* de.po: Update.
[official-gcc.git] / gcc / tree-ssa-structalias.c
blob0e2032c481a53dc519b618f50b6b72169235b22d
1 /* Tree based points-to analysis
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "output.h"
35 #include "errors.h"
36 #include "diagnostic.h"
37 #include "tree.h"
38 #include "c-common.h"
39 #include "tree-flow.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "c-tree.h"
43 #include "tree-gimple.h"
44 #include "hashtab.h"
45 #include "function.h"
46 #include "cgraph.h"
47 #include "tree-pass.h"
48 #include "timevar.h"
49 #include "alloc-pool.h"
50 #include "splay-tree.h"
51 #include "tree-ssa-structalias.h"
52 #include "cgraph.h"
54 /* The idea behind this analyzer is to generate set constraints from the
55 program, then solve the resulting constraints in order to generate the
56 points-to sets.
58 Set constraints are a way of modeling program analysis problems that
59 involve sets. They consist of an inclusion constraint language,
60 describing the variables (each variable is a set) and operations that
61 are involved on the variables, and a set of rules that derive facts
62 from these operations. To solve a system of set constraints, you derive
63 all possible facts under the rules, which gives you the correct sets
64 as a consequence.
66 See "Efficient Field-sensitive pointer analysis for C" by "David
67 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
68 http://citeseer.ist.psu.edu/pearce04efficient.html
70 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
71 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
72 http://citeseer.ist.psu.edu/heintze01ultrafast.html
74 There are three types of constraint expressions, DEREF, ADDRESSOF, and
75 SCALAR. Each constraint expression consists of a constraint type,
76 a variable, and an offset.
78 SCALAR is a constraint expression type used to represent x, whether
79 it appears on the LHS or the RHS of a statement.
80 DEREF is a constraint expression type used to represent *x, whether
81 it appears on the LHS or the RHS of a statement.
82 ADDRESSOF is a constraint expression used to represent &x, whether
83 it appears on the LHS or the RHS of a statement.
85 Each pointer variable in the program is assigned an integer id, and
86 each field of a structure variable is assigned an integer id as well.
88 Structure variables are linked to their list of fields through a "next
89 field" in each variable that points to the next field in offset
90 order.
91 Each variable for a structure field has
93 1. "size", that tells the size in bits of that field.
94 2. "fullsize, that tells the size in bits of the entire structure.
95 3. "offset", that tells the offset in bits from the beginning of the
96 structure to this field.
98 Thus,
99 struct f
101 int a;
102 int b;
103 } foo;
104 int *bar;
106 looks like
108 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
109 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
110 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
113 In order to solve the system of set constraints, the following is
114 done:
116 1. Each constraint variable x has a solution set associated with it,
117 Sol(x).
119 2. Constraints are separated into direct, copy, and complex.
120 Direct constraints are ADDRESSOF constraints that require no extra
121 processing, such as P = &Q
122 Copy constraints are those of the form P = Q.
123 Complex constraints are all the constraints involving dereferences.
125 3. All direct constraints of the form P = &Q are processed, such
126 that Q is added to Sol(P)
128 4. All complex constraints for a given constraint variable are stored in a
129 linked list attached to that variable's node.
131 5. A directed graph is built out of the copy constraints. Each
132 constraint variable is a node in the graph, and an edge from
133 Q to P is added for each copy constraint of the form P = Q
135 6. The graph is then walked, and solution sets are
136 propagated along the copy edges, such that an edge from Q to P
137 causes Sol(P) <- Sol(P) union Sol(Q).
139 7. As we visit each node, all complex constraints associated with
140 that node are processed by adding appropriate copy edges to the graph, or the
141 appropriate variables to the solution set.
143 8. The process of walking the graph is iterated until no solution
144 sets change.
146 Prior to walking the graph in steps 6 and 7, We perform static
147 cycle elimination on the constraint graph, as well
148 as off-line variable substitution.
150 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
151 on and turned into anything), but isn't. You can just see what offset
152 inside the pointed-to struct it's going to access.
154 TODO: Constant bounded arrays can be handled as if they were structs of the
155 same number of elements.
157 TODO: Modeling heap and incoming pointers becomes much better if we
158 add fields to them as we discover them, which we could do.
160 TODO: We could handle unions, but to be honest, it's probably not
161 worth the pain or slowdown. */
163 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
164 htab_t heapvar_for_stmt;
165 static bool use_field_sensitive = true;
166 static int in_ipa_mode = 0;
167 static bitmap_obstack predbitmap_obstack;
168 static bitmap_obstack ptabitmap_obstack;
169 static bitmap_obstack iteration_obstack;
171 static unsigned int create_variable_info_for (tree, const char *);
172 static void build_constraint_graph (void);
174 DEF_VEC_P(constraint_t);
175 DEF_VEC_ALLOC_P(constraint_t,heap);
177 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
178 if (a) \
179 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
181 static struct constraint_stats
183 unsigned int total_vars;
184 unsigned int collapsed_vars;
185 unsigned int unified_vars_static;
186 unsigned int unified_vars_dynamic;
187 unsigned int iterations;
188 unsigned int num_edges;
189 } stats;
191 struct variable_info
193 /* ID of this variable */
194 unsigned int id;
196 /* Name of this variable */
197 const char *name;
199 /* Tree that this variable is associated with. */
200 tree decl;
202 /* Offset of this variable, in bits, from the base variable */
203 unsigned HOST_WIDE_INT offset;
205 /* Size of the variable, in bits. */
206 unsigned HOST_WIDE_INT size;
208 /* Full size of the base variable, in bits. */
209 unsigned HOST_WIDE_INT fullsize;
211 /* A link to the variable for the next field in this structure. */
212 struct variable_info *next;
214 /* Node in the graph that represents the constraints and points-to
215 solution for the variable. */
216 unsigned int node;
218 /* True if the address of this variable is taken. Needed for
219 variable substitution. */
220 unsigned int address_taken:1;
222 /* True if this variable is the target of a dereference. Needed for
223 variable substitution. */
224 unsigned int indirect_target:1;
226 /* True if this is a variable created by the constraint analysis, such as
227 heap variables and constraints we had to break up. */
228 unsigned int is_artificial_var:1;
230 /* True if this is a special variable whose solution set should not be
231 changed. */
232 unsigned int is_special_var:1;
234 /* True for variables whose size is not known or variable. */
235 unsigned int is_unknown_size_var:1;
237 /* True for variables that have unions somewhere in them. */
238 unsigned int has_union:1;
240 /* True if this is a heap variable. */
241 unsigned int is_heap_var:1;
243 /* Points-to set for this variable. */
244 bitmap solution;
246 /* Variable ids represented by this node. */
247 bitmap variables;
249 /* Vector of complex constraints for this node. Complex
250 constraints are those involving dereferences. */
251 VEC(constraint_t,heap) *complex;
253 /* Variable id this was collapsed to due to type unsafety.
254 This should be unused completely after build_constraint_graph, or
255 something is broken. */
256 struct variable_info *collapsed_to;
258 typedef struct variable_info *varinfo_t;
260 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
262 /* Pool of variable info structures. */
263 static alloc_pool variable_info_pool;
265 DEF_VEC_P(varinfo_t);
267 DEF_VEC_ALLOC_P(varinfo_t, heap);
269 /* Table of variable info structures for constraint variables. Indexed directly
270 by variable info id. */
271 static VEC(varinfo_t,heap) *varmap;
273 /* Return the varmap element N */
275 static inline varinfo_t
276 get_varinfo (unsigned int n)
278 return VEC_index(varinfo_t, varmap, n);
281 /* Return the varmap element N, following the collapsed_to link. */
283 static inline varinfo_t
284 get_varinfo_fc (unsigned int n)
286 varinfo_t v = VEC_index(varinfo_t, varmap, n);
288 if (v->collapsed_to)
289 return v->collapsed_to;
290 return v;
293 /* Variable that represents the unknown pointer. */
294 static varinfo_t var_anything;
295 static tree anything_tree;
296 static unsigned int anything_id;
298 /* Variable that represents the NULL pointer. */
299 static varinfo_t var_nothing;
300 static tree nothing_tree;
301 static unsigned int nothing_id;
303 /* Variable that represents read only memory. */
304 static varinfo_t var_readonly;
305 static tree readonly_tree;
306 static unsigned int readonly_id;
308 /* Variable that represents integers. This is used for when people do things
309 like &0->a.b. */
310 static varinfo_t var_integer;
311 static tree integer_tree;
312 static unsigned int integer_id;
315 /* Lookup a heap var for FROM, and return it if we find one. */
317 static tree
318 heapvar_lookup (tree from)
320 struct tree_map *h, in;
321 in.from = from;
323 h = htab_find_with_hash (heapvar_for_stmt, &in, htab_hash_pointer (from));
324 if (h)
325 return h->to;
326 return NULL_TREE;
329 /* Insert a mapping FROM->TO in the heap var for statement
330 hashtable. */
332 static void
333 heapvar_insert (tree from, tree to)
335 struct tree_map *h;
336 void **loc;
338 h = ggc_alloc (sizeof (struct tree_map));
339 h->hash = htab_hash_pointer (from);
340 h->from = from;
341 h->to = to;
342 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->hash, INSERT);
343 *(struct tree_map **) loc = h;
346 /* Return a new variable info structure consisting for a variable
347 named NAME, and using constraint graph node NODE. */
349 static varinfo_t
350 new_var_info (tree t, unsigned int id, const char *name, unsigned int node)
352 varinfo_t ret = pool_alloc (variable_info_pool);
354 ret->id = id;
355 ret->name = name;
356 ret->decl = t;
357 ret->node = node;
358 ret->address_taken = false;
359 ret->indirect_target = false;
360 ret->is_artificial_var = false;
361 ret->is_heap_var = false;
362 ret->is_special_var = false;
363 ret->is_unknown_size_var = false;
364 ret->has_union = false;
365 ret->solution = BITMAP_ALLOC (&ptabitmap_obstack);
366 ret->variables = BITMAP_ALLOC (&ptabitmap_obstack);
367 ret->complex = NULL;
368 ret->next = NULL;
369 ret->collapsed_to = NULL;
370 return ret;
373 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
375 /* An expression that appears in a constraint. */
377 struct constraint_expr
379 /* Constraint type. */
380 constraint_expr_type type;
382 /* Variable we are referring to in the constraint. */
383 unsigned int var;
385 /* Offset, in bits, of this constraint from the beginning of
386 variables it ends up referring to.
388 IOW, in a deref constraint, we would deref, get the result set,
389 then add OFFSET to each member. */
390 unsigned HOST_WIDE_INT offset;
393 typedef struct constraint_expr ce_s;
394 DEF_VEC_O(ce_s);
395 DEF_VEC_ALLOC_O(ce_s, heap);
396 static void get_constraint_for (tree, VEC(ce_s, heap) **, bool *);
397 static void do_deref (VEC (ce_s, heap) **);
399 /* Our set constraints are made up of two constraint expressions, one
400 LHS, and one RHS.
402 As described in the introduction, our set constraints each represent an
403 operation between set valued variables.
405 struct constraint
407 struct constraint_expr lhs;
408 struct constraint_expr rhs;
411 /* List of constraints that we use to build the constraint graph from. */
413 static VEC(constraint_t,heap) *constraints;
414 static alloc_pool constraint_pool;
416 /* An edge in the weighted constraint graph. The edges are weighted,
417 with a bit set in weights meaning their is an edge with that
418 weight.
419 We don't keep the src in the edge, because we always know what it
420 is. */
422 struct constraint_edge
424 unsigned int dest;
425 bitmap weights;
428 typedef struct constraint_edge *constraint_edge_t;
429 static alloc_pool constraint_edge_pool;
431 /* Return a new constraint edge from SRC to DEST. */
433 static constraint_edge_t
434 new_constraint_edge (unsigned int dest)
436 constraint_edge_t ret = pool_alloc (constraint_edge_pool);
437 ret->dest = dest;
438 ret->weights = NULL;
439 return ret;
442 DEF_VEC_P(constraint_edge_t);
443 DEF_VEC_ALLOC_P(constraint_edge_t,heap);
446 /* The constraint graph is represented internally in two different
447 ways. The overwhelming majority of edges in the constraint graph
448 are zero weigh edges, and thus, using a vector of contrainst_edge_t
449 is a waste of time and memory, since they have no weights. We
450 simply use a bitmap to store the preds and succs for each node.
451 The weighted edges are stored as a set of adjacency vectors, one
452 per variable. succs[x] is the vector of successors for variable x,
453 and preds[x] is the vector of predecessors for variable x. IOW,
454 all edges are "forward" edges, which is not like our CFG. So
455 remember that preds[x]->src == x, and succs[x]->src == x. */
457 struct constraint_graph
459 bitmap *zero_weight_succs;
460 bitmap *zero_weight_preds;
461 VEC(constraint_edge_t,heap) **succs;
462 VEC(constraint_edge_t,heap) **preds;
465 typedef struct constraint_graph *constraint_graph_t;
467 static constraint_graph_t graph;
469 /* Create a new constraint consisting of LHS and RHS expressions. */
471 static constraint_t
472 new_constraint (const struct constraint_expr lhs,
473 const struct constraint_expr rhs)
475 constraint_t ret = pool_alloc (constraint_pool);
476 ret->lhs = lhs;
477 ret->rhs = rhs;
478 return ret;
481 /* Print out constraint C to FILE. */
483 void
484 dump_constraint (FILE *file, constraint_t c)
486 if (c->lhs.type == ADDRESSOF)
487 fprintf (file, "&");
488 else if (c->lhs.type == DEREF)
489 fprintf (file, "*");
490 fprintf (file, "%s", get_varinfo_fc (c->lhs.var)->name);
491 if (c->lhs.offset != 0)
492 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
493 fprintf (file, " = ");
494 if (c->rhs.type == ADDRESSOF)
495 fprintf (file, "&");
496 else if (c->rhs.type == DEREF)
497 fprintf (file, "*");
498 fprintf (file, "%s", get_varinfo_fc (c->rhs.var)->name);
499 if (c->rhs.offset != 0)
500 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
501 fprintf (file, "\n");
504 /* Print out constraint C to stderr. */
506 void
507 debug_constraint (constraint_t c)
509 dump_constraint (stderr, c);
512 /* Print out all constraints to FILE */
514 void
515 dump_constraints (FILE *file)
517 int i;
518 constraint_t c;
519 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
520 dump_constraint (file, c);
523 /* Print out all constraints to stderr. */
525 void
526 debug_constraints (void)
528 dump_constraints (stderr);
531 /* SOLVER FUNCTIONS
533 The solver is a simple worklist solver, that works on the following
534 algorithm:
536 sbitmap changed_nodes = all ones;
537 changed_count = number of nodes;
538 For each node that was already collapsed:
539 changed_count--;
541 while (changed_count > 0)
543 compute topological ordering for constraint graph
545 find and collapse cycles in the constraint graph (updating
546 changed if necessary)
548 for each node (n) in the graph in topological order:
549 changed_count--;
551 Process each complex constraint associated with the node,
552 updating changed if necessary.
554 For each outgoing edge from n, propagate the solution from n to
555 the destination of the edge, updating changed as necessary.
