1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
26 #include "coretypes.h"
31 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
40 #include "cfglayout.h"
42 #include "sched-int.h"
45 /* The number of insns to be scheduled in total. */
46 static int target_n_insns
;
47 /* The number of insns scheduled so far. */
48 static int sched_n_insns
;
50 /* Implementations of the sched_info functions for region scheduling. */
51 static void init_ready_list (struct ready_list
*);
52 static int can_schedule_ready_p (rtx
);
53 static int new_ready (rtx
);
54 static int schedule_more_p (void);
55 static const char *ebb_print_insn (rtx
, int);
56 static int rank (rtx
, rtx
);
57 static int contributes_to_priority (rtx
, rtx
);
58 static void compute_jump_reg_dependencies (rtx
, regset
, regset
, regset
);
59 static basic_block
earliest_block_with_similiar_load (basic_block
, rtx
);
60 static void add_deps_for_risky_insns (rtx
, rtx
);
61 static basic_block
schedule_ebb (rtx
, rtx
);
62 static basic_block
fix_basic_block_boundaries (basic_block
, basic_block
, rtx
,
64 static void add_missing_bbs (rtx
, basic_block
, basic_block
);
66 /* Return nonzero if there are more insns that should be scheduled. */
69 schedule_more_p (void)
71 return sched_n_insns
< target_n_insns
;
74 /* Add all insns that are initially ready to the ready list READY. Called
75 once before scheduling a set of insns. */
78 init_ready_list (struct ready_list
*ready
)
80 rtx prev_head
= current_sched_info
->prev_head
;
81 rtx next_tail
= current_sched_info
->next_tail
;
88 /* Print debugging information. */
89 if (sched_verbose
>= 5)
90 debug_dependencies ();
93 /* Initialize ready list with all 'ready' insns in target block.
94 Count number of insns in the target block being scheduled. */
95 for (insn
= NEXT_INSN (prev_head
); insn
!= next_tail
; insn
= NEXT_INSN (insn
))
97 if (INSN_DEP_COUNT (insn
) == 0)
98 ready_add (ready
, insn
);
103 /* Called after taking INSN from the ready list. Returns nonzero if this
104 insn can be scheduled, nonzero if we should silently discard it. */
107 can_schedule_ready_p (rtx insn ATTRIBUTE_UNUSED
)
113 /* Called after INSN has all its dependencies resolved. Return nonzero
114 if it should be moved to the ready list or the queue, or zero if we
115 should silently discard it. */
117 new_ready (rtx next ATTRIBUTE_UNUSED
)
122 /* Return a string that contains the insn uid and optionally anything else
123 necessary to identify this insn in an output. It's valid to use a
124 static buffer for this. The ALIGNED parameter should cause the string
125 to be formatted so that multiple output lines will line up nicely. */
128 ebb_print_insn (rtx insn
, int aligned ATTRIBUTE_UNUSED
)
132 sprintf (tmp
, "%4d", INSN_UID (insn
));
136 /* Compare priority of two insns. Return a positive number if the second
137 insn is to be preferred for scheduling, and a negative one if the first
138 is to be preferred. Zero if they are equally good. */
141 rank (rtx insn1
, rtx insn2
)
143 basic_block bb1
= BLOCK_FOR_INSN (insn1
);
144 basic_block bb2
= BLOCK_FOR_INSN (insn2
);
146 if (bb1
->count
> bb2
->count
147 || bb1
->frequency
> bb2
->frequency
)
149 if (bb1
->count
< bb2
->count
150 || bb1
->frequency
< bb2
->frequency
)
155 /* NEXT is an instruction that depends on INSN (a backward dependence);
156 return nonzero if we should include this dependence in priority
160 contributes_to_priority (rtx next ATTRIBUTE_UNUSED
,
161 rtx insn ATTRIBUTE_UNUSED
)
166 /* INSN is a JUMP_INSN, COND_SET is the set of registers that are
167 conditionally set before INSN. Store the set of registers that
168 must be considered as used by this jump in USED and that of
169 registers that must be considered as set in SET. */
172 compute_jump_reg_dependencies (rtx insn
, regset cond_set
, regset used
,
175 basic_block b
= BLOCK_FOR_INSN (insn
);
179 FOR_EACH_EDGE (e
, ei
, b
->succs
)
180 if (e
->flags
& EDGE_FALLTHRU
)
181 /* The jump may be a by-product of a branch that has been merged
182 in the main codepath after being conditionalized. Therefore
183 it may guard the fallthrough block from using a value that has
184 conditionally overwritten that of the main codepath. So we
185 consider that it restores the value of the main codepath. */
186 bitmap_and (set
, e
->dest
->il
.rtl
->global_live_at_start
, cond_set
);
188 bitmap_ior_into (used
, e
->dest
->il
.rtl
->global_live_at_start
);
191 /* Used in schedule_insns to initialize current_sched_info for scheduling
192 regions (or single basic blocks). */
194 static struct sched_info ebb_sched_info
=
197 can_schedule_ready_p
,
202 contributes_to_priority
,
203 compute_jump_reg_dependencies
,
210 /* It is possible that ebb scheduling eliminated some blocks.
