type_node
, val1
, val2
);
549 if (t
== boolean_true_node
)
552 /* If VAL1 is a higher address than VAL2, return +1. */
553 t
= fold_binary (GT_EXPR
, boolean_type_node
, val1
, val2
);
554 if (t
== boolean_true_node
)
557 /* If VAL1 is different than VAL2, return +2. */
558 t
= fold_binary (NE_EXPR
, boolean_type_node
, val1
, val2
);
559 if (t
== boolean_true_node
)
567 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
568 0 if VAL is not inside VR,
569 -2 if we cannot tell either way.
571 FIXME, the current semantics of this functions are a bit quirky
572 when taken in the context of VRP. In here we do not care
573 about VR's type. If VR is the anti-range ~[3, 5] the call
574 value_inside_range (4, VR) will return 1.
576 This is counter-intuitive in a strict sense, but the callers
577 currently expect this. They are calling the function
578 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
579 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
582 This also applies to value_ranges_intersect_p and
583 range_includes_zero_p. The semantics of VR_RANGE and
584 VR_ANTI_RANGE should be encoded here, but that also means
585 adapting the users of these functions to the new semantics. */
588 value_inside_range (tree val
, value_range_t
*vr
)
592 cmp1
= compare_values (val
, vr
->min
);
593 if (cmp1
== -2 || cmp1
== 2)
596 cmp2
= compare_values (val
, vr
->max
);
597 if (cmp2
== -2 || cmp2
== 2)
600 return (cmp1
== 0 || cmp1
== 1) && (cmp2
== -1 || cmp2
== 0);
604 /* Return true if value ranges VR0 and VR1 have a non-empty
608 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
610 return (value_inside_range (vr1
->min
, vr0
) == 1
611 || value_inside_range (vr1
->max
, vr0
) == 1
612 || value_inside_range (vr0
->min
, vr1
) == 1
613 || value_inside_range (vr0
->max
, vr1
) == 1);
617 /* Return true if VR includes the value zero, false otherwise. FIXME,
618 currently this will return false for an anti-range like ~[-4, 3].
619 This will be wrong when the semantics of value_inside_range are
620 modified (currently the users of this function expect these
624 range_includes_zero_p (value_range_t
*vr
)
628 gcc_assert (vr
->type
!= VR_UNDEFINED
629 && vr
->type
!= VR_VARYING
630 && !symbolic_range_p (vr
));
632 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
633 return (value_inside_range (zero
, vr
) == 1);
637 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
638 initially consider X_i and Y_j equivalent, so the equivalence set
639 of Y_j is added to the equivalence set of X_i. However, it is
640 possible to have a chain of ASSERT_EXPRs whose predicates are
641 actually incompatible. This is usually the result of nesting of
642 contradictory if-then-else statements. For instance, in PR 24670:
644 count_4 has range [-INF, 63]
648 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
651 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
657 Notice that 'if (count_19 > 63)' is trivially false and will be
658 folded out at the end. However, during propagation, the flowgraph
659 is not cleaned up and so, VRP will evaluate predicates more
660 predicates than necessary, so it must support these
661 inconsistencies. The problem here is that because of the chaining
662 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
663 Since count_4 has an incompatible range, we ICE when evaluating the
664 ranges in the equivalency set. So, we need to remove count_4 from
668 fix_equivalence_set (value_range_t
*vr_p
)
672 bitmap e
= vr_p
->equiv
;
673 bitmap to_remove
= BITMAP_ALLOC (NULL
);
675 /* Only detect inconsistencies on numeric ranges. */
676 if (vr_p
->type
== VR_VARYING
677 || vr_p
->type
== VR_UNDEFINED
678 || symbolic_range_p (vr_p
))
681 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
683 value_range_t
*equiv_vr
= vr_value
[i
];
685 if (equiv_vr
->type
== VR_VARYING
686 || equiv_vr
->type
== VR_UNDEFINED
687 || symbolic_range_p (equiv_vr
))
690 if (equiv_vr
->type
== VR_RANGE
691 && vr_p
->type
== VR_RANGE
692 && !value_ranges_intersect_p (vr_p
, equiv_vr
))
693 bitmap_set_bit (to_remove
, i
);
694 else if ((equiv_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
695 || (equiv_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
697 /* A range and an anti-range have an empty intersection if
698 their end points are the same. FIXME,
699 value_ranges_intersect_p should handle this
701 if (compare_values (equiv_vr
->min
, vr_p
->min
) == 0
702 && compare_values (equiv_vr
->max
, vr_p
->max
) == 0)
703 bitmap_set_bit (to_remove
, i
);
707 bitmap_and_compl_into (vr_p
->equiv
, to_remove
);
708 BITMAP_FREE (to_remove
);
712 /* Extract value range information from an ASSERT_EXPR EXPR and store
716 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
718 tree var
, cond
, limit
, min
, max
, type
;
719 value_range_t
*var_vr
, *limit_vr
;
720 enum tree_code cond_code
;
722 var
= ASSERT_EXPR_VAR (expr
);
723 cond
= ASSERT_EXPR_COND (expr
);
725 gcc_assert (COMPARISON_CLASS_P (cond
));
727 /* Find VAR in the ASSERT_EXPR conditional. */
728 if (var
== TREE_OPERAND (cond
, 0))
730 /* If the predicate is of the form VAR COMP LIMIT, then we just
731 take LIMIT from the RHS and use the same comparison code. */
732 limit
= TREE_OPERAND (cond
, 1);
733 cond_code
= TREE_CODE (cond
);
737 /* If the predicate is of the form LIMIT COMP VAR, then we need
738 to flip around the comparison code to create the proper range
740 limit
= TREE_OPERAND (cond
, 0);
741 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
744 type
= TREE_TYPE (limit
);
745 gcc_assert (limit
!= var
);
747 /* For pointer arithmetic, we only keep track of pointer equality
749 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
751 set_value_range_to_varying (vr_p
);
755 /* If LIMIT is another SSA name and LIMIT has a range of its own,
756 try to use LIMIT's range to avoid creating symbolic ranges
758 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
760 /* LIMIT's range is only interesting if it has any useful information. */
762 && (limit_vr
->type
== VR_UNDEFINED
763 || limit_vr
->type
== VR_VARYING
764 || symbolic_range_p (limit_vr
)))
767 /* Special handling for integral types with super-types. Some FEs
768 construct integral types derived from other types and restrict
769 the range of values these new types may take.
771 It may happen that LIMIT is actually smaller than TYPE's minimum
772 value. For instance, the Ada FE is generating code like this
775 D.1480_32 = nam_30 - 300000361;
776 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
778 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
780 All the names are of type types__name_id___XDLU_300000000__399999999
781 which has min == 300000000 and max == 399999999. This means that
782 the ASSERT_EXPR would try to create the range [3000000, 1] which
785 The fact that the type specifies MIN and MAX values does not
786 automatically mean that every variable of that type will always
787 be within that range, so the predicate may well be true at run
788 time. If we had symbolic -INF and +INF values, we could
789 represent this range, but we currently represent -INF and +INF
790 using the type's min and max values.
792 So, the only sensible thing we can do for now is set the
793 resulting range to VR_VARYING. TODO, would having symbolic -INF
794 and +INF values be worth the trouble? */
795 if (TREE_CODE (limit
) != SSA_NAME
796 && INTEGRAL_TYPE_P (type
)
799 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
801 tree type_min
= TYPE_MIN_VALUE (type
);
802 int cmp
= compare_values (limit
, type_min
);
804 /* For < or <= comparisons, if LIMIT is smaller than
805 TYPE_MIN, set the range to VR_VARYING. */
806 if (cmp
== -1 || cmp
== 0)
808 set_value_range_to_varying (vr_p
);
812 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
814 tree type_max
= TYPE_MIN_VALUE (type
);
815 int cmp
= compare_values (limit
, type_max
);
817 /* For > or >= comparisons, if LIMIT is bigger than
818 TYPE_MAX, set the range to VR_VARYING. */
819 if (cmp
== 1 || cmp
== 0)
821 set_value_range_to_varying (vr_p
);
827 /* Initially, the new range has the same set of equivalences of
828 VAR's range. This will be revised before returning the final
829 value. Since assertions may be chained via mutually exclusive
830 predicates, we will need to trim the set of equivalences before
832 gcc_assert (vr_p
->equiv
== NULL
);
833 vr_p
->equiv
= BITMAP_ALLOC (NULL
);
834 add_equivalence (vr_p
->equiv
, var
);
836 /* Extract a new range based on the asserted comparison for VAR and
837 LIMIT's value range. Notice that if LIMIT has an anti-range, we
838 will only use it for equality comparisons (EQ_EXPR). For any
839 other kind of assertion, we cannot derive a range from LIMIT's
840 anti-range that can be used to describe the new range. For
841 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
842 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
843 no single range for x_2 that could describe LE_EXPR, so we might
844 as well build the range [b_4, +INF] for it. */
845 if (cond_code
== EQ_EXPR
)
847 enum value_range_type range_type
;
851 range_type
= limit_vr
->type
;
857 range_type
= VR_RANGE
;
862 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
864 /* When asserting the equality VAR == LIMIT and LIMIT is another
865 SSA name, the new range will also inherit the equivalence set
867 if (TREE_CODE (limit
) == SSA_NAME
)
868 add_equivalence (vr_p
->equiv
, limit
);
870 else if (cond_code
== NE_EXPR
)
872 /* As described above, when LIMIT's range is an anti-range and
873 this assertion is an inequality (NE_EXPR), then we cannot
874 derive anything from the anti-range. For instance, if
875 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
876 not imply that VAR's range is [0, 0]. So, in the case of
877 anti-ranges, we just assert the inequality using LIMIT and
880 If LIMIT_VR is a range, we can only use it to build a new
881 anti-range if LIMIT_VR is a single-valued range. For
882 instance, if LIMIT_VR is [0, 1], the predicate
883 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
884 Rather, it means that for value 0 VAR should be ~[0, 0]
885 and for value 1, VAR should be ~[1, 1]. We cannot
886 represent these ranges.
888 The only situation in which we can build a valid
889 anti-range is when LIMIT_VR is a single-valued range
890 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
891 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
893 && limit_vr
->type
== VR_RANGE
894 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
901 /* In any other case, we cannot use LIMIT's range to build a
906 /* If MIN and MAX cover the whole range for their type, then
907 just use the original LIMIT. */
908 if (INTEGRAL_TYPE_P (type
)
909 && min
== TYPE_MIN_VALUE (type
)
910 && max
== TYPE_MAX_VALUE (type
))
913 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
915 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
917 min
= TYPE_MIN_VALUE (type
);
919 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
923 /* If LIMIT_VR is of the form [N1, N2], we need to build the
924 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
929 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
930 if (cond_code
== LT_EXPR
)
932 tree one
= build_int_cst (type
, 1);
933 max
= fold_build2 (MINUS_EXPR
, type
, max
, one
);
936 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
938 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
940 max
= TYPE_MAX_VALUE (type
);
942 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
946 /* If LIMIT_VR is of the form [N1, N2], we need to build the
947 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
952 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
953 if (cond_code
== GT_EXPR
)
955 tree one
= build_int_cst (type
, 1);
956 min
= fold_build2 (PLUS_EXPR
, type
, min
, one
);
959 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
964 /* If VAR already had a known range, it may happen that the new
965 range we have computed and VAR's range are not compatible. For
969 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
971 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
973 While the above comes from a faulty program, it will cause an ICE
974 later because p_8 and p_6 will have incompatible ranges and at
975 the same time will be considered equivalent. A similar situation
979 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
981 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
983 Again i_6 and i_7 will have incompatible ranges. It would be
984 pointless to try and do anything with i_7's range because
985 anything dominated by 'if (i_5 < 5)' will be optimized away.
