2010-06-20 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / expr.c
blobab761d39bf22bd48bba2c57bfb7ca3ffaa2e2b2b
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces_d
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces_d
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces_d *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces_d *);
137 static tree clear_storage_libcall_fn (int);
138 static rtx compress_float_constant (rtx, rtx);
139 static rtx get_subtarget (rtx);
140 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
141 HOST_WIDE_INT, enum machine_mode,
142 tree, tree, int, alias_set_type);
143 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
144 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
145 tree, tree, alias_set_type, bool);
147 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149 static int is_aligning_offset (const_tree, const_tree);
150 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
151 enum expand_modifier);
152 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
153 static rtx do_store_flag (sepops, rtx, enum machine_mode);
154 #ifdef PUSH_ROUNDING
155 static void emit_single_push_insn (enum machine_mode, rtx, tree);
156 #endif
157 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
158 static rtx const_vector_from_tree (tree);
159 static void write_complex_part (rtx, rtx, bool);
161 /* Record for each mode whether we can move a register directly to or
162 from an object of that mode in memory. If we can't, we won't try
163 to use that mode directly when accessing a field of that mode. */
165 static char direct_load[NUM_MACHINE_MODES];
166 static char direct_store[NUM_MACHINE_MODES];
168 /* Record for each mode whether we can float-extend from memory. */
170 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
172 /* This macro is used to determine whether move_by_pieces should be called
173 to perform a structure copy. */
174 #ifndef MOVE_BY_PIECES_P
175 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
176 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
177 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
178 #endif
180 /* This macro is used to determine whether clear_by_pieces should be
181 called to clear storage. */
182 #ifndef CLEAR_BY_PIECES_P
183 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
184 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
185 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
186 #endif
188 /* This macro is used to determine whether store_by_pieces should be
189 called to "memset" storage with byte values other than zero. */
190 #ifndef SET_BY_PIECES_P
191 #define SET_BY_PIECES_P(SIZE, ALIGN) \
192 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
193 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
194 #endif
196 /* This macro is used to determine whether store_by_pieces should be
197 called to "memcpy" storage when the source is a constant string. */
198 #ifndef STORE_BY_PIECES_P
199 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
200 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
201 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
202 #endif
204 /* This array records the insn_code of insns to perform block moves. */
205 enum insn_code movmem_optab[NUM_MACHINE_MODES];
207 /* This array records the insn_code of insns to perform block sets. */
208 enum insn_code setmem_optab[NUM_MACHINE_MODES];
210 /* These arrays record the insn_code of three different kinds of insns
211 to perform block compares. */
212 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
213 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
216 /* Synchronization primitives. */
217 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
236 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
237 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
239 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
241 #ifndef SLOW_UNALIGNED_ACCESS
242 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
243 #endif
245 /* This is run to set up which modes can be used
246 directly in memory and to initialize the block move optab. It is run
247 at the beginning of compilation and when the target is reinitialized. */
249 void
250 init_expr_target (void)
252 rtx insn, pat;
253 enum machine_mode mode;
254 int num_clobbers;
255 rtx mem, mem1;
256 rtx reg;
258 /* Try indexing by frame ptr and try by stack ptr.
259 It is known that on the Convex the stack ptr isn't a valid index.
260 With luck, one or the other is valid on any machine. */
261 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
262 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
264 /* A scratch register we can modify in-place below to avoid
265 useless RTL allocations. */
266 reg = gen_rtx_REG (VOIDmode, -1);
268 insn = rtx_alloc (INSN);
269 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
270 PATTERN (insn) = pat;
272 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
273 mode = (enum machine_mode) ((int) mode + 1))
275 int regno;
277 direct_load[(int) mode] = direct_store[(int) mode] = 0;
278 PUT_MODE (mem, mode);
279 PUT_MODE (mem1, mode);
280 PUT_MODE (reg, mode);
282 /* See if there is some register that can be used in this mode and
283 directly loaded or stored from memory. */
285 if (mode != VOIDmode && mode != BLKmode)
286 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
287 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
288 regno++)
290 if (! HARD_REGNO_MODE_OK (regno, mode))
291 continue;
293 SET_REGNO (reg, regno);
295 SET_SRC (pat) = mem;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
300 SET_SRC (pat) = mem1;
301 SET_DEST (pat) = reg;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_load[(int) mode] = 1;
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
310 SET_SRC (pat) = reg;
311 SET_DEST (pat) = mem1;
312 if (recog (pat, insn, &num_clobbers) >= 0)
313 direct_store[(int) mode] = 1;
317 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
319 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
320 mode = GET_MODE_WIDER_MODE (mode))
322 enum machine_mode srcmode;
323 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
324 srcmode = GET_MODE_WIDER_MODE (srcmode))
326 enum insn_code ic;
328 ic = can_extend_p (mode, srcmode, 0);
329 if (ic == CODE_FOR_nothing)
330 continue;
332 PUT_MODE (mem, srcmode);
334 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
335 float_extend_from_mem[mode][srcmode] = true;
340 /* This is run at the start of compiling a function. */
342 void
343 init_expr (void)
345 memset (&crtl->expr, 0, sizeof (crtl->expr));
348 /* Copy data from FROM to TO, where the machine modes are not the same.
349 Both modes may be integer, or both may be floating, or both may be
350 fixed-point.
351 UNSIGNEDP should be nonzero if FROM is an unsigned type.
352 This causes zero-extension instead of sign-extension. */
354 void
355 convert_move (rtx to, rtx from, int unsignedp)
357 enum machine_mode to_mode = GET_MODE (to);
358 enum machine_mode from_mode = GET_MODE (from);
359 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
360 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
361 enum insn_code code;
362 rtx libcall;
364 /* rtx code for making an equivalent value. */
365 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
366 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
369 gcc_assert (to_real == from_real);
370 gcc_assert (to_mode != BLKmode);
371 gcc_assert (from_mode != BLKmode);
373 /* If the source and destination are already the same, then there's
374 nothing to do. */
375 if (to == from)
376 return;
378 /* If FROM is a SUBREG that indicates that we have already done at least
379 the required extension, strip it. We don't handle such SUBREGs as
380 TO here. */
382 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
383 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
384 >= GET_MODE_SIZE (to_mode))
385 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
386 from = gen_lowpart (to_mode, from), from_mode = to_mode;
388 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
390 if (to_mode == from_mode
391 || (from_mode == VOIDmode && CONSTANT_P (from)))
393 emit_move_insn (to, from);
394 return;
397 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
399 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
401 if (VECTOR_MODE_P (to_mode))
402 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
403 else
404 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
406 emit_move_insn (to, from);
407 return;
410 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
412 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
413 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
414 return;
417 if (to_real)
419 rtx value, insns;
420 convert_optab tab;
422 gcc_assert ((GET_MODE_PRECISION (from_mode)
423 != GET_MODE_PRECISION (to_mode))
424 || (DECIMAL_FLOAT_MODE_P (from_mode)
425 != DECIMAL_FLOAT_MODE_P (to_mode)));
427 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
428 /* Conversion between decimal float and binary float, same size. */
429 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
430 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
431 tab = sext_optab;
432 else
433 tab = trunc_optab;
435 /* Try converting directly if the insn is supported. */
437 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
438 if (code != CODE_FOR_nothing)
440 emit_unop_insn (code, to, from,
441 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
442 return;
445 /* Otherwise use a libcall. */
446 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
448 /* Is this conversion implemented yet? */
449 gcc_assert (libcall);
451 start_sequence ();
452 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
453 1, from, from_mode);
454 insns = get_insns ();
455 end_sequence ();
456 emit_libcall_block (insns, to, value,
457 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
458 from)
459 : gen_rtx_FLOAT_EXTEND (to_mode, from));
460 return;
463 /* Handle pointer conversion. */ /* SPEE 900220. */
464 /* Targets are expected to provide conversion insns between PxImode and
465 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
466 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
468 enum machine_mode full_mode
469 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
471 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
472 != CODE_FOR_nothing);
474 if (full_mode != from_mode)
475 from = convert_to_mode (full_mode, from, unsignedp);
476 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
477 to, from, UNKNOWN);
478 return;
480 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
482 rtx new_from;
483 enum machine_mode full_mode
484 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
486 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
487 != CODE_FOR_nothing);
489 if (to_mode == full_mode)
491 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
492 to, from, UNKNOWN);
493 return;
496 new_from = gen_reg_rtx (full_mode);
497 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
498 new_from, from, UNKNOWN);
500 /* else proceed to integer conversions below. */
501 from_mode = full_mode;
502 from = new_from;
505 /* Make sure both are fixed-point modes or both are not. */
506 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
507 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
508 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
510 /* If we widen from_mode to to_mode and they are in the same class,
511 we won't saturate the result.
512 Otherwise, always saturate the result to play safe. */
513 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
514 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
515 expand_fixed_convert (to, from, 0, 0);
516 else
517 expand_fixed_convert (to, from, 0, 1);
518 return;
521 /* Now both modes are integers. */
523 /* Handle expanding beyond a word. */
524 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
525 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
527 rtx insns;
528 rtx lowpart;
529 rtx fill_value;
530 rtx lowfrom;
531 int i;
532 enum machine_mode lowpart_mode;
533 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
535 /* Try converting directly if the insn is supported. */
536 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
537 != CODE_FOR_nothing)
539 /* If FROM is a SUBREG, put it into a register. Do this
540 so that we always generate the same set of insns for
541 better cse'ing; if an intermediate assignment occurred,
542 we won't be doing the operation directly on the SUBREG. */
543 if (optimize > 0 && GET_CODE (from) == SUBREG)
544 from = force_reg (from_mode, from);
545 emit_unop_insn (code, to, from, equiv_code);
546 return;
548 /* Next, try converting via full word. */
549 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
550 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
551 != CODE_FOR_nothing))
553 rtx word_to = gen_reg_rtx (word_mode);
554 if (REG_P (to))
556 if (reg_overlap_mentioned_p (to, from))
557 from = force_reg (from_mode, from);
558 emit_clobber (to);
560 convert_move (word_to, from, unsignedp);
561 emit_unop_insn (code, to, word_to, equiv_code);
562 return;
565 /* No special multiword conversion insn; do it by hand. */
566 start_sequence ();
568 /* Since we will turn this into a no conflict block, we must ensure
569 that the source does not overlap the target. */
571 if (reg_overlap_mentioned_p (to, from))
572 from = force_reg (from_mode, from);
574 /* Get a copy of FROM widened to a word, if necessary. */
575 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
576 lowpart_mode = word_mode;
577 else
578 lowpart_mode = from_mode;
580 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
582 lowpart = gen_lowpart (lowpart_mode, to);
583 emit_move_insn (lowpart, lowfrom);
585 /* Compute the value to put in each remaining word. */
586 if (unsignedp)
587 fill_value = const0_rtx;
588 else
589 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
590 LT, lowfrom, const0_rtx,
591 VOIDmode, 0, -1);
593 /* Fill the remaining words. */
594 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
596 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
597 rtx subword = operand_subword (to, index, 1, to_mode);
599 gcc_assert (subword);
601 if (fill_value != subword)
602 emit_move_insn (subword, fill_value);
605 insns = get_insns ();
606 end_sequence ();
608 emit_insn (insns);
609 return;
612 /* Truncating multi-word to a word or less. */
613 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
614 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
616 if (!((MEM_P (from)
617 && ! MEM_VOLATILE_P (from)
618 && direct_load[(int) to_mode]
619 && ! mode_dependent_address_p (XEXP (from, 0)))
620 || REG_P (from)
621 || GET_CODE (from) == SUBREG))
622 from = force_reg (from_mode, from);
623 convert_move (to, gen_lowpart (word_mode, from), 0);
624 return;
627 /* Now follow all the conversions between integers
628 no more than a word long. */
630 /* For truncation, usually we can just refer to FROM in a narrower mode. */
631 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
632 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
633 GET_MODE_BITSIZE (from_mode)))
635 if (!((MEM_P (from)
636 && ! MEM_VOLATILE_P (from)
637 && direct_load[(int) to_mode]
638 && ! mode_dependent_address_p (XEXP (from, 0)))
639 || REG_P (from)
640 || GET_CODE (from) == SUBREG))
641 from = force_reg (from_mode, from);
642 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
643 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
644 from = copy_to_reg (from);
645 emit_move_insn (to, gen_lowpart (to_mode, from));
646 return;
649 /* Handle extension. */
650 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
652 /* Convert directly if that works. */
653 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
654 != CODE_FOR_nothing)
656 emit_unop_insn (code, to, from, equiv_code);
657 return;
659 else
661 enum machine_mode intermediate;
662 rtx tmp;
663 tree shift_amount;
665 /* Search for a mode to convert via. */
666 for (intermediate = from_mode; intermediate != VOIDmode;
667 intermediate = GET_MODE_WIDER_MODE (intermediate))
668 if (((can_extend_p (to_mode, intermediate, unsignedp)
669 != CODE_FOR_nothing)
670 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
671 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
672 GET_MODE_BITSIZE (intermediate))))
673 && (can_extend_p (intermediate, from_mode, unsignedp)
674 != CODE_FOR_nothing))
676 convert_move (to, convert_to_mode (intermediate, from,
677 unsignedp), unsignedp);
678 return;
681 /* No suitable intermediate mode.
682 Generate what we need with shifts. */
683 shift_amount = build_int_cst (NULL_TREE,
684 GET_MODE_BITSIZE (to_mode)
685 - GET_MODE_BITSIZE (from_mode));
686 from = gen_lowpart (to_mode, force_reg (from_mode, from));
687 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
688 to, unsignedp);
689 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
690 to, unsignedp);
691 if (tmp != to)
692 emit_move_insn (to, tmp);
693 return;
697 /* Support special truncate insns for certain modes. */
698 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
700 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
701 to, from, UNKNOWN);
702 return;
705 /* Handle truncation of volatile memrefs, and so on;
706 the things that couldn't be truncated directly,
707 and for which there was no special instruction.
709 ??? Code above formerly short-circuited this, for most integer
710 mode pairs, with a force_reg in from_mode followed by a recursive
711 call to this routine. Appears always to have been wrong. */
712 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
714 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
715 emit_move_insn (to, temp);
716 return;
719 /* Mode combination is not recognized. */
720 gcc_unreachable ();
723 /* Return an rtx for a value that would result
724 from converting X to mode MODE.
725 Both X and MODE may be floating, or both integer.
726 UNSIGNEDP is nonzero if X is an unsigned value.
727 This can be done by referring to a part of X in place
728 or by copying to a new temporary with conversion. */
731 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
733 return convert_modes (mode, VOIDmode, x, unsignedp);
736 /* Return an rtx for a value that would result
737 from converting X from mode OLDMODE to mode MODE.
738 Both modes may be floating, or both integer.
739 UNSIGNEDP is nonzero if X is an unsigned value.
741 This can be done by referring to a part of X in place
742 or by copying to a new temporary with conversion.
744 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
747 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
749 rtx temp;
751 /* If FROM is a SUBREG that indicates that we have already done at least
752 the required extension, strip it. */
754 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
755 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
756 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
757 x = gen_lowpart (mode, x);
759 if (GET_MODE (x) != VOIDmode)
760 oldmode = GET_MODE (x);
762 if (mode == oldmode)
763 return x;
765 /* There is one case that we must handle specially: If we are converting
766 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
767 we are to interpret the constant as unsigned, gen_lowpart will do
768 the wrong if the constant appears negative. What we want to do is
769 make the high-order word of the constant zero, not all ones. */
771 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
772 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
773 && CONST_INT_P (x) && INTVAL (x) < 0)
775 double_int val = uhwi_to_double_int (INTVAL (x));
777 /* We need to zero extend VAL. */
778 if (oldmode != VOIDmode)
779 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
781 return immed_double_int_const (val, mode);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((CONST_INT_P (x)
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (CONST_INT_P (x) && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
819 return gen_int_mode (val, mode);
822 return gen_lowpart (mode, x);
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces_d data;
873 enum machine_mode to_addr_mode, from_addr_mode
874 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
875 rtx to_addr, from_addr = XEXP (from, 0);
876 unsigned int max_size = MOVE_MAX_PIECES + 1;
877 enum machine_mode mode = VOIDmode, tmode;
878 enum insn_code icode;
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
895 else
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
925 /* Find the mode of the largest move... */
926 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
927 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
928 if (GET_MODE_SIZE (tmode) < max_size)
929 mode = tmode;
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
963 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
964 if (align >= GET_MODE_ALIGNMENT (tmode))
965 align = GET_MODE_ALIGNMENT (tmode);
966 else
968 enum machine_mode xmode;
970 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
971 tmode != VOIDmode;
972 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
973 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
974 || SLOW_UNALIGNED_ACCESS (tmode, align))
975 break;
977 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
980 /* First move what we can in the largest integer mode, then go to
981 successively smaller modes. */
983 while (max_size > 1)
985 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
986 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
987 if (GET_MODE_SIZE (tmode) < max_size)
988 mode = tmode;
990 if (mode == VOIDmode)
991 break;
993 icode = optab_handler (mov_optab, mode)->insn_code;
994 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
995 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
997 max_size = GET_MODE_SIZE (mode);
1000 /* The code above should have handled everything. */
1001 gcc_assert (!data.len);
1003 if (endp)
1005 rtx to1;
1007 gcc_assert (!data.reverse);
1008 if (data.autinc_to)
1010 if (endp == 2)
1012 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1013 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1014 else
1015 data.to_addr = copy_to_mode_reg (to_addr_mode,
1016 plus_constant (data.to_addr,
1017 -1));
1019 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1020 data.offset);
1022 else
1024 if (endp == 2)
1025 --data.offset;
1026 to1 = adjust_address (data.to, QImode, data.offset);
1028 return to1;
1030 else
1031 return data.to;
1034 /* Return number of insns required to move L bytes by pieces.
1035 ALIGN (in bits) is maximum alignment we can assume. */
1037 static unsigned HOST_WIDE_INT
1038 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1039 unsigned int max_size)
1041 unsigned HOST_WIDE_INT n_insns = 0;
1042 enum machine_mode tmode;
1044 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1045 if (align >= GET_MODE_ALIGNMENT (tmode))
1046 align = GET_MODE_ALIGNMENT (tmode);
1047 else
1049 enum machine_mode tmode, xmode;
1051 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1052 tmode != VOIDmode;
1053 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1054 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1055 || SLOW_UNALIGNED_ACCESS (tmode, align))
1056 break;
1058 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1061 while (max_size > 1)
1063 enum machine_mode mode = VOIDmode;
1064 enum insn_code icode;
1066 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1067 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1068 if (GET_MODE_SIZE (tmode) < max_size)
1069 mode = tmode;
1071 if (mode == VOIDmode)
1072 break;
1074 icode = optab_handler (mov_optab, mode)->insn_code;
1075 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1076 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1078 max_size = GET_MODE_SIZE (mode);
1081 gcc_assert (!l);
1082 return n_insns;
1085 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1086 with move instructions for mode MODE. GENFUN is the gen_... function
1087 to make a move insn for that mode. DATA has all the other info. */
1089 static void
1090 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1091 struct move_by_pieces_d *data)
1093 unsigned int size = GET_MODE_SIZE (mode);
1094 rtx to1 = NULL_RTX, from1;
1096 while (data->len >= size)
1098 if (data->reverse)
1099 data->offset -= size;
1101 if (data->to)
1103 if (data->autinc_to)
1104 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1105 data->offset);
1106 else
1107 to1 = adjust_address (data->to, mode, data->offset);
1110 if (data->autinc_from)
1111 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1112 data->offset);
1113 else
1114 from1 = adjust_address (data->from, mode, data->offset);
1116 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1117 emit_insn (gen_add2_insn (data->to_addr,
1118 GEN_INT (-(HOST_WIDE_INT)size)));
1119 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1120 emit_insn (gen_add2_insn (data->from_addr,
1121 GEN_INT (-(HOST_WIDE_INT)size)));
1123 if (data->to)
1124 emit_insn ((*genfun) (to1, from1));
1125 else
1127 #ifdef PUSH_ROUNDING
1128 emit_single_push_insn (mode, from1, NULL);
1129 #else
1130 gcc_unreachable ();
1131 #endif
1134 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1135 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1136 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1137 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1139 if (! data->reverse)
1140 data->offset += size;
1142 data->len -= size;
1146 /* Emit code to move a block Y to a block X. This may be done with
1147 string-move instructions, with multiple scalar move instructions,
1148 or with a library call.
1150 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1151 SIZE is an rtx that says how long they are.
1152 ALIGN is the maximum alignment we can assume they have.
1153 METHOD describes what kind of copy this is, and what mechanisms may be used.
1155 Return the address of the new block, if memcpy is called and returns it,
1156 0 otherwise. */
1159 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1160 unsigned int expected_align, HOST_WIDE_INT expected_size)
1162 bool may_use_call;
1163 rtx retval = 0;
1164 unsigned int align;
1166 switch (method)
1168 case BLOCK_OP_NORMAL:
1169 case BLOCK_OP_TAILCALL:
1170 may_use_call = true;
1171 break;
1173 case BLOCK_OP_CALL_PARM:
1174 may_use_call = block_move_libcall_safe_for_call_parm ();
1176 /* Make inhibit_defer_pop nonzero around the library call
1177 to force it to pop the arguments right away. */
1178 NO_DEFER_POP;
1179 break;
1181 case BLOCK_OP_NO_LIBCALL:
1182 may_use_call = false;
1183 break;
1185 default:
1186 gcc_unreachable ();
1189 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1190 gcc_assert (align >= BITS_PER_UNIT);
1192 gcc_assert (MEM_P (x));
1193 gcc_assert (MEM_P (y));
1194 gcc_assert (size);
1196 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1197 block copy is more efficient for other large modes, e.g. DCmode. */
1198 x = adjust_address (x, BLKmode, 0);
1199 y = adjust_address (y, BLKmode, 0);
1201 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1202 can be incorrect is coming from __builtin_memcpy. */
1203 if (CONST_INT_P (size))
1205 if (INTVAL (size) == 0)
1206 return 0;
1208 x = shallow_copy_rtx (x);
1209 y = shallow_copy_rtx (y);
1210 set_mem_size (x, size);
1211 set_mem_size (y, size);
1214 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1215 move_by_pieces (x, y, INTVAL (size), align, 0);
1216 else if (emit_block_move_via_movmem (x, y, size, align,
1217 expected_align, expected_size))
1219 else if (may_use_call
1220 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1221 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1222 retval = emit_block_move_via_libcall (x, y, size,
1223 method == BLOCK_OP_TAILCALL);
1224 else
1225 emit_block_move_via_loop (x, y, size, align);
1227 if (method == BLOCK_OP_CALL_PARM)
1228 OK_DEFER_POP;
1230 return retval;
1234 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1236 return emit_block_move_hints (x, y, size, method, 0, -1);
1239 /* A subroutine of emit_block_move. Returns true if calling the
1240 block move libcall will not clobber any parameters which may have
1241 already been placed on the stack. */
1243 static bool
1244 block_move_libcall_safe_for_call_parm (void)
1246 #if defined (REG_PARM_STACK_SPACE)
1247 tree fn;
1248 #endif
1250 /* If arguments are pushed on the stack, then they're safe. */
1251 if (PUSH_ARGS)
1252 return true;
1254 /* If registers go on the stack anyway, any argument is sure to clobber
1255 an outgoing argument. */
1256 #if defined (REG_PARM_STACK_SPACE)
1257 fn = emit_block_move_libcall_fn (false);
1258 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1259 depend on its argument. */
1260 (void) fn;
1261 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1262 && REG_PARM_STACK_SPACE (fn) != 0)
1263 return false;
1264 #endif
1266 /* If any argument goes in memory, then it might clobber an outgoing
1267 argument. */
1269 CUMULATIVE_ARGS args_so_far;
1270 tree fn, arg;
1272 fn = emit_block_move_libcall_fn (false);
1273 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1275 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1276 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1278 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1279 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1280 if (!tmp || !REG_P (tmp))
1281 return false;
1282 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1283 return false;
1284 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1287 return true;
1290 /* A subroutine of emit_block_move. Expand a movmem pattern;
1291 return true if successful. */
1293 static bool
1294 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1295 unsigned int expected_align, HOST_WIDE_INT expected_size)
1297 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1298 int save_volatile_ok = volatile_ok;
1299 enum machine_mode mode;
1301 if (expected_align < align)
1302 expected_align = align;
1304 /* Since this is a move insn, we don't care about volatility. */
1305 volatile_ok = 1;
1307 /* Try the most limited insn first, because there's no point
1308 including more than one in the machine description unless
1309 the more limited one has some advantage. */
1311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1312 mode = GET_MODE_WIDER_MODE (mode))
1314 enum insn_code code = movmem_optab[(int) mode];
1315 insn_operand_predicate_fn pred;
1317 if (code != CODE_FOR_nothing
1318 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1319 here because if SIZE is less than the mode mask, as it is
1320 returned by the macro, it will definitely be less than the
1321 actual mode mask. */
1322 && ((CONST_INT_P (size)
1323 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1324 <= (GET_MODE_MASK (mode) >> 1)))
1325 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1326 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1327 || (*pred) (x, BLKmode))
1328 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1329 || (*pred) (y, BLKmode))
1330 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1331 || (*pred) (opalign, VOIDmode)))
1333 rtx op2;
1334 rtx last = get_last_insn ();
1335 rtx pat;
1337 op2 = convert_to_mode (mode, size, 1);
1338 pred = insn_data[(int) code].operand[2].predicate;
1339 if (pred != 0 && ! (*pred) (op2, mode))
1340 op2 = copy_to_mode_reg (mode, op2);
1342 /* ??? When called via emit_block_move_for_call, it'd be
1343 nice if there were some way to inform the backend, so
1344 that it doesn't fail the expansion because it thinks
1345 emitting the libcall would be more efficient. */
1347 if (insn_data[(int) code].n_operands == 4)
1348 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1349 else
1350 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1351 GEN_INT (expected_align
1352 / BITS_PER_UNIT),
1353 GEN_INT (expected_size));
1354 if (pat)
1356 emit_insn (pat);
1357 volatile_ok = save_volatile_ok;
1358 return true;
1360 else
1361 delete_insns_since (last);
1365 volatile_ok = save_volatile_ok;
1366 return false;
1369 /* A subroutine of emit_block_move. Expand a call to memcpy.
1370 Return the return value from memcpy, 0 otherwise. */
1373 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1375 rtx dst_addr, src_addr;
1376 tree call_expr, fn, src_tree, dst_tree, size_tree;
1377 enum machine_mode size_mode;
1378 rtx retval;
1380 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1381 pseudos. We can then place those new pseudos into a VAR_DECL and
1382 use them later. */
1384 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1385 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1387 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1388 src_addr = convert_memory_address (ptr_mode, src_addr);
1390 dst_tree = make_tree (ptr_type_node, dst_addr);
1391 src_tree = make_tree (ptr_type_node, src_addr);
1393 size_mode = TYPE_MODE (sizetype);
1395 size = convert_to_mode (size_mode, size, 1);
1396 size = copy_to_mode_reg (size_mode, size);
1398 /* It is incorrect to use the libcall calling conventions to call
1399 memcpy in this context. This could be a user call to memcpy and
1400 the user may wish to examine the return value from memcpy. For
1401 targets where libcalls and normal calls have different conventions
1402 for returning pointers, we could end up generating incorrect code. */
1404 size_tree = make_tree (sizetype, size);
1406 fn = emit_block_move_libcall_fn (true);
1407 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1408 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1410 retval = expand_normal (call_expr);
1412 return retval;
1415 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1416 for the function we use for block copies. The first time FOR_CALL
1417 is true, we call assemble_external. */
1419 static GTY(()) tree block_move_fn;
1421 void
1422 init_block_move_fn (const char *asmspec)
1424 if (!block_move_fn)
1426 tree args, fn;
1428 fn = get_identifier ("memcpy");
1429 args = build_function_type_list (ptr_type_node, ptr_type_node,
1430 const_ptr_type_node, sizetype,
1431 NULL_TREE);
1433 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1434 DECL_EXTERNAL (fn) = 1;
1435 TREE_PUBLIC (fn) = 1;
1436 DECL_ARTIFICIAL (fn) = 1;
1437 TREE_NOTHROW (fn) = 1;
1438 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1439 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1441 block_move_fn = fn;
1444 if (asmspec)
1445 set_user_assembler_name (block_move_fn, asmspec);
1448 static tree
1449 emit_block_move_libcall_fn (int for_call)
1451 static bool emitted_extern;
1453 if (!block_move_fn)
1454 init_block_move_fn (NULL);
1456 if (for_call && !emitted_extern)
1458 emitted_extern = true;
1459 make_decl_rtl (block_move_fn);
1460 assemble_external (block_move_fn);
1463 return block_move_fn;
1466 /* A subroutine of emit_block_move. Copy the data via an explicit
1467 loop. This is used only when libcalls are forbidden. */
1468 /* ??? It'd be nice to copy in hunks larger than QImode. */
1470 static void
1471 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1472 unsigned int align ATTRIBUTE_UNUSED)
1474 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1475 enum machine_mode x_addr_mode
1476 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1477 enum machine_mode y_addr_mode
1478 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1479 enum machine_mode iter_mode;
1481 iter_mode = GET_MODE (size);
1482 if (iter_mode == VOIDmode)
1483 iter_mode = word_mode;
1485 top_label = gen_label_rtx ();
1486 cmp_label = gen_label_rtx ();
1487 iter = gen_reg_rtx (iter_mode);
1489 emit_move_insn (iter, const0_rtx);
1491 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1492 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1493 do_pending_stack_adjust ();
1495 emit_jump (cmp_label);
1496 emit_label (top_label);
1498 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1499 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1501 if (x_addr_mode != y_addr_mode)
1502 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1503 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1505 x = change_address (x, QImode, x_addr);
1506 y = change_address (y, QImode, y_addr);
1508 emit_move_insn (x, y);
1510 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1511 true, OPTAB_LIB_WIDEN);
1512 if (tmp != iter)
1513 emit_move_insn (iter, tmp);
1515 emit_label (cmp_label);
1517 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1518 true, top_label);
1521 /* Copy all or part of a value X into registers starting at REGNO.
1522 The number of registers to be filled is NREGS. */
1524 void
1525 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1527 int i;
1528 #ifdef HAVE_load_multiple
1529 rtx pat;
1530 rtx last;
1531 #endif
1533 if (nregs == 0)
1534 return;
1536 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1537 x = validize_mem (force_const_mem (mode, x));
1539 /* See if the machine can do this with a load multiple insn. */
1540 #ifdef HAVE_load_multiple
1541 if (HAVE_load_multiple)
1543 last = get_last_insn ();
1544 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1545 GEN_INT (nregs));
1546 if (pat)
1548 emit_insn (pat);
1549 return;
1551 else
1552 delete_insns_since (last);
1554 #endif
1556 for (i = 0; i < nregs; i++)
1557 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1558 operand_subword_force (x, i, mode));
1561 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1562 The number of registers to be filled is NREGS. */
1564 void
1565 move_block_from_reg (int regno, rtx x, int nregs)
1567 int i;
1569 if (nregs == 0)
1570 return;
1572 /* See if the machine can do this with a store multiple insn. */
1573 #ifdef HAVE_store_multiple
1574 if (HAVE_store_multiple)
1576 rtx last = get_last_insn ();
1577 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1578 GEN_INT (nregs));
1579 if (pat)
1581 emit_insn (pat);
1582 return;
1584 else
1585 delete_insns_since (last);
1587 #endif
1589 for (i = 0; i < nregs; i++)
1591 rtx tem = operand_subword (x, i, 1, BLKmode);
1593 gcc_assert (tem);
1595 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1599 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1600 ORIG, where ORIG is a non-consecutive group of registers represented by
1601 a PARALLEL. The clone is identical to the original except in that the
1602 original set of registers is replaced by a new set of pseudo registers.
1603 The new set has the same modes as the original set. */
1606 gen_group_rtx (rtx orig)
1608 int i, length;
1609 rtx *tmps;
1611 gcc_assert (GET_CODE (orig) == PARALLEL);
1613 length = XVECLEN (orig, 0);
1614 tmps = XALLOCAVEC (rtx, length);
1616 /* Skip a NULL entry in first slot. */
1617 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1619 if (i)
1620 tmps[0] = 0;
1622 for (; i < length; i++)
1624 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1625 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1627 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1630 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1633 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1634 except that values are placed in TMPS[i], and must later be moved
1635 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1637 static void
1638 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1640 rtx src;
1641 int start, i;
1642 enum machine_mode m = GET_MODE (orig_src);
1644 gcc_assert (GET_CODE (dst) == PARALLEL);
1646 if (m != VOIDmode
1647 && !SCALAR_INT_MODE_P (m)
1648 && !MEM_P (orig_src)
1649 && GET_CODE (orig_src) != CONCAT)
1651 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1652 if (imode == BLKmode)
1653 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1654 else
1655 src = gen_reg_rtx (imode);
1656 if (imode != BLKmode)
1657 src = gen_lowpart (GET_MODE (orig_src), src);
1658 emit_move_insn (src, orig_src);
1659 /* ...and back again. */
1660 if (imode != BLKmode)
1661 src = gen_lowpart (imode, src);
1662 emit_group_load_1 (tmps, dst, src, type, ssize);
1663 return;
1666 /* Check for a NULL entry, used to indicate that the parameter goes
1667 both on the stack and in registers. */
1668 if (XEXP (XVECEXP (dst, 0, 0), 0))
1669 start = 0;
1670 else
1671 start = 1;
1673 /* Process the pieces. */
1674 for (i = start; i < XVECLEN (dst, 0); i++)
1676 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1677 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1678 unsigned int bytelen = GET_MODE_SIZE (mode);
1679 int shift = 0;
1681 /* Handle trailing fragments that run over the size of the struct. */
1682 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1684 /* Arrange to shift the fragment to where it belongs.
1685 extract_bit_field loads to the lsb of the reg. */
1686 if (
1687 #ifdef BLOCK_REG_PADDING
1688 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1689 == (BYTES_BIG_ENDIAN ? upward : downward)
1690 #else
1691 BYTES_BIG_ENDIAN
1692 #endif
1694 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1695 bytelen = ssize - bytepos;
1696 gcc_assert (bytelen > 0);
1699 /* If we won't be loading directly from memory, protect the real source
1700 from strange tricks we might play; but make sure that the source can
1701 be loaded directly into the destination. */
1702 src = orig_src;
1703 if (!MEM_P (orig_src)
1704 && (!CONSTANT_P (orig_src)
1705 || (GET_MODE (orig_src) != mode
1706 && GET_MODE (orig_src) != VOIDmode)))
1708 if (GET_MODE (orig_src) == VOIDmode)
1709 src = gen_reg_rtx (mode);
1710 else
1711 src = gen_reg_rtx (GET_MODE (orig_src));
1713 emit_move_insn (src, orig_src);
1716 /* Optimize the access just a bit. */
1717 if (MEM_P (src)
1718 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1719 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1720 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1721 && bytelen == GET_MODE_SIZE (mode))
1723 tmps[i] = gen_reg_rtx (mode);
1724 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1726 else if (COMPLEX_MODE_P (mode)
1727 && GET_MODE (src) == mode
1728 && bytelen == GET_MODE_SIZE (mode))
1729 /* Let emit_move_complex do the bulk of the work. */
1730 tmps[i] = src;
1731 else if (GET_CODE (src) == CONCAT)
1733 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1734 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1736 if ((bytepos == 0 && bytelen == slen0)
1737 || (bytepos != 0 && bytepos + bytelen <= slen))
1739 /* The following assumes that the concatenated objects all
1740 have the same size. In this case, a simple calculation
1741 can be used to determine the object and the bit field
1742 to be extracted. */
1743 tmps[i] = XEXP (src, bytepos / slen0);
1744 if (! CONSTANT_P (tmps[i])
1745 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1746 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1747 (bytepos % slen0) * BITS_PER_UNIT,
1748 1, NULL_RTX, mode, mode);
1750 else
1752 rtx mem;
1754 gcc_assert (!bytepos);
1755 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1756 emit_move_insn (mem, src);
1757 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1758 0, 1, NULL_RTX, mode, mode);
1761 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1762 SIMD register, which is currently broken. While we get GCC
1763 to emit proper RTL for these cases, let's dump to memory. */
1764 else if (VECTOR_MODE_P (GET_MODE (dst))
1765 && REG_P (src))
1767 int slen = GET_MODE_SIZE (GET_MODE (src));
1768 rtx mem;
1770 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1771 emit_move_insn (mem, src);
1772 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1774 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1775 && XVECLEN (dst, 0) > 1)
1776 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1777 else if (CONSTANT_P (src))
1779 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1781 if (len == ssize)
1782 tmps[i] = src;
1783 else
1785 rtx first, second;
1787 gcc_assert (2 * len == ssize);
1788 split_double (src, &first, &second);
1789 if (i)
1790 tmps[i] = second;
1791 else
1792 tmps[i] = first;
1795 else if (REG_P (src) && GET_MODE (src) == mode)
1796 tmps[i] = src;
1797 else
1798 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1799 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1800 mode, mode);
1802 if (shift)
1803 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1804 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1808 /* Emit code to move a block SRC of type TYPE to a block DST,
1809 where DST is non-consecutive registers represented by a PARALLEL.