557 } */
559 /* Return true if two constraint expressions A and B are equal. */
561 static bool
562 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
564 return a.type == b.type && a.var == b.var && a.offset == b.offset;
567 /* Return true if constraint expression A is less than constraint expression
568 B. This is just arbitrary, but consistent, in order to give them an
569 ordering. */
571 static bool
572 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
574 if (a.type == b.type)
576 if (a.var == b.var)
577 return a.offset < b.offset;
578 else
579 return a.var < b.var;
581 else
582 return a.type < b.type;
585 /* Return true if constraint A is less than constraint B. This is just
586 arbitrary, but consistent, in order to give them an ordering. */
588 static bool
589 constraint_less (const constraint_t a, const constraint_t b)
591 if (constraint_expr_less (a->lhs, b->lhs))
592 return true;
593 else if (constraint_expr_less (b->lhs, a->lhs))
594 return false;
595 else
596 return constraint_expr_less (a->rhs, b->rhs);
599 /* Return true if two constraints A and B are equal. */
601 static bool
602 constraint_equal (struct constraint a, struct constraint b)
604 return constraint_expr_equal (a.lhs, b.lhs)
605 && constraint_expr_equal (a.rhs, b.rhs);
609 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
611 static constraint_t
612 constraint_vec_find (VEC(constraint_t,heap) *vec,
613 struct constraint lookfor)
615 unsigned int place;
616 constraint_t found;
618 if (vec == NULL)
619 return NULL;
621 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
622 if (place >= VEC_length (constraint_t, vec))
623 return NULL;
624 found = VEC_index (constraint_t, vec, place);
625 if (!constraint_equal (*found, lookfor))
626 return NULL;
627 return found;
630 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
632 static void
633 constraint_set_union (VEC(constraint_t,heap) **to,
634 VEC(constraint_t,heap) **from)
636 int i;
637 constraint_t c;
639 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
641 if (constraint_vec_find (*to, *c) == NULL)
643 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
644 constraint_less);
645 VEC_safe_insert (constraint_t, heap, *to, place, c);
650 /* Take a solution set SET, add OFFSET to each member of the set, and
651 overwrite SET with the result when done. */
653 static void
654 solution_set_add (bitmap set, unsigned HOST_WIDE_INT offset)
656 bitmap result = BITMAP_ALLOC (&iteration_obstack);
657 unsigned int i;
658 bitmap_iterator bi;
660 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
662 /* If this is a properly sized variable, only add offset if it's
663 less than end. Otherwise, it is globbed to a single
664 variable. */
666 if ((get_varinfo (i)->offset + offset) < get_varinfo (i)->fullsize)
668 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (i)->offset + offset;
669 varinfo_t v = first_vi_for_offset (get_varinfo (i), fieldoffset);
670 if (!v)
671 continue;
672 bitmap_set_bit (result, v->id);
674 else if (get_varinfo (i)->is_artificial_var
675 || get_varinfo (i)->has_union
676 || get_varinfo (i)->is_unknown_size_var)
678 bitmap_set_bit (result, i);
682 bitmap_copy (set, result);
683 BITMAP_FREE (result);
686 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
687 process. */
689 static bool
690 set_union_with_increment (bitmap to, bitmap from, unsigned HOST_WIDE_INT inc)
692 if (inc == 0)
693 return bitmap_ior_into (to, from);
694 else
696 bitmap tmp;
697 bool res;
699 tmp = BITMAP_ALLOC (&iteration_obstack);
700 bitmap_copy (tmp, from);
701 solution_set_add (tmp, inc);
702 res = bitmap_ior_into (to, tmp);
703 BITMAP_FREE (tmp);
704 return res;
708 /* Insert constraint C into the list of complex constraints for VAR. */
710 static void
711 insert_into_complex (unsigned int var, constraint_t c)
713 varinfo_t vi = get_varinfo (var);
714 unsigned int place = VEC_lower_bound (constraint_t, vi->complex, c,
715 constraint_less);
716 VEC_safe_insert (constraint_t, heap, vi->complex, place, c);
720 /* Compare two constraint edges A and B, return true if they are equal. */
722 static bool
723 constraint_edge_equal (struct constraint_edge a, struct constraint_edge b)
725 return a.dest == b.dest;
728 /* Compare two constraint edges, return true if A is less than B */
730 static bool
731 constraint_edge_less (const constraint_edge_t a, const constraint_edge_t b)
733 if (a->dest < b->dest)
734 return true;
735 return false;
738 /* Find the constraint edge that matches LOOKFOR, in VEC.
739 Return the edge, if found, NULL otherwise. */
741 static constraint_edge_t
742 constraint_edge_vec_find (VEC(constraint_edge_t,heap) *vec,
743 struct constraint_edge lookfor)
745 unsigned int place;
746 constraint_edge_t edge = NULL;
748 place = VEC_lower_bound (constraint_edge_t, vec, &lookfor,
749 constraint_edge_less);
750 if (place >= VEC_length (constraint_edge_t, vec))
751 return NULL;
752 edge = VEC_index (constraint_edge_t, vec, place);
753 if (!constraint_edge_equal (*edge, lookfor))
754 return NULL;
755 return edge;
758 /* Condense two variable nodes into a single variable node, by moving
759 all associated info from SRC to TO. */
761 static void
762 condense_varmap_nodes (unsigned int to, unsigned int src)
764 varinfo_t tovi = get_varinfo (to);
765 varinfo_t srcvi = get_varinfo (src);
766 unsigned int i;
767 constraint_t c;
768 bitmap_iterator bi;
770 /* the src node, and all its variables, are now the to node. */
771 srcvi->node = to;
772 EXECUTE_IF_SET_IN_BITMAP (srcvi->variables, 0, i, bi)
773 get_varinfo (i)->node = to;
775 /* Merge the src node variables and the to node variables. */
776 bitmap_set_bit (tovi->variables, src);
777 bitmap_ior_into (tovi->variables, srcvi->variables);
778 bitmap_clear (srcvi->variables);
780 /* Move all complex constraints from src node into to node */
781 for (i = 0; VEC_iterate (constraint_t, srcvi->complex, i, c); i++)
783 /* In complex constraints for node src, we may have either
784 a = *src, and *src = a. */
786 if (c->rhs.type == DEREF)
787 c->rhs.var = to;
788 else
789 c->lhs.var = to;
791 constraint_set_union (&tovi->complex, &srcvi->complex);
792 VEC_free (constraint_t, heap, srcvi->complex);
793 srcvi->complex = NULL;
796 /* Erase an edge from SRC to SRC from GRAPH. This routine only
797 handles self-edges (e.g. an edge from a to a). */
799 static void
800 erase_graph_self_edge (constraint_graph_t graph, unsigned int src)
802 VEC(constraint_edge_t,heap) *predvec = graph->preds[src];
803 VEC(constraint_edge_t,heap) *succvec = graph->succs[src];
804 struct constraint_edge edge;
805 unsigned int place;
807 edge.dest = src;
809 /* Remove from the successors. */
810 place = VEC_lower_bound (constraint_edge_t, succvec, &edge,
811 constraint_edge_less);
813 /* Make sure we found the edge. */
814 #ifdef ENABLE_CHECKING
816 constraint_edge_t tmp = VEC_index (constraint_edge_t, succvec, place);
817 gcc_assert (constraint_edge_equal (*tmp, edge));
819 #endif
820 VEC_ordered_remove (constraint_edge_t, succvec, place);
822 /* Remove from the predecessors. */
823 place = VEC_lower_bound (constraint_edge_t, predvec, &edge,
824 constraint_edge_less);
826 /* Make sure we found the edge. */
827 #ifdef ENABLE_CHECKING
829 constraint_edge_t tmp = VEC_index (constraint_edge_t, predvec, place);
830 gcc_assert (constraint_edge_equal (*tmp, edge));
832 #endif
833 VEC_ordered_remove (constraint_edge_t, predvec, place);
836 /* Remove edges involving NODE from GRAPH. */
838 static void
839 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
841 VEC(constraint_edge_t,heap) *succvec = graph->succs[node];
842 VEC(constraint_edge_t,heap) *predvec = graph->preds[node];
843 bitmap_iterator bi;
844 unsigned int j;
845 constraint_edge_t c = NULL;
846 int i;
848 /* Walk the successors, erase the associated preds. */
850 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_succs[node], 0, j, bi)
851 if (j != node)
852 bitmap_clear_bit (graph->zero_weight_preds[j], node);
854 for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
855 if (c->dest != node)
857 unsigned int place;
858 struct constraint_edge lookfor;
859 constraint_edge_t result;
861 lookfor.dest = node;
862 place = VEC_lower_bound (constraint_edge_t, graph->preds[c->dest],
863 &lookfor, constraint_edge_less);
864 result = VEC_ordered_remove (constraint_edge_t,
865 graph->preds[c->dest], place);
866 pool_free (constraint_edge_pool, result);
869 /* Walk the preds, erase the associated succs. */
871 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_preds[node], 0, j, bi)
872 if (j != node)
873 bitmap_clear_bit (graph->zero_weight_succs[j], node);
875 for (i =0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
876 if (c->dest != node)
878 unsigned int place;
879 struct constraint_edge lookfor;
880 constraint_edge_t result;
882 lookfor.dest = node;
883 place = VEC_lower_bound (constraint_edge_t, graph->succs[c->dest],
884 &lookfor, constraint_edge_less);
885 result = VEC_ordered_remove (constraint_edge_t,
886 graph->succs[c->dest], place);
887 pool_free (constraint_edge_pool, result);
891 if (graph->zero_weight_preds[node])
893 BITMAP_FREE (graph->zero_weight_preds[node]);
894 graph->zero_weight_preds[node] = NULL;
897 if (graph->zero_weight_succs[node])
899 BITMAP_FREE (graph->zero_weight_succs[node]);
900 graph->zero_weight_succs[node] = NULL;
903 VEC_free (constraint_edge_t, heap, graph->preds[node]);
904 VEC_free (constraint_edge_t, heap, graph->succs[node]);
905 graph->preds[node] = NULL;
906 graph->succs[node] = NULL;
909 static bool edge_added = false;
911 /* Add edge (src, dest) to the graph. */
913 static bool
914 add_graph_edge (constraint_graph_t graph, unsigned int src, unsigned int dest)
916 unsigned int place;
917 VEC(constraint_edge_t,heap) *vec;
918 struct constraint_edge newe;
919 newe.dest = dest;
921 vec = graph->preds[src];
922 place = VEC_lower_bound (constraint_edge_t, vec, &newe,
923 constraint_edge_less);
924 if (place == VEC_length (constraint_edge_t, vec)
925 || VEC_index (constraint_edge_t, vec, place)->dest != dest)
927 constraint_edge_t edge = new_constraint_edge (dest);
929 VEC_safe_insert (constraint_edge_t, heap, graph->preds[src],
930 place, edge);
931 edge = new_constraint_edge (src);
933 place = VEC_lower_bound (constraint_edge_t, graph->succs[dest],
934 edge, constraint_edge_less);
935 VEC_safe_insert (constraint_edge_t, heap, graph->succs[dest],
936 place, edge);
937 edge_added = true;
938 stats.num_edges++;
939 return true;
941 else
942 return false;
946 /* Return the bitmap representing the weights of edge (SRC, DEST). */
948 static bitmap *
949 get_graph_weights (constraint_graph_t graph, unsigned int src,
950 unsigned int dest)
952 constraint_edge_t edge;
953 VEC(constraint_edge_t,heap) *vec;
954 struct constraint_edge lookfor;
956 lookfor.dest = dest;
958 vec = graph->preds[src];
959 edge = constraint_edge_vec_find (vec, lookfor);
960 gcc_assert (edge != NULL);
961 return &edge->weights;
964 /* Allocate graph weight bitmap for the edges associated with SRC and
965 DEST in GRAPH. Both the pred and the succ edges share a single
966 bitmap, so we need to set both edges to that bitmap. */
968 static bitmap
969 allocate_graph_weights (constraint_graph_t graph, unsigned int src,
970 unsigned int dest)
972 bitmap result;
973 constraint_edge_t edge;
974 VEC(constraint_edge_t,heap) *vec;
975 struct constraint_edge lookfor;
977 result = BITMAP_ALLOC (&ptabitmap_obstack);
979 /* Set the pred weight. */
980 lookfor.dest = dest;
981 vec = graph->preds[src];
982 edge = constraint_edge_vec_find (vec, lookfor);
983 gcc_assert (edge != NULL);
984 edge->weights = result;
986 /* Set the succ weight. */
987 lookfor.dest = src;
988 vec = graph->succs[dest];
989 edge = constraint_edge_vec_find (vec, lookfor);
990 gcc_assert (edge != NULL);
991 edge->weights = result;
993 return result;
997 /* Merge GRAPH nodes FROM and TO into node TO. */
999 static void
1000 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1001 unsigned int from)
1003 VEC(constraint_edge_t,heap) *succvec = graph->succs[from];
1004 VEC(constraint_edge_t,heap) *predvec = graph->preds[from];
1005 int i;
1006 constraint_edge_t c;
1007 unsigned int j;
1008 bitmap_iterator bi;
1010 /* Merge all the zero weighted predecessor edges. */
1011 if (graph->zero_weight_preds[from])
1013 if (!graph->zero_weight_preds[to])
1014 graph->zero_weight_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1016 EXECUTE_IF_SET_IN_BITMAP (graph->zero_weight_preds[from], 0, j, bi)
1018 if (j != to)
1020 bitmap_clear_bit (graph->zero_weight_succs[j], from);
1021 bitmap_set_bit (graph->zero_weight_succs[j], to);
1024 bitmap_ior_into (graph->zero_weight_preds[to],
1025 graph->zero_weight_preds[from]);
1028 /* Merge all the zero weighted successor edges. */
1029 if (graph->zero_weight_succs[from])
1031 if (!graph->zero_weight_succs[to])
1032 graph->zero_weight_succs[to] = BITMAP_ALLOC (&ptabitmap_obstack);
1033 EXECUTE_IF_SET_IN_BITMAP (graph->zero_weight_succs[from], 0, j, bi)
1035 bitmap_clear_bit (graph->zero_weight_preds[j], from);
1036 bitmap_set_bit (graph->zero_weight_preds[j], to);
1038 bitmap_ior_into (graph->zero_weight_succs[to],
1039 graph->zero_weight_succs[from]);
1042 /* Merge all the non-zero weighted predecessor edges. */
1043 for (i = 0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
1045 unsigned int d = c->dest;
1046 bitmap temp;
1047 bitmap *weights;
1049 if (c->dest == from)
1050 d = to;
1052 add_graph_edge (graph, to, d);
1054 temp = *(get_graph_weights (graph, from, c->dest));
1055 if (temp)
1057 weights = get_graph_weights (graph, to, d);
1058 if (!*weights)
1059 *weights = allocate_graph_weights (graph, to, d);
1061 bitmap_ior_into (*weights, temp);
1066 /* Merge all the non-zero weighted successor edges. */
1067 for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
1069 unsigned int d = c->dest;
1070 bitmap temp;
1071 bitmap *weights;
1073 if (c->dest == from)
1074 d = to;
1076 add_graph_edge (graph, d, to);
1078 temp = *(get_graph_weights (graph, c->dest, from));
1079 if (temp)
1081 weights = get_graph_weights (graph, d, to);
1082 if (!*weights)
1083 *weights = allocate_graph_weights (graph, d, to);
1084 bitmap_ior_into (*weights, temp);
1087 clear_edges_for_node (graph, from);
1090 /* Add a graph edge to GRAPH, going from TO to FROM, with WEIGHT, if
1091 it doesn't exist in the graph already.
1092 Return false if the edge already existed, true otherwise. */
1094 static bool
1095 int_add_graph_edge (constraint_graph_t graph, unsigned int to,
1096 unsigned int from, unsigned HOST_WIDE_INT weight)
1098 if (to == from && weight == 0)
1100 return false;
1102 else
1104 bool r = false;
1106 if (weight == 0)
1108 if (!graph->zero_weight_preds[to])
1109 graph->zero_weight_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1110 if (!graph->zero_weight_succs[from])
1111 graph->zero_weight_succs[from] = BITMAP_ALLOC (&ptabitmap_obstack);
1112 if (!bitmap_bit_p (graph->zero_weight_succs[from], to))
1114 edge_added = true;
1115 r = true;
1116 stats.num_edges++;
1117 bitmap_set_bit (graph->zero_weight_preds[to], from);
1118 bitmap_set_bit (graph->zero_weight_succs[from], to);
1121 else
1123 bitmap *weights;
1125 r = add_graph_edge (graph, to, from);
1126 weights = get_graph_weights (graph, to, from);
1128 if (!*weights)
1130 r = true;
1131 *weights = allocate_graph_weights (graph, to, from);
1132 bitmap_set_bit (*weights, weight);
1134 else
1136 r |= !bitmap_bit_p (*weights, weight);
1137 bitmap_set_bit (*weights, weight);
1141 return r;
1146 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1148 static bool
1149 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1150 unsigned int dest)
1152 struct constraint_edge lookfor;
1153 lookfor.dest = src;
1155 return (graph->zero_weight_succs[dest]
1156 && bitmap_bit_p (graph->zero_weight_succs[dest], src))
1157 || constraint_edge_vec_find (graph->succs[dest], lookfor) != NULL;
1160 /* Return true if {DEST, SRC} is an existing weighted graph edge (IE has
1161 a weight other than 0) in GRAPH. */
1162 static bool
1163 valid_weighted_graph_edge (constraint_graph_t graph, unsigned int src,
1164 unsigned int dest)
1166 struct constraint_edge lookfor;
1167 lookfor.dest = src;
1169 return graph->preds[src]
1170 && constraint_edge_vec_find (graph->succs[dest], lookfor) != NULL;
1174 /* Build the constraint graph. */
1176 static void
1177 build_constraint_graph (void)
1179 int i = 0;
1180 constraint_t c;
1182 graph = xmalloc (sizeof (struct constraint_graph));
1183 graph->succs = xcalloc (VEC_length (varinfo_t, varmap) + 1,
1184 sizeof (*graph->succs));
1185 graph->preds = xcalloc (VEC_length (varinfo_t, varmap) + 1,
1186 sizeof (*graph->preds));
1187 graph->zero_weight_succs = xcalloc (VEC_length (varinfo_t, varmap) + 1,
1188 sizeof (*graph->zero_weight_succs));
1189 graph->zero_weight_preds = xcalloc (VEC_length (varinfo_t, varmap) + 1,
1190 sizeof (*graph->zero_weight_preds));
1192 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1194 struct constraint_expr lhs = c->lhs;
1195 struct constraint_expr rhs = c->rhs;
1196 unsigned int lhsvar = get_varinfo_fc (lhs.var)->id;
1197 unsigned int rhsvar = get_varinfo_fc (rhs.var)->id;
1199 if (lhs.type == DEREF)
1201 /* *x = y or *x = &y (complex) */
1202 if (rhs.type == ADDRESSOF || rhsvar > anything_id)
1203 insert_into_complex (lhsvar, c);
1205 else if (rhs.type == DEREF)
1207 /* !special var= *y */
1208 if (!(get_varinfo (lhsvar)->is_special_var))
1209 insert_into_complex (rhsvar, c);
1211 else if (rhs.type == ADDRESSOF)
1213 /* x = &y */
1214 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1216 else if (lhsvar > anything_id)
1218 /* Ignore 0 weighted self edges, as they can't possibly contribute
1219 anything */
1220 if (lhsvar != rhsvar || rhs.offset != 0 || lhs.offset != 0)
1222 /* x = y (simple) */
1223 int_add_graph_edge (graph, lhs.var, rhs.var, rhs.offset);
1231 /* Changed variables on the last iteration. */
1232 static unsigned int changed_count;
1233 static sbitmap changed;
1235 DEF_VEC_I(unsigned);
1236 DEF_VEC_ALLOC_I(unsigned,heap);
1239 /* Strongly Connected Component visitation info. */
1241 struct scc_info
1243 sbitmap visited;
1244 sbitmap in_component;
1245 int current_index;
1246 unsigned int *visited_index;
1247 VEC(unsigned,heap) *scc_stack;
1248 VEC(unsigned,heap) *unification_queue;
1252 /* Recursive routine to find strongly connected components in GRAPH.