986 Note, due to the wa in which simulation proceeds, the statement
987 i_7 = ASSERT_EXPR <...> we would never be visited because the
988 conditional 'if (i_5 < 5)' always evaluates to false. However,
989 this extra check does not hurt and may protect against future
990 changes to VRP that may get into a situation similar to the
991 NULL pointer dereference example.
993 Note that these compatibility tests are only needed when dealing
994 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
995 are both anti-ranges, they will always be compatible, because two
996 anti-ranges will always have a non-empty intersection. */
998 var_vr
= get_value_range (var
);
1000 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1001 ranges or anti-ranges. */
1002 if (vr_p
->type
== VR_VARYING
1003 || vr_p
->type
== VR_UNDEFINED
1004 || var_vr
->type
== VR_VARYING
1005 || var_vr
->type
== VR_UNDEFINED
1006 || symbolic_range_p (vr_p
)
1007 || symbolic_range_p (var_vr
))
1010 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1012 /* If the two ranges have a non-empty intersection, we can
1013 refine the resulting range. Since the assert expression
1014 creates an equivalency and at the same time it asserts a
1015 predicate, we can take the intersection of the two ranges to
1016 get better precision. */
1017 if (value_ranges_intersect_p (var_vr
, vr_p
))
1019 /* Use the larger of the two minimums. */
1020 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1025 /* Use the smaller of the two maximums. */
1026 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1031 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1035 /* The two ranges do not intersect, set the new range to
1036 VARYING, because we will not be able to do anything
1037 meaningful with it. */
1038 set_value_range_to_varying (vr_p
);
1041 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1042 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1044 /* A range and an anti-range will cancel each other only if
1045 their ends are the same. For instance, in the example above,
1046 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1047 so VR_P should be set to VR_VARYING. */
1048 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1049 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1050 set_value_range_to_varying (vr_p
);
1053 /* Remove names from the equivalence set that have ranges
1054 incompatible with VR_P. */
1056 fix_equivalence_set (vr_p
);
1060 /* Extract range information from SSA name VAR and store it in VR. If
1061 VAR has an interesting range, use it. Otherwise, create the
1062 range [VAR, VAR] and return it. This is useful in situations where
1063 we may have conditionals testing values of VARYING names. For
1070 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1074 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1076 value_range_t
*var_vr
= get_value_range (var
);
1078 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1079 copy_value_range (vr
, var_vr
);
1081 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1083 add_equivalence (vr
->equiv
, var
);
1087 /* Wrapper around int_const_binop. If the operation overflows and we
1088 are not using wrapping arithmetic, then adjust the result to be
1089 -INF or +INF depending on CODE, VAL1 and VAL2. */
1092 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1097 return int_const_binop (code
, val1
, val2
, 0);
1099 /* If we are not using wrapping arithmetic, operate symbolically
1100 on -INF and +INF. */
1101 res
= int_const_binop (code
, val1
, val2
, 0);
1103 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1105 int checkz
= compare_values (res
, val1
);
1107 /* Ensure that res = val1 + val2 >= val1
1108 or that res = val1 - val2 <= val1. */
1109 if ((code
== PLUS_EXPR
&& !(checkz
== 1 || checkz
== 0))
1110 || (code
== MINUS_EXPR
&& !(checkz
== 0 || checkz
== -1)))
1112 res
= copy_node (res
);
1113 TREE_OVERFLOW (res
) = 1;
1116 /* If the operation overflowed but neither VAL1 nor VAL2 are
1117 overflown, return -INF or +INF depending on the operation
1118 and the combination of signs of the operands. */
1119 else if (TREE_OVERFLOW (res
)
1120 && !TREE_OVERFLOW (val1
)
1121 && !TREE_OVERFLOW (val2
))
1123 int sgn1
= tree_int_cst_sgn (val1
);
1124 int sgn2
= tree_int_cst_sgn (val2
);
1126 /* Notice that we only need to handle the restricted set of
1127 operations handled by extract_range_from_binary_expr.
1128 Among them, only multiplication, addition and subtraction
1129 can yield overflow without overflown operands because we
1130 are working with integral types only... except in the
1131 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1132 for division too. */
1134 /* For multiplication, the sign of the overflow is given
1135 by the comparison of the signs of the operands. */
1136 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1137 /* For addition, the operands must be of the same sign
1138 to yield an overflow. Its sign is therefore that
1139 of one of the operands, for example the first. */
1140 || (code
== PLUS_EXPR
&& sgn1
> 0)
1141 /* For subtraction, the operands must be of different
1142 signs to yield an overflow. Its sign is therefore
1143 that of the first operand or the opposite of that
1144 of the second operand. A first operand of 0 counts
1145 as positive here, for the corner case 0 - (-INF),
1146 which overflows, but must yield +INF. */
1147 || (code
== MINUS_EXPR
&& sgn1
>= 0)
1148 /* For division, the only case is -INF / -1 = +INF. */
1149 || code
== TRUNC_DIV_EXPR
1150 || code
== FLOOR_DIV_EXPR
1151 || code
== CEIL_DIV_EXPR
1152 || code
== EXACT_DIV_EXPR
1153 || code
== ROUND_DIV_EXPR
)
1154 return TYPE_MAX_VALUE (TREE_TYPE (res
));
1156 return TYPE_MIN_VALUE (TREE_TYPE (res
));
1163 /* Extract range information from a binary expression EXPR based on
1164 the ranges of each of its operands and the expression code. */
1167 extract_range_from_binary_expr (value_range_t
*vr
, tree expr
)
1169 enum tree_code code
= TREE_CODE (expr
);
1170 enum value_range_type type
;
1171 tree op0
, op1
, min
, max
;
1173 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1174 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1176 /* Not all binary expressions can be applied to ranges in a
1177 meaningful way. Handle only arithmetic operations. */
1178 if (code
!= PLUS_EXPR
1179 && code
!= MINUS_EXPR
1180 && code
!= MULT_EXPR
1181 && code
!= TRUNC_DIV_EXPR
1182 && code
!= FLOOR_DIV_EXPR
1183 && code
!= CEIL_DIV_EXPR
1184 && code
!= EXACT_DIV_EXPR
1185 && code
!= ROUND_DIV_EXPR
1188 && code
!= BIT_AND_EXPR
1189 && code
!= TRUTH_ANDIF_EXPR
1190 && code
!= TRUTH_ORIF_EXPR
1191 && code
!= TRUTH_AND_EXPR
1192 && code
!= TRUTH_OR_EXPR
1193 && code
!= TRUTH_XOR_EXPR
)
1195 set_value_range_to_varying (vr
);
1199 /* Get value ranges for each operand. For constant operands, create
1200 a new value range with the operand to simplify processing. */
1201 op0
= TREE_OPERAND (expr
, 0);
1202 if (TREE_CODE (op0
) == SSA_NAME
)
1203 vr0
= *(get_value_range (op0
));
1204 else if (is_gimple_min_invariant (op0
))
1205 set_value_range (&vr0
, VR_RANGE
, op0
, op0
, NULL
);
1207 set_value_range_to_varying (&vr0
);
1209 op1
= TREE_OPERAND (expr
, 1);
1210 if (TREE_CODE (op1
) == SSA_NAME
)
1211 vr1
= *(get_value_range (op1
));
1212 else if (is_gimple_min_invariant (op1
))
1213 set_value_range (&vr1
, VR_RANGE
, op1
, op1
, NULL
);
1215 set_value_range_to_varying (&vr1
);
1217 /* If either range is UNDEFINED, so is the result. */
1218 if (vr0
.type
== VR_UNDEFINED
|| vr1
.type
== VR_UNDEFINED
)
1220 set_value_range_to_undefined (vr
);
1224 /* The type of the resulting value range defaults to VR0.TYPE. */
1227 /* Refuse to operate on VARYING ranges, ranges of different kinds
1228 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1229 because we may be able to derive a useful range even if one of
1230 the operands is VR_VARYING or symbolic range. TODO, we may be
1231 able to derive anti-ranges in some cases. */
1232 if (code
!= BIT_AND_EXPR
1233 && (vr0
.type
== VR_VARYING
1234 || vr1
.type
== VR_VARYING
1235 || vr0
.type
!= vr1
.type
1236 || symbolic_range_p (&vr0
)
1237 || symbolic_range_p (&vr1
)))
1239 set_value_range_to_varying (vr
);
1243 /* Now evaluate the expression to determine the new range. */
1244 if (POINTER_TYPE_P (TREE_TYPE (expr
))
1245 || POINTER_TYPE_P (TREE_TYPE (op0
))
1246 || POINTER_TYPE_P (TREE_TYPE (op1
)))
1248 /* For pointer types, we are really only interested in asserting
1249 whether the expression evaluates to non-NULL. FIXME, we used
1250 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1251 ivopts is generating expressions with pointer multiplication
1253 if (code
== PLUS_EXPR
)
1255 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
1256 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1257 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
1258 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1260 set_value_range_to_varying (vr
);
1264 /* Subtracting from a pointer, may yield 0, so just drop the
1265 resulting range to varying. */
1266 set_value_range_to_varying (vr
);
1272 /* For integer ranges, apply the operation to each end of the
1273 range and see what we end up with. */
1274 if (code
== TRUTH_ANDIF_EXPR
1275 || code
== TRUTH_ORIF_EXPR
1276 || code
== TRUTH_AND_EXPR
1277 || code
== TRUTH_OR_EXPR
1278 || code
== TRUTH_XOR_EXPR
)
1280 /* Boolean expressions cannot be folded with int_const_binop. */
1281 min
= fold_binary (code
, TREE_TYPE (expr
), vr0
.min
, vr1
.min
);
1282 max
= fold_binary (code
, TREE_TYPE (expr
), vr0
.max
, vr1
.max
);
1284 else if (code
== PLUS_EXPR
1286 || code
== MAX_EXPR
)
1288 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1289 VR_VARYING. It would take more effort to compute a precise
1290 range for such a case. For example, if we have op0 == 1 and
1291 op1 == -1 with their ranges both being ~[0,0], we would have
1292 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1293 Note that we are guaranteed to have vr0.type == vr1.type at
1295 if (code
== PLUS_EXPR
&& vr0
.type
== VR_ANTI_RANGE
)
1297 set_value_range_to_varying (vr
);
1301 /* For operations that make the resulting range directly
1302 proportional to the original ranges, apply the operation to
1303 the same end of each range. */
1304 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1305 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
1307 else if (code
== MULT_EXPR
1308 || code
== TRUNC_DIV_EXPR
1309 || code
== FLOOR_DIV_EXPR
1310 || code
== CEIL_DIV_EXPR
1311 || code
== EXACT_DIV_EXPR
1312 || code
== ROUND_DIV_EXPR
)
1317 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1318 drop to VR_VARYING. It would take more effort to compute a
1319 precise range for such a case. For example, if we have
1320 op0 == 65536 and op1 == 65536 with their ranges both being
1321 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1322 we cannot claim that the product is in ~[0,0]. Note that we
1323 are guaranteed to have vr0.type == vr1.type at this
1325 if (code
== MULT_EXPR
1326 && vr0
.type
== VR_ANTI_RANGE
1327 && (flag_wrapv
|| TYPE_UNSIGNED (TREE_TYPE (op0
))))
1329 set_value_range_to_varying (vr
);
1333 /* Multiplications and divisions are a bit tricky to handle,
1334 depending on the mix of signs we have in the two ranges, we
1335 need to operate on different values to get the minimum and
1336 maximum values for the new range. One approach is to figure
1337 out all the variations of range combinations and do the
1340 However, this involves several calls to compare_values and it
1341 is pretty convoluted. It's simpler to do the 4 operations
1342 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1343 MAX1) and then figure the smallest and largest values to form
1346 /* Divisions by zero result in a VARYING value. */
1347 if (code
!= MULT_EXPR
1348 && (vr0
.type
== VR_ANTI_RANGE
|| range_includes_zero_p (&vr1
)))
1350 set_value_range_to_varying (vr
);
1354 /* Compute the 4 cross operations. */
1355 val
[0] = vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1357 val
[1] = (vr1
.max
!= vr1
.min
)
1358 ? vrp_int_const_binop (code
, vr0
.min
, vr1
.max
)
1361 val
[2] = (vr0
.max
!= vr0
.min
)
1362 ? vrp_int_const_binop (code
, vr0
.max
, vr1
.min
)
1365 val
[3] = (vr0
.min
!= vr0
.max
&& vr1
.min
!= vr1
.max
)
1366 ? vrp_int_const_binop (code
, vr0
.max
, vr1
.max
)
1369 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1373 for (i
= 1; i
< 4; i
++)
1375 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
1380 if (TREE_OVERFLOW (val
[i
]))
1382 /* If we found an overflowed value, set MIN and MAX
1383 to it so that we set the resulting range to
1389 if (compare_values (val
[i
], min
) == -1)