1810 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1811 if not known. */
1813 void
1814 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1816 rtx *tmps;
1817 int i;
1819 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1820 emit_group_load_1 (tmps, dst, src, type, ssize);
1822 /* Copy the extracted pieces into the proper (probable) hard regs. */
1823 for (i = 0; i < XVECLEN (dst, 0); i++)
1825 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1826 if (d == NULL)
1827 continue;
1828 emit_move_insn (d, tmps[i]);
1832 /* Similar, but load SRC into new pseudos in a format that looks like
1833 PARALLEL. This can later be fed to emit_group_move to get things
1834 in the right place. */
1837 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1839 rtvec vec;
1840 int i;
1842 vec = rtvec_alloc (XVECLEN (parallel, 0));
1843 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1845 /* Convert the vector to look just like the original PARALLEL, except
1846 with the computed values. */
1847 for (i = 0; i < XVECLEN (parallel, 0); i++)
1849 rtx e = XVECEXP (parallel, 0, i);
1850 rtx d = XEXP (e, 0);
1852 if (d)
1854 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1855 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1857 RTVEC_ELT (vec, i) = e;
1860 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1863 /* Emit code to move a block SRC to block DST, where SRC and DST are
1864 non-consecutive groups of registers, each represented by a PARALLEL. */
1866 void
1867 emit_group_move (rtx dst, rtx src)
1869 int i;
1871 gcc_assert (GET_CODE (src) == PARALLEL
1872 && GET_CODE (dst) == PARALLEL
1873 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1875 /* Skip first entry if NULL. */
1876 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1877 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1878 XEXP (XVECEXP (src, 0, i), 0));
1881 /* Move a group of registers represented by a PARALLEL into pseudos. */
1884 emit_group_move_into_temps (rtx src)
1886 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1887 int i;
1889 for (i = 0; i < XVECLEN (src, 0); i++)
1891 rtx e = XVECEXP (src, 0, i);
1892 rtx d = XEXP (e, 0);
1894 if (d)
1895 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1896 RTVEC_ELT (vec, i) = e;
1899 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1902 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1903 where SRC is non-consecutive registers represented by a PARALLEL.
1904 SSIZE represents the total size of block ORIG_DST, or -1 if not
1905 known. */
1907 void
1908 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1910 rtx *tmps, dst;
1911 int start, finish, i;
1912 enum machine_mode m = GET_MODE (orig_dst);
1914 gcc_assert (GET_CODE (src) == PARALLEL);
1916 if (!SCALAR_INT_MODE_P (m)
1917 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1919 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1920 if (imode == BLKmode)
1921 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1922 else
1923 dst = gen_reg_rtx (imode);
1924 emit_group_store (dst, src, type, ssize);
1925 if (imode != BLKmode)
1926 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1927 emit_move_insn (orig_dst, dst);
1928 return;
1931 /* Check for a NULL entry, used to indicate that the parameter goes
1932 both on the stack and in registers. */
1933 if (XEXP (XVECEXP (src, 0, 0), 0))
1934 start = 0;
1935 else
1936 start = 1;
1937 finish = XVECLEN (src, 0);
1939 tmps = XALLOCAVEC (rtx, finish);
1941 /* Copy the (probable) hard regs into pseudos. */
1942 for (i = start; i < finish; i++)
1944 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1945 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1947 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1948 emit_move_insn (tmps[i], reg);
1950 else
1951 tmps[i] = reg;
1954 /* If we won't be storing directly into memory, protect the real destination
1955 from strange tricks we might play. */
1956 dst = orig_dst;
1957 if (GET_CODE (dst) == PARALLEL)
1959 rtx temp;
1961 /* We can get a PARALLEL dst if there is a conditional expression in
1962 a return statement. In that case, the dst and src are the same,
1963 so no action is necessary. */
1964 if (rtx_equal_p (dst, src))
1965 return;
1967 /* It is unclear if we can ever reach here, but we may as well handle
1968 it. Allocate a temporary, and split this into a store/load to/from
1969 the temporary. */
1971 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1972 emit_group_store (temp, src, type, ssize);
1973 emit_group_load (dst, temp, type, ssize);
1974 return;
1976 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1978 enum machine_mode outer = GET_MODE (dst);
1979 enum machine_mode inner;
1980 HOST_WIDE_INT bytepos;
1981 bool done = false;
1982 rtx temp;
1984 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1985 dst = gen_reg_rtx (outer);
1987 /* Make life a bit easier for combine. */
1988 /* If the first element of the vector is the low part
1989 of the destination mode, use a paradoxical subreg to
1990 initialize the destination. */
1991 if (start < finish)
1993 inner = GET_MODE (tmps[start]);
1994 bytepos = subreg_lowpart_offset (inner, outer);
1995 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1997 temp = simplify_gen_subreg (outer, tmps[start],
1998 inner, 0);
1999 if (temp)
2001 emit_move_insn (dst, temp);
2002 done = true;
2003 start++;
2008 /* If the first element wasn't the low part, try the last. */
2009 if (!done
2010 && start < finish - 1)
2012 inner = GET_MODE (tmps[finish - 1]);
2013 bytepos = subreg_lowpart_offset (inner, outer);
2014 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2016 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2017 inner, 0);
2018 if (temp)
2020 emit_move_insn (dst, temp);
2021 done = true;
2022 finish--;
2027 /* Otherwise, simply initialize the result to zero. */
2028 if (!done)
2029 emit_move_insn (dst, CONST0_RTX (outer));
2032 /* Process the pieces. */
2033 for (i = start; i < finish; i++)
2035 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2036 enum machine_mode mode = GET_MODE (tmps[i]);
2037 unsigned int bytelen = GET_MODE_SIZE (mode);
2038 unsigned int adj_bytelen = bytelen;
2039 rtx dest = dst;
2041 /* Handle trailing fragments that run over the size of the struct. */
2042 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2043 adj_bytelen = ssize - bytepos;
2045 if (GET_CODE (dst) == CONCAT)
2047 if (bytepos + adj_bytelen
2048 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2049 dest = XEXP (dst, 0);
2050 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2052 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2053 dest = XEXP (dst, 1);
2055 else
2057 enum machine_mode dest_mode = GET_MODE (dest);
2058 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2060 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2062 if (GET_MODE_ALIGNMENT (dest_mode)
2063 >= GET_MODE_ALIGNMENT (tmp_mode))
2065 dest = assign_stack_temp (dest_mode,
2066 GET_MODE_SIZE (dest_mode),
2068 emit_move_insn (adjust_address (dest,
2069 tmp_mode,
2070 bytepos),
2071 tmps[i]);
2072 dst = dest;
2074 else
2076 dest = assign_stack_temp (tmp_mode,
2077 GET_MODE_SIZE (tmp_mode),
2079 emit_move_insn (dest, tmps[i]);
2080 dst = adjust_address (dest, dest_mode, bytepos);
2082 break;
2086 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2088 /* store_bit_field always takes its value from the lsb.
2089 Move the fragment to the lsb if it's not already there. */
2090 if (
2091 #ifdef BLOCK_REG_PADDING
2092 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2093 == (BYTES_BIG_ENDIAN ? upward : downward)
2094 #else
2095 BYTES_BIG_ENDIAN
2096 #endif
2099 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2100 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2101 build_int_cst (NULL_TREE, shift),
2102 tmps[i], 0);
2104 bytelen = adj_bytelen;
2107 /* Optimize the access just a bit. */
2108 if (MEM_P (dest)
2109 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2110 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2111 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2112 && bytelen == GET_MODE_SIZE (mode))
2113 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2114 else
2115 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2116 mode, tmps[i]);
2119 /* Copy from the pseudo into the (probable) hard reg. */
2120 if (orig_dst != dst)
2121 emit_move_insn (orig_dst, dst);
2124 /* Generate code to copy a BLKmode object of TYPE out of a
2125 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2126 is null, a stack temporary is created. TGTBLK is returned.
2128 The purpose of this routine is to handle functions that return
2129 BLKmode structures in registers. Some machines (the PA for example)
2130 want to return all small structures in registers regardless of the
2131 structure's alignment. */
2134 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2136 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2137 rtx src = NULL, dst = NULL;
2138 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2139 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2140 enum machine_mode copy_mode;
2142 if (tgtblk == 0)
2144 tgtblk = assign_temp (build_qualified_type (type,
2145 (TYPE_QUALS (type)
2146 | TYPE_QUAL_CONST)),
2147 0, 1, 1);
2148 preserve_temp_slots (tgtblk);
2151 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2152 into a new pseudo which is a full word. */
2154 if (GET_MODE (srcreg) != BLKmode
2155 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2156 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2158 /* If the structure doesn't take up a whole number of words, see whether
2159 SRCREG is padded on the left or on the right. If it's on the left,
2160 set PADDING_CORRECTION to the number of bits to skip.
2162 In most ABIs, the structure will be returned at the least end of
2163 the register, which translates to right padding on little-endian
2164 targets and left padding on big-endian targets. The opposite
2165 holds if the structure is returned at the most significant
2166 end of the register. */
2167 if (bytes % UNITS_PER_WORD != 0
2168 && (targetm.calls.return_in_msb (type)
2169 ? !BYTES_BIG_ENDIAN
2170 : BYTES_BIG_ENDIAN))
2171 padding_correction
2172 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2174 /* Copy the structure BITSIZE bits at a time. If the target lives in
2175 memory, take care of not reading/writing past its end by selecting
2176 a copy mode suited to BITSIZE. This should always be possible given
2177 how it is computed.
2179 We could probably emit more efficient code for machines which do not use
2180 strict alignment, but it doesn't seem worth the effort at the current
2181 time. */
2183 copy_mode = word_mode;
2184 if (MEM_P (tgtblk))
2186 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2187 if (mem_mode != BLKmode)
2188 copy_mode = mem_mode;
2191 for (bitpos = 0, xbitpos = padding_correction;
2192 bitpos < bytes * BITS_PER_UNIT;
2193 bitpos += bitsize, xbitpos += bitsize)
2195 /* We need a new source operand each time xbitpos is on a
2196 word boundary and when xbitpos == padding_correction
2197 (the first time through). */
2198 if (xbitpos % BITS_PER_WORD == 0
2199 || xbitpos == padding_correction)
2200 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2201 GET_MODE (srcreg));
2203 /* We need a new destination operand each time bitpos is on
2204 a word boundary. */
2205 if (bitpos % BITS_PER_WORD == 0)
2206 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2208 /* Use xbitpos for the source extraction (right justified) and
2209 bitpos for the destination store (left justified). */
2210 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2211 extract_bit_field (src, bitsize,
2212 xbitpos % BITS_PER_WORD, 1,
2213 NULL_RTX, copy_mode, copy_mode));
2216 return tgtblk;
2219 /* Add a USE expression for REG to the (possibly empty) list pointed
2220 to by CALL_FUSAGE. REG must denote a hard register. */
2222 void
2223 use_reg (rtx *call_fusage, rtx reg)
2225 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2227 *call_fusage
2228 = gen_rtx_EXPR_LIST (VOIDmode,
2229 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2232 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2233 starting at REGNO. All of these registers must be hard registers. */
2235 void
2236 use_regs (rtx *call_fusage, int regno, int nregs)
2238 int i;
2240 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2242 for (i = 0; i < nregs; i++)
2243 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2246 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2247 PARALLEL REGS. This is for calls that pass values in multiple
2248 non-contiguous locations. The Irix 6 ABI has examples of this. */
2250 void
2251 use_group_regs (rtx *call_fusage, rtx regs)
2253 int i;
2255 for (i = 0; i < XVECLEN (regs, 0); i++)
2257 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2259 /* A NULL entry means the parameter goes both on the stack and in
2260 registers. This can also be a MEM for targets that pass values
2261 partially on the stack and partially in registers. */
2262 if (reg != 0 && REG_P (reg))
2263 use_reg (call_fusage, reg);
2267 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2268 assigment and the code of the expresion on the RHS is CODE. Return
2269 NULL otherwise. */
2271 static gimple
2272 get_def_for_expr (tree name, enum tree_code code)
2274 gimple def_stmt;
2276 if (TREE_CODE (name) != SSA_NAME)
2277 return NULL;
2279 def_stmt = get_gimple_for_ssa_name (name);
2280 if (!def_stmt
2281 || gimple_assign_rhs_code (def_stmt) != code)
2282 return NULL;
2284 return def_stmt;
2288 /* Determine whether the LEN bytes generated by CONSTFUN can be
2289 stored to memory using several move instructions. CONSTFUNDATA is
2290 a pointer which will be passed as argument in every CONSTFUN call.
2291 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2292 a memset operation and false if it's a copy of a constant string.
2293 Return nonzero if a call to store_by_pieces should succeed. */
2296 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2297 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2298 void *constfundata, unsigned int align, bool memsetp)
2300 unsigned HOST_WIDE_INT l;
2301 unsigned int max_size;
2302 HOST_WIDE_INT offset = 0;
2303 enum machine_mode mode, tmode;
2304 enum insn_code icode;
2305 int reverse;
2306 rtx cst;
2308 if (len == 0)
2309 return 1;
2311 if (! (memsetp
2312 ? SET_BY_PIECES_P (len, align)
2313 : STORE_BY_PIECES_P (len, align)))
2314 return 0;
2316 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2317 if (align >= GET_MODE_ALIGNMENT (tmode))
2318 align = GET_MODE_ALIGNMENT (tmode);
2319 else
2321 enum machine_mode xmode;
2323 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2324 tmode != VOIDmode;
2325 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2326 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2327 || SLOW_UNALIGNED_ACCESS (tmode, align))
2328 break;
2330 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2333 /* We would first store what we can in the largest integer mode, then go to
2334 successively smaller modes. */
2336 for (reverse = 0;
2337 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2338 reverse++)
2340 l = len;
2341 mode = VOIDmode;
2342 max_size = STORE_MAX_PIECES + 1;
2343 while (max_size > 1)
2345 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2346 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2347 if (GET_MODE_SIZE (tmode) < max_size)
2348 mode = tmode;
2350 if (mode == VOIDmode)
2351 break;
2353 icode = optab_handler (mov_optab, mode)->insn_code;
2354 if (icode != CODE_FOR_nothing
2355 && align >= GET_MODE_ALIGNMENT (mode))
2357 unsigned int size = GET_MODE_SIZE (mode);
2359 while (l >= size)
2361 if (reverse)
2362 offset -= size;
2364 cst = (*constfun) (constfundata, offset, mode);
2365 if (!LEGITIMATE_CONSTANT_P (cst))
2366 return 0;
2368 if (!reverse)
2369 offset += size;
2371 l -= size;
2375 max_size = GET_MODE_SIZE (mode);
2378 /* The code above should have handled everything. */
2379 gcc_assert (!l);
2382 return 1;
2385 /* Generate several move instructions to store LEN bytes generated by
2386 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2387 pointer which will be passed as argument in every CONSTFUN call.
2388 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2389 a memset operation and false if it's a copy of a constant string.
2390 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2391 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2392 stpcpy. */
2395 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2396 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2397 void *constfundata, unsigned int align, bool memsetp, int endp)
2399 enum machine_mode to_addr_mode
2400 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2401 struct store_by_pieces_d data;
2403 if (len == 0)
2405 gcc_assert (endp != 2);
2406 return to;
2409 gcc_assert (memsetp
2410 ? SET_BY_PIECES_P (len, align)
2411 : STORE_BY_PIECES_P (len, align));
2412 data.constfun = constfun;
2413 data.constfundata = constfundata;
2414 data.len = len;
2415 data.to = to;
2416 store_by_pieces_1 (&data, align);
2417 if (endp)
2419 rtx to1;
2421 gcc_assert (!data.reverse);
2422 if (data.autinc_to)
2424 if (endp == 2)
2426 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2427 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2428 else
2429 data.to_addr = copy_to_mode_reg (to_addr_mode,
2430 plus_constant (data.to_addr,
2431 -1));
2433 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2434 data.offset);
2436 else
2438 if (endp == 2)
2439 --data.offset;
2440 to1 = adjust_address (data.to, QImode, data.offset);
2442 return to1;
2444 else
2445 return data.to;
2448 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2449 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2451 static void
2452 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2454 struct store_by_pieces_d data;
2456 if (len == 0)
2457 return;
2459 data.constfun = clear_by_pieces_1;
2460 data.constfundata = NULL;
2461 data.len = len;
2462 data.to = to;
2463 store_by_pieces_1 (&data, align);
2466 /* Callback routine for clear_by_pieces.
2467 Return const0_rtx unconditionally. */
2469 static rtx
2470 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2471 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2472 enum machine_mode mode ATTRIBUTE_UNUSED)
2474 return const0_rtx;
2477 /* Subroutine of clear_by_pieces and store_by_pieces.
2478 Generate several move instructions to store LEN bytes of block TO. (A MEM
2479 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2481 static void
2482 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2483 unsigned int align ATTRIBUTE_UNUSED)
2485 enum machine_mode to_addr_mode
2486 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2487 rtx to_addr = XEXP (data->to, 0);
2488 unsigned int max_size = STORE_MAX_PIECES + 1;
2489 enum machine_mode mode = VOIDmode, tmode;
2490 enum insn_code icode;
2492 data->offset = 0;
2493 data->to_addr = to_addr;
2494 data->autinc_to
2495 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2496 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2498 data->explicit_inc_to = 0;
2499 data->reverse
2500 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2501 if (data->reverse)
2502 data->offset = data->len;
2504 /* If storing requires more than two move insns,
2505 copy addresses to registers (to make displacements shorter)
2506 and use post-increment if available. */
2507 if (!data->autinc_to
2508 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2510 /* Determine the main mode we'll be using. */
2511 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2512 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2513 if (GET_MODE_SIZE (tmode) < max_size)
2514 mode = tmode;
2516 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2518 data->to_addr = copy_to_mode_reg (to_addr_mode,
2519 plus_constant (to_addr, data->len));
2520 data->autinc_to = 1;
2521 data->explicit_inc_to = -1;
2524 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2525 && ! data->autinc_to)
2527 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2528 data->autinc_to = 1;
2529 data->explicit_inc_to = 1;
2532 if ( !data->autinc_to && CONSTANT_P (to_addr))
2533 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2536 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2537 if (align >= GET_MODE_ALIGNMENT (tmode))
2538 align = GET_MODE_ALIGNMENT (tmode);
2539 else
2541 enum machine_mode xmode;
2543 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2544 tmode != VOIDmode;
2545 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2546 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2547 || SLOW_UNALIGNED_ACCESS (tmode, align))
2548 break;
2550 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2553 /* First store what we can in the largest integer mode, then go to
2554 successively smaller modes. */
2556 while (max_size > 1)
2558 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2559 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2560 if (GET_MODE_SIZE (tmode) < max_size)
2561 mode = tmode;
2563 if (mode == VOIDmode)
2564 break;
2566 icode = optab_handler (mov_optab, mode)->insn_code;
2567 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2568 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2570 max_size = GET_MODE_SIZE (mode);
2573 /* The code above should have handled everything. */
2574 gcc_assert (!data->len);
2577 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2578 with move instructions for mode MODE. GENFUN is the gen_... function
2579 to make a move insn for that mode. DATA has all the other info. */
2581 static void
2582 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2583 struct store_by_pieces_d *data)
2585 unsigned int size = GET_MODE_SIZE (mode);
2586 rtx to1, cst;
2588 while (data->len >= size)
2590 if (data->reverse)
2591 data->offset -= size;
2593 if (data->autinc_to)
2594 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2595 data->offset);
2596 else
2597 to1 = adjust_address (data->to, mode, data->offset);
2599 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2600 emit_insn (gen_add2_insn (data->to_addr,
2601 GEN_INT (-(HOST_WIDE_INT) size)));
2603 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2604 emit_insn ((*genfun) (to1, cst));
2606 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2607 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2609 if (! data->reverse)
2610 data->offset += size;
2612 data->len -= size;
2616 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2617 its length in bytes. */
2620 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2621 unsigned int expected_align, HOST_WIDE_INT expected_size)
2623 enum machine_mode mode = GET_MODE (object);
2624 unsigned int align;
2626 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2628 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2629 just move a zero. Otherwise, do this a piece at a time. */
2630 if (mode != BLKmode
2631 && CONST_INT_P (size)
2632 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2634 rtx zero = CONST0_RTX (mode);
2635 if (zero != NULL)
2637 emit_move_insn (object, zero);
2638 return NULL;
2641 if (COMPLEX_MODE_P (mode))
2643 zero = CONST0_RTX (GET_MODE_INNER (mode));
2644 if (zero != NULL)
2646 write_complex_part (object, zero, 0);
2647 write_complex_part (object, zero, 1);
2648 return NULL;
2653 if (size == const0_rtx)
2654 return NULL;
2656 align = MEM_ALIGN (object);
2658 if (CONST_INT_P (size)
2659 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2660 clear_by_pieces (object, INTVAL (size), align);
2661 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2662 expected_align, expected_size))
2664 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2665 return set_storage_via_libcall (object, size, const0_rtx,
2666 method == BLOCK_OP_TAILCALL);
2667 else
2668 gcc_unreachable ();
2670 return NULL;
2674 clear_storage (rtx object, rtx size, enum block_op_methods method)
2676 return clear_storage_hints (object, size, method, 0, -1);
2680 /* A subroutine of clear_storage. Expand a call to memset.
2681 Return the return value of memset, 0 otherwise. */
2684 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2686 tree call_expr, fn, object_tree, size_tree, val_tree;
2687 enum machine_mode size_mode;
2688 rtx retval;
2690 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2691 place those into new pseudos into a VAR_DECL and use them later. */
2693 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2695 size_mode = TYPE_MODE (sizetype);
2696 size = convert_to_mode (size_mode, size, 1);
2697 size = copy_to_mode_reg (size_mode, size);
2699 /* It is incorrect to use the libcall calling conventions to call
2700 memset in this context. This could be a user call to memset and
2701 the user may wish to examine the return value from memset. For
2702 targets where libcalls and normal calls have different conventions
2703 for returning pointers, we could end up generating incorrect code. */
2705 object_tree = make_tree (ptr_type_node, object);
2706 if (!CONST_INT_P (val))
2707 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2708 size_tree = make_tree (sizetype, size);
2709 val_tree = make_tree (integer_type_node, val);
2711 fn = clear_storage_libcall_fn (true);
2712 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2713 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2715 retval = expand_normal (call_expr);
2717 return retval;
2720 /* A subroutine of set_storage_via_libcall. Create the tree node
2721 for the function we use for block clears. The first time FOR_CALL
2722 is true, we call assemble_external. */
2724 tree block_clear_fn;
2726 void
2727 init_block_clear_fn (const char *asmspec)
2729 if (!block_clear_fn)
2731 tree fn, args;
2733 fn = get_identifier ("memset");
2734 args = build_function_type_list (ptr_type_node, ptr_type_node,
2735 integer_type_node, sizetype,
2736 NULL_TREE);
2738 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2739 DECL_EXTERNAL (fn) = 1;
2740 TREE_PUBLIC (fn) = 1;
2741 DECL_ARTIFICIAL (fn) = 1;
2742 TREE_NOTHROW (fn) = 1;
2743 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2744 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2746 block_clear_fn = fn;
2749 if (asmspec)
2750 set_user_assembler_name (block_clear_fn, asmspec);
2753 static tree
2754 clear_storage_libcall_fn (int for_call)
2756 static bool emitted_extern;
2758 if (!block_clear_fn)
2759 init_block_clear_fn (NULL);
2761 if (for_call && !emitted_extern)
2763 emitted_extern = true;
2764 make_decl_rtl (block_clear_fn);
2765 assemble_external (block_clear_fn);
2768 return block_clear_fn;
2771 /* Expand a setmem pattern; return true if successful. */
2773 bool
2774 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2775 unsigned int expected_align, HOST_WIDE_INT expected_size)
2777 /* Try the most limited insn first, because there's no point
2778 including more than one in the machine description unless
2779 the more limited one has some advantage. */
2781 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2782 enum machine_mode mode;
2784 if (expected_align < align)
2785 expected_align = align;
2787 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2788 mode = GET_MODE_WIDER_MODE (mode))
2790 enum insn_code code = setmem_optab[(int) mode];
2791 insn_operand_predicate_fn pred;
2793 if (code != CODE_FOR_nothing
2794 /* We don't need MODE to be narrower than
2795 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2796 the mode mask, as it is returned by the macro, it will
2797 definitely be less than the actual mode mask. */
2798 && ((CONST_INT_P (size)
2799 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2800 <= (GET_MODE_MASK (mode) >> 1)))
2801 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2802 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2803 || (*pred) (object, BLKmode))
2804 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2805 || (*pred) (opalign, VOIDmode)))
2807 rtx opsize, opchar;
2808 enum machine_mode char_mode;
2809 rtx last = get_last_insn ();
2810 rtx pat;
2812 opsize = convert_to_mode (mode, size, 1);
2813 pred = insn_data[(int) code].operand[1].predicate;
2814 if (pred != 0 && ! (*pred) (opsize, mode))
2815 opsize = copy_to_mode_reg (mode, opsize);
2817 opchar = val;
2818 char_mode = insn_data[(int) code].operand[2].mode;
2819 if (char_mode != VOIDmode)
2821 opchar = convert_to_mode (char_mode, opchar, 1);
2822 pred = insn_data[(int) code].operand[2].predicate;
2823 if (pred != 0 && ! (*pred) (opchar, char_mode))
2824 opchar = copy_to_mode_reg (char_mode, opchar);
2827 if (insn_data[(int) code].n_operands == 4)
2828 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2829 else
2830 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2831 GEN_INT (expected_align
2832 / BITS_PER_UNIT),
2833 GEN_INT (expected_size));
2834 if (pat)
2836 emit_insn (pat);
2837 return true;
2839 else
2840 delete_insns_since (last);
2844 return false;
2848 /* Write to one of the components of the complex value CPLX. Write VAL to
2849 the real part if IMAG_P is false, and the imaginary part if its true. */
2851 static void
2852 write_complex_part (rtx cplx, rtx val, bool imag_p)
2854 enum machine_mode cmode;
2855 enum machine_mode imode;
2856 unsigned ibitsize;
2858 if (GET_CODE (cplx) == CONCAT)
2860 emit_move_insn (XEXP (cplx, imag_p), val);
2861 return;
2864 cmode = GET_MODE (cplx);
2865 imode = GET_MODE_INNER (cmode);
2866 ibitsize = GET_MODE_BITSIZE (imode);
2868 /* For MEMs simplify_gen_subreg may generate an invalid new address
2869 because, e.g., the original address is considered mode-dependent
2870 by the target, which restricts simplify_subreg from invoking
2871 adjust_address_nv. Instead of preparing fallback support for an
2872 invalid address, we call adjust_address_nv directly. */
2873 if (MEM_P (cplx))
2875 emit_move_insn (adjust_address_nv (cplx, imode,
2876 imag_p ? GET_MODE_SIZE (imode) : 0),
2877 val);
2878 return;
2881 /* If the sub-object is at least word sized, then we know that subregging
2882 will work. This special case is important, since store_bit_field
2883 wants to operate on integer modes, and there's rarely an OImode to
2884 correspond to TCmode. */
2885 if (ibitsize >= BITS_PER_WORD
2886 /* For hard regs we have exact predicates. Assume we can split
2887 the original object if it spans an even number of hard regs.
2888 This special case is important for SCmode on 64-bit platforms
2889 where the natural size of floating-point regs is 32-bit. */
2890 || (REG_P (cplx)
2891 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2892 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2894 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2895 imag_p ? GET_MODE_SIZE (imode) : 0);
2896 if (part)
2898 emit_move_insn (part, val);
2899 return;
2901 else
2902 /* simplify_gen_subreg may fail for sub-word MEMs. */
2903 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2906 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2909 /* Extract one of the components of the complex value CPLX. Extract the
2910 real part if IMAG_P is false, and the imaginary part if it's true. */
2912 static rtx
2913 read_complex_part (rtx cplx, bool imag_p)
2915 enum machine_mode cmode, imode;
2916 unsigned ibitsize;
2918 if (GET_CODE (cplx) == CONCAT)
2919 return XEXP (cplx, imag_p);
2921 cmode = GET_MODE (cplx);
2922 imode = GET_MODE_INNER (cmode);
2923 ibitsize = GET_MODE_BITSIZE (imode);
2925 /* Special case reads from complex constants that got spilled to memory. */
2926 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2928 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2929 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2931 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2932 if (CONSTANT_CLASS_P (part))
2933 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2937 /* For MEMs simplify_gen_subreg may generate an invalid new address
2938 because, e.g., the original address is considered mode-dependent
2939 by the target, which restricts simplify_subreg from invoking
2940 adjust_address_nv. Instead of preparing fallback support for an
2941 invalid address, we call adjust_address_nv directly. */
2942 if (MEM_P (cplx))
2943 return adjust_address_nv (cplx, imode,
2944 imag_p ? GET_MODE_SIZE (imode) : 0);
2946 /* If the sub-object is at least word sized, then we know that subregging
2947 will work. This special case is important, since extract_bit_field
2948 wants to operate on integer modes, and there's rarely an OImode to
2949 correspond to TCmode. */
2950 if (ibitsize >= BITS_PER_WORD
2951 /* For hard regs we have exact predicates. Assume we can split
2952 the original object if it spans an even number of hard regs.
2953 This special case is important for SCmode on 64-bit platforms
2954 where the natural size of floating-point regs is 32-bit. */
2955 || (REG_P (cplx)
2956 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2957 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2959 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2960 imag_p ? GET_MODE_SIZE (imode) : 0);
2961 if (ret)
2962 return ret;
2963 else
2964 /* simplify_gen_subreg may fail for sub-word MEMs. */
2965 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2968 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2969 true, NULL_RTX, imode, imode);
2972 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2973 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2974 represented in NEW_MODE. If FORCE is true, this will never happen, as
2975 we'll force-create a SUBREG if needed. */
2977 static rtx
2978 emit_move_change_mode (enum machine_mode new_mode,
2979 enum machine_mode old_mode, rtx x, bool force)
2981 rtx ret;
2983 if (push_operand (x, GET_MODE (x)))
2985 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2986 MEM_COPY_ATTRIBUTES (ret, x);
2988 else if (MEM_P (x))
2990 /* We don't have to worry about changing the address since the
2991 size in bytes is supposed to be the same. */
2992 if (reload_in_progress)
2994 /* Copy the MEM to change the mode and move any
2995 substitutions from the old MEM to the new one. */
2996 ret = adjust_address_nv (x, new_mode, 0);
2997 copy_replacements (x, ret);
2999 else
3000 ret = adjust_address (x, new_mode, 0);
3002 else
3004 /* Note that we do want simplify_subreg's behavior of validating
3005 that the new mode is ok for a hard register. If we were to use
3006 simplify_gen_subreg, we would create the subreg, but would
3007 probably run into the target not being able to implement it. */
3008 /* Except, of course, when FORCE is true, when this is exactly what
3009 we want. Which is needed for CCmodes on some targets. */
3010 if (force)
3011 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3012 else
3013 ret = simplify_subreg (new_mode, x, old_mode, 0);
3016 return ret;
3019 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3020 an integer mode of the same size as MODE. Returns the instruction
3021 emitted, or NULL if such a move could not be generated. */
3023 static rtx
3024 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3026 enum machine_mode imode;
3027 enum insn_code code;
3029 /* There must exist a mode of the exact size we require. */
3030 imode = int_mode_for_mode (mode);
3031 if (imode == BLKmode)
3032 return NULL_RTX;
3034 /* The target must support moves in this mode. */
3035 code = optab_handler (mov_optab, imode)->insn_code;
3036 if (code == CODE_FOR_nothing)
3037 return NULL_RTX;
3039 x = emit_move_change_mode (imode, mode, x, force);
3040 if (x == NULL_RTX)
3041 return NULL_RTX;
3042 y = emit_move_change_mode (imode, mode, y, force);
3043 if (y == NULL_RTX)
3044 return NULL_RTX;
3045 return emit_insn (GEN_FCN (code) (x, y));
3048 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3049 Return an equivalent MEM that does not use an auto-increment. */
3051 static rtx
3052 emit_move_resolve_push (enum machine_mode mode, rtx x)
3054 enum rtx_code code = GET_CODE (XEXP (x, 0));
3055 HOST_WIDE_INT adjust;
3056 rtx temp;
3058 adjust = GET_MODE_SIZE (mode);
3059 #ifdef PUSH_ROUNDING
3060 adjust = PUSH_ROUNDING (adjust);
3061 #endif
3062 if (code == PRE_DEC || code == POST_DEC)
3063 adjust = -adjust;
3064 else if (code == PRE_MODIFY || code == POST_MODIFY)
3066 rtx expr = XEXP (XEXP (x, 0), 1);
3067 HOST_WIDE_INT val;
3069 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3070 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3071 val = INTVAL (XEXP (expr, 1));
3072 if (GET_CODE (expr) == MINUS)
3073 val = -val;
3074 gcc_assert (adjust == val || adjust == -val);
3075 adjust = val;
3078 /* Do not use anti_adjust_stack, since we don't want to update
3079 stack_pointer_delta. */
3080 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3081 GEN_INT (adjust), stack_pointer_rtx,
3082 0, OPTAB_LIB_WIDEN);
3083 if (temp != stack_pointer_rtx)
3084 emit_move_insn (stack_pointer_rtx, temp);
3086 switch (code)
3088 case PRE_INC:
3089 case PRE_DEC:
3090 case PRE_MODIFY:
3091 temp = stack_pointer_rtx;
3092 break;
3093 case POST_INC:
3094 case POST_DEC:
3095 case POST_MODIFY:
3096 temp = plus_constant (stack_pointer_rtx, -adjust);
3097 break;
3098 default:
3099 gcc_unreachable ();
3102 return replace_equiv_address (x, temp);
3105 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3106 X is known to satisfy push_operand, and MODE is known to be complex.
