* de.po: Update.
[official-gcc.git] / gcc / df.c
blobfafd06dad4574dfef672ab38d0ac30b04239a1ba
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
5 mhayes@redhat.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA.
25 OVERVIEW:
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
41 USAGE:
43 Here's an example of using the dataflow routines.
45 struct df *df;
47 df = df_init ();
49 df_analyze (df, 0, DF_ALL);
51 df_dump (df, DF_ALL, stderr);
53 df_finish (df);
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
59 everything.
61 df_analyze performs the following:
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
79 PHILOSOPHY:
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
87 is called.
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
97 be called very often.
100 DATA STRUCTURES:
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
110 Note that the reg-def and reg-use chains are generally short (except for
111 the hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
118 TODO:
120 1) Incremental dataflow analysis.
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
135 2) Reduced memory requirements.
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
144 3) Ordering of reg-def and reg-use lists.
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
148 (within a BB)?
150 4) Working with a sub-CFG.
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
158 NOTES:
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
169 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
170 for which the number of word_mode units covered by the outer mode is
171 smaller than that covered by the inner mode, invokes a read-modify-write.
172 operation. We generate both a use and a def and again mark them
173 read/write.
174 Paradoxical subreg writes don't leave a trace of the old content, so they
175 are write-only operations. */
177 #include "config.h"
178 #include "system.h"
179 #include "coretypes.h"
180 #include "tm.h"
181 #include "rtl.h"
182 #include "tm_p.h"
183 #include "insn-config.h"
184 #include "recog.h"
185 #include "function.h"
186 #include "regs.h"
187 #include "alloc-pool.h"
188 #include "hard-reg-set.h"
189 #include "basic-block.h"
190 #include "sbitmap.h"
191 #include "bitmap.h"
192 #include "df.h"
194 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
195 do \
197 unsigned int node_; \
198 bitmap_iterator bi; \
199 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, bi) \
201 (BB) = BASIC_BLOCK (node_); \
202 CODE; \
205 while (0)
207 static alloc_pool df_ref_pool;
208 static alloc_pool df_link_pool;
209 static struct df *ddf;
211 static void df_reg_table_realloc (struct df *, int);
212 static void df_insn_table_realloc (struct df *, unsigned int);
213 static void df_bb_table_realloc (struct df *, unsigned int);
214 static void df_bitmaps_alloc (struct df *, bitmap, int);
215 static void df_bitmaps_free (struct df *, int);
216 static void df_free (struct df *);
217 static void df_alloc (struct df *, int);
219 static rtx df_reg_use_gen (unsigned int);
221 static inline struct df_link *df_link_create (struct ref *, struct df_link *);
222 static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
223 static void df_def_unlink (struct df *, struct ref *);
224 static void df_use_unlink (struct df *, struct ref *);
225 static void df_insn_refs_unlink (struct df *, basic_block, rtx);
226 #if 0
227 static void df_bb_refs_unlink (struct df *, basic_block);
228 static void df_refs_unlink (struct df *, bitmap);
229 #endif
231 static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
232 enum df_ref_type, enum df_ref_flags);
233 static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
234 enum df_ref_flags);
235 static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
236 enum df_ref_flags);
237 static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
238 static void df_defs_record (struct df *, rtx, basic_block, rtx);
239 static void df_uses_record (struct df *, rtx *, enum df_ref_type,
240 basic_block, rtx, enum df_ref_flags);
241 static void df_insn_refs_record (struct df *, basic_block, rtx);
242 static void df_bb_refs_record (struct df *, basic_block);
243 static void df_refs_record (struct df *, bitmap);
245 static void df_bb_reg_def_chain_create (struct df *, basic_block);
246 static void df_reg_def_chain_create (struct df *, bitmap, bool);
247 static void df_bb_reg_use_chain_create (struct df *, basic_block);
248 static void df_reg_use_chain_create (struct df *, bitmap, bool);
249 static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
250 static void df_du_chain_create (struct df *, bitmap);
251 static void df_bb_ud_chain_create (struct df *, basic_block);
252 static void df_ud_chain_create (struct df *, bitmap);
253 static void df_bb_rd_local_compute (struct df *, basic_block, bitmap);
254 static void df_rd_local_compute (struct df *, bitmap);
255 static void df_bb_ru_local_compute (struct df *, basic_block);
256 static void df_ru_local_compute (struct df *, bitmap);
257 static void df_bb_lr_local_compute (struct df *, basic_block);
258 static void df_lr_local_compute (struct df *, bitmap);
259 static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
260 static void df_reg_info_compute (struct df *, bitmap);
262 static int df_bb_luids_set (struct df *df, basic_block);
263 static int df_luids_set (struct df *df, bitmap);
265 static int df_modified_p (struct df *, bitmap);
266 static int df_refs_queue (struct df *);
267 static int df_refs_process (struct df *);
268 static int df_bb_refs_update (struct df *, basic_block);
269 static int df_refs_update (struct df *, bitmap);
270 static void df_analyze_1 (struct df *, bitmap, int, int);
272 static void df_insns_modify (struct df *, basic_block, rtx, rtx);
273 static int df_rtx_mem_replace (rtx *, void *);
274 static int df_rtx_reg_replace (rtx *, void *);
275 void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);
277 static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
278 static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
279 static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
280 rtx, unsigned int);
281 static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
282 rtx, unsigned int);
284 static void df_chain_dump (struct df_link *, FILE *file);
285 static void df_chain_dump_regno (struct df_link *, FILE *file);
286 static void df_regno_debug (struct df *, unsigned int, FILE *);
287 static void df_ref_debug (struct df *, struct ref *, FILE *);
288 static void df_rd_transfer_function (int, int *, void *, void *, void *,
289 void *, void *);
290 static void df_ru_transfer_function (int, int *, void *, void *, void *,
291 void *, void *);
292 static void df_lr_transfer_function (int, int *, void *, void *, void *,
293 void *, void *);
294 static void hybrid_search (basic_block, struct dataflow *,
295 sbitmap, sbitmap, sbitmap);
298 /* Local memory allocation/deallocation routines. */
301 /* Increase the insn info table to have space for at least SIZE + 1
302 elements. */
303 static void
304 df_insn_table_realloc (struct df *df, unsigned int size)
306 size++;
307 if (size <= df->insn_size)
308 return;
310 /* Make the table a little larger than requested, so we do not need
311 to enlarge it so often. */
312 size += df->insn_size / 4;
314 df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
316 memset (df->insns + df->insn_size, 0,
317 (size - df->insn_size) * sizeof (struct insn_info));
319 df->insn_size = size;
321 if (! df->insns_modified)
323 df->insns_modified = BITMAP_ALLOC (NULL);
324 bitmap_zero (df->insns_modified);
328 /* Increase the bb info table to have space for at least SIZE + 1
329 elements. */
331 static void
332 df_bb_table_realloc (struct df *df, unsigned int size)
334 size++;
335 if (size <= df->n_bbs)
336 return;
338 /* Make the table a little larger than requested, so we do not need
339 to enlarge it so often. */
340 size += df->n_bbs / 4;
342 df->bbs = xrealloc (df->bbs, size * sizeof (struct bb_info));
344 memset (df->bbs + df->n_bbs, 0, (size - df->n_bbs) * sizeof (struct bb_info));
346 df->n_bbs = size;
349 /* Increase the reg info table by SIZE more elements. */
350 static void
351 df_reg_table_realloc (struct df *df, int size)
353 /* Make table 25 percent larger by default. */
354 if (! size)
355 size = df->reg_size / 4;
357 size += df->reg_size;
358 if (size < max_reg_num ())
359 size = max_reg_num ();
361 df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
362 df->reg_def_last = xrealloc (df->reg_def_last,
363 size * sizeof (struct ref *));
365 /* Zero the new entries. */
366 memset (df->regs + df->reg_size, 0,
367 (size - df->reg_size) * sizeof (struct reg_info));
369 df->reg_size = size;
373 /* Allocate bitmaps for each basic block. */
375 static void
376 df_bitmaps_alloc (struct df *df, bitmap blocks, int flags)
378 basic_block bb;
380 df->n_defs = df->def_id;
381 df->n_uses = df->use_id;
383 if (!blocks)
384 blocks = df->all_blocks;
386 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
388 struct bb_info *bb_info = DF_BB_INFO (df, bb);
390 if (flags & DF_RD)
392 if (!bb_info->rd_in)
394 /* Allocate bitmaps for reaching definitions. */
395 bb_info->rd_kill = BITMAP_ALLOC (NULL);
396 bb_info->rd_gen = BITMAP_ALLOC (NULL);
397 bb_info->rd_in = BITMAP_ALLOC (NULL);
398 bb_info->rd_out = BITMAP_ALLOC (NULL);
400 else
402 bitmap_clear (bb_info->rd_kill);
403 bitmap_clear (bb_info->rd_gen);
404 bitmap_clear (bb_info->rd_in);
405 bitmap_clear (bb_info->rd_out);
409 if (flags & DF_RU)
411 if (!bb_info->ru_in)
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info->ru_kill = BITMAP_ALLOC (NULL);
415 bb_info->ru_gen = BITMAP_ALLOC (NULL);
416 bb_info->ru_in = BITMAP_ALLOC (NULL);
417 bb_info->ru_out = BITMAP_ALLOC (NULL);
419 else
421 bitmap_clear (bb_info->ru_kill);
422 bitmap_clear (bb_info->ru_gen);
423 bitmap_clear (bb_info->ru_in);
424 bitmap_clear (bb_info->ru_out);
428 if (flags & DF_LR)
430 if (!bb_info->lr_in)
432 /* Allocate bitmaps for live variables. */
433 bb_info->lr_def = BITMAP_ALLOC (NULL);
434 bb_info->lr_use = BITMAP_ALLOC (NULL);
435 bb_info->lr_in = BITMAP_ALLOC (NULL);
436 bb_info->lr_out = BITMAP_ALLOC (NULL);
438 else
440 bitmap_clear (bb_info->lr_def);
441 bitmap_clear (bb_info->lr_use);
442 bitmap_clear (bb_info->lr_in);
443 bitmap_clear (bb_info->lr_out);
450 /* Free bitmaps for each basic block. */
451 static void
452 df_bitmaps_free (struct df *df, int flags)
454 unsigned i;
456 for (i = 0; i < df->n_bbs; i++)
458 struct bb_info *bb_info = &df->bbs[i];
460 if ((flags & DF_RD) && bb_info->rd_in)
462 /* Free bitmaps for reaching definitions. */
463 BITMAP_FREE (bb_info->rd_kill);
464 bb_info->rd_kill = NULL;
465 BITMAP_FREE (bb_info->rd_gen);
466 bb_info->rd_gen = NULL;
467 BITMAP_FREE (bb_info->rd_in);
468 bb_info->rd_in = NULL;
469 BITMAP_FREE (bb_info->rd_out);
470 bb_info->rd_out = NULL;
473 if ((flags & DF_RU) && bb_info->ru_in)
475 /* Free bitmaps for upward exposed uses. */
476 BITMAP_FREE (bb_info->ru_kill);
477 bb_info->ru_kill = NULL;
478 BITMAP_FREE (bb_info->ru_gen);
479 bb_info->ru_gen = NULL;
480 BITMAP_FREE (bb_info->ru_in);
481 bb_info->ru_in = NULL;
482 BITMAP_FREE (bb_info->ru_out);
483 bb_info->ru_out = NULL;
486 if ((flags & DF_LR) && bb_info->lr_in)
488 /* Free bitmaps for live variables. */
489 BITMAP_FREE (bb_info->lr_def);
490 bb_info->lr_def = NULL;
491 BITMAP_FREE (bb_info->lr_use);
492 bb_info->lr_use = NULL;
493 BITMAP_FREE (bb_info->lr_in);
494 bb_info->lr_in = NULL;
495 BITMAP_FREE (bb_info->lr_out);
496 bb_info->lr_out = NULL;
499 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
503 /* Allocate and initialize dataflow memory. */
504 static void
505 df_alloc (struct df *df, int n_regs)
507 int n_insns;
508 basic_block bb;
510 df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
511 100);
512 df_ref_pool = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
514 /* Perhaps we should use LUIDs to save memory for the insn_refs
515 table. This is only a small saving; a few pointers. */
516 n_insns = get_max_uid () + 1;
518 df->def_id = 0;
519 df->n_defs = 0;
520 /* Approximate number of defs by number of insns. */
521 df->def_size = n_insns;
522 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
524 df->use_id = 0;
525 df->n_uses = 0;
526 /* Approximate number of uses by twice number of insns. */
527 df->use_size = n_insns * 2;
528 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
530 df->n_regs = n_regs;
531 df->n_bbs = last_basic_block;
533 /* Allocate temporary working array used during local dataflow analysis. */
534 df_insn_table_realloc (df, n_insns);
536 df_reg_table_realloc (df, df->n_regs);
538 df->bbs_modified = BITMAP_ALLOC (NULL);
539 bitmap_zero (df->bbs_modified);
541 df->flags = 0;
543 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
545 df->all_blocks = BITMAP_ALLOC (NULL);
546 FOR_EACH_BB (bb)
547 bitmap_set_bit (df->all_blocks, bb->index);
551 /* Free all the dataflow info. */
552 static void
553 df_free (struct df *df)
555 df_bitmaps_free (df, DF_ALL);
557 if (df->bbs)
558 free (df->bbs);
559 df->bbs = 0;
561 if (df->insns)
562 free (df->insns);
563 df->insns = 0;
564 df->insn_size = 0;
566 if (df->defs)
567 free (df->defs);
568 df->defs = 0;
569 df->def_size = 0;
570 df->def_id = 0;
572 if (df->uses)
573 free (df->uses);
574 df->uses = 0;
575 df->use_size = 0;
576 df->use_id = 0;
578 if (df->regs)
579 free (df->regs);
580 df->regs = 0;
581 df->reg_size = 0;
583 BITMAP_FREE (df->bbs_modified);
584 df->bbs_modified = 0;
586 BITMAP_FREE (df->insns_modified);
587 df->insns_modified = 0;
589 BITMAP_FREE (df->all_blocks);
590 df->all_blocks = 0;
592 free_alloc_pool (df_ref_pool);
593 free_alloc_pool (df_link_pool);
596 /* Local miscellaneous routines. */
598 /* Return a USE for register REGNO. */
599 static rtx df_reg_use_gen (unsigned int regno)
601 rtx reg;
602 rtx use;
604 reg = regno_reg_rtx[regno];
606 use = gen_rtx_USE (GET_MODE (reg), reg);
607 return use;
610 /* Local chain manipulation routines. */
612 /* Create a link in a def-use or use-def chain. */
613 static inline struct df_link *
614 df_link_create (struct ref *ref, struct df_link *next)
616 struct df_link *link;
618 link = pool_alloc (df_link_pool);
619 link->next = next;
620 link->ref = ref;
621 return link;
624 /* Releases members of the CHAIN. */
626 static void
627 free_reg_ref_chain (struct df_link **chain)
629 struct df_link *act, *next;
631 for (act = *chain; act; act = next)
633 next = act->next;
634 pool_free (df_link_pool, act);
637 *chain = NULL;
640 /* Add REF to chain head pointed to by PHEAD. */
641 static struct df_link *
642 df_ref_unlink (struct df_link **phead, struct ref *ref)
644 struct df_link *link = *phead;
646 if (link)
648 if (! link->next)
650 /* Only a single ref. It must be the one we want.