1392 if (compare_values (val
[i
], max
) == 1)
1397 else if (code
== MINUS_EXPR
)
1399 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1400 VR_VARYING. It would take more effort to compute a precise
1401 range for such a case. For example, if we have op0 == 1 and
1402 op1 == 1 with their ranges both being ~[0,0], we would have
1403 op0 - op1 == 0, so we cannot claim that the difference is in
1404 ~[0,0]. Note that we are guaranteed to have
1405 vr0.type == vr1.type at this point. */
1406 if (vr0
.type
== VR_ANTI_RANGE
)
1408 set_value_range_to_varying (vr
);
1412 /* For MINUS_EXPR, apply the operation to the opposite ends of
1414 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
1415 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
1417 else if (code
== BIT_AND_EXPR
)
1419 if (vr0
.type
== VR_RANGE
1420 && vr0
.min
== vr0
.max
1421 && tree_expr_nonnegative_p (vr0
.max
)
1422 && TREE_CODE (vr0
.max
) == INTEGER_CST
)
1424 min
= build_int_cst (TREE_TYPE (expr
), 0);
1427 else if (vr1
.type
== VR_RANGE
1428 && vr1
.min
== vr1
.max
1429 && tree_expr_nonnegative_p (vr1
.max
)
1430 && TREE_CODE (vr1
.max
) == INTEGER_CST
)
1433 min
= build_int_cst (TREE_TYPE (expr
), 0);
1438 set_value_range_to_varying (vr
);
1445 /* If either MIN or MAX overflowed, then set the resulting range to
1447 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
1449 set_value_range_to_varying (vr
);
1453 cmp
= compare_values (min
, max
);
1454 if (cmp
== -2 || cmp
== 1)
1456 /* If the new range has its limits swapped around (MIN > MAX),
1457 then the operation caused one of them to wrap around, mark
1458 the new range VARYING. */
1459 set_value_range_to_varying (vr
);
1462 set_value_range (vr
, type
, min
, max
, NULL
);
1466 /* Extract range information from a unary expression EXPR based on
1467 the range of its operand and the expression code. */
1470 extract_range_from_unary_expr (value_range_t
*vr
, tree expr
)
1472 enum tree_code code
= TREE_CODE (expr
);
1475 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1477 /* Refuse to operate on certain unary expressions for which we
1478 cannot easily determine a resulting range. */
1479 if (code
== FIX_TRUNC_EXPR
1480 || code
== FIX_CEIL_EXPR
1481 || code
== FIX_FLOOR_EXPR
1482 || code
== FIX_ROUND_EXPR
1483 || code
== FLOAT_EXPR
1484 || code
== BIT_NOT_EXPR
1485 || code
== NON_LVALUE_EXPR
1486 || code
== CONJ_EXPR
)
1488 set_value_range_to_varying (vr
);
1492 /* Get value ranges for the operand. For constant operands, create
1493 a new value range with the operand to simplify processing. */
1494 op0
= TREE_OPERAND (expr
, 0);
1495 if (TREE_CODE (op0
) == SSA_NAME
)
1496 vr0
= *(get_value_range (op0
));
1497 else if (is_gimple_min_invariant (op0
))
1498 set_value_range (&vr0
, VR_RANGE
, op0
, op0
, NULL
);
1500 set_value_range_to_varying (&vr0
);
1502 /* If VR0 is UNDEFINED, so is the result. */
1503 if (vr0
.type
== VR_UNDEFINED
)
1505 set_value_range_to_undefined (vr
);
1509 /* Refuse to operate on varying and symbolic ranges. Also, if the
1510 operand is neither a pointer nor an integral type, set the
1511 resulting range to VARYING. TODO, in some cases we may be able
1512 to derive anti-ranges (like nonzero values). */
1513 if (vr0
.type
== VR_VARYING
1514 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
1515 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
1516 || symbolic_range_p (&vr0
))
1518 set_value_range_to_varying (vr
);
1522 /* If the expression involves pointers, we are only interested in
1523 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1524 if (POINTER_TYPE_P (TREE_TYPE (expr
)) || POINTER_TYPE_P (TREE_TYPE (op0
)))
1526 if (range_is_nonnull (&vr0
) || tree_expr_nonzero_p (expr
))
1527 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1528 else if (range_is_null (&vr0
))
1529 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1531 set_value_range_to_varying (vr
);
1536 /* Handle unary expressions on integer ranges. */
1537 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
)
1539 tree inner_type
= TREE_TYPE (op0
);
1540 tree outer_type
= TREE_TYPE (expr
);
1542 /* If VR0 represents a simple range, then try to convert
1543 the min and max values for the range to the same type
1544 as OUTER_TYPE. If the results compare equal to VR0's
1545 min and max values and the new min is still less than
1546 or equal to the new max, then we can safely use the newly
1547 computed range for EXPR. This allows us to compute
1548 accurate ranges through many casts. */
1549 if (vr0
.type
== VR_RANGE
)
1551 tree new_min
, new_max
;
1553 /* Convert VR0's min/max to OUTER_TYPE. */
1554 new_min
= fold_convert (outer_type
, vr0
.min
);
1555 new_max
= fold_convert (outer_type
, vr0
.max
);
1557 /* Verify the new min/max values are gimple values and
1558 that they compare equal to VR0's min/max values. */
1559 if (is_gimple_val (new_min
)
1560 && is_gimple_val (new_max
)
1561 && tree_int_cst_equal (new_min
, vr0
.min
)
1562 && tree_int_cst_equal (new_max
, vr0
.max
)
1563 && compare_values (new_min
, new_max
) <= 0
1564 && compare_values (new_min
, new_max
) >= -1)
1566 set_value_range (vr
, VR_RANGE
, new_min
, new_max
, vr
->equiv
);
1571 /* When converting types of different sizes, set the result to
1572 VARYING. Things like sign extensions and precision loss may
1573 change the range. For instance, if x_3 is of type 'long long
1574 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1575 is impossible to know at compile time whether y_5 will be
1577 if (TYPE_SIZE (inner_type
) != TYPE_SIZE (outer_type
)
1578 || TYPE_PRECISION (inner_type
) != TYPE_PRECISION (outer_type
))
1580 set_value_range_to_varying (vr
);
1585 /* Apply the operation to each end of the range and see what we end
1587 if (code
== NEGATE_EXPR
1588 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
1590 /* NEGATE_EXPR flips the range around. */
1591 min
= (vr0
.max
== TYPE_MAX_VALUE (TREE_TYPE (expr
)) && !flag_wrapv
)
1592 ? TYPE_MIN_VALUE (TREE_TYPE (expr
))
1593 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1595 max
= (vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)) && !flag_wrapv
)
1596 ? TYPE_MAX_VALUE (TREE_TYPE (expr
))
1597 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1599 else if (code
== ABS_EXPR
1600 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
1602 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1605 && ((vr0
.type
== VR_RANGE
1606 && vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)))
1607 || (vr0
.type
== VR_ANTI_RANGE
1608 && vr0
.min
!= TYPE_MIN_VALUE (TREE_TYPE (expr
))
1609 && !range_includes_zero_p (&vr0
))))
1611 set_value_range_to_varying (vr
);
1615 /* ABS_EXPR may flip the range around, if the original range
1616 included negative values. */
1617 min
= (vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)))
1618 ? TYPE_MAX_VALUE (TREE_TYPE (expr
))
1619 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1621 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1623 cmp
= compare_values (min
, max
);
1625 /* If a VR_ANTI_RANGEs contains zero, then we have
1626 ~[-INF, min(MIN, MAX)]. */
1627 if (vr0
.type
== VR_ANTI_RANGE
)
1629 if (range_includes_zero_p (&vr0
))
1631 tree type_min_value
= TYPE_MIN_VALUE (TREE_TYPE (expr
));
1633 /* Take the lower of the two values. */
1637 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1638 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1639 flag_wrapv is set and the original anti-range doesn't include
1640 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1641 min
= (flag_wrapv
&& vr0
.min
!= type_min_value
1642 ? int_const_binop (PLUS_EXPR
,
1644 integer_one_node
, 0)
1649 /* All else has failed, so create the range [0, INF], even for
1650 flag_wrapv since TYPE_MIN_VALUE is in the original
1652 vr0
.type
= VR_RANGE
;
1653 min
= build_int_cst (TREE_TYPE (expr
), 0);
1654 max
= TYPE_MAX_VALUE (TREE_TYPE (expr
));
1658 /* If the range contains zero then we know that the minimum value in the
1659 range will be zero. */
1660 else if (range_includes_zero_p (&vr0
))
1664 min
= build_int_cst (TREE_TYPE (expr
), 0);
1668 /* If the range was reversed, swap MIN and MAX. */
1679 /* Otherwise, operate on each end of the range. */
1680 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1681 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1684 cmp
= compare_values (min
, max
);
1685 if (cmp
== -2 || cmp
== 1)
1687 /* If the new range has its limits swapped around (MIN > MAX),
1688 then the operation caused one of them to wrap around, mark
1689 the new range VARYING. */
1690 set_value_range_to_varying (vr
);
1693 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
1697 /* Extract range information from a comparison expression EXPR based
1698 on the range of its operand and the expression code. */
1701 extract_range_from_comparison (value_range_t
*vr
, tree expr
)
1703 tree val
= vrp_evaluate_conditional (expr
, false);
1706 /* Since this expression was found on the RHS of an assignment,
1707 its type may be different from _Bool. Convert VAL to EXPR's
1709 val
= fold_convert (TREE_TYPE (expr
), val
);
1710 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
1713 set_value_range_to_varying (vr
);
1717 /* Try to compute a useful range out of expression EXPR and store it
1721 extract_range_from_expr (value_range_t
*vr
, tree expr
)
1723 enum tree_code code
= TREE_CODE (expr
);
1725 if (code
== ASSERT_EXPR
)
1726 extract_range_from_assert (vr
, expr
);
1727 else if (code
== SSA_NAME
)
1728 extract_range_from_ssa_name (vr
, expr
);
1729 else if (TREE_CODE_CLASS (code
) == tcc_binary
1730 || code
== TRUTH_ANDIF_EXPR
1731 || code
== TRUTH_ORIF_EXPR
1732 || code
== TRUTH_AND_EXPR
1733 || code
== TRUTH_OR_EXPR
1734 || code
== TRUTH_XOR_EXPR
)
1735 extract_range_from_binary_expr (vr
, expr
);
1736 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
1737 extract_range_from_unary_expr (vr
, expr
);
1738 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1739 extract_range_from_comparison (vr
, expr
);
1740 else if (is_gimple_min_invariant (expr
))
1741 set_value_range (vr
, VR_RANGE
, expr
, expr
, NULL
);
1742 else if (vrp_expr_computes_nonzero (expr
))
1743 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1745 set_value_range_to_varying (vr
);
1748 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1749 would be profitable to adjust VR using scalar evolution information
1750 for VAR. If so, update VR with the new limits. */
1753 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
, tree stmt
,
1756 tree init
, step
, chrec
;
1757 bool init_is_max
, unknown_max
;
1759 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1760 better opportunities than a regular range, but I'm not sure. */
1761 if (vr
->type
== VR_ANTI_RANGE
)
1764 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
1765 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
1768 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
1769 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
1771 /* If STEP is symbolic, we can't know whether INIT will be the
1772 minimum or maximum value in the range. */
1773 if (step
== NULL_TREE
1774 || !is_gimple_min_invariant (step
))
1777 /* Do not adjust ranges when chrec may wrap. */
1778 if (scev_probably_wraps_p (chrec_type (chrec
), init
, step
, stmt
,
1779 cfg_loops
->parray
[CHREC_VARIABLE (chrec
)],
1780 &init_is_max
, &unknown_max
)
1784 if (!POINTER_TYPE_P (TREE_TYPE (init
))
1785 && (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
))
1787 /* For VARYING or UNDEFINED ranges, just about anything we get
1788 from scalar evolutions should be better. */
1790 set_value_range (vr
, VR_RANGE
, TYPE_MIN_VALUE (TREE_TYPE (init
)),
1793 set_value_range (vr
, VR_RANGE
, init
, TYPE_MAX_VALUE (TREE_TYPE (init
)),
1796 else if (vr
->type
== VR_RANGE
)
1803 /* INIT is the maximum value. If INIT is lower than VR->MAX
1804 but no smaller than VR->MIN, set VR->MAX to INIT. */
1805 if (compare_values (init
, max
) == -1)
1809 /* If we just created an invalid range with the minimum
1810 greater than the maximum, take the minimum all the
1812 if (compare_values (min
, max
) == 1)
1813 min
= TYPE_MIN_VALUE (TREE_TYPE (min
));
1818 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1819 if (compare_values (init
, min
) == 1)
1823 /* If we just created an invalid range with the minimum
1824 greater than the maximum, take the maximum all the
1826 if (compare_values (min
, max
) == 1)
1827 max
= TYPE_MAX_VALUE (TREE_TYPE (max
));
1831 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
1836 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1838 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1839 all the values in the ranges.