1253 SI is the SCC info to store the information in, and N is the id of current
1254 graph node we are processing.
1256 This is Tarjan's strongly connected component finding algorithm, as
1257 modified by Nuutila to keep only non-root nodes on the stack.
1258 The algorithm can be found in "On finding the strongly connected
1259 connected components in a directed graph" by Esko Nuutila and Eljas
1260 Soisalon-Soininen, in Information Processing Letters volume 49,
1261 number 1, pages 9-14. */
1263 static void
1264 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1266 unsigned int i;
1267 bitmap_iterator bi;
1269 gcc_assert (get_varinfo (n)->node == n);
1270 SET_BIT (si->visited, n);
1271 RESET_BIT (si->in_component, n);
1272 si->visited_index[n] = si->current_index ++;
1274 /* Visit all the successors. */
1275 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_succs[n], 0, i, bi)
1277 unsigned int w = i;
1278 if (!TEST_BIT (si->visited, w))
1279 scc_visit (graph, si, w);
1280 if (!TEST_BIT (si->in_component, w))
1282 unsigned int t = get_varinfo (w)->node;
1283 unsigned int nnode = get_varinfo (n)->node;
1284 if (si->visited_index[t] < si->visited_index[nnode])
1285 get_varinfo (n)->node = t;
1289 /* See if any components have been identified. */
1290 if (get_varinfo (n)->node == n)
1292 unsigned int t = si->visited_index[n];
1293 SET_BIT (si->in_component, n);
1294 while (VEC_length (unsigned, si->scc_stack) != 0
1295 && t < si->visited_index[VEC_last (unsigned, si->scc_stack)])
1297 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1298 get_varinfo (w)->node = n;
1299 SET_BIT (si->in_component, w);
1300 /* Mark this node for collapsing. */
1301 VEC_safe_push (unsigned, heap, si->unification_queue, w);
1304 else
1305 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1309 /* Collapse two variables into one variable. */
1311 static void
1312 collapse_nodes (constraint_graph_t graph, unsigned int to, unsigned int from)
1314 bitmap tosol, fromsol;
1316 condense_varmap_nodes (to, from);
1317 tosol = get_varinfo (to)->solution;
1318 fromsol = get_varinfo (from)->solution;
1319 bitmap_ior_into (tosol, fromsol);
1320 merge_graph_nodes (graph, to, from);
1322 if (valid_graph_edge (graph, to, to))
1324 if (graph->zero_weight_preds[to])
1326 bitmap_clear_bit (graph->zero_weight_preds[to], to);
1327 bitmap_clear_bit (graph->zero_weight_succs[to], to);
1329 if (valid_weighted_graph_edge (graph, to, to))
1331 bitmap weights = *(get_graph_weights (graph, to, to));
1332 if (!weights || bitmap_empty_p (weights))
1333 erase_graph_self_edge (graph, to);
1336 BITMAP_FREE (fromsol);
1337 get_varinfo (to)->address_taken |= get_varinfo (from)->address_taken;
1338 get_varinfo (to)->indirect_target |= get_varinfo (from)->indirect_target;
1342 /* Unify nodes in GRAPH that we have found to be part of a cycle.
1343 SI is the Strongly Connected Components information structure that tells us
1344 what components to unify.
1345 UPDATE_CHANGED should be set to true if the changed sbitmap and changed
1346 count should be updated to reflect the unification. */
1348 static void
1349 process_unification_queue (constraint_graph_t graph, struct scc_info *si,
1350 bool update_changed)
1352 size_t i = 0;
1353 bitmap tmp = BITMAP_ALLOC (update_changed ? &iteration_obstack : NULL);
1354 bitmap_clear (tmp);
1356 /* We proceed as follows:
1358 For each component in the queue (components are delineated by
1359 when current_queue_element->node != next_queue_element->node):
1361 rep = representative node for component
1363 For each node (tounify) to be unified in the component,
1364 merge the solution for tounify into tmp bitmap
1366 clear solution for tounify
1368 merge edges from tounify into rep
1370 merge complex constraints from tounify into rep
1372 update changed count to note that tounify will never change
1373 again
1375 Merge tmp into solution for rep, marking rep changed if this
1376 changed rep's solution.
1378 Delete any 0 weighted self-edges we now have for rep. */
1379 while (i != VEC_length (unsigned, si->unification_queue))
1381 unsigned int tounify = VEC_index (unsigned, si->unification_queue, i);
1382 unsigned int n = get_varinfo (tounify)->node;
1384 if (dump_file && (dump_flags & TDF_DETAILS))
1385 fprintf (dump_file, "Unifying %s to %s\n",
1386 get_varinfo (tounify)->name,
1387 get_varinfo (n)->name);
1388 if (update_changed)
1389 stats.unified_vars_dynamic++;
1390 else
1391 stats.unified_vars_static++;
1392 bitmap_ior_into (tmp, get_varinfo (tounify)->solution);
1393 merge_graph_nodes (graph, n, tounify);
1394 condense_varmap_nodes (n, tounify);
1396 if (update_changed && TEST_BIT (changed, tounify))
1398 RESET_BIT (changed, tounify);
1399 if (!TEST_BIT (changed, n))
1400 SET_BIT (changed, n);
1401 else
1403 gcc_assert (changed_count > 0);
1404 changed_count--;
1408 bitmap_clear (get_varinfo (tounify)->solution);
1409 ++i;
1411 /* If we've either finished processing the entire queue, or
1412 finished processing all nodes for component n, update the solution for
1413 n. */
1414 if (i == VEC_length (unsigned, si->unification_queue)
1415 || get_varinfo (VEC_index (unsigned, si->unification_queue, i))->node != n)
1417 /* If the solution changes because of the merging, we need to mark
1418 the variable as changed. */
1419 if (bitmap_ior_into (get_varinfo (n)->solution, tmp))
1421 if (update_changed && !TEST_BIT (changed, n))
1423 SET_BIT (changed, n);
1424 changed_count++;
1427 bitmap_clear (tmp);
1429 if (valid_graph_edge (graph, n, n))
1431 if (graph->zero_weight_succs[n])
1433 if (graph->zero_weight_preds[n])
1434 bitmap_clear_bit (graph->zero_weight_preds[n], n);
1435 bitmap_clear_bit (graph->zero_weight_succs[n], n);
1437 if (valid_weighted_graph_edge (graph, n, n))
1439 bitmap weights = *(get_graph_weights (graph, n, n));
1440 if (!weights || bitmap_empty_p (weights))
1441 erase_graph_self_edge (graph, n);
1446 BITMAP_FREE (tmp);
1450 /* Information needed to compute the topological ordering of a graph. */
1452 struct topo_info
1454 /* sbitmap of visited nodes. */
1455 sbitmap visited;
1456 /* Array that stores the topological order of the graph, *in
1457 reverse*. */
1458 VEC(unsigned,heap) *topo_order;
1462 /* Initialize and return a topological info structure. */
1464 static struct topo_info *
1465 init_topo_info (void)
1467 size_t size = VEC_length (varinfo_t, varmap);
1468 struct topo_info *ti = xmalloc (sizeof (struct topo_info));
1469 ti->visited = sbitmap_alloc (size);
1470 sbitmap_zero (ti->visited);
1471 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1472 return ti;
1476 /* Free the topological sort info pointed to by TI. */
1478 static void
1479 free_topo_info (struct topo_info *ti)
1481 sbitmap_free (ti->visited);
1482 VEC_free (unsigned, heap, ti->topo_order);
1483 free (ti);
1486 /* Visit the graph in topological order, and store the order in the
1487 topo_info structure. */
1489 static void
1490 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1491 unsigned int n)
1493 VEC(constraint_edge_t,heap) *succs = graph->succs[n];
1494 bitmap temp;
1495 bitmap_iterator bi;
1496 constraint_edge_t c;
1497 int i;
1498 unsigned int j;
1500 SET_BIT (ti->visited, n);
1501 if (VEC_length (constraint_edge_t, succs) != 0)
1503 temp = BITMAP_ALLOC (&iteration_obstack);
1504 if (graph->zero_weight_succs[n])
1505 bitmap_ior_into (temp, graph->zero_weight_succs[n]);
1506 for (i = 0; VEC_iterate (constraint_edge_t, succs, i, c); i++)
1507 bitmap_set_bit (temp, c->dest);
1509 else
1510 temp = graph->zero_weight_succs[n];
1512 if (temp)
1513 EXECUTE_IF_SET_IN_BITMAP (temp, 0, j, bi)
1515 if (!TEST_BIT (ti->visited, j))
1516 topo_visit (graph, ti, j);
1518 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1521 /* Return true if variable N + OFFSET is a legal field of N. */
1523 static bool
1524 type_safe (unsigned int n, unsigned HOST_WIDE_INT *offset)
1526 varinfo_t ninfo = get_varinfo (n);
1528 /* For things we've globbed to single variables, any offset into the
1529 variable acts like the entire variable, so that it becomes offset
1530 0. */
1531 if (ninfo->is_special_var
1532 || ninfo->is_artificial_var
1533 || ninfo->is_unknown_size_var)
1535 *offset = 0;
1536 return true;
1538 return (get_varinfo (n)->offset + *offset) < get_varinfo (n)->fullsize;
1541 #define DONT_PROPAGATE_WITH_ANYTHING 0
1543 /* Process a constraint C that represents *x = &y. */
1545 static void
1546 do_da_constraint (constraint_graph_t graph ATTRIBUTE_UNUSED,
1547 constraint_t c, bitmap delta)
1549 unsigned int rhs = c->rhs.var;
1550 unsigned int j;
1551 bitmap_iterator bi;
1553 /* For each member j of Delta (Sol(x)), add x to Sol(j) */
1554 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1556 unsigned HOST_WIDE_INT offset = c->lhs.offset;
1557 if (type_safe (j, &offset) && !(get_varinfo (j)->is_special_var))
1559 /* *x != NULL && *x != ANYTHING*/
1560 varinfo_t v;
1561 unsigned int t;
1562 bitmap sol;
1563 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + offset;
1565 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1566 if (!v)
1567 continue;
1568 t = v->node;
1569 sol = get_varinfo (t)->solution;
1570 if (!bitmap_bit_p (sol, rhs))
1572 bitmap_set_bit (sol, rhs);
1573 if (!TEST_BIT (changed, t))
1575 SET_BIT (changed, t);
1576 changed_count++;
1580 else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
1581 fprintf (dump_file, "Untypesafe usage in do_da_constraint.\n");
1586 /* Process a constraint C that represents x = *y, using DELTA as the
1587 starting solution. */
1589 static void
1590 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1591 bitmap delta)
1593 unsigned int lhs = get_varinfo (c->lhs.var)->node;
1594 bool flag = false;
1595 bitmap sol = get_varinfo (lhs)->solution;
1596 unsigned int j;
1597 bitmap_iterator bi;
1599 #if DONT_PROPAGATE_WITH_ANYTHING
1600 if (bitmap_bit_p (delta, anything_id))
1602 flag = !bitmap_bit_p (sol, anything_id);
1603 if (flag)
1604 bitmap_set_bit (sol, anything_id);
1605 goto done;
1607 #endif
1608 /* For each variable j in delta (Sol(y)), add
1609 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1610 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1612 unsigned HOST_WIDE_INT roffset = c->rhs.offset;
1613 if (type_safe (j, &roffset))
1615 varinfo_t v;
1616 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + roffset;
1617 unsigned int t;
1619 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1620 if (!v)
1621 continue;
1622 t = v->node;
1624 /* Adding edges from the special vars is pointless.
1625 They don't have sets that can change. */
1626 if (get_varinfo (t) ->is_special_var)
1627 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1628 else if (int_add_graph_edge (graph, lhs, t, 0))
1629 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1631 else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
1632 fprintf (dump_file, "Untypesafe usage in do_sd_constraint\n");
1635 #if DONT_PROPAGATE_WITH_ANYTHING
1636 done:
1637 #endif
1638 /* If the LHS solution changed, mark the var as changed. */
1639 if (flag)
1641 get_varinfo (lhs)->solution = sol;
1642 if (!TEST_BIT (changed, lhs))
1644 SET_BIT (changed, lhs);
1645 changed_count++;
1650 /* Process a constraint C that represents *x = y. */
1652 static void
1653 do_ds_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1655 unsigned int rhs = get_varinfo (c->rhs.var)->node;
1656 unsigned HOST_WIDE_INT roff = c->rhs.offset;
1657 bitmap sol = get_varinfo (rhs)->solution;
1658 unsigned int j;
1659 bitmap_iterator bi;
1661 #if DONT_PROPAGATE_WITH_ANYTHING
1662 if (bitmap_bit_p (sol, anything_id))
1664 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1666 varinfo_t jvi = get_varinfo (j);
1667 unsigned int t;
1668 unsigned int loff = c->lhs.offset;
1669 unsigned HOST_WIDE_INT fieldoffset = jvi->offset + loff;
1670 varinfo_t v;
1672 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1673 if (!v)
1674 continue;
1675 t = v->node;
1677 if (!bitmap_bit_p (get_varinfo (t)->solution, anything_id))
1679 bitmap_set_bit (get_varinfo (t)->solution, anything_id);
1680 if (!TEST_BIT (changed, t))
1682 SET_BIT (changed, t);
1683 changed_count++;
1687 return;
1689 #endif
1691 /* For each member j of delta (Sol(x)), add an edge from y to j and
1692 union Sol(y) into Sol(j) */
1693 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1695 unsigned HOST_WIDE_INT loff = c->lhs.offset;
1696 if (type_safe (j, &loff) && !(get_varinfo(j)->is_special_var))
1698 varinfo_t v;
1699 unsigned int t;
1700 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + loff;
1702 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1703 if (!v)
1704 continue;
1705 t = v->node;
1706 if (int_add_graph_edge (graph, t, rhs, roff))
1708 bitmap tmp = get_varinfo (t)->solution;
1709 if (set_union_with_increment (tmp, sol, roff))
1711 get_varinfo (t)->solution = tmp;
1712 if (t == rhs)
1713 sol = get_varinfo (rhs)->solution;
1714 if (!TEST_BIT (changed, t))
1716 SET_BIT (changed, t);
1717 changed_count++;
1722 else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
1723 fprintf (dump_file, "Untypesafe usage in do_ds_constraint\n");
1727 /* Handle a non-simple (simple meaning requires no iteration), non-copy
1728 constraint (IE *x = &y, x = *y, and *x = y). */
1730 static void
1731 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1733 if (c->lhs.type == DEREF)
1735 if (c->rhs.type == ADDRESSOF)
1737 /* *x = &y */
1738 do_da_constraint (graph, c, delta);
1740 else
1742 /* *x = y */
1743 do_ds_constraint (graph, c, delta);
1746 else
1748 /* x = *y */
1749 if (!(get_varinfo (c->lhs.var)->is_special_var))
1750 do_sd_constraint (graph, c, delta);
1754 /* Initialize and return a new SCC info structure. */
1756 static struct scc_info *
1757 init_scc_info (void)
1759 struct scc_info *si = xmalloc (sizeof (struct scc_info));
1760 size_t size = VEC_length (varinfo_t, varmap);
1762 si->current_index = 0;
1763 si->visited = sbitmap_alloc (size);
1764 sbitmap_zero (si->visited);
1765 si->in_component = sbitmap_alloc (size);
1766 sbitmap_ones (si->in_component);
1767 si->visited_index = xcalloc (sizeof (unsigned int), size + 1);
1768 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1769 si->unification_queue = VEC_alloc (unsigned, heap, 1);
1770 return si;
1773 /* Free an SCC info structure pointed to by SI */
1775 static void
1776 free_scc_info (struct scc_info *si)
1778 sbitmap_free (si->visited);
1779 sbitmap_free (si->in_component);
1780 free (si->visited_index);
1781 VEC_free (unsigned, heap, si->scc_stack);
1782 VEC_free (unsigned, heap, si->unification_queue);
1783 free(si);
1787 /* Find cycles in GRAPH that occur, using strongly connected components, and
1788 collapse the cycles into a single representative node. if UPDATE_CHANGED
1789 is true, then update the changed sbitmap to note those nodes whose
1790 solutions have changed as a result of collapsing. */
1792 static void
1793 find_and_collapse_graph_cycles (constraint_graph_t graph, bool update_changed)
1795 unsigned int i;
1796 unsigned int size = VEC_length (varinfo_t, varmap);
1797 struct scc_info *si = init_scc_info ();
1799 for (i = 0; i != size; ++i)
1800 if (!TEST_BIT (si->visited, i) && get_varinfo (i)->node == i)
1801 scc_visit (graph, si, i);
1803 process_unification_queue (graph, si, update_changed);
1804 free_scc_info (si);
1807 /* Compute a topological ordering for GRAPH, and store the result in the
1808 topo_info structure TI. */
1810 static void
1811 compute_topo_order (constraint_graph_t graph,
1812 struct topo_info *ti)
1814 unsigned int i;
1815 unsigned int size = VEC_length (varinfo_t, varmap);
1817 for (i = 0; i != size; ++i)
1818 if (!TEST_BIT (ti->visited, i) && get_varinfo (i)->node == i)
1819 topo_visit (graph, ti, i);
1822 /* Return true if bitmap B is empty, or a bitmap other than bit 0 is set. */
1824 static bool
1825 bitmap_other_than_zero_bit_set (bitmap b)
1827 unsigned int i;
1828 bitmap_iterator bi;
1830 if (bitmap_empty_p (b))
1831 return false;
1832 EXECUTE_IF_SET_IN_BITMAP (b, 1, i, bi)
1833 return true;
1834 return false;
1837 /* Perform offline variable substitution.