651 If not, the def-use and use-def chains are likely to
652 be inconsistent. */
653 gcc_assert (link->ref == ref);
655 /* Now have an empty chain. */
656 *phead = NULL;
658 else
660 /* Multiple refs. One of them must be us. */
661 if (link->ref == ref)
662 *phead = link->next;
663 else
665 /* Follow chain. */
666 for (; link->next; link = link->next)
668 if (link->next->ref == ref)
670 /* Unlink from list. */
671 link->next = link->next->next;
672 return link->next;
678 return link;
682 /* Unlink REF from all def-use/use-def chains, etc. */
684 df_ref_remove (struct df *df, struct ref *ref)
686 if (DF_REF_REG_DEF_P (ref))
688 df_def_unlink (df, ref);
689 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
691 else
693 df_use_unlink (df, ref);
694 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
696 return 1;
700 /* Unlink DEF from use-def and reg-def chains. */
701 static void
702 df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
704 struct df_link *du_link;
705 unsigned int dregno = DF_REF_REGNO (def);
707 /* Follow def-use chain to find all the uses of this def. */
708 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
710 struct ref *use = du_link->ref;
712 /* Unlink this def from the use-def chain. */
713 df_ref_unlink (&DF_REF_CHAIN (use), def);
715 DF_REF_CHAIN (def) = 0;
717 /* Unlink def from reg-def chain. */
718 df_ref_unlink (&df->regs[dregno].defs, def);
720 df->defs[DF_REF_ID (def)] = 0;
724 /* Unlink use from def-use and reg-use chains. */
725 static void
726 df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
728 struct df_link *ud_link;
729 unsigned int uregno = DF_REF_REGNO (use);
731 /* Follow use-def chain to find all the defs of this use. */
732 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
734 struct ref *def = ud_link->ref;
736 /* Unlink this use from the def-use chain. */
737 df_ref_unlink (&DF_REF_CHAIN (def), use);
739 DF_REF_CHAIN (use) = 0;
741 /* Unlink use from reg-use chain. */
742 df_ref_unlink (&df->regs[uregno].uses, use);
744 df->uses[DF_REF_ID (use)] = 0;
747 /* Local routines for recording refs. */
750 /* Create a new ref of type DF_REF_TYPE for register REG at address
751 LOC within INSN of BB. */
752 static struct ref *
753 df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
754 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
756 struct ref *this_ref;
758 this_ref = pool_alloc (df_ref_pool);
759 DF_REF_REG (this_ref) = reg;
760 DF_REF_LOC (this_ref) = loc;
761 DF_REF_INSN (this_ref) = insn;
762 DF_REF_CHAIN (this_ref) = 0;
763 DF_REF_TYPE (this_ref) = ref_type;
764 DF_REF_FLAGS (this_ref) = ref_flags;
765 DF_REF_DATA (this_ref) = NULL;
767 if (ref_type == DF_REF_REG_DEF)
769 if (df->def_id >= df->def_size)
771 /* Make table 25 percent larger. */
772 df->def_size += (df->def_size / 4);
773 df->defs = xrealloc (df->defs,
774 df->def_size * sizeof (*df->defs));
776 DF_REF_ID (this_ref) = df->def_id;
777 df->defs[df->def_id++] = this_ref;
779 else
781 if (df->use_id >= df->use_size)
783 /* Make table 25 percent larger. */
784 df->use_size += (df->use_size / 4);
785 df->uses = xrealloc (df->uses,
786 df->use_size * sizeof (*df->uses));
788 DF_REF_ID (this_ref) = df->use_id;
789 df->uses[df->use_id++] = this_ref;
791 return this_ref;
795 /* Create a new reference of type DF_REF_TYPE for a single register REG,
796 used inside the LOC rtx of INSN. */
797 static void
798 df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
799 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
801 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
805 /* Create new references of type DF_REF_TYPE for each part of register REG
806 at address LOC within INSN of BB. */
807 static void
808 df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
809 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
811 unsigned int regno;
813 gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
815 /* For the reg allocator we are interested in some SUBREG rtx's, but not
816 all. Notably only those representing a word extraction from a multi-word
817 reg. As written in the docu those should have the form
818 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
819 XXX Is that true? We could also use the global word_mode variable. */
820 if ((df->flags & DF_SUBREGS) == 0
821 && GET_CODE (reg) == SUBREG
822 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
823 || GET_MODE_SIZE (GET_MODE (reg))
824 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
826 loc = &SUBREG_REG (reg);
827 reg = *loc;
828 ref_flags |= DF_REF_STRIPPED;
831 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
832 if (regno < FIRST_PSEUDO_REGISTER)
834 int i;
835 int endregno;
837 if (! (df->flags & DF_HARD_REGS))
838 return;
840 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
841 for the mode, because we only want to add references to regs, which
842 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
843 reference the whole reg 0 in DI mode (which would also include
844 reg 1, at least, if 0 and 1 are SImode registers). */
845 endregno = hard_regno_nregs[regno][GET_MODE (reg)];
846 if (GET_CODE (reg) == SUBREG)
847 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
848 SUBREG_BYTE (reg), GET_MODE (reg));
849 endregno += regno;
851 for (i = regno; i < endregno; i++)
852 df_ref_record_1 (df, regno_reg_rtx[i],
853 loc, insn, ref_type, ref_flags);
855 else
857 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
862 /* A set to a non-paradoxical SUBREG for which the number of word_mode units
863 covered by the outer mode is smaller than that covered by the inner mode,
864 is a read-modify-write operation.
865 This function returns true iff the SUBREG X is such a SUBREG. */
866 bool
867 read_modify_subreg_p (rtx x)
869 unsigned int isize, osize;
870 if (GET_CODE (x) != SUBREG)
871 return false;
872 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
873 osize = GET_MODE_SIZE (GET_MODE (x));
874 return (isize > osize && isize > UNITS_PER_WORD);
878 /* Process all the registers defined in the rtx, X. */
879 static void
880 df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
882 rtx *loc;
883 rtx dst;
884 enum df_ref_flags flags = 0;
886 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
887 construct. */
888 if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
889 loc = &XEXP (x, 0);
890 else
891 loc = &SET_DEST (x);
892 dst = *loc;
894 /* Some targets place small structures in registers for
895 return values of functions. */
896 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
898 int i;
900 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
902 rtx temp = XVECEXP (dst, 0, i);
903 if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
904 || GET_CODE (temp) == SET)
905 df_def_record_1 (df, temp, bb, insn);
907 return;
910 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
911 be handy for the reg allocator. */
912 while (GET_CODE (dst) == STRICT_LOW_PART
913 || GET_CODE (dst) == ZERO_EXTRACT
914 || read_modify_subreg_p (dst))
916 /* Strict low part always contains SUBREG, but we do not want to make
917 it appear outside, as whole register is always considered. */
918 if (GET_CODE (dst) == STRICT_LOW_PART)
920 loc = &XEXP (dst, 0);
921 dst = *loc;
923 loc = &XEXP (dst, 0);
924 dst = *loc;
925 flags |= DF_REF_READ_WRITE;
928 if (REG_P (dst)
929 || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
930 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
934 /* Process all the registers defined in the pattern rtx, X. */
935 static void
936 df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
938 RTX_CODE code = GET_CODE (x);
940 if (code == SET || code == CLOBBER)
942 /* Mark the single def within the pattern. */
943 df_def_record_1 (df, x, bb, insn);
945 else if (code == PARALLEL)
947 int i;
949 /* Mark the multiple defs within the pattern. */
950 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
952 code = GET_CODE (XVECEXP (x, 0, i));
953 if (code == SET || code == CLOBBER)
954 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
960 /* Process all the registers used in the rtx at address LOC. */
961 static void
962 df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
963 basic_block bb, rtx insn, enum df_ref_flags flags)
965 RTX_CODE code;
966 rtx x;
967 retry:
968 x = *loc;
969 if (!x)
970 return;
971 code = GET_CODE (x);
972 switch (code)
974 case LABEL_REF:
975 case SYMBOL_REF:
976 case CONST_INT:
977 case CONST:
978 case CONST_DOUBLE:
979 case CONST_VECTOR:
980 case PC:
981 case CC0:
982 case ADDR_VEC:
983 case ADDR_DIFF_VEC:
984 return;
986 case CLOBBER:
987 /* If we are clobbering a MEM, mark any registers inside the address
988 as being used. */
989 if (MEM_P (XEXP (x, 0)))
990 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
991 DF_REF_REG_MEM_STORE, bb, insn, flags);
993 /* If we're clobbering a REG then we have a def so ignore. */
994 return;
996 case MEM:
997 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
998 return;
1000 case SUBREG:
1001 /* While we're here, optimize this case. */
1003 /* In case the SUBREG is not of a REG, do not optimize. */
1004 if (!REG_P (SUBREG_REG (x)))
1006 loc = &SUBREG_REG (x);
1007 df_uses_record (df, loc, ref_type, bb, insn, flags);
1008 return;
1010 /* ... Fall through ... */
1012 case REG:
1013 df_ref_record (df, x, loc, insn, ref_type, flags);
1014 return;
1016 case SET:
1018 rtx dst = SET_DEST (x);
1020 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1022 switch (GET_CODE (dst))
1024 case SUBREG:
1025 if (read_modify_subreg_p (dst))
1027 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1028 insn, DF_REF_READ_WRITE);
1029 break;
1031 /* Fall through. */
1032 case REG:
1033 case PARALLEL:
1034 case SCRATCH:
1035 case PC:
1036 case CC0:
1037 break;
1038 case MEM:
1039 df_uses_record (df, &XEXP (dst, 0),
1040 DF_REF_REG_MEM_STORE,
1041 bb, insn, 0);
1042 break;
1043 case STRICT_LOW_PART:
1044 /* A strict_low_part uses the whole REG and not just the
1045 SUBREG. */
1046 dst = XEXP (dst, 0);
1047 gcc_assert (GET_CODE (dst) == SUBREG);
1048 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1049 insn, DF_REF_READ_WRITE);
1050 break;
1051 case ZERO_EXTRACT:
1052 case SIGN_EXTRACT:
1053 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1054 DF_REF_READ_WRITE);
1055 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1056 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1057 dst = XEXP (dst, 0);
1058 break;
1059 default:
1060 gcc_unreachable ();
1062 return;
1065 case RETURN:
1066 break;
1068 case ASM_OPERANDS:
1069 case UNSPEC_VOLATILE:
1070 case TRAP_IF:
1071 case ASM_INPUT:
1073 /* Traditional and volatile asm instructions must be considered to use
1074 and clobber all hard registers, all pseudo-registers and all of
1075 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1077 Consider for instance a volatile asm that changes the fpu rounding
1078 mode. An insn should not be moved across this even if it only uses
1079 pseudo-regs because it might give an incorrectly rounded result.