3107 Returns the last instruction emitted. */
3110 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3112 enum machine_mode submode = GET_MODE_INNER (mode);
3113 bool imag_first;
3115 #ifdef PUSH_ROUNDING
3116 unsigned int submodesize = GET_MODE_SIZE (submode);
3118 /* In case we output to the stack, but the size is smaller than the
3119 machine can push exactly, we need to use move instructions. */
3120 if (PUSH_ROUNDING (submodesize) != submodesize)
3122 x = emit_move_resolve_push (mode, x);
3123 return emit_move_insn (x, y);
3125 #endif
3127 /* Note that the real part always precedes the imag part in memory
3128 regardless of machine's endianness. */
3129 switch (GET_CODE (XEXP (x, 0)))
3131 case PRE_DEC:
3132 case POST_DEC:
3133 imag_first = true;
3134 break;
3135 case PRE_INC:
3136 case POST_INC:
3137 imag_first = false;
3138 break;
3139 default:
3140 gcc_unreachable ();
3143 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3144 read_complex_part (y, imag_first));
3145 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3146 read_complex_part (y, !imag_first));
3149 /* A subroutine of emit_move_complex. Perform the move from Y to X
3150 via two moves of the parts. Returns the last instruction emitted. */
3153 emit_move_complex_parts (rtx x, rtx y)
3155 /* Show the output dies here. This is necessary for SUBREGs
3156 of pseudos since we cannot track their lifetimes correctly;
3157 hard regs shouldn't appear here except as return values. */
3158 if (!reload_completed && !reload_in_progress
3159 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3160 emit_clobber (x);
3162 write_complex_part (x, read_complex_part (y, false), false);
3163 write_complex_part (x, read_complex_part (y, true), true);
3165 return get_last_insn ();
3168 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3169 MODE is known to be complex. Returns the last instruction emitted. */
3171 static rtx
3172 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3174 bool try_int;
3176 /* Need to take special care for pushes, to maintain proper ordering
3177 of the data, and possibly extra padding. */
3178 if (push_operand (x, mode))
3179 return emit_move_complex_push (mode, x, y);
3181 /* See if we can coerce the target into moving both values at once. */
3183 /* Move floating point as parts. */
3184 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3185 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3186 try_int = false;
3187 /* Not possible if the values are inherently not adjacent. */
3188 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3189 try_int = false;
3190 /* Is possible if both are registers (or subregs of registers). */
3191 else if (register_operand (x, mode) && register_operand (y, mode))
3192 try_int = true;
3193 /* If one of the operands is a memory, and alignment constraints
3194 are friendly enough, we may be able to do combined memory operations.
3195 We do not attempt this if Y is a constant because that combination is
3196 usually better with the by-parts thing below. */
3197 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3198 && (!STRICT_ALIGNMENT
3199 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3200 try_int = true;
3201 else
3202 try_int = false;
3204 if (try_int)
3206 rtx ret;
3208 /* For memory to memory moves, optimal behavior can be had with the
3209 existing block move logic. */
3210 if (MEM_P (x) && MEM_P (y))
3212 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3213 BLOCK_OP_NO_LIBCALL);
3214 return get_last_insn ();
3217 ret = emit_move_via_integer (mode, x, y, true);
3218 if (ret)
3219 return ret;
3222 return emit_move_complex_parts (x, y);
3225 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3226 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3228 static rtx
3229 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3231 rtx ret;
3233 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3234 if (mode != CCmode)
3236 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3237 if (code != CODE_FOR_nothing)
3239 x = emit_move_change_mode (CCmode, mode, x, true);
3240 y = emit_move_change_mode (CCmode, mode, y, true);
3241 return emit_insn (GEN_FCN (code) (x, y));
3245 /* Otherwise, find the MODE_INT mode of the same width. */
3246 ret = emit_move_via_integer (mode, x, y, false);
3247 gcc_assert (ret != NULL);
3248 return ret;
3251 /* Return true if word I of OP lies entirely in the
3252 undefined bits of a paradoxical subreg. */
3254 static bool
3255 undefined_operand_subword_p (const_rtx op, int i)
3257 enum machine_mode innermode, innermostmode;
3258 int offset;
3259 if (GET_CODE (op) != SUBREG)
3260 return false;
3261 innermode = GET_MODE (op);
3262 innermostmode = GET_MODE (SUBREG_REG (op));
3263 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3264 /* The SUBREG_BYTE represents offset, as if the value were stored in
3265 memory, except for a paradoxical subreg where we define
3266 SUBREG_BYTE to be 0; undo this exception as in
3267 simplify_subreg. */
3268 if (SUBREG_BYTE (op) == 0
3269 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3271 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3272 if (WORDS_BIG_ENDIAN)
3273 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3274 if (BYTES_BIG_ENDIAN)
3275 offset += difference % UNITS_PER_WORD;
3277 if (offset >= GET_MODE_SIZE (innermostmode)
3278 || offset <= -GET_MODE_SIZE (word_mode))
3279 return true;
3280 return false;
3283 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3284 MODE is any multi-word or full-word mode that lacks a move_insn
3285 pattern. Note that you will get better code if you define such
3286 patterns, even if they must turn into multiple assembler instructions. */
3288 static rtx
3289 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3291 rtx last_insn = 0;
3292 rtx seq, inner;
3293 bool need_clobber;
3294 int i;
3296 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3298 /* If X is a push on the stack, do the push now and replace
3299 X with a reference to the stack pointer. */
3300 if (push_operand (x, mode))
3301 x = emit_move_resolve_push (mode, x);
3303 /* If we are in reload, see if either operand is a MEM whose address
3304 is scheduled for replacement. */
3305 if (reload_in_progress && MEM_P (x)
3306 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3307 x = replace_equiv_address_nv (x, inner);
3308 if (reload_in_progress && MEM_P (y)
3309 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3310 y = replace_equiv_address_nv (y, inner);
3312 start_sequence ();
3314 need_clobber = false;
3315 for (i = 0;
3316 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3317 i++)
3319 rtx xpart = operand_subword (x, i, 1, mode);
3320 rtx ypart;
3322 /* Do not generate code for a move if it would come entirely
3323 from the undefined bits of a paradoxical subreg. */
3324 if (undefined_operand_subword_p (y, i))
3325 continue;
3327 ypart = operand_subword (y, i, 1, mode);
3329 /* If we can't get a part of Y, put Y into memory if it is a
3330 constant. Otherwise, force it into a register. Then we must
3331 be able to get a part of Y. */
3332 if (ypart == 0 && CONSTANT_P (y))
3334 y = use_anchored_address (force_const_mem (mode, y));
3335 ypart = operand_subword (y, i, 1, mode);
3337 else if (ypart == 0)
3338 ypart = operand_subword_force (y, i, mode);
3340 gcc_assert (xpart && ypart);
3342 need_clobber |= (GET_CODE (xpart) == SUBREG);
3344 last_insn = emit_move_insn (xpart, ypart);
3347 seq = get_insns ();
3348 end_sequence ();
3350 /* Show the output dies here. This is necessary for SUBREGs
3351 of pseudos since we cannot track their lifetimes correctly;
3352 hard regs shouldn't appear here except as return values.
3353 We never want to emit such a clobber after reload. */
3354 if (x != y
3355 && ! (reload_in_progress || reload_completed)
3356 && need_clobber != 0)
3357 emit_clobber (x);
3359 emit_insn (seq);
3361 return last_insn;
3364 /* Low level part of emit_move_insn.
3365 Called just like emit_move_insn, but assumes X and Y
3366 are basically valid. */
3369 emit_move_insn_1 (rtx x, rtx y)
3371 enum machine_mode mode = GET_MODE (x);
3372 enum insn_code code;
3374 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3376 code = optab_handler (mov_optab, mode)->insn_code;
3377 if (code != CODE_FOR_nothing)
3378 return emit_insn (GEN_FCN (code) (x, y));
3380 /* Expand complex moves by moving real part and imag part. */
3381 if (COMPLEX_MODE_P (mode))
3382 return emit_move_complex (mode, x, y);
3384 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3385 || ALL_FIXED_POINT_MODE_P (mode))
3387 rtx result = emit_move_via_integer (mode, x, y, true);
3389 /* If we can't find an integer mode, use multi words. */
3390 if (result)
3391 return result;
3392 else
3393 return emit_move_multi_word (mode, x, y);
3396 if (GET_MODE_CLASS (mode) == MODE_CC)
3397 return emit_move_ccmode (mode, x, y);
3399 /* Try using a move pattern for the corresponding integer mode. This is
3400 only safe when simplify_subreg can convert MODE constants into integer
3401 constants. At present, it can only do this reliably if the value
3402 fits within a HOST_WIDE_INT. */
3403 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3405 rtx ret = emit_move_via_integer (mode, x, y, false);
3406 if (ret)
3407 return ret;
3410 return emit_move_multi_word (mode, x, y);
3413 /* Generate code to copy Y into X.
3414 Both Y and X must have the same mode, except that
3415 Y can be a constant with VOIDmode.
3416 This mode cannot be BLKmode; use emit_block_move for that.
3418 Return the last instruction emitted. */
3421 emit_move_insn (rtx x, rtx y)
3423 enum machine_mode mode = GET_MODE (x);
3424 rtx y_cst = NULL_RTX;
3425 rtx last_insn, set;
3427 gcc_assert (mode != BLKmode
3428 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3430 if (CONSTANT_P (y))
3432 if (optimize
3433 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3434 && (last_insn = compress_float_constant (x, y)))
3435 return last_insn;
3437 y_cst = y;
3439 if (!LEGITIMATE_CONSTANT_P (y))
3441 y = force_const_mem (mode, y);
3443 /* If the target's cannot_force_const_mem prevented the spill,
3444 assume that the target's move expanders will also take care
3445 of the non-legitimate constant. */
3446 if (!y)
3447 y = y_cst;
3448 else
3449 y = use_anchored_address (y);
3453 /* If X or Y are memory references, verify that their addresses are valid
3454 for the machine. */
3455 if (MEM_P (x)
3456 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3457 MEM_ADDR_SPACE (x))
3458 && ! push_operand (x, GET_MODE (x))))
3459 x = validize_mem (x);
3461 if (MEM_P (y)
3462 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3463 MEM_ADDR_SPACE (y)))
3464 y = validize_mem (y);
3466 gcc_assert (mode != BLKmode);
3468 last_insn = emit_move_insn_1 (x, y);
3470 if (y_cst && REG_P (x)
3471 && (set = single_set (last_insn)) != NULL_RTX
3472 && SET_DEST (set) == x
3473 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3474 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3476 return last_insn;
3479 /* If Y is representable exactly in a narrower mode, and the target can
3480 perform the extension directly from constant or memory, then emit the
3481 move as an extension. */
3483 static rtx
3484 compress_float_constant (rtx x, rtx y)
3486 enum machine_mode dstmode = GET_MODE (x);
3487 enum machine_mode orig_srcmode = GET_MODE (y);
3488 enum machine_mode srcmode;
3489 REAL_VALUE_TYPE r;
3490 int oldcost, newcost;
3491 bool speed = optimize_insn_for_speed_p ();
3493 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3495 if (LEGITIMATE_CONSTANT_P (y))
3496 oldcost = rtx_cost (y, SET, speed);
3497 else
3498 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3500 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3501 srcmode != orig_srcmode;
3502 srcmode = GET_MODE_WIDER_MODE (srcmode))
3504 enum insn_code ic;
3505 rtx trunc_y, last_insn;
3507 /* Skip if the target can't extend this way. */
3508 ic = can_extend_p (dstmode, srcmode, 0);
3509 if (ic == CODE_FOR_nothing)
3510 continue;
3512 /* Skip if the narrowed value isn't exact. */
3513 if (! exact_real_truncate (srcmode, &r))
3514 continue;
3516 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3518 if (LEGITIMATE_CONSTANT_P (trunc_y))
3520 /* Skip if the target needs extra instructions to perform
3521 the extension. */
3522 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3523 continue;
3524 /* This is valid, but may not be cheaper than the original. */
3525 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3526 if (oldcost < newcost)
3527 continue;
3529 else if (float_extend_from_mem[dstmode][srcmode])
3531 trunc_y = force_const_mem (srcmode, trunc_y);
3532 /* This is valid, but may not be cheaper than the original. */
3533 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3534 if (oldcost < newcost)
3535 continue;
3536 trunc_y = validize_mem (trunc_y);
3538 else
3539 continue;
3541 /* For CSE's benefit, force the compressed constant pool entry
3542 into a new pseudo. This constant may be used in different modes,
3543 and if not, combine will put things back together for us. */
3544 trunc_y = force_reg (srcmode, trunc_y);
3545 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3546 last_insn = get_last_insn ();
3548 if (REG_P (x))
3549 set_unique_reg_note (last_insn, REG_EQUAL, y);
3551 return last_insn;
3554 return NULL_RTX;
3557 /* Pushing data onto the stack. */
3559 /* Push a block of length SIZE (perhaps variable)
3560 and return an rtx to address the beginning of the block.
3561 The value may be virtual_outgoing_args_rtx.
3563 EXTRA is the number of bytes of padding to push in addition to SIZE.
3564 BELOW nonzero means this padding comes at low addresses;
3565 otherwise, the padding comes at high addresses. */
3568 push_block (rtx size, int extra, int below)
3570 rtx temp;
3572 size = convert_modes (Pmode, ptr_mode, size, 1);
3573 if (CONSTANT_P (size))
3574 anti_adjust_stack (plus_constant (size, extra));
3575 else if (REG_P (size) && extra == 0)
3576 anti_adjust_stack (size);
3577 else
3579 temp = copy_to_mode_reg (Pmode, size);
3580 if (extra != 0)
3581 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3582 temp, 0, OPTAB_LIB_WIDEN);
3583 anti_adjust_stack (temp);
3586 #ifndef STACK_GROWS_DOWNWARD
3587 if (0)
3588 #else
3589 if (1)
3590 #endif
3592 temp = virtual_outgoing_args_rtx;
3593 if (extra != 0 && below)
3594 temp = plus_constant (temp, extra);
3596 else
3598 if (CONST_INT_P (size))
3599 temp = plus_constant (virtual_outgoing_args_rtx,
3600 -INTVAL (size) - (below ? 0 : extra));
3601 else if (extra != 0 && !below)
3602 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3603 negate_rtx (Pmode, plus_constant (size, extra)));
3604 else
3605 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3606 negate_rtx (Pmode, size));
3609 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3612 #ifdef PUSH_ROUNDING
3614 /* Emit single push insn. */
3616 static void
3617 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3619 rtx dest_addr;
3620 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3621 rtx dest;
3622 enum insn_code icode;
3623 insn_operand_predicate_fn pred;
3625 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3626 /* If there is push pattern, use it. Otherwise try old way of throwing
3627 MEM representing push operation to move expander. */
3628 icode = optab_handler (push_optab, mode)->insn_code;
3629 if (icode != CODE_FOR_nothing)
3631 if (((pred = insn_data[(int) icode].operand[0].predicate)
3632 && !((*pred) (x, mode))))
3633 x = force_reg (mode, x);
3634 emit_insn (GEN_FCN (icode) (x));
3635 return;
3637 if (GET_MODE_SIZE (mode) == rounded_size)
3638 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3639 /* If we are to pad downward, adjust the stack pointer first and
3640 then store X into the stack location using an offset. This is
3641 because emit_move_insn does not know how to pad; it does not have
3642 access to type. */
3643 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3645 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3646 HOST_WIDE_INT offset;
3648 emit_move_insn (stack_pointer_rtx,
3649 expand_binop (Pmode,
3650 #ifdef STACK_GROWS_DOWNWARD
3651 sub_optab,
3652 #else
3653 add_optab,
3654 #endif
3655 stack_pointer_rtx,
3656 GEN_INT (rounded_size),
3657 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3659 offset = (HOST_WIDE_INT) padding_size;
3660 #ifdef STACK_GROWS_DOWNWARD
3661 if (STACK_PUSH_CODE == POST_DEC)
3662 /* We have already decremented the stack pointer, so get the
3663 previous value. */
3664 offset += (HOST_WIDE_INT) rounded_size;
3665 #else
3666 if (STACK_PUSH_CODE == POST_INC)
3667 /* We have already incremented the stack pointer, so get the
3668 previous value. */
3669 offset -= (HOST_WIDE_INT) rounded_size;
3670 #endif
3671 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3673 else
3675 #ifdef STACK_GROWS_DOWNWARD
3676 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3677 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3678 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3679 #else
3680 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3681 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3682 GEN_INT (rounded_size));
3683 #endif
3684 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3687 dest = gen_rtx_MEM (mode, dest_addr);
3689 if (type != 0)
3691 set_mem_attributes (dest, type, 1);
3693 if (flag_optimize_sibling_calls)
3694 /* Function incoming arguments may overlap with sibling call
3695 outgoing arguments and we cannot allow reordering of reads
3696 from function arguments with stores to outgoing arguments
3697 of sibling calls. */
3698 set_mem_alias_set (dest, 0);
3700 emit_move_insn (dest, x);
3702 #endif
3704 /* Generate code to push X onto the stack, assuming it has mode MODE and
3705 type TYPE.
3706 MODE is redundant except when X is a CONST_INT (since they don't
3707 carry mode info).
3708 SIZE is an rtx for the size of data to be copied (in bytes),
3709 needed only if X is BLKmode.
3711 ALIGN (in bits) is maximum alignment we can assume.
3713 If PARTIAL and REG are both nonzero, then copy that many of the first
3714 bytes of X into registers starting with REG, and push the rest of X.
3715 The amount of space pushed is decreased by PARTIAL bytes.
3716 REG must be a hard register in this case.
3717 If REG is zero but PARTIAL is not, take any all others actions for an
3718 argument partially in registers, but do not actually load any
3719 registers.
3721 EXTRA is the amount in bytes of extra space to leave next to this arg.
3722 This is ignored if an argument block has already been allocated.
3724 On a machine that lacks real push insns, ARGS_ADDR is the address of
3725 the bottom of the argument block for this call. We use indexing off there
3726 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3727 argument block has not been preallocated.
3729 ARGS_SO_FAR is the size of args previously pushed for this call.
3731 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3732 for arguments passed in registers. If nonzero, it will be the number
3733 of bytes required. */
3735 void
3736 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3737 unsigned int align, int partial, rtx reg, int extra,
3738 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3739 rtx alignment_pad)
3741 rtx xinner;
3742 enum direction stack_direction
3743 #ifdef STACK_GROWS_DOWNWARD
3744 = downward;
3745 #else
3746 = upward;
3747 #endif
3749 /* Decide where to pad the argument: `downward' for below,
3750 `upward' for above, or `none' for don't pad it.
3751 Default is below for small data on big-endian machines; else above. */
3752 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3754 /* Invert direction if stack is post-decrement.
3755 FIXME: why? */
3756 if (STACK_PUSH_CODE == POST_DEC)
3757 if (where_pad != none)
3758 where_pad = (where_pad == downward ? upward : downward);
3760 xinner = x;
3762 if (mode == BLKmode
3763 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3765 /* Copy a block into the stack, entirely or partially. */
3767 rtx temp;
3768 int used;
3769 int offset;
3770 int skip;
3772 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3773 used = partial - offset;
3775 if (mode != BLKmode)
3777 /* A value is to be stored in an insufficiently aligned
3778 stack slot; copy via a suitably aligned slot if
3779 necessary. */
3780 size = GEN_INT (GET_MODE_SIZE (mode));
3781 if (!MEM_P (xinner))
3783 temp = assign_temp (type, 0, 1, 1);
3784 emit_move_insn (temp, xinner);
3785 xinner = temp;
3789 gcc_assert (size);
3791 /* USED is now the # of bytes we need not copy to the stack
3792 because registers will take care of them. */
3794 if (partial != 0)
3795 xinner = adjust_address (xinner, BLKmode, used);
3797 /* If the partial register-part of the arg counts in its stack size,
3798 skip the part of stack space corresponding to the registers.
3799 Otherwise, start copying to the beginning of the stack space,
3800 by setting SKIP to 0. */
3801 skip = (reg_parm_stack_space == 0) ? 0 : used;
3803 #ifdef PUSH_ROUNDING
3804 /* Do it with several push insns if that doesn't take lots of insns
3805 and if there is no difficulty with push insns that skip bytes
3806 on the stack for alignment purposes. */
3807 if (args_addr == 0
3808 && PUSH_ARGS
3809 && CONST_INT_P (size)
3810 && skip == 0
3811 && MEM_ALIGN (xinner) >= align
3812 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3813 /* Here we avoid the case of a structure whose weak alignment
3814 forces many pushes of a small amount of data,
3815 and such small pushes do rounding that causes trouble. */
3816 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3817 || align >= BIGGEST_ALIGNMENT
3818 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3819 == (align / BITS_PER_UNIT)))
3820 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3822 /* Push padding now if padding above and stack grows down,
3823 or if padding below and stack grows up.
3824 But if space already allocated, this has already been done. */
3825 if (extra && args_addr == 0
3826 && where_pad != none && where_pad != stack_direction)
3827 anti_adjust_stack (GEN_INT (extra));
3829 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3831 else
3832 #endif /* PUSH_ROUNDING */
3834 rtx target;
3836 /* Otherwise make space on the stack and copy the data
3837 to the address of that space. */
3839 /* Deduct words put into registers from the size we must copy. */
3840 if (partial != 0)
3842 if (CONST_INT_P (size))
3843 size = GEN_INT (INTVAL (size) - used);
3844 else
3845 size = expand_binop (GET_MODE (size), sub_optab, size,
3846 GEN_INT (used), NULL_RTX, 0,
3847 OPTAB_LIB_WIDEN);
3850 /* Get the address of the stack space.
3851 In this case, we do not deal with EXTRA separately.
3852 A single stack adjust will do. */
3853 if (! args_addr)
3855 temp = push_block (size, extra, where_pad == downward);
3856 extra = 0;
3858 else if (CONST_INT_P (args_so_far))
3859 temp = memory_address (BLKmode,
3860 plus_constant (args_addr,
3861 skip + INTVAL (args_so_far)));
3862 else
3863 temp = memory_address (BLKmode,
3864 plus_constant (gen_rtx_PLUS (Pmode,
3865 args_addr,
3866 args_so_far),
3867 skip));
3869 if (!ACCUMULATE_OUTGOING_ARGS)
3871 /* If the source is referenced relative to the stack pointer,
3872 copy it to another register to stabilize it. We do not need
3873 to do this if we know that we won't be changing sp. */
3875 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3876 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3877 temp = copy_to_reg (temp);
3880 target = gen_rtx_MEM (BLKmode, temp);
3882 /* We do *not* set_mem_attributes here, because incoming arguments
3883 may overlap with sibling call outgoing arguments and we cannot
3884 allow reordering of reads from function arguments with stores
3885 to outgoing arguments of sibling calls. We do, however, want
3886 to record the alignment of the stack slot. */
3887 /* ALIGN may well be better aligned than TYPE, e.g. due to
3888 PARM_BOUNDARY. Assume the caller isn't lying. */
3889 set_mem_align (target, align);
3891 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3894 else if (partial > 0)
3896 /* Scalar partly in registers. */
3898 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3899 int i;
3900 int not_stack;
3901 /* # bytes of start of argument
3902 that we must make space for but need not store. */
3903 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3904 int args_offset = INTVAL (args_so_far);
3905 int skip;
3907 /* Push padding now if padding above and stack grows down,
3908 or if padding below and stack grows up.
3909 But if space already allocated, this has already been done. */
3910 if (extra && args_addr == 0
3911 && where_pad != none && where_pad != stack_direction)
3912 anti_adjust_stack (GEN_INT (extra));
3914 /* If we make space by pushing it, we might as well push
3915 the real data. Otherwise, we can leave OFFSET nonzero
3916 and leave the space uninitialized. */
3917 if (args_addr == 0)
3918 offset = 0;
3920 /* Now NOT_STACK gets the number of words that we don't need to
3921 allocate on the stack. Convert OFFSET to words too. */
3922 not_stack = (partial - offset) / UNITS_PER_WORD;
3923 offset /= UNITS_PER_WORD;
3925 /* If the partial register-part of the arg counts in its stack size,
3926 skip the part of stack space corresponding to the registers.
3927 Otherwise, start copying to the beginning of the stack space,
3928 by setting SKIP to 0. */
3929 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3931 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3932 x = validize_mem (force_const_mem (mode, x));
3934 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3935 SUBREGs of such registers are not allowed. */
3936 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3937 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3938 x = copy_to_reg (x);
3940 /* Loop over all the words allocated on the stack for this arg. */
3941 /* We can do it by words, because any scalar bigger than a word
3942 has a size a multiple of a word. */
3943 #ifndef PUSH_ARGS_REVERSED
3944 for (i = not_stack; i < size; i++)
3945 #else
3946 for (i = size - 1; i >= not_stack; i--)
3947 #endif
3948 if (i >= not_stack + offset)
3949 emit_push_insn (operand_subword_force (x, i, mode),
3950 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3951 0, args_addr,
3952 GEN_INT (args_offset + ((i - not_stack + skip)
3953 * UNITS_PER_WORD)),
3954 reg_parm_stack_space, alignment_pad);
3956 else
3958 rtx addr;
3959 rtx dest;
3961 /* Push padding now if padding above and stack grows down,
3962 or if padding below and stack grows up.
3963 But if space already allocated, this has already been done. */
3964 if (extra && args_addr == 0
3965 && where_pad != none && where_pad != stack_direction)
3966 anti_adjust_stack (GEN_INT (extra));
3968 #ifdef PUSH_ROUNDING
3969 if (args_addr == 0 && PUSH_ARGS)
3970 emit_single_push_insn (mode, x, type);
3971 else
3972 #endif
3974 if (CONST_INT_P (args_so_far))
3975 addr
3976 = memory_address (mode,
3977 plus_constant (args_addr,
3978 INTVAL (args_so_far)));
3979 else
3980 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3981 args_so_far));
3982 dest = gen_rtx_MEM (mode, addr);
3984 /* We do *not* set_mem_attributes here, because incoming arguments
3985 may overlap with sibling call outgoing arguments and we cannot
3986 allow reordering of reads from function arguments with stores
3987 to outgoing arguments of sibling calls. We do, however, want
3988 to record the alignment of the stack slot. */
3989 /* ALIGN may well be better aligned than TYPE, e.g. due to
3990 PARM_BOUNDARY. Assume the caller isn't lying. */
3991 set_mem_align (dest, align);
3993 emit_move_insn (dest, x);
3997 /* If part should go in registers, copy that part
3998 into the appropriate registers. Do this now, at the end,
3999 since mem-to-mem copies above may do function calls. */
4000 if (partial > 0 && reg != 0)
4002 /* Handle calls that pass values in multiple non-contiguous locations.
4003 The Irix 6 ABI has examples of this. */
4004 if (GET_CODE (reg) == PARALLEL)
4005 emit_group_load (reg, x, type, -1);
4006 else
4008 gcc_assert (partial % UNITS_PER_WORD == 0);
4009 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4013 if (extra && args_addr == 0 && where_pad == stack_direction)
4014 anti_adjust_stack (GEN_INT (extra));
4016 if (alignment_pad && args_addr == 0)
4017 anti_adjust_stack (alignment_pad);
4020 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4021 operations. */
4023 static rtx
4024 get_subtarget (rtx x)
4026 return (optimize
4027 || x == 0
4028 /* Only registers can be subtargets. */
4029 || !REG_P (x)
4030 /* Don't use hard regs to avoid extending their life. */
4031 || REGNO (x) < FIRST_PSEUDO_REGISTER
4032 ? 0 : x);
4035 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4036 FIELD is a bitfield. Returns true if the optimization was successful,
4037 and there's nothing else to do. */
4039 static bool
4040 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4041 unsigned HOST_WIDE_INT bitpos,
4042 enum machine_mode mode1, rtx str_rtx,
4043 tree to, tree src)
4045 enum machine_mode str_mode = GET_MODE (str_rtx);
4046 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4047 tree op0, op1;
4048 rtx value, result;
4049 optab binop;
4051 if (mode1 != VOIDmode
4052 || bitsize >= BITS_PER_WORD
4053 || str_bitsize > BITS_PER_WORD
4054 || TREE_SIDE_EFFECTS (to)
4055 || TREE_THIS_VOLATILE (to))
4056 return false;
4058 STRIP_NOPS (src);
4059 if (!BINARY_CLASS_P (src)
4060 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4061 return false;
4063 op0 = TREE_OPERAND (src, 0);
4064 op1 = TREE_OPERAND (src, 1);
4065 STRIP_NOPS (op0);
4067 if (!operand_equal_p (to, op0, 0))
4068 return false;
4070 if (MEM_P (str_rtx))
4072 unsigned HOST_WIDE_INT offset1;
4074 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4075 str_mode = word_mode;
4076 str_mode = get_best_mode (bitsize, bitpos,
4077 MEM_ALIGN (str_rtx), str_mode, 0);
4078 if (str_mode == VOIDmode)
4079 return false;
4080 str_bitsize = GET_MODE_BITSIZE (str_mode);
4082 offset1 = bitpos;
4083 bitpos %= str_bitsize;
4084 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4085 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4087 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4088 return false;
4090 /* If the bit field covers the whole REG/MEM, store_field
4091 will likely generate better code. */
4092 if (bitsize >= str_bitsize)
4093 return false;
4095 /* We can't handle fields split across multiple entities. */
4096 if (bitpos + bitsize > str_bitsize)
4097 return false;
4099 if (BYTES_BIG_ENDIAN)
4100 bitpos = str_bitsize - bitpos - bitsize;
4102 switch (TREE_CODE (src))
4104 case PLUS_EXPR:
4105 case MINUS_EXPR:
4106 /* For now, just optimize the case of the topmost bitfield
4107 where we don't need to do any masking and also
4108 1 bit bitfields where xor can be used.
4109 We might win by one instruction for the other bitfields
4110 too if insv/extv instructions aren't used, so that
4111 can be added later. */
4112 if (bitpos + bitsize != str_bitsize
4113 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4114 break;
4116 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4117 value = convert_modes (str_mode,
4118 TYPE_MODE (TREE_TYPE (op1)), value,
4119 TYPE_UNSIGNED (TREE_TYPE (op1)));
4121 /* We may be accessing data outside the field, which means
4122 we can alias adjacent data. */
4123 if (MEM_P (str_rtx))
4125 str_rtx = shallow_copy_rtx (str_rtx);
4126 set_mem_alias_set (str_rtx, 0);
4127 set_mem_expr (str_rtx, 0);
4130 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4131 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4133 value = expand_and (str_mode, value, const1_rtx, NULL);
4134 binop = xor_optab;
4136 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4137 build_int_cst (NULL_TREE, bitpos),
4138 NULL_RTX, 1);
4139 result = expand_binop (str_mode, binop, str_rtx,
4140 value, str_rtx, 1, OPTAB_WIDEN);
4141 if (result != str_rtx)
4142 emit_move_insn (str_rtx, result);
4143 return true;
4145 case BIT_IOR_EXPR:
4146 case BIT_XOR_EXPR:
4147 if (TREE_CODE (op1) != INTEGER_CST)
4148 break;
4149 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4150 value = convert_modes (GET_MODE (str_rtx),
4151 TYPE_MODE (TREE_TYPE (op1)), value,
4152 TYPE_UNSIGNED (TREE_TYPE (op1)));
4154 /* We may be accessing data outside the field, which means
4155 we can alias adjacent data. */
4156 if (MEM_P (str_rtx))
4158 str_rtx = shallow_copy_rtx (str_rtx);
4159 set_mem_alias_set (str_rtx, 0);
4160 set_mem_expr (str_rtx, 0);
4163 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4164 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4166 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4167 - 1);
4168 value = expand_and (GET_MODE (str_rtx), value, mask,
4169 NULL_RTX);
4171 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4172 build_int_cst (NULL_TREE, bitpos),
4173 NULL_RTX, 1);
4174 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4175 value, str_rtx, 1, OPTAB_WIDEN);
4176 if (result != str_rtx)
4177 emit_move_insn (str_rtx, result);
4178 return true;
4180 default:
4181 break;
4184 return false;
4188 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4189 is true, try generating a nontemporal store. */
4191 void
4192 expand_assignment (tree to, tree from, bool nontemporal)
4194 rtx to_rtx = 0;
4195 rtx result;
4197 /* Don't crash if the lhs of the assignment was erroneous. */
4198 if (TREE_CODE (to) == ERROR_MARK)
4200 result = expand_normal (from);
4201 return;
4204 /* Optimize away no-op moves without side-effects. */
4205 if (operand_equal_p (to, from, 0))
4206 return;
4208 /* Assignment of a structure component needs special treatment
4209 if the structure component's rtx is not simply a MEM.
4210 Assignment of an array element at a constant index, and assignment of
4211 an array element in an unaligned packed structure field, has the same
4212 problem. */
4213 if (handled_component_p (to)
4214 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4216 enum machine_mode mode1;
4217 HOST_WIDE_INT bitsize, bitpos;
4218 tree offset;
4219 int unsignedp;
4220 int volatilep = 0;
4221 tree tem;
4223 push_temp_slots ();
4224 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4225 &unsignedp, &volatilep, true);
4227 /* If we are going to use store_bit_field and extract_bit_field,
4228 make sure to_rtx will be safe for multiple use. */
4230 to_rtx = expand_normal (tem);
4232 /* If the bitfield is volatile, we want to access it in the
4233 field's mode, not the computed mode. */
4234 if (volatilep
4235 && GET_CODE (to_rtx) == MEM
4236 && flag_strict_volatile_bitfields > 0)
4237 to_rtx = adjust_address (to_rtx, mode1, 0);
4239 if (offset != 0)
4241 enum machine_mode address_mode;
4242 rtx offset_rtx;
4244 if (!MEM_P (to_rtx))
4246 /* We can get constant negative offsets into arrays with broken
4247 user code. Translate this to a trap instead of ICEing. */
4248 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4249 expand_builtin_trap ();
4250 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4253 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4254 address_mode
4255 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4256 if (GET_MODE (offset_rtx) != address_mode)
4257 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4259 /* A constant address in TO_RTX can have VOIDmode, we must not try
4260 to call force_reg for that case. Avoid that case. */
4261 if (MEM_P (to_rtx)
4262 && GET_MODE (to_rtx) == BLKmode
4263 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4264 && bitsize > 0
4265 && (bitpos % bitsize) == 0
4266 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4267 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4269 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4270 bitpos = 0;
4273 to_rtx = offset_address (to_rtx, offset_rtx,
4274 highest_pow2_factor_for_target (to,
4275 offset));
4278 /* No action is needed if the target is not a memory and the field
4279 lies completely outside that target. This can occur if the source
4280 code contains an out-of-bounds access to a small array. */
4281 if (!MEM_P (to_rtx)
4282 && GET_MODE (to_rtx) != BLKmode
4283 && (unsigned HOST_WIDE_INT) bitpos
4284 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4286 expand_normal (from);
4287 result = NULL;
4289 /* Handle expand_expr of a complex value returning a CONCAT. */
4290 else if (GET_CODE (to_rtx) == CONCAT)
4292 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4294 gcc_assert (bitpos == 0);
4295 result = store_expr (from, to_rtx, false, nontemporal);
4297 else
4299 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4300 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4301 nontemporal);
4304 else
4306 if (MEM_P (to_rtx))
4308 /* If the field is at offset zero, we could have been given the
4309 DECL_RTX of the parent struct. Don't munge it. */
4310 to_rtx = shallow_copy_rtx (to_rtx);
4312 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4314 /* Deal with volatile and readonly fields. The former is only
4315 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4316 if (volatilep)
4317 MEM_VOLATILE_P (to_rtx) = 1;
4318 if (component_uses_parent_alias_set (to))
4319 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4322 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4323 to_rtx, to, from))
4324 result = NULL;
4325 else
4326 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4327 TREE_TYPE (tem), get_alias_set (to),
4328 nontemporal);
4331 if (result)
4332 preserve_temp_slots (result);
4333 free_temp_slots ();
4334 pop_temp_slots ();
4335 return;
4338 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4340 addr_space_t as = ADDR_SPACE_GENERIC;
4341 enum machine_mode mode, op_mode1;
4342 enum insn_code icode;
4343 rtx reg, addr, mem, insn;
4345 if (POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (to, 0))))
4346 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 0))));
4348 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4349 reg = force_not_mem (reg);
4351 mode = TYPE_MODE (TREE_TYPE (to));
4352 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4353 EXPAND_SUM);
4354 addr = memory_address_addr_space (mode, addr, as);
4355 mem = gen_rtx_MEM (mode, addr);
4357 set_mem_attributes (mem, to, 0);
4358 set_mem_addr_space (mem, as);
4360 icode = movmisalign_optab->handlers[mode].insn_code;
4361 gcc_assert (icode != CODE_FOR_nothing);
4363 op_mode1 = insn_data[icode].operand[1].mode;
4364 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4365 && op_mode1 != VOIDmode)
4366 reg = copy_to_mode_reg (op_mode1, reg);
4368 insn = GEN_FCN (icode) (mem, reg);
4369 emit_insn (insn);
4370 return;
4373 /* If the rhs is a function call and its value is not an aggregate,
4374 call the function before we start to compute the lhs.