211 Place blocks from FIRST to LAST before BEFORE. */
214 add_missing_bbs (rtx before
, basic_block first
, basic_block last
)
216 for (; last
!= first
->prev_bb
; last
= last
->prev_bb
)
218 before
= emit_note_before (NOTE_INSN_BASIC_BLOCK
, before
);
219 NOTE_BASIC_BLOCK (before
) = last
;
220 BB_HEAD (last
) = before
;
221 BB_END (last
) = before
;
222 update_bb_for_insn (last
);
226 /* Fixup the CFG after EBB scheduling. Re-recognize the basic
227 block boundaries in between HEAD and TAIL and update basic block
228 structures between BB and LAST. */
231 fix_basic_block_boundaries (basic_block bb
, basic_block last
, rtx head
,
235 rtx last_inside
= BB_HEAD (bb
);
236 rtx aftertail
= NEXT_INSN (tail
);
240 for (; insn
!= aftertail
; insn
= NEXT_INSN (insn
))
242 gcc_assert (!LABEL_P (insn
));
243 /* Create new basic blocks just before first insn. */
244 if (inside_basic_block_p (insn
))
250 /* Re-emit the basic block note for newly found BB header. */
253 note
= emit_note_after (NOTE_INSN_BASIC_BLOCK
, insn
);
259 note
= emit_note_before (NOTE_INSN_BASIC_BLOCK
, insn
);
267 /* Control flow instruction terminate basic block. It is possible
268 that we've eliminated some basic blocks (made them empty).
269 Find the proper basic block using BLOCK_FOR_INSN and arrange things in
270 a sensible way by inserting empty basic blocks as needed. */
271 if (control_flow_insn_p (insn
) || (insn
== tail
&& last_inside
))
273 basic_block curr_bb
= BLOCK_FOR_INSN (insn
);
276 if (!control_flow_insn_p (insn
))
278 if (bb
== last
->next_bb
)
284 /* An obscure special case, where we do have partially dead
285 instruction scheduled after last control flow instruction.
286 In this case we can create new basic block. It is
287 always exactly one basic block last in the sequence. Handle
288 it by splitting the edge and repositioning the block.
289 This is somewhat hackish, but at least avoid cut&paste
291 A safer solution can be to bring the code into sequence,
292 do the split and re-emit it back in case this will ever
295 FOR_EACH_EDGE (f
, ei
, bb
->prev_bb
->succs
)
296 if (f
->flags
& EDGE_FALLTHRU
)
301 last
= curr_bb
= split_edge (f
);
302 h
= BB_HEAD (curr_bb
);
303 BB_HEAD (curr_bb
) = head
;
304 BB_END (curr_bb
) = insn
;
305 /* Edge splitting created misplaced BASIC_BLOCK note, kill
309 /* It may happen that code got moved past unconditional jump in
310 case the code is completely dead. Kill it. */
313 rtx next
= next_nonnote_insn (insn
);
314 delete_insn_chain (head
, insn
);
315 /* We keep some notes in the way that may split barrier from the
317 if (BARRIER_P (next
))
319 emit_barrier_after (prev_nonnote_insn (head
));
327 BB_HEAD (curr_bb
) = head
;
328 BB_END (curr_bb
) = insn
;
329 add_missing_bbs (BB_HEAD (curr_bb
), bb
, curr_bb
->prev_bb
);
331 note
= LABEL_P (head
) ? NEXT_INSN (head
) : head
;
332 NOTE_BASIC_BLOCK (note
) = curr_bb
;
333 update_bb_for_insn (curr_bb
);
334 bb
= curr_bb
->next_bb
;
340 add_missing_bbs (BB_HEAD (last
->next_bb
), bb
, last
);
344 /* Returns the earliest block in EBB currently being processed where a
345 "similar load" 'insn2' is found, and hence LOAD_INSN can move
346 speculatively into the found block. All the following must hold:
348 (1) both loads have 1 base register (PFREE_CANDIDATEs).