1081 For now, just mark any regs we can find in ASM_OPERANDS as
1082 used. */
1084 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1085 We can not just fall through here since then we would be confused
1086 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1087 traditional asms unlike their normal usage. */
1088 if (code == ASM_OPERANDS)
1090 int j;
1092 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1093 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1094 DF_REF_REG_USE, bb, insn, 0);
1095 return;
1097 break;
1100 case PRE_DEC:
1101 case POST_DEC:
1102 case PRE_INC:
1103 case POST_INC:
1104 case PRE_MODIFY:
1105 case POST_MODIFY:
1106 /* Catch the def of the register being modified. */
1107 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1109 /* ... Fall through to handle uses ... */
1111 default:
1112 break;
1115 /* Recursively scan the operands of this expression. */
1117 const char *fmt = GET_RTX_FORMAT (code);
1118 int i;
1120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1122 if (fmt[i] == 'e')
1124 /* Tail recursive case: save a function call level. */
1125 if (i == 0)
1127 loc = &XEXP (x, 0);
1128 goto retry;
1130 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1132 else if (fmt[i] == 'E')
1134 int j;
1135 for (j = 0; j < XVECLEN (x, i); j++)
1136 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1137 bb, insn, flags);
1144 /* Record all the df within INSN of basic block BB. */
1145 static void
1146 df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
1148 int i;
1150 if (INSN_P (insn))
1152 rtx note;
1154 /* Record register defs. */
1155 df_defs_record (df, PATTERN (insn), bb, insn);
1157 if (df->flags & DF_EQUIV_NOTES)
1158 for (note = REG_NOTES (insn); note;
1159 note = XEXP (note, 1))
1161 switch (REG_NOTE_KIND (note))
1163 case REG_EQUIV:
1164 case REG_EQUAL:
1165 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1166 bb, insn, 0);
1167 default:
1168 break;
1172 if (CALL_P (insn))
1174 rtx note;
1175 rtx x;
1177 /* Record the registers used to pass arguments. */
1178 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1179 note = XEXP (note, 1))
1181 if (GET_CODE (XEXP (note, 0)) == USE)
1182 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1183 bb, insn, 0);
1186 /* The stack ptr is used (honorarily) by a CALL insn. */
1187 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1188 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1190 if (df->flags & DF_HARD_REGS)
1192 /* Calls may also reference any of the global registers,
1193 so they are recorded as used. */
1194 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1195 if (global_regs[i])
1197 x = df_reg_use_gen (i);
1198 df_uses_record (df, &XEXP (x, 0),
1199 DF_REF_REG_USE, bb, insn, 0);
1204 /* Record the register uses. */
1205 df_uses_record (df, &PATTERN (insn),
1206 DF_REF_REG_USE, bb, insn, 0);
1208 if (CALL_P (insn))
1210 rtx note;
1212 /* We do not record hard registers clobbered by the call,
1213 since there are awfully many of them and "defs" created
1214 through them are not interesting (since no use can be legally
1215 reached by them). So we must just make sure we include them when
1216 computing kill bitmaps. */
1218 /* There may be extra registers to be clobbered. */
1219 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1220 note;
1221 note = XEXP (note, 1))
1222 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1223 df_defs_record (df, XEXP (note, 0), bb, insn);
1229 /* Record all the refs within the basic block BB. */
1230 static void
1231 df_bb_refs_record (struct df *df, basic_block bb)
1233 rtx insn;
1235 /* Scan the block an insn at a time from beginning to end. */
1236 FOR_BB_INSNS (bb, insn)
1238 if (INSN_P (insn))
1240 /* Record defs within INSN. */
1241 df_insn_refs_record (df, bb, insn);
1247 /* Record all the refs in the basic blocks specified by BLOCKS. */
1248 static void
1249 df_refs_record (struct df *df, bitmap blocks)
1251 basic_block bb;
1253 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1255 df_bb_refs_record (df, bb);
1259 /* Dataflow analysis routines. */
1261 /* Create reg-def chains for basic block BB. These are a list of
1262 definitions for each register. */
1264 static void
1265 df_bb_reg_def_chain_create (struct df *df, basic_block bb)
1267 rtx insn;
1269 /* Perhaps the defs should be sorted using a depth first search
1270 of the CFG (or possibly a breadth first search). */
1272 FOR_BB_INSNS_REVERSE (bb, insn)
1274 struct df_link *link;
1275 unsigned int uid = INSN_UID (insn);
1277 if (! INSN_P (insn))
1278 continue;
1280 for (link = df->insns[uid].defs; link; link = link->next)
1282 struct ref *def = link->ref;
1283 unsigned int dregno = DF_REF_REGNO (def);
1285 /* Do not add ref's to the chain twice, i.e., only add new
1286 refs. XXX the same could be done by testing if the
1287 current insn is a modified (or a new) one. This would be
1288 faster. */
1289 if (DF_REF_ID (def) < df->def_id_save)
1290 continue;
1292 df->regs[dregno].defs = df_link_create (def, df->regs[dregno].defs);
1298 /* Create reg-def chains for each basic block within BLOCKS. These
1299 are a list of definitions for each register. If REDO is true, add
1300 all defs, otherwise just add the new defs. */
1302 static void
1303 df_reg_def_chain_create (struct df *df, bitmap blocks, bool redo)
1305 basic_block bb;
1306 #ifdef ENABLE_CHECKING
1307 unsigned regno;
1308 #endif
1309 unsigned old_def_id_save = df->def_id_save;
1311 if (redo)
1313 #ifdef ENABLE_CHECKING
1314 for (regno = 0; regno < df->n_regs; regno++)
1315 gcc_assert (!df->regs[regno].defs);
1316 #endif
1318 /* Pretend that all defs are new. */
1319 df->def_id_save = 0;
1322 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1324 df_bb_reg_def_chain_create (df, bb);
1327 df->def_id_save = old_def_id_save;
1330 /* Remove all reg-def chains stored in the dataflow object DF. */
1332 static void
1333 df_reg_def_chain_clean (struct df *df)
1335 unsigned regno;
1337 for (regno = 0; regno < df->n_regs; regno++)
1338 free_reg_ref_chain (&df->regs[regno].defs);
1341 /* Create reg-use chains for basic block BB. These are a list of uses
1342 for each register. */
1344 static void
1345 df_bb_reg_use_chain_create (struct df *df, basic_block bb)
1347 rtx insn;
1349 /* Scan in forward order so that the last uses appear at the start
1350 of the chain. */
1352 FOR_BB_INSNS (bb, insn)
1354 struct df_link *link;
1355 unsigned int uid = INSN_UID (insn);
1357 if (! INSN_P (insn))
1358 continue;
1360 for (link = df->insns[uid].uses; link; link = link->next)
1362 struct ref *use = link->ref;
1363 unsigned int uregno = DF_REF_REGNO (use);
1365 /* Do not add ref's to the chain twice, i.e., only add new
1366 refs. XXX the same could be done by testing if the
1367 current insn is a modified (or a new) one. This would be
1368 faster. */
1369 if (DF_REF_ID (use) < df->use_id_save)
1370 continue;
1372 df->regs[uregno].uses
1373 = df_link_create (use, df->regs[uregno].uses);
1379 /* Create reg-use chains for each basic block within BLOCKS. These
1380 are a list of uses for each register. If REDO is true, remove the
1381 old reg-use chains first, otherwise just add new uses to them. */
1383 static void
1384 df_reg_use_chain_create (struct df *df, bitmap blocks, bool redo)
1386 basic_block bb;
1387 #ifdef ENABLE_CHECKING
1388 unsigned regno;
1389 #endif
1390 unsigned old_use_id_save = df->use_id_save;
1392 if (redo)
1394 #ifdef ENABLE_CHECKING
1395 for (regno = 0; regno < df->n_regs; regno++)
1396 gcc_assert (!df->regs[regno].uses);
1397 #endif
1399 /* Pretend that all uses are new. */
1400 df->use_id_save = 0;
1403 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1405 df_bb_reg_use_chain_create (df, bb);
1408 df->use_id_save = old_use_id_save;
1411 /* Remove all reg-use chains stored in the dataflow object DF. */
1413 static void
1414 df_reg_use_chain_clean (struct df *df)
1416 unsigned regno;
1418 for (regno = 0; regno < df->n_regs; regno++)
1419 free_reg_ref_chain (&df->regs[regno].uses);
1422 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1423 static void
1424 df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
1426 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1427 rtx insn;
1429 bitmap_copy (ru, bb_info->ru_out);
1431 /* For each def in BB create a linked list (chain) of uses
1432 reached from the def. */
1433 FOR_BB_INSNS_REVERSE (bb, insn)
1435 struct df_link *def_link;
1436 struct df_link *use_link;
1437 unsigned int uid = INSN_UID (insn);
1439 if (! INSN_P (insn))
1440 continue;
1442 /* For each def in insn... */
1443 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1445 struct ref *def = def_link->ref;
1446 unsigned int dregno = DF_REF_REGNO (def);
1448 DF_REF_CHAIN (def) = 0;
1450 /* While the reg-use chains are not essential, it
1451 is _much_ faster to search these short lists rather
1452 than all the reaching uses, especially for large functions. */
1453 for (use_link = df->regs[dregno].uses; use_link;
1454 use_link = use_link->next)
1456 struct ref *use = use_link->ref;
1458 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1460 DF_REF_CHAIN (def)
1461 = df_link_create (use, DF_REF_CHAIN (def));
1463 bitmap_clear_bit (ru, DF_REF_ID (use));
1468 /* For each use in insn... */
1469 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1471 struct ref *use = use_link->ref;
1472 bitmap_set_bit (ru, DF_REF_ID (use));
1478 /* Create def-use chains from reaching use bitmaps for basic blocks
1479 in BLOCKS. */
1480 static void
1481 df_du_chain_create (struct df *df, bitmap blocks)
1483 bitmap ru;
1484 basic_block bb;
1486 ru = BITMAP_ALLOC (NULL);
1488 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1490 df_bb_du_chain_create (df, bb, ru);
1493 BITMAP_FREE (ru);
1497 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1498 static void
1499 df_bb_ud_chain_create (struct df *df, basic_block bb)
1501 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1502 struct ref **reg_def_last = df->reg_def_last;
1503 rtx insn;
1505 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1507 /* For each use in BB create a linked list (chain) of defs
1508 that reach the use. */
1509 FOR_BB_INSNS (bb, insn)
1511 unsigned int uid = INSN_UID (insn);
1512 struct df_link *use_link;
1513 struct df_link *def_link;
1515 if (! INSN_P (insn))
1516 continue;
1518 /* For each use in insn... */
1519 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1521 struct ref *use = use_link->ref;
1522 unsigned int regno = DF_REF_REGNO (use);
1524 DF_REF_CHAIN (use) = 0;
1526 /* Has regno been defined in this BB yet? If so, use
1527 the last def as the single entry for the use-def
1528 chain for this use. Otherwise, we need to add all
1529 the defs using this regno that reach the start of
1530 this BB. */
1531 if (reg_def_last[regno])
1533 DF_REF_CHAIN (use)
1534 = df_link_create (reg_def_last[regno], 0);
1536 else
1538 /* While the reg-def chains are not essential, it is
1539 _much_ faster to search these short lists rather than
1540 all the reaching defs, especially for large
1541 functions. */
1542 for (def_link = df->regs[regno].defs; def_link;
1543 def_link = def_link->next)
1545 struct ref *def = def_link->ref;
1547 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1549 DF_REF_CHAIN (use)
1550 = df_link_create (def, DF_REF_CHAIN (use));
1557 /* For each def in insn... record the last def of each reg. */
1558 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1560 struct ref *def = def_link->ref;
1561 int dregno = DF_REF_REGNO (def);
1563 reg_def_last[dregno] = def;
1569 /* Create use-def chains from reaching def bitmaps for basic blocks
1570 within BLOCKS. */
1571 static void
1572 df_ud_chain_create (struct df *df, bitmap blocks)
1574 basic_block bb;
1576 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1578 df_bb_ud_chain_create (df, bb);
1584 static void
1585 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1586 void *out, void *gen, void *kill,
1587 void *data ATTRIBUTE_UNUSED)
1589 *changed = bitmap_ior_and_compl (out, gen, in, kill);
1593 static void
1594 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1595 void *out, void *gen, void *kill,
1596 void *data ATTRIBUTE_UNUSED)
1598 *changed = bitmap_ior_and_compl (in, gen, out, kill);
1602 static void
1603 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1604 void *out, void *use, void *def,
1605 void *data ATTRIBUTE_UNUSED)
1607 *changed = bitmap_ior_and_compl (in, use, out, def);
1611 /* Compute local reaching def info for basic block BB. */
1612 static void