4375 This is needed for correct code for cases such as
4376 val = setjmp (buf) on machines where reference to val
4377 requires loading up part of an address in a separate insn.
4379 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4380 since it might be a promoted variable where the zero- or sign- extension
4381 needs to be done. Handling this in the normal way is safe because no
4382 computation is done before the call. The same is true for SSA names. */
4383 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4384 && COMPLETE_TYPE_P (TREE_TYPE (from))
4385 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4386 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4387 && REG_P (DECL_RTL (to)))
4388 || TREE_CODE (to) == SSA_NAME))
4390 rtx value;
4392 push_temp_slots ();
4393 value = expand_normal (from);
4394 if (to_rtx == 0)
4395 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4397 /* Handle calls that return values in multiple non-contiguous locations.
4398 The Irix 6 ABI has examples of this. */
4399 if (GET_CODE (to_rtx) == PARALLEL)
4400 emit_group_load (to_rtx, value, TREE_TYPE (from),
4401 int_size_in_bytes (TREE_TYPE (from)));
4402 else if (GET_MODE (to_rtx) == BLKmode)
4403 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4404 else
4406 if (POINTER_TYPE_P (TREE_TYPE (to)))
4407 value = convert_memory_address_addr_space
4408 (GET_MODE (to_rtx), value,
4409 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4411 emit_move_insn (to_rtx, value);
4413 preserve_temp_slots (to_rtx);
4414 free_temp_slots ();
4415 pop_temp_slots ();
4416 return;
4419 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4420 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4422 if (to_rtx == 0)
4423 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4425 /* Don't move directly into a return register. */
4426 if (TREE_CODE (to) == RESULT_DECL
4427 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4429 rtx temp;
4431 push_temp_slots ();
4432 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4434 if (GET_CODE (to_rtx) == PARALLEL)
4435 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4436 int_size_in_bytes (TREE_TYPE (from)));
4437 else
4438 emit_move_insn (to_rtx, temp);
4440 preserve_temp_slots (to_rtx);
4441 free_temp_slots ();
4442 pop_temp_slots ();
4443 return;
4446 /* In case we are returning the contents of an object which overlaps
4447 the place the value is being stored, use a safe function when copying
4448 a value through a pointer into a structure value return block. */
4449 if (TREE_CODE (to) == RESULT_DECL
4450 && TREE_CODE (from) == INDIRECT_REF
4451 && ADDR_SPACE_GENERIC_P
4452 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4453 && refs_may_alias_p (to, from)
4454 && cfun->returns_struct
4455 && !cfun->returns_pcc_struct)
4457 rtx from_rtx, size;
4459 push_temp_slots ();
4460 size = expr_size (from);
4461 from_rtx = expand_normal (from);
4463 emit_library_call (memmove_libfunc, LCT_NORMAL,
4464 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4465 XEXP (from_rtx, 0), Pmode,
4466 convert_to_mode (TYPE_MODE (sizetype),
4467 size, TYPE_UNSIGNED (sizetype)),
4468 TYPE_MODE (sizetype));
4470 preserve_temp_slots (to_rtx);
4471 free_temp_slots ();
4472 pop_temp_slots ();
4473 return;
4476 /* Compute FROM and store the value in the rtx we got. */
4478 push_temp_slots ();
4479 result = store_expr (from, to_rtx, 0, nontemporal);
4480 preserve_temp_slots (result);
4481 free_temp_slots ();
4482 pop_temp_slots ();
4483 return;
4486 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4487 succeeded, false otherwise. */
4489 bool
4490 emit_storent_insn (rtx to, rtx from)
4492 enum machine_mode mode = GET_MODE (to), imode;
4493 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4494 rtx pattern;
4496 if (code == CODE_FOR_nothing)
4497 return false;
4499 imode = insn_data[code].operand[0].mode;
4500 if (!insn_data[code].operand[0].predicate (to, imode))
4501 return false;
4503 imode = insn_data[code].operand[1].mode;
4504 if (!insn_data[code].operand[1].predicate (from, imode))
4506 from = copy_to_mode_reg (imode, from);
4507 if (!insn_data[code].operand[1].predicate (from, imode))
4508 return false;
4511 pattern = GEN_FCN (code) (to, from);
4512 if (pattern == NULL_RTX)
4513 return false;
4515 emit_insn (pattern);
4516 return true;
4519 /* Generate code for computing expression EXP,
4520 and storing the value into TARGET.
4522 If the mode is BLKmode then we may return TARGET itself.
4523 It turns out that in BLKmode it doesn't cause a problem.
4524 because C has no operators that could combine two different
4525 assignments into the same BLKmode object with different values
4526 with no sequence point. Will other languages need this to
4527 be more thorough?
4529 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4530 stack, and block moves may need to be treated specially.
4532 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4535 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4537 rtx temp;
4538 rtx alt_rtl = NULL_RTX;
4539 location_t loc = EXPR_LOCATION (exp);
4541 if (VOID_TYPE_P (TREE_TYPE (exp)))
4543 /* C++ can generate ?: expressions with a throw expression in one
4544 branch and an rvalue in the other. Here, we resolve attempts to
4545 store the throw expression's nonexistent result. */
4546 gcc_assert (!call_param_p);
4547 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4548 return NULL_RTX;
4550 if (TREE_CODE (exp) == COMPOUND_EXPR)
4552 /* Perform first part of compound expression, then assign from second
4553 part. */
4554 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4555 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4556 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4557 nontemporal);
4559 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4561 /* For conditional expression, get safe form of the target. Then
4562 test the condition, doing the appropriate assignment on either
4563 side. This avoids the creation of unnecessary temporaries.
4564 For non-BLKmode, it is more efficient not to do this. */
4566 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4568 do_pending_stack_adjust ();
4569 NO_DEFER_POP;
4570 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4571 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4572 nontemporal);
4573 emit_jump_insn (gen_jump (lab2));
4574 emit_barrier ();
4575 emit_label (lab1);
4576 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4577 nontemporal);
4578 emit_label (lab2);
4579 OK_DEFER_POP;
4581 return NULL_RTX;
4583 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4584 /* If this is a scalar in a register that is stored in a wider mode
4585 than the declared mode, compute the result into its declared mode
4586 and then convert to the wider mode. Our value is the computed
4587 expression. */
4589 rtx inner_target = 0;
4591 /* We can do the conversion inside EXP, which will often result
4592 in some optimizations. Do the conversion in two steps: first
4593 change the signedness, if needed, then the extend. But don't
4594 do this if the type of EXP is a subtype of something else
4595 since then the conversion might involve more than just
4596 converting modes. */
4597 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4598 && TREE_TYPE (TREE_TYPE (exp)) == 0
4599 && GET_MODE_PRECISION (GET_MODE (target))
4600 == TYPE_PRECISION (TREE_TYPE (exp)))
4602 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4603 != SUBREG_PROMOTED_UNSIGNED_P (target))
4605 /* Some types, e.g. Fortran's logical*4, won't have a signed
4606 version, so use the mode instead. */
4607 tree ntype
4608 = (signed_or_unsigned_type_for
4609 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4610 if (ntype == NULL)
4611 ntype = lang_hooks.types.type_for_mode
4612 (TYPE_MODE (TREE_TYPE (exp)),
4613 SUBREG_PROMOTED_UNSIGNED_P (target));
4615 exp = fold_convert_loc (loc, ntype, exp);
4618 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4619 (GET_MODE (SUBREG_REG (target)),
4620 SUBREG_PROMOTED_UNSIGNED_P (target)),
4621 exp);
4623 inner_target = SUBREG_REG (target);
4626 temp = expand_expr (exp, inner_target, VOIDmode,
4627 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4629 /* If TEMP is a VOIDmode constant, use convert_modes to make
4630 sure that we properly convert it. */
4631 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4633 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4634 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4635 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4636 GET_MODE (target), temp,
4637 SUBREG_PROMOTED_UNSIGNED_P (target));
4640 convert_move (SUBREG_REG (target), temp,
4641 SUBREG_PROMOTED_UNSIGNED_P (target));
4643 return NULL_RTX;
4645 else if (TREE_CODE (exp) == STRING_CST
4646 && !nontemporal && !call_param_p
4647 && TREE_STRING_LENGTH (exp) > 0
4648 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4650 /* Optimize initialization of an array with a STRING_CST. */
4651 HOST_WIDE_INT exp_len, str_copy_len;
4652 rtx dest_mem;
4654 exp_len = int_expr_size (exp);
4655 if (exp_len <= 0)
4656 goto normal_expr;
4658 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4659 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4660 goto normal_expr;
4662 str_copy_len = TREE_STRING_LENGTH (exp);
4663 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4665 str_copy_len += STORE_MAX_PIECES - 1;
4666 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4668 str_copy_len = MIN (str_copy_len, exp_len);
4669 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4670 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4671 MEM_ALIGN (target), false))
4672 goto normal_expr;
4674 dest_mem = target;
4676 dest_mem = store_by_pieces (dest_mem,
4677 str_copy_len, builtin_strncpy_read_str,
4678 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4679 MEM_ALIGN (target), false,
4680 exp_len > str_copy_len ? 1 : 0);
4681 if (exp_len > str_copy_len)
4682 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4683 GEN_INT (exp_len - str_copy_len),
4684 BLOCK_OP_NORMAL);
4685 return NULL_RTX;
4687 else
4689 rtx tmp_target;
4691 normal_expr:
4692 /* If we want to use a nontemporal store, force the value to
4693 register first. */
4694 tmp_target = nontemporal ? NULL_RTX : target;
4695 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4696 (call_param_p
4697 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4698 &alt_rtl);
4701 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4702 the same as that of TARGET, adjust the constant. This is needed, for
4703 example, in case it is a CONST_DOUBLE and we want only a word-sized
4704 value. */
4705 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4706 && TREE_CODE (exp) != ERROR_MARK
4707 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4708 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4709 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4711 /* If value was not generated in the target, store it there.
4712 Convert the value to TARGET's type first if necessary and emit the
4713 pending incrementations that have been queued when expanding EXP.
4714 Note that we cannot emit the whole queue blindly because this will
4715 effectively disable the POST_INC optimization later.
4717 If TEMP and TARGET compare equal according to rtx_equal_p, but
4718 one or both of them are volatile memory refs, we have to distinguish
4719 two cases:
4720 - expand_expr has used TARGET. In this case, we must not generate
4721 another copy. This can be detected by TARGET being equal according
4722 to == .
4723 - expand_expr has not used TARGET - that means that the source just
4724 happens to have the same RTX form. Since temp will have been created
4725 by expand_expr, it will compare unequal according to == .
4726 We must generate a copy in this case, to reach the correct number
4727 of volatile memory references. */
4729 if ((! rtx_equal_p (temp, target)
4730 || (temp != target && (side_effects_p (temp)
4731 || side_effects_p (target))))
4732 && TREE_CODE (exp) != ERROR_MARK
4733 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4734 but TARGET is not valid memory reference, TEMP will differ
4735 from TARGET although it is really the same location. */
4736 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4737 /* If there's nothing to copy, don't bother. Don't call
4738 expr_size unless necessary, because some front-ends (C++)
4739 expr_size-hook must not be given objects that are not
4740 supposed to be bit-copied or bit-initialized. */
4741 && expr_size (exp) != const0_rtx)
4743 if (GET_MODE (temp) != GET_MODE (target)
4744 && GET_MODE (temp) != VOIDmode)
4746 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4747 if (GET_MODE (target) == BLKmode
4748 || GET_MODE (temp) == BLKmode)
4749 emit_block_move (target, temp, expr_size (exp),
4750 (call_param_p
4751 ? BLOCK_OP_CALL_PARM
4752 : BLOCK_OP_NORMAL));
4753 else
4754 convert_move (target, temp, unsignedp);
4757 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4759 /* Handle copying a string constant into an array. The string
4760 constant may be shorter than the array. So copy just the string's
4761 actual length, and clear the rest. First get the size of the data
4762 type of the string, which is actually the size of the target. */
4763 rtx size = expr_size (exp);
4765 if (CONST_INT_P (size)
4766 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4767 emit_block_move (target, temp, size,
4768 (call_param_p
4769 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4770 else
4772 enum machine_mode pointer_mode
4773 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4774 enum machine_mode address_mode
4775 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4777 /* Compute the size of the data to copy from the string. */
4778 tree copy_size
4779 = size_binop_loc (loc, MIN_EXPR,
4780 make_tree (sizetype, size),
4781 size_int (TREE_STRING_LENGTH (exp)));
4782 rtx copy_size_rtx
4783 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4784 (call_param_p
4785 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4786 rtx label = 0;
4788 /* Copy that much. */
4789 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4790 TYPE_UNSIGNED (sizetype));
4791 emit_block_move (target, temp, copy_size_rtx,
4792 (call_param_p
4793 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4795 /* Figure out how much is left in TARGET that we have to clear.
4796 Do all calculations in pointer_mode. */
4797 if (CONST_INT_P (copy_size_rtx))
4799 size = plus_constant (size, -INTVAL (copy_size_rtx));
4800 target = adjust_address (target, BLKmode,
4801 INTVAL (copy_size_rtx));
4803 else
4805 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4806 copy_size_rtx, NULL_RTX, 0,
4807 OPTAB_LIB_WIDEN);
4809 if (GET_MODE (copy_size_rtx) != address_mode)
4810 copy_size_rtx = convert_to_mode (address_mode,
4811 copy_size_rtx,
4812 TYPE_UNSIGNED (sizetype));
4814 target = offset_address (target, copy_size_rtx,
4815 highest_pow2_factor (copy_size));
4816 label = gen_label_rtx ();
4817 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4818 GET_MODE (size), 0, label);
4821 if (size != const0_rtx)
4822 clear_storage (target, size, BLOCK_OP_NORMAL);
4824 if (label)
4825 emit_label (label);
4828 /* Handle calls that return values in multiple non-contiguous locations.
4829 The Irix 6 ABI has examples of this. */
4830 else if (GET_CODE (target) == PARALLEL)
4831 emit_group_load (target, temp, TREE_TYPE (exp),
4832 int_size_in_bytes (TREE_TYPE (exp)));
4833 else if (GET_MODE (temp) == BLKmode)
4834 emit_block_move (target, temp, expr_size (exp),
4835 (call_param_p
4836 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4837 else if (nontemporal
4838 && emit_storent_insn (target, temp))
4839 /* If we managed to emit a nontemporal store, there is nothing else to
4840 do. */
4842 else
4844 temp = force_operand (temp, target);
4845 if (temp != target)
4846 emit_move_insn (target, temp);
4850 return NULL_RTX;
4853 /* Helper for categorize_ctor_elements. Identical interface. */
4855 static bool
4856 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4857 HOST_WIDE_INT *p_elt_count,
4858 bool *p_must_clear)
4860 unsigned HOST_WIDE_INT idx;
4861 HOST_WIDE_INT nz_elts, elt_count;
4862 tree value, purpose;
4864 /* Whether CTOR is a valid constant initializer, in accordance with what
4865 initializer_constant_valid_p does. If inferred from the constructor
4866 elements, true until proven otherwise. */
4867 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4868 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4870 nz_elts = 0;
4871 elt_count = 0;
4873 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4875 HOST_WIDE_INT mult = 1;
4877 if (TREE_CODE (purpose) == RANGE_EXPR)
4879 tree lo_index = TREE_OPERAND (purpose, 0);
4880 tree hi_index = TREE_OPERAND (purpose, 1);
4882 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4883 mult = (tree_low_cst (hi_index, 1)
4884 - tree_low_cst (lo_index, 1) + 1);
4887 switch (TREE_CODE (value))
4889 case CONSTRUCTOR:
4891 HOST_WIDE_INT nz = 0, ic = 0;
4893 bool const_elt_p
4894 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4896 nz_elts += mult * nz;
4897 elt_count += mult * ic;
4899 if (const_from_elts_p && const_p)
4900 const_p = const_elt_p;
4902 break;
4904 case INTEGER_CST:
4905 case REAL_CST:
4906 case FIXED_CST:
4907 if (!initializer_zerop (value))
4908 nz_elts += mult;
4909 elt_count += mult;
4910 break;
4912 case STRING_CST:
4913 nz_elts += mult * TREE_STRING_LENGTH (value);
4914 elt_count += mult * TREE_STRING_LENGTH (value);
4915 break;
4917 case COMPLEX_CST:
4918 if (!initializer_zerop (TREE_REALPART (value)))
4919 nz_elts += mult;
4920 if (!initializer_zerop (TREE_IMAGPART (value)))
4921 nz_elts += mult;
4922 elt_count += mult;
4923 break;
4925 case VECTOR_CST:
4927 tree v;
4928 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4930 if (!initializer_zerop (TREE_VALUE (v)))
4931 nz_elts += mult;
4932 elt_count += mult;
4935 break;
4937 default:
4939 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4940 if (tc < 1)
4941 tc = 1;
4942 nz_elts += mult * tc;
4943 elt_count += mult * tc;
4945 if (const_from_elts_p && const_p)
4946 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4947 != NULL_TREE;
4949 break;
4953 if (!*p_must_clear
4954 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4955 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4957 tree init_sub_type;
4958 bool clear_this = true;
4960 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4962 /* We don't expect more than one element of the union to be
4963 initialized. Not sure what we should do otherwise... */
4964 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4965 == 1);
4967 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4968 CONSTRUCTOR_ELTS (ctor),
4969 0)->value);
4971 /* ??? We could look at each element of the union, and find the
4972 largest element. Which would avoid comparing the size of the
4973 initialized element against any tail padding in the union.
4974 Doesn't seem worth the effort... */
4975 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4976 TYPE_SIZE (init_sub_type)) == 1)
4978 /* And now we have to find out if the element itself is fully
4979 constructed. E.g. for union { struct { int a, b; } s; } u
4980 = { .s = { .a = 1 } }. */
4981 if (elt_count == count_type_elements (init_sub_type, false))
4982 clear_this = false;
4986 *p_must_clear = clear_this;
4989 *p_nz_elts += nz_elts;
4990 *p_elt_count += elt_count;
4992 return const_p;
4995 /* Examine CTOR to discover:
4996 * how many scalar fields are set to nonzero values,
4997 and place it in *P_NZ_ELTS;
4998 * how many scalar fields in total are in CTOR,
4999 and place it in *P_ELT_COUNT.
5000 * if a type is a union, and the initializer from the constructor
5001 is not the largest element in the union, then set *p_must_clear.
5003 Return whether or not CTOR is a valid static constant initializer, the same
5004 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5006 bool
5007 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5008 HOST_WIDE_INT *p_elt_count,
5009 bool *p_must_clear)
5011 *p_nz_elts = 0;
5012 *p_elt_count = 0;
5013 *p_must_clear = false;
5015 return
5016 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5019 /* Count the number of scalars in TYPE. Return -1 on overflow or
5020 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5021 array member at the end of the structure. */
5023 HOST_WIDE_INT
5024 count_type_elements (const_tree type, bool allow_flexarr)
5026 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5027 switch (TREE_CODE (type))
5029 case ARRAY_TYPE:
5031 tree telts = array_type_nelts (type);
5032 if (telts && host_integerp (telts, 1))
5034 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5035 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5036 if (n == 0)
5037 return 0;
5038 else if (max / n > m)
5039 return n * m;
5041 return -1;
5044 case RECORD_TYPE:
5046 HOST_WIDE_INT n = 0, t;
5047 tree f;
5049 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5050 if (TREE_CODE (f) == FIELD_DECL)
5052 t = count_type_elements (TREE_TYPE (f), false);
5053 if (t < 0)
5055 /* Check for structures with flexible array member. */
5056 tree tf = TREE_TYPE (f);
5057 if (allow_flexarr
5058 && TREE_CHAIN (f) == NULL
5059 && TREE_CODE (tf) == ARRAY_TYPE
5060 && TYPE_DOMAIN (tf)
5061 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5062 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5063 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5064 && int_size_in_bytes (type) >= 0)
5065 break;
5067 return -1;
5069 n += t;
5072 return n;
5075 case UNION_TYPE:
5076 case QUAL_UNION_TYPE:
5077 return -1;
5079 case COMPLEX_TYPE:
5080 return 2;
5082 case VECTOR_TYPE:
5083 return TYPE_VECTOR_SUBPARTS (type);
5085 case INTEGER_TYPE:
5086 case REAL_TYPE:
5087 case FIXED_POINT_TYPE:
5088 case ENUMERAL_TYPE:
5089 case BOOLEAN_TYPE:
5090 case POINTER_TYPE:
5091 case OFFSET_TYPE:
5092 case REFERENCE_TYPE:
5093 return 1;
5095 case ERROR_MARK:
5096 return 0;
5098 case VOID_TYPE:
5099 case METHOD_TYPE:
5100 case FUNCTION_TYPE:
5101 case LANG_TYPE:
5102 default:
5103 gcc_unreachable ();
5107 /* Return 1 if EXP contains mostly (3/4) zeros. */
5109 static int
5110 mostly_zeros_p (const_tree exp)
5112 if (TREE_CODE (exp) == CONSTRUCTOR)
5115 HOST_WIDE_INT nz_elts, count, elts;
5116 bool must_clear;
5118 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5119 if (must_clear)
5120 return 1;
5122 elts = count_type_elements (TREE_TYPE (exp), false);
5124 return nz_elts < elts / 4;
5127 return initializer_zerop (exp);
5130 /* Return 1 if EXP contains all zeros. */
5132 static int
5133 all_zeros_p (const_tree exp)
5135 if (TREE_CODE (exp) == CONSTRUCTOR)
5138 HOST_WIDE_INT nz_elts, count;
5139 bool must_clear;
5141 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5142 return nz_elts == 0;
5145 return initializer_zerop (exp);
5148 /* Helper function for store_constructor.
5149 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5150 TYPE is the type of the CONSTRUCTOR, not the element type.
5151 CLEARED is as for store_constructor.
5152 ALIAS_SET is the alias set to use for any stores.
5154 This provides a recursive shortcut back to store_constructor when it isn't
5155 necessary to go through store_field. This is so that we can pass through
5156 the cleared field to let store_constructor know that we may not have to
5157 clear a substructure if the outer structure has already been cleared. */
5159 static void
5160 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5161 HOST_WIDE_INT bitpos, enum machine_mode mode,
5162 tree exp, tree type, int cleared,
5163 alias_set_type alias_set)
5165 if (TREE_CODE (exp) == CONSTRUCTOR
5166 /* We can only call store_constructor recursively if the size and
5167 bit position are on a byte boundary. */
5168 && bitpos % BITS_PER_UNIT == 0
5169 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5170 /* If we have a nonzero bitpos for a register target, then we just
5171 let store_field do the bitfield handling. This is unlikely to
5172 generate unnecessary clear instructions anyways. */
5173 && (bitpos == 0 || MEM_P (target)))
5175 if (MEM_P (target))
5176 target
5177 = adjust_address (target,
5178 GET_MODE (target) == BLKmode
5179 || 0 != (bitpos
5180 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5181 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5184 /* Update the alias set, if required. */
5185 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5186 && MEM_ALIAS_SET (target) != 0)
5188 target = copy_rtx (target);
5189 set_mem_alias_set (target, alias_set);
5192 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5194 else
5195 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5198 /* Store the value of constructor EXP into the rtx TARGET.
5199 TARGET is either a REG or a MEM; we know it cannot conflict, since
5200 safe_from_p has been called.
5201 CLEARED is true if TARGET is known to have been zero'd.
5202 SIZE is the number of bytes of TARGET we are allowed to modify: this
5203 may not be the same as the size of EXP if we are assigning to a field
5204 which has been packed to exclude padding bits. */
5206 static void
5207 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5209 tree type = TREE_TYPE (exp);
5210 #ifdef WORD_REGISTER_OPERATIONS
5211 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5212 #endif
5214 switch (TREE_CODE (type))
5216 case RECORD_TYPE:
5217 case UNION_TYPE:
5218 case QUAL_UNION_TYPE:
5220 unsigned HOST_WIDE_INT idx;
5221 tree field, value;
5223 /* If size is zero or the target is already cleared, do nothing. */
5224 if (size == 0 || cleared)
5225 cleared = 1;
5226 /* We either clear the aggregate or indicate the value is dead. */
5227 else if ((TREE_CODE (type) == UNION_TYPE
5228 || TREE_CODE (type) == QUAL_UNION_TYPE)
5229 && ! CONSTRUCTOR_ELTS (exp))
5230 /* If the constructor is empty, clear the union. */
5232 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5233 cleared = 1;
5236 /* If we are building a static constructor into a register,
5237 set the initial value as zero so we can fold the value into
5238 a constant. But if more than one register is involved,
5239 this probably loses. */
5240 else if (REG_P (target) && TREE_STATIC (exp)
5241 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5243 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5244 cleared = 1;
5247 /* If the constructor has fewer fields than the structure or
5248 if we are initializing the structure to mostly zeros, clear
5249 the whole structure first. Don't do this if TARGET is a
5250 register whose mode size isn't equal to SIZE since
5251 clear_storage can't handle this case. */
5252 else if (size > 0
5253 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5254 != fields_length (type))
5255 || mostly_zeros_p (exp))
5256 && (!REG_P (target)
5257 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5258 == size)))
5260 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5261 cleared = 1;
5264 if (REG_P (target) && !cleared)
5265 emit_clobber (target);
5267 /* Store each element of the constructor into the
5268 corresponding field of TARGET. */
5269 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5271 enum machine_mode mode;
5272 HOST_WIDE_INT bitsize;
5273 HOST_WIDE_INT bitpos = 0;
5274 tree offset;
5275 rtx to_rtx = target;
5277 /* Just ignore missing fields. We cleared the whole
5278 structure, above, if any fields are missing. */
5279 if (field == 0)
5280 continue;
5282 if (cleared && initializer_zerop (value))
5283 continue;
5285 if (host_integerp (DECL_SIZE (field), 1))
5286 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5287 else
5288 bitsize = -1;
5290 mode = DECL_MODE (field);
5291 if (DECL_BIT_FIELD (field))
5292 mode = VOIDmode;
5294 offset = DECL_FIELD_OFFSET (field);
5295 if (host_integerp (offset, 0)
5296 && host_integerp (bit_position (field), 0))
5298 bitpos = int_bit_position (field);
5299 offset = 0;
5301 else
5302 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5304 if (offset)
5306 enum machine_mode address_mode;
5307 rtx offset_rtx;
5309 offset
5310 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5311 make_tree (TREE_TYPE (exp),
5312 target));
5314 offset_rtx = expand_normal (offset);
5315 gcc_assert (MEM_P (to_rtx));
5317 address_mode
5318 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5319 if (GET_MODE (offset_rtx) != address_mode)
5320 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5322 to_rtx = offset_address (to_rtx, offset_rtx,
5323 highest_pow2_factor (offset));
5326 #ifdef WORD_REGISTER_OPERATIONS
5327 /* If this initializes a field that is smaller than a
5328 word, at the start of a word, try to widen it to a full
5329 word. This special case allows us to output C++ member
5330 function initializations in a form that the optimizers
5331 can understand. */
5332 if (REG_P (target)
5333 && bitsize < BITS_PER_WORD
5334 && bitpos % BITS_PER_WORD == 0
5335 && GET_MODE_CLASS (mode) == MODE_INT
5336 && TREE_CODE (value) == INTEGER_CST
5337 && exp_size >= 0
5338 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5340 tree type = TREE_TYPE (value);
5342 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5344 type = lang_hooks.types.type_for_size
5345 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5346 value = fold_convert (type, value);
5349 if (BYTES_BIG_ENDIAN)
5350 value
5351 = fold_build2 (LSHIFT_EXPR, type, value,
5352 build_int_cst (type,
5353 BITS_PER_WORD - bitsize));
5354 bitsize = BITS_PER_WORD;
5355 mode = word_mode;
5357 #endif
5359 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5360 && DECL_NONADDRESSABLE_P (field))
5362 to_rtx = copy_rtx (to_rtx);
5363 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5366 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5367 value, type, cleared,
5368 get_alias_set (TREE_TYPE (field)));
5370 break;
5372 case ARRAY_TYPE:
5374 tree value, index;
5375 unsigned HOST_WIDE_INT i;
5376 int need_to_clear;
5377 tree domain;
5378 tree elttype = TREE_TYPE (type);
5379 int const_bounds_p;
5380 HOST_WIDE_INT minelt = 0;
5381 HOST_WIDE_INT maxelt = 0;
5383 domain = TYPE_DOMAIN (type);
5384 const_bounds_p = (TYPE_MIN_VALUE (domain)
5385 && TYPE_MAX_VALUE (domain)
5386 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5387 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5389 /* If we have constant bounds for the range of the type, get them. */
5390 if (const_bounds_p)
5392 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5393 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5396 /* If the constructor has fewer elements than the array, clear
5397 the whole array first. Similarly if this is static
5398 constructor of a non-BLKmode object. */
5399 if (cleared)
5400 need_to_clear = 0;
5401 else if (REG_P (target) && TREE_STATIC (exp))
5402 need_to_clear = 1;
5403 else
5405 unsigned HOST_WIDE_INT idx;
5406 tree index, value;
5407 HOST_WIDE_INT count = 0, zero_count = 0;
5408 need_to_clear = ! const_bounds_p;
5410 /* This loop is a more accurate version of the loop in
5411 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5412 is also needed to check for missing elements. */
5413 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5415 HOST_WIDE_INT this_node_count;
5417 if (need_to_clear)
5418 break;
5420 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5422 tree lo_index = TREE_OPERAND (index, 0);
5423 tree hi_index = TREE_OPERAND (index, 1);
5425 if (! host_integerp (lo_index, 1)
5426 || ! host_integerp (hi_index, 1))
5428 need_to_clear = 1;
5429 break;
5432 this_node_count = (tree_low_cst (hi_index, 1)
5433 - tree_low_cst (lo_index, 1) + 1);
5435 else
5436 this_node_count = 1;
5438 count += this_node_count;
5439 if (mostly_zeros_p (value))
5440 zero_count += this_node_count;
5443 /* Clear the entire array first if there are any missing
5444 elements, or if the incidence of zero elements is >=
5445 75%. */
5446 if (! need_to_clear
5447 && (count < maxelt - minelt + 1
5448 || 4 * zero_count >= 3 * count))
5449 need_to_clear = 1;
5452 if (need_to_clear && size > 0)
5454 if (REG_P (target))
5455 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5456 else
5457 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5458 cleared = 1;
5461 if (!cleared && REG_P (target))
5462 /* Inform later passes that the old value is dead. */
5463 emit_clobber (target);
5465 /* Store each element of the constructor into the
5466 corresponding element of TARGET, determined by counting the
5467 elements. */
5468 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5470 enum machine_mode mode;
5471 HOST_WIDE_INT bitsize;
5472 HOST_WIDE_INT bitpos;
5473 rtx xtarget = target;
5475 if (cleared && initializer_zerop (value))
5476 continue;
5478 mode = TYPE_MODE (elttype);
5479 if (mode == BLKmode)
5480 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5481 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5482 : -1);
5483 else
5484 bitsize = GET_MODE_BITSIZE (mode);
5486 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5488 tree lo_index = TREE_OPERAND (index, 0);
5489 tree hi_index = TREE_OPERAND (index, 1);
5490 rtx index_r, pos_rtx;
5491 HOST_WIDE_INT lo, hi, count;
5492 tree position;
5494 /* If the range is constant and "small", unroll the loop. */
5495 if (const_bounds_p
5496 && host_integerp (lo_index, 0)
5497 && host_integerp (hi_index, 0)
5498 && (lo = tree_low_cst (lo_index, 0),
5499 hi = tree_low_cst (hi_index, 0),
5500 count = hi - lo + 1,
5501 (!MEM_P (target)
5502 || count <= 2
5503 || (host_integerp (TYPE_SIZE (elttype), 1)
5504 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5505 <= 40 * 8)))))
5507 lo -= minelt; hi -= minelt;
5508 for (; lo <= hi; lo++)
5510 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5512 if (MEM_P (target)
5513 && !MEM_KEEP_ALIAS_SET_P (target)
5514 && TREE_CODE (type) == ARRAY_TYPE
5515 && TYPE_NONALIASED_COMPONENT (type))
5517 target = copy_rtx (target);
5518 MEM_KEEP_ALIAS_SET_P (target) = 1;
5521 store_constructor_field
5522 (target, bitsize, bitpos, mode, value, type, cleared,
5523 get_alias_set (elttype));
5526 else
5528 rtx loop_start = gen_label_rtx ();
5529 rtx loop_end = gen_label_rtx ();
5530 tree exit_cond;
5532 expand_normal (hi_index);
5534 index = build_decl (EXPR_LOCATION (exp),
5535 VAR_DECL, NULL_TREE, domain);
5536 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5537 SET_DECL_RTL (index, index_r);
5538 store_expr (lo_index, index_r, 0, false);
5540 /* Build the head of the loop. */
5541 do_pending_stack_adjust ();
5542 emit_label (loop_start);
5544 /* Assign value to element index. */
5545 position =
5546 fold_convert (ssizetype,
5547 fold_build2 (MINUS_EXPR,
5548 TREE_TYPE (index),
5549 index,
5550 TYPE_MIN_VALUE (domain)));
5552 position =
5553 size_binop (MULT_EXPR, position,
5554 fold_convert (ssizetype,
5555 TYPE_SIZE_UNIT (elttype)));
5557 pos_rtx = expand_normal (position);
5558 xtarget = offset_address (target, pos_rtx,
5559 highest_pow2_factor (position));
5560 xtarget = adjust_address (xtarget, mode, 0);
5561 if (TREE_CODE (value) == CONSTRUCTOR)
5562 store_constructor (value, xtarget, cleared,
5563 bitsize / BITS_PER_UNIT);
5564 else
5565 store_expr (value, xtarget, 0, false);
5567 /* Generate a conditional jump to exit the loop. */
5568 exit_cond = build2 (LT_EXPR, integer_type_node,
5569 index, hi_index);
5570 jumpif (exit_cond, loop_end, -1);
5572 /* Update the loop counter, and jump to the head of
5573 the loop. */
5574 expand_assignment (index,
5575 build2 (PLUS_EXPR, TREE_TYPE (index),
5576 index, integer_one_node),
5577 false);
5579 emit_jump (loop_start);
5581 /* Build the end of the loop. */
5582 emit_label (loop_end);
5585 else if ((index != 0 && ! host_integerp (index, 0))
5586 || ! host_integerp (TYPE_SIZE (elttype), 1))
5588 tree position;
5590 if (index == 0)
5591 index = ssize_int (1);
5593 if (minelt)
5594 index = fold_convert (ssizetype,
5595 fold_build2 (MINUS_EXPR,
5596 TREE_TYPE (index),
5597 index,
5598 TYPE_MIN_VALUE (domain)));
5600 position =
5601 size_binop (MULT_EXPR, index,
5602 fold_convert (ssizetype,
5603 TYPE_SIZE_UNIT (elttype)));
5604 xtarget = offset_address (target,
5605 expand_normal (position),
5606 highest_pow2_factor (position));
5607 xtarget = adjust_address (xtarget, mode, 0);
5608 store_expr (value, xtarget, 0, false);
5610 else
5612 if (index != 0)
5613 bitpos = ((tree_low_cst (index, 0) - minelt)
5614 * tree_low_cst (TYPE_SIZE (elttype), 1));
5615 else
5616 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5618 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5619 && TREE_CODE (type) == ARRAY_TYPE
5620 && TYPE_NONALIASED_COMPONENT (type))
5622 target = copy_rtx (target);
5623 MEM_KEEP_ALIAS_SET_P (target) = 1;
5625 store_constructor_field (target, bitsize, bitpos, mode, value,
5626 type, cleared, get_alias_set (elttype));
5629 break;
5632 case VECTOR_TYPE:
5634 unsigned HOST_WIDE_INT idx;
5635 constructor_elt *ce;
5636 int i;
5637 int need_to_clear;
5638 int icode = 0;
5639 tree elttype = TREE_TYPE (type);
5640 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5641 enum machine_mode eltmode = TYPE_MODE (elttype);
5642 HOST_WIDE_INT bitsize;
5643 HOST_WIDE_INT bitpos;
5644 rtvec vector = NULL;
5645 unsigned n_elts;
5646 alias_set_type alias;
5648 gcc_assert (eltmode != BLKmode);
5650 n_elts = TYPE_VECTOR_SUBPARTS (type);
5651 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5653 enum machine_mode mode = GET_MODE (target);
5655 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5656 if (icode != CODE_FOR_nothing)
5658 unsigned int i;
5660 vector = rtvec_alloc (n_elts);
5661 for (i = 0; i < n_elts; i++)
5662 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5666 /* If the constructor has fewer elements than the vector,
5667 clear the whole array first. Similarly if this is static
5668 constructor of a non-BLKmode object. */
5669 if (cleared)
5670 need_to_clear = 0;
5671 else if (REG_P (target) && TREE_STATIC (exp))
5672 need_to_clear = 1;
5673 else
5675 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5676 tree value;
5678 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5680 int n_elts_here = tree_low_cst
5681 (int_const_binop (TRUNC_DIV_EXPR,
5682 TYPE_SIZE (TREE_TYPE (value)),
5683 TYPE_SIZE (elttype), 0), 1);
5685 count += n_elts_here;
5686 if (mostly_zeros_p (value))
5687 zero_count += n_elts_here;
5690 /* Clear the entire vector first if there are any missing elements,
5691 or if the incidence of zero elements is >= 75%. */
5692 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5695 if (need_to_clear && size > 0 && !vector)
5697 if (REG_P (target))
5698 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5699 else
5700 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5701 cleared = 1;
5704 /* Inform later passes that the old value is dead. */
5705 if (!cleared && !vector && REG_P (target))
5706 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5708 if (MEM_P (target))
5709 alias = MEM_ALIAS_SET (target);
5710 else
5711 alias = get_alias_set (elttype);
5713 /* Store each element of the constructor into the corresponding
5714 element of TARGET, determined by counting the elements. */
5715 for (idx = 0, i = 0;
5716 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5717 idx++, i += bitsize / elt_size)
5719 HOST_WIDE_INT eltpos;
5720 tree value = ce->value;
5722 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5723 if (cleared && initializer_zerop (value))
5724 continue;
5726 if (ce->index)
5727 eltpos = tree_low_cst (ce->index, 1);
5728 else
5729 eltpos = i;
5731 if (vector)
5733 /* Vector CONSTRUCTORs should only be built from smaller
5734 vectors in the case of BLKmode vectors. */
5735 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5736 RTVEC_ELT (vector, eltpos)
5737 = expand_normal (value);
5739 else
5741 enum machine_mode value_mode =
5742 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5743 ? TYPE_MODE (TREE_TYPE (value))
5744 : eltmode;
5745 bitpos = eltpos * elt_size;
5746 store_constructor_field (target, bitsize, bitpos,
5747 value_mode, value, type,
5748 cleared, alias);
5752 if (vector)
5753 emit_insn (GEN_FCN (icode)
5754 (target,
5755 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5756 break;
5759 default:
5760 gcc_unreachable ();
5764 /* Store the value of EXP (an expression tree)
5765 into a subfield of TARGET which has mode MODE and occupies
5766 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5767 If MODE is VOIDmode, it means that we are storing into a bit-field.