1839 This is a linear time way of identifying variables that must have
1840 equivalent points-to sets, including those caused by static cycles,
1841 and single entry subgraphs, in the constraint graph.
1843 The technique is described in "Off-line variable substitution for
1844 scaling points-to analysis" by Atanas Rountev and Satish Chandra,
1845 in "ACM SIGPLAN Notices" volume 35, number 5, pages 47-56. */
1847 static void
1848 perform_var_substitution (constraint_graph_t graph)
1850 struct topo_info *ti = init_topo_info ();
1852 bitmap_obstack_initialize (&iteration_obstack);
1853 /* Compute the topological ordering of the graph, then visit each
1854 node in topological order. */
1855 compute_topo_order (graph, ti);
1857 while (VEC_length (unsigned, ti->topo_order) != 0)
1859 unsigned int i = VEC_pop (unsigned, ti->topo_order);
1860 unsigned int pred;
1861 varinfo_t vi = get_varinfo (i);
1862 bool okay_to_elim = false;
1863 unsigned int root = VEC_length (varinfo_t, varmap);
1864 VEC(constraint_edge_t,heap) *predvec = graph->preds[i];
1865 constraint_edge_t ce = NULL;
1866 bitmap tmp;
1867 unsigned int k;
1868 bitmap_iterator bi;
1870 /* We can't eliminate things whose address is taken, or which is
1871 the target of a dereference. */
1872 if (vi->address_taken || vi->indirect_target)
1873 continue;
1875 /* See if all predecessors of I are ripe for elimination */
1876 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_preds[i], 0, k, bi)
1878 unsigned int w;
1879 w = get_varinfo (k)->node;
1881 /* We can't eliminate the node if one of the predecessors is
1882 part of a different strongly connected component. */
1883 if (!okay_to_elim)
1885 root = w;
1886 okay_to_elim = true;
1888 else if (w != root)
1890 okay_to_elim = false;
1891 break;
1894 /* Theorem 4 in Rountev and Chandra: If i is a direct node,
1895 then Solution(i) is a subset of Solution (w), where w is a
1896 predecessor in the graph.
1897 Corollary: If all predecessors of i have the same
1898 points-to set, then i has that same points-to set as
1899 those predecessors. */
1900 tmp = BITMAP_ALLOC (NULL);
1901 bitmap_and_compl (tmp, get_varinfo (i)->solution,
1902 get_varinfo (w)->solution);
1903 if (!bitmap_empty_p (tmp))
1905 okay_to_elim = false;
1906 BITMAP_FREE (tmp);
1907 break;
1909 BITMAP_FREE (tmp);
1912 if (okay_to_elim)
1913 for (pred = 0;
1914 VEC_iterate (constraint_edge_t, predvec, pred, ce);
1915 pred++)
1917 bitmap weight;
1918 unsigned int w;
1919 weight = *(get_graph_weights (graph, i, ce->dest));
1921 /* We can't eliminate variables that have nonzero weighted
1922 edges between them. */
1923 if (weight && bitmap_other_than_zero_bit_set (weight))
1925 okay_to_elim = false;
1926 break;
1928 w = get_varinfo (ce->dest)->node;
1930 /* We can't eliminate the node if one of the predecessors is
1931 part of a different strongly connected component. */
1932 if (!okay_to_elim)
1934 root = w;
1935 okay_to_elim = true;
1937 else if (w != root)
1939 okay_to_elim = false;
1940 break;
1943 /* Theorem 4 in Rountev and Chandra: If i is a direct node,
1944 then Solution(i) is a subset of Solution (w), where w is a
1945 predecessor in the graph.
1946 Corollary: If all predecessors of i have the same
1947 points-to set, then i has that same points-to set as
1948 those predecessors. */
1949 tmp = BITMAP_ALLOC (NULL);
1950 bitmap_and_compl (tmp, get_varinfo (i)->solution,
1951 get_varinfo (w)->solution);
1952 if (!bitmap_empty_p (tmp))
1954 okay_to_elim = false;
1955 BITMAP_FREE (tmp);
1956 break;
1958 BITMAP_FREE (tmp);
1961 /* See if the root is different than the original node.
1962 If so, we've found an equivalence. */
1963 if (root != get_varinfo (i)->node && okay_to_elim)
1965 /* Found an equivalence */
1966 get_varinfo (i)->node = root;
1967 collapse_nodes (graph, root, i);
1968 if (dump_file && (dump_flags & TDF_DETAILS))
1969 fprintf (dump_file, "Collapsing %s into %s\n",
1970 get_varinfo (i)->name,
1971 get_varinfo (root)->name);
1972 stats.collapsed_vars++;
1976 bitmap_obstack_release (&iteration_obstack);
1977 free_topo_info (ti);
1980 /* Solve the constraint graph GRAPH using our worklist solver.
1981 This is based on the PW* family of solvers from the "Efficient Field
1982 Sensitive Pointer Analysis for C" paper.
1983 It works by iterating over all the graph nodes, processing the complex
1984 constraints and propagating the copy constraints, until everything stops
1985 changed. This corresponds to steps 6-8 in the solving list given above. */
1987 static void
1988 solve_graph (constraint_graph_t graph)
1990 unsigned int size = VEC_length (varinfo_t, varmap);
1991 unsigned int i;
1993 changed_count = size;
1994 changed = sbitmap_alloc (size);
1995 sbitmap_ones (changed);
1997 /* The already collapsed/unreachable nodes will never change, so we
1998 need to account for them in changed_count. */
1999 for (i = 0; i < size; i++)
2000 if (get_varinfo (i)->node != i)
2001 changed_count--;
2003 while (changed_count > 0)
2005 unsigned int i;
2006 struct topo_info *ti = init_topo_info ();
2007 stats.iterations++;
2009 bitmap_obstack_initialize (&iteration_obstack);
2011 if (edge_added)
2013 /* We already did cycle elimination once, when we did
2014 variable substitution, so we don't need it again for the
2015 first iteration. */
2016 if (stats.iterations > 1)
2017 find_and_collapse_graph_cycles (graph, true);
2019 edge_added = false;
2022 compute_topo_order (graph, ti);
2024 while (VEC_length (unsigned, ti->topo_order) != 0)
2026 i = VEC_pop (unsigned, ti->topo_order);
2027 gcc_assert (get_varinfo (i)->node == i);
2029 /* If the node has changed, we need to process the
2030 complex constraints and outgoing edges again. */
2031 if (TEST_BIT (changed, i))
2033 unsigned int j;
2034 constraint_t c;
2035 constraint_edge_t e = NULL;
2036 bitmap solution;
2037 bitmap_iterator bi;
2038 VEC(constraint_t,heap) *complex = get_varinfo (i)->complex;
2039 VEC(constraint_edge_t,heap) *succs;
2041 RESET_BIT (changed, i);
2042 changed_count--;
2044 /* Process the complex constraints */
2045 solution = get_varinfo (i)->solution;
2046 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2047 do_complex_constraint (graph, c, solution);
2049 /* Propagate solution to all successors. */
2050 succs = graph->succs[i];
2052 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_succs[i], 0, j, bi)
2054 bitmap tmp = get_varinfo (j)->solution;
2055 bool flag = false;
2057 flag = set_union_with_increment (tmp, solution, 0);
2059 if (flag)
2061 get_varinfo (j)->solution = tmp;
2062 if (!TEST_BIT (changed, j))
2064 SET_BIT (changed, j);
2065 changed_count++;
2069 for (j = 0; VEC_iterate (constraint_edge_t, succs, j, e); j++)
2071 bitmap tmp = get_varinfo (e->dest)->solution;
2072 bool flag = false;
2073 unsigned int k;
2074 bitmap weights = e->weights;
2075 bitmap_iterator bi;
2077 gcc_assert (weights && !bitmap_empty_p (weights));
2078 EXECUTE_IF_SET_IN_BITMAP (weights, 0, k, bi)
2079 flag |= set_union_with_increment (tmp, solution, k);
2081 if (flag)
2083 get_varinfo (e->dest)->solution = tmp;
2084 if (!TEST_BIT (changed, e->dest))
2086 SET_BIT (changed, e->dest);
2087 changed_count++;
2093 free_topo_info (ti);
2094 bitmap_obstack_release (&iteration_obstack);
2097 sbitmap_free (changed);
2101 /* CONSTRAINT AND VARIABLE GENERATION FUNCTIONS */
2103 /* Map from trees to variable ids. */
2104 static htab_t id_for_tree;
2106 typedef struct tree_id
2108 tree t;
2109 unsigned int id;
2110 } *tree_id_t;
2112 /* Hash a tree id structure. */
2114 static hashval_t
2115 tree_id_hash (const void *p)
2117 const tree_id_t ta = (tree_id_t) p;
2118 return htab_hash_pointer (ta->t);
2121 /* Return true if the tree in P1 and the tree in P2 are the same. */
2123 static int
2124 tree_id_eq (const void *p1, const void *p2)
2126 const tree_id_t ta1 = (tree_id_t) p1;
2127 const tree_id_t ta2 = (tree_id_t) p2;
2128 return ta1->t == ta2->t;
2131 /* Insert ID as the variable id for tree T in the hashtable. */
2133 static void
2134 insert_id_for_tree (tree t, int id)
2136 void **slot;
2137 struct tree_id finder;
2138 tree_id_t new_pair;
2140 finder.t = t;
2141 slot = htab_find_slot (id_for_tree, &finder, INSERT);
2142 gcc_assert (*slot == NULL);
2143 new_pair = xmalloc (sizeof (struct tree_id));
2144 new_pair->t = t;
2145 new_pair->id = id;
2146 *slot = (void *)new_pair;
2149 /* Find the variable id for tree T in ID_FOR_TREE. If T does not
2150 exist in the hash table, return false, otherwise, return true and
2151 set *ID to the id we found. */
2153 static bool
2154 lookup_id_for_tree (tree t, unsigned int *id)
2156 tree_id_t pair;
2157 struct tree_id finder;
2159 finder.t = t;
2160 pair = htab_find (id_for_tree, &finder);
2161 if (pair == NULL)
2162 return false;
2163 *id = pair->id;
2164 return true;
2167 /* Return a printable name for DECL */
2169 static const char *
2170 alias_get_name (tree decl)
2172 const char *res = get_name (decl);
2173 char *temp;
2174 int num_printed = 0;
2176 if (res != NULL)
2177 return res;
2179 res = "NULL";
2180 if (TREE_CODE (decl) == SSA_NAME)
2182 num_printed = asprintf (&temp, "%s_%u",
2183 alias_get_name (SSA_NAME_VAR (decl)),
2184 SSA_NAME_VERSION (decl));
2186 else if (DECL_P (decl))
2188 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2190 if (num_printed > 0)
2192 res = ggc_strdup (temp);
2193 free (temp);
2195 return res;
2198 /* Find the variable id for tree T in the hashtable.
2199 If T doesn't exist in the hash table, create an entry for it. */
2201 static unsigned int
2202 get_id_for_tree (tree t)
2204 tree_id_t pair;
2205 struct tree_id finder;
2207 finder.t = t;
2208 pair = htab_find (id_for_tree, &finder);
2209 if (pair == NULL)
2210 return create_variable_info_for (t, alias_get_name (t));
2212 return pair->id;
2215 /* Get a constraint expression from an SSA_VAR_P node. */
2217 static struct constraint_expr
2218 get_constraint_exp_from_ssa_var (tree t)
2220 struct constraint_expr cexpr;
2222 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2224 /* For parameters, get at the points-to set for the actual parm
2225 decl. */
2226 if (TREE_CODE (t) == SSA_NAME
2227 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2228 && default_def (SSA_NAME_VAR (t)) == t)
2229 return get_constraint_exp_from_ssa_var (SSA_NAME_VAR (t));
2231 cexpr.type = SCALAR;
2233 cexpr.var = get_id_for_tree (t);
2234 /* If we determine the result is "anything", and we know this is readonly,
2235 say it points to readonly memory instead. */
2236 if (cexpr.var == anything_id && TREE_READONLY (t))
2238 cexpr.type = ADDRESSOF;
2239 cexpr.var = readonly_id;
2242 cexpr.offset = 0;
2243 return cexpr;
2246 /* Process a completed constraint T, and add it to the constraint
2247 list. */
2249 static void
2250 process_constraint (constraint_t t)
2252 struct constraint_expr rhs = t->rhs;
2253 struct constraint_expr lhs = t->lhs;
2255 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2256 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2258 /* ANYTHING == ANYTHING is pointless. */
2259 if (lhs.var == anything_id && rhs.var == anything_id)
2260 return;
2262 /* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
2263 else if (lhs.var == anything_id && lhs.type == ADDRESSOF)
2265 rhs = t->lhs;
2266 t->lhs = t->rhs;
2267 t->rhs = rhs;
2268 process_constraint (t);
2270 /* This can happen in our IR with things like n->a = *p */
2271 else if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2273 /* Split into tmp = *rhs, *lhs = tmp */
2274 tree rhsdecl = get_varinfo (rhs.var)->decl;
2275 tree pointertype = TREE_TYPE (rhsdecl);
2276 tree pointedtotype = TREE_TYPE (pointertype);
2277 tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
2278 struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
2280 /* If this is an aggregate of known size, we should have passed
2281 this off to do_structure_copy, and it should have broken it
2282 up. */
2283 gcc_assert (!AGGREGATE_TYPE_P (pointedtotype)
2284 || get_varinfo (rhs.var)->is_unknown_size_var);
2286 process_constraint (new_constraint (tmplhs, rhs));
2287 process_constraint (new_constraint (lhs, tmplhs));
2289 else if (rhs.type == ADDRESSOF)
2291 varinfo_t vi;
2292 gcc_assert (rhs.offset == 0);
2294 for (vi = get_varinfo (rhs.var); vi != NULL; vi = vi->next)
2295 vi->address_taken = true;
2297 VEC_safe_push (constraint_t, heap, constraints, t);
2299 else
2301 if (lhs.type != DEREF && rhs.type == DEREF)
2302 get_varinfo (lhs.var)->indirect_target = true;
2303 VEC_safe_push (constraint_t, heap, constraints, t);
2308 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2309 structure. */
2311 static unsigned HOST_WIDE_INT
2312 bitpos_of_field (const tree fdecl)
2315 if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
2316 || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
2317 return -1;
2319 return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8)
2320 + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
2324 /* Return true if an access to [ACCESSPOS, ACCESSSIZE]
2325 overlaps with a field at [FIELDPOS, FIELDSIZE] */
2327 static bool
2328 offset_overlaps_with_access (const unsigned HOST_WIDE_INT fieldpos,
2329 const unsigned HOST_WIDE_INT fieldsize,
2330 const unsigned HOST_WIDE_INT accesspos,
2331 const unsigned HOST_WIDE_INT accesssize)
2333 if (fieldpos == accesspos && fieldsize == accesssize)
2334 return true;
2335 if (accesspos >= fieldpos && accesspos < (fieldpos + fieldsize))
2336 return true;
2337 if (accesspos < fieldpos && (accesspos + accesssize > fieldpos))
2338 return true;
2340 return false;
2343 /* Given a COMPONENT_REF T, return the constraint_expr for it. */
2345 static void
2346 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
2347 bool *anyoffset)
2349 tree orig_t = t;
2350 HOST_WIDE_INT bitsize = -1;
2351 HOST_WIDE_INT bitmaxsize = -1;
2352 HOST_WIDE_INT bitpos;
2353 tree forzero;
2354 struct constraint_expr *result;
2355 unsigned int beforelength = VEC_length (ce_s, *results);
2357 /* Some people like to do cute things like take the address of
2358 &0->a.b */
2359 forzero = t;
2360 while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
2361 forzero = TREE_OPERAND (forzero, 0);
2363 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
2365 struct constraint_expr temp;
2367 temp.offset = 0;
2368 temp.var = integer_id;
2369 temp.type = SCALAR;
2370 VEC_safe_push (ce_s, heap, *results, &temp);
2371 return;
2374 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
2375 get_constraint_for (t, results, anyoffset);
2376 result = VEC_last (ce_s, *results);
2378 gcc_assert (beforelength + 1 == VEC_length (ce_s, *results));
2380 /* This can also happen due to weird offsetof type macros. */
2381 if (TREE_CODE (t) != ADDR_EXPR && result->type == ADDRESSOF)
2382 result->type = SCALAR;
2384 /* If we know where this goes, then yay. Otherwise, booo. */
2385 if (bitmaxsize != -1
2386 && bitsize == bitmaxsize)
2388 result->offset = bitpos;
2390 /* FIXME: Handle the DEREF case. */
2391 else if (anyoffset && result->type != DEREF)
2393 result->offset = 0;
2394 *anyoffset = true;
2396 else
2398 result->var = anything_id;
2399 result->offset = 0;
2402 if (result->type == SCALAR)
2404 /* In languages like C, you can access one past the end of an
2405 array. You aren't allowed to dereference it, so we can
2406 ignore this constraint. When we handle pointer subtraction,
2407 we may have to do something cute here. */
2409 if (result->offset < get_varinfo (result->var)->fullsize)
2411 /* It's also not true that the constraint will actually start at the
2412 right offset, it may start in some padding. We only care about
2413 setting the constraint to the first actual field it touches, so
2414 walk to find it. */
2415 varinfo_t curr;
2416 for (curr = get_varinfo (result->var); curr; curr = curr->next)
2418 if (offset_overlaps_with_access (curr->offset, curr->size,
2419 result->offset, bitsize))
2421 result->var = curr->id;
2422 break;
2425 /* assert that we found *some* field there. The user couldn't be
2426 accessing *only* padding. */
2427 /* Still the user could access one past the end of an array
2428 embedded in a struct resulting in accessing *only* padding. */
2429 gcc_assert (curr || ref_contains_array_ref (orig_t));
2431 else
2432 if (dump_file && (dump_flags & TDF_DETAILS))
2433 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
2435 result->offset = 0;
2440 /* Dereference the constraint expression CONS, and return the result.