1613 df_bb_rd_local_compute (struct df *df, basic_block bb, bitmap call_killed_defs)
1615 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1616 rtx insn;
1617 bitmap seen = BITMAP_ALLOC (NULL);
1618 bool call_seen = false;
1620 FOR_BB_INSNS_REVERSE (bb, insn)
1622 unsigned int uid = INSN_UID (insn);
1623 struct df_link *def_link;
1625 if (! INSN_P (insn))
1626 continue;
1628 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1630 struct ref *def = def_link->ref;
1631 unsigned int regno = DF_REF_REGNO (def);
1632 struct df_link *def2_link;
1634 if (bitmap_bit_p (seen, regno)
1635 || (call_seen
1636 && regno < FIRST_PSEUDO_REGISTER
1637 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)))
1638 continue;
1640 for (def2_link = df->regs[regno].defs; def2_link;
1641 def2_link = def2_link->next)
1643 struct ref *def2 = def2_link->ref;
1645 /* Add all defs of this reg to the set of kills. This
1646 is greedy since many of these defs will not actually
1647 be killed by this BB but it keeps things a lot
1648 simpler. */
1649 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1652 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1653 bitmap_set_bit (seen, regno);
1656 if (CALL_P (insn) && (df->flags & DF_HARD_REGS))
1658 bitmap_ior_into (bb_info->rd_kill, call_killed_defs);
1659 call_seen = 1;
1663 BITMAP_FREE (seen);
1667 /* Compute local reaching def info for each basic block within BLOCKS. */
1668 static void
1669 df_rd_local_compute (struct df *df, bitmap blocks)
1671 basic_block bb;
1672 bitmap killed_by_call = NULL;
1673 unsigned regno;
1674 struct df_link *def_link;
1676 if (df->flags & DF_HARD_REGS)
1678 killed_by_call = BITMAP_ALLOC (NULL);
1679 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1681 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1682 continue;
1684 for (def_link = df->regs[regno].defs;
1685 def_link;
1686 def_link = def_link->next)
1687 bitmap_set_bit (killed_by_call, DF_REF_ID (def_link->ref));
1691 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1693 df_bb_rd_local_compute (df, bb, killed_by_call);
1696 if (df->flags & DF_HARD_REGS)
1697 BITMAP_FREE (killed_by_call);
1701 /* Compute local reaching use (upward exposed use) info for basic
1702 block BB. */
1703 static void
1704 df_bb_ru_local_compute (struct df *df, basic_block bb)
1706 /* This is much more tricky than computing reaching defs. With
1707 reaching defs, defs get killed by other defs. With upwards
1708 exposed uses, these get killed by defs with the same regno. */
1710 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1711 rtx insn;
1714 FOR_BB_INSNS_REVERSE (bb, insn)
1716 unsigned int uid = INSN_UID (insn);
1717 struct df_link *def_link;
1718 struct df_link *use_link;
1720 if (! INSN_P (insn))
1721 continue;
1723 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1725 struct ref *def = def_link->ref;
1726 unsigned int dregno = DF_REF_REGNO (def);
1728 for (use_link = df->regs[dregno].uses; use_link;
1729 use_link = use_link->next)
1731 struct ref *use = use_link->ref;
1733 /* Add all uses of this reg to the set of kills. This
1734 is greedy since many of these uses will not actually
1735 be killed by this BB but it keeps things a lot
1736 simpler. */
1737 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1739 /* Zap from the set of gens for this BB. */
1740 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1744 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1746 struct ref *use = use_link->ref;
1747 /* Add use to set of gens in this BB. */
1748 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1754 /* Compute local reaching use (upward exposed use) info for each basic
1755 block within BLOCKS. */
1756 static void
1757 df_ru_local_compute (struct df *df, bitmap blocks)
1759 basic_block bb;
1761 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1763 df_bb_ru_local_compute (df, bb);
1768 /* Compute local live variable info for basic block BB. */
1769 static void
1770 df_bb_lr_local_compute (struct df *df, basic_block bb)
1772 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1773 rtx insn;
1775 FOR_BB_INSNS_REVERSE (bb, insn)
1777 unsigned int uid = INSN_UID (insn);
1778 struct df_link *link;
1780 if (! INSN_P (insn))
1781 continue;
1783 for (link = df->insns[uid].defs; link; link = link->next)
1785 struct ref *def = link->ref;
1786 unsigned int dregno = DF_REF_REGNO (def);
1788 /* Add def to set of defs in this BB. */
1789 bitmap_set_bit (bb_info->lr_def, dregno);
1791 bitmap_clear_bit (bb_info->lr_use, dregno);
1794 for (link = df->insns[uid].uses; link; link = link->next)
1796 struct ref *use = link->ref;
1797 /* Add use to set of uses in this BB. */
1798 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1804 /* Compute local live variable info for each basic block within BLOCKS. */
1805 static void
1806 df_lr_local_compute (struct df *df, bitmap blocks)
1808 basic_block bb;
1810 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1812 df_bb_lr_local_compute (df, bb);
1817 /* Compute register info: lifetime, bb, and number of defs and uses
1818 for basic block BB. */
1819 static void
1820 df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
1822 struct reg_info *reg_info = df->regs;
1823 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1824 rtx insn;
1826 bitmap_copy (live, bb_info->lr_out);
1828 FOR_BB_INSNS_REVERSE (bb, insn)
1830 unsigned int uid = INSN_UID (insn);
1831 unsigned int regno;
1832 struct df_link *link;
1833 bitmap_iterator bi;
1835 if (! INSN_P (insn))
1836 continue;
1838 for (link = df->insns[uid].defs; link; link = link->next)
1840 struct ref *def = link->ref;
1841 unsigned int dregno = DF_REF_REGNO (def);
1843 /* Kill this register. */
1844 bitmap_clear_bit (live, dregno);
1845 reg_info[dregno].n_defs++;
1848 for (link = df->insns[uid].uses; link; link = link->next)
1850 struct ref *use = link->ref;
1851 unsigned int uregno = DF_REF_REGNO (use);
1853 /* This register is now live. */
1854 bitmap_set_bit (live, uregno);
1855 reg_info[uregno].n_uses++;
1858 /* Increment lifetimes of all live registers. */
1859 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno, bi)
1861 reg_info[regno].lifetime++;
1867 /* Compute register info: lifetime, bb, and number of defs and uses. */
1868 static void
1869 df_reg_info_compute (struct df *df, bitmap blocks)
1871 basic_block bb;
1872 bitmap live;
1874 live = BITMAP_ALLOC (NULL);
1876 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1878 df_bb_reg_info_compute (df, bb, live);
1881 BITMAP_FREE (live);
1885 /* Assign LUIDs for BB. */
1886 static int
1887 df_bb_luids_set (struct df *df, basic_block bb)
1889 rtx insn;
1890 int luid = 0;
1892 /* The LUIDs are monotonically increasing for each basic block. */
1894 FOR_BB_INSNS (bb, insn)
1896 if (INSN_P (insn))
1897 DF_INSN_LUID (df, insn) = luid++;
1898 DF_INSN_LUID (df, insn) = luid;
1900 return luid;
1904 /* Assign LUIDs for each basic block within BLOCKS. */
1905 static int
1906 df_luids_set (struct df *df, bitmap blocks)
1908 basic_block bb;
1909 int total = 0;
1911 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1913 total += df_bb_luids_set (df, bb);
1915 return total;
1919 /* Perform dataflow analysis using existing DF structure for blocks
1920 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1921 static void
1922 df_analyze_1 (struct df *df, bitmap blocks, int flags, int update)
1924 int aflags;
1925 int dflags;
1926 basic_block bb;
1927 struct dataflow dflow;
1929 dflags = 0;
1930 aflags = flags;
1931 if (flags & DF_UD_CHAIN)
1932 aflags |= DF_RD | DF_RD_CHAIN;
1934 if (flags & DF_DU_CHAIN)
1935 aflags |= DF_RU;
1937 if (flags & DF_RU)
1938 aflags |= DF_RU_CHAIN;
1940 if (flags & DF_REG_INFO)
1941 aflags |= DF_LR;
1943 if (! blocks)
1944 blocks = df->all_blocks;
1946 df->flags = flags;
1947 if (update)
1949 df_refs_update (df, NULL);
1950 /* More fine grained incremental dataflow analysis would be
1951 nice. For now recompute the whole shebang for the
1952 modified blocks. */
1953 #if 0
1954 df_refs_unlink (df, blocks);
1955 #endif
1956 /* All the def-use, use-def chains can be potentially
1957 modified by changes in one block. The size of the
1958 bitmaps can also change. */
1960 else
1962 /* Scan the function for all register defs and uses. */
1963 df_refs_queue (df);
1964 df_refs_record (df, blocks);
1966 /* Link all the new defs and uses to the insns. */
1967 df_refs_process (df);
1970 /* Allocate the bitmaps now the total number of defs and uses are
1971 known. If the number of defs or uses have changed, then
1972 these bitmaps need to be reallocated. */
1973 df_bitmaps_alloc (df, NULL, aflags);
1975 /* Set the LUIDs for each specified basic block. */
1976 df_luids_set (df, blocks);
1978 /* Recreate reg-def and reg-use chains from scratch so that first
1979 def is at the head of the reg-def chain and the last use is at
1980 the head of the reg-use chain. This is only important for
1981 regs local to a basic block as it speeds up searching. */
1982 if (aflags & DF_RD_CHAIN)
1984 df_reg_def_chain_create (df, blocks, false);
1987 if (aflags & DF_RU_CHAIN)
1989 df_reg_use_chain_create (df, blocks, false);
1992 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
1993 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
1994 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
1996 pre_and_rev_post_order_compute (df->dfs_order, df->rc_order, false);
1997 post_order_compute (df->rts_order, false);
1998 if (aflags & DF_RD)
2000 /* Compute the sets of gens and kills for the defs of each bb. */
2001 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2002 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2003 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2004 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2006 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2007 FOR_EACH_BB (bb)
2009 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2010 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2011 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2012 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2015 dflow.repr = SR_BITMAP;
2016 dflow.dir = DF_FORWARD;
2017 dflow.conf_op = DF_UNION;
2018 dflow.transfun = df_rd_transfer_function;
2019 dflow.n_blocks = n_basic_blocks - NUM_FIXED_BLOCKS;
2020 dflow.order = df->rc_order;
2021 dflow.data = NULL;
2023 iterative_dataflow (&dflow);
2024 free (dflow.in);
2025 free (dflow.out);
2026 free (dflow.gen);
2027 free (dflow.kill);
2030 if (aflags & DF_UD_CHAIN)
2032 /* Create use-def chains. */
2033 df_ud_chain_create (df, df->all_blocks);
2035 if (! (flags & DF_RD))
2036 dflags |= DF_RD;
2039 if (aflags & DF_RU)
2041 /* Compute the sets of gens and kills for the upwards exposed
2042 uses in each bb. */
2043 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2044 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2045 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2046 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2048 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2050 FOR_EACH_BB (bb)
2052 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2053 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2054 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2055 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2058 dflow.repr = SR_BITMAP;
2059 dflow.dir = DF_BACKWARD;
2060 dflow.conf_op = DF_UNION;
2061 dflow.transfun = df_ru_transfer_function;
2062 dflow.n_blocks = n_basic_blocks - NUM_FIXED_BLOCKS;
2063 dflow.order = df->rts_order;
2064 dflow.data = NULL;
2066 iterative_dataflow (&dflow);
2067 free (dflow.in);
2068 free (dflow.out);
2069 free (dflow.gen);
2070 free (dflow.kill);
2073 if (aflags & DF_DU_CHAIN)
2075 /* Create def-use chains. */
2076 df_du_chain_create (df, df->all_blocks);
2078 if (! (flags & DF_RU))
2079 dflags |= DF_RU;
2082 /* Free up bitmaps that are no longer required. */
2083 if (dflags)
2084 df_bitmaps_free (df, dflags);
2086 if (aflags & DF_LR)
2088 /* Compute the sets of defs and uses of live variables. */
2089 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2090 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2091 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2092 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2094 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2096 FOR_EACH_BB (bb)
2098 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2099 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2100 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2101 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2104 dflow.repr = SR_BITMAP;