5769 Always return const0_rtx unless we have something particular to
5770 return.
5772 TYPE is the type of the underlying object,
5774 ALIAS_SET is the alias set for the destination. This value will
5775 (in general) be different from that for TARGET, since TARGET is a
5776 reference to the containing structure.
5778 If NONTEMPORAL is true, try generating a nontemporal store. */
5780 static rtx
5781 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5782 enum machine_mode mode, tree exp, tree type,
5783 alias_set_type alias_set, bool nontemporal)
5785 if (TREE_CODE (exp) == ERROR_MARK)
5786 return const0_rtx;
5788 /* If we have nothing to store, do nothing unless the expression has
5789 side-effects. */
5790 if (bitsize == 0)
5791 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5793 /* If we are storing into an unaligned field of an aligned union that is
5794 in a register, we may have the mode of TARGET being an integer mode but
5795 MODE == BLKmode. In that case, get an aligned object whose size and
5796 alignment are the same as TARGET and store TARGET into it (we can avoid
5797 the store if the field being stored is the entire width of TARGET). Then
5798 call ourselves recursively to store the field into a BLKmode version of
5799 that object. Finally, load from the object into TARGET. This is not
5800 very efficient in general, but should only be slightly more expensive
5801 than the otherwise-required unaligned accesses. Perhaps this can be
5802 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5803 twice, once with emit_move_insn and once via store_field. */
5805 if (mode == BLKmode
5806 && (REG_P (target) || GET_CODE (target) == SUBREG))
5808 rtx object = assign_temp (type, 0, 1, 1);
5809 rtx blk_object = adjust_address (object, BLKmode, 0);
5811 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5812 emit_move_insn (object, target);
5814 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5815 nontemporal);
5817 emit_move_insn (target, object);
5819 /* We want to return the BLKmode version of the data. */
5820 return blk_object;
5823 if (GET_CODE (target) == CONCAT)
5825 /* We're storing into a struct containing a single __complex. */
5827 gcc_assert (!bitpos);
5828 return store_expr (exp, target, 0, nontemporal);
5831 /* If the structure is in a register or if the component
5832 is a bit field, we cannot use addressing to access it.
5833 Use bit-field techniques or SUBREG to store in it. */
5835 if (mode == VOIDmode
5836 || (mode != BLKmode && ! direct_store[(int) mode]
5837 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5838 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5839 || REG_P (target)
5840 || GET_CODE (target) == SUBREG
5841 /* If the field isn't aligned enough to store as an ordinary memref,
5842 store it as a bit field. */
5843 || (mode != BLKmode
5844 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5845 || bitpos % GET_MODE_ALIGNMENT (mode))
5846 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5847 || (bitpos % BITS_PER_UNIT != 0)))
5848 /* If the RHS and field are a constant size and the size of the
5849 RHS isn't the same size as the bitfield, we must use bitfield
5850 operations. */
5851 || (bitsize >= 0
5852 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5853 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5855 rtx temp;
5856 gimple nop_def;
5858 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5859 implies a mask operation. If the precision is the same size as
5860 the field we're storing into, that mask is redundant. This is
5861 particularly common with bit field assignments generated by the
5862 C front end. */
5863 nop_def = get_def_for_expr (exp, NOP_EXPR);
5864 if (nop_def)
5866 tree type = TREE_TYPE (exp);
5867 if (INTEGRAL_TYPE_P (type)
5868 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5869 && bitsize == TYPE_PRECISION (type))
5871 tree op = gimple_assign_rhs1 (nop_def);
5872 type = TREE_TYPE (op);
5873 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5874 exp = op;
5878 temp = expand_normal (exp);
5880 /* If BITSIZE is narrower than the size of the type of EXP
5881 we will be narrowing TEMP. Normally, what's wanted are the
5882 low-order bits. However, if EXP's type is a record and this is
5883 big-endian machine, we want the upper BITSIZE bits. */
5884 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5885 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5886 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5887 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5888 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5889 - bitsize),
5890 NULL_RTX, 1);
5892 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5893 MODE. */
5894 if (mode != VOIDmode && mode != BLKmode
5895 && mode != TYPE_MODE (TREE_TYPE (exp)))
5896 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5898 /* If the modes of TEMP and TARGET are both BLKmode, both
5899 must be in memory and BITPOS must be aligned on a byte
5900 boundary. If so, we simply do a block copy. Likewise
5901 for a BLKmode-like TARGET. */
5902 if (GET_MODE (temp) == BLKmode
5903 && (GET_MODE (target) == BLKmode
5904 || (MEM_P (target)
5905 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5906 && (bitpos % BITS_PER_UNIT) == 0
5907 && (bitsize % BITS_PER_UNIT) == 0)))
5909 gcc_assert (MEM_P (target) && MEM_P (temp)
5910 && (bitpos % BITS_PER_UNIT) == 0);
5912 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5913 emit_block_move (target, temp,
5914 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5915 / BITS_PER_UNIT),
5916 BLOCK_OP_NORMAL);
5918 return const0_rtx;
5921 /* Store the value in the bitfield. */
5922 store_bit_field (target, bitsize, bitpos, mode, temp);
5924 return const0_rtx;
5926 else
5928 /* Now build a reference to just the desired component. */
5929 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5931 if (to_rtx == target)
5932 to_rtx = copy_rtx (to_rtx);
5934 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5935 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5936 set_mem_alias_set (to_rtx, alias_set);
5938 return store_expr (exp, to_rtx, 0, nontemporal);
5942 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5943 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5944 codes and find the ultimate containing object, which we return.
5946 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5947 bit position, and *PUNSIGNEDP to the signedness of the field.
5948 If the position of the field is variable, we store a tree
5949 giving the variable offset (in units) in *POFFSET.
5950 This offset is in addition to the bit position.
5951 If the position is not variable, we store 0 in *POFFSET.
5953 If any of the extraction expressions is volatile,
5954 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5956 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5957 Otherwise, it is a mode that can be used to access the field.
5959 If the field describes a variable-sized object, *PMODE is set to
5960 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5961 this case, but the address of the object can be found.
5963 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5964 look through nodes that serve as markers of a greater alignment than
5965 the one that can be deduced from the expression. These nodes make it
5966 possible for front-ends to prevent temporaries from being created by
5967 the middle-end on alignment considerations. For that purpose, the
5968 normal operating mode at high-level is to always pass FALSE so that
5969 the ultimate containing object is really returned; moreover, the
5970 associated predicate handled_component_p will always return TRUE
5971 on these nodes, thus indicating that they are essentially handled
5972 by get_inner_reference. TRUE should only be passed when the caller
5973 is scanning the expression in order to build another representation
5974 and specifically knows how to handle these nodes; as such, this is
5975 the normal operating mode in the RTL expanders. */
5977 tree
5978 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5979 HOST_WIDE_INT *pbitpos, tree *poffset,
5980 enum machine_mode *pmode, int *punsignedp,
5981 int *pvolatilep, bool keep_aligning)
5983 tree size_tree = 0;
5984 enum machine_mode mode = VOIDmode;
5985 bool blkmode_bitfield = false;
5986 tree offset = size_zero_node;
5987 double_int bit_offset = double_int_zero;
5989 /* First get the mode, signedness, and size. We do this from just the
5990 outermost expression. */
5991 *pbitsize = -1;
5992 if (TREE_CODE (exp) == COMPONENT_REF)
5994 tree field = TREE_OPERAND (exp, 1);
5995 size_tree = DECL_SIZE (field);
5996 if (!DECL_BIT_FIELD (field))
5997 mode = DECL_MODE (field);
5998 else if (DECL_MODE (field) == BLKmode)
5999 blkmode_bitfield = true;
6000 else if (TREE_THIS_VOLATILE (exp)
6001 && flag_strict_volatile_bitfields > 0)
6002 /* Volatile bitfields should be accessed in the mode of the
6003 field's type, not the mode computed based on the bit
6004 size. */
6005 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6007 *punsignedp = DECL_UNSIGNED (field);
6009 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6011 size_tree = TREE_OPERAND (exp, 1);
6012 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6013 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6015 /* For vector types, with the correct size of access, use the mode of
6016 inner type. */
6017 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6018 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6019 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6020 mode = TYPE_MODE (TREE_TYPE (exp));
6022 else
6024 mode = TYPE_MODE (TREE_TYPE (exp));
6025 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6027 if (mode == BLKmode)
6028 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6029 else
6030 *pbitsize = GET_MODE_BITSIZE (mode);
6033 if (size_tree != 0)
6035 if (! host_integerp (size_tree, 1))
6036 mode = BLKmode, *pbitsize = -1;
6037 else
6038 *pbitsize = tree_low_cst (size_tree, 1);
6041 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6042 and find the ultimate containing object. */
6043 while (1)
6045 switch (TREE_CODE (exp))
6047 case BIT_FIELD_REF:
6048 bit_offset
6049 = double_int_add (bit_offset,
6050 tree_to_double_int (TREE_OPERAND (exp, 2)));
6051 break;
6053 case COMPONENT_REF:
6055 tree field = TREE_OPERAND (exp, 1);
6056 tree this_offset = component_ref_field_offset (exp);
6058 /* If this field hasn't been filled in yet, don't go past it.
6059 This should only happen when folding expressions made during
6060 type construction. */
6061 if (this_offset == 0)
6062 break;
6064 offset = size_binop (PLUS_EXPR, offset, this_offset);
6065 bit_offset = double_int_add (bit_offset,
6066 tree_to_double_int
6067 (DECL_FIELD_BIT_OFFSET (field)));
6069 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6071 break;
6073 case ARRAY_REF:
6074 case ARRAY_RANGE_REF:
6076 tree index = TREE_OPERAND (exp, 1);
6077 tree low_bound = array_ref_low_bound (exp);
6078 tree unit_size = array_ref_element_size (exp);
6080 /* We assume all arrays have sizes that are a multiple of a byte.
6081 First subtract the lower bound, if any, in the type of the
6082 index, then convert to sizetype and multiply by the size of
6083 the array element. */
6084 if (! integer_zerop (low_bound))
6085 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6086 index, low_bound);
6088 offset = size_binop (PLUS_EXPR, offset,
6089 size_binop (MULT_EXPR,
6090 fold_convert (sizetype, index),
6091 unit_size));
6093 break;
6095 case REALPART_EXPR:
6096 break;
6098 case IMAGPART_EXPR:
6099 bit_offset = double_int_add (bit_offset,
6100 uhwi_to_double_int (*pbitsize));
6101 break;
6103 case VIEW_CONVERT_EXPR:
6104 if (keep_aligning && STRICT_ALIGNMENT
6105 && (TYPE_ALIGN (TREE_TYPE (exp))
6106 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6107 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6108 < BIGGEST_ALIGNMENT)
6109 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6110 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6111 goto done;
6112 break;
6114 default:
6115 goto done;
6118 /* If any reference in the chain is volatile, the effect is volatile. */
6119 if (TREE_THIS_VOLATILE (exp))
6120 *pvolatilep = 1;
6122 exp = TREE_OPERAND (exp, 0);
6124 done:
6126 /* If OFFSET is constant, see if we can return the whole thing as a
6127 constant bit position. Make sure to handle overflow during
6128 this conversion. */
6129 if (host_integerp (offset, 0))
6131 double_int tem = double_int_lshift (tree_to_double_int (offset),
6132 BITS_PER_UNIT == 8
6133 ? 3 : exact_log2 (BITS_PER_UNIT),
6134 HOST_BITS_PER_DOUBLE_INT, true);
6135 tem = double_int_add (tem, bit_offset);
6136 if (double_int_fits_in_shwi_p (tem))
6138 *pbitpos = double_int_to_shwi (tem);
6139 *poffset = offset = NULL_TREE;
6143 /* Otherwise, split it up. */
6144 if (offset)
6146 *pbitpos = double_int_to_shwi (bit_offset);
6147 *poffset = offset;
6150 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6151 if (mode == VOIDmode
6152 && blkmode_bitfield
6153 && (*pbitpos % BITS_PER_UNIT) == 0
6154 && (*pbitsize % BITS_PER_UNIT) == 0)
6155 *pmode = BLKmode;
6156 else
6157 *pmode = mode;
6159 return exp;
6162 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6163 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6164 EXP is marked as PACKED. */
6166 bool
6167 contains_packed_reference (const_tree exp)
6169 bool packed_p = false;
6171 while (1)
6173 switch (TREE_CODE (exp))
6175 case COMPONENT_REF:
6177 tree field = TREE_OPERAND (exp, 1);
6178 packed_p = DECL_PACKED (field)
6179 || TYPE_PACKED (TREE_TYPE (field))
6180 || TYPE_PACKED (TREE_TYPE (exp));
6181 if (packed_p)
6182 goto done;
6184 break;
6186 case BIT_FIELD_REF:
6187 case ARRAY_REF:
6188 case ARRAY_RANGE_REF:
6189 case REALPART_EXPR:
6190 case IMAGPART_EXPR:
6191 case VIEW_CONVERT_EXPR:
6192 break;
6194 default:
6195 goto done;
6197 exp = TREE_OPERAND (exp, 0);
6199 done:
6200 return packed_p;
6203 /* Return a tree of sizetype representing the size, in bytes, of the element
6204 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6206 tree
6207 array_ref_element_size (tree exp)
6209 tree aligned_size = TREE_OPERAND (exp, 3);
6210 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6211 location_t loc = EXPR_LOCATION (exp);
6213 /* If a size was specified in the ARRAY_REF, it's the size measured
6214 in alignment units of the element type. So multiply by that value. */
6215 if (aligned_size)
6217 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6218 sizetype from another type of the same width and signedness. */
6219 if (TREE_TYPE (aligned_size) != sizetype)
6220 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6221 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6222 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6225 /* Otherwise, take the size from that of the element type. Substitute
6226 any PLACEHOLDER_EXPR that we have. */
6227 else
6228 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6231 /* Return a tree representing the lower bound of the array mentioned in
6232 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6234 tree
6235 array_ref_low_bound (tree exp)
6237 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6239 /* If a lower bound is specified in EXP, use it. */
6240 if (TREE_OPERAND (exp, 2))
6241 return TREE_OPERAND (exp, 2);
6243 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6244 substituting for a PLACEHOLDER_EXPR as needed. */
6245 if (domain_type && TYPE_MIN_VALUE (domain_type))
6246 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6248 /* Otherwise, return a zero of the appropriate type. */
6249 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6252 /* Return a tree representing the upper bound of the array mentioned in
6253 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6255 tree
6256 array_ref_up_bound (tree exp)
6258 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6260 /* If there is a domain type and it has an upper bound, use it, substituting
6261 for a PLACEHOLDER_EXPR as needed. */
6262 if (domain_type && TYPE_MAX_VALUE (domain_type))
6263 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6265 /* Otherwise fail. */
6266 return NULL_TREE;
6269 /* Return a tree representing the offset, in bytes, of the field referenced
6270 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6272 tree
6273 component_ref_field_offset (tree exp)
6275 tree aligned_offset = TREE_OPERAND (exp, 2);
6276 tree field = TREE_OPERAND (exp, 1);
6277 location_t loc = EXPR_LOCATION (exp);
6279 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6280 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6281 value. */
6282 if (aligned_offset)
6284 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6285 sizetype from another type of the same width and signedness. */
6286 if (TREE_TYPE (aligned_offset) != sizetype)
6287 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6288 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6289 size_int (DECL_OFFSET_ALIGN (field)
6290 / BITS_PER_UNIT));
6293 /* Otherwise, take the offset from that of the field. Substitute
6294 any PLACEHOLDER_EXPR that we have. */
6295 else
6296 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6299 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6301 static unsigned HOST_WIDE_INT
6302 target_align (const_tree target)
6304 /* We might have a chain of nested references with intermediate misaligning
6305 bitfields components, so need to recurse to find out. */
6307 unsigned HOST_WIDE_INT this_align, outer_align;
6309 switch (TREE_CODE (target))
6311 case BIT_FIELD_REF:
6312 return 1;
6314 case COMPONENT_REF:
6315 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6316 outer_align = target_align (TREE_OPERAND (target, 0));
6317 return MIN (this_align, outer_align);
6319 case ARRAY_REF:
6320 case ARRAY_RANGE_REF:
6321 this_align = TYPE_ALIGN (TREE_TYPE (target));
6322 outer_align = target_align (TREE_OPERAND (target, 0));
6323 return MIN (this_align, outer_align);
6325 CASE_CONVERT:
6326 case NON_LVALUE_EXPR:
6327 case VIEW_CONVERT_EXPR:
6328 this_align = TYPE_ALIGN (TREE_TYPE (target));
6329 outer_align = target_align (TREE_OPERAND (target, 0));
6330 return MAX (this_align, outer_align);
6332 default:
6333 return TYPE_ALIGN (TREE_TYPE (target));
6338 /* Given an rtx VALUE that may contain additions and multiplications, return
6339 an equivalent value that just refers to a register, memory, or constant.
6340 This is done by generating instructions to perform the arithmetic and
6341 returning a pseudo-register containing the value.
6343 The returned value may be a REG, SUBREG, MEM or constant. */
6346 force_operand (rtx value, rtx target)
6348 rtx op1, op2;
6349 /* Use subtarget as the target for operand 0 of a binary operation. */
6350 rtx subtarget = get_subtarget (target);
6351 enum rtx_code code = GET_CODE (value);
6353 /* Check for subreg applied to an expression produced by loop optimizer. */
6354 if (code == SUBREG
6355 && !REG_P (SUBREG_REG (value))
6356 && !MEM_P (SUBREG_REG (value)))
6358 value
6359 = simplify_gen_subreg (GET_MODE (value),
6360 force_reg (GET_MODE (SUBREG_REG (value)),
6361 force_operand (SUBREG_REG (value),
6362 NULL_RTX)),
6363 GET_MODE (SUBREG_REG (value)),
6364 SUBREG_BYTE (value));
6365 code = GET_CODE (value);
6368 /* Check for a PIC address load. */
6369 if ((code == PLUS || code == MINUS)
6370 && XEXP (value, 0) == pic_offset_table_rtx
6371 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6372 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6373 || GET_CODE (XEXP (value, 1)) == CONST))
6375 if (!subtarget)
6376 subtarget = gen_reg_rtx (GET_MODE (value));
6377 emit_move_insn (subtarget, value);
6378 return subtarget;
6381 if (ARITHMETIC_P (value))
6383 op2 = XEXP (value, 1);
6384 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6385 subtarget = 0;
6386 if (code == MINUS && CONST_INT_P (op2))
6388 code = PLUS;
6389 op2 = negate_rtx (GET_MODE (value), op2);
6392 /* Check for an addition with OP2 a constant integer and our first
6393 operand a PLUS of a virtual register and something else. In that
6394 case, we want to emit the sum of the virtual register and the
6395 constant first and then add the other value. This allows virtual
6396 register instantiation to simply modify the constant rather than
6397 creating another one around this addition. */
6398 if (code == PLUS && CONST_INT_P (op2)
6399 && GET_CODE (XEXP (value, 0)) == PLUS
6400 && REG_P (XEXP (XEXP (value, 0), 0))
6401 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6402 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6404 rtx temp = expand_simple_binop (GET_MODE (value), code,
6405 XEXP (XEXP (value, 0), 0), op2,
6406 subtarget, 0, OPTAB_LIB_WIDEN);
6407 return expand_simple_binop (GET_MODE (value), code, temp,
6408 force_operand (XEXP (XEXP (value,
6409 0), 1), 0),
6410 target, 0, OPTAB_LIB_WIDEN);
6413 op1 = force_operand (XEXP (value, 0), subtarget);
6414 op2 = force_operand (op2, NULL_RTX);
6415 switch (code)
6417 case MULT:
6418 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6419 case DIV:
6420 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6421 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6422 target, 1, OPTAB_LIB_WIDEN);
6423 else
6424 return expand_divmod (0,
6425 FLOAT_MODE_P (GET_MODE (value))
6426 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6427 GET_MODE (value), op1, op2, target, 0);
6428 case MOD:
6429 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6430 target, 0);
6431 case UDIV:
6432 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6433 target, 1);
6434 case UMOD:
6435 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6436 target, 1);
6437 case ASHIFTRT:
6438 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6439 target, 0, OPTAB_LIB_WIDEN);
6440 default:
6441 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6442 target, 1, OPTAB_LIB_WIDEN);
6445 if (UNARY_P (value))
6447 if (!target)
6448 target = gen_reg_rtx (GET_MODE (value));
6449 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6450 switch (code)
6452 case ZERO_EXTEND:
6453 case SIGN_EXTEND:
6454 case TRUNCATE:
6455 case FLOAT_EXTEND:
6456 case FLOAT_TRUNCATE:
6457 convert_move (target, op1, code == ZERO_EXTEND);
6458 return target;
6460 case FIX:
6461 case UNSIGNED_FIX:
6462 expand_fix (target, op1, code == UNSIGNED_FIX);
6463 return target;
6465 case FLOAT:
6466 case UNSIGNED_FLOAT:
6467 expand_float (target, op1, code == UNSIGNED_FLOAT);
6468 return target;
6470 default:
6471 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6475 #ifdef INSN_SCHEDULING
6476 /* On machines that have insn scheduling, we want all memory reference to be
6477 explicit, so we need to deal with such paradoxical SUBREGs. */
6478 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6479 && (GET_MODE_SIZE (GET_MODE (value))
6480 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6481 value
6482 = simplify_gen_subreg (GET_MODE (value),
6483 force_reg (GET_MODE (SUBREG_REG (value)),
6484 force_operand (SUBREG_REG (value),
6485 NULL_RTX)),
6486 GET_MODE (SUBREG_REG (value)),
6487 SUBREG_BYTE (value));
6488 #endif
6490 return value;
6493 /* Subroutine of expand_expr: return nonzero iff there is no way that
6494 EXP can reference X, which is being modified. TOP_P is nonzero if this
6495 call is going to be used to determine whether we need a temporary
6496 for EXP, as opposed to a recursive call to this function.
6498 It is always safe for this routine to return zero since it merely
6499 searches for optimization opportunities. */
6502 safe_from_p (const_rtx x, tree exp, int top_p)
6504 rtx exp_rtl = 0;
6505 int i, nops;
6507 if (x == 0
6508 /* If EXP has varying size, we MUST use a target since we currently
6509 have no way of allocating temporaries of variable size
6510 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6511 So we assume here that something at a higher level has prevented a
6512 clash. This is somewhat bogus, but the best we can do. Only
6513 do this when X is BLKmode and when we are at the top level. */
6514 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6515 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6516 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6517 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6518 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6519 != INTEGER_CST)
6520 && GET_MODE (x) == BLKmode)
6521 /* If X is in the outgoing argument area, it is always safe. */
6522 || (MEM_P (x)
6523 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6524 || (GET_CODE (XEXP (x, 0)) == PLUS
6525 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6526 return 1;
6528 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6529 find the underlying pseudo. */
6530 if (GET_CODE (x) == SUBREG)
6532 x = SUBREG_REG (x);
6533 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6534 return 0;
6537 /* Now look at our tree code and possibly recurse. */
6538 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6540 case tcc_declaration:
6541 exp_rtl = DECL_RTL_IF_SET (exp);
6542 break;
6544 case tcc_constant:
6545 return 1;
6547 case tcc_exceptional:
6548 if (TREE_CODE (exp) == TREE_LIST)
6550 while (1)
6552 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6553 return 0;
6554 exp = TREE_CHAIN (exp);
6555 if (!exp)
6556 return 1;
6557 if (TREE_CODE (exp) != TREE_LIST)
6558 return safe_from_p (x, exp, 0);
6561 else if (TREE_CODE (exp) == CONSTRUCTOR)
6563 constructor_elt *ce;
6564 unsigned HOST_WIDE_INT idx;
6566 for (idx = 0;
6567 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6568 idx++)
6569 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6570 || !safe_from_p (x, ce->value, 0))
6571 return 0;
6572 return 1;
6574 else if (TREE_CODE (exp) == ERROR_MARK)
6575 return 1; /* An already-visited SAVE_EXPR? */
6576 else
6577 return 0;
6579 case tcc_statement:
6580 /* The only case we look at here is the DECL_INITIAL inside a
6581 DECL_EXPR. */
6582 return (TREE_CODE (exp) != DECL_EXPR
6583 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6584 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6585 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6587 case tcc_binary:
6588 case tcc_comparison:
6589 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6590 return 0;
6591 /* Fall through. */
6593 case tcc_unary:
6594 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6596 case tcc_expression:
6597 case tcc_reference:
6598 case tcc_vl_exp:
6599 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6600 the expression. If it is set, we conflict iff we are that rtx or
6601 both are in memory. Otherwise, we check all operands of the
6602 expression recursively. */
6604 switch (TREE_CODE (exp))
6606 case ADDR_EXPR:
6607 /* If the operand is static or we are static, we can't conflict.
6608 Likewise if we don't conflict with the operand at all. */
6609 if (staticp (TREE_OPERAND (exp, 0))
6610 || TREE_STATIC (exp)
6611 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6612 return 1;
6614 /* Otherwise, the only way this can conflict is if we are taking
6615 the address of a DECL a that address if part of X, which is
6616 very rare. */
6617 exp = TREE_OPERAND (exp, 0);
6618 if (DECL_P (exp))
6620 if (!DECL_RTL_SET_P (exp)
6621 || !MEM_P (DECL_RTL (exp)))
6622 return 0;
6623 else
6624 exp_rtl = XEXP (DECL_RTL (exp), 0);
6626 break;
6628 case MISALIGNED_INDIRECT_REF:
6629 case ALIGN_INDIRECT_REF:
6630 case INDIRECT_REF:
6631 if (MEM_P (x)
6632 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6633 get_alias_set (exp)))
6634 return 0;
6635 break;
6637 case CALL_EXPR:
6638 /* Assume that the call will clobber all hard registers and
6639 all of memory. */
6640 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6641 || MEM_P (x))
6642 return 0;
6643 break;
6645 case WITH_CLEANUP_EXPR:
6646 case CLEANUP_POINT_EXPR:
6647 /* Lowered by gimplify.c. */
6648 gcc_unreachable ();
6650 case SAVE_EXPR:
6651 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6653 default:
6654 break;
6657 /* If we have an rtx, we do not need to scan our operands. */
6658 if (exp_rtl)
6659 break;
6661 nops = TREE_OPERAND_LENGTH (exp);
6662 for (i = 0; i < nops; i++)
6663 if (TREE_OPERAND (exp, i) != 0
6664 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6665 return 0;
6667 break;
6669 case tcc_type:
6670 /* Should never get a type here. */
6671 gcc_unreachable ();
6674 /* If we have an rtl, find any enclosed object. Then see if we conflict
6675 with it. */
6676 if (exp_rtl)
6678 if (GET_CODE (exp_rtl) == SUBREG)
6680 exp_rtl = SUBREG_REG (exp_rtl);
6681 if (REG_P (exp_rtl)
6682 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6683 return 0;
6686 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6687 are memory and they conflict. */
6688 return ! (rtx_equal_p (x, exp_rtl)
6689 || (MEM_P (x) && MEM_P (exp_rtl)
6690 && true_dependence (exp_rtl, VOIDmode, x,
6691 rtx_addr_varies_p)));
6694 /* If we reach here, it is safe. */
6695 return 1;
6699 /* Return the highest power of two that EXP is known to be a multiple of.
6700 This is used in updating alignment of MEMs in array references. */
6702 unsigned HOST_WIDE_INT
6703 highest_pow2_factor (const_tree exp)
6705 unsigned HOST_WIDE_INT c0, c1;
6707 switch (TREE_CODE (exp))
6709 case INTEGER_CST:
6710 /* We can find the lowest bit that's a one. If the low
6711 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6712 We need to handle this case since we can find it in a COND_EXPR,
6713 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6714 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6715 later ICE. */
6716 if (TREE_OVERFLOW (exp))
6717 return BIGGEST_ALIGNMENT;
6718 else
6720 /* Note: tree_low_cst is intentionally not used here,
6721 we don't care about the upper bits. */
6722 c0 = TREE_INT_CST_LOW (exp);
6723 c0 &= -c0;
6724 return c0 ? c0 : BIGGEST_ALIGNMENT;
6726 break;
6728 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6729 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6730 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6731 return MIN (c0, c1);
6733 case MULT_EXPR:
6734 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6735 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6736 return c0 * c1;
6738 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6739 case CEIL_DIV_EXPR:
6740 if (integer_pow2p (TREE_OPERAND (exp, 1))
6741 && host_integerp (TREE_OPERAND (exp, 1), 1))
6743 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6744 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6745 return MAX (1, c0 / c1);
6747 break;
6749 case BIT_AND_EXPR:
6750 /* The highest power of two of a bit-and expression is the maximum of
6751 that of its operands. We typically get here for a complex LHS and
6752 a constant negative power of two on the RHS to force an explicit
6753 alignment, so don't bother looking at the LHS. */
6754 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6756 CASE_CONVERT:
6757 case SAVE_EXPR:
6758 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6760 case COMPOUND_EXPR:
6761 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6763 case COND_EXPR:
6764 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6765 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6766 return MIN (c0, c1);
6768 default:
6769 break;
6772 return 1;
6775 /* Similar, except that the alignment requirements of TARGET are
6776 taken into account. Assume it is at least as aligned as its
6777 type, unless it is a COMPONENT_REF in which case the layout of
6778 the structure gives the alignment. */
6780 static unsigned HOST_WIDE_INT
6781 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6783 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6784 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6786 return MAX (factor, talign);
6789 /* Return &VAR expression for emulated thread local VAR. */
6791 static tree
6792 emutls_var_address (tree var)
6794 tree emuvar = emutls_decl (var);
6795 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6796 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6797 tree arglist = build_tree_list (NULL_TREE, arg);
6798 tree call = build_function_call_expr (UNKNOWN_LOCATION, fn, arglist);
6799 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6803 /* Subroutine of expand_expr. Expand the two operands of a binary
6804 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6805 The value may be stored in TARGET if TARGET is nonzero. The
6806 MODIFIER argument is as documented by expand_expr. */
6808 static void
6809 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6810 enum expand_modifier modifier)
6812 if (! safe_from_p (target, exp1, 1))
6813 target = 0;
6814 if (operand_equal_p (exp0, exp1, 0))
6816 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6817 *op1 = copy_rtx (*op0);
6819 else
6821 /* If we need to preserve evaluation order, copy exp0 into its own
6822 temporary variable so that it can't be clobbered by exp1. */
6823 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6824 exp0 = save_expr (exp0);
6825 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6826 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6831 /* Return a MEM that contains constant EXP. DEFER is as for
6832 output_constant_def and MODIFIER is as for expand_expr. */
6834 static rtx
6835 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6837 rtx mem;
6839 mem = output_constant_def (exp, defer);
6840 if (modifier != EXPAND_INITIALIZER)
6841 mem = use_anchored_address (mem);
6842 return mem;
6845 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6846 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6848 static rtx
6849 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6850 enum expand_modifier modifier, addr_space_t as)
6852 rtx result, subtarget;
6853 tree inner, offset;
6854 HOST_WIDE_INT bitsize, bitpos;
6855 int volatilep, unsignedp;
6856 enum machine_mode mode1;
6858 /* If we are taking the address of a constant and are at the top level,
6859 we have to use output_constant_def since we can't call force_const_mem
6860 at top level. */
6861 /* ??? This should be considered a front-end bug. We should not be
6862 generating ADDR_EXPR of something that isn't an LVALUE. The only
6863 exception here is STRING_CST. */
6864 if (CONSTANT_CLASS_P (exp))
6865 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6867 /* Everything must be something allowed by is_gimple_addressable. */
6868 switch (TREE_CODE (exp))
6870 case INDIRECT_REF:
6871 /* This case will happen via recursion for &a->b. */
6872 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6874 case CONST_DECL:
6875 /* Expand the initializer like constants above. */
6876 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6878 case REALPART_EXPR:
6879 /* The real part of the complex number is always first, therefore
6880 the address is the same as the address of the parent object. */
6881 offset = 0;
6882 bitpos = 0;
6883 inner = TREE_OPERAND (exp, 0);
6884 break;
6886 case IMAGPART_EXPR:
6887 /* The imaginary part of the complex number is always second.