2441 DEREF (ADDRESSOF) = SCALAR
2442 DEREF (SCALAR) = DEREF
2443 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
2444 This is needed so that we can handle dereferencing DEREF constraints. */
2446 static void
2447 do_deref (VEC (ce_s, heap) **constraints)
2449 struct constraint_expr *c;
2450 unsigned int i = 0;
2451 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
2453 if (c->type == SCALAR)
2454 c->type = DEREF;
2455 else if (c->type == ADDRESSOF)
2456 c->type = SCALAR;
2457 else if (c->type == DEREF)
2459 tree tmpvar = create_tmp_var_raw (ptr_type_node, "dereftmp");
2460 struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
2461 process_constraint (new_constraint (tmplhs, *c));
2462 c->var = tmplhs.var;
2464 else
2465 gcc_unreachable ();
2470 /* Given a tree T, return the constraint expression for it. */
2472 static void
2473 get_constraint_for (tree t, VEC (ce_s, heap) **results, bool *anyoffset)
2475 struct constraint_expr temp;
2477 /* x = integer is all glommed to a single variable, which doesn't
2478 point to anything by itself. That is, of course, unless it is an
2479 integer constant being treated as a pointer, in which case, we
2480 will return that this is really the addressof anything. This
2481 happens below, since it will fall into the default case. The only
2482 case we know something about an integer treated like a pointer is
2483 when it is the NULL pointer, and then we just say it points to
2484 NULL. */
2485 if (TREE_CODE (t) == INTEGER_CST
2486 && !POINTER_TYPE_P (TREE_TYPE (t)))
2488 temp.var = integer_id;
2489 temp.type = SCALAR;
2490 temp.offset = 0;
2491 VEC_safe_push (ce_s, heap, *results, &temp);
2492 return;
2494 else if (TREE_CODE (t) == INTEGER_CST
2495 && integer_zerop (t))
2497 temp.var = nothing_id;
2498 temp.type = ADDRESSOF;
2499 temp.offset = 0;
2500 VEC_safe_push (ce_s, heap, *results, &temp);
2501 return;
2504 switch (TREE_CODE_CLASS (TREE_CODE (t)))
2506 case tcc_expression:
2508 switch (TREE_CODE (t))
2510 case ADDR_EXPR:
2512 struct constraint_expr *c;
2513 unsigned int i;
2515 get_constraint_for (TREE_OPERAND (t, 0), results, anyoffset);
2516 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
2518 if (c->type == DEREF)
2519 c->type = SCALAR;
2520 else
2521 c->type = ADDRESSOF;
2523 return;
2525 break;
2526 case CALL_EXPR:
2528 /* XXX: In interprocedural mode, if we didn't have the
2529 body, we would need to do *each pointer argument =
2530 &ANYTHING added. */
2531 if (call_expr_flags (t) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA))
2533 varinfo_t vi;
2534 tree heapvar = heapvar_lookup (t);
2536 if (heapvar == NULL)
2538 heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
2539 DECL_EXTERNAL (heapvar) = 1;
2540 add_referenced_tmp_var (heapvar);
2541 heapvar_insert (t, heapvar);
2544 temp.var = create_variable_info_for (heapvar,
2545 alias_get_name (heapvar));
2547 vi = get_varinfo (temp.var);
2548 vi->is_artificial_var = 1;
2549 vi->is_heap_var = 1;
2550 temp.type = ADDRESSOF;
2551 temp.offset = 0;
2552 VEC_safe_push (ce_s, heap, *results, &temp);
2553 return;
2555 /* FALLTHRU */
2556 default:
2558 temp.type = ADDRESSOF;
2559 temp.var = anything_id;
2560 temp.offset = 0;
2561 VEC_safe_push (ce_s, heap, *results, &temp);
2562 return;
2566 case tcc_reference:
2568 switch (TREE_CODE (t))
2570 case INDIRECT_REF:
2572 get_constraint_for (TREE_OPERAND (t, 0), results, anyoffset);
2573 do_deref (results);
2574 return;
2576 case ARRAY_REF:
2577 case ARRAY_RANGE_REF:
2578 case COMPONENT_REF:
2579 get_constraint_for_component_ref (t, results, anyoffset);
2580 return;
2581 default:
2583 temp.type = ADDRESSOF;
2584 temp.var = anything_id;
2585 temp.offset = 0;
2586 VEC_safe_push (ce_s, heap, *results, &temp);
2587 return;
2591 case tcc_unary:
2593 switch (TREE_CODE (t))
2595 case NOP_EXPR:
2596 case CONVERT_EXPR:
2597 case NON_LVALUE_EXPR:
2599 tree op = TREE_OPERAND (t, 0);
2601 /* Cast from non-pointer to pointers are bad news for us.
2602 Anything else, we see through */
2603 if (!(POINTER_TYPE_P (TREE_TYPE (t))
2604 && ! POINTER_TYPE_P (TREE_TYPE (op))))
2606 get_constraint_for (op, results, anyoffset);
2607 return;
2610 /* FALLTHRU */
2612 default:
2614 temp.type = ADDRESSOF;
2615 temp.var = anything_id;
2616 temp.offset = 0;
2617 VEC_safe_push (ce_s, heap, *results, &temp);
2618 return;
2622 case tcc_exceptional:
2624 switch (TREE_CODE (t))
2626 case PHI_NODE:
2628 get_constraint_for (PHI_RESULT (t), results, anyoffset);
2629 return;
2631 break;
2632 case SSA_NAME:
2634 struct constraint_expr temp;
2635 temp = get_constraint_exp_from_ssa_var (t);
2636 VEC_safe_push (ce_s, heap, *results, &temp);
2637 return;
2639 break;
2640 default:
2642 temp.type = ADDRESSOF;
2643 temp.var = anything_id;
2644 temp.offset = 0;
2645 VEC_safe_push (ce_s, heap, *results, &temp);
2646 return;
2650 case tcc_declaration:
2652 struct constraint_expr temp;
2653 temp = get_constraint_exp_from_ssa_var (t);
2654 VEC_safe_push (ce_s, heap, *results, &temp);
2655 return;
2657 default:
2659 temp.type = ADDRESSOF;
2660 temp.var = anything_id;
2661 temp.offset = 0;
2662 VEC_safe_push (ce_s, heap, *results, &temp);
2663 return;
2669 /* Handle the structure copy case where we have a simple structure copy
2670 between LHS and RHS that is of SIZE (in bits)
2672 For each field of the lhs variable (lhsfield)
2673 For each field of the rhs variable at lhsfield.offset (rhsfield)
2674 add the constraint lhsfield = rhsfield
2676 If we fail due to some kind of type unsafety or other thing we
2677 can't handle, return false. We expect the caller to collapse the
2678 variable in that case. */
2680 static bool
2681 do_simple_structure_copy (const struct constraint_expr lhs,
2682 const struct constraint_expr rhs,
2683 const unsigned HOST_WIDE_INT size)
2685 varinfo_t p = get_varinfo (lhs.var);
2686 unsigned HOST_WIDE_INT pstart, last;
2687 pstart = p->offset;
2688 last = p->offset + size;
2689 for (; p && p->offset < last; p = p->next)
2691 varinfo_t q;
2692 struct constraint_expr templhs = lhs;
2693 struct constraint_expr temprhs = rhs;
2694 unsigned HOST_WIDE_INT fieldoffset;
2696 templhs.var = p->id;
2697 q = get_varinfo (temprhs.var);
2698 fieldoffset = p->offset - pstart;
2699 q = first_vi_for_offset (q, q->offset + fieldoffset);
2700 if (!q)
2701 return false;
2702 temprhs.var = q->id;
2703 process_constraint (new_constraint (templhs, temprhs));
2705 return true;
2709 /* Handle the structure copy case where we have a structure copy between a
2710 aggregate on the LHS and a dereference of a pointer on the RHS
2711 that is of SIZE (in bits)
2713 For each field of the lhs variable (lhsfield)
2714 rhs.offset = lhsfield->offset
2715 add the constraint lhsfield = rhs
2718 static void
2719 do_rhs_deref_structure_copy (const struct constraint_expr lhs,
2720 const struct constraint_expr rhs,
2721 const unsigned HOST_WIDE_INT size)
2723 varinfo_t p = get_varinfo (lhs.var);
2724 unsigned HOST_WIDE_INT pstart,last;
2725 pstart = p->offset;
2726 last = p->offset + size;
2728 for (; p && p->offset < last; p = p->next)
2730 varinfo_t q;
2731 struct constraint_expr templhs = lhs;
2732 struct constraint_expr temprhs = rhs;
2733 unsigned HOST_WIDE_INT fieldoffset;
2736 if (templhs.type == SCALAR)
2737 templhs.var = p->id;
2738 else
2739 templhs.offset = p->offset;
2741 q = get_varinfo (temprhs.var);
2742 fieldoffset = p->offset - pstart;
2743 temprhs.offset += fieldoffset;
2744 process_constraint (new_constraint (templhs, temprhs));
2748 /* Handle the structure copy case where we have a structure copy
2749 between a aggregate on the RHS and a dereference of a pointer on
2750 the LHS that is of SIZE (in bits)
2752 For each field of the rhs variable (rhsfield)
2753 lhs.offset = rhsfield->offset
2754 add the constraint lhs = rhsfield
2757 static void
2758 do_lhs_deref_structure_copy (const struct constraint_expr lhs,
2759 const struct constraint_expr rhs,
2760 const unsigned HOST_WIDE_INT size)
2762 varinfo_t p = get_varinfo (rhs.var);
2763 unsigned HOST_WIDE_INT pstart,last;
2764 pstart = p->offset;
2765 last = p->offset + size;
2767 for (; p && p->offset < last; p = p->next)
2769 varinfo_t q;
2770 struct constraint_expr templhs = lhs;
2771 struct constraint_expr temprhs = rhs;
2772 unsigned HOST_WIDE_INT fieldoffset;
2775 if (temprhs.type == SCALAR)
2776 temprhs.var = p->id;
2777 else
2778 temprhs.offset = p->offset;
2780 q = get_varinfo (templhs.var);
2781 fieldoffset = p->offset - pstart;
2782 templhs.offset += fieldoffset;
2783 process_constraint (new_constraint (templhs, temprhs));
2787 /* Sometimes, frontends like to give us bad type information. This
2788 function will collapse all the fields from VAR to the end of VAR,
2789 into VAR, so that we treat those fields as a single variable.
2790 We return the variable they were collapsed into. */
2792 static unsigned int
2793 collapse_rest_of_var (unsigned int var)
2795 varinfo_t currvar = get_varinfo (var);
2796 varinfo_t field;
2798 for (field = currvar->next; field; field = field->next)
2800 if (dump_file)
2801 fprintf (dump_file, "Type safety: Collapsing var %s into %s\n",
2802 field->name, currvar->name);
2804 gcc_assert (!field->collapsed_to);
2805 field->collapsed_to = currvar;
2808 currvar->next = NULL;
2809 currvar->size = currvar->fullsize - currvar->offset;
2811 return currvar->id;
2814 /* Handle aggregate copies by expanding into copies of the respective
2815 fields of the structures. */
2817 static void
2818 do_structure_copy (tree lhsop, tree rhsop)
2820 struct constraint_expr lhs, rhs, tmp;
2821 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
2822 varinfo_t p;
2823 unsigned HOST_WIDE_INT lhssize;
2824 unsigned HOST_WIDE_INT rhssize;
2826 get_constraint_for (lhsop, &lhsc, NULL);
2827 get_constraint_for (rhsop, &rhsc, NULL);
2828 gcc_assert (VEC_length (ce_s, lhsc) == 1);
2829 gcc_assert (VEC_length (ce_s, rhsc) == 1);
2830 lhs = *(VEC_last (ce_s, lhsc));
2831 rhs = *(VEC_last (ce_s, rhsc));
2833 VEC_free (ce_s, heap, lhsc);
2834 VEC_free (ce_s, heap, rhsc);
2836 /* If we have special var = x, swap it around. */
2837 if (lhs.var <= integer_id && !(get_varinfo (rhs.var)->is_special_var))
2839 tmp = lhs;
2840 lhs = rhs;
2841 rhs = tmp;
2844 /* This is fairly conservative for the RHS == ADDRESSOF case, in that it's
2845 possible it's something we could handle. However, most cases falling
2846 into this are dealing with transparent unions, which are slightly
2847 weird. */
2848 if (rhs.type == ADDRESSOF && !(get_varinfo (rhs.var)->is_special_var))
2850 rhs.type = ADDRESSOF;
2851 rhs.var = anything_id;
2854 /* If the RHS is a special var, or an addressof, set all the LHS fields to
2855 that special var. */
2856 if (rhs.var <= integer_id)
2858 for (p = get_varinfo (lhs.var); p; p = p->next)
2860 struct constraint_expr templhs = lhs;
2861 struct constraint_expr temprhs = rhs;
2863 if (templhs.type == SCALAR )
2864 templhs.var = p->id;
2865 else
2866 templhs.offset += p->offset;
2867 process_constraint (new_constraint (templhs, temprhs));
2870 else
2872 tree rhstype = TREE_TYPE (rhsop);
2873 tree lhstype = TREE_TYPE (lhsop);
2874 tree rhstypesize;
2875 tree lhstypesize;
2877 lhstypesize = DECL_P (lhsop) ? DECL_SIZE (lhsop) : TYPE_SIZE (lhstype);
2878 rhstypesize = DECL_P (rhsop) ? DECL_SIZE (rhsop) : TYPE_SIZE (rhstype);
2880 /* If we have a variably sized types on the rhs or lhs, and a deref
2881 constraint, add the constraint, lhsconstraint = &ANYTHING.