349 (2) load_insn and load2 have a def-use dependence upon
350 the same insn 'insn1'.
352 From all these we can conclude that the two loads access memory
353 addresses that differ at most by a constant, and hence if moving
354 load_insn would cause an exception, it would have been caused by
357 The function uses list (given by LAST_BLOCK) of already processed
358 blocks in EBB. The list is formed in `add_deps_for_risky_insns'. */
361 earliest_block_with_similiar_load (basic_block last_block
, rtx load_insn
)
364 basic_block bb
, earliest_block
= NULL
;
366 for (back_link
= LOG_LINKS (load_insn
);
368 back_link
= XEXP (back_link
, 1))
370 rtx insn1
= XEXP (back_link
, 0);
372 if (GET_MODE (back_link
) == VOIDmode
)
374 /* Found a DEF-USE dependence (insn1, load_insn). */
377 for (fore_link
= INSN_DEPEND (insn1
);
379 fore_link
= XEXP (fore_link
, 1))
381 rtx insn2
= XEXP (fore_link
, 0);
382 basic_block insn2_block
= BLOCK_FOR_INSN (insn2
);
384 if (GET_MODE (fore_link
) == VOIDmode
)
386 if (earliest_block
!= NULL
387 && earliest_block
->index
< insn2_block
->index
)
390 /* Found a DEF-USE dependence (insn1, insn2). */
391 if (haifa_classify_insn (insn2
) != PFREE_CANDIDATE
)
392 /* insn2 not guaranteed to be a 1 base reg load. */
395 for (bb
= last_block
; bb
; bb
= bb
->aux
)
396 if (insn2_block
== bb
)
400 /* insn2 is the similar load. */
401 earliest_block
= insn2_block
;
407 return earliest_block
;
410 /* The following function adds dependencies between jumps and risky
411 insns in given ebb. */
414 add_deps_for_risky_insns (rtx head
, rtx tail
)
418 rtx last_jump
= NULL_RTX
;
419 rtx next_tail
= NEXT_INSN (tail
);
420 basic_block last_block
= NULL
, bb
;
422 for (insn
= head
; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
425 bb
= BLOCK_FOR_INSN (insn
);
426 bb
->aux
= last_block
;
430 else if (INSN_P (insn
) && last_jump
!= NULL_RTX
)
432 class = haifa_classify_insn (insn
);
436 case PFREE_CANDIDATE
:
437 if (flag_schedule_speculative_load
)
439 bb
= earliest_block_with_similiar_load (last_block
, insn
);
451 case PRISKY_CANDIDATE
:
452 /* ??? We could implement better checking PRISKY_CANDIDATEs
453 analogous to sched-rgn.c. */
454 /* We can not change the mode of the backward
455 dependency because REG_DEP_ANTI has the lowest
457 if (! sched_insns_conditions_mutex_p (insn
, prev
)
458 && add_dependence (insn
, prev
, REG_DEP_ANTI
))
459 add_forward_dependence (prev
, insn
, REG_DEP_ANTI
);
466 /* Maintain the invariant that bb->aux is clear after use. */
469 bb
= last_block
->aux
;
470 last_block
->aux
= NULL
;
475 /* Schedule a single extended basic block, defined by the boundaries HEAD
479 schedule_ebb (rtx head
, rtx tail
)
483 struct deps tmp_deps
;
484 basic_block first_bb
= BLOCK_FOR_INSN (head
);
485 basic_block last_bb
= BLOCK_FOR_INSN (tail
);
487 if (no_real_insns_p (head
, tail
))
488 return BLOCK_FOR_INSN (tail
);
492 /* Compute LOG_LINKS. */
493 init_deps (&tmp_deps
);
494 sched_analyze (&tmp_deps
, head
, tail
);
495 free_deps (&tmp_deps
);
497 /* Compute INSN_DEPEND. */
498 compute_forward_dependences (head
, tail
);
500 add_deps_for_risky_insns (head
, tail
);