1841 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1843 - Return NULL_TREE if it is not always possible to determine the
1844 value of the comparison. */
1848 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
)
1850 /* VARYING or UNDEFINED ranges cannot be compared. */
1851 if (vr0
->type
== VR_VARYING
1852 || vr0
->type
== VR_UNDEFINED
1853 || vr1
->type
== VR_VARYING
1854 || vr1
->type
== VR_UNDEFINED
)
1857 /* Anti-ranges need to be handled separately. */
1858 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
1860 /* If both are anti-ranges, then we cannot compute any
1862 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
1865 /* These comparisons are never statically computable. */
1872 /* Equality can be computed only between a range and an
1873 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
1874 if (vr0
->type
== VR_RANGE
)
1876 /* To simplify processing, make VR0 the anti-range. */
1877 value_range_t
*tmp
= vr0
;
1882 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
1884 if (compare_values (vr0
->min
, vr1
->min
) == 0
1885 && compare_values (vr0
->max
, vr1
->max
) == 0)
1886 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
1891 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
1892 operands around and change the comparison code. */
1893 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
1896 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
1902 if (comp
== EQ_EXPR
)
1904 /* Equality may only be computed if both ranges represent
1905 exactly one value. */
1906 if (compare_values (vr0
->min
, vr0
->max
) == 0
1907 && compare_values (vr1
->min
, vr1
->max
) == 0)
1909 int cmp_min
= compare_values (vr0
->min
, vr1
->min
);
1910 int cmp_max
= compare_values (vr0
->max
, vr1
->max
);
1911 if (cmp_min
== 0 && cmp_max
== 0)
1912 return boolean_true_node
;
1913 else if (cmp_min
!= -2 && cmp_max
!= -2)
1914 return boolean_false_node
;
1916 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
1917 else if (compare_values (vr0
->min
, vr1
->max
) == 1
1918 || compare_values (vr1
->min
, vr0
->max
) == 1)
1919 return boolean_false_node
;
1923 else if (comp
== NE_EXPR
)
1927 /* If VR0 is completely to the left or completely to the right
1928 of VR1, they are always different. Notice that we need to
1929 make sure that both comparisons yield similar results to
1930 avoid comparing values that cannot be compared at
1932 cmp1
= compare_values (vr0
->max
, vr1
->min
);
1933 cmp2
= compare_values (vr0
->min
, vr1
->max
);
1934 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
1935 return boolean_true_node
;
1937 /* If VR0 and VR1 represent a single value and are identical,
1939 else if (compare_values (vr0
->min
, vr0
->max
) == 0
1940 && compare_values (vr1
->min
, vr1
->max
) == 0
1941 && compare_values (vr0
->min
, vr1
->min
) == 0
1942 && compare_values (vr0
->max
, vr1
->max
) == 0)
1943 return boolean_false_node
;
1945 /* Otherwise, they may or may not be different. */
1949 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
1953 /* If VR0 is to the left of VR1, return true. */
1954 tst
= compare_values (vr0
->max
, vr1
->min
);
1955 if ((comp
== LT_EXPR
&& tst
== -1)
1956 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
1957 return boolean_true_node
;
1959 /* If VR0 is to the right of VR1, return false. */
1960 tst
= compare_values (vr0
->min
, vr1
->max
);
1961 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
1962 || (comp
== LE_EXPR
&& tst
== 1))
1963 return boolean_false_node
;
1965 /* Otherwise, we don't know. */
1973 /* Given a value range VR, a value VAL and a comparison code COMP, return
1974 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
1975 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
1976 always returns false. Return NULL_TREE if it is not always
1977 possible to determine the value of the comparison. */
1980 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
)
1982 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
1985 /* Anti-ranges need to be handled separately. */
1986 if (vr
->type
== VR_ANTI_RANGE
)
1988 /* For anti-ranges, the only predicates that we can compute at
1989 compile time are equality and inequality. */
1996 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
1997 if (value_inside_range (val
, vr
) == 1)
1998 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
2003 if (comp
== EQ_EXPR
)
2005 /* EQ_EXPR may only be computed if VR represents exactly
2007 if (compare_values (vr
->min
, vr
->max
) == 0)
2009 int cmp
= compare_values (vr
->min
, val
);
2011 return boolean_true_node
;
2012 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
2013 return boolean_false_node
;
2015 else if (compare_values (val
, vr
->min
) == -1
2016 || compare_values (vr
->max
, val
) == -1)
2017 return boolean_false_node
;
2021 else if (comp
== NE_EXPR
)
2023 /* If VAL is not inside VR, then they are always different. */
2024 if (compare_values (vr
->max
, val
) == -1
2025 || compare_values (vr
->min
, val
) == 1)
2026 return boolean_true_node
;
2028 /* If VR represents exactly one value equal to VAL, then return
2030 if (compare_values (vr
->min
, vr
->max
) == 0
2031 && compare_values (vr
->min
, val
) == 0)
2032 return boolean_false_node
;
2034 /* Otherwise, they may or may not be different. */
2037 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
2041 /* If VR is to the left of VAL, return true. */
2042 tst
= compare_values (vr
->max
, val
);
2043 if ((comp
== LT_EXPR
&& tst
== -1)
2044 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
2045 return boolean_true_node
;
2047 /* If VR is to the right of VAL, return false. */
2048 tst
= compare_values (vr
->min
, val
);
2049 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
2050 || (comp
== LE_EXPR
&& tst
== 1))
2051 return boolean_false_node
;
2053 /* Otherwise, we don't know. */
2056 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
2060 /* If VR is to the right of VAL, return true. */
2061 tst
= compare_values (vr
->min
, val
);
2062 if ((comp
== GT_EXPR
&& tst
== 1)
2063 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
2064 return boolean_true_node
;
2066 /* If VR is to the left of VAL, return false. */
2067 tst
= compare_values (vr
->max
, val
);
2068 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
2069 || (comp
== GE_EXPR
&& tst
== -1))
2070 return boolean_false_node
;
2072 /* Otherwise, we don't know. */
2080 /* Debugging dumps. */
2082 void dump_value_range (FILE *, value_range_t
*);
2083 void debug_value_range (value_range_t
*);
2084 void dump_all_value_ranges (FILE *);
2085 void debug_all_value_ranges (void);
2086 void dump_vr_equiv (FILE *, bitmap
);
2087 void debug_vr_equiv (bitmap
);
2090 /* Dump value range VR to FILE. */
2093 dump_value_range (FILE *file
, value_range_t
*vr
)
2096 fprintf (file
, "[]");
2097 else if (vr
->type
== VR_UNDEFINED
)
2098 fprintf (file
, "UNDEFINED");
2099 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
2101 tree type
= TREE_TYPE (vr
->min
);
2103 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
2105 if (INTEGRAL_TYPE_P (type
)
2106 && !TYPE_UNSIGNED (type
)
2107 && vr
->min
== TYPE_MIN_VALUE (type
))
2108 fprintf (file
, "-INF");
2110 print_generic_expr (file
, vr
->min
, 0);
2112 fprintf (file
, ", ");
2114 if (INTEGRAL_TYPE_P (type
)
2115 && vr
->max
== TYPE_MAX_VALUE (type
))
2116 fprintf (file
, "+INF");
2118 print_generic_expr (file
, vr
->max
, 0);
2120 fprintf (file
, "]");
2127 fprintf (file
, " EQUIVALENCES: { ");
2129 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
2131 print_generic_expr (file
, ssa_name (i
), 0);
2132 fprintf (file
, " ");
2136 fprintf (file
, "} (%u elements)", c
);
2139 else if (vr
->type
== VR_VARYING
)
2140 fprintf (file
, "VARYING");
2142 fprintf (file
, "INVALID RANGE");
2146 /* Dump value range VR to stderr. */
2149 debug_value_range (value_range_t
*vr
)
2151 dump_value_range (stderr
, vr
);
2155 /* Dump value ranges of all SSA_NAMEs to FILE. */
2158 dump_all_value_ranges (FILE *file
)
2162 for (i
= 0; i
< num_ssa_names
; i
++)
2166 print_generic_expr (file
, ssa_name (i
), 0);
2167 fprintf (file
, ": ");
2168 dump_value_range (file
, vr_value
[i
]);
2169 fprintf (file
, "\n");
2173 fprintf (file
, "\n");
2177 /* Dump all value ranges to stderr. */
2180 debug_all_value_ranges (void)
2182 dump_all_value_ranges (stderr
);
2186 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2187 create a new SSA name N and return the assertion assignment
2188 'V = ASSERT_EXPR <V, V OP W>'. */
2191 build_assert_expr_for (tree cond
, tree v
)
2195 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
2196 n
= duplicate_ssa_name (v
, NULL_TREE
);
2198 if (COMPARISON_CLASS_P (cond
))
2200 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
2201 assertion
= build2 (MODIFY_EXPR
, TREE_TYPE (v
), n
, a
);
2203 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
2205 /* Given !V, build the assignment N = false. */
2206 tree op0
= TREE_OPERAND (cond
, 0);
2207 gcc_assert (op0
== v
);
2208 assertion
= build2 (MODIFY_EXPR
, TREE_TYPE (v
), n
, boolean_false_node
);
2210 else if (TREE_CODE (cond
) == SSA_NAME
)
2212 /* Given V, build the assignment N = true. */
2213 gcc_assert (v
== cond
);
2214 assertion
= build2 (MODIFY_EXPR
, TREE_TYPE (v
), n
, boolean_true_node
);
2219 SSA_NAME_DEF_STMT (n
) = assertion
;
2221 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2222 operand of the ASSERT_EXPR. Register the new name and the old one
2223 in the replacement table so that we can fix the SSA web after
2224 adding all the ASSERT_EXPRs. */
2225 register_new_name_mapping (n
, v
);
2231 /* Return false if EXPR is a predicate expression involving floating
2235 fp_predicate (tree expr
)
2237 return (COMPARISON_CLASS_P (expr
)
2238 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0))));
2242 /* If the range of values taken by OP can be inferred after STMT executes,
2243 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2244 describes the inferred range. Return true if a range could be
2248 infer_value_range (tree stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
2251 *comp_code_p
= ERROR_MARK
;
2253 /* Do not attempt to infer anything in names that flow through
2255 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
2258 /* Similarly, don't infer anything from statements that may throw
2260 if (tree_could_throw_p (stmt
))
2263 /* If STMT is the last statement of a basic block with no
2264 successors, there is no point inferring anything about any of its
2265 operands. We would not be able to find a proper insertion point
2266 for the assertion, anyway. */
2267 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (bb_for_stmt (stmt
)->succs
) == 0)
2270 if (POINTER_TYPE_P (TREE_TYPE (op
)))
2273 unsigned num_uses
, num_derefs
;
2275 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_derefs
, &is_store
);
2276 if (num_derefs
> 0 && flag_delete_null_pointer_checks
)
2278 /* We can only assume that a pointer dereference will yield
2279 non-NULL if -fdelete-null-pointer-checks is enabled. */
2280 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
2281 *comp_code_p
= NE_EXPR
;
2290 void dump_asserts_for (FILE *, tree
);
2291 void debug_asserts_for (tree
);
2292 void dump_all_asserts (FILE *);
2293 void debug_all_asserts (void);
2295 /* Dump all the registered assertions for NAME to FILE. */
2298 dump_asserts_for (FILE *file
, tree name
)
2302 fprintf (file
, "Assertions to be inserted for ");
2303 print_generic_expr (file
, name
, 0);
2304 fprintf (file
, "\n");
2306 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2309 fprintf (file
, "\t");
2310 print_generic_expr (file
, bsi_stmt (loc
->si
), 0);
2311 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
2314 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
2315 loc
->e
->dest
->index
);
2316 dump_edge_info (file
, loc
->e
, 0);
2318 fprintf (file
, "\n\tPREDICATE: ");
2319 print_generic_expr (file
, name
, 0);
2320 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
2321 print_generic_expr (file
, loc
->val
, 0);
2322 fprintf (file
, "\n\n");
2326 fprintf (file
, "\n");
2330 /* Dump all the registered assertions for NAME to stderr. */
2333 debug_asserts_for (tree name
)
2335 dump_asserts_for (stderr
, name
);
2339 /* Dump all the registered assertions for all the names to FILE. */
2342 dump_all_asserts (FILE *file
)
2347 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
2348 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
2349 dump_asserts_for (file
, ssa_name (i
));
2350 fprintf (file
, "\n");
2354 /* Dump all the registered assertions for all the names to stderr. */
2357 debug_all_asserts (void)
2359 dump_all_asserts (stderr
);
2363 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2364 'NAME COMP_CODE VAL' at a location that dominates block BB or
2365 E->DEST, then register this location as a possible insertion point
2366 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2368 BB, E and SI provide the exact insertion point for the new
2369 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2370 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2371 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2372 must not be NULL. */
2375 register_new_assert_for (tree name
,
2376 enum tree_code comp_code
,
2380 block_stmt_iterator si
)
2382 assert_locus_t n
, loc
, last_loc
;
2384 basic_block dest_bb
;
2386 #if defined ENABLE_CHECKING
2387 gcc_assert (bb
== NULL
|| e
== NULL
);
2390 gcc_assert (TREE_CODE (bsi_stmt (si
)) != COND_EXPR
2391 && TREE_CODE (bsi_stmt (si
)) != SWITCH_EXPR
);
2394 /* The new assertion A will be inserted at BB or E. We need to
2395 determine if the new location is dominated by a previously
2396 registered location for A. If we are doing an edge insertion,
2397 assume that A will be inserted at E->DEST. Note that this is not
2400 If E is a critical edge, it will be split. But even if E is
2401 split, the new block will dominate the same set of blocks that
2404 The reverse, however, is not true, blocks dominated by E->DEST
2405 will not be dominated by the new block created to split E. So,
2406 if the insertion location is on a critical edge, we will not use
2407 the new location to move another assertion previously registered
2408 at a block dominated by E->DEST. */
2409 dest_bb
= (bb
) ? bb
: e
->dest
;
2411 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2412 VAL at a block dominating DEST_BB, then we don't need to insert a new
2413 one. Similarly, if the same assertion already exists at a block
2414 dominated by DEST_BB and the new location is not on a critical
2415 edge, then update the existing location for the assertion (i.e.,
2416 move the assertion up in the dominance tree).