2882 This is conservatively correct because either the lhs is an unknown
2883 sized var (if the constraint is SCALAR), or the lhs is a DEREF
2884 constraint, and every variable it can point to must be unknown sized
2885 anyway, so we don't need to worry about fields at all. */
2886 if ((rhs.type == DEREF && TREE_CODE (rhstypesize) != INTEGER_CST)
2887 || (lhs.type == DEREF && TREE_CODE (lhstypesize) != INTEGER_CST))
2889 rhs.var = anything_id;
2890 rhs.type = ADDRESSOF;
2891 rhs.offset = 0;
2892 process_constraint (new_constraint (lhs, rhs));
2893 return;
2896 /* The size only really matters insofar as we don't set more or less of
2897 the variable. If we hit an unknown size var, the size should be the
2898 whole darn thing. */
2899 if (get_varinfo (rhs.var)->is_unknown_size_var)
2900 rhssize = ~0;
2901 else
2902 rhssize = TREE_INT_CST_LOW (rhstypesize);
2904 if (get_varinfo (lhs.var)->is_unknown_size_var)
2905 lhssize = ~0;
2906 else
2907 lhssize = TREE_INT_CST_LOW (lhstypesize);
2910 if (rhs.type == SCALAR && lhs.type == SCALAR)
2912 if (!do_simple_structure_copy (lhs, rhs, MIN (lhssize, rhssize)))
2914 lhs.var = collapse_rest_of_var (lhs.var);
2915 rhs.var = collapse_rest_of_var (rhs.var);
2916 lhs.offset = 0;
2917 rhs.offset = 0;
2918 lhs.type = SCALAR;
2919 rhs.type = SCALAR;
2920 process_constraint (new_constraint (lhs, rhs));
2923 else if (lhs.type != DEREF && rhs.type == DEREF)
2924 do_rhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
2925 else if (lhs.type == DEREF && rhs.type != DEREF)
2926 do_lhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
2927 else
2929 tree pointedtotype = lhstype;
2930 tree tmpvar;
2932 gcc_assert (rhs.type == DEREF && lhs.type == DEREF);
2933 tmpvar = create_tmp_var_raw (pointedtotype, "structcopydereftmp");
2934 do_structure_copy (tmpvar, rhsop);
2935 do_structure_copy (lhsop, tmpvar);
2940 /* Update related alias information kept in AI. This is used when
2941 building name tags, alias sets and deciding grouping heuristics.
2942 STMT is the statement to process. This function also updates
2943 ADDRESSABLE_VARS. */
2945 static void
2946 update_alias_info (tree stmt, struct alias_info *ai)
2948 bitmap addr_taken;
2949 use_operand_p use_p;
2950 ssa_op_iter iter;
2951 bool stmt_escapes_p = is_escape_site (stmt, ai);
2952 tree op;
2954 /* Mark all the variables whose address are taken by the statement. */
2955 addr_taken = addresses_taken (stmt);
2956 if (addr_taken)
2958 bitmap_ior_into (addressable_vars, addr_taken);
2960 /* If STMT is an escape point, all the addresses taken by it are
2961 call-clobbered. */
2962 if (stmt_escapes_p)
2964 bitmap_iterator bi;
2965 unsigned i;
2967 EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
2968 mark_call_clobbered (referenced_var (i));
2972 /* Process each operand use. If an operand may be aliased, keep
2973 track of how many times it's being used. For pointers, determine
2974 whether they are dereferenced by the statement, or whether their
2975 value escapes, etc. */
2976 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
2978 tree op, var;
2979 var_ann_t v_ann;
2980 struct ptr_info_def *pi;
2981 bool is_store, is_potential_deref;
2982 unsigned num_uses, num_derefs;
2984 op = USE_FROM_PTR (use_p);
2986 /* If STMT is a PHI node, OP may be an ADDR_EXPR. If so, add it
2987 to the set of addressable variables. */
2988 if (TREE_CODE (op) == ADDR_EXPR)
2990 gcc_assert (TREE_CODE (stmt) == PHI_NODE);
2992 /* PHI nodes don't have annotations for pinning the set
2993 of addresses taken, so we collect them here.
2995 FIXME, should we allow PHI nodes to have annotations
2996 so that they can be treated like regular statements?
2997 Currently, they are treated as second-class
2998 statements. */
2999 add_to_addressable_set (TREE_OPERAND (op, 0), &addressable_vars);
3000 continue;
3003 /* Ignore constants. */
3004 if (TREE_CODE (op) != SSA_NAME)
3005 continue;
3007 var = SSA_NAME_VAR (op);
3008 v_ann = var_ann (var);
3010 /* The base variable of an ssa name must be a GIMPLE register, and thus
3011 it cannot be aliased. */
3012 gcc_assert (!may_be_aliased (var));
3014 /* We are only interested in pointers. */
3015 if (!POINTER_TYPE_P (TREE_TYPE (op)))
3016 continue;
3018 pi = get_ptr_info (op);
3020 /* Add OP to AI->PROCESSED_PTRS, if it's not there already. */
3021 if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op)))
3023 SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op));
3024 VARRAY_PUSH_TREE (ai->processed_ptrs, op);
3027 /* If STMT is a PHI node, then it will not have pointer
3028 dereferences and it will not be an escape point. */
3029 if (TREE_CODE (stmt) == PHI_NODE)
3030 continue;
3032 /* Determine whether OP is a dereferenced pointer, and if STMT
3033 is an escape point, whether OP escapes. */
3034 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
3036 /* Handle a corner case involving address expressions of the
3037 form '&PTR->FLD'. The problem with these expressions is that
3038 they do not represent a dereference of PTR. However, if some
3039 other transformation propagates them into an INDIRECT_REF
3040 expression, we end up with '*(&PTR->FLD)' which is folded
3041 into 'PTR->FLD'.
3043 So, if the original code had no other dereferences of PTR,
3044 the aliaser will not create memory tags for it, and when
3045 &PTR->FLD gets propagated to INDIRECT_REF expressions, the
3046 memory operations will receive no V_MAY_DEF/VUSE operands.
3048 One solution would be to have count_uses_and_derefs consider
3049 &PTR->FLD a dereference of PTR. But that is wrong, since it
3050 is not really a dereference but an offset calculation.
3052 What we do here is to recognize these special ADDR_EXPR
3053 nodes. Since these expressions are never GIMPLE values (they
3054 are not GIMPLE invariants), they can only appear on the RHS
3055 of an assignment and their base address is always an
3056 INDIRECT_REF expression. */
3057 is_potential_deref = false;
3058 if (TREE_CODE (stmt) == MODIFY_EXPR
3059 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ADDR_EXPR
3060 && !is_gimple_val (TREE_OPERAND (stmt, 1)))
3062 /* If the RHS if of the form &PTR->FLD and PTR == OP, then
3063 this represents a potential dereference of PTR. */
3064 tree rhs = TREE_OPERAND (stmt, 1);
3065 tree base = get_base_address (TREE_OPERAND (rhs, 0));
3066 if (TREE_CODE (base) == INDIRECT_REF
3067 && TREE_OPERAND (base, 0) == op)
3068 is_potential_deref = true;
3071 if (num_derefs > 0 || is_potential_deref)
3073 /* Mark OP as dereferenced. In a subsequent pass,
3074 dereferenced pointers that point to a set of
3075 variables will be assigned a name tag to alias
3076 all the variables OP points to. */
3077 pi->is_dereferenced = 1;
3079 /* Keep track of how many time we've dereferenced each
3080 pointer. */
3081 NUM_REFERENCES_INC (v_ann);
3083 /* If this is a store operation, mark OP as being
3084 dereferenced to store, otherwise mark it as being
3085 dereferenced to load. */
3086 if (is_store)
3087 bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
3088 else
3089 bitmap_set_bit (ai->dereferenced_ptrs_load, DECL_UID (var));
3092 if (stmt_escapes_p && num_derefs < num_uses)
3094 /* If STMT is an escape point and STMT contains at
3095 least one direct use of OP, then the value of OP
3096 escapes and so the pointed-to variables need to
3097 be marked call-clobbered. */
3098 pi->value_escapes_p = 1;
3100 /* If the statement makes a function call, assume
3101 that pointer OP will be dereferenced in a store
3102 operation inside the called function. */
3103 if (get_call_expr_in (stmt))
3105 bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
3106 pi->is_dereferenced = 1;
3111 if (TREE_CODE (stmt) == PHI_NODE)
3112 return;
3114 /* Update reference counter for definitions to any
3115 potentially aliased variable. This is used in the alias
3116 grouping heuristics. */
3117 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
3119 tree var = SSA_NAME_VAR (op);
3120 var_ann_t ann = var_ann (var);
3121 bitmap_set_bit (ai->written_vars, DECL_UID (var));
3122 if (may_be_aliased (var))
3123 NUM_REFERENCES_INC (ann);
3127 /* Mark variables in V_MAY_DEF operands as being written to. */
3128 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
3130 tree var = DECL_P (op) ? op : SSA_NAME_VAR (op);
3131 bitmap_set_bit (ai->written_vars, DECL_UID (var));
3136 /* Handle pointer arithmetic EXPR when creating aliasing constraints.
3137 Expressions of the type PTR + CST can be handled in two ways:
3139 1- If the constraint for PTR is ADDRESSOF for a non-structure
3140 variable, then we can use it directly because adding or
3141 subtracting a constant may not alter the original ADDRESSOF
3142 constraint (i.e., pointer arithmetic may not legally go outside
3143 an object's boundaries).
3145 2- If the constraint for PTR is ADDRESSOF for a structure variable,
3146 then if CST is a compile-time constant that can be used as an
3147 offset, we can determine which sub-variable will be pointed-to
3148 by the expression.
3150 Return true if the expression is handled. For any other kind of
3151 expression, return false so that each operand can be added as a
3152 separate constraint by the caller. */
3154 static bool
3155 handle_ptr_arith (VEC (ce_s, heap) *lhsc, tree expr)
3157 tree op0, op1;
3158 struct constraint_expr *c, *c2;
3159 unsigned int i = 0;
3160 unsigned int j = 0;
3161 VEC (ce_s, heap) *temp = NULL;
3162 unsigned int rhsoffset = 0;
3164 if (TREE_CODE (expr) != PLUS_EXPR)
3165 return false;
3167 op0 = TREE_OPERAND (expr, 0);
3168 op1 = TREE_OPERAND (expr, 1);
3170 get_constraint_for (op0, &temp, NULL);
3171 if (POINTER_TYPE_P (TREE_TYPE (op0))
3172 && TREE_CODE (TREE_TYPE (TREE_TYPE (op0))) == RECORD_TYPE
3173 && TREE_CODE (op1) == INTEGER_CST)
3175 rhsoffset = TREE_INT_CST_LOW (op1) * BITS_PER_UNIT;
3179 for (i = 0; VEC_iterate (ce_s, lhsc, i, c); i++)
3180 for (j = 0; VEC_iterate (ce_s, temp, j, c2); j++)
3182 if (c2->type == ADDRESSOF && rhsoffset != 0)
3184 varinfo_t temp = get_varinfo (c2->var);
3186 /* An access one after the end of an array is valid,
3187 so simply punt on accesses we cannot resolve. */
3188 temp = first_vi_for_offset (temp, rhsoffset);
3189 if (temp == NULL)
3190 continue;
3191 c2->var = temp->id;
3192 c2->offset = 0;
3194 else
3195 c2->offset = rhsoffset;
3196 process_constraint (new_constraint (*c, *c2));
3199 VEC_free (ce_s, heap, temp);
3201 return true;
3205 /* Walk statement T setting up aliasing constraints according to the
3206 references found in T. This function is the main part of the
3207 constraint builder. AI points to auxiliary alias information used
3208 when building alias sets and computing alias grouping heuristics. */
3210 static void
3211 find_func_aliases (tree origt)
3213 tree t = origt;
3214 VEC(ce_s, heap) *lhsc = NULL;
3215 VEC(ce_s, heap) *rhsc = NULL;
3216 struct constraint_expr *c;
3218 if (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0))
3219 t = TREE_OPERAND (t, 0);
3221 /* Now build constraints expressions. */
3222 if (TREE_CODE (t) == PHI_NODE)
3224 /* Only care about pointers and structures containing
3225 pointers. */
3226 if (POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (t)))
3227 || AGGREGATE_TYPE_P (TREE_TYPE (PHI_RESULT (t))))
3229 int i;
3230 unsigned int j;
3232 /* For a phi node, assign all the arguments to
3233 the result. */
3234 get_constraint_for (PHI_RESULT (t), &lhsc, NULL);
3235 for (i = 0; i < PHI_NUM_ARGS (t); i++)
3237 get_constraint_for (PHI_ARG_DEF (t, i), &rhsc, NULL);
3238 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3240 struct constraint_expr *c2;
3241 while (VEC_length (ce_s, rhsc) > 0)
3243 c2 = VEC_last (ce_s, rhsc);
3244 process_constraint (new_constraint (*c, *c2));
3245 VEC_pop (ce_s, rhsc);
3251 /* In IPA mode, we need to generate constraints to pass call
3252 arguments through their calls. There are two case, either a
3253 modify_expr when we are returning a value, or just a plain
3254 call_expr when we are not. */
3255 else if (in_ipa_mode
3256 && ((TREE_CODE (t) == MODIFY_EXPR
3257 && TREE_CODE (TREE_OPERAND (t, 1)) == CALL_EXPR
3258 && !(call_expr_flags (TREE_OPERAND (t, 1))
3259 & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))
3260 || (TREE_CODE (t) == CALL_EXPR
3261 && !(call_expr_flags (t)
3262 & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))))
3264 tree lhsop;
3265 tree rhsop;
3266 unsigned int varid;
3267 bool found = false;
3268 tree arglist;
3269 varinfo_t fi;
3270 int i = 1;
3271 tree decl;
3272 if (TREE_CODE (t) == MODIFY_EXPR)
3274 lhsop = TREE_OPERAND (t, 0);
3275 rhsop = TREE_OPERAND (t, 1);
3277 else
3279 lhsop = NULL;
3280 rhsop = t;
3282 decl = get_callee_fndecl (rhsop);
3284 /* If we can directly resolve the function being called, do so.
3285 Otherwise, it must be some sort of indirect expression that
3286 we should still be able to handle. */
3287 if (decl)
3289 found = lookup_id_for_tree (decl, &varid);
3290 gcc_assert (found);
3292 else
3294 decl = TREE_OPERAND (rhsop, 0);
3295 found = lookup_id_for_tree (decl, &varid);
3296 gcc_assert (found);
3299 /* Assign all the passed arguments to the appropriate incoming
3300 parameters of the function. */
3301 fi = get_varinfo (varid);
3302 arglist = TREE_OPERAND (rhsop, 1);
3304 for (;arglist; arglist = TREE_CHAIN (arglist))
3306 tree arg = TREE_VALUE (arglist);
3307 struct constraint_expr lhs ;
3308 struct constraint_expr *rhsp;
3310 get_constraint_for (arg, &rhsc, NULL);
3311 if (TREE_CODE (decl) != FUNCTION_DECL)
3313 lhs.type = DEREF;
3314 lhs.var = fi->id;
3315 lhs.offset = i;
3317 else
3319 lhs.type = SCALAR;
3320 lhs.var = first_vi_for_offset (fi, i)->id;
3321 lhs.offset = 0;
3323 while (VEC_length (ce_s, rhsc) != 0)
3325 rhsp = VEC_last (ce_s, rhsc);
3326 process_constraint (new_constraint (lhs, *rhsp));
3327 VEC_pop (ce_s, rhsc);
3329 i++;
3331 /* If we are returning a value, assign it to the result. */
3332 if (lhsop)
3334 struct constraint_expr rhs;
3335 struct constraint_expr *lhsp;
3336 unsigned int j = 0;
3338 get_constraint_for (lhsop, &lhsc, NULL);
3339 if (TREE_CODE (decl) != FUNCTION_DECL)
3341 rhs.type = DEREF;
3342 rhs.var = fi->id;
3343 rhs.offset = i;
3345 else
3347 rhs.type = SCALAR;
3348 rhs.var = first_vi_for_offset (fi, i)->id;
3349 rhs.offset = 0;
3351 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3352 process_constraint (new_constraint (*lhsp, rhs));
3355 /* Otherwise, just a regular assignment statement. */
3356 else if (TREE_CODE (t) == MODIFY_EXPR)
3358 tree lhsop = TREE_OPERAND (t, 0);
3359 tree rhsop = TREE_OPERAND (t, 1);
3360 int i;
3362 if (AGGREGATE_TYPE_P (TREE_TYPE (lhsop))
3363 && AGGREGATE_TYPE_P (TREE_TYPE (rhsop)))
3365 do_structure_copy (lhsop, rhsop);
3367 else
3369 /* Only care about operations with pointers, structures
3370 containing pointers, dereferences, and call expressions. */
3371 if (POINTER_TYPE_P (TREE_TYPE (lhsop))
3372 || AGGREGATE_TYPE_P (TREE_TYPE (lhsop))
3373 || TREE_CODE (rhsop) == CALL_EXPR)
3375 get_constraint_for (lhsop, &lhsc, NULL);
3376 switch (TREE_CODE_CLASS (TREE_CODE (rhsop)))
3378 /* RHS that consist of unary operations,
3379 exceptional types, or bare decls/constants, get
3380 handled directly by get_constraint_for. */
3381 case tcc_reference:
3382 case tcc_declaration:
3383 case tcc_constant:
3384 case tcc_exceptional:
3385 case tcc_expression:
3386 case tcc_unary:
3388 unsigned int j;
3389 bool need_anyoffset = false;
3390 tree strippedrhs = rhsop;
3391 tree rhstype;
3393 /* XXX: Push this back into the ADDR_EXPR
3394 case, and remove anyoffset handling. */
3395 STRIP_NOPS (strippedrhs);
3396 rhstype = TREE_TYPE (strippedrhs);
3398 get_constraint_for (rhsop, &rhsc, &need_anyoffset);
3399 if (TREE_CODE (strippedrhs) == ADDR_EXPR
3400 && AGGREGATE_TYPE_P (TREE_TYPE (rhstype)))
3402 struct constraint_expr *origrhs;
3403 varinfo_t origvar;
3404 struct constraint_expr tmp;
3406 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3407 origrhs = VEC_last (ce_s, rhsc);
3408 tmp = *origrhs;
3409 VEC_pop (ce_s, rhsc);
3410 origvar = get_varinfo (origrhs->var);
3411 for (; origvar; origvar = origvar->next)
3413 tmp.var = origvar->id;
3414 VEC_safe_push (ce_s, heap, rhsc, &tmp);
3418 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3420 struct constraint_expr *c2;
3421 unsigned int k;
3423 for (k = 0; VEC_iterate (ce_s, rhsc, k, c2); k++)
3424 process_constraint (new_constraint (*c, *c2));
3428 break;
3430 case tcc_binary:
3432 /* For pointer arithmetic of the form
3433 PTR + CST, we can simply use PTR's
3434 constraint because pointer arithmetic is
3435 not allowed to go out of bounds. */
3436 if (handle_ptr_arith (lhsc, rhsop))
3437 break;
3439 /* FALLTHRU */
3441 /* Otherwise, walk each operand. Notice that we
3442 can't use the operand interface because we need
3443 to process expressions other than simple operands
3444 (e.g. INDIRECT_REF, ADDR_EXPR, CALL_EXPR). */
3445 default:
3446 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (rhsop)); i++)
3448 tree op = TREE_OPERAND (rhsop, i);
3449 unsigned int j;
3451 gcc_assert (VEC_length (ce_s, rhsc) == 0);
3452 get_constraint_for (op, &rhsc, NULL);
3453 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3455 struct constraint_expr *c2;
3456 while (VEC_length (ce_s, rhsc) > 0)
3458 c2 = VEC_last (ce_s, rhsc);
3459 process_constraint (new_constraint (*c, *c2));
3460 VEC_pop (ce_s, rhsc);
3469 /* After promoting variables and computing aliasing we will
3470 need to re-scan most statements. FIXME: Try to minimize the
3471 number of statements re-scanned. It's not really necessary to
3472 re-scan *all* statements. */
3473 mark_stmt_modified (origt);