6888 The expression is therefore always offset by the size of the
6889 scalar type. */
6890 offset = 0;
6891 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6892 inner = TREE_OPERAND (exp, 0);
6893 break;
6895 case VAR_DECL:
6896 /* TLS emulation hook - replace __thread VAR's &VAR with
6897 __emutls_get_address (&_emutls.VAR). */
6898 if (! targetm.have_tls
6899 && TREE_CODE (exp) == VAR_DECL
6900 && DECL_THREAD_LOCAL_P (exp))
6902 exp = emutls_var_address (exp);
6903 return expand_expr (exp, target, tmode, modifier);
6905 /* Fall through. */
6907 default:
6908 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6909 expand_expr, as that can have various side effects; LABEL_DECLs for
6910 example, may not have their DECL_RTL set yet. Expand the rtl of
6911 CONSTRUCTORs too, which should yield a memory reference for the
6912 constructor's contents. Assume language specific tree nodes can
6913 be expanded in some interesting way. */
6914 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6915 if (DECL_P (exp)
6916 || TREE_CODE (exp) == CONSTRUCTOR
6917 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6919 result = expand_expr (exp, target, tmode,
6920 modifier == EXPAND_INITIALIZER
6921 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6923 /* If the DECL isn't in memory, then the DECL wasn't properly
6924 marked TREE_ADDRESSABLE, which will be either a front-end
6925 or a tree optimizer bug. */
6926 gcc_assert (MEM_P (result));
6927 result = XEXP (result, 0);
6929 /* ??? Is this needed anymore? */
6930 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6932 assemble_external (exp);
6933 TREE_USED (exp) = 1;
6936 if (modifier != EXPAND_INITIALIZER
6937 && modifier != EXPAND_CONST_ADDRESS)
6938 result = force_operand (result, target);
6939 return result;
6942 /* Pass FALSE as the last argument to get_inner_reference although
6943 we are expanding to RTL. The rationale is that we know how to
6944 handle "aligning nodes" here: we can just bypass them because
6945 they won't change the final object whose address will be returned
6946 (they actually exist only for that purpose). */
6947 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6948 &mode1, &unsignedp, &volatilep, false);
6949 break;
6952 /* We must have made progress. */
6953 gcc_assert (inner != exp);
6955 subtarget = offset || bitpos ? NULL_RTX : target;
6956 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6957 inner alignment, force the inner to be sufficiently aligned. */
6958 if (CONSTANT_CLASS_P (inner)
6959 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6961 inner = copy_node (inner);
6962 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6963 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6964 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6966 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6968 if (offset)
6970 rtx tmp;
6972 if (modifier != EXPAND_NORMAL)
6973 result = force_operand (result, NULL);
6974 tmp = expand_expr (offset, NULL_RTX, tmode,
6975 modifier == EXPAND_INITIALIZER
6976 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6978 result = convert_memory_address_addr_space (tmode, result, as);
6979 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6981 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6982 result = gen_rtx_PLUS (tmode, result, tmp);
6983 else
6985 subtarget = bitpos ? NULL_RTX : target;
6986 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6987 1, OPTAB_LIB_WIDEN);
6991 if (bitpos)
6993 /* Someone beforehand should have rejected taking the address
6994 of such an object. */
6995 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6997 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6998 if (modifier < EXPAND_SUM)
6999 result = force_operand (result, target);
7002 return result;
7005 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7006 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7008 static rtx
7009 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7010 enum expand_modifier modifier)
7012 addr_space_t as = ADDR_SPACE_GENERIC;
7013 enum machine_mode address_mode = Pmode;
7014 enum machine_mode pointer_mode = ptr_mode;
7015 enum machine_mode rmode;
7016 rtx result;
7018 /* Target mode of VOIDmode says "whatever's natural". */
7019 if (tmode == VOIDmode)
7020 tmode = TYPE_MODE (TREE_TYPE (exp));
7022 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7024 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7025 address_mode = targetm.addr_space.address_mode (as);
7026 pointer_mode = targetm.addr_space.pointer_mode (as);
7029 /* We can get called with some Weird Things if the user does silliness
7030 like "(short) &a". In that case, convert_memory_address won't do
7031 the right thing, so ignore the given target mode. */
7032 if (tmode != address_mode && tmode != pointer_mode)
7033 tmode = address_mode;
7035 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7036 tmode, modifier, as);
7038 /* Despite expand_expr claims concerning ignoring TMODE when not
7039 strictly convenient, stuff breaks if we don't honor it. Note
7040 that combined with the above, we only do this for pointer modes. */
7041 rmode = GET_MODE (result);
7042 if (rmode == VOIDmode)
7043 rmode = tmode;
7044 if (rmode != tmode)
7045 result = convert_memory_address_addr_space (tmode, result, as);
7047 return result;
7050 /* Generate code for computing CONSTRUCTOR EXP.
7051 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7052 is TRUE, instead of creating a temporary variable in memory
7053 NULL is returned and the caller needs to handle it differently. */
7055 static rtx
7056 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7057 bool avoid_temp_mem)
7059 tree type = TREE_TYPE (exp);
7060 enum machine_mode mode = TYPE_MODE (type);
7062 /* Try to avoid creating a temporary at all. This is possible
7063 if all of the initializer is zero.
7064 FIXME: try to handle all [0..255] initializers we can handle
7065 with memset. */
7066 if (TREE_STATIC (exp)
7067 && !TREE_ADDRESSABLE (exp)
7068 && target != 0 && mode == BLKmode
7069 && all_zeros_p (exp))
7071 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7072 return target;
7075 /* All elts simple constants => refer to a constant in memory. But
7076 if this is a non-BLKmode mode, let it store a field at a time
7077 since that should make a CONST_INT or CONST_DOUBLE when we
7078 fold. Likewise, if we have a target we can use, it is best to
7079 store directly into the target unless the type is large enough
7080 that memcpy will be used. If we are making an initializer and
7081 all operands are constant, put it in memory as well.
7083 FIXME: Avoid trying to fill vector constructors piece-meal.
7084 Output them with output_constant_def below unless we're sure
7085 they're zeros. This should go away when vector initializers
7086 are treated like VECTOR_CST instead of arrays. */
7087 if ((TREE_STATIC (exp)
7088 && ((mode == BLKmode
7089 && ! (target != 0 && safe_from_p (target, exp, 1)))
7090 || TREE_ADDRESSABLE (exp)
7091 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7092 && (! MOVE_BY_PIECES_P
7093 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7094 TYPE_ALIGN (type)))
7095 && ! mostly_zeros_p (exp))))
7096 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7097 && TREE_CONSTANT (exp)))
7099 rtx constructor;
7101 if (avoid_temp_mem)
7102 return NULL_RTX;
7104 constructor = expand_expr_constant (exp, 1, modifier);
7106 if (modifier != EXPAND_CONST_ADDRESS
7107 && modifier != EXPAND_INITIALIZER
7108 && modifier != EXPAND_SUM)
7109 constructor = validize_mem (constructor);
7111 return constructor;
7114 /* Handle calls that pass values in multiple non-contiguous
7115 locations. The Irix 6 ABI has examples of this. */
7116 if (target == 0 || ! safe_from_p (target, exp, 1)
7117 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7119 if (avoid_temp_mem)
7120 return NULL_RTX;
7122 target
7123 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7124 | (TREE_READONLY (exp)
7125 * TYPE_QUAL_CONST))),
7126 0, TREE_ADDRESSABLE (exp), 1);
7129 store_constructor (exp, target, 0, int_expr_size (exp));
7130 return target;
7134 /* expand_expr: generate code for computing expression EXP.
7135 An rtx for the computed value is returned. The value is never null.
7136 In the case of a void EXP, const0_rtx is returned.
7138 The value may be stored in TARGET if TARGET is nonzero.
7139 TARGET is just a suggestion; callers must assume that
7140 the rtx returned may not be the same as TARGET.
7142 If TARGET is CONST0_RTX, it means that the value will be ignored.
7144 If TMODE is not VOIDmode, it suggests generating the
7145 result in mode TMODE. But this is done only when convenient.
7146 Otherwise, TMODE is ignored and the value generated in its natural mode.
7147 TMODE is just a suggestion; callers must assume that
7148 the rtx returned may not have mode TMODE.
7150 Note that TARGET may have neither TMODE nor MODE. In that case, it
7151 probably will not be used.
7153 If MODIFIER is EXPAND_SUM then when EXP is an addition
7154 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7155 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7156 products as above, or REG or MEM, or constant.
7157 Ordinarily in such cases we would output mul or add instructions
7158 and then return a pseudo reg containing the sum.
7160 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7161 it also marks a label as absolutely required (it can't be dead).
7162 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7163 This is used for outputting expressions used in initializers.
7165 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7166 with a constant address even if that address is not normally legitimate.
7167 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7169 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7170 a call parameter. Such targets require special care as we haven't yet
7171 marked TARGET so that it's safe from being trashed by libcalls. We
7172 don't want to use TARGET for anything but the final result;
7173 Intermediate values must go elsewhere. Additionally, calls to
7174 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7176 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7177 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7178 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7179 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7180 recursively. */
7183 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7184 enum expand_modifier modifier, rtx *alt_rtl)
7186 rtx ret;
7188 /* Handle ERROR_MARK before anybody tries to access its type. */
7189 if (TREE_CODE (exp) == ERROR_MARK
7190 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7192 ret = CONST0_RTX (tmode);
7193 return ret ? ret : const0_rtx;
7196 /* If this is an expression of some kind and it has an associated line
7197 number, then emit the line number before expanding the expression.
7199 We need to save and restore the file and line information so that
7200 errors discovered during expansion are emitted with the right
7201 information. It would be better of the diagnostic routines
7202 used the file/line information embedded in the tree nodes rather
7203 than globals. */
7204 if (cfun && EXPR_HAS_LOCATION (exp))
7206 location_t saved_location = input_location;
7207 location_t saved_curr_loc = get_curr_insn_source_location ();
7208 tree saved_block = get_curr_insn_block ();
7209 input_location = EXPR_LOCATION (exp);
7210 set_curr_insn_source_location (input_location);
7212 /* Record where the insns produced belong. */
7213 set_curr_insn_block (TREE_BLOCK (exp));
7215 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7217 input_location = saved_location;
7218 set_curr_insn_block (saved_block);
7219 set_curr_insn_source_location (saved_curr_loc);
7221 else
7223 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7226 return ret;
7230 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7231 enum expand_modifier modifier)
7233 rtx op0, op1, op2, temp;
7234 tree type;
7235 int unsignedp;
7236 enum machine_mode mode;
7237 enum tree_code code = ops->code;
7238 optab this_optab;
7239 rtx subtarget, original_target;
7240 int ignore;
7241 bool reduce_bit_field;
7242 gimple subexp0_def, subexp1_def;
7243 tree top0, top1;
7244 location_t loc = ops->location;
7245 tree treeop0, treeop1;
7246 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7247 ? reduce_to_bit_field_precision ((expr), \
7248 target, \
7249 type) \
7250 : (expr))
7252 type = ops->type;
7253 mode = TYPE_MODE (type);
7254 unsignedp = TYPE_UNSIGNED (type);
7256 treeop0 = ops->op0;
7257 treeop1 = ops->op1;
7259 /* We should be called only on simple (binary or unary) expressions,
7260 exactly those that are valid in gimple expressions that aren't
7261 GIMPLE_SINGLE_RHS (or invalid). */
7262 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7263 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS);
7265 ignore = (target == const0_rtx
7266 || ((CONVERT_EXPR_CODE_P (code)
7267 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7268 && TREE_CODE (type) == VOID_TYPE));
7270 /* We should be called only if we need the result. */
7271 gcc_assert (!ignore);
7273 /* An operation in what may be a bit-field type needs the
7274 result to be reduced to the precision of the bit-field type,
7275 which is narrower than that of the type's mode. */
7276 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7277 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7279 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7280 target = 0;
7282 /* Use subtarget as the target for operand 0 of a binary operation. */
7283 subtarget = get_subtarget (target);
7284 original_target = target;
7286 switch (code)
7288 case NON_LVALUE_EXPR:
7289 case PAREN_EXPR:
7290 CASE_CONVERT:
7291 if (treeop0 == error_mark_node)
7292 return const0_rtx;
7294 if (TREE_CODE (type) == UNION_TYPE)
7296 tree valtype = TREE_TYPE (treeop0);
7298 /* If both input and output are BLKmode, this conversion isn't doing
7299 anything except possibly changing memory attribute. */
7300 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7302 rtx result = expand_expr (treeop0, target, tmode,
7303 modifier);
7305 result = copy_rtx (result);
7306 set_mem_attributes (result, type, 0);
7307 return result;
7310 if (target == 0)
7312 if (TYPE_MODE (type) != BLKmode)
7313 target = gen_reg_rtx (TYPE_MODE (type));
7314 else
7315 target = assign_temp (type, 0, 1, 1);
7318 if (MEM_P (target))
7319 /* Store data into beginning of memory target. */
7320 store_expr (treeop0,
7321 adjust_address (target, TYPE_MODE (valtype), 0),
7322 modifier == EXPAND_STACK_PARM,
7323 false);
7325 else
7327 gcc_assert (REG_P (target));
7329 /* Store this field into a union of the proper type. */
7330 store_field (target,
7331 MIN ((int_size_in_bytes (TREE_TYPE
7332 (treeop0))
7333 * BITS_PER_UNIT),
7334 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7335 0, TYPE_MODE (valtype), treeop0,
7336 type, 0, false);
7339 /* Return the entire union. */
7340 return target;
7343 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7345 op0 = expand_expr (treeop0, target, VOIDmode,
7346 modifier);
7348 /* If the signedness of the conversion differs and OP0 is
7349 a promoted SUBREG, clear that indication since we now
7350 have to do the proper extension. */
7351 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7352 && GET_CODE (op0) == SUBREG)
7353 SUBREG_PROMOTED_VAR_P (op0) = 0;
7355 return REDUCE_BIT_FIELD (op0);
7358 op0 = expand_expr (treeop0, NULL_RTX, mode,
7359 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7360 if (GET_MODE (op0) == mode)
7363 /* If OP0 is a constant, just convert it into the proper mode. */
7364 else if (CONSTANT_P (op0))
7366 tree inner_type = TREE_TYPE (treeop0);
7367 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7369 if (modifier == EXPAND_INITIALIZER)
7370 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7371 subreg_lowpart_offset (mode,
7372 inner_mode));
7373 else
7374 op0= convert_modes (mode, inner_mode, op0,
7375 TYPE_UNSIGNED (inner_type));
7378 else if (modifier == EXPAND_INITIALIZER)
7379 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7381 else if (target == 0)
7382 op0 = convert_to_mode (mode, op0,
7383 TYPE_UNSIGNED (TREE_TYPE
7384 (treeop0)));
7385 else
7387 convert_move (target, op0,
7388 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7389 op0 = target;
7392 return REDUCE_BIT_FIELD (op0);
7394 case ADDR_SPACE_CONVERT_EXPR:
7396 tree treeop0_type = TREE_TYPE (treeop0);
7397 addr_space_t as_to;
7398 addr_space_t as_from;
7400 gcc_assert (POINTER_TYPE_P (type));
7401 gcc_assert (POINTER_TYPE_P (treeop0_type));
7403 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7404 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7406 /* Conversions between pointers to the same address space should
7407 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7408 gcc_assert (as_to != as_from);
7410 /* Ask target code to handle conversion between pointers
7411 to overlapping address spaces. */
7412 if (targetm.addr_space.subset_p (as_to, as_from)
7413 || targetm.addr_space.subset_p (as_from, as_to))
7415 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7416 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7417 gcc_assert (op0);
7418 return op0;
7421 /* For disjoint address spaces, converting anything but
7422 a null pointer invokes undefined behaviour. We simply
7423 always return a null pointer here. */
7424 return CONST0_RTX (mode);
7427 case POINTER_PLUS_EXPR:
7428 /* Even though the sizetype mode and the pointer's mode can be different
7429 expand is able to handle this correctly and get the correct result out
7430 of the PLUS_EXPR code. */
7431 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7432 if sizetype precision is smaller than pointer precision. */
7433 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7434 treeop1 = fold_convert_loc (loc, type,
7435 fold_convert_loc (loc, ssizetype,
7436 treeop1));
7437 case PLUS_EXPR:
7439 /* Check if this is a case for multiplication and addition. */
7440 if ((TREE_CODE (type) == INTEGER_TYPE
7441 || TREE_CODE (type) == FIXED_POINT_TYPE)
7442 && (subexp0_def = get_def_for_expr (treeop0,
7443 MULT_EXPR)))
7445 tree subsubexp0, subsubexp1;
7446 gimple subsubexp0_def, subsubexp1_def;
7447 enum tree_code this_code;
7449 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7450 : FIXED_CONVERT_EXPR;
7451 subsubexp0 = gimple_assign_rhs1 (subexp0_def);
7452 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7453 subsubexp1 = gimple_assign_rhs2 (subexp0_def);
7454 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7455 if (subsubexp0_def && subsubexp1_def
7456 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7457 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7458 && (TYPE_PRECISION (TREE_TYPE (top0))
7459 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7460 && (TYPE_PRECISION (TREE_TYPE (top0))
7461 == TYPE_PRECISION (TREE_TYPE (top1)))
7462 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7463 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7465 tree op0type = TREE_TYPE (top0);
7466 enum machine_mode innermode = TYPE_MODE (op0type);
7467 bool zextend_p = TYPE_UNSIGNED (op0type);
7468 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7469 if (sat_p == 0)
7470 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
7471 else
7472 this_optab = zextend_p ? usmadd_widen_optab
7473 : ssmadd_widen_optab;
7474 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7475 && (optab_handler (this_optab, mode)->insn_code
7476 != CODE_FOR_nothing))
7478 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7479 EXPAND_NORMAL);
7480 op2 = expand_expr (treeop1, subtarget,
7481 VOIDmode, EXPAND_NORMAL);
7482 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7483 target, unsignedp);
7484 gcc_assert (temp);
7485 return REDUCE_BIT_FIELD (temp);
7490 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7491 something else, make sure we add the register to the constant and
7492 then to the other thing. This case can occur during strength
7493 reduction and doing it this way will produce better code if the
7494 frame pointer or argument pointer is eliminated.
7496 fold-const.c will ensure that the constant is always in the inner
7497 PLUS_EXPR, so the only case we need to do anything about is if
7498 sp, ap, or fp is our second argument, in which case we must swap
7499 the innermost first argument and our second argument. */
7501 if (TREE_CODE (treeop0) == PLUS_EXPR
7502 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7503 && TREE_CODE (treeop1) == VAR_DECL
7504 && (DECL_RTL (treeop1) == frame_pointer_rtx
7505 || DECL_RTL (treeop1) == stack_pointer_rtx
7506 || DECL_RTL (treeop1) == arg_pointer_rtx))
7508 tree t = treeop1;
7510 treeop1 = TREE_OPERAND (treeop0, 0);
7511 TREE_OPERAND (treeop0, 0) = t;
7514 /* If the result is to be ptr_mode and we are adding an integer to
7515 something, we might be forming a constant. So try to use
7516 plus_constant. If it produces a sum and we can't accept it,
7517 use force_operand. This allows P = &ARR[const] to generate
7518 efficient code on machines where a SYMBOL_REF is not a valid
7519 address.
7521 If this is an EXPAND_SUM call, always return the sum. */
7522 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7523 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7525 if (modifier == EXPAND_STACK_PARM)
7526 target = 0;
7527 if (TREE_CODE (treeop0) == INTEGER_CST
7528 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7529 && TREE_CONSTANT (treeop1))
7531 rtx constant_part;
7533 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7534 EXPAND_SUM);
7535 /* Use immed_double_const to ensure that the constant is
7536 truncated according to the mode of OP1, then sign extended
7537 to a HOST_WIDE_INT. Using the constant directly can result
7538 in non-canonical RTL in a 64x32 cross compile. */
7539 constant_part
7540 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7541 (HOST_WIDE_INT) 0,
7542 TYPE_MODE (TREE_TYPE (treeop1)));
7543 op1 = plus_constant (op1, INTVAL (constant_part));
7544 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7545 op1 = force_operand (op1, target);
7546 return REDUCE_BIT_FIELD (op1);
7549 else if (TREE_CODE (treeop1) == INTEGER_CST
7550 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7551 && TREE_CONSTANT (treeop0))
7553 rtx constant_part;
7555 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7556 (modifier == EXPAND_INITIALIZER
7557 ? EXPAND_INITIALIZER : EXPAND_SUM));
7558 if (! CONSTANT_P (op0))
7560 op1 = expand_expr (treeop1, NULL_RTX,
7561 VOIDmode, modifier);
7562 /* Return a PLUS if modifier says it's OK. */
7563 if (modifier == EXPAND_SUM
7564 || modifier == EXPAND_INITIALIZER)
7565 return simplify_gen_binary (PLUS, mode, op0, op1);
7566 goto binop2;
7568 /* Use immed_double_const to ensure that the constant is
7569 truncated according to the mode of OP1, then sign extended
7570 to a HOST_WIDE_INT. Using the constant directly can result
7571 in non-canonical RTL in a 64x32 cross compile. */
7572 constant_part
7573 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7574 (HOST_WIDE_INT) 0,
7575 TYPE_MODE (TREE_TYPE (treeop0)));
7576 op0 = plus_constant (op0, INTVAL (constant_part));
7577 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7578 op0 = force_operand (op0, target);
7579 return REDUCE_BIT_FIELD (op0);
7583 /* No sense saving up arithmetic to be done
7584 if it's all in the wrong mode to form part of an address.
7585 And force_operand won't know whether to sign-extend or
7586 zero-extend. */
7587 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7588 || mode != ptr_mode)
7590 expand_operands (treeop0, treeop1,
7591 subtarget, &op0, &op1, EXPAND_NORMAL);
7592 if (op0 == const0_rtx)
7593 return op1;
7594 if (op1 == const0_rtx)
7595 return op0;
7596 goto binop2;
7599 expand_operands (treeop0, treeop1,
7600 subtarget, &op0, &op1, modifier);
7601 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7603 case MINUS_EXPR:
7604 /* Check if this is a case for multiplication and subtraction. */
7605 if ((TREE_CODE (type) == INTEGER_TYPE
7606 || TREE_CODE (type) == FIXED_POINT_TYPE)
7607 && (subexp1_def = get_def_for_expr (treeop1,
7608 MULT_EXPR)))
7610 tree subsubexp0, subsubexp1;
7611 gimple subsubexp0_def, subsubexp1_def;
7612 enum tree_code this_code;
7614 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7615 : FIXED_CONVERT_EXPR;
7616 subsubexp0 = gimple_assign_rhs1 (subexp1_def);
7617 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7618 subsubexp1 = gimple_assign_rhs2 (subexp1_def);
7619 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7620 if (subsubexp0_def && subsubexp1_def
7621 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7622 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7623 && (TYPE_PRECISION (TREE_TYPE (top0))
7624 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7625 && (TYPE_PRECISION (TREE_TYPE (top0))
7626 == TYPE_PRECISION (TREE_TYPE (top1)))
7627 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7628 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7630 tree op0type = TREE_TYPE (top0);
7631 enum machine_mode innermode = TYPE_MODE (op0type);
7632 bool zextend_p = TYPE_UNSIGNED (op0type);
7633 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7634 if (sat_p == 0)
7635 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
7636 else
7637 this_optab = zextend_p ? usmsub_widen_optab
7638 : ssmsub_widen_optab;
7639 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7640 && (optab_handler (this_optab, mode)->insn_code
7641 != CODE_FOR_nothing))
7643 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7644 EXPAND_NORMAL);
7645 op2 = expand_expr (treeop0, subtarget,
7646 VOIDmode, EXPAND_NORMAL);
7647 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7648 target, unsignedp);
7649 gcc_assert (temp);
7650 return REDUCE_BIT_FIELD (temp);
7655 /* For initializers, we are allowed to return a MINUS of two
7656 symbolic constants. Here we handle all cases when both operands
7657 are constant. */
7658 /* Handle difference of two symbolic constants,
7659 for the sake of an initializer. */
7660 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7661 && really_constant_p (treeop0)
7662 && really_constant_p (treeop1))
7664 expand_operands (treeop0, treeop1,
7665 NULL_RTX, &op0, &op1, modifier);
7667 /* If the last operand is a CONST_INT, use plus_constant of
7668 the negated constant. Else make the MINUS. */
7669 if (CONST_INT_P (op1))
7670 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7671 else
7672 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7675 /* No sense saving up arithmetic to be done
7676 if it's all in the wrong mode to form part of an address.
7677 And force_operand won't know whether to sign-extend or
7678 zero-extend. */
7679 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7680 || mode != ptr_mode)
7681 goto binop;
7683 expand_operands (treeop0, treeop1,
7684 subtarget, &op0, &op1, modifier);
7686 /* Convert A - const to A + (-const). */
7687 if (CONST_INT_P (op1))
7689 op1 = negate_rtx (mode, op1);
7690 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7693 goto binop2;
7695 case WIDEN_MULT_EXPR:
7696 /* If first operand is constant, swap them.
7697 Thus the following special case checks need only
7698 check the second operand. */
7699 if (TREE_CODE (treeop0) == INTEGER_CST)
7701 tree t1 = treeop0;
7702 treeop0 = treeop1;
7703 treeop1 = t1;
7706 /* First, check if we have a multiplication of one signed and one
7707 unsigned operand. */
7708 if (TREE_CODE (treeop1) != INTEGER_CST
7709 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7710 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7712 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7713 this_optab = usmul_widen_optab;
7714 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7716 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7718 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7719 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7720 EXPAND_NORMAL);
7721 else
7722 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7723 EXPAND_NORMAL);
7724 goto binop3;
7728 /* Check for a multiplication with matching signedness. */
7729 else if ((TREE_CODE (treeop1) == INTEGER_CST
7730 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7731 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7732 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7734 tree op0type = TREE_TYPE (treeop0);
7735 enum machine_mode innermode = TYPE_MODE (op0type);
7736 bool zextend_p = TYPE_UNSIGNED (op0type);
7737 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7738 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7740 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7742 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7744 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7745 EXPAND_NORMAL);
7746 temp = expand_widening_mult (mode, op0, op1, target,
7747 unsignedp, this_optab);
7748 return REDUCE_BIT_FIELD (temp);
7750 if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
7751 && innermode == word_mode)
7753 rtx htem, hipart;
7754 op0 = expand_normal (treeop0);
7755 if (TREE_CODE (treeop1) == INTEGER_CST)
7756 op1 = convert_modes (innermode, mode,
7757 expand_normal (treeop1), unsignedp);
7758 else
7759 op1 = expand_normal (treeop1);
7760 temp = expand_binop (mode, other_optab, op0, op1, target,
7761 unsignedp, OPTAB_LIB_WIDEN);
7762 hipart = gen_highpart (innermode, temp);
7763 htem = expand_mult_highpart_adjust (innermode, hipart,
7764 op0, op1, hipart,
7765 zextend_p);
7766 if (htem != hipart)
7767 emit_move_insn (hipart, htem);
7768 return REDUCE_BIT_FIELD (temp);
7772 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7773 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7774 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7775 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7777 case MULT_EXPR:
7778 /* If this is a fixed-point operation, then we cannot use the code
7779 below because "expand_mult" doesn't support sat/no-sat fixed-point
7780 multiplications. */
7781 if (ALL_FIXED_POINT_MODE_P (mode))
7782 goto binop;
7784 /* If first operand is constant, swap them.
7785 Thus the following special case checks need only
7786 check the second operand. */
7787 if (TREE_CODE (treeop0) == INTEGER_CST)
7789 tree t1 = treeop0;
7790 treeop0 = treeop1;
7791 treeop1 = t1;
7794 /* Attempt to return something suitable for generating an
7795 indexed address, for machines that support that. */
7797 if (modifier == EXPAND_SUM && mode == ptr_mode
7798 && host_integerp (treeop1, 0))
7800 tree exp1 = treeop1;
7802 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7803 EXPAND_SUM);
7805 if (!REG_P (op0))
7806 op0 = force_operand (op0, NULL_RTX);
7807 if (!REG_P (op0))
7808 op0 = copy_to_mode_reg (mode, op0);
7810 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7811 gen_int_mode (tree_low_cst (exp1, 0),
7812 TYPE_MODE (TREE_TYPE (exp1)))));
7815 if (modifier == EXPAND_STACK_PARM)
7816 target = 0;
7818 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7819 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7821 case TRUNC_DIV_EXPR:
7822 case FLOOR_DIV_EXPR:
7823 case CEIL_DIV_EXPR:
7824 case ROUND_DIV_EXPR:
7825 case EXACT_DIV_EXPR:
7826 /* If this is a fixed-point operation, then we cannot use the code
7827 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7828 divisions. */
7829 if (ALL_FIXED_POINT_MODE_P (mode))
7830 goto binop;
7832 if (modifier == EXPAND_STACK_PARM)
7833 target = 0;
7834 /* Possible optimization: compute the dividend with EXPAND_SUM
7835 then if the divisor is constant can optimize the case
7836 where some terms of the dividend have coeffs divisible by it. */
7837 expand_operands (treeop0, treeop1,
7838 subtarget, &op0, &op1, EXPAND_NORMAL);
7839 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7841 case RDIV_EXPR:
7842 goto binop;
7844 case TRUNC_MOD_EXPR:
7845 case FLOOR_MOD_EXPR:
7846 case CEIL_MOD_EXPR:
7847 case ROUND_MOD_EXPR:
7848 if (modifier == EXPAND_STACK_PARM)
7849 target = 0;
7850 expand_operands (treeop0, treeop1,
7851 subtarget, &op0, &op1, EXPAND_NORMAL);
7852 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7854 case FIXED_CONVERT_EXPR:
7855 op0 = expand_normal (treeop0);
7856 if (target == 0 || modifier == EXPAND_STACK_PARM)
7857 target = gen_reg_rtx (mode);
7859 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7860 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7861 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7862 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7863 else
7864 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7865 return target;
7867 case FIX_TRUNC_EXPR:
7868 op0 = expand_normal (treeop0);
7869 if (target == 0 || modifier == EXPAND_STACK_PARM)
7870 target = gen_reg_rtx (mode);
7871 expand_fix (target, op0, unsignedp);
7872 return target;
7874 case FLOAT_EXPR:
7875 op0 = expand_normal (treeop0);
7876 if (target == 0 || modifier == EXPAND_STACK_PARM)
7877 target = gen_reg_rtx (mode);
7878 /* expand_float can't figure out what to do if FROM has VOIDmode.
7879 So give it the correct mode. With -O, cse will optimize this. */
7880 if (GET_MODE (op0) == VOIDmode)
7881 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7882 op0);
7883 expand_float (target, op0,
7884 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7885 return target;
7887 case NEGATE_EXPR:
7888 op0 = expand_expr (treeop0, subtarget,
7889 VOIDmode, EXPAND_NORMAL);
7890 if (modifier == EXPAND_STACK_PARM)
7891 target = 0;
7892 temp = expand_unop (mode,
7893 optab_for_tree_code (NEGATE_EXPR, type,
7894 optab_default),
7895 op0, target, 0);
7896 gcc_assert (temp);
7897 return REDUCE_BIT_FIELD (temp);
7899 case ABS_EXPR:
7900 op0 = expand_expr (treeop0, subtarget,
7901 VOIDmode, EXPAND_NORMAL);
7902 if (modifier == EXPAND_STACK_PARM)
7903 target = 0;
7905 /* ABS_EXPR is not valid for complex arguments. */
7906 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7907 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7909 /* Unsigned abs is simply the operand. Testing here means we don't
7910 risk generating incorrect code below. */
7911 if (TYPE_UNSIGNED (type))
7912 return op0;
7914 return expand_abs (mode, op0, target, unsignedp,
7915 safe_from_p (target, treeop0, 1));
7917 case MAX_EXPR:
7918 case MIN_EXPR:
7919 target = original_target;
7920 if (target == 0
7921 || modifier == EXPAND_STACK_PARM
7922 || (MEM_P (target) && MEM_VOLATILE_P (target))
7923 || GET_MODE (target) != mode
7924 || (REG_P (target)
7925 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7926 target = gen_reg_rtx (mode);
7927 expand_operands (treeop0, treeop1,
7928 target, &op0, &op1, EXPAND_NORMAL);
7930 /* First try to do it with a special MIN or MAX instruction.
7931 If that does not win, use a conditional jump to select the proper
7932 value. */
7933 this_optab = optab_for_tree_code (code, type, optab_default);
7934 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7935 OPTAB_WIDEN);
7936 if (temp != 0)
7937 return temp;
7939 /* At this point, a MEM target is no longer useful; we will get better
7940 code without it. */
7942 if (! REG_P (target))
7943 target = gen_reg_rtx (mode);
7945 /* If op1 was placed in target, swap op0 and op1. */
7946 if (target != op0 && target == op1)
7948 temp = op0;
7949 op0 = op1;
7950 op1 = temp;
7953 /* We generate better code and avoid problems with op1 mentioning
7954 target by forcing op1 into a pseudo if it isn't a constant. */
7955 if (! CONSTANT_P (op1))
7956 op1 = force_reg (mode, op1);
7959 enum rtx_code comparison_code;
7960 rtx cmpop1 = op1;
7962 if (code == MAX_EXPR)
7963 comparison_code = unsignedp ? GEU : GE;
7964 else
7965 comparison_code = unsignedp ? LEU : LE;
7967 /* Canonicalize to comparisons against 0. */
7968 if (op1 == const1_rtx)
7970 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7971 or (a != 0 ? a : 1) for unsigned.