2105 dflow.dir = DF_BACKWARD;
2106 dflow.conf_op = DF_UNION;
2107 dflow.transfun = df_lr_transfer_function;
2108 dflow.n_blocks = n_basic_blocks - NUM_FIXED_BLOCKS;
2109 dflow.order = df->rts_order;
2110 dflow.data = NULL;
2112 iterative_dataflow (&dflow);
2113 free (dflow.in);
2114 free (dflow.out);
2115 free (dflow.gen);
2116 free (dflow.kill);
2119 if (aflags & DF_REG_INFO)
2121 df_reg_info_compute (df, df->all_blocks);
2124 free (df->dfs_order);
2125 free (df->rc_order);
2126 free (df->rts_order);
2130 /* Initialize dataflow analysis. */
2131 struct df *
2132 df_init (void)
2134 struct df *df;
2136 df = xcalloc (1, sizeof (struct df));
2138 /* Squirrel away a global for debugging. */
2139 ddf = df;
2141 return df;
2145 /* Start queuing refs. */
2146 static int
2147 df_refs_queue (struct df *df)
2149 df->def_id_save = df->def_id;
2150 df->use_id_save = df->use_id;
2151 /* ???? Perhaps we should save current obstack state so that we can
2152 unwind it. */
2153 return 0;
2157 /* Process queued refs. */
2158 static int
2159 df_refs_process (struct df *df)
2161 unsigned int i;
2163 /* Build new insn-def chains. */
2164 for (i = df->def_id_save; i != df->def_id; i++)
2166 struct ref *def = df->defs[i];
2167 unsigned int uid = DF_REF_INSN_UID (def);
2169 /* Add def to head of def list for INSN. */
2170 df->insns[uid].defs
2171 = df_link_create (def, df->insns[uid].defs);
2174 /* Build new insn-use chains. */
2175 for (i = df->use_id_save; i != df->use_id; i++)
2177 struct ref *use = df->uses[i];
2178 unsigned int uid = DF_REF_INSN_UID (use);
2180 /* Add use to head of use list for INSN. */
2181 df->insns[uid].uses
2182 = df_link_create (use, df->insns[uid].uses);
2184 return 0;
2188 /* Update refs for basic block BB. */
2189 static int
2190 df_bb_refs_update (struct df *df, basic_block bb)
2192 rtx insn;
2193 int count = 0;
2195 /* While we have to scan the chain of insns for this BB, we do not
2196 need to allocate and queue a long chain of BB/INSN pairs. Using
2197 a bitmap for insns_modified saves memory and avoids queuing
2198 duplicates. */
2200 FOR_BB_INSNS (bb, insn)
2202 unsigned int uid;
2204 uid = INSN_UID (insn);
2206 if (bitmap_bit_p (df->insns_modified, uid))
2208 /* Delete any allocated refs of this insn. MPH, FIXME. */
2209 df_insn_refs_unlink (df, bb, insn);
2211 /* Scan the insn for refs. */
2212 df_insn_refs_record (df, bb, insn);
2214 count++;
2217 return count;
2221 /* Process all the modified/deleted insns that were queued. */
2222 static int
2223 df_refs_update (struct df *df, bitmap blocks)
2225 basic_block bb;
2226 unsigned count = 0, bbno;
2228 df->n_regs = max_reg_num ();
2229 if (df->n_regs >= df->reg_size)
2230 df_reg_table_realloc (df, 0);
2232 df_refs_queue (df);
2234 if (!blocks)
2236 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2238 count += df_bb_refs_update (df, bb);
2241 else
2243 bitmap_iterator bi;
2245 EXECUTE_IF_AND_IN_BITMAP (df->bbs_modified, blocks, 0, bbno, bi)
2247 count += df_bb_refs_update (df, BASIC_BLOCK (bbno));
2251 df_refs_process (df);
2252 return count;
2256 /* Return nonzero if any of the requested blocks in the bitmap
2257 BLOCKS have been modified. */
2258 static int
2259 df_modified_p (struct df *df, bitmap blocks)
2261 int update = 0;
2262 basic_block bb;
2264 if (!df->n_bbs)
2265 return 0;
2267 FOR_EACH_BB (bb)
2268 if (bitmap_bit_p (df->bbs_modified, bb->index)
2269 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2271 update = 1;
2272 break;
2275 return update;
2278 /* Analyze dataflow info for the basic blocks specified by the bitmap
2279 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2280 modified blocks if BLOCKS is -1. */
2283 df_analyze (struct df *df, bitmap blocks, int flags)
2285 int update;
2287 /* We could deal with additional basic blocks being created by
2288 rescanning everything again. */
2289 gcc_assert (!df->n_bbs || df->n_bbs == (unsigned int) last_basic_block);
2291 update = df_modified_p (df, blocks);
2292 if (update || (flags != df->flags))
2294 if (! blocks)
2296 if (df->n_bbs)
2298 /* Recompute everything from scratch. */
2299 df_free (df);
2301 /* Allocate and initialize data structures. */
2302 df_alloc (df, max_reg_num ());
2303 df_analyze_1 (df, 0, flags, 0);
2304 update = 1;
2306 else
2308 if (blocks == (bitmap) -1)
2309 blocks = df->bbs_modified;
2311 gcc_assert (df->n_bbs);
2313 df_analyze_1 (df, blocks, flags, 1);
2314 bitmap_zero (df->bbs_modified);
2315 bitmap_zero (df->insns_modified);
2318 return update;
2321 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2322 the order of the remaining entries. Returns the length of the resulting
2323 list. */
2325 static unsigned
2326 prune_to_subcfg (int list[], unsigned len, bitmap blocks)
2328 unsigned act, last;
2330 for (act = 0, last = 0; act < len; act++)
2331 if (bitmap_bit_p (blocks, list[act]))
2332 list[last++] = list[act];
2334 return last;
2337 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2338 graph induced by BLOCKS.
2340 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2341 here, and simultaneously not make even greater chaos in it. We behave
2342 slightly differently in some details, especially in handling modified
2343 insns. */
2345 void
2346 df_analyze_subcfg (struct df *df, bitmap blocks, int flags)
2348 rtx insn;
2349 basic_block bb;
2350 struct dataflow dflow;
2351 unsigned n_blocks;
2353 if (flags & DF_UD_CHAIN)
2354 flags |= DF_RD | DF_RD_CHAIN;
2355 if (flags & DF_DU_CHAIN)
2356 flags |= DF_RU;
2357 if (flags & DF_RU)
2358 flags |= DF_RU_CHAIN;
2359 if (flags & DF_REG_INFO)
2360 flags |= DF_LR;
2362 if (!df->n_bbs)
2364 df_alloc (df, max_reg_num ());
2366 /* Mark all insns as modified. */
2368 FOR_EACH_BB (bb)
2370 FOR_BB_INSNS (bb, insn)
2372 df_insn_modify (df, bb, insn);
2377 df->flags = flags;
2379 df_reg_def_chain_clean (df);
2380 df_reg_use_chain_clean (df);
2382 df_refs_update (df, blocks);
2384 /* Clear the updated stuff from ``modified'' bitmaps. */
2385 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2387 if (bitmap_bit_p (df->bbs_modified, bb->index))
2389 FOR_BB_INSNS (bb, insn)
2391 bitmap_clear_bit (df->insns_modified, INSN_UID (insn));
2394 bitmap_clear_bit (df->bbs_modified, bb->index);
2398 /* Allocate the bitmaps now the total number of defs and uses are
2399 known. If the number of defs or uses have changed, then
2400 these bitmaps need to be reallocated. */
2401 df_bitmaps_alloc (df, blocks, flags);
2403 /* Set the LUIDs for each specified basic block. */
2404 df_luids_set (df, blocks);
2406 /* Recreate reg-def and reg-use chains from scratch so that first
2407 def is at the head of the reg-def chain and the last use is at
2408 the head of the reg-use chain. This is only important for
2409 regs local to a basic block as it speeds up searching. */
2410 if (flags & DF_RD_CHAIN)
2412 df_reg_def_chain_create (df, blocks, true);
2415 if (flags & DF_RU_CHAIN)
2417 df_reg_use_chain_create (df, blocks, true);
2420 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
2421 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
2422 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
2424 pre_and_rev_post_order_compute (df->dfs_order, df->rc_order, false);
2425 post_order_compute (df->rts_order, false);
2427 n_blocks = prune_to_subcfg (df->dfs_order, n_basic_blocks - NUM_FIXED_BLOCKS, blocks);
2428 prune_to_subcfg (df->rc_order, n_basic_blocks - NUM_FIXED_BLOCKS, blocks);
2429 prune_to_subcfg (df->rts_order, n_basic_blocks - NUM_FIXED_BLOCKS, blocks);
2431 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2432 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2433 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2434 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2436 if (flags & DF_RD)
2438 /* Compute the sets of gens and kills for the defs of each bb. */
2439 df_rd_local_compute (df, blocks);
2441 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2443 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2444 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2445 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2446 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2449 dflow.repr = SR_BITMAP;
2450 dflow.dir = DF_FORWARD;
2451 dflow.conf_op = DF_UNION;
2452 dflow.transfun = df_rd_transfer_function;
2453 dflow.n_blocks = n_blocks;
2454 dflow.order = df->rc_order;
2455 dflow.data = NULL;
2457 iterative_dataflow (&dflow);
2460 if (flags & DF_UD_CHAIN)
2462 /* Create use-def chains. */
2463 df_ud_chain_create (df, blocks);
2466 if (flags & DF_RU)
2468 /* Compute the sets of gens and kills for the upwards exposed
2469 uses in each bb. */
2470 df_ru_local_compute (df, blocks);
2472 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2474 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2475 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2476 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2477 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2480 dflow.repr = SR_BITMAP;
2481 dflow.dir = DF_BACKWARD;
2482 dflow.conf_op = DF_UNION;
2483 dflow.transfun = df_ru_transfer_function;
2484 dflow.n_blocks = n_blocks;
2485 dflow.order = df->rts_order;
2486 dflow.data = NULL;
2488 iterative_dataflow (&dflow);
2491 if (flags & DF_DU_CHAIN)
2493 /* Create def-use chains. */
2494 df_du_chain_create (df, blocks);
2497 if (flags & DF_LR)
2499 /* Compute the sets of defs and uses of live variables. */
2500 df_lr_local_compute (df, blocks);
2502 FOR_EACH_BB (bb)
2504 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2505 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2506 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2507 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2510 dflow.repr = SR_BITMAP;
2511 dflow.dir = DF_BACKWARD;
2512 dflow.conf_op = DF_UNION;
2513 dflow.transfun = df_lr_transfer_function;
2514 dflow.n_blocks = n_blocks;
2515 dflow.order = df->rts_order;
2516 dflow.data = NULL;
2518 iterative_dataflow (&dflow);
2521 if (flags & DF_REG_INFO)
2523 df_reg_info_compute (df, blocks);
2526 free (dflow.in);
2527 free (dflow.out);
2528 free (dflow.gen);
2529 free (dflow.kill);
2531 free (df->dfs_order);
2532 free (df->rc_order);
2533 free (df->rts_order);
2536 /* Free all the dataflow info and the DF structure. */
2537 void
2538 df_finish (struct df *df)
2540 df_free (df);
2541 free (df);
2544 /* Unlink INSN from its reference information. */
2545 static void
2546 df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2548 struct df_link *link;
2549 unsigned int uid;
2551 uid = INSN_UID (insn);
2553 /* Unlink all refs defined by this insn. */
2554 for (link = df->insns[uid].defs; link; link = link->next)
2555 df_def_unlink (df, link->ref);
2557 /* Unlink all refs used by this insn. */
2558 for (link = df->insns[uid].uses; link; link = link->next)
2559 df_use_unlink (df, link->ref);
2561 df->insns[uid].defs = 0;
2562 df->insns[uid].uses = 0;
2566 #if 0
2567 /* Unlink all the insns within BB from their reference information. */
2568 static void
2569 df_bb_refs_unlink (struct df *df, basic_block bb)
2571 rtx insn;
2573 /* Scan the block an insn at a time from beginning to end. */
2574 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
2576 if (INSN_P (insn))
2578 /* Unlink refs for INSN. */
2579 df_insn_refs_unlink (df, bb, insn);
2581 if (insn == BB_END (bb))
2582 break;
2587 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2588 Not currently used. */
2589 static void
2590 df_refs_unlink (struct df *df, bitmap blocks)
2592 basic_block bb;
2594 if (blocks)
2596 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2598 df_bb_refs_unlink (df, bb);
2601 else
2603 FOR_EACH_BB (bb)
2604 df_bb_refs_unlink (df, bb);
2607 #endif
2609 /* Functions to modify insns. */
2612 /* Delete INSN and all its reference information. */
2614 df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2616 /* If the insn is a jump, we should perhaps call delete_insn to
2617 handle the JUMP_LABEL? */
2619 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2620 gcc_assert (insn != BB_HEAD (bb));
2622 /* Delete the insn. */
2623 delete_insn (insn);
2625 df_insn_modify (df, bb, insn);
2627 return NEXT_INSN (insn);
2630 /* Mark that basic block BB was modified. */
2632 static void
2633 df_bb_modify (struct df *df, basic_block bb)
2635 if ((unsigned) bb->index >= df->n_bbs)
2636 df_bb_table_realloc (df, bb->index);
2638 bitmap_set_bit (df->bbs_modified, bb->index);
2641 /* Mark that INSN within BB may have changed (created/modified/deleted).