502 if (targetm
.sched
.dependencies_evaluation_hook
)
503 targetm
.sched
.dependencies_evaluation_hook (head
, tail
);
505 /* Set priorities. */
506 n_insns
= set_priorities (head
, tail
);
508 current_sched_info
->prev_head
= PREV_INSN (head
);
509 current_sched_info
->next_tail
= NEXT_INSN (tail
);
511 if (write_symbols
!= NO_DEBUG
)
513 save_line_notes (first_bb
->index
, head
, tail
);
514 rm_line_notes (head
, tail
);
517 /* rm_other_notes only removes notes which are _inside_ the
518 block---that is, it won't remove notes before the first real insn
519 or after the last real insn of the block. So if the first insn
520 has a REG_SAVE_NOTE which would otherwise be emitted before the
521 insn, it is redundant with the note before the start of the
522 block, and so we have to take it out. */
527 for (note
= REG_NOTES (head
); note
; note
= XEXP (note
, 1))
528 if (REG_NOTE_KIND (note
) == REG_SAVE_NOTE
)
529 remove_note (head
, note
);
532 /* Remove remaining note insns from the block, save them in
533 note_list. These notes are restored at the end of
534 schedule_block (). */
535 rm_other_notes (head
, tail
);
537 current_sched_info
->queue_must_finish_empty
= 1;
539 schedule_block (-1, n_insns
);
541 /* Sanity check: verify that all region insns were scheduled. */
542 gcc_assert (sched_n_insns
== n_insns
);
543 head
= current_sched_info
->head
;
544 tail
= current_sched_info
->tail
;
546 if (write_symbols
!= NO_DEBUG
)
547 restore_line_notes (head
, tail
);
548 b
= fix_basic_block_boundaries (first_bb
, last_bb
, head
, tail
);
550 finish_deps_global ();
554 /* The one entry point in this file. DUMP_FILE is the dump file for
558 schedule_ebbs (FILE *dump_file
)
561 int probability_cutoff
;
563 if (profile_info
&& flag_branch_probabilities
)
564 probability_cutoff
= PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK
);
566 probability_cutoff
= PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY
);
567 probability_cutoff
= REG_BR_PROB_BASE
/ 100 * probability_cutoff
;
569 /* Taking care of this degenerate case makes the rest of
570 this code simpler. */
571 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
574 sched_init (dump_file
);
576 current_sched_info
= &ebb_sched_info
;
578 compute_bb_for_insn ();
580 /* Schedule every region in the subroutine. */
583 rtx head
= BB_HEAD (bb
);
591 if (bb
->next_bb
== EXIT_BLOCK_PTR
592 || LABEL_P (BB_HEAD (bb
->next_bb
)))
594 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
595 if ((e
->flags
& EDGE_FALLTHRU
) != 0)
599 if (e
->probability
<= probability_cutoff
)
604 /* Blah. We should fix the rest of the code not to get confused by
609 head
= NEXT_INSN (head
);
610 else if (NOTE_P (tail
))
611 tail
= PREV_INSN (tail
);
612 else if (LABEL_P (head
))
613 head
= NEXT_INSN (head
);
618 bb
= schedule_ebb (head
, tail
);
621 /* Updating life info can be done by local propagation over the modified
624 /* Reposition the prologue and epilogue notes in case we moved the
625 prologue/epilogue insns. */
626 if (reload_completed
)
627 reposition_prologue_and_epilogue_notes (get_insns ());
629 if (write_symbols
!= NO_DEBUG
)
630 rm_redundant_line_notes ();