7972 For MIN we are safe converting (a <= 1 ? a : 1)
7973 into (a <= 0 ? a : 1) */
7974 cmpop1 = const0_rtx;
7975 if (code == MAX_EXPR)
7976 comparison_code = unsignedp ? NE : GT;
7978 if (op1 == constm1_rtx && !unsignedp)
7980 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7981 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7982 cmpop1 = const0_rtx;
7983 if (code == MIN_EXPR)
7984 comparison_code = LT;
7986 #ifdef HAVE_conditional_move
7987 /* Use a conditional move if possible. */
7988 if (can_conditionally_move_p (mode))
7990 rtx insn;
7992 /* ??? Same problem as in expmed.c: emit_conditional_move
7993 forces a stack adjustment via compare_from_rtx, and we
7994 lose the stack adjustment if the sequence we are about
7995 to create is discarded. */
7996 do_pending_stack_adjust ();
7998 start_sequence ();
8000 /* Try to emit the conditional move. */
8001 insn = emit_conditional_move (target, comparison_code,
8002 op0, cmpop1, mode,
8003 op0, op1, mode,
8004 unsignedp);
8006 /* If we could do the conditional move, emit the sequence,
8007 and return. */
8008 if (insn)
8010 rtx seq = get_insns ();
8011 end_sequence ();
8012 emit_insn (seq);
8013 return target;
8016 /* Otherwise discard the sequence and fall back to code with
8017 branches. */
8018 end_sequence ();
8020 #endif
8021 if (target != op0)
8022 emit_move_insn (target, op0);
8024 temp = gen_label_rtx ();
8025 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8026 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8027 -1);
8029 emit_move_insn (target, op1);
8030 emit_label (temp);
8031 return target;
8033 case BIT_NOT_EXPR:
8034 op0 = expand_expr (treeop0, subtarget,
8035 VOIDmode, EXPAND_NORMAL);
8036 if (modifier == EXPAND_STACK_PARM)
8037 target = 0;
8038 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8039 gcc_assert (temp);
8040 return temp;
8042 /* ??? Can optimize bitwise operations with one arg constant.
8043 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8044 and (a bitwise1 b) bitwise2 b (etc)
8045 but that is probably not worth while. */
8047 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8048 boolean values when we want in all cases to compute both of them. In
8049 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8050 as actual zero-or-1 values and then bitwise anding. In cases where
8051 there cannot be any side effects, better code would be made by
8052 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8053 how to recognize those cases. */
8055 case TRUTH_AND_EXPR:
8056 code = BIT_AND_EXPR;
8057 case BIT_AND_EXPR:
8058 goto binop;
8060 case TRUTH_OR_EXPR:
8061 code = BIT_IOR_EXPR;
8062 case BIT_IOR_EXPR:
8063 goto binop;
8065 case TRUTH_XOR_EXPR:
8066 code = BIT_XOR_EXPR;
8067 case BIT_XOR_EXPR:
8068 goto binop;
8070 case LROTATE_EXPR:
8071 case RROTATE_EXPR:
8072 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8073 || (GET_MODE_PRECISION (TYPE_MODE (type))
8074 == TYPE_PRECISION (type)));
8075 /* fall through */
8077 case LSHIFT_EXPR:
8078 case RSHIFT_EXPR:
8079 /* If this is a fixed-point operation, then we cannot use the code
8080 below because "expand_shift" doesn't support sat/no-sat fixed-point
8081 shifts. */
8082 if (ALL_FIXED_POINT_MODE_P (mode))
8083 goto binop;
8085 if (! safe_from_p (subtarget, treeop1, 1))
8086 subtarget = 0;
8087 if (modifier == EXPAND_STACK_PARM)
8088 target = 0;
8089 op0 = expand_expr (treeop0, subtarget,
8090 VOIDmode, EXPAND_NORMAL);
8091 temp = expand_shift (code, mode, op0, treeop1, target,
8092 unsignedp);
8093 if (code == LSHIFT_EXPR)
8094 temp = REDUCE_BIT_FIELD (temp);
8095 return temp;
8097 /* Could determine the answer when only additive constants differ. Also,
8098 the addition of one can be handled by changing the condition. */
8099 case LT_EXPR:
8100 case LE_EXPR:
8101 case GT_EXPR:
8102 case GE_EXPR:
8103 case EQ_EXPR:
8104 case NE_EXPR:
8105 case UNORDERED_EXPR:
8106 case ORDERED_EXPR:
8107 case UNLT_EXPR:
8108 case UNLE_EXPR:
8109 case UNGT_EXPR:
8110 case UNGE_EXPR:
8111 case UNEQ_EXPR:
8112 case LTGT_EXPR:
8113 temp = do_store_flag (ops,
8114 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8115 tmode != VOIDmode ? tmode : mode);
8116 if (temp)
8117 return temp;
8119 /* Use a compare and a jump for BLKmode comparisons, or for function
8120 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8122 if ((target == 0
8123 || modifier == EXPAND_STACK_PARM
8124 || ! safe_from_p (target, treeop0, 1)
8125 || ! safe_from_p (target, treeop1, 1)
8126 /* Make sure we don't have a hard reg (such as function's return
8127 value) live across basic blocks, if not optimizing. */
8128 || (!optimize && REG_P (target)
8129 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8130 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8132 emit_move_insn (target, const0_rtx);
8134 op1 = gen_label_rtx ();
8135 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8137 emit_move_insn (target, const1_rtx);
8139 emit_label (op1);
8140 return target;
8142 case TRUTH_NOT_EXPR:
8143 if (modifier == EXPAND_STACK_PARM)
8144 target = 0;
8145 op0 = expand_expr (treeop0, target,
8146 VOIDmode, EXPAND_NORMAL);
8147 /* The parser is careful to generate TRUTH_NOT_EXPR
8148 only with operands that are always zero or one. */
8149 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8150 target, 1, OPTAB_LIB_WIDEN);
8151 gcc_assert (temp);
8152 return temp;
8154 case COMPLEX_EXPR:
8155 /* Get the rtx code of the operands. */
8156 op0 = expand_normal (treeop0);
8157 op1 = expand_normal (treeop1);
8159 if (!target)
8160 target = gen_reg_rtx (TYPE_MODE (type));
8162 /* Move the real (op0) and imaginary (op1) parts to their location. */
8163 write_complex_part (target, op0, false);
8164 write_complex_part (target, op1, true);
8166 return target;
8168 case WIDEN_SUM_EXPR:
8170 tree oprnd0 = treeop0;
8171 tree oprnd1 = treeop1;
8173 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8174 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8175 target, unsignedp);
8176 return target;
8179 case REDUC_MAX_EXPR:
8180 case REDUC_MIN_EXPR:
8181 case REDUC_PLUS_EXPR:
8183 op0 = expand_normal (treeop0);
8184 this_optab = optab_for_tree_code (code, type, optab_default);
8185 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8186 gcc_assert (temp);
8187 return temp;
8190 case VEC_EXTRACT_EVEN_EXPR:
8191 case VEC_EXTRACT_ODD_EXPR:
8193 expand_operands (treeop0, treeop1,
8194 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8195 this_optab = optab_for_tree_code (code, type, optab_default);
8196 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8197 OPTAB_WIDEN);
8198 gcc_assert (temp);
8199 return temp;
8202 case VEC_INTERLEAVE_HIGH_EXPR:
8203 case VEC_INTERLEAVE_LOW_EXPR:
8205 expand_operands (treeop0, treeop1,
8206 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8207 this_optab = optab_for_tree_code (code, type, optab_default);
8208 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8209 OPTAB_WIDEN);
8210 gcc_assert (temp);
8211 return temp;
8214 case VEC_LSHIFT_EXPR:
8215 case VEC_RSHIFT_EXPR:
8217 target = expand_vec_shift_expr (ops, target);
8218 return target;
8221 case VEC_UNPACK_HI_EXPR:
8222 case VEC_UNPACK_LO_EXPR:
8224 op0 = expand_normal (treeop0);
8225 this_optab = optab_for_tree_code (code, type, optab_default);
8226 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8227 target, unsignedp);
8228 gcc_assert (temp);
8229 return temp;
8232 case VEC_UNPACK_FLOAT_HI_EXPR:
8233 case VEC_UNPACK_FLOAT_LO_EXPR:
8235 op0 = expand_normal (treeop0);
8236 /* The signedness is determined from input operand. */
8237 this_optab = optab_for_tree_code (code,
8238 TREE_TYPE (treeop0),
8239 optab_default);
8240 temp = expand_widen_pattern_expr
8241 (ops, op0, NULL_RTX, NULL_RTX,
8242 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8244 gcc_assert (temp);
8245 return temp;
8248 case VEC_WIDEN_MULT_HI_EXPR:
8249 case VEC_WIDEN_MULT_LO_EXPR:
8251 tree oprnd0 = treeop0;
8252 tree oprnd1 = treeop1;
8254 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8255 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8256 target, unsignedp);
8257 gcc_assert (target);
8258 return target;
8261 case VEC_PACK_TRUNC_EXPR:
8262 case VEC_PACK_SAT_EXPR:
8263 case VEC_PACK_FIX_TRUNC_EXPR:
8264 mode = TYPE_MODE (TREE_TYPE (treeop0));
8265 goto binop;
8267 default:
8268 gcc_unreachable ();
8271 /* Here to do an ordinary binary operator. */
8272 binop:
8273 expand_operands (treeop0, treeop1,
8274 subtarget, &op0, &op1, EXPAND_NORMAL);
8275 binop2:
8276 this_optab = optab_for_tree_code (code, type, optab_default);
8277 binop3:
8278 if (modifier == EXPAND_STACK_PARM)
8279 target = 0;
8280 temp = expand_binop (mode, this_optab, op0, op1, target,
8281 unsignedp, OPTAB_LIB_WIDEN);
8282 gcc_assert (temp);
8283 return REDUCE_BIT_FIELD (temp);
8285 #undef REDUCE_BIT_FIELD
8288 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8289 enum expand_modifier modifier, rtx *alt_rtl)
8291 rtx op0, op1, temp, decl_rtl;
8292 tree type;
8293 int unsignedp;
8294 enum machine_mode mode;
8295 enum tree_code code = TREE_CODE (exp);
8296 optab this_optab;
8297 rtx subtarget, original_target;
8298 int ignore;
8299 tree context;
8300 bool reduce_bit_field;
8301 location_t loc = EXPR_LOCATION (exp);
8302 struct separate_ops ops;
8303 tree treeop0, treeop1, treeop2;
8304 tree ssa_name = NULL_TREE;
8305 gimple g;
8307 type = TREE_TYPE (exp);
8308 mode = TYPE_MODE (type);
8309 unsignedp = TYPE_UNSIGNED (type);
8311 treeop0 = treeop1 = treeop2 = NULL_TREE;
8312 if (!VL_EXP_CLASS_P (exp))
8313 switch (TREE_CODE_LENGTH (code))
8315 default:
8316 case 3: treeop2 = TREE_OPERAND (exp, 2);
8317 case 2: treeop1 = TREE_OPERAND (exp, 1);
8318 case 1: treeop0 = TREE_OPERAND (exp, 0);
8319 case 0: break;
8321 ops.code = code;
8322 ops.type = type;
8323 ops.op0 = treeop0;
8324 ops.op1 = treeop1;
8325 ops.op2 = treeop2;
8326 ops.location = loc;
8328 ignore = (target == const0_rtx
8329 || ((CONVERT_EXPR_CODE_P (code)
8330 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8331 && TREE_CODE (type) == VOID_TYPE));
8333 /* An operation in what may be a bit-field type needs the
8334 result to be reduced to the precision of the bit-field type,
8335 which is narrower than that of the type's mode. */
8336 reduce_bit_field = (!ignore
8337 && TREE_CODE (type) == INTEGER_TYPE
8338 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8340 /* If we are going to ignore this result, we need only do something
8341 if there is a side-effect somewhere in the expression. If there
8342 is, short-circuit the most common cases here. Note that we must
8343 not call expand_expr with anything but const0_rtx in case this
8344 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8346 if (ignore)
8348 if (! TREE_SIDE_EFFECTS (exp))
8349 return const0_rtx;
8351 /* Ensure we reference a volatile object even if value is ignored, but
8352 don't do this if all we are doing is taking its address. */
8353 if (TREE_THIS_VOLATILE (exp)
8354 && TREE_CODE (exp) != FUNCTION_DECL
8355 && mode != VOIDmode && mode != BLKmode
8356 && modifier != EXPAND_CONST_ADDRESS)
8358 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8359 if (MEM_P (temp))
8360 temp = copy_to_reg (temp);
8361 return const0_rtx;
8364 if (TREE_CODE_CLASS (code) == tcc_unary
8365 || code == COMPONENT_REF || code == INDIRECT_REF)
8366 return expand_expr (treeop0, const0_rtx, VOIDmode,
8367 modifier);
8369 else if (TREE_CODE_CLASS (code) == tcc_binary
8370 || TREE_CODE_CLASS (code) == tcc_comparison
8371 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8373 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8374 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8375 return const0_rtx;
8377 else if (code == BIT_FIELD_REF)
8379 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8380 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8381 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8382 return const0_rtx;
8385 target = 0;
8388 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8389 target = 0;
8391 /* Use subtarget as the target for operand 0 of a binary operation. */
8392 subtarget = get_subtarget (target);
8393 original_target = target;
8395 switch (code)
8397 case LABEL_DECL:
8399 tree function = decl_function_context (exp);
8401 temp = label_rtx (exp);
8402 temp = gen_rtx_LABEL_REF (Pmode, temp);
8404 if (function != current_function_decl
8405 && function != 0)
8406 LABEL_REF_NONLOCAL_P (temp) = 1;
8408 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8409 return temp;
8412 case SSA_NAME:
8413 /* ??? ivopts calls expander, without any preparation from
8414 out-of-ssa. So fake instructions as if this was an access to the
8415 base variable. This unnecessarily allocates a pseudo, see how we can
8416 reuse it, if partition base vars have it set already. */
8417 if (!currently_expanding_to_rtl)
8418 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8419 NULL);
8421 g = get_gimple_for_ssa_name (exp);
8422 if (g)
8423 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8424 modifier, NULL);
8426 ssa_name = exp;
8427 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8428 exp = SSA_NAME_VAR (ssa_name);
8429 goto expand_decl_rtl;
8431 case PARM_DECL:
8432 case VAR_DECL:
8433 /* If a static var's type was incomplete when the decl was written,
8434 but the type is complete now, lay out the decl now. */
8435 if (DECL_SIZE (exp) == 0
8436 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8437 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8438 layout_decl (exp, 0);
8440 /* TLS emulation hook - replace __thread vars with
8441 *__emutls_get_address (&_emutls.var). */
8442 if (! targetm.have_tls
8443 && TREE_CODE (exp) == VAR_DECL
8444 && DECL_THREAD_LOCAL_P (exp))
8446 exp = build_fold_indirect_ref_loc (loc, emutls_var_address (exp));
8447 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
8450 /* ... fall through ... */
8452 case FUNCTION_DECL:
8453 case RESULT_DECL:
8454 decl_rtl = DECL_RTL (exp);
8455 expand_decl_rtl:
8456 gcc_assert (decl_rtl);
8457 decl_rtl = copy_rtx (decl_rtl);
8458 /* Record writes to register variables. */
8459 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8460 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8462 int i = REGNO (decl_rtl);
8463 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8464 while (nregs)
8466 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8467 i++;
8468 nregs--;
8472 /* Ensure variable marked as used even if it doesn't go through
8473 a parser. If it hasn't be used yet, write out an external
8474 definition. */
8475 if (! TREE_USED (exp))
8477 assemble_external (exp);
8478 TREE_USED (exp) = 1;
8481 /* Show we haven't gotten RTL for this yet. */
8482 temp = 0;
8484 /* Variables inherited from containing functions should have
8485 been lowered by this point. */
8486 context = decl_function_context (exp);
8487 gcc_assert (!context
8488 || context == current_function_decl
8489 || TREE_STATIC (exp)
8490 /* ??? C++ creates functions that are not TREE_STATIC. */
8491 || TREE_CODE (exp) == FUNCTION_DECL);
8493 /* This is the case of an array whose size is to be determined
8494 from its initializer, while the initializer is still being parsed.
8495 See expand_decl. */
8497 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8498 temp = validize_mem (decl_rtl);
8500 /* If DECL_RTL is memory, we are in the normal case and the
8501 address is not valid, get the address into a register. */
8503 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8505 if (alt_rtl)
8506 *alt_rtl = decl_rtl;
8507 decl_rtl = use_anchored_address (decl_rtl);
8508 if (modifier != EXPAND_CONST_ADDRESS
8509 && modifier != EXPAND_SUM
8510 && !memory_address_addr_space_p (DECL_MODE (exp),
8511 XEXP (decl_rtl, 0),
8512 MEM_ADDR_SPACE (decl_rtl)))
8513 temp = replace_equiv_address (decl_rtl,
8514 copy_rtx (XEXP (decl_rtl, 0)));
8517 /* If we got something, return it. But first, set the alignment
8518 if the address is a register. */
8519 if (temp != 0)
8521 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8522 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8524 return temp;
8527 /* If the mode of DECL_RTL does not match that of the decl, it
8528 must be a promoted value. We return a SUBREG of the wanted mode,
8529 but mark it so that we know that it was already extended. */
8530 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8532 enum machine_mode pmode;
8534 /* Get the signedness to be used for this variable. Ensure we get
8535 the same mode we got when the variable was declared. */
8536 if (code == SSA_NAME
8537 && (g = SSA_NAME_DEF_STMT (ssa_name))
8538 && gimple_code (g) == GIMPLE_CALL)
8539 pmode = promote_function_mode (type, mode, &unsignedp,
8540 TREE_TYPE
8541 (TREE_TYPE (gimple_call_fn (g))),
8543 else
8544 pmode = promote_decl_mode (exp, &unsignedp);
8545 gcc_assert (GET_MODE (decl_rtl) == pmode);
8547 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8548 SUBREG_PROMOTED_VAR_P (temp) = 1;
8549 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8550 return temp;
8553 return decl_rtl;
8555 case INTEGER_CST:
8556 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8557 TREE_INT_CST_HIGH (exp), mode);
8559 return temp;
8561 case VECTOR_CST:
8563 tree tmp = NULL_TREE;
8564 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8565 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8566 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8567 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8568 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8569 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8570 return const_vector_from_tree (exp);
8571 if (GET_MODE_CLASS (mode) == MODE_INT)
8573 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8574 if (type_for_mode)
8575 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8577 if (!tmp)
8578 tmp = build_constructor_from_list (type,
8579 TREE_VECTOR_CST_ELTS (exp));
8580 return expand_expr (tmp, ignore ? const0_rtx : target,
8581 tmode, modifier);
8584 case CONST_DECL:
8585 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8587 case REAL_CST:
8588 /* If optimized, generate immediate CONST_DOUBLE
8589 which will be turned into memory by reload if necessary.
8591 We used to force a register so that loop.c could see it. But
8592 this does not allow gen_* patterns to perform optimizations with
8593 the constants. It also produces two insns in cases like "x = 1.0;".
8594 On most machines, floating-point constants are not permitted in
8595 many insns, so we'd end up copying it to a register in any case.
8597 Now, we do the copying in expand_binop, if appropriate. */
8598 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8599 TYPE_MODE (TREE_TYPE (exp)));
8601 case FIXED_CST:
8602 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8603 TYPE_MODE (TREE_TYPE (exp)));
8605 case COMPLEX_CST:
8606 /* Handle evaluating a complex constant in a CONCAT target. */
8607 if (original_target && GET_CODE (original_target) == CONCAT)
8609 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8610 rtx rtarg, itarg;
8612 rtarg = XEXP (original_target, 0);
8613 itarg = XEXP (original_target, 1);
8615 /* Move the real and imaginary parts separately. */
8616 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8617 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8619 if (op0 != rtarg)
8620 emit_move_insn (rtarg, op0);
8621 if (op1 != itarg)
8622 emit_move_insn (itarg, op1);
8624 return original_target;
8627 /* ... fall through ... */
8629 case STRING_CST:
8630 temp = expand_expr_constant (exp, 1, modifier);
8632 /* temp contains a constant address.
8633 On RISC machines where a constant address isn't valid,
8634 make some insns to get that address into a register. */
8635 if (modifier != EXPAND_CONST_ADDRESS
8636 && modifier != EXPAND_INITIALIZER
8637 && modifier != EXPAND_SUM
8638 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8639 MEM_ADDR_SPACE (temp)))
8640 return replace_equiv_address (temp,
8641 copy_rtx (XEXP (temp, 0)));
8642 return temp;
8644 case SAVE_EXPR:
8646 tree val = treeop0;
8647 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8649 if (!SAVE_EXPR_RESOLVED_P (exp))
8651 /* We can indeed still hit this case, typically via builtin
8652 expanders calling save_expr immediately before expanding
8653 something. Assume this means that we only have to deal
8654 with non-BLKmode values. */
8655 gcc_assert (GET_MODE (ret) != BLKmode);
8657 val = build_decl (EXPR_LOCATION (exp),
8658 VAR_DECL, NULL, TREE_TYPE (exp));
8659 DECL_ARTIFICIAL (val) = 1;
8660 DECL_IGNORED_P (val) = 1;
8661 treeop0 = val;
8662 TREE_OPERAND (exp, 0) = treeop0;
8663 SAVE_EXPR_RESOLVED_P (exp) = 1;
8665 if (!CONSTANT_P (ret))
8666 ret = copy_to_reg (ret);
8667 SET_DECL_RTL (val, ret);
8670 return ret;
8674 case CONSTRUCTOR:
8675 /* If we don't need the result, just ensure we evaluate any
8676 subexpressions. */
8677 if (ignore)
8679 unsigned HOST_WIDE_INT idx;
8680 tree value;
8682 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8683 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8685 return const0_rtx;
8688 return expand_constructor (exp, target, modifier, false);
8690 case MISALIGNED_INDIRECT_REF:
8691 case ALIGN_INDIRECT_REF:
8692 case INDIRECT_REF:
8694 tree exp1 = treeop0;
8695 addr_space_t as = ADDR_SPACE_GENERIC;
8696 enum machine_mode address_mode = Pmode;
8698 if (modifier != EXPAND_WRITE)
8700 tree t;
8702 t = fold_read_from_constant_string (exp);
8703 if (t)
8704 return expand_expr (t, target, tmode, modifier);
8707 if (POINTER_TYPE_P (TREE_TYPE (exp1)))
8709 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp1)));
8710 address_mode = targetm.addr_space.address_mode (as);
8713 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
8714 op0 = memory_address_addr_space (mode, op0, as);
8716 if (code == ALIGN_INDIRECT_REF)
8718 int align = TYPE_ALIGN_UNIT (type);
8719 op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
8720 op0 = memory_address_addr_space (mode, op0, as);
8723 temp = gen_rtx_MEM (mode, op0);
8725 set_mem_attributes (temp, exp, 0);
8726 set_mem_addr_space (temp, as);
8728 /* Resolve the misalignment now, so that we don't have to remember
8729 to resolve it later. Of course, this only works for reads. */
8730 if (code == MISALIGNED_INDIRECT_REF)
8732 int icode;
8733 rtx reg, insn;
8735 gcc_assert (modifier == EXPAND_NORMAL
8736 || modifier == EXPAND_STACK_PARM);
8738 /* The vectorizer should have already checked the mode. */
8739 icode = optab_handler (movmisalign_optab, mode)->insn_code;
8740 gcc_assert (icode != CODE_FOR_nothing);
8742 /* We've already validated the memory, and we're creating a
8743 new pseudo destination. The predicates really can't fail. */
8744 reg = gen_reg_rtx (mode);
8746 /* Nor can the insn generator. */
8747 insn = GEN_FCN (icode) (reg, temp);
8748 emit_insn (insn);
8750 return reg;
8753 return temp;
8756 case TARGET_MEM_REF:
8758 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8759 struct mem_address addr;
8760 tree base;
8762 get_address_description (exp, &addr);
8763 op0 = addr_for_mem_ref (&addr, as, true);
8764 op0 = memory_address_addr_space (mode, op0, as);
8765 temp = gen_rtx_MEM (mode, op0);
8766 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
8767 set_mem_addr_space (temp, as);
8768 base = get_base_address (TMR_ORIGINAL (exp));
8769 if (INDIRECT_REF_P (base)
8770 && TMR_BASE (exp)
8771 && TREE_CODE (TMR_BASE (exp)) == SSA_NAME
8772 && POINTER_TYPE_P (TREE_TYPE (TMR_BASE (exp))))
8774 set_mem_expr (temp, build1 (INDIRECT_REF,
8775 TREE_TYPE (exp), TMR_BASE (exp)));
8776 set_mem_offset (temp, NULL_RTX);
8779 return temp;
8781 case ARRAY_REF:
8784 tree array = treeop0;
8785 tree index = treeop1;
8787 /* Fold an expression like: "foo"[2].
8788 This is not done in fold so it won't happen inside &.
8789 Don't fold if this is for wide characters since it's too
8790 difficult to do correctly and this is a very rare case. */
8792 if (modifier != EXPAND_CONST_ADDRESS
8793 && modifier != EXPAND_INITIALIZER
8794 && modifier != EXPAND_MEMORY)
8796 tree t = fold_read_from_constant_string (exp);
8798 if (t)
8799 return expand_expr (t, target, tmode, modifier);
8802 /* If this is a constant index into a constant array,
8803 just get the value from the array. Handle both the cases when
8804 we have an explicit constructor and when our operand is a variable
8805 that was declared const. */
8807 if (modifier != EXPAND_CONST_ADDRESS
8808 && modifier != EXPAND_INITIALIZER
8809 && modifier != EXPAND_MEMORY
8810 && TREE_CODE (array) == CONSTRUCTOR
8811 && ! TREE_SIDE_EFFECTS (array)
8812 && TREE_CODE (index) == INTEGER_CST)
8814 unsigned HOST_WIDE_INT ix;
8815 tree field, value;
8817 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8818 field, value)
8819 if (tree_int_cst_equal (field, index))
8821 if (!TREE_SIDE_EFFECTS (value))
8822 return expand_expr (fold (value), target, tmode, modifier);
8823 break;
8827 else if (optimize >= 1
8828 && modifier != EXPAND_CONST_ADDRESS
8829 && modifier != EXPAND_INITIALIZER
8830 && modifier != EXPAND_MEMORY
8831 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8832 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8833 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8834 && targetm.binds_local_p (array))
8836 if (TREE_CODE (index) == INTEGER_CST)
8838 tree init = DECL_INITIAL (array);
8840 if (TREE_CODE (init) == CONSTRUCTOR)
8842 unsigned HOST_WIDE_INT ix;
8843 tree field, value;
8845 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8846 field, value)
8847 if (tree_int_cst_equal (field, index))
8849 if (TREE_SIDE_EFFECTS (value))
8850 break;
8852 if (TREE_CODE (value) == CONSTRUCTOR)
8854 /* If VALUE is a CONSTRUCTOR, this
8855 optimization is only useful if
8856 this doesn't store the CONSTRUCTOR
8857 into memory. If it does, it is more
8858 efficient to just load the data from
8859 the array directly. */
8860 rtx ret = expand_constructor (value, target,
8861 modifier, true);
8862 if (ret == NULL_RTX)
8863 break;
8866 return expand_expr (fold (value), target, tmode,
8867 modifier);
8870 else if(TREE_CODE (init) == STRING_CST)
8872 tree index1 = index;
8873 tree low_bound = array_ref_low_bound (exp);
8874 index1 = fold_convert_loc (loc, sizetype,
8875 treeop1);
8877 /* Optimize the special-case of a zero lower bound.
8879 We convert the low_bound to sizetype to avoid some problems
8880 with constant folding. (E.g. suppose the lower bound is 1,
8881 and its mode is QI. Without the conversion,l (ARRAY
8882 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8883 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8885 if (! integer_zerop (low_bound))
8886 index1 = size_diffop_loc (loc, index1,
8887 fold_convert_loc (loc, sizetype,
8888 low_bound));
8890 if (0 > compare_tree_int (index1,
8891 TREE_STRING_LENGTH (init)))
8893 tree type = TREE_TYPE (TREE_TYPE (init));
8894 enum machine_mode mode = TYPE_MODE (type);
8896 if (GET_MODE_CLASS (mode) == MODE_INT
8897 && GET_MODE_SIZE (mode) == 1)
8898 return gen_int_mode (TREE_STRING_POINTER (init)
8899 [TREE_INT_CST_LOW (index1)],
8900 mode);
8906 goto normal_inner_ref;
8908 case COMPONENT_REF:
8909 /* If the operand is a CONSTRUCTOR, we can just extract the
8910 appropriate field if it is present. */
8911 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8913 unsigned HOST_WIDE_INT idx;
8914 tree field, value;
8916 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8917 idx, field, value)
8918 if (field == treeop1
8919 /* We can normally use the value of the field in the
8920 CONSTRUCTOR. However, if this is a bitfield in
8921 an integral mode that we can fit in a HOST_WIDE_INT,
8922 we must mask only the number of bits in the bitfield,
8923 since this is done implicitly by the constructor. If
8924 the bitfield does not meet either of those conditions,
8925 we can't do this optimization. */
8926 && (! DECL_BIT_FIELD (field)
8927 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8928 && (GET_MODE_BITSIZE (DECL_MODE (field))
8929 <= HOST_BITS_PER_WIDE_INT))))
8931 if (DECL_BIT_FIELD (field)
8932 && modifier == EXPAND_STACK_PARM)
8933 target = 0;
8934 op0 = expand_expr (value, target, tmode, modifier);
8935 if (DECL_BIT_FIELD (field))
8937 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8938 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8940 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8942 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8943 op0 = expand_and (imode, op0, op1, target);
8945 else
8947 tree count
8948 = build_int_cst (NULL_TREE,
8949 GET_MODE_BITSIZE (imode) - bitsize);
8951 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8952 target, 0);
8953 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8954 target, 0);
8958 return op0;
8961 goto normal_inner_ref;
8963 case BIT_FIELD_REF:
8964 case ARRAY_RANGE_REF:
8965 normal_inner_ref:
8967 enum machine_mode mode1, mode2;
8968 HOST_WIDE_INT bitsize, bitpos;
8969 tree offset;
8970 int volatilep = 0, must_force_mem;
8971 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8972 &mode1, &unsignedp, &volatilep, true);
8973 rtx orig_op0, memloc;
8975 /* If we got back the original object, something is wrong. Perhaps
8976 we are evaluating an expression too early. In any event, don't
8977 infinitely recurse. */
8978 gcc_assert (tem != exp);
8980 /* If TEM's type is a union of variable size, pass TARGET to the inner
8981 computation, since it will need a temporary and TARGET is known
8982 to have to do. This occurs in unchecked conversion in Ada. */
8983 orig_op0 = op0
8984 = expand_expr (tem,
8985 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8986 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8987 != INTEGER_CST)
8988 && modifier != EXPAND_STACK_PARM
8989 ? target : NULL_RTX),
8990 VOIDmode,
8991 (modifier == EXPAND_INITIALIZER
8992 || modifier == EXPAND_CONST_ADDRESS
8993 || modifier == EXPAND_STACK_PARM)
8994 ? modifier : EXPAND_NORMAL);
8997 /* If the bitfield is volatile, we want to access it in the
8998 field's mode, not the computed mode. */
8999 if (volatilep
9000 && GET_CODE (op0) == MEM
9001 && flag_strict_volatile_bitfields > 0)
9002 op0 = adjust_address (op0, mode1, 0);
9004 mode2
9005 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9007 /* If we have either an offset, a BLKmode result, or a reference
9008 outside the underlying object, we must force it to memory.