2642 This may be called multiple times for the same insn. There is no
2643 harm calling this function if the insn wasn't changed; it will just
2644 slow down the rescanning of refs. */
2645 void
2646 df_insn_modify (struct df *df, basic_block bb, rtx insn)
2648 unsigned int uid;
2650 uid = INSN_UID (insn);
2651 if (uid >= df->insn_size)
2652 df_insn_table_realloc (df, uid);
2654 df_bb_modify (df, bb);
2655 bitmap_set_bit (df->insns_modified, uid);
2657 /* For incremental updating on the fly, perhaps we could make a copy
2658 of all the refs of the original insn and turn them into
2659 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2660 the original refs. If validate_change fails then these anti-refs
2661 will just get ignored. */
2664 /* Check if INSN was marked as changed. Of course the correctness of
2665 the information depends on whether the instruction was really modified
2666 at the time df_insn_modify was called. */
2667 bool
2668 df_insn_modified_p (struct df *df, rtx insn)
2670 unsigned int uid;
2672 uid = INSN_UID (insn);
2673 return (df->insns_modified
2674 && uid < df->insn_size
2675 && bitmap_bit_p (df->insns_modified, uid));
2678 typedef struct replace_args
2680 rtx match;
2681 rtx replacement;
2682 rtx insn;
2683 int modified;
2684 } replace_args;
2687 /* Replace mem pointed to by PX with its associated pseudo register.
2688 DATA is actually a pointer to a structure describing the
2689 instruction currently being scanned and the MEM we are currently
2690 replacing. */
2691 static int
2692 df_rtx_mem_replace (rtx *px, void *data)
2694 replace_args *args = (replace_args *) data;
2695 rtx mem = *px;
2697 if (mem == NULL_RTX)
2698 return 0;
2700 switch (GET_CODE (mem))
2702 case MEM:
2703 break;
2705 case CONST_DOUBLE:
2706 /* We're not interested in the MEM associated with a
2707 CONST_DOUBLE, so there's no need to traverse into one. */
2708 return -1;
2710 default:
2711 /* This is not a MEM. */
2712 return 0;
2715 if (!rtx_equal_p (args->match, mem))
2716 /* This is not the MEM we are currently replacing. */
2717 return 0;
2719 /* Actually replace the MEM. */
2720 validate_change (args->insn, px, args->replacement, 1);
2721 args->modified++;
2723 return 0;
2728 df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
2730 replace_args args;
2732 args.insn = insn;
2733 args.match = mem;
2734 args.replacement = reg;
2735 args.modified = 0;
2737 /* Search and replace all matching mems within insn. */
2738 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2740 if (args.modified)
2741 df_insn_modify (df, bb, insn);
2743 /* ???? FIXME. We may have a new def or one or more new uses of REG
2744 in INSN. REG should be a new pseudo so it won't affect the
2745 dataflow information that we currently have. We should add
2746 the new uses and defs to INSN and then recreate the chains
2747 when df_analyze is called. */
2748 return args.modified;
2752 /* Replace one register with another. Called through for_each_rtx; PX
2753 points to the rtx being scanned. DATA is actually a pointer to a
2754 structure of arguments. */
2755 static int
2756 df_rtx_reg_replace (rtx *px, void *data)
2758 rtx x = *px;
2759 replace_args *args = (replace_args *) data;
2761 if (x == NULL_RTX)
2762 return 0;
2764 if (x == args->match)
2766 validate_change (args->insn, px, args->replacement, 1);
2767 args->modified++;
2770 return 0;
2774 /* Replace the reg within every ref on CHAIN that is within the set
2775 BLOCKS of basic blocks with NEWREG. Also update the regs within
2776 REG_NOTES. */
2777 void
2778 df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
2780 struct df_link *link;
2781 replace_args args;
2783 if (! blocks)
2784 blocks = df->all_blocks;
2786 args.match = oldreg;
2787 args.replacement = newreg;
2788 args.modified = 0;
2790 for (link = chain; link; link = link->next)
2792 struct ref *ref = link->ref;
2793 rtx insn = DF_REF_INSN (ref);
2795 if (! INSN_P (insn))
2796 continue;
2798 gcc_assert (bitmap_bit_p (blocks, DF_REF_BBNO (ref)));
2800 df_ref_reg_replace (df, ref, oldreg, newreg);
2802 /* Replace occurrences of the reg within the REG_NOTES. */
2803 if ((! link->next || DF_REF_INSN (ref)
2804 != DF_REF_INSN (link->next->ref))
2805 && REG_NOTES (insn))
2807 args.insn = insn;
2808 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2814 /* Replace all occurrences of register OLDREG with register NEWREG in
2815 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2816 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2817 routine expects the reg-use and reg-def chains to be valid. */
2819 df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
2821 unsigned int oldregno = REGNO (oldreg);
2823 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2824 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2825 return 1;
2829 /* Try replacing the reg within REF with NEWREG. Do not modify
2830 def-use/use-def chains. */
2832 df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
2834 /* Check that insn was deleted by being converted into a NOTE. If
2835 so ignore this insn. */
2836 if (! INSN_P (DF_REF_INSN (ref)))
2837 return 0;
2839 gcc_assert (!oldreg || oldreg == DF_REF_REG (ref));
2841 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2842 return 0;
2844 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2845 return 1;
2849 struct ref*
2850 df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
2852 struct ref *def;
2853 struct ref *use;
2854 int def_uid;
2855 int use_uid;
2856 struct df_link *link;
2858 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2859 if (! def)
2860 return 0;
2862 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2863 if (! use)
2864 return 0;
2866 /* The USE no longer exists. */
2867 use_uid = INSN_UID (use_insn);
2868 df_use_unlink (df, use);
2869 df_ref_unlink (&df->insns[use_uid].uses, use);
2871 /* The DEF requires shifting so remove it from DEF_INSN
2872 and add it to USE_INSN by reusing LINK. */
2873 def_uid = INSN_UID (def_insn);
2874 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2875 link->ref = def;
2876 link->next = df->insns[use_uid].defs;
2877 df->insns[use_uid].defs = link;
2879 #if 0
2880 link = df_ref_unlink (&df->regs[regno].defs, def);
2881 link->ref = def;
2882 link->next = df->regs[regno].defs;
2883 df->insns[regno].defs = link;
2884 #endif
2886 DF_REF_INSN (def) = use_insn;
2887 return def;
2891 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2892 insns must be processed by this routine. */
2893 static void
2894 df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
2896 rtx insn;
2898 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2900 unsigned int uid;
2902 /* A non-const call should not have slipped through the net. If
2903 it does, we need to create a new basic block. Ouch. The
2904 same applies for a label. */
2905 gcc_assert ((!CALL_P (insn) || CONST_OR_PURE_CALL_P (insn))
2906 && !LABEL_P (insn));
2908 uid = INSN_UID (insn);
2910 if (uid >= df->insn_size)
2911 df_insn_table_realloc (df, uid);
2913 df_insn_modify (df, bb, insn);
2915 if (insn == last_insn)
2916 break;
2921 /* Emit PATTERN before INSN within BB. */
2923 df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
2925 rtx ret_insn;
2926 rtx prev_insn = PREV_INSN (insn);
2928 /* We should not be inserting before the start of the block. */
2929 gcc_assert (insn != BB_HEAD (bb));
2930 ret_insn = emit_insn_before (pattern, insn);
2931 if (ret_insn == insn)
2932 return ret_insn;
2934 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2935 return ret_insn;
2939 /* Emit PATTERN after INSN within BB. */
2941 df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2943 rtx ret_insn;
2945 ret_insn = emit_insn_after (pattern, insn);
2946 if (ret_insn == insn)
2947 return ret_insn;
2949 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2950 return ret_insn;
2954 /* Emit jump PATTERN after INSN within BB. */
2956 df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2958 rtx ret_insn;
2960 ret_insn = emit_jump_insn_after (pattern, insn);
2961 if (ret_insn == insn)
2962 return ret_insn;
2964 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2965 return ret_insn;
2969 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2971 This function should only be used to move loop invariant insns
2972 out of a loop where it has been proven that the def-use info
2973 will still be valid. */
2975 df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
2977 struct df_link *link;
2978 unsigned int uid;
2980 if (! bb)
2981 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2983 uid = INSN_UID (insn);
2985 /* Change bb for all df defined and used by this insn. */
2986 for (link = df->insns[uid].defs; link; link = link->next)
2987 DF_REF_BB (link->ref) = before_bb;
2988 for (link = df->insns[uid].uses; link; link = link->next)
2989 DF_REF_BB (link->ref) = before_bb;
2991 /* The lifetimes of the registers used in this insn will be reduced
2992 while the lifetimes of the registers defined in this insn
2993 are likely to be increased. */
2995 /* ???? Perhaps all the insns moved should be stored on a list
2996 which df_analyze removes when it recalculates data flow. */
2998 return emit_insn_before (insn, before_insn);
3001 /* Functions to query dataflow information. */
3005 df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3006 rtx insn, unsigned int regno)
3008 unsigned int uid;
3009 struct df_link *link;
3011 uid = INSN_UID (insn);
3013 for (link = df->insns[uid].defs; link; link = link->next)
3015 struct ref *def = link->ref;
3017 if (DF_REF_REGNO (def) == regno)
3018 return 1;
3021 return 0;
3024 /* Finds the reference corresponding to the definition of REG in INSN.