2418 Note, this is implemented as a simple linked list because there
2419 should not be more than a handful of assertions registered per
2420 name. If this becomes a performance problem, a table hashed by
2421 COMP_CODE and VAL could be implemented. */
2422 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2427 if (loc
->comp_code
== comp_code
2429 || operand_equal_p (loc
->val
, val
, 0)))
2431 /* If the assertion NAME COMP_CODE VAL has already been
2432 registered at a basic block that dominates DEST_BB, then
2433 we don't need to insert the same assertion again. Note
2434 that we don't check strict dominance here to avoid
2435 replicating the same assertion inside the same basic
2436 block more than once (e.g., when a pointer is
2437 dereferenced several times inside a block).
2439 An exception to this rule are edge insertions. If the
2440 new assertion is to be inserted on edge E, then it will
2441 dominate all the other insertions that we may want to
2442 insert in DEST_BB. So, if we are doing an edge
2443 insertion, don't do this dominance check. */
2445 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
2448 /* Otherwise, if E is not a critical edge and DEST_BB
2449 dominates the existing location for the assertion, move
2450 the assertion up in the dominance tree by updating its
2451 location information. */
2452 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
2453 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
2462 /* Update the last node of the list and move to the next one. */
2467 /* If we didn't find an assertion already registered for
2468 NAME COMP_CODE VAL, add a new one at the end of the list of
2469 assertions associated with NAME. */
2470 n
= xmalloc (sizeof (*n
));
2474 n
->comp_code
= comp_code
;
2481 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
2483 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
2487 /* Try to register an edge assertion for SSA name NAME on edge E for
2488 the conditional jump pointed to by SI. Return true if an assertion
2489 for NAME could be registered. */
2492 register_edge_assert_for (tree name
, edge e
, block_stmt_iterator si
)
2495 enum tree_code comp_code
;
2497 stmt
= bsi_stmt (si
);
2499 /* Do not attempt to infer anything in names that flow through
2501 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
2504 /* If NAME was not found in the sub-graph reachable from E, then
2505 there's nothing to do. */
2506 if (!TEST_BIT (found_in_subgraph
, SSA_NAME_VERSION (name
)))
2509 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2510 Register an assertion for NAME according to the value that NAME
2512 if (TREE_CODE (stmt
) == COND_EXPR
)
2514 /* If BB ends in a COND_EXPR then NAME then we should insert
2515 the original predicate on EDGE_TRUE_VALUE and the
2516 opposite predicate on EDGE_FALSE_VALUE. */
2517 tree cond
= COND_EXPR_COND (stmt
);
2518 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
2520 /* Predicates may be a single SSA name or NAME OP VAL. */
2523 /* If the predicate is a name, it must be NAME, in which
2524 case we create the predicate NAME == true or
2525 NAME == false accordingly. */
2526 comp_code
= EQ_EXPR
;
2527 val
= (is_else_edge
) ? boolean_false_node
: boolean_true_node
;
2531 /* Otherwise, we have a comparison of the form NAME COMP VAL
2532 or VAL COMP NAME. */
2533 if (name
== TREE_OPERAND (cond
, 1))
2535 /* If the predicate is of the form VAL COMP NAME, flip
2536 COMP around because we need to register NAME as the
2537 first operand in the predicate. */
2538 comp_code
= swap_tree_comparison (TREE_CODE (cond
));
2539 val
= TREE_OPERAND (cond
, 0);
2543 /* The comparison is of the form NAME COMP VAL, so the
2544 comparison code remains unchanged. */
2545 comp_code
= TREE_CODE (cond
);
2546 val
= TREE_OPERAND (cond
, 1);
2549 /* If we are inserting the assertion on the ELSE edge, we
2550 need to invert the sign comparison. */
2552 comp_code
= invert_tree_comparison (comp_code
, 0);
2554 /* Do not register always-false predicates. FIXME, this
2555 works around a limitation in fold() when dealing with
2556 enumerations. Given 'enum { N1, N2 } x;', fold will not
2557 fold 'if (x > N2)' to 'if (0)'. */
2558 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
2559 && (INTEGRAL_TYPE_P (TREE_TYPE (val
))
2560 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
))))
2562 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
2563 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
2565 if (comp_code
== GT_EXPR
&& compare_values (val
, max
) == 0)
2568 if (comp_code
== LT_EXPR
&& compare_values (val
, min
) == 0)
2575 /* FIXME. Handle SWITCH_EXPR. */
2579 register_new_assert_for (name
, comp_code
, val
, NULL
, e
, si
);
2584 static bool find_assert_locations (basic_block bb
);
2586 /* Determine whether the outgoing edges of BB should receive an
2587 ASSERT_EXPR for each of the operands of BB's last statement. The
2588 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2590 If any of the sub-graphs rooted at BB have an interesting use of
2591 the predicate operands, an assert location node is added to the
2592 list of assertions for the corresponding operands. */
2595 find_conditional_asserts (basic_block bb
)
2598 block_stmt_iterator last_si
;
2604 need_assert
= false;
2605 last_si
= bsi_last (bb
);
2606 last
= bsi_stmt (last_si
);
2608 /* Look for uses of the operands in each of the sub-graphs
2609 rooted at BB. We need to check each of the outgoing edges
2610 separately, so that we know what kind of ASSERT_EXPR to
2612 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2617 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2618 Otherwise, when we finish traversing each of the sub-graphs, we
2619 won't know whether the variables were found in the sub-graphs or
2620 if they had been found in a block upstream from BB. */
2621 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2622 RESET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2624 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2625 to determine if any of the operands in the conditional
2626 predicate are used. */
2628 need_assert
|= find_assert_locations (e
->dest
);
2630 /* Register the necessary assertions for each operand in the
2631 conditional predicate. */
2632 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2633 need_assert
|= register_edge_assert_for (op
, e
, last_si
);
2636 /* Finally, indicate that we have found the operands in the
2638 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2639 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2645 /* Traverse all the statements in block BB looking for statements that
2646 may generate useful assertions for the SSA names in their operand.
2647 If a statement produces a useful assertion A for name N_i, then the
2648 list of assertions already generated for N_i is scanned to
2649 determine if A is actually needed.
2651 If N_i already had the assertion A at a location dominating the
2652 current location, then nothing needs to be done. Otherwise, the
2653 new location for A is recorded instead.
2655 1- For every statement S in BB, all the variables used by S are
2656 added to bitmap FOUND_IN_SUBGRAPH.
2658 2- If statement S uses an operand N in a way that exposes a known
2659 value range for N, then if N was not already generated by an
2660 ASSERT_EXPR, create a new assert location for N. For instance,
2661 if N is a pointer and the statement dereferences it, we can
2662 assume that N is not NULL.
2664 3- COND_EXPRs are a special case of #2. We can derive range
2665 information from the predicate but need to insert different
2666 ASSERT_EXPRs for each of the sub-graphs rooted at the
2667 conditional block. If the last statement of BB is a conditional
2668 expression of the form 'X op Y', then
2670 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2672 b) If the conditional is the only entry point to the sub-graph
2673 corresponding to the THEN_CLAUSE, recurse into it. On
2674 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2675 an ASSERT_EXPR is added for the corresponding variable.
2677 c) Repeat step (b) on the ELSE_CLAUSE.
2679 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2688 In this case, an assertion on the THEN clause is useful to
2689 determine that 'a' is always 9 on that edge. However, an assertion
2690 on the ELSE clause would be unnecessary.
2692 4- If BB does not end in a conditional expression, then we recurse
2693 into BB's dominator children.
2695 At the end of the recursive traversal, every SSA name will have a
2696 list of locations where ASSERT_EXPRs should be added. When a new
2697 location for name N is found, it is registered by calling
2698 register_new_assert_for. That function keeps track of all the
2699 registered assertions to prevent adding unnecessary assertions.
2700 For instance, if a pointer P_4 is dereferenced more than once in a
2701 dominator tree, only the location dominating all the dereference of
2702 P_4 will receive an ASSERT_EXPR.
2704 If this function returns true, then it means that there are names
2705 for which we need to generate ASSERT_EXPRs. Those assertions are
2706 inserted by process_assert_insertions.
2708 TODO. Handle SWITCH_EXPR. */
2711 find_assert_locations (basic_block bb
)
2713 block_stmt_iterator si
;
2718 if (TEST_BIT (blocks_visited
, bb
->index
))
2721 SET_BIT (blocks_visited
, bb
->index
);
2723 need_assert
= false;
2725 /* Traverse all PHI nodes in BB marking used operands. */
2726 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
2728 use_operand_p arg_p
;
2731 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
2733 tree arg
= USE_FROM_PTR (arg_p
);
2734 if (TREE_CODE (arg
) == SSA_NAME
)
2736 gcc_assert (is_gimple_reg (PHI_RESULT (phi
)));
2737 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (arg
));
2742 /* Traverse all the statements in BB marking used names and looking
2743 for statements that may infer assertions for their used operands. */
2745 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
2750 stmt
= bsi_stmt (si
);
2752 /* See if we can derive an assertion for any of STMT's operands. */
2753 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
2756 enum tree_code comp_code
;
2758 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2759 the sub-graph of a conditional block, when we return from
2760 this recursive walk, our parent will use the
2761 FOUND_IN_SUBGRAPH bitset to determine if one of the
2762 operands it was looking for was present in the sub-graph. */
2763 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2765 /* If OP is used only once, namely in this STMT, don't