9009 Such a case can occur in Ada if we have unchecked conversion
9010 of an expression from a scalar type to an aggregate type or
9011 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9012 passed a partially uninitialized object or a view-conversion
9013 to a larger size. */
9014 must_force_mem = (offset
9015 || mode1 == BLKmode
9016 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9018 /* Handle CONCAT first. */
9019 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9021 if (bitpos == 0
9022 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9023 return op0;
9024 if (bitpos == 0
9025 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9026 && bitsize)
9028 op0 = XEXP (op0, 0);
9029 mode2 = GET_MODE (op0);
9031 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9032 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9033 && bitpos
9034 && bitsize)
9036 op0 = XEXP (op0, 1);
9037 bitpos = 0;
9038 mode2 = GET_MODE (op0);
9040 else
9041 /* Otherwise force into memory. */
9042 must_force_mem = 1;
9045 /* If this is a constant, put it in a register if it is a legitimate
9046 constant and we don't need a memory reference. */
9047 if (CONSTANT_P (op0)
9048 && mode2 != BLKmode
9049 && LEGITIMATE_CONSTANT_P (op0)
9050 && !must_force_mem)
9051 op0 = force_reg (mode2, op0);
9053 /* Otherwise, if this is a constant, try to force it to the constant
9054 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9055 is a legitimate constant. */
9056 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9057 op0 = validize_mem (memloc);
9059 /* Otherwise, if this is a constant or the object is not in memory
9060 and need be, put it there. */
9061 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9063 tree nt = build_qualified_type (TREE_TYPE (tem),
9064 (TYPE_QUALS (TREE_TYPE (tem))
9065 | TYPE_QUAL_CONST));
9066 memloc = assign_temp (nt, 1, 1, 1);
9067 emit_move_insn (memloc, op0);
9068 op0 = memloc;
9071 if (offset)
9073 enum machine_mode address_mode;
9074 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9075 EXPAND_SUM);
9077 gcc_assert (MEM_P (op0));
9079 address_mode
9080 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9081 if (GET_MODE (offset_rtx) != address_mode)
9082 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9084 if (GET_MODE (op0) == BLKmode
9085 /* A constant address in OP0 can have VOIDmode, we must
9086 not try to call force_reg in that case. */
9087 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9088 && bitsize != 0
9089 && (bitpos % bitsize) == 0
9090 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9091 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9093 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9094 bitpos = 0;
9097 op0 = offset_address (op0, offset_rtx,
9098 highest_pow2_factor (offset));
9101 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9102 record its alignment as BIGGEST_ALIGNMENT. */
9103 if (MEM_P (op0) && bitpos == 0 && offset != 0
9104 && is_aligning_offset (offset, tem))
9105 set_mem_align (op0, BIGGEST_ALIGNMENT);
9107 /* Don't forget about volatility even if this is a bitfield. */
9108 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9110 if (op0 == orig_op0)
9111 op0 = copy_rtx (op0);
9113 MEM_VOLATILE_P (op0) = 1;
9116 /* In cases where an aligned union has an unaligned object
9117 as a field, we might be extracting a BLKmode value from
9118 an integer-mode (e.g., SImode) object. Handle this case
9119 by doing the extract into an object as wide as the field
9120 (which we know to be the width of a basic mode), then
9121 storing into memory, and changing the mode to BLKmode. */
9122 if (mode1 == VOIDmode
9123 || REG_P (op0) || GET_CODE (op0) == SUBREG
9124 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9125 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9126 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9127 && modifier != EXPAND_CONST_ADDRESS
9128 && modifier != EXPAND_INITIALIZER)
9129 /* If the field is volatile, we always want an aligned
9130 access. */
9131 || (volatilep && flag_strict_volatile_bitfields > 0)
9132 /* If the field isn't aligned enough to fetch as a memref,
9133 fetch it as a bit field. */
9134 || (mode1 != BLKmode
9135 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9136 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9137 || (MEM_P (op0)
9138 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9139 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9140 && ((modifier == EXPAND_CONST_ADDRESS
9141 || modifier == EXPAND_INITIALIZER)
9142 ? STRICT_ALIGNMENT
9143 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9144 || (bitpos % BITS_PER_UNIT != 0)))
9145 /* If the type and the field are a constant size and the
9146 size of the type isn't the same size as the bitfield,
9147 we must use bitfield operations. */
9148 || (bitsize >= 0
9149 && TYPE_SIZE (TREE_TYPE (exp))
9150 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9151 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9152 bitsize)))
9154 enum machine_mode ext_mode = mode;
9156 if (ext_mode == BLKmode
9157 && ! (target != 0 && MEM_P (op0)
9158 && MEM_P (target)
9159 && bitpos % BITS_PER_UNIT == 0))
9160 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9162 if (ext_mode == BLKmode)
9164 if (target == 0)
9165 target = assign_temp (type, 0, 1, 1);
9167 if (bitsize == 0)
9168 return target;
9170 /* In this case, BITPOS must start at a byte boundary and
9171 TARGET, if specified, must be a MEM. */
9172 gcc_assert (MEM_P (op0)
9173 && (!target || MEM_P (target))
9174 && !(bitpos % BITS_PER_UNIT));
9176 emit_block_move (target,
9177 adjust_address (op0, VOIDmode,
9178 bitpos / BITS_PER_UNIT),
9179 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9180 / BITS_PER_UNIT),
9181 (modifier == EXPAND_STACK_PARM
9182 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9184 return target;
9187 op0 = validize_mem (op0);
9189 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9190 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9192 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9193 (modifier == EXPAND_STACK_PARM
9194 ? NULL_RTX : target),
9195 ext_mode, ext_mode);
9197 /* If the result is a record type and BITSIZE is narrower than
9198 the mode of OP0, an integral mode, and this is a big endian
9199 machine, we must put the field into the high-order bits. */
9200 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9201 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9202 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9203 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9204 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9205 - bitsize),
9206 op0, 1);
9208 /* If the result type is BLKmode, store the data into a temporary
9209 of the appropriate type, but with the mode corresponding to the
9210 mode for the data we have (op0's mode). It's tempting to make
9211 this a constant type, since we know it's only being stored once,
9212 but that can cause problems if we are taking the address of this
9213 COMPONENT_REF because the MEM of any reference via that address
9214 will have flags corresponding to the type, which will not
9215 necessarily be constant. */
9216 if (mode == BLKmode)
9218 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9219 rtx new_rtx;
9221 /* If the reference doesn't use the alias set of its type,
9222 we cannot create the temporary using that type. */
9223 if (component_uses_parent_alias_set (exp))
9225 new_rtx = assign_stack_local (ext_mode, size, 0);
9226 set_mem_alias_set (new_rtx, get_alias_set (exp));
9228 else
9229 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9231 emit_move_insn (new_rtx, op0);
9232 op0 = copy_rtx (new_rtx);
9233 PUT_MODE (op0, BLKmode);
9234 set_mem_attributes (op0, exp, 1);
9237 return op0;
9240 /* If the result is BLKmode, use that to access the object
9241 now as well. */
9242 if (mode == BLKmode)
9243 mode1 = BLKmode;
9245 /* Get a reference to just this component. */
9246 if (modifier == EXPAND_CONST_ADDRESS
9247 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9248 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9249 else
9250 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9252 if (op0 == orig_op0)
9253 op0 = copy_rtx (op0);
9255 set_mem_attributes (op0, exp, 0);
9256 if (REG_P (XEXP (op0, 0)))
9257 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9259 MEM_VOLATILE_P (op0) |= volatilep;
9260 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9261 || modifier == EXPAND_CONST_ADDRESS
9262 || modifier == EXPAND_INITIALIZER)
9263 return op0;
9264 else if (target == 0)
9265 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9267 convert_move (target, op0, unsignedp);
9268 return target;
9271 case OBJ_TYPE_REF:
9272 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9274 case CALL_EXPR:
9275 /* All valid uses of __builtin_va_arg_pack () are removed during
9276 inlining. */
9277 if (CALL_EXPR_VA_ARG_PACK (exp))
9278 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9280 tree fndecl = get_callee_fndecl (exp), attr;
9282 if (fndecl
9283 && (attr = lookup_attribute ("error",
9284 DECL_ATTRIBUTES (fndecl))) != NULL)
9285 error ("%Kcall to %qs declared with attribute error: %s",
9286 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9287 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9288 if (fndecl
9289 && (attr = lookup_attribute ("warning",
9290 DECL_ATTRIBUTES (fndecl))) != NULL)
9291 warning_at (tree_nonartificial_location (exp),
9292 0, "%Kcall to %qs declared with attribute warning: %s",
9293 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9294 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9296 /* Check for a built-in function. */
9297 if (fndecl && DECL_BUILT_IN (fndecl))
9299 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9300 return expand_builtin (exp, target, subtarget, tmode, ignore);
9303 return expand_call (exp, target, ignore);
9305 case VIEW_CONVERT_EXPR:
9306 op0 = NULL_RTX;
9308 /* If we are converting to BLKmode, try to avoid an intermediate
9309 temporary by fetching an inner memory reference. */
9310 if (mode == BLKmode
9311 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9312 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9313 && handled_component_p (treeop0))
9315 enum machine_mode mode1;
9316 HOST_WIDE_INT bitsize, bitpos;
9317 tree offset;
9318 int unsignedp;
9319 int volatilep = 0;
9320 tree tem
9321 = get_inner_reference (treeop0, &bitsize, &bitpos,
9322 &offset, &mode1, &unsignedp, &volatilep,
9323 true);
9324 rtx orig_op0;
9326 /* ??? We should work harder and deal with non-zero offsets. */
9327 if (!offset
9328 && (bitpos % BITS_PER_UNIT) == 0
9329 && bitsize >= 0
9330 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9332 /* See the normal_inner_ref case for the rationale. */
9333 orig_op0
9334 = expand_expr (tem,
9335 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9336 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9337 != INTEGER_CST)
9338 && modifier != EXPAND_STACK_PARM
9339 ? target : NULL_RTX),
9340 VOIDmode,
9341 (modifier == EXPAND_INITIALIZER
9342 || modifier == EXPAND_CONST_ADDRESS
9343 || modifier == EXPAND_STACK_PARM)
9344 ? modifier : EXPAND_NORMAL);
9346 if (MEM_P (orig_op0))
9348 op0 = orig_op0;
9350 /* Get a reference to just this component. */
9351 if (modifier == EXPAND_CONST_ADDRESS
9352 || modifier == EXPAND_SUM
9353 || modifier == EXPAND_INITIALIZER)
9354 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9355 else
9356 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9358 if (op0 == orig_op0)
9359 op0 = copy_rtx (op0);
9361 set_mem_attributes (op0, treeop0, 0);
9362 if (REG_P (XEXP (op0, 0)))
9363 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9365 MEM_VOLATILE_P (op0) |= volatilep;
9370 if (!op0)
9371 op0 = expand_expr (treeop0,
9372 NULL_RTX, VOIDmode, modifier);
9374 /* If the input and output modes are both the same, we are done. */
9375 if (mode == GET_MODE (op0))
9377 /* If neither mode is BLKmode, and both modes are the same size
9378 then we can use gen_lowpart. */
9379 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9380 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9381 && !COMPLEX_MODE_P (GET_MODE (op0)))
9383 if (GET_CODE (op0) == SUBREG)
9384 op0 = force_reg (GET_MODE (op0), op0);
9385 op0 = gen_lowpart (mode, op0);
9387 /* If both types are integral, convert from one mode to the other. */
9388 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9389 op0 = convert_modes (mode, GET_MODE (op0), op0,
9390 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9391 /* As a last resort, spill op0 to memory, and reload it in a
9392 different mode. */
9393 else if (!MEM_P (op0))
9395 /* If the operand is not a MEM, force it into memory. Since we
9396 are going to be changing the mode of the MEM, don't call
9397 force_const_mem for constants because we don't allow pool
9398 constants to change mode. */
9399 tree inner_type = TREE_TYPE (treeop0);
9401 gcc_assert (!TREE_ADDRESSABLE (exp));
9403 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9404 target
9405 = assign_stack_temp_for_type
9406 (TYPE_MODE (inner_type),
9407 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9409 emit_move_insn (target, op0);
9410 op0 = target;
9413 /* At this point, OP0 is in the correct mode. If the output type is
9414 such that the operand is known to be aligned, indicate that it is.
9415 Otherwise, we need only be concerned about alignment for non-BLKmode
9416 results. */
9417 if (MEM_P (op0))
9419 op0 = copy_rtx (op0);
9421 if (TYPE_ALIGN_OK (type))
9422 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9423 else if (STRICT_ALIGNMENT
9424 && mode != BLKmode
9425 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9427 tree inner_type = TREE_TYPE (treeop0);
9428 HOST_WIDE_INT temp_size
9429 = MAX (int_size_in_bytes (inner_type),
9430 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9431 rtx new_rtx
9432 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9433 rtx new_with_op0_mode
9434 = adjust_address (new_rtx, GET_MODE (op0), 0);
9436 gcc_assert (!TREE_ADDRESSABLE (exp));
9438 if (GET_MODE (op0) == BLKmode)
9439 emit_block_move (new_with_op0_mode, op0,
9440 GEN_INT (GET_MODE_SIZE (mode)),
9441 (modifier == EXPAND_STACK_PARM
9442 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9443 else
9444 emit_move_insn (new_with_op0_mode, op0);
9446 op0 = new_rtx;
9449 op0 = adjust_address (op0, mode, 0);
9452 return op0;
9454 /* Use a compare and a jump for BLKmode comparisons, or for function
9455 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9457 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9458 are occassionally created by folding during expansion. */
9459 case TRUTH_ANDIF_EXPR:
9460 case TRUTH_ORIF_EXPR:
9461 if (! ignore
9462 && (target == 0
9463 || modifier == EXPAND_STACK_PARM
9464 || ! safe_from_p (target, treeop0, 1)
9465 || ! safe_from_p (target, treeop1, 1)
9466 /* Make sure we don't have a hard reg (such as function's return
9467 value) live across basic blocks, if not optimizing. */
9468 || (!optimize && REG_P (target)
9469 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9470 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9472 if (target)
9473 emit_move_insn (target, const0_rtx);
9475 op1 = gen_label_rtx ();
9476 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9478 if (target)
9479 emit_move_insn (target, const1_rtx);
9481 emit_label (op1);
9482 return ignore ? const0_rtx : target;
9484 case STATEMENT_LIST:
9486 tree_stmt_iterator iter;
9488 gcc_assert (ignore);
9490 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9491 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9493 return const0_rtx;
9495 case COND_EXPR:
9496 /* A COND_EXPR with its type being VOID_TYPE represents a
9497 conditional jump and is handled in
9498 expand_gimple_cond_expr. */
9499 gcc_assert (!VOID_TYPE_P (type));
9501 /* Note that COND_EXPRs whose type is a structure or union
9502 are required to be constructed to contain assignments of
9503 a temporary variable, so that we can evaluate them here
9504 for side effect only. If type is void, we must do likewise. */
9506 gcc_assert (!TREE_ADDRESSABLE (type)
9507 && !ignore
9508 && TREE_TYPE (treeop1) != void_type_node
9509 && TREE_TYPE (treeop2) != void_type_node);
9511 /* If we are not to produce a result, we have no target. Otherwise,
9512 if a target was specified use it; it will not be used as an
9513 intermediate target unless it is safe. If no target, use a
9514 temporary. */
9516 if (modifier != EXPAND_STACK_PARM
9517 && original_target
9518 && safe_from_p (original_target, treeop0, 1)
9519 && GET_MODE (original_target) == mode
9520 #ifdef HAVE_conditional_move
9521 && (! can_conditionally_move_p (mode)
9522 || REG_P (original_target))
9523 #endif
9524 && !MEM_P (original_target))
9525 temp = original_target;
9526 else
9527 temp = assign_temp (type, 0, 0, 1);
9529 do_pending_stack_adjust ();
9530 NO_DEFER_POP;
9531 op0 = gen_label_rtx ();
9532 op1 = gen_label_rtx ();
9533 jumpifnot (treeop0, op0, -1);
9534 store_expr (treeop1, temp,
9535 modifier == EXPAND_STACK_PARM,
9536 false);
9538 emit_jump_insn (gen_jump (op1));
9539 emit_barrier ();
9540 emit_label (op0);
9541 store_expr (treeop2, temp,
9542 modifier == EXPAND_STACK_PARM,
9543 false);
9545 emit_label (op1);
9546 OK_DEFER_POP;
9547 return temp;
9549 case VEC_COND_EXPR:
9550 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9551 return target;
9553 case MODIFY_EXPR:
9555 tree lhs = treeop0;
9556 tree rhs = treeop1;
9557 gcc_assert (ignore);
9559 /* Check for |= or &= of a bitfield of size one into another bitfield
9560 of size 1. In this case, (unless we need the result of the
9561 assignment) we can do this more efficiently with a
9562 test followed by an assignment, if necessary.
9564 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9565 things change so we do, this code should be enhanced to
9566 support it. */
9567 if (TREE_CODE (lhs) == COMPONENT_REF
9568 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9569 || TREE_CODE (rhs) == BIT_AND_EXPR)
9570 && TREE_OPERAND (rhs, 0) == lhs
9571 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9572 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9573 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9575 rtx label = gen_label_rtx ();
9576 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9577 do_jump (TREE_OPERAND (rhs, 1),
9578 value ? label : 0,
9579 value ? 0 : label, -1);
9580 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9581 MOVE_NONTEMPORAL (exp));
9582 do_pending_stack_adjust ();
9583 emit_label (label);
9584 return const0_rtx;
9587 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9588 return const0_rtx;
9591 case ADDR_EXPR:
9592 return expand_expr_addr_expr (exp, target, tmode, modifier);
9594 case REALPART_EXPR:
9595 op0 = expand_normal (treeop0);
9596 return read_complex_part (op0, false);
9598 case IMAGPART_EXPR:
9599 op0 = expand_normal (treeop0);
9600 return read_complex_part (op0, true);
9602 case RETURN_EXPR:
9603 case LABEL_EXPR:
9604 case GOTO_EXPR:
9605 case SWITCH_EXPR:
9606 case ASM_EXPR:
9607 /* Expanded in cfgexpand.c. */
9608 gcc_unreachable ();
9610 case TRY_CATCH_EXPR:
9611 case CATCH_EXPR:
9612 case EH_FILTER_EXPR:
9613 case TRY_FINALLY_EXPR:
9614 /* Lowered by tree-eh.c. */
9615 gcc_unreachable ();
9617 case WITH_CLEANUP_EXPR:
9618 case CLEANUP_POINT_EXPR:
9619 case TARGET_EXPR:
9620 case CASE_LABEL_EXPR:
9621 case VA_ARG_EXPR:
9622 case BIND_EXPR:
9623 case INIT_EXPR:
9624 case CONJ_EXPR:
9625 case COMPOUND_EXPR:
9626 case PREINCREMENT_EXPR:
9627 case PREDECREMENT_EXPR:
9628 case POSTINCREMENT_EXPR:
9629 case POSTDECREMENT_EXPR:
9630 case LOOP_EXPR:
9631 case EXIT_EXPR:
9632 /* Lowered by gimplify.c. */
9633 gcc_unreachable ();
9635 case FDESC_EXPR:
9636 /* Function descriptors are not valid except for as
9637 initialization constants, and should not be expanded. */
9638 gcc_unreachable ();
9640 case WITH_SIZE_EXPR:
9641 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9642 have pulled out the size to use in whatever context it needed. */
9643 return expand_expr_real (treeop0, original_target, tmode,
9644 modifier, alt_rtl);
9646 case REALIGN_LOAD_EXPR:
9648 tree oprnd0 = treeop0;
9649 tree oprnd1 = treeop1;
9650 tree oprnd2 = treeop2;
9651 rtx op2;
9653 this_optab = optab_for_tree_code (code, type, optab_default);
9654 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9655 op2 = expand_normal (oprnd2);
9656 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9657 target, unsignedp);
9658 gcc_assert (temp);
9659 return temp;
9662 case DOT_PROD_EXPR:
9664 tree oprnd0 = treeop0;
9665 tree oprnd1 = treeop1;
9666 tree oprnd2 = treeop2;
9667 rtx op2;
9669 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9670 op2 = expand_normal (oprnd2);
9671 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9672 target, unsignedp);
9673 return target;
9676 case COMPOUND_LITERAL_EXPR:
9678 /* Initialize the anonymous variable declared in the compound
9679 literal, then return the variable. */
9680 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9682 /* Create RTL for this variable. */
9683 if (!DECL_RTL_SET_P (decl))
9685 if (DECL_HARD_REGISTER (decl))
9686 /* The user specified an assembler name for this variable.
9687 Set that up now. */
9688 rest_of_decl_compilation (decl, 0, 0);
9689 else
9690 expand_decl (decl);
9693 return expand_expr_real (decl, original_target, tmode,
9694 modifier, alt_rtl);
9697 default:
9698 return expand_expr_real_2 (&ops, target, tmode, modifier);
9702 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9703 signedness of TYPE), possibly returning the result in TARGET. */
9704 static rtx
9705 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9707 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9708 if (target && GET_MODE (target) != GET_MODE (exp))
9709 target = 0;
9710 /* For constant values, reduce using build_int_cst_type. */
9711 if (CONST_INT_P (exp))
9713 HOST_WIDE_INT value = INTVAL (exp);
9714 tree t = build_int_cst_type (type, value);
9715 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9717 else if (TYPE_UNSIGNED (type))
9719 rtx mask = immed_double_int_const (double_int_mask (prec),
9720 GET_MODE (exp));
9721 return expand_and (GET_MODE (exp), exp, mask, target);
9723 else
9725 tree count = build_int_cst (NULL_TREE,
9726 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9727 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9728 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9732 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9733 when applied to the address of EXP produces an address known to be
9734 aligned more than BIGGEST_ALIGNMENT. */
9736 static int
9737 is_aligning_offset (const_tree offset, const_tree exp)
9739 /* Strip off any conversions. */
9740 while (CONVERT_EXPR_P (offset))
9741 offset = TREE_OPERAND (offset, 0);
9743 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9744 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9745 if (TREE_CODE (offset) != BIT_AND_EXPR
9746 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9747 || compare_tree_int (TREE_OPERAND (offset, 1),
9748 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9749 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9750 return 0;
9752 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9753 It must be NEGATE_EXPR. Then strip any more conversions. */
9754 offset = TREE_OPERAND (offset, 0);
9755 while (CONVERT_EXPR_P (offset))
9756 offset = TREE_OPERAND (offset, 0);
9758 if (TREE_CODE (offset) != NEGATE_EXPR)
9759 return 0;
9761 offset = TREE_OPERAND (offset, 0);
9762 while (CONVERT_EXPR_P (offset))
9763 offset = TREE_OPERAND (offset, 0);
9765 /* This must now be the address of EXP. */
9766 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9769 /* Return the tree node if an ARG corresponds to a string constant or zero
9770 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9771 in bytes within the string that ARG is accessing. The type of the
9772 offset will be `sizetype'. */
9774 tree
9775 string_constant (tree arg, tree *ptr_offset)
9777 tree array, offset, lower_bound;
9778 STRIP_NOPS (arg);
9780 if (TREE_CODE (arg) == ADDR_EXPR)
9782 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9784 *ptr_offset = size_zero_node;
9785 return TREE_OPERAND (arg, 0);
9787 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9789 array = TREE_OPERAND (arg, 0);
9790 offset = size_zero_node;
9792 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9794 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9795 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9796 if (TREE_CODE (array) != STRING_CST
9797 && TREE_CODE (array) != VAR_DECL)
9798 return 0;
9800 /* Check if the array has a nonzero lower bound. */
9801 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9802 if (!integer_zerop (lower_bound))
9804 /* If the offset and base aren't both constants, return 0. */
9805 if (TREE_CODE (lower_bound) != INTEGER_CST)
9806 return 0;
9807 if (TREE_CODE (offset) != INTEGER_CST)
9808 return 0;
9809 /* Adjust offset by the lower bound. */
9810 offset = size_diffop (fold_convert (sizetype, offset),
9811 fold_convert (sizetype, lower_bound));
9814 else
9815 return 0;
9817 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9819 tree arg0 = TREE_OPERAND (arg, 0);
9820 tree arg1 = TREE_OPERAND (arg, 1);
9822 STRIP_NOPS (arg0);
9823 STRIP_NOPS (arg1);
9825 if (TREE_CODE (arg0) == ADDR_EXPR
9826 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9827 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9829 array = TREE_OPERAND (arg0, 0);
9830 offset = arg1;
9832 else if (TREE_CODE (arg1) == ADDR_EXPR
9833 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9834 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9836 array = TREE_OPERAND (arg1, 0);
9837 offset = arg0;
9839 else
9840 return 0;
9842 else
9843 return 0;
9845 if (TREE_CODE (array) == STRING_CST)
9847 *ptr_offset = fold_convert (sizetype, offset);
9848 return array;
9850 else if (TREE_CODE (array) == VAR_DECL)
9852 int length;
9854 /* Variables initialized to string literals can be handled too. */
9855 if (DECL_INITIAL (array) == NULL_TREE
9856 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9857 return 0;
9859 /* If they are read-only, non-volatile and bind locally. */
9860 if (! TREE_READONLY (array)
9861 || TREE_SIDE_EFFECTS (array)
9862 || ! targetm.binds_local_p (array))
9863 return 0;
9865 /* Avoid const char foo[4] = "abcde"; */
9866 if (DECL_SIZE_UNIT (array) == NULL_TREE
9867 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9868 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9869 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9870 return 0;
9872 /* If variable is bigger than the string literal, OFFSET must be constant
9873 and inside of the bounds of the string literal. */
9874 offset = fold_convert (sizetype, offset);
9875 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9876 && (! host_integerp (offset, 1)
9877 || compare_tree_int (offset, length) >= 0))
9878 return 0;
9880 *ptr_offset = offset;
9881 return DECL_INITIAL (array);
9884 return 0;
9887 /* Generate code to calculate OPS, and exploded expression
9888 using a store-flag instruction and return an rtx for the result.
9889 OPS reflects a comparison.
9891 If TARGET is nonzero, store the result there if convenient.
9893 Return zero if there is no suitable set-flag instruction
9894 available on this machine.
9896 Once expand_expr has been called on the arguments of the comparison,
9897 we are committed to doing the store flag, since it is not safe to
9898 re-evaluate the expression. We emit the store-flag insn by calling
9899 emit_store_flag, but only expand the arguments if we have a reason
9900 to believe that emit_store_flag will be successful. If we think that
9901 it will, but it isn't, we have to simulate the store-flag with a
9902 set/jump/set sequence. */
9904 static rtx
9905 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9907 enum rtx_code code;
9908 tree arg0, arg1, type;
9909 tree tem;
9910 enum machine_mode operand_mode;
9911 int unsignedp;
9912 rtx op0, op1;
9913 rtx subtarget = target;
9914 location_t loc = ops->location;
9916 arg0 = ops->op0;
9917 arg1 = ops->op1;
9919 /* Don't crash if the comparison was erroneous. */
9920 if (arg0 == error_mark_node || arg1 == error_mark_node)
9921 return const0_rtx;
9923 type = TREE_TYPE (arg0);
9924 operand_mode = TYPE_MODE (type);
9925 unsignedp = TYPE_UNSIGNED (type);
9927 /* We won't bother with BLKmode store-flag operations because it would mean
9928 passing a lot of information to emit_store_flag. */
9929 if (operand_mode == BLKmode)
9930 return 0;
9932 /* We won't bother with store-flag operations involving function pointers
9933 when function pointers must be canonicalized before comparisons. */
9934 #ifdef HAVE_canonicalize_funcptr_for_compare
9935 if (HAVE_canonicalize_funcptr_for_compare
9936 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9937 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9938 == FUNCTION_TYPE))
9939 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9940 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9941 == FUNCTION_TYPE))))
9942 return 0;
9943 #endif
9945 STRIP_NOPS (arg0);
9946 STRIP_NOPS (arg1);
9948 /* Get the rtx comparison code to use. We know that EXP is a comparison
9949 operation of some type. Some comparisons against 1 and -1 can be
9950 converted to comparisons with zero. Do so here so that the tests
9951 below will be aware that we have a comparison with zero. These
9952 tests will not catch constants in the first operand, but constants
9953 are rarely passed as the first operand. */
9955 switch (ops->code)
9957 case EQ_EXPR:
9958 code = EQ;
9959 break;
9960 case NE_EXPR:
9961 code = NE;
9962 break;
9963 case LT_EXPR:
9964 if (integer_onep (arg1))
9965 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9966 else
9967 code = unsignedp ? LTU : LT;
9968 break;
9969 case LE_EXPR:
9970 if (! unsignedp && integer_all_onesp (arg1))
9971 arg1 = integer_zero_node, code = LT;
9972 else
9973 code = unsignedp ? LEU : LE;
9974 break;
9975 case GT_EXPR:
9976 if (! unsignedp && integer_all_onesp (arg1))
9977 arg1 = integer_zero_node, code = GE;
9978 else
9979 code = unsignedp ? GTU : GT;
9980 break;
9981 case GE_EXPR:
9982 if (integer_onep (arg1))
9983 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9984 else
9985 code = unsignedp ? GEU : GE;
9986 break;
9988 case UNORDERED_EXPR:
9989 code = UNORDERED;
9990 break;
9991 case ORDERED_EXPR:
9992 code = ORDERED;
9993 break;
9994 case UNLT_EXPR:
9995 code = UNLT;
9996 break;
9997 case UNLE_EXPR:
9998 code = UNLE;
9999 break;
10000 case UNGT_EXPR:
10001 code = UNGT;
10002 break;
10003 case UNGE_EXPR:
10004 code = UNGE;
10005 break;
10006 case UNEQ_EXPR:
10007 code = UNEQ;
10008 break;
10009 case LTGT_EXPR:
10010 code = LTGT;
10011 break;
10013 default:
10014 gcc_unreachable ();
10017 /* Put a constant second. */
10018 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10019 || TREE_CODE (arg0) == FIXED_CST)
10021 tem = arg0; arg0 = arg1; arg1 = tem;
10022 code = swap_condition (code);
10025 /* If this is an equality or inequality test of a single bit, we can
10026 do this by shifting the bit being tested to the low-order bit and
10027 masking the result with the constant 1. If the condition was EQ,
10028 we xor it with 1. This does not require an scc insn and is faster
10029 than an scc insn even if we have it.
10031 The code to make this transformation was moved into fold_single_bit_test,
10032 so we just call into the folder and expand its result. */
10034 if ((code == NE || code == EQ)
10035 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10036 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10038 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10039 return expand_expr (fold_single_bit_test (loc,
10040 code == NE ? NE_EXPR : EQ_EXPR,
10041 arg0, arg1, type),
10042 target, VOIDmode, EXPAND_NORMAL);
10045 if (! get_subtarget (target)
10046 || GET_MODE (subtarget) != operand_mode)
10047 subtarget = 0;
10049 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10051 if (target == 0)
10052 target = gen_reg_rtx (mode);
10054 /* Try a cstore if possible. */
10055 return emit_store_flag_force (target, code, op0, op1,
10056 operand_mode, unsignedp, 1);
10060 /* Stubs in case we haven't got a casesi insn. */
10061 #ifndef HAVE_casesi
10062 # define HAVE_casesi 0
10063 # define gen_casesi(a, b, c, d, e) (0)
10064 # define CODE_FOR_casesi CODE_FOR_nothing
10065 #endif
10067 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10068 0 otherwise (i.e. if there is no casesi instruction). */
10070 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10071 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10072 rtx fallback_label ATTRIBUTE_UNUSED)
10074 enum machine_mode index_mode = SImode;
10075 int index_bits = GET_MODE_BITSIZE (index_mode);
10076 rtx op1, op2, index;
10077 enum machine_mode op_mode;
10079 if (! HAVE_casesi)
10080 return 0;
10082 /* Convert the index to SImode. */
10083 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10085 enum machine_mode omode = TYPE_MODE (index_type);
10086 rtx rangertx = expand_normal (range);
10088 /* We must handle the endpoints in the original mode. */
10089 index_expr = build2 (MINUS_EXPR, index_type,
10090 index_expr, minval);
10091 minval = integer_zero_node;
10092 index = expand_normal (index_expr);
10093 if (default_label)
10094 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10095 omode, 1, default_label);
10096 /* Now we can safely truncate. */
10097 index = convert_to_mode (index_mode, index, 0);
10099 else
10101 if (TYPE_MODE (index_type) != index_mode)
10103 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10104 index_expr = fold_convert (index_type, index_expr);
10107 index = expand_normal (index_expr);
10110 do_pending_stack_adjust ();
10112 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10113 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10114 (index, op_mode))
10115 index = copy_to_mode_reg (op_mode, index);
10117 op1 = expand_normal (minval);
10119 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10120 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10121 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10122 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10123 (op1, op_mode))
10124 op1 = copy_to_mode_reg (op_mode, op1);
10126 op2 = expand_normal (range);
10128 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10129 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10130 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10131 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10132 (op2, op_mode))
10133 op2 = copy_to_mode_reg (op_mode, op2);
10135 emit_jump_insn (gen_casesi (index, op1, op2,
10136 table_label, !default_label
10137 ? fallback_label : default_label));
10138 return 1;
10141 /* Attempt to generate a tablejump instruction; same concept. */
10142 #ifndef HAVE_tablejump
10143 #define HAVE_tablejump 0
10144 #define gen_tablejump(x, y) (0)
10145 #endif
10147 /* Subroutine of the next function.
10149 INDEX is the value being switched on, with the lowest value
10150 in the table already subtracted.
10151 MODE is its expected mode (needed if INDEX is constant).
10152 RANGE is the length of the jump table.
10153 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10155 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10156 index value is out of range. */
10158 static void
10159 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10160 rtx default_label)
10162 rtx temp, vector;
10164 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10165 cfun->cfg->max_jumptable_ents = INTVAL (range);
10167 /* Do an unsigned comparison (in the proper mode) between the index
10168 expression and the value which represents the length of the range.
10169 Since we just finished subtracting the lower bound of the range
10170 from the index expression, this comparison allows us to simultaneously
10171 check that the original index expression value is both greater than
10172 or equal to the minimum value of the range and less than or equal to
10173 the maximum value of the range. */
10175 if (default_label)
10176 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10177 default_label);
10179 /* If index is in range, it must fit in Pmode.
10180 Convert to Pmode so we can index with it. */
10181 if (mode != Pmode)
10182 index = convert_to_mode (Pmode, index, 1);
10184 /* Don't let a MEM slip through, because then INDEX that comes
10185 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10186 and break_out_memory_refs will go to work on it and mess it up. */
10187 #ifdef PIC_CASE_VECTOR_ADDRESS
10188 if (flag_pic && !REG_P (index))
10189 index = copy_to_mode_reg (Pmode, index);
10190 #endif
10192 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10193 GET_MODE_SIZE, because this indicates how large insns are. The other
10194 uses should all be Pmode, because they are addresses. This code
10195 could fail if addresses and insns are not the same size. */
10196 index = gen_rtx_PLUS (Pmode,
10197 gen_rtx_MULT (Pmode, index,
10198 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10199 gen_rtx_LABEL_REF (Pmode, table_label));
10200 #ifdef PIC_CASE_VECTOR_ADDRESS
10201 if (flag_pic)
10202 index = PIC_CASE_VECTOR_ADDRESS (index);
10203 else
10204 #endif
10205 index = memory_address (CASE_VECTOR_MODE, index);
10206 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10207 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10208 convert_move (temp, vector, 0);
10210 emit_jump_insn (gen_tablejump (temp, table_label));
10212 /* If we are generating PIC code or if the table is PC-relative, the
10213 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10214 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10215 emit_barrier ();
10219 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10220 rtx table_label, rtx default_label)
10222 rtx index;
10224 if (! HAVE_tablejump)
10225 return 0;
10227 index_expr = fold_build2 (MINUS_EXPR, index_type,
10228 fold_convert (index_type, index_expr),
10229 fold_convert (index_type, minval));
10230 index = expand_normal (index_expr);
10231 do_pending_stack_adjust ();
10233 do_tablejump (index, TYPE_MODE (index_type),
10234 convert_modes (TYPE_MODE (index_type),
10235 TYPE_MODE (TREE_TYPE (range)),
10236 expand_normal (range),
10237 TYPE_UNSIGNED (TREE_TYPE (range))),
10238 table_label, default_label);
10239 return 1;
10242 /* Nonzero if the mode is a valid vector mode for this architecture.
10243 This returns nonzero even if there is no hardware support for the
10244 vector mode, but we can emulate with narrower modes. */
10247 vector_mode_valid_p (enum machine_mode mode)
10249 enum mode_class mclass = GET_MODE_CLASS (mode);
10250 enum machine_mode innermode;
10252 /* Doh! What's going on? */
10253 if (mclass != MODE_VECTOR_INT
10254 && mclass != MODE_VECTOR_FLOAT
10255 && mclass != MODE_VECTOR_FRACT
10256 && mclass != MODE_VECTOR_UFRACT
10257 && mclass != MODE_VECTOR_ACCUM
10258 && mclass != MODE_VECTOR_UACCUM)
10259 return 0;
10261 /* Hardware support. Woo hoo! */
10262 if (targetm.vector_mode_supported_p (mode))
10263 return 1;
10265 innermode = GET_MODE_INNER (mode);
10267 /* We should probably return 1 if requesting V4DI and we have no DI,
10268 but we have V2DI, but this is probably very unlikely. */
10270 /* If we have support for the inner mode, we can safely emulate it.
10271 We may not have V2DI, but me can emulate with a pair of DIs. */
10272 return targetm.scalar_mode_supported_p (innermode);
10275 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10276 static rtx
10277 const_vector_from_tree (tree exp)
10279 rtvec v;
10280 int units, i;
10281 tree link, elt;
10282 enum machine_mode inner, mode;
10284 mode = TYPE_MODE (TREE_TYPE (exp));
10286 if (initializer_zerop (exp))
10287 return CONST0_RTX (mode);
10289 units = GET_MODE_NUNITS (mode);
10290 inner = GET_MODE_INNER (mode);
10292 v = rtvec_alloc (units);
10294 link = TREE_VECTOR_CST_ELTS (exp);
10295 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10297 elt = TREE_VALUE (link);
10299 if (TREE_CODE (elt) == REAL_CST)
10300 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10301 inner);
10302 else if (TREE_CODE (elt) == FIXED_CST)
10303 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10304 inner);
10305 else
10306 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10307 inner);
10310 /* Initialize remaining elements to 0. */
10311 for (; i < units; ++i)
10312 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10314 return gen_rtx_CONST_VECTOR (mode, v);
10318 /* Build a decl for a EH personality function named NAME. */
10320 tree
10321 build_personality_function (const char *name)
10323 tree decl, type;
10325 type = build_function_type_list (integer_type_node, integer_type_node,
10326 long_long_unsigned_type_node,
10327 ptr_type_node, ptr_type_node, NULL_TREE);
10328 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10329 get_identifier (name), type);
10330 DECL_ARTIFICIAL (decl) = 1;
10331 DECL_EXTERNAL (decl) = 1;
10332 TREE_PUBLIC (decl) = 1;
10334 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10335 are the flags assigned by targetm.encode_section_info. */
10336 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10338 return decl;
10341 /* Extracts the personality function of DECL and returns the corresponding
10342 libfunc. */
10345 get_personality_function (tree decl)
10347 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10348 enum eh_personality_kind pk;
10350 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10351 if (pk == eh_personality_none)
10352 return NULL;
10354 if (!personality
10355 && pk == eh_personality_any)
10356 personality = lang_hooks.eh_personality ();
10358 if (pk == eh_personality_lang)
10359 gcc_assert (personality != NULL_TREE);
10361 return XEXP (DECL_RTL (personality), 0);
10364 #include "gt-expr.h"