3025 DF is the dataflow object. */
3027 struct ref *
3028 df_find_def (struct df *df, rtx insn, rtx reg)
3030 struct df_link *defs;
3032 if (GET_CODE (reg) == SUBREG)
3033 reg = SUBREG_REG (reg);
3034 gcc_assert (REG_P (reg));
3036 for (defs = DF_INSN_DEFS (df, insn); defs; defs = defs->next)
3037 if (rtx_equal_p (DF_REF_REAL_REG (defs->ref), reg))
3038 return defs->ref;
3040 return NULL;
3043 /* Finds the reference corresponding to the use of REG in INSN.
3044 DF is the dataflow object. */
3046 struct ref *
3047 df_find_use (struct df *df, rtx insn, rtx reg)
3049 struct df_link *uses;
3051 if (GET_CODE (reg) == SUBREG)
3052 reg = SUBREG_REG (reg);
3053 gcc_assert (REG_P (reg));
3055 for (uses = DF_INSN_USES (df, insn); uses; uses = uses->next)
3056 if (rtx_equal_p (DF_REF_REAL_REG (uses->ref), reg))
3057 return uses->ref;
3059 return NULL;
3062 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3065 df_reg_used (struct df *df, rtx insn, rtx reg)
3067 return df_find_use (df, insn, reg) != NULL;
3070 static int
3071 df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
3073 struct df_link *du_link;
3075 /* Follow def-use chain to find all the uses of this def. */
3076 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3078 struct ref *use = du_link->ref;
3079 struct df_link *ud_link;
3081 /* Follow use-def chain to check all the defs for this use. */
3082 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3083 if (ud_link->ref != def)
3084 return 0;
3086 return 1;
3091 df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3092 rtx insn)
3094 unsigned int uid;
3095 struct df_link *link;
3097 uid = INSN_UID (insn);
3099 for (link = df->insns[uid].defs; link; link = link->next)
3101 struct ref *def = link->ref;
3103 if (! df_def_dominates_all_uses_p (df, def))
3104 return 0;
3107 return 1;
3111 /* Return nonzero if all DF dominates all the uses within the bitmap
3112 BLOCKS. */
3113 static int
3114 df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
3115 bitmap blocks)
3117 struct df_link *du_link;
3119 /* Follow def-use chain to find all the uses of this def. */
3120 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3122 struct ref *use = du_link->ref;
3123 struct df_link *ud_link;
3125 /* Only worry about the uses within BLOCKS. For example,
3126 consider a register defined within a loop that is live at the
3127 loop exits. */
3128 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
3130 /* Follow use-def chain to check all the defs for this use. */
3131 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3132 if (ud_link->ref != def)
3133 return 0;
3136 return 1;
3140 /* Return nonzero if all the defs of INSN within BB dominates
3141 all the corresponding uses. */
3143 df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3144 rtx insn, bitmap blocks)
3146 unsigned int uid;
3147 struct df_link *link;
3149 uid = INSN_UID (insn);
3151 for (link = df->insns[uid].defs; link; link = link->next)
3153 struct ref *def = link->ref;
3155 /* Only consider the defs within BLOCKS. */
3156 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
3157 && ! df_def_dominates_uses_p (df, def, blocks))
3158 return 0;
3160 return 1;
3164 /* Return the basic block that REG referenced in or NULL if referenced
3165 in multiple basic blocks. */
3166 basic_block
3167 df_regno_bb (struct df *df, unsigned int regno)
3169 struct df_link *defs = df->regs[regno].defs;
3170 struct df_link *uses = df->regs[regno].uses;
3171 struct ref *def = defs ? defs->ref : 0;
3172 struct ref *use = uses ? uses->ref : 0;
3173 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3174 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3176 /* Compare blocks of first def and last use. ???? FIXME. What if
3177 the reg-def and reg-use lists are not correctly ordered. */
3178 return bb_def == bb_use ? bb_def : 0;
3182 /* Return nonzero if REG used in multiple basic blocks. */
3184 df_reg_global_p (struct df *df, rtx reg)
3186 return df_regno_bb (df, REGNO (reg)) != 0;
3190 /* Return total lifetime (in insns) of REG. */
3192 df_reg_lifetime (struct df *df, rtx reg)
3194 return df->regs[REGNO (reg)].lifetime;
3198 /* Return nonzero if REG live at start of BB. */
3200 df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
3202 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3204 gcc_assert (bb_info->lr_in);
3206 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3210 /* Return nonzero if REG live at end of BB. */
3212 df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
3214 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3216 gcc_assert (bb_info->lr_in);
3218 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3222 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3223 after life of REG2, or 0, if the lives overlap. */
3225 df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
3227 unsigned int regno1 = REGNO (reg1);
3228 unsigned int regno2 = REGNO (reg2);
3229 struct ref *def1;
3230 struct ref *use1;
3231 struct ref *def2;
3232 struct ref *use2;
3235 /* The regs must be local to BB. */
3236 gcc_assert (df_regno_bb (df, regno1) == bb
3237 && df_regno_bb (df, regno2) == bb);
3239 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3240 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3242 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3243 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3244 return -1;
3246 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3247 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3249 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3250 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3251 return 1;
3253 return 0;
3257 /* Return true if the definition DEF, which is in the same basic
3258 block as USE, is available at USE. So DEF may as well be
3259 dead, in which case using it will extend its live range. */
3260 bool
3261 df_local_def_available_p (struct df *df, struct ref *def, struct ref *use)
3263 struct df_link *link;
3264 int def_luid = DF_INSN_LUID (df, DF_REF_INSN (def));
3265 int in_bb = 0;
3266 unsigned int regno = REGNO (def->reg);
3267 basic_block bb;
3269 /* The regs must be local to BB. */
3270 gcc_assert (DF_REF_BB (def) == DF_REF_BB (use));
3271 bb = DF_REF_BB (def);
3273 /* This assumes that the reg-def list is ordered such that for any
3274 BB, the first def is found first. However, since the BBs are not
3275 ordered, the first def in the chain is not necessarily the first
3276 def in the function. */
3277 for (link = df->regs[regno].defs; link; link = link->next)
3279 struct ref *this_def = link->ref;
3280 if (DF_REF_BB (this_def) == bb)
3282 int this_luid = DF_INSN_LUID (df, DF_REF_INSN (this_def));
3283 /* Do nothing with defs coming before DEF. */
3284 if (this_luid > def_luid)
3285 return this_luid > DF_INSN_LUID (df, DF_REF_INSN (use));
3287 in_bb = 1;
3289 else if (in_bb)
3290 /* DEF was the last in its basic block. */
3291 return 1;
3294 /* DEF was the last in the function. */
3295 return 1;
3299 /* Return last use of REGNO within BB. */
3300 struct ref *
3301 df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
3303 struct df_link *link;
3305 /* This assumes that the reg-use list is ordered such that for any
3306 BB, the last use is found first. However, since the BBs are not
3307 ordered, the first use in the chain is not necessarily the last
3308 use in the function. */
3309 for (link = df->regs[regno].uses; link; link = link->next)
3311 struct ref *use = link->ref;
3313 if (DF_REF_BB (use) == bb)
3314 return use;
3316 return 0;
3320 /* Return first def of REGNO within BB. */
3321 struct ref *
3322 df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
3324 struct df_link *link;
3326 /* This assumes that the reg-def list is ordered such that for any
3327 BB, the first def is found first. However, since the BBs are not
3328 ordered, the first def in the chain is not necessarily the first
3329 def in the function. */
3330 for (link = df->regs[regno].defs; link; link = link->next)
3332 struct ref *def = link->ref;
3334 if (DF_REF_BB (def) == bb)
3335 return def;
3337 return 0;
3340 /* Return last def of REGNO within BB. */
3341 struct ref *
3342 df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
3344 struct df_link *link;
3345 struct ref *last_def = NULL;
3346 int in_bb = 0;
3348 /* This assumes that the reg-def list is ordered such that for any
3349 BB, the first def is found first. However, since the BBs are not
3350 ordered, the first def in the chain is not necessarily the first
3351 def in the function. */
3352 for (link = df->regs[regno].defs; link; link = link->next)
3354 struct ref *def = link->ref;
3355 /* The first time in the desired block. */
3356 if (DF_REF_BB (def) == bb)
3357 in_bb = 1;
3358 /* The last def in the desired block. */
3359 else if (in_bb)
3360 return last_def;
3361 last_def = def;
3363 return last_def;
3366 /* Return last use of REGNO inside INSN within BB. */
3367 static struct ref *
3368 df_bb_insn_regno_last_use_find (struct df *df,
3369 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3370 unsigned int regno)
3372 unsigned int uid;
3373 struct df_link *link;
3375 uid = INSN_UID (insn);
3377 for (link = df->insns[uid].uses; link; link = link->next)
3379 struct ref *use = link->ref;
3381 if (DF_REF_REGNO (use) == regno)
3382 return use;
3385 return 0;
3389 /* Return first def of REGNO inside INSN within BB. */
3390 static struct ref *
3391 df_bb_insn_regno_first_def_find (struct df *df,
3392 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3393 unsigned int regno)
3395 unsigned int uid;
3396 struct df_link *link;
3398 uid = INSN_UID (insn);
3400 for (link = df->insns[uid].defs; link; link = link->next)
3402 struct ref *def = link->ref;
3404 if (DF_REF_REGNO (def) == regno)
3405 return def;
3408 return 0;
3412 /* Return insn using REG if the BB contains only a single
3413 use and def of REG. */
3415 df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
3417 struct ref *def;
3418 struct ref *use;
3419 struct df_link *du_link;
3421 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3423 gcc_assert (def);
3425 du_link = DF_REF_CHAIN (def);
3427 if (! du_link)
3428 return NULL_RTX;
3430 use = du_link->ref;
3432 /* Check if def is dead. */
3433 if (! use)
3434 return NULL_RTX;
3436 /* Check for multiple uses. */
3437 if (du_link->next)
3438 return NULL_RTX;
3440 return DF_REF_INSN (use);
3443 /* Functions for debugging/dumping dataflow information. */
3446 /* Dump a def-use or use-def chain for REF to FILE. */
3447 static void
3448 df_chain_dump (struct df_link *link, FILE *file)
3450 fprintf (file, "{ ");
3451 for (; link; link = link->next)
3453 fprintf (file, "%c%d ",
3454 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3455 DF_REF_ID (link->ref));
3457 fprintf (file, "}");
3461 /* Dump a chain of refs with the associated regno. */
3462 static void
3463 df_chain_dump_regno (struct df_link *link, FILE *file)
3465 fprintf (file, "{ ");
3466 for (; link; link = link->next)
3468 fprintf (file, "%c%d(%d) ",
3469 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3470 DF_REF_ID (link->ref),
3471 DF_REF_REGNO (link->ref));
3473 fprintf (file, "}");
3477 /* Dump dataflow info. */
3478 void
3479 df_dump (struct df *df, int flags, FILE *file)
3481 unsigned int j;
3482 basic_block bb;
3484 if (! df || ! file)
3485 return;