2766 bother creating an ASSERT_EXPR for it. Such an
2767 ASSERT_EXPR would do nothing but increase compile time.
2768 Experiments show that with this simple check, we can save
2769 more than 20% of ASSERT_EXPRs. */
2770 if (has_single_use (op
))
2773 /* If OP is used in such a way that we can infer a value
2774 range for it, and we don't find a previous assertion for
2775 it, create a new assertion location node for OP. */
2776 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
2778 register_new_assert_for (op
, comp_code
, value
, bb
, NULL
, si
);
2783 /* Remember the last statement of the block. */
2787 /* If BB's last statement is a conditional expression
2788 involving integer operands, recurse into each of the sub-graphs
2789 rooted at BB to determine if we need to add ASSERT_EXPRs. */
2791 && TREE_CODE (last
) == COND_EXPR
2792 && !fp_predicate (COND_EXPR_COND (last
))
2793 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
2794 need_assert
|= find_conditional_asserts (bb
);
2796 /* Recurse into the dominator children of BB. */
2797 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
2799 son
= next_dom_son (CDI_DOMINATORS
, son
))
2800 need_assert
|= find_assert_locations (son
);
2806 /* Create an ASSERT_EXPR for NAME and insert it in the location
2807 indicated by LOC. Return true if we made any edge insertions. */
2810 process_assert_insertions_for (tree name
, assert_locus_t loc
)
2812 /* Build the comparison expression NAME_i COMP_CODE VAL. */
2813 tree stmt
, cond
, assert_expr
;
2817 cond
= build2 (loc
->comp_code
, boolean_type_node
, name
, loc
->val
);
2818 assert_expr
= build_assert_expr_for (cond
, name
);
2822 /* We have been asked to insert the assertion on an edge. This
2823 is used only by COND_EXPR and SWITCH_EXPR assertions. */
2824 #if defined ENABLE_CHECKING
2825 gcc_assert (TREE_CODE (bsi_stmt (loc
->si
)) == COND_EXPR
2826 || TREE_CODE (bsi_stmt (loc
->si
)) == SWITCH_EXPR
);
2829 bsi_insert_on_edge (loc
->e
, assert_expr
);
2833 /* Otherwise, we can insert right after LOC->SI iff the
2834 statement must not be the last statement in the block. */
2835 stmt
= bsi_stmt (loc
->si
);
2836 if (!stmt_ends_bb_p (stmt
))
2838 bsi_insert_after (&loc
->si
, assert_expr
, BSI_SAME_STMT
);
2842 /* If STMT must be the last statement in BB, we can only insert new
2843 assertions on the non-abnormal edge out of BB. Note that since
2844 STMT is not control flow, there may only be one non-abnormal edge
2846 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
2847 if (!(e
->flags
& EDGE_ABNORMAL
))
2849 bsi_insert_on_edge (e
, assert_expr
);
2857 /* Process all the insertions registered for every name N_i registered
2858 in NEED_ASSERT_FOR. The list of assertions to be inserted are
2859 found in ASSERTS_FOR[i]. */
2862 process_assert_insertions (void)
2866 bool update_edges_p
= false;
2867 int num_asserts
= 0;
2869 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2870 dump_all_asserts (dump_file
);
2872 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
2874 assert_locus_t loc
= asserts_for
[i
];
2879 assert_locus_t next
= loc
->next
;
2880 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
2888 bsi_commit_edge_inserts ();
2890 if (dump_file
&& (dump_flags
& TDF_STATS
))
2891 fprintf (dump_file
, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
2896 /* Traverse the flowgraph looking for conditional jumps to insert range
2897 expressions. These range expressions are meant to provide information
2898 to optimizations that need to reason in terms of value ranges. They
2899 will not be expanded into RTL. For instance, given:
2908 this pass will transform the code into:
2914 x = ASSERT_EXPR <x, x < y>
2919 y = ASSERT_EXPR <y, x <= y>
2923 The idea is that once copy and constant propagation have run, other
2924 optimizations will be able to determine what ranges of values can 'x'
2925 take in different paths of the code, simply by checking the reaching
2926 definition of 'x'. */
2929 insert_range_assertions (void)
2935 found_in_subgraph
= sbitmap_alloc (num_ssa_names
);
2936 sbitmap_zero (found_in_subgraph
);
2938 blocks_visited
= sbitmap_alloc (last_basic_block
);
2939 sbitmap_zero (blocks_visited
);
2941 need_assert_for
= BITMAP_ALLOC (NULL
);
2942 asserts_for
= xmalloc (num_ssa_names
* sizeof (assert_locus_t
));
2943 memset (asserts_for
, 0, num_ssa_names
* sizeof (assert_locus_t
));
2945 calculate_dominance_info (CDI_DOMINATORS
);
2947 update_ssa_p
= false;
2948 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2949 if (find_assert_locations (e
->dest
))
2950 update_ssa_p
= true;
2954 process_assert_insertions ();
2955 update_ssa (TODO_update_ssa_no_phi
);
2958 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2960 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
2961 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
2964 sbitmap_free (found_in_subgraph
);
2966 BITMAP_FREE (need_assert_for
);
2970 /* Convert range assertion expressions into the implied copies and
2971 copy propagate away the copies. Doing the trivial copy propagation
2972 here avoids the need to run the full copy propagation pass after
2975 FIXME, this will eventually lead to copy propagation removing the
2976 names that had useful range information attached to them. For
2977 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
2978 then N_i will have the range [3, +INF].
2980 However, by converting the assertion into the implied copy
2981 operation N_i = N_j, we will then copy-propagate N_j into the uses
2982 of N_i and lose the range information. We may want to hold on to
2983 ASSERT_EXPRs a little while longer as the ranges could be used in
2984 things like jump threading.
2986 The problem with keeping ASSERT_EXPRs around is that passes after
2987 VRP need to handle them appropriately.
2989 Another approach would be to make the range information a first
2990 class property of the SSA_NAME so that it can be queried from
2991 any pass. This is made somewhat more complex by the need for
2992 multiple ranges to be associated with one SSA_NAME. */
2995 remove_range_assertions (void)
2998 block_stmt_iterator si
;
3000 /* Note that the BSI iterator bump happens at the bottom of the
3001 loop and no bump is necessary if we're removing the statement
3002 referenced by the current BSI. */
3004 for (si
= bsi_start (bb
); !bsi_end_p (si
);)
3006 tree stmt
= bsi_stmt (si
);
3008 if (TREE_CODE (stmt
) == MODIFY_EXPR
3009 && TREE_CODE (TREE_OPERAND (stmt
, 1)) == ASSERT_EXPR
)
3011 tree rhs
= TREE_OPERAND (stmt
, 1);
3012 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
3013 use_operand_p use_p
;
3014 imm_use_iterator iter
;
3016 gcc_assert (cond
!= boolean_false_node
);
3017 TREE_OPERAND (stmt
, 1) = ASSERT_EXPR_VAR (rhs
);
3020 /* The statement is now a copy. Propagate the RHS into
3021 every use of the LHS. */
3022 FOR_EACH_IMM_USE_SAFE (use_p
, iter
, TREE_OPERAND (stmt
, 0))
3024 SET_USE (use_p
, ASSERT_EXPR_VAR (rhs
));
3025 update_stmt (USE_STMT (use_p
));
3028 /* And finally, remove the copy, it is not needed. */
3029 bsi_remove (&si
, true);
3035 sbitmap_free (blocks_visited
);
3039 /* Return true if STMT is interesting for VRP. */
3042 stmt_interesting_for_vrp (tree stmt
)
3044 if (TREE_CODE (stmt
) == PHI_NODE
3045 && is_gimple_reg (PHI_RESULT (stmt
))
3046 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))
3047 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))))
3049 else if (TREE_CODE (stmt
) == MODIFY_EXPR
)
3051 tree lhs
= TREE_OPERAND (stmt
, 0);
3053 if (TREE_CODE (lhs
) == SSA_NAME
3054 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3055 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
3056 && ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
3059 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
3066 /* Initialize local data structures for VRP. */
3069 vrp_initialize (void)
3073 vr_value
= xmalloc (num_ssa_names
* sizeof (value_range_t
*));
3074 memset (vr_value
, 0, num_ssa_names
* sizeof (value_range_t
*));
3078 block_stmt_iterator si
;
3081 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
3083 if (!stmt_interesting_for_vrp (phi
))
3085 tree lhs
= PHI_RESULT (phi
);
3086 set_value_range_to_varying (get_value_range (lhs
));
3087 DONT_SIMULATE_AGAIN (phi
) = true;
3090 DONT_SIMULATE_AGAIN (phi
) = false;
3093 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
3095 tree stmt
= bsi_stmt (si
);
3097 if (!stmt_interesting_for_vrp (stmt
))
3101 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
3102 set_value_range_to_varying (get_value_range (def
));
3103 DONT_SIMULATE_AGAIN (stmt
) = true;
3107 DONT_SIMULATE_AGAIN (stmt
) = false;
3114 /* Visit assignment STMT. If it produces an interesting range, record
3115 the SSA name in *OUTPUT_P. */
3117 static enum ssa_prop_result
3118 vrp_visit_assignment (tree stmt
, tree
*output_p
)
3123 lhs
= TREE_OPERAND (stmt
, 0);
3124 rhs
= TREE_OPERAND (stmt
, 1);
3126 /* We only keep track of ranges in integral and pointer types. */
3127 if (TREE_CODE (lhs
) == SSA_NAME
3128 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3129 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
3132 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3134 extract_range_from_expr (&new_vr
, rhs
);
3136 /* If STMT is inside a loop, we may be able to know something
3137 else about the range of LHS by examining scalar evolution
3139 if (cfg_loops
&& (l
= loop_containing_stmt (stmt
)))
3140 adjust_range_with_scev (&new_vr
, l
, stmt
, lhs
);
3142 if (update_value_range (lhs
, &new_vr
))
3146 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3148 fprintf (dump_file
, "Found new range for ");
3149 print_generic_expr (dump_file
, lhs
, 0);
3150 fprintf (dump_file
, ": ");
3151 dump_value_range (dump_file
, &new_vr
);
3152 fprintf (dump_file
, "\n\n");
3155 if (new_vr
.type
== VR_VARYING
)
3156 return SSA_PROP_VARYING
;
3158 return SSA_PROP_INTERESTING
;
3161 return SSA_PROP_NOT_INTERESTING
;
3164 /* Every other statement produces no useful ranges. */
3165 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
3166 set_value_range_to_varying (get_value_range (def
));
3168 return SSA_PROP_VARYING
;
3172 /* Compare all the value ranges for names equivalent to VAR with VAL
3173 using comparison code COMP. Return the same value returned by
3174 compare_range_with_value. */
3177 compare_name_with_value (enum tree_code comp
, tree var
, tree val
)
3184 t
= retval
= NULL_TREE
;
3186 /* Get the set of equivalences for VAR. */
3187 e
= get_value_range (var
)->equiv
;
3189 /* Add VAR to its own set of equivalences so that VAR's value range
3190 is processed by this loop (otherwise, we would have to replicate
3191 the body of the loop just to check VAR's value range). */
3192 bitmap_set_bit (e
, SSA_NAME_VERSION (var
));
3194 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
3196 value_range_t equiv_vr
= *(vr_value
[i
]);
3198 /* If name N_i does not have a valid range, use N_i as its own
3199 range. This allows us to compare against names that may
3200 have N_i in their ranges. */
3201 if (equiv_vr
.type
== VR_VARYING
|| equiv_vr
.type
== VR_UNDEFINED
)
3203 equiv_vr
.type
= VR_RANGE
;
3204 equiv_vr
.min
= ssa_name (i
);
3205 equiv_vr
.max
= ssa_name (i
);
3208 t
= compare_range_with_value (comp
, &equiv_vr
, val
);
3211 /* All the ranges should compare the same against VAL. */
3212 gcc_assert (retval
== NULL
|| t
== retval
);
3217 /* Remove VAR from its own equivalence set. */
3218 bitmap_clear_bit (e
, SSA_NAME_VERSION (var
));
3223 /* We couldn't find a non-NULL value for the predicate. */
3228 /* Given a comparison code COMP and names N1 and N2, compare all the
3229 ranges equivalent to N1 against all the ranges equivalent to N2
3230 to determine the value of N1 COMP N2. Return the same value
3231 returned by compare_ranges. */
3234 compare_names (enum tree_code comp
, tree n1
, tree n2
)
3238 bitmap_iterator bi1
, bi2
;
3241 /* Compare the ranges of every name equivalent to N1 against the
3242 ranges of every name equivalent to N2. */
3243 e1
= get_value_range (n1
)->equiv
;
3244 e2
= get_value_range (n2
)->equiv
;
3246 /* Add N1 and N2 to their own set of equivalences to avoid
3247 duplicating the body of the loop just to check N1 and N2
3249 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
3250 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
3252 /* If the equivalence sets have a common intersection, then the two
3253 names can be compared without checking their ranges. */
3254 if (bitmap_intersect_p (e1
, e2
))
3256 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3257 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3259 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
3261 : boolean_false_node
;
3264 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3265 N2 to their own set of equivalences to avoid duplicating the body
3266 of the loop just to check N1 and N2 ranges. */
3267 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
3269 value_range_t vr1
= *(vr_value
[i1
]);
3271 /* If the range is VARYING or UNDEFINED, use the name itself. */
3272 if (vr1
.type
== VR_VARYING
|| vr1
.type
== VR_UNDEFINED
)
3274 vr1
.type
= VR_RANGE
;
3275 vr1
.min
= ssa_name (i1
);
3276 vr1
.max
= ssa_name (i1
);
3279 t
= retval
= NULL_TREE
;
3280 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
3282 value_range_t vr2
= *(vr_value
[i2
]);
3284 if (vr2
.type
== VR_VARYING
|| vr2
.type
== VR_UNDEFINED
)
3286 vr2
.type
= VR_RANGE
;
3287 vr2
.min
= ssa_name (i2
);
3288 vr2
.max
= ssa_name (i2
);
3291 t
= compare_ranges (comp
, &vr1
, &vr2
);
3294 /* All the ranges in the equivalent sets should compare
3296 gcc_assert (retval
== NULL
|| t
== retval
);
3303 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3304 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3309 /* None of the equivalent ranges are useful in computing this
3311 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3312 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3317 /* Given a conditional predicate COND, try to determine if COND yields
3318 true or false based on the value ranges of its operands. Return
3319 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3320 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3321 NULL if the conditional cannot be evaluated at compile time.