3474 VEC_free (ce_s, heap, rhsc);
3475 VEC_free (ce_s, heap, lhsc);
3479 /* Find the first varinfo in the same variable as START that overlaps with
3480 OFFSET.
3481 Effectively, walk the chain of fields for the variable START to find the
3482 first field that overlaps with OFFSET.
3483 Return NULL if we can't find one. */
3485 static varinfo_t
3486 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
3488 varinfo_t curr = start;
3489 while (curr)
3491 /* We may not find a variable in the field list with the actual
3492 offset when when we have glommed a structure to a variable.
3493 In that case, however, offset should still be within the size
3494 of the variable. */
3495 if (offset >= curr->offset && offset < (curr->offset + curr->size))
3496 return curr;
3497 curr = curr->next;
3499 return NULL;
3503 /* Insert the varinfo FIELD into the field list for BASE, ordered by
3504 offset. */
3506 static void
3507 insert_into_field_list (varinfo_t base, varinfo_t field)
3509 varinfo_t prev = base;
3510 varinfo_t curr = base->next;
3512 if (curr == NULL)
3514 prev->next = field;
3515 field->next = NULL;
3517 else
3519 while (curr)
3521 if (field->offset <= curr->offset)
3522 break;
3523 prev = curr;
3524 curr = curr->next;
3526 field->next = prev->next;
3527 prev->next = field;
3531 /* qsort comparison function for two fieldoff's PA and PB */
3533 static int
3534 fieldoff_compare (const void *pa, const void *pb)
3536 const fieldoff_s *foa = (const fieldoff_s *)pa;
3537 const fieldoff_s *fob = (const fieldoff_s *)pb;
3538 HOST_WIDE_INT foasize, fobsize;
3540 if (foa->offset != fob->offset)
3541 return foa->offset - fob->offset;
3543 foasize = TREE_INT_CST_LOW (foa->size);
3544 fobsize = TREE_INT_CST_LOW (fob->size);
3545 return foasize - fobsize;
3548 /* Sort a fieldstack according to the field offset and sizes. */
3549 void sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
3551 qsort (VEC_address (fieldoff_s, fieldstack),
3552 VEC_length (fieldoff_s, fieldstack),
3553 sizeof (fieldoff_s),
3554 fieldoff_compare);
3557 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
3558 of TYPE onto fieldstack, recording their offsets along the way.
3559 OFFSET is used to keep track of the offset in this entire structure, rather
3560 than just the immediately containing structure. Returns the number
3561 of fields pushed.
3562 HAS_UNION is set to true if we find a union type as a field of
3563 TYPE. */
3566 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
3567 HOST_WIDE_INT offset, bool *has_union)
3569 tree field;
3570 int count = 0;
3572 if (TREE_CODE (type) == COMPLEX_TYPE)
3574 fieldoff_s *real_part, *img_part;
3575 real_part = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3576 real_part->type = TREE_TYPE (type);
3577 real_part->size = TYPE_SIZE (TREE_TYPE (type));
3578 real_part->offset = offset;
3579 real_part->decl = NULL_TREE;
3581 img_part = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3582 img_part->type = TREE_TYPE (type);
3583 img_part->size = TYPE_SIZE (TREE_TYPE (type));
3584 img_part->offset = offset + TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (type)));
3585 img_part->decl = NULL_TREE;
3587 return 2;
3590 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3591 if (TREE_CODE (field) == FIELD_DECL)
3593 bool push = false;
3594 int pushed = 0;
3596 if (has_union
3597 && (TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
3598 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
3599 *has_union = true;
3601 if (!var_can_have_subvars (field))
3602 push = true;
3603 else if (!(pushed = push_fields_onto_fieldstack
3604 (TREE_TYPE (field), fieldstack,
3605 offset + bitpos_of_field (field), has_union))
3606 && DECL_SIZE (field)
3607 && !integer_zerop (DECL_SIZE (field)))
3608 /* Empty structures may have actual size, like in C++. So
3609 see if we didn't push any subfields and the size is
3610 nonzero, push the field onto the stack */
3611 push = true;
3613 if (push)
3615 fieldoff_s *pair;
3617 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3618 pair->type = TREE_TYPE (field);
3619 pair->size = DECL_SIZE (field);
3620 pair->decl = field;
3621 pair->offset = offset + bitpos_of_field (field);
3622 count++;
3624 else
3625 count += pushed;
3628 return count;
3631 static void
3632 make_constraint_to_anything (varinfo_t vi)
3634 struct constraint_expr lhs, rhs;
3636 lhs.var = vi->id;
3637 lhs.offset = 0;
3638 lhs.type = SCALAR;
3640 rhs.var = anything_id;
3641 rhs.offset =0 ;
3642 rhs.type = ADDRESSOF;
3643 process_constraint (new_constraint (lhs, rhs));
3646 /* Count the number of arguments DECL has, and set IS_VARARGS to true
3647 if it is a varargs function. */
3649 static unsigned int
3650 count_num_arguments (tree decl, bool *is_varargs)
3652 unsigned int i = 0;
3653 tree t;
3655 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl));
3657 t = TREE_CHAIN (t))
3659 if (TREE_VALUE (t) == void_type_node)
3660 break;
3661 i++;
3664 if (!t)
3665 *is_varargs = true;
3666 return i;
3669 /* Creation function node for DECL, using NAME, and return the index
3670 of the variable we've created for the function. */
3672 static unsigned int
3673 create_function_info_for (tree decl, const char *name)
3675 unsigned int index = VEC_length (varinfo_t, varmap);
3676 varinfo_t vi;
3677 tree arg;
3678 unsigned int i;
3679 bool is_varargs = false;
3681 /* Create the variable info. */
3683 vi = new_var_info (decl, index, name, index);
3684 vi->decl = decl;
3685 vi->offset = 0;
3686 vi->has_union = 0;
3687 vi->size = 1;
3688 vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
3689 insert_id_for_tree (vi->decl, index);
3690 VEC_safe_push (varinfo_t, heap, varmap, vi);
3692 stats.total_vars++;
3694 /* If it's varargs, we don't know how many arguments it has, so we
3695 can't do much.
3697 if (is_varargs)
3699 vi->fullsize = ~0;
3700 vi->size = ~0;
3701 vi->is_unknown_size_var = true;
3702 return index;
3706 arg = DECL_ARGUMENTS (decl);
3708 /* Set up variables for each argument. */
3709 for (i = 1; i < vi->fullsize; i++)
3711 varinfo_t argvi;
3712 const char *newname;
3713 char *tempname;
3714 unsigned int newindex;
3715 tree argdecl = decl;
3717 if (arg)
3718 argdecl = arg;
3720 newindex = VEC_length (varinfo_t, varmap);
3721 asprintf (&tempname, "%s.arg%d", name, i-1);
3722 newname = ggc_strdup (tempname);
3723 free (tempname);
3725 argvi = new_var_info (argdecl, newindex,newname, newindex);
3726 argvi->decl = argdecl;
3727 VEC_safe_push (varinfo_t, heap, varmap, argvi);
3728 argvi->offset = i;
3729 argvi->size = 1;
3730 argvi->fullsize = vi->fullsize;
3731 argvi->has_union = false;
3732 insert_into_field_list (vi, argvi);
3733 stats.total_vars ++;
3734 if (arg)
3736 insert_id_for_tree (arg, newindex);
3737 arg = TREE_CHAIN (arg);
3741 /* Create a variable for the return var. */
3742 if (DECL_RESULT (decl) != NULL
3743 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
3745 varinfo_t resultvi;
3746 const char *newname;
3747 char *tempname;
3748 unsigned int newindex;
3749 tree resultdecl = decl;
3751 vi->fullsize ++;
3754 if (DECL_RESULT (decl))
3755 resultdecl = DECL_RESULT (decl);
3757 newindex = VEC_length (varinfo_t, varmap);
3758 asprintf (&tempname, "%s.result", name);
3759 newname = ggc_strdup (tempname);
3760 free (tempname);
3762 resultvi = new_var_info (resultdecl, newindex, newname, newindex);
3763 resultvi->decl = resultdecl;
3764 VEC_safe_push (varinfo_t, heap, varmap, resultvi);
3765 resultvi->offset = i;
3766 resultvi->size = 1;
3767 resultvi->fullsize = vi->fullsize;
3768 resultvi->has_union = false;
3769 insert_into_field_list (vi, resultvi);
3770 stats.total_vars ++;
3771 if (DECL_RESULT (decl))
3772 insert_id_for_tree (DECL_RESULT (decl), newindex);
3774 return index;
3778 /* Return true if FIELDSTACK contains fields that overlap.
3779 FIELDSTACK is assumed to be sorted by offset. */
3781 static bool
3782 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
3784 fieldoff_s *fo = NULL;
3785 unsigned int i;
3786 HOST_WIDE_INT lastoffset = -1;
3788 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
3790 if (fo->offset == lastoffset)
3791 return true;
3792 lastoffset = fo->offset;
3794 return false;
3797 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
3798 This will also create any varinfo structures necessary for fields
3799 of DECL. */
3801 static unsigned int
3802 create_variable_info_for (tree decl, const char *name)
3804 unsigned int index = VEC_length (varinfo_t, varmap);
3805 varinfo_t vi;
3806 tree decltype = TREE_TYPE (decl);
3807 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decltype);
3808 bool notokay = false;
3809 bool hasunion;
3810 bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
3811 VEC (fieldoff_s,heap) *fieldstack = NULL;
3813 if (TREE_CODE (decl) == FUNCTION_DECL && in_ipa_mode)
3814 return create_function_info_for (decl, name);
3816 hasunion = TREE_CODE (decltype) == UNION_TYPE
3817 || TREE_CODE (decltype) == QUAL_UNION_TYPE;
3818 if (var_can_have_subvars (decl) && use_field_sensitive && !hasunion)
3820 push_fields_onto_fieldstack (decltype, &fieldstack, 0, &hasunion);
3821 if (hasunion)
3823 VEC_free (fieldoff_s, heap, fieldstack);
3824 notokay = true;
3829 /* If the variable doesn't have subvars, we may end up needing to
3830 sort the field list and create fake variables for all the
3831 fields. */
3832 vi = new_var_info (decl, index, name, index);
3833 vi->decl = decl;
3834 vi->offset = 0;
3835 vi->has_union = hasunion;
3836 if (!declsize
3837 || TREE_CODE (declsize) != INTEGER_CST
3838 || TREE_CODE (decltype) == UNION_TYPE
3839 || TREE_CODE (decltype) == QUAL_UNION_TYPE)
3841 vi->is_unknown_size_var = true;
3842 vi->fullsize = ~0;
3843 vi->size = ~0;
3845 else
3847 vi->fullsize = TREE_INT_CST_LOW (declsize);
3848 vi->size = vi->fullsize;
3851 insert_id_for_tree (vi->decl, index);
3852 VEC_safe_push (varinfo_t, heap, varmap, vi);
3853 if (is_global && (!flag_whole_program || !in_ipa_mode))
3854 make_constraint_to_anything (vi);
3856 stats.total_vars++;
3857 if (use_field_sensitive
3858 && !notokay
3859 && !vi->is_unknown_size_var
3860 && var_can_have_subvars (decl))
3862 unsigned int newindex = VEC_length (varinfo_t, varmap);
3863 fieldoff_s *fo = NULL;
3864 unsigned int i;
3866 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
3868 if (! fo->size
3869 || TREE_CODE (fo->size) != INTEGER_CST
3870 || fo->offset < 0)
3872 notokay = true;
3873 break;
3877 /* We can't sort them if we have a field with a variable sized type,
3878 which will make notokay = true. In that case, we are going to return
3879 without creating varinfos for the fields anyway, so sorting them is a
3880 waste to boot. */
3881 if (!notokay)
3883 sort_fieldstack (fieldstack);
3884 /* Due to some C++ FE issues, like PR 22488, we might end up
3885 what appear to be overlapping fields even though they,
3886 in reality, do not overlap. Until the C++ FE is fixed,
3887 we will simply disable field-sensitivity for these cases. */
3888 notokay = check_for_overlaps (fieldstack);
3892 if (VEC_length (fieldoff_s, fieldstack) != 0)
3893 fo = VEC_index (fieldoff_s, fieldstack, 0);
3895 if (fo == NULL || notokay)
3897 vi->is_unknown_size_var = 1;
3898 vi->fullsize = ~0;
3899 vi->size = ~0;
3900 VEC_free (fieldoff_s, heap, fieldstack);
3901 return index;
3904 vi->size = TREE_INT_CST_LOW (fo->size);
3905 vi->offset = fo->offset;
3906 for (i = 1; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
3908 varinfo_t newvi;
3909 const char *newname;
3910 char *tempname;
3912 newindex = VEC_length (varinfo_t, varmap);
3913 if (fo->decl)
3914 asprintf (&tempname, "%s.%s", vi->name, alias_get_name (fo->decl));
3915 else
3916 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC, vi->name, fo->offset);
3917 newname = ggc_strdup (tempname);
3918 free (tempname);
3919 newvi = new_var_info (decl, newindex, newname, newindex);
3920 newvi->offset = fo->offset;
3921 newvi->size = TREE_INT_CST_LOW (fo->size);
3922 newvi->fullsize = vi->fullsize;
3923 insert_into_field_list (vi, newvi);
3924 VEC_safe_push (varinfo_t, heap, varmap, newvi);
3925 if (is_global && (!flag_whole_program || !in_ipa_mode))
3926 make_constraint_to_anything (newvi);
3928 stats.total_vars++;
3930 VEC_free (fieldoff_s, heap, fieldstack);
3932 return index;
3935 /* Print out the points-to solution for VAR to FILE. */
3937 void
3938 dump_solution_for_var (FILE *file, unsigned int var)
3940 varinfo_t vi = get_varinfo (var);
3941 unsigned int i;
3942 bitmap_iterator bi;
3944 fprintf (file, "%s = { ", vi->name);
3945 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (vi->node)->solution, 0, i, bi)
3947 fprintf (file, "%s ", get_varinfo (i)->name);
3949 fprintf (file, "}\n");
3952 /* Print the points-to solution for VAR to stdout. */
3954 void
3955 debug_solution_for_var (unsigned int var)
3957 dump_solution_for_var (stdout, var);
3961 /* Create varinfo structures for all of the variables in the
3962 function for intraprocedural mode. */
3964 static void
3965 intra_create_variable_infos (void)
3967 tree t;
3969 /* For each incoming argument arg, ARG = &ANYTHING */
3970 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
3972 struct constraint_expr lhs;
3973 varinfo_t p;
3975 lhs.offset = 0;
3976 lhs.type = SCALAR;
3977 lhs.var = create_variable_info_for (t, alias_get_name (t));
3979 for (p = get_varinfo (lhs.var); p; p = p->next)
3980 make_constraint_to_anything (p);
3985 /* Set bits in INTO corresponding to the variable uids in solution set
3986 FROM */
3988 static void
3989 set_uids_in_ptset (bitmap into, bitmap from)
3991 unsigned int i;
3992 bitmap_iterator bi;
3993 subvar_t sv;
3995 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
3997 varinfo_t vi = get_varinfo (i);
3999 /* The only artificial variables that are allowed in a may-alias
4000 set are heap variables. */
4001 if (vi->is_artificial_var && !vi->is_heap_var)
4002 continue;
4004 if (vi->has_union && get_subvars_for_var (vi->decl) != NULL)
4006 /* Variables containing unions may need to be converted to
4007 their SFT's, because SFT's can have unions and we cannot. */
4008 for (sv = get_subvars_for_var (vi->decl); sv; sv = sv->next)
4009 bitmap_set_bit (into, DECL_UID (sv->var));
4011 else if (TREE_CODE (vi->decl) == VAR_DECL
4012 || TREE_CODE (vi->decl) == PARM_DECL)
4014 if (var_can_have_subvars (vi->decl)