3487 fprintf (file, "\nDataflow summary:\n");
3488 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3489 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3491 if (flags & DF_RD)
3493 basic_block bb;
3495 fprintf (file, "Reaching defs:\n");
3496 FOR_EACH_BB (bb)
3498 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3500 if (! bb_info->rd_in)
3501 continue;
3503 fprintf (file, "bb %d in \t", bb->index);
3504 dump_bitmap (file, bb_info->rd_in);
3505 fprintf (file, "bb %d gen \t", bb->index);
3506 dump_bitmap (file, bb_info->rd_gen);
3507 fprintf (file, "bb %d kill\t", bb->index);
3508 dump_bitmap (file, bb_info->rd_kill);
3509 fprintf (file, "bb %d out \t", bb->index);
3510 dump_bitmap (file, bb_info->rd_out);
3514 if (flags & DF_UD_CHAIN)
3516 fprintf (file, "Use-def chains:\n");
3517 for (j = 0; j < df->n_defs; j++)
3519 if (df->defs[j])
3521 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3522 j, DF_REF_BBNO (df->defs[j]),
3523 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3524 DF_REF_INSN_UID (df->defs[j]),
3525 DF_REF_REGNO (df->defs[j]));
3526 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3527 fprintf (file, "read/write ");
3528 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3529 fprintf (file, "\n");
3534 if (flags & DF_RU)
3536 fprintf (file, "Reaching uses:\n");
3537 FOR_EACH_BB (bb)
3539 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3541 if (! bb_info->ru_in)
3542 continue;
3544 fprintf (file, "bb %d in \t", bb->index);
3545 dump_bitmap (file, bb_info->ru_in);
3546 fprintf (file, "bb %d gen \t", bb->index);
3547 dump_bitmap (file, bb_info->ru_gen);
3548 fprintf (file, "bb %d kill\t", bb->index);
3549 dump_bitmap (file, bb_info->ru_kill);
3550 fprintf (file, "bb %d out \t", bb->index);
3551 dump_bitmap (file, bb_info->ru_out);
3555 if (flags & DF_DU_CHAIN)
3557 fprintf (file, "Def-use chains:\n");
3558 for (j = 0; j < df->n_uses; j++)
3560 if (df->uses[j])
3562 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3563 j, DF_REF_BBNO (df->uses[j]),
3564 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3565 DF_REF_INSN_UID (df->uses[j]),
3566 DF_REF_REGNO (df->uses[j]));
3567 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3568 fprintf (file, "read/write ");
3569 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3570 fprintf (file, "\n");
3575 if (flags & DF_LR)
3577 fprintf (file, "Live regs:\n");
3578 FOR_EACH_BB (bb)
3580 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3582 if (! bb_info->lr_in)
3583 continue;
3585 fprintf (file, "bb %d in \t", bb->index);
3586 dump_bitmap (file, bb_info->lr_in);
3587 fprintf (file, "bb %d use \t", bb->index);
3588 dump_bitmap (file, bb_info->lr_use);
3589 fprintf (file, "bb %d def \t", bb->index);
3590 dump_bitmap (file, bb_info->lr_def);
3591 fprintf (file, "bb %d out \t", bb->index);
3592 dump_bitmap (file, bb_info->lr_out);
3596 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3598 struct reg_info *reg_info = df->regs;
3600 fprintf (file, "Register info:\n");
3601 for (j = 0; j < df->n_regs; j++)
3603 if (((flags & DF_REG_INFO)
3604 && (reg_info[j].n_uses || reg_info[j].n_defs))
3605 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3606 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3608 fprintf (file, "reg %d", j);
3609 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3611 basic_block bb = df_regno_bb (df, j);
3613 if (bb)
3614 fprintf (file, " bb %d", bb->index);
3615 else
3616 fprintf (file, " bb ?");
3618 if (flags & DF_REG_INFO)
3620 fprintf (file, " life %d", reg_info[j].lifetime);
3623 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3625 fprintf (file, " defs ");
3626 if (flags & DF_REG_INFO)
3627 fprintf (file, "%d ", reg_info[j].n_defs);
3628 if (flags & DF_RD_CHAIN)
3629 df_chain_dump (reg_info[j].defs, file);
3632 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3634 fprintf (file, " uses ");
3635 if (flags & DF_REG_INFO)
3636 fprintf (file, "%d ", reg_info[j].n_uses);
3637 if (flags & DF_RU_CHAIN)
3638 df_chain_dump (reg_info[j].uses, file);
3641 fprintf (file, "\n");
3645 fprintf (file, "\n");
3649 void
3650 df_insn_debug (struct df *df, rtx insn, FILE *file)
3652 unsigned int uid;
3653 int bbi;
3655 uid = INSN_UID (insn);
3656 if (uid >= df->insn_size)
3657 return;
3659 if (df->insns[uid].defs)
3660 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3661 else if (df->insns[uid].uses)
3662 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3663 else
3664 bbi = -1;
3666 fprintf (file, "insn %d bb %d luid %d defs ",
3667 uid, bbi, DF_INSN_LUID (df, insn));
3668 df_chain_dump (df->insns[uid].defs, file);
3669 fprintf (file, " uses ");
3670 df_chain_dump (df->insns[uid].uses, file);
3671 fprintf (file, "\n");
3675 void
3676 df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
3678 unsigned int uid;
3679 int bbi;
3681 uid = INSN_UID (insn);
3682 if (uid >= df->insn_size)
3683 return;
3685 if (df->insns[uid].defs)
3686 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3687 else if (df->insns[uid].uses)
3688 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3689 else
3690 bbi = -1;
3692 fprintf (file, "insn %d bb %d luid %d defs ",
3693 uid, bbi, DF_INSN_LUID (df, insn));
3694 df_chain_dump_regno (df->insns[uid].defs, file);
3695 fprintf (file, " uses ");
3696 df_chain_dump_regno (df->insns[uid].uses, file);
3697 fprintf (file, "\n");
3701 static void
3702 df_regno_debug (struct df *df, unsigned int regno, FILE *file)
3704 if (regno >= df->reg_size)
3705 return;
3707 fprintf (file, "reg %d life %d defs ",
3708 regno, df->regs[regno].lifetime);
3709 df_chain_dump (df->regs[regno].defs, file);
3710 fprintf (file, " uses ");
3711 df_chain_dump (df->regs[regno].uses, file);
3712 fprintf (file, "\n");
3716 static void
3717 df_ref_debug (struct df *df, struct ref *ref, FILE *file)
3719 fprintf (file, "%c%d ",
3720 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3721 DF_REF_ID (ref));
3722 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3723 DF_REF_REGNO (ref),
3724 DF_REF_BBNO (ref),
3725 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3726 INSN_UID (DF_REF_INSN (ref)));
3727 df_chain_dump (DF_REF_CHAIN (ref), file);
3728 fprintf (file, "\n");
3731 /* Functions for debugging from GDB. */
3733 void
3734 debug_df_insn (rtx insn)
3736 df_insn_debug (ddf, insn, stderr);
3737 debug_rtx (insn);
3741 void
3742 debug_df_reg (rtx reg)
3744 df_regno_debug (ddf, REGNO (reg), stderr);
3748 void
3749 debug_df_regno (unsigned int regno)
3751 df_regno_debug (ddf, regno, stderr);
3755 void
3756 debug_df_ref (struct ref *ref)
3758 df_ref_debug (ddf, ref, stderr);
3762 void
3763 debug_df_defno (unsigned int defno)
3765 df_ref_debug (ddf, ddf->defs[defno], stderr);
3769 void
3770 debug_df_useno (unsigned int defno)
3772 df_ref_debug (ddf, ddf->uses[defno], stderr);
3776 void
3777 debug_df_chain (struct df_link *link)
3779 df_chain_dump (link, stderr);
3780 fputc ('\n', stderr);
3784 /* Perform the set operation OP1 OP OP2, using set representation REPR, and
3785 storing the result in OP1. */
3787 static void
3788 dataflow_set_a_op_b (enum set_representation repr,
3789 enum df_confluence_op op,
3790 void *op1, void *op2)
3792 switch (repr)
3794 case SR_SBITMAP:
3795 switch (op)
3797 case DF_UNION:
3798 sbitmap_a_or_b (op1, op1, op2);
3799 break;
3801 case DF_INTERSECTION:
3802 sbitmap_a_and_b (op1, op1, op2);
3803 break;
3805 default:
3806 gcc_unreachable ();
3808 break;
3810 case SR_BITMAP:
3811 switch (op)
3813 case DF_UNION:
3814 bitmap_ior_into (op1, op2);
3815 break;
3817 case DF_INTERSECTION:
3818 bitmap_and_into (op1, op2);
3819 break;
3821 default:
3822 gcc_unreachable ();
3824 break;
3826 default:
3827 gcc_unreachable ();
3831 static void
3832 dataflow_set_copy (enum set_representation repr, void *dest, void *src)
3834 switch (repr)
3836 case SR_SBITMAP:
3837 sbitmap_copy (dest, src);
3838 break;
3840 case SR_BITMAP:
3841 bitmap_copy (dest, src);
3842 break;
3844 default:
3845 gcc_unreachable ();
3849 /* Hybrid search algorithm from "Implementation Techniques for
3850 Efficient Data-Flow Analysis of Large Programs". */
3852 static void
3853 hybrid_search (basic_block bb, struct dataflow *dataflow,
3854 sbitmap visited, sbitmap pending, sbitmap considered)
3856 int changed;
3857 int i = bb->index;
3858 edge e;
3859 edge_iterator ei;
3861 SET_BIT (visited, bb->index);
3862 gcc_assert (TEST_BIT (pending, bb->index));
3863 RESET_BIT (pending, i);
3865 #define HS(E_ANTI, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3866 E, E_BB, E_START_BB, OUT_SET) \
3867 do \
3869 /* Calculate <conf_op> of predecessor_outs. */ \
3870 bitmap_zero (IN_SET[i]); \
3871 FOR_EACH_EDGE (e, ei, bb->E_ANTI) \
3873 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3874 continue; \
3875 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3876 continue; \
3878 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3879 IN_SET[i], \
3880 OUT_SET[e->E_ANTI_BB->index]); \
3883 (*dataflow->transfun)(i, &changed, \
3884 dataflow->in[i], dataflow->out[i], \
3885 dataflow->gen[i], dataflow->kill[i], \
3886 dataflow->data); \
3888 if (!changed) \
3889 break; \
3891 FOR_EACH_EDGE (e, ei, bb->E) \
3893 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3894 continue; \
3896 if (!TEST_BIT (considered, e->E_BB->index)) \
3897 continue; \
3899 SET_BIT (pending, e->E_BB->index); \
3902 FOR_EACH_EDGE (e, ei, bb->E) \
3904 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3905 continue; \
3907 if (!TEST_BIT (considered, e->E_BB->index)) \
3908 continue; \
3910 if (!TEST_BIT (visited, e->E_BB->index)) \
3911 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3913 } while (0)
3915 if (dataflow->dir == DF_FORWARD)
3916 HS (preds, src, ENTRY_BLOCK_PTR, dataflow->in,
3917 succs, dest, EXIT_BLOCK_PTR, dataflow->out);
3918 else
3919 HS (succs, dest, EXIT_BLOCK_PTR, dataflow->out,
3920 preds, src, ENTRY_BLOCK_PTR, dataflow->in);
3923 /* This function will perform iterative bitvector dataflow described by
3924 DATAFLOW, producing the in and out sets. Only the part of the cfg
3925 induced by blocks in DATAFLOW->order is taken into account.
3927 For forward problems, you probably want to pass in rc_order. */
3929 void
3930 iterative_dataflow (struct dataflow *dataflow)
3932 unsigned i, idx;
3933 sbitmap visited, pending, considered;
3935 pending = sbitmap_alloc (last_basic_block);
3936 visited = sbitmap_alloc (last_basic_block);
3937 considered = sbitmap_alloc (last_basic_block);
3938 sbitmap_zero (pending);
3939 sbitmap_zero (visited);
3940 sbitmap_zero (considered);
3942 for (i = 0; i < dataflow->n_blocks; i++)
3944 idx = dataflow->order[i];
3945 SET_BIT (pending, idx);
3946 SET_BIT (considered, idx);
3947 if (dataflow->dir == DF_FORWARD)
3948 dataflow_set_copy (dataflow->repr,
3949 dataflow->out[idx], dataflow->gen[idx]);
3950 else
3951 dataflow_set_copy (dataflow->repr,
3952 dataflow->in[idx], dataflow->gen[idx]);
3955 while (1)
3957 for (i = 0; i < dataflow->n_blocks; i++)
3959 idx = dataflow->order[i];
3961 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
3962 hybrid_search (BASIC_BLOCK (idx), dataflow,
3963 visited, pending, considered);
3966 if (sbitmap_first_set_bit (pending) == -1)
3967 break;
3969 sbitmap_zero (visited);
3972 sbitmap_free (pending);
3973 sbitmap_free (visited);
3974 sbitmap_free (considered);