3323 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3324 the operands in COND are used when trying to compute its value.
3325 This is only used during final substitution. During propagation,
3326 we only check the range of each variable and not its equivalents. */
3329 vrp_evaluate_conditional (tree cond
, bool use_equiv_p
)
3331 gcc_assert (TREE_CODE (cond
) == SSA_NAME
3332 || TREE_CODE_CLASS (TREE_CODE (cond
)) == tcc_comparison
);
3334 if (TREE_CODE (cond
) == SSA_NAME
)
3340 retval
= compare_name_with_value (NE_EXPR
, cond
, boolean_false_node
);
3343 value_range_t
*vr
= get_value_range (cond
);
3344 retval
= compare_range_with_value (NE_EXPR
, vr
, boolean_false_node
);
3347 /* If COND has a known boolean range, return it. */
3351 /* Otherwise, if COND has a symbolic range of exactly one value,
3353 vr
= get_value_range (cond
);
3354 if (vr
->type
== VR_RANGE
&& vr
->min
== vr
->max
)
3359 tree op0
= TREE_OPERAND (cond
, 0);
3360 tree op1
= TREE_OPERAND (cond
, 1);
3362 /* We only deal with integral and pointer types. */
3363 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
3364 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
3369 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
3370 return compare_names (TREE_CODE (cond
), op0
, op1
);
3371 else if (TREE_CODE (op0
) == SSA_NAME
)
3372 return compare_name_with_value (TREE_CODE (cond
), op0
, op1
);
3373 else if (TREE_CODE (op1
) == SSA_NAME
)
3374 return compare_name_with_value (
3375 swap_tree_comparison (TREE_CODE (cond
)), op1
, op0
);
3379 value_range_t
*vr0
, *vr1
;
3381 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
3382 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
3385 return compare_ranges (TREE_CODE (cond
), vr0
, vr1
);
3386 else if (vr0
&& vr1
== NULL
)
3387 return compare_range_with_value (TREE_CODE (cond
), vr0
, op1
);
3388 else if (vr0
== NULL
&& vr1
)
3389 return compare_range_with_value (
3390 swap_tree_comparison (TREE_CODE (cond
)), vr1
, op0
);
3394 /* Anything else cannot be computed statically. */
3399 /* Visit conditional statement STMT. If we can determine which edge
3400 will be taken out of STMT's basic block, record it in
3401 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3402 SSA_PROP_VARYING. */
3404 static enum ssa_prop_result
3405 vrp_visit_cond_stmt (tree stmt
, edge
*taken_edge_p
)
3409 *taken_edge_p
= NULL
;
3411 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3412 add ASSERT_EXPRs for them. */
3413 if (TREE_CODE (stmt
) == SWITCH_EXPR
)
3414 return SSA_PROP_VARYING
;
3416 cond
= COND_EXPR_COND (stmt
);
3418 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3423 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
3424 print_generic_expr (dump_file
, cond
, 0);
3425 fprintf (dump_file
, "\nWith known ranges\n");
3427 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
3429 fprintf (dump_file
, "\t");
3430 print_generic_expr (dump_file
, use
, 0);
3431 fprintf (dump_file
, ": ");
3432 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
3435 fprintf (dump_file
, "\n");
3438 /* Compute the value of the predicate COND by checking the known
3439 ranges of each of its operands.
3441 Note that we cannot evaluate all the equivalent ranges here
3442 because those ranges may not yet be final and with the current
3443 propagation strategy, we cannot determine when the value ranges
3444 of the names in the equivalence set have changed.
3446 For instance, given the following code fragment
3450 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3454 Assume that on the first visit to i_14, i_5 has the temporary
3455 range [8, 8] because the second argument to the PHI function is
3456 not yet executable. We derive the range ~[0, 0] for i_14 and the
3457 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3458 the first time, since i_14 is equivalent to the range [8, 8], we
3459 determine that the predicate is always false.
3461 On the next round of propagation, i_13 is determined to be
3462 VARYING, which causes i_5 to drop down to VARYING. So, another
3463 visit to i_14 is scheduled. In this second visit, we compute the
3464 exact same range and equivalence set for i_14, namely ~[0, 0] and
3465 { i_5 }. But we did not have the previous range for i_5
3466 registered, so vrp_visit_assignment thinks that the range for
3467 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3468 is not visited again, which stops propagation from visiting
3469 statements in the THEN clause of that if().
3471 To properly fix this we would need to keep the previous range
3472 value for the names in the equivalence set. This way we would've
3473 discovered that from one visit to the other i_5 changed from
3474 range [8, 8] to VR_VARYING.
3476 However, fixing this apparent limitation may not be worth the
3477 additional checking. Testing on several code bases (GCC, DLV,
3478 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3479 4 more predicates folded in SPEC. */
3480 val
= vrp_evaluate_conditional (cond
, false);
3482 *taken_edge_p
= find_taken_edge (bb_for_stmt (stmt
), val
);
3484 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3486 fprintf (dump_file
, "\nPredicate evaluates to: ");
3487 if (val
== NULL_TREE
)
3488 fprintf (dump_file
, "DON'T KNOW\n");
3490 print_generic_stmt (dump_file
, val
, 0);
3493 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
3497 /* Evaluate statement STMT. If the statement produces a useful range,
3498 return SSA_PROP_INTERESTING and record the SSA name with the
3499 interesting range into *OUTPUT_P.
3501 If STMT is a conditional branch and we can determine its truth
3502 value, the taken edge is recorded in *TAKEN_EDGE_P.
3504 If STMT produces a varying value, return SSA_PROP_VARYING. */
3506 static enum ssa_prop_result
3507 vrp_visit_stmt (tree stmt
, edge
*taken_edge_p
, tree
*output_p
)
3513 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3515 fprintf (dump_file
, "\nVisiting statement:\n");
3516 print_generic_stmt (dump_file
, stmt
, dump_flags
);
3517 fprintf (dump_file
, "\n");
3520 ann
= stmt_ann (stmt
);
3521 if (TREE_CODE (stmt
) == MODIFY_EXPR
3522 && ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
3523 return vrp_visit_assignment (stmt
, output_p
);
3524 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
3525 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
3527 /* All other statements produce nothing of interest for VRP, so mark
3528 their outputs varying and prevent further simulation. */
3529 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
3530 set_value_range_to_varying (get_value_range (def
));
3532 return SSA_PROP_VARYING
;
3536 /* Meet operation for value ranges. Given two value ranges VR0 and
3537 VR1, store in VR0 the result of meeting VR0 and VR1.
3539 The meeting rules are as follows:
3541 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3543 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3544 union of VR0 and VR1. */
3547 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
3549 if (vr0
->type
== VR_UNDEFINED
)
3551 copy_value_range (vr0
, vr1
);
3555 if (vr1
->type
== VR_UNDEFINED
)
3557 /* Nothing to do. VR0 already has the resulting range. */
3561 if (vr0
->type
== VR_VARYING
)
3563 /* Nothing to do. VR0 already has the resulting range. */
3567 if (vr1
->type
== VR_VARYING
)
3569 set_value_range_to_varying (vr0
);
3573 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
3575 /* If VR0 and VR1 have a non-empty intersection, compute the
3576 union of both ranges. */
3577 if (value_ranges_intersect_p (vr0
, vr1
))
3582 /* The lower limit of the new range is the minimum of the
3583 two ranges. If they cannot be compared, the result is
3585 cmp
= compare_values (vr0
->min
, vr1
->min
);
3586 if (cmp
== 0 || cmp
== 1)
3592 set_value_range_to_varying (vr0
);
3596 /* Similarly, the upper limit of the new range is the
3597 maximum of the two ranges. If they cannot be compared,
3598 the result is VARYING. */
3599 cmp
= compare_values (vr0
->max
, vr1
->max
);
3600 if (cmp
== 0 || cmp
== -1)
3606 set_value_range_to_varying (vr0
);
3610 /* The resulting set of equivalences is the intersection of
3612 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3613 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3614 else if (vr0
->equiv
&& !vr1
->equiv
)
3615 bitmap_clear (vr0
->equiv
);
3617 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
3622 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3624 /* Two anti-ranges meet only if they are both identical. */
3625 if (compare_values (vr0
->min
, vr1
->min
) == 0
3626 && compare_values (vr0
->max
, vr1
->max
) == 0
3627 && compare_values (vr0
->min
, vr0
->max
) == 0)
3629 /* The resulting set of equivalences is the intersection of
3631 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3632 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3633 else if (vr0
->equiv
&& !vr1
->equiv
)
3634 bitmap_clear (vr0
->equiv
);
3639 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3641 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3642 meet only if the ranges have an empty intersection. The
3643 result of the meet operation is the anti-range. */
3644 if (!symbolic_range_p (vr0
)
3645 && !symbolic_range_p (vr1
)
3646 && !value_ranges_intersect_p (vr0
, vr1
))
3648 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3649 set. We need to compute the intersection of the two
3650 equivalence sets. */
3651 if (vr1
->type
== VR_ANTI_RANGE
)
3652 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
3654 /* The resulting set of equivalences is the intersection of
3656 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3657 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3658 else if (vr0
->equiv
&& !vr1
->equiv
)
3659 bitmap_clear (vr0
->equiv
);
3670 /* The two range VR0 and VR1 do not meet. Before giving up and
3671 setting the result to VARYING, see if we can at least derive a
3672 useful anti-range. FIXME, all this nonsense about distinguishing
3673 anti-ranges from ranges is necessary because of the odd
3674 semantics of range_includes_zero_p and friends. */
3675 if (!symbolic_range_p (vr0
)
3676 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
3677 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
3678 && !symbolic_range_p (vr1
)
3679 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
3680 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
3682 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
3684 /* Since this meet operation did not result from the meeting of
3685 two equivalent names, VR0 cannot have any equivalences. */
3687 bitmap_clear (vr0
->equiv
);
3690 set_value_range_to_varying (vr0
);
3694 /* Visit all arguments for PHI node PHI that flow through executable
3695 edges. If a valid value range can be derived from all the incoming
3696 value ranges, set a new range for the LHS of PHI. */
3698 static enum ssa_prop_result
3699 vrp_visit_phi_node (tree phi
)
3702 tree lhs
= PHI_RESULT (phi
);
3703 value_range_t
*lhs_vr
= get_value_range (lhs
);
3704 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3706 copy_value_range (&vr_result
, lhs_vr
);
3708 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3710 fprintf (dump_file
, "\nVisiting PHI node: ");
3711 print_generic_expr (dump_file
, phi
, dump_flags
);
3714 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
3716 edge e
= PHI_ARG_EDGE (phi
, i
);
3718 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3721 "\n Argument #%d (%d -> %d %sexecutable)\n",
3722 i
, e
->src
->index
, e
->dest
->index
,
3723 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
3726 if (e
->flags
& EDGE_EXECUTABLE
)
3728 tree arg
= PHI_ARG_DEF (phi
, i
);
3729 value_range_t vr_arg
;
3731 if (TREE_CODE (arg
) == SSA_NAME
)
3732 vr_arg
= *(get_value_range (arg
));
3735 vr_arg
.type
= VR_RANGE
;
3738 vr_arg
.equiv
= NULL
;