4015 && get_subvars_for_var (vi->decl))
4017 /* If VI->DECL is an aggregate for which we created
4018 SFTs, add the SFT corresponding to VI->OFFSET. */
4019 tree sft = get_subvar_at (vi->decl, vi->offset);
4020 if (sft)
4021 bitmap_set_bit (into, DECL_UID (sft));
4023 else
4025 /* Otherwise, just add VI->DECL to the alias set. */
4026 bitmap_set_bit (into, DECL_UID (vi->decl));
4033 static bool have_alias_info = false;
4035 /* Given a pointer variable P, fill in its points-to set, or return
4036 false if we can't. */
4038 bool
4039 find_what_p_points_to (tree p)
4041 unsigned int id = 0;
4043 if (!have_alias_info)
4044 return false;
4046 if (lookup_id_for_tree (p, &id))
4048 varinfo_t vi = get_varinfo (id);
4050 if (vi->is_artificial_var)
4051 return false;
4053 /* See if this is a field or a structure. */
4054 if (vi->size != vi->fullsize)
4056 /* Nothing currently asks about structure fields directly,
4057 but when they do, we need code here to hand back the
4058 points-to set. */
4059 if (!var_can_have_subvars (vi->decl)
4060 || get_subvars_for_var (vi->decl) == NULL)
4061 return false;
4063 else
4065 struct ptr_info_def *pi = get_ptr_info (p);
4066 unsigned int i;
4067 bitmap_iterator bi;
4069 /* This variable may have been collapsed, let's get the real
4070 variable. */
4071 vi = get_varinfo (vi->node);
4073 /* Translate artificial variables into SSA_NAME_PTR_INFO
4074 attributes. */
4075 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4077 varinfo_t vi = get_varinfo (i);
4079 if (vi->is_artificial_var)
4081 /* FIXME. READONLY should be handled better so that
4082 flow insensitive aliasing can disregard writable
4083 aliases. */
4084 if (vi->id == nothing_id)
4085 pi->pt_null = 1;
4086 else if (vi->id == anything_id)
4087 pi->pt_anything = 1;
4088 else if (vi->id == readonly_id)
4089 pi->pt_anything = 1;
4090 else if (vi->id == integer_id)
4091 pi->pt_anything = 1;
4092 else if (vi->is_heap_var)
4093 pi->pt_global_mem = 1;
4097 if (pi->pt_anything)
4098 return false;
4100 if (!pi->pt_vars)
4101 pi->pt_vars = BITMAP_GGC_ALLOC ();
4103 set_uids_in_ptset (pi->pt_vars, vi->solution);
4105 if (bitmap_empty_p (pi->pt_vars))
4106 pi->pt_vars = NULL;
4108 return true;
4112 return false;
4117 /* Dump points-to information to OUTFILE. */
4119 void
4120 dump_sa_points_to_info (FILE *outfile)
4122 unsigned int i;
4124 fprintf (outfile, "\nPoints-to sets\n\n");
4126 if (dump_flags & TDF_STATS)
4128 fprintf (outfile, "Stats:\n");
4129 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
4130 fprintf (outfile, "Statically unified vars: %d\n",
4131 stats.unified_vars_static);
4132 fprintf (outfile, "Collapsed vars: %d\n", stats.collapsed_vars);
4133 fprintf (outfile, "Dynamically unified vars: %d\n",
4134 stats.unified_vars_dynamic);
4135 fprintf (outfile, "Iterations: %d\n", stats.iterations);
4136 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
4139 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
4140 dump_solution_for_var (outfile, i);
4144 /* Debug points-to information to stderr. */
4146 void
4147 debug_sa_points_to_info (void)
4149 dump_sa_points_to_info (stderr);
4153 /* Initialize the always-existing constraint variables for NULL
4154 ANYTHING, READONLY, and INTEGER */
4156 static void
4157 init_base_vars (void)
4159 struct constraint_expr lhs, rhs;
4161 /* Create the NULL variable, used to represent that a variable points
4162 to NULL. */
4163 nothing_tree = create_tmp_var_raw (void_type_node, "NULL");
4164 var_nothing = new_var_info (nothing_tree, 0, "NULL", 0);
4165 insert_id_for_tree (nothing_tree, 0);
4166 var_nothing->is_artificial_var = 1;
4167 var_nothing->offset = 0;
4168 var_nothing->size = ~0;
4169 var_nothing->fullsize = ~0;
4170 var_nothing->is_special_var = 1;
4171 nothing_id = 0;
4172 VEC_safe_push (varinfo_t, heap, varmap, var_nothing);
4174 /* Create the ANYTHING variable, used to represent that a variable
4175 points to some unknown piece of memory. */
4176 anything_tree = create_tmp_var_raw (void_type_node, "ANYTHING");
4177 var_anything = new_var_info (anything_tree, 1, "ANYTHING", 1);
4178 insert_id_for_tree (anything_tree, 1);
4179 var_anything->is_artificial_var = 1;
4180 var_anything->size = ~0;
4181 var_anything->offset = 0;
4182 var_anything->next = NULL;
4183 var_anything->fullsize = ~0;
4184 var_anything->is_special_var = 1;
4185 anything_id = 1;
4187 /* Anything points to anything. This makes deref constraints just
4188 work in the presence of linked list and other p = *p type loops,
4189 by saying that *ANYTHING = ANYTHING. */
4190 VEC_safe_push (varinfo_t, heap, varmap, var_anything);
4191 lhs.type = SCALAR;
4192 lhs.var = anything_id;
4193 lhs.offset = 0;
4194 rhs.type = ADDRESSOF;
4195 rhs.var = anything_id;
4196 rhs.offset = 0;
4197 var_anything->address_taken = true;
4199 /* This specifically does not use process_constraint because
4200 process_constraint ignores all anything = anything constraints, since all
4201 but this one are redundant. */
4202 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
4204 /* Create the READONLY variable, used to represent that a variable
4205 points to readonly memory. */
4206 readonly_tree = create_tmp_var_raw (void_type_node, "READONLY");
4207 var_readonly = new_var_info (readonly_tree, 2, "READONLY", 2);
4208 var_readonly->is_artificial_var = 1;
4209 var_readonly->offset = 0;
4210 var_readonly->size = ~0;
4211 var_readonly->fullsize = ~0;
4212 var_readonly->next = NULL;
4213 var_readonly->is_special_var = 1;
4214 insert_id_for_tree (readonly_tree, 2);
4215 readonly_id = 2;
4216 VEC_safe_push (varinfo_t, heap, varmap, var_readonly);
4218 /* readonly memory points to anything, in order to make deref
4219 easier. In reality, it points to anything the particular
4220 readonly variable can point to, but we don't track this
4221 separately. */
4222 lhs.type = SCALAR;
4223 lhs.var = readonly_id;
4224 lhs.offset = 0;
4225 rhs.type = ADDRESSOF;
4226 rhs.var = anything_id;
4227 rhs.offset = 0;
4229 process_constraint (new_constraint (lhs, rhs));
4231 /* Create the INTEGER variable, used to represent that a variable points
4232 to an INTEGER. */
4233 integer_tree = create_tmp_var_raw (void_type_node, "INTEGER");
4234 var_integer = new_var_info (integer_tree, 3, "INTEGER", 3);
4235 insert_id_for_tree (integer_tree, 3);
4236 var_integer->is_artificial_var = 1;
4237 var_integer->size = ~0;
4238 var_integer->fullsize = ~0;
4239 var_integer->offset = 0;
4240 var_integer->next = NULL;
4241 var_integer->is_special_var = 1;
4242 integer_id = 3;
4243 VEC_safe_push (varinfo_t, heap, varmap, var_integer);
4245 /* *INTEGER = ANYTHING, because we don't know where a dereference of a random
4246 integer will point to. */
4247 lhs.type = SCALAR;
4248 lhs.var = integer_id;
4249 lhs.offset = 0;
4250 rhs.type = ADDRESSOF;
4251 rhs.var = anything_id;
4252 rhs.offset = 0;
4253 process_constraint (new_constraint (lhs, rhs));
4256 /* Return true if we actually need to solve the constraint graph in order to
4257 get our points-to sets. This is false when, for example, no addresses are
4258 taken other than special vars, or all points-to sets with members already
4259 contain the anything variable and there are no predecessors for other
4260 sets. */
4262 static bool
4263 need_to_solve (void)
4265 int i;
4266 varinfo_t v;
4267 bool found_address_taken = false;
4268 bool found_non_anything = false;
4270 for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
4272 if (v->is_special_var)
4273 continue;
4275 if (v->address_taken)
4276 found_address_taken = true;
4278 if (v->solution
4279 && !bitmap_empty_p (v->solution)
4280 && !bitmap_bit_p (v->solution, anything_id))
4281 found_non_anything = true;
4282 else if (bitmap_empty_p (v->solution)
4283 && (VEC_length (constraint_edge_t, graph->preds[v->id]) != 0
4284 || (graph->zero_weight_preds[v->id] && !bitmap_empty_p (graph->zero_weight_preds[v->id]))))
4285 found_non_anything = true;
4287 if (found_address_taken && found_non_anything)
4288 return true;
4291 return false;
4294 /* Initialize things necessary to perform PTA */
4296 static void
4297 init_alias_vars (void)
4299 bitmap_obstack_initialize (&ptabitmap_obstack);
4300 bitmap_obstack_initialize (&predbitmap_obstack);
4302 constraint_pool = create_alloc_pool ("Constraint pool",
4303 sizeof (struct constraint), 30);
4304 variable_info_pool = create_alloc_pool ("Variable info pool",
4305 sizeof (struct variable_info), 30);
4306 constraint_edge_pool = create_alloc_pool ("Constraint edges",
4307 sizeof (struct constraint_edge), 30);
4309 constraints = VEC_alloc (constraint_t, heap, 8);
4310 varmap = VEC_alloc (varinfo_t, heap, 8);
4311 id_for_tree = htab_create (10, tree_id_hash, tree_id_eq, free);
4312 memset (&stats, 0, sizeof (stats));
4314 init_base_vars ();
4318 /* Create points-to sets for the current function. See the comments
4319 at the start of the file for an algorithmic overview. */
4321 void
4322 compute_points_to_sets (struct alias_info *ai)
4324 basic_block bb;
4326 timevar_push (TV_TREE_PTA);
4328 init_alias_vars ();
4330 intra_create_variable_infos ();
4332 /* Now walk all statements and derive aliases. */
4333 FOR_EACH_BB (bb)
4335 block_stmt_iterator bsi;
4336 tree phi;
4338 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
4340 if (is_gimple_reg (PHI_RESULT (phi)))
4342 find_func_aliases (phi);
4343 /* Update various related attributes like escaped
4344 addresses, pointer dereferences for loads and stores.
4345 This is used when creating name tags and alias
4346 sets. */
4347 update_alias_info (phi, ai);
4351 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4353 tree stmt = bsi_stmt (bsi);
4354 find_func_aliases (stmt);
4355 /* Update various related attributes like escaped
4356 addresses, pointer dereferences for loads and stores.
4357 This is used when creating name tags and alias
4358 sets. */
4359 update_alias_info (stmt, ai);
4363 build_constraint_graph ();
4365 if (dump_file)
4367 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
4368 dump_constraints (dump_file);
4371 if (need_to_solve ())
4373 if (dump_file)
4374 fprintf (dump_file,
4375 "\nCollapsing static cycles and doing variable "
4376 "substitution:\n");
4378 find_and_collapse_graph_cycles (graph, false);
4379 perform_var_substitution (graph);
4381 if (dump_file)
4382 fprintf (dump_file, "\nSolving graph:\n");
4384 solve_graph (graph);
4387 if (dump_file)
4388 dump_sa_points_to_info (dump_file);
4390 have_alias_info = true;
4392 timevar_pop (TV_TREE_PTA);
4396 /* Delete created points-to sets. */
4398 void
4399 delete_points_to_sets (void)
4401 varinfo_t v;
4402 int i;
4404 htab_delete (id_for_tree);
4405 bitmap_obstack_release (&ptabitmap_obstack);
4406 bitmap_obstack_release (&predbitmap_obstack);
4407 VEC_free (constraint_t, heap, constraints);
4409 for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
4411 VEC_free (constraint_edge_t, heap, graph->succs[i]);
4412 VEC_free (constraint_edge_t, heap, graph->preds[i]);
4413 VEC_free (constraint_t, heap, v->complex);
4415 free (graph->zero_weight_preds);
4416 free (graph->zero_weight_succs);
4417 free (graph->succs);
4418 free (graph->preds);
4419 free (graph);
4421 VEC_free (varinfo_t, heap, varmap);
4422 free_alloc_pool (variable_info_pool);
4423 free_alloc_pool (constraint_pool);
4424 free_alloc_pool (constraint_edge_pool);
4426 have_alias_info = false;
4429 /* Return true if we should execute IPA PTA. */
4430 static bool
4431 gate_ipa_pta (void)
4433 return (flag_unit_at_a_time != 0
4434 /* Don't bother doing anything if the program has errors. */
4435 && !(errorcount || sorrycount));
4438 /* Execute the driver for IPA PTA. */
4439 static void
4440 ipa_pta_execute (void)
4442 struct cgraph_node *node;
4443 in_ipa_mode = 1;
4445 init_alias_vars ();
4447 for (node = cgraph_nodes; node; node = node->next)
4449 if (!node->analyzed || cgraph_is_master_clone (node))
4451 unsigned int varid;
4453 varid = create_function_info_for (node->decl,
4454 cgraph_node_name (node));
4455 if (node->local.externally_visible)
4457 varinfo_t fi = get_varinfo (varid);
4458 for (; fi; fi = fi->next)
4459 make_constraint_to_anything (fi);
4463 for (node = cgraph_nodes; node; node = node->next)
4465 if (node->analyzed && cgraph_is_master_clone (node))
4467 struct function *cfun = DECL_STRUCT_FUNCTION (node->decl);
4468 basic_block bb;
4469 tree old_func_decl = current_function_decl;
4470 if (dump_file)
4471 fprintf (dump_file,
4472 "Generating constraints for %s\n",
4473 cgraph_node_name (node));
4474 push_cfun (cfun);
4475 current_function_decl = node->decl;
4477 FOR_EACH_BB_FN (bb, cfun)
4479 block_stmt_iterator bsi;
4480 tree phi;
4482 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
4484 if (is_gimple_reg (PHI_RESULT (phi)))
4486 find_func_aliases (phi);
4490 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4492 tree stmt = bsi_stmt (bsi);
4493 find_func_aliases (stmt);
4496 current_function_decl = old_func_decl;
4497 pop_cfun ();
4499 else
4501 /* Make point to anything. */
4505 build_constraint_graph ();
4507 if (dump_file)
4509 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
4510 dump_constraints (dump_file);
4513 if (need_to_solve ())
4515 if (dump_file)
4516 fprintf (dump_file,
4517 "\nCollapsing static cycles and doing variable "
4518 "substitution:\n");
4520 find_and_collapse_graph_cycles (graph, false);
4521 perform_var_substitution (graph);
4523 if (dump_file)
4524 fprintf (dump_file, "\nSolving graph:\n");
4526 solve_graph (graph);
4529 if (dump_file)
4530 dump_sa_points_to_info (dump_file);
4531 in_ipa_mode = 0;
4534 struct tree_opt_pass pass_ipa_pta =
4536 "pta", /* name */
4537 gate_ipa_pta, /* gate */
4538 ipa_pta_execute, /* execute */
4539 NULL, /* sub */
4540 NULL, /* next */
4541 0, /* static_pass_number */
4542 TV_IPA_PTA, /* tv_id */
4543 0, /* properties_required */
4544 0, /* properties_provided */
4545 0, /* properties_destroyed */
4546 0, /* todo_flags_start */
4547 0, /* todo_flags_finish */
4548 0 /* letter */
4551 /* Initialize the heapvar for statement mapping. */
4552 void
4553 init_alias_heapvars (void)
4555 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, tree_map_eq, NULL);
4558 void
4559 delete_alias_heapvars (void)
4561 htab_delete (heapvar_for_stmt);
4565 #include "gt-tree-ssa-structalias.h"