3741 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3743 fprintf (dump_file
, "\t");
3744 print_generic_expr (dump_file
, arg
, dump_flags
);
3745 fprintf (dump_file
, "\n\tValue: ");
3746 dump_value_range (dump_file
, &vr_arg
);
3747 fprintf (dump_file
, "\n");
3750 vrp_meet (&vr_result
, &vr_arg
);
3752 if (vr_result
.type
== VR_VARYING
)
3757 if (vr_result
.type
== VR_VARYING
)
3760 /* To prevent infinite iterations in the algorithm, derive ranges
3761 when the new value is slightly bigger or smaller than the
3763 if (lhs_vr
->type
== VR_RANGE
&& vr_result
.type
== VR_RANGE
)
3765 if (!POINTER_TYPE_P (TREE_TYPE (lhs
)))
3767 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
3768 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
3770 /* If the new minimum is smaller or larger than the previous
3771 one, go all the way to -INF. In the first case, to avoid
3772 iterating millions of times to reach -INF, and in the
3773 other case to avoid infinite bouncing between different
3775 if (cmp_min
> 0 || cmp_min
< 0)
3776 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
3778 /* Similarly, if the new maximum is smaller or larger than
3779 the previous one, go all the way to +INF. */
3780 if (cmp_max
< 0 || cmp_max
> 0)
3781 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
3783 /* If we ended up with a (-INF, +INF) range, set it to
3785 if (vr_result
.min
== TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
))
3786 && vr_result
.max
== TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
)))
3791 /* If the new range is different than the previous value, keep
3793 if (update_value_range (lhs
, &vr_result
))
3794 return SSA_PROP_INTERESTING
;
3796 /* Nothing changed, don't add outgoing edges. */
3797 return SSA_PROP_NOT_INTERESTING
;
3799 /* No match found. Set the LHS to VARYING. */
3801 set_value_range_to_varying (lhs_vr
);
3802 return SSA_PROP_VARYING
;
3805 /* Simplify a division or modulo operator to a right shift or
3806 bitwise and if the first operand is unsigned or is greater
3807 than zero and the second operand is an exact power of two. */
3810 simplify_div_or_mod_using_ranges (tree stmt
, tree rhs
, enum tree_code rhs_code
)
3813 tree op
= TREE_OPERAND (rhs
, 0);
3814 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
3816 if (TYPE_UNSIGNED (TREE_TYPE (op
)))
3818 val
= integer_one_node
;
3822 val
= compare_range_with_value (GT_EXPR
, vr
, integer_zero_node
);
3825 if (val
&& integer_onep (val
))
3828 tree op0
= TREE_OPERAND (rhs
, 0);
3829 tree op1
= TREE_OPERAND (rhs
, 1);
3831 if (rhs_code
== TRUNC_DIV_EXPR
)
3833 t
= build_int_cst (NULL_TREE
, tree_log2 (op1
));
3834 t
= build2 (RSHIFT_EXPR
, TREE_TYPE (op0
), op0
, t
);
3838 t
= build_int_cst (TREE_TYPE (op1
), 1);
3839 t
= int_const_binop (MINUS_EXPR
, op1
, t
, 0);
3840 t
= fold_convert (TREE_TYPE (op0
), t
);
3841 t
= build2 (BIT_AND_EXPR
, TREE_TYPE (op0
), op0
, t
);
3844 TREE_OPERAND (stmt
, 1) = t
;
3849 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
3850 ABS_EXPR. If the operand is <= 0, then simplify the
3851 ABS_EXPR into a NEGATE_EXPR. */
3854 simplify_abs_using_ranges (tree stmt
, tree rhs
)
3857 tree op
= TREE_OPERAND (rhs
, 0);
3858 tree type
= TREE_TYPE (op
);
3859 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
3861 if (TYPE_UNSIGNED (type
))
3863 val
= integer_zero_node
;
3867 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
);
3870 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
);
3874 if (integer_zerop (val
))
3875 val
= integer_one_node
;
3876 else if (integer_onep (val
))
3877 val
= integer_zero_node
;
3882 && (integer_onep (val
) || integer_zerop (val
)))
3886 if (integer_onep (val
))
3887 t
= build1 (NEGATE_EXPR
, TREE_TYPE (op
), op
);
3891 TREE_OPERAND (stmt
, 1) = t
;
3897 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
3898 a known value range VR.
3900 If there is one and only one value which will satisfy the
3901 conditional, then return that value. Else return NULL. */
3904 test_for_singularity (enum tree_code cond_code
, tree op0
,
3905 tree op1
, value_range_t
*vr
)
3910 /* Extract minimum/maximum values which satisfy the
3911 the conditional as it was written. */
3912 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
3914 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
3917 if (cond_code
== LT_EXPR
)
3919 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
3920 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
3923 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
3925 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
3928 if (cond_code
== GT_EXPR
)
3930 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
3931 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), max
, one
);
3935 /* Now refine the minimum and maximum values using any
3936 value range information we have for op0. */
3939 if (compare_values (vr
->min
, min
) == -1)
3943 if (compare_values (vr
->max
, max
) == 1)
3948 /* If the new min/max values have converged to a
3949 single value, then there is only one value which
3950 can satisfy the condition, return that value. */
3951 if (min
== max
&& is_gimple_min_invariant (min
))
3957 /* Simplify a conditional using a relational operator to an equality
3958 test if the range information indicates only one value can satisfy
3959 the original conditional. */
3962 simplify_cond_using_ranges (tree stmt
)
3964 tree cond
= COND_EXPR_COND (stmt
);
3965 tree op0
= TREE_OPERAND (cond
, 0);
3966 tree op1
= TREE_OPERAND (cond
, 1);
3967 enum tree_code cond_code
= TREE_CODE (cond
);
3969 if (cond_code
!= NE_EXPR
3970 && cond_code
!= EQ_EXPR
3971 && TREE_CODE (op0
) == SSA_NAME
3972 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
3973 && is_gimple_min_invariant (op1
))
3975 value_range_t
*vr
= get_value_range (op0
);
3977 /* If we have range information for OP0, then we might be
3978 able to simplify this conditional. */
3979 if (vr
->type
== VR_RANGE
)
3981 tree
new = test_for_singularity (cond_code
, op0
, op1
, vr
);
3987 fprintf (dump_file
, "Simplified relational ");
3988 print_generic_expr (dump_file
, cond
, 0);
3989 fprintf (dump_file
, " into ");
3992 COND_EXPR_COND (stmt
)
3993 = build2 (EQ_EXPR
, boolean_type_node
, op0
, new);
3998 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
3999 fprintf (dump_file
, "\n");
4005 /* Try again after inverting the condition. We only deal
4006 with integral types here, so no need to worry about
4007 issues with inverting FP comparisons. */
4008 cond_code
= invert_tree_comparison (cond_code
, false);
4009 new = test_for_singularity (cond_code
, op0
, op1
, vr
);
4015 fprintf (dump_file
, "Simplified relational ");
4016 print_generic_expr (dump_file
, cond
, 0);
4017 fprintf (dump_file
, " into ");
4020 COND_EXPR_COND (stmt
)
4021 = build2 (NE_EXPR
, boolean_type_node
, op0
, new);
4026 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
4027 fprintf (dump_file
, "\n");
4036 /* Simplify STMT using ranges if possible. */
4039 simplify_stmt_using_ranges (tree stmt
)
4041 if (TREE_CODE (stmt
) == MODIFY_EXPR
)
4043 tree rhs
= TREE_OPERAND (stmt
, 1);
4044 enum tree_code rhs_code
= TREE_CODE (rhs
);
4046 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4047 and BIT_AND_EXPR respectively if the first operand is greater
4048 than zero and the second operand is an exact power of two. */
4049 if ((rhs_code
== TRUNC_DIV_EXPR
|| rhs_code
== TRUNC_MOD_EXPR
)
4050 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0)))
4051 && integer_pow2p (TREE_OPERAND (rhs
, 1)))
4052 simplify_div_or_mod_using_ranges (stmt
, rhs
, rhs_code
);
4054 /* Transform ABS (X) into X or -X as appropriate. */
4055 if (rhs_code
== ABS_EXPR
4056 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == SSA_NAME
4057 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0))))
4058 simplify_abs_using_ranges (stmt
, rhs
);
4060 else if (TREE_CODE (stmt
) == COND_EXPR
4061 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt
)))
4063 simplify_cond_using_ranges (stmt
);
4069 /* Traverse all the blocks folding conditionals with known ranges. */
4075 prop_value_t
*single_val_range
;
4076 bool do_value_subst_p
;
4080 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
4081 dump_all_value_ranges (dump_file
);
4082 fprintf (dump_file
, "\n");
4085 /* We may have ended with ranges that have exactly one value. Those
4086 values can be substituted as any other copy/const propagated
4087 value using substitute_and_fold. */
4088 single_val_range
= xmalloc (num_ssa_names
* sizeof (*single_val_range
));
4089 memset (single_val_range
, 0, num_ssa_names
* sizeof (*single_val_range
));
4091 do_value_subst_p
= false;
4092 for (i
= 0; i
< num_ssa_names
; i
++)
4094 && vr_value
[i
]->type
== VR_RANGE
4095 && vr_value
[i
]->min
== vr_value
[i
]->max
)
4097 single_val_range
[i
].value
= vr_value
[i
]->min
;
4098 do_value_subst_p
= true;
4101 if (!do_value_subst_p
)
4103 /* We found no single-valued ranges, don't waste time trying to
4104 do single value substitution in substitute_and_fold. */
4105 free (single_val_range
);
4106 single_val_range
= NULL
;
4109 substitute_and_fold (single_val_range
, true);
4111 /* Free allocated memory. */
4112 for (i
= 0; i
< num_ssa_names
; i
++)
4115 BITMAP_FREE (vr_value
[i
]->equiv
);
4119 free (single_val_range
);
4124 /* Main entry point to VRP (Value Range Propagation). This pass is
4125 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4126 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4127 Programming Language Design and Implementation, pp. 67-78, 1995.
4128 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4130 This is essentially an SSA-CCP pass modified to deal with ranges
4131 instead of constants.
4133 While propagating ranges, we may find that two or more SSA name
4134 have equivalent, though distinct ranges. For instance,
4137 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4139 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4143 In the code above, pointer p_5 has range [q_2, q_2], but from the
4144 code we can also determine that p_5 cannot be NULL and, if q_2 had
4145 a non-varying range, p_5's range should also be compatible with it.
4147 These equivalences are created by two expressions: ASSERT_EXPR and
4148 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4149 result of another assertion, then we can use the fact that p_5 and
4150 p_4 are equivalent when evaluating p_5's range.
4152 Together with value ranges, we also propagate these equivalences
4153 between names so that we can take advantage of information from
4154 multiple ranges when doing final replacement. Note that this
4155 equivalency relation is transitive but not symmetric.
4157 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4158 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4159 in contexts where that assertion does not hold (e.g., in line 6).
4161 TODO, the main difference between this pass and Patterson's is that
4162 we do not propagate edge probabilities. We only compute whether
4163 edges can be taken or not. That is, instead of having a spectrum
4164 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4165 DON'T KNOW. In the future, it may be worthwhile to propagate
4166 probabilities to aid branch prediction. */
4171 insert_range_assertions ();
4173 cfg_loops
= loop_optimizer_init (NULL
);
4175 scev_initialize (cfg_loops
);
4178 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
4184 loop_optimizer_finalize (cfg_loops
, NULL
);
4185 current_loops
= NULL
;
4188 remove_range_assertions ();
4194 return flag_tree_vrp
!= 0;
4197 struct tree_opt_pass pass_vrp
=
4200 gate_vrp
, /* gate */
4201 execute_vrp
, /* execute */
4204 0, /* static_pass_number */
4205 TV_TREE_VRP
, /* tv_id */
4206 PROP_ssa
| PROP_alias
, /* properties_required */
4207 0, /* properties_provided */
4208 0, /* properties_destroyed */
4209 0, /* todo_flags_start */
4214 | TODO_update_ssa
, /* todo_flags_finish */