1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
34 #include "diagnostic-core.h"
36 /* Include insn-config.h before expr.h so that HAVE_conditional_move
37 is properly defined. */
38 #include "stor-layout.h"
43 #include "optabs-tree.h"
46 static void prepare_float_lib_cmp (rtx
, rtx
, enum rtx_code
, rtx
*,
48 static rtx
expand_unop_direct (machine_mode
, optab
, rtx
, rtx
, int);
49 static void emit_libcall_block_1 (rtx_insn
*, rtx
, rtx
, rtx
, bool);
51 /* Debug facility for use in GDB. */
52 void debug_optab_libfuncs (void);
54 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
55 the result of operation CODE applied to OP0 (and OP1 if it is a binary
58 If the last insn does not set TARGET, don't do anything, but return 1.
60 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
61 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
62 try again, ensuring that TARGET is not one of the operands. */
65 add_equal_note (rtx_insn
*insns
, rtx target
, enum rtx_code code
, rtx op0
, rtx op1
)
71 gcc_assert (insns
&& INSN_P (insns
) && NEXT_INSN (insns
));
73 if (GET_RTX_CLASS (code
) != RTX_COMM_ARITH
74 && GET_RTX_CLASS (code
) != RTX_BIN_ARITH
75 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
76 && GET_RTX_CLASS (code
) != RTX_COMPARE
77 && GET_RTX_CLASS (code
) != RTX_UNARY
)
80 if (GET_CODE (target
) == ZERO_EXTRACT
)
83 for (last_insn
= insns
;
84 NEXT_INSN (last_insn
) != NULL_RTX
;
85 last_insn
= NEXT_INSN (last_insn
))
88 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
89 a value changing in the insn, so the note would be invalid for CSE. */
90 if (reg_overlap_mentioned_p (target
, op0
)
91 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
94 && (rtx_equal_p (target
, op0
)
95 || (op1
&& rtx_equal_p (target
, op1
))))
97 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
98 over expanding it as temp = MEM op X, MEM = temp. If the target
99 supports MEM = MEM op X instructions, it is sometimes too hard
100 to reconstruct that form later, especially if X is also a memory,
101 and due to multiple occurrences of addresses the address might
102 be forced into register unnecessarily.
103 Note that not emitting the REG_EQUIV note might inhibit
104 CSE in some cases. */
105 set
= single_set (last_insn
);
107 && GET_CODE (SET_SRC (set
)) == code
108 && MEM_P (SET_DEST (set
))
109 && (rtx_equal_p (SET_DEST (set
), XEXP (SET_SRC (set
), 0))
110 || (op1
&& rtx_equal_p (SET_DEST (set
),
111 XEXP (SET_SRC (set
), 1)))))
117 set
= set_for_reg_notes (last_insn
);
121 if (! rtx_equal_p (SET_DEST (set
), target
)
122 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
123 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
124 || ! rtx_equal_p (XEXP (SET_DEST (set
), 0), target
)))
127 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
137 if (GET_MODE (op0
) != VOIDmode
&& GET_MODE (target
) != GET_MODE (op0
))
139 note
= gen_rtx_fmt_e (code
, GET_MODE (op0
), copy_rtx (op0
));
140 if (GET_MODE_SIZE (GET_MODE (op0
))
141 > GET_MODE_SIZE (GET_MODE (target
)))
142 note
= simplify_gen_unary (TRUNCATE
, GET_MODE (target
),
143 note
, GET_MODE (op0
));
145 note
= simplify_gen_unary (ZERO_EXTEND
, GET_MODE (target
),
146 note
, GET_MODE (op0
));
151 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
155 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
157 set_unique_reg_note (last_insn
, REG_EQUAL
, note
);
162 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
163 for a widening operation would be. In most cases this would be OP0, but if
164 that's a constant it'll be VOIDmode, which isn't useful. */
167 widened_mode (machine_mode to_mode
, rtx op0
, rtx op1
)
169 machine_mode m0
= GET_MODE (op0
);
170 machine_mode m1
= GET_MODE (op1
);
173 if (m0
== VOIDmode
&& m1
== VOIDmode
)
175 else if (m0
== VOIDmode
|| GET_MODE_SIZE (m0
) < GET_MODE_SIZE (m1
))
180 if (GET_MODE_SIZE (result
) > GET_MODE_SIZE (to_mode
))
186 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
187 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
188 not actually do a sign-extend or zero-extend, but can leave the
189 higher-order bits of the result rtx undefined, for example, in the case
190 of logical operations, but not right shifts. */
193 widen_operand (rtx op
, machine_mode mode
, machine_mode oldmode
,
194 int unsignedp
, int no_extend
)
198 /* If we don't have to extend and this is a constant, return it. */
199 if (no_extend
&& GET_MODE (op
) == VOIDmode
)
202 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
203 extend since it will be more efficient to do so unless the signedness of
204 a promoted object differs from our extension. */
206 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)
207 && SUBREG_CHECK_PROMOTED_SIGN (op
, unsignedp
)))
208 return convert_modes (mode
, oldmode
, op
, unsignedp
);
210 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
212 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
213 return gen_lowpart (mode
, force_reg (GET_MODE (op
), op
));
215 /* Otherwise, get an object of MODE, clobber it, and set the low-order
218 result
= gen_reg_rtx (mode
);
219 emit_clobber (result
);
220 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
224 /* Expand vector widening operations.
226 There are two different classes of operations handled here:
227 1) Operations whose result is wider than all the arguments to the operation.
228 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
229 In this case OP0 and optionally OP1 would be initialized,
230 but WIDE_OP wouldn't (not relevant for this case).
231 2) Operations whose result is of the same size as the last argument to the
232 operation, but wider than all the other arguments to the operation.
233 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
234 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
236 E.g, when called to expand the following operations, this is how
237 the arguments will be initialized:
239 widening-sum 2 oprnd0 - oprnd1
240 widening-dot-product 3 oprnd0 oprnd1 oprnd2
241 widening-mult 2 oprnd0 oprnd1 -
242 type-promotion (vec-unpack) 1 oprnd0 - - */
245 expand_widen_pattern_expr (sepops ops
, rtx op0
, rtx op1
, rtx wide_op
,
246 rtx target
, int unsignedp
)
248 struct expand_operand eops
[4];
249 tree oprnd0
, oprnd1
, oprnd2
;
250 machine_mode wmode
= VOIDmode
, tmode0
, tmode1
= VOIDmode
;
251 optab widen_pattern_optab
;
252 enum insn_code icode
;
253 int nops
= TREE_CODE_LENGTH (ops
->code
);
257 tmode0
= TYPE_MODE (TREE_TYPE (oprnd0
));
258 widen_pattern_optab
=
259 optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), optab_default
);
260 if (ops
->code
== WIDEN_MULT_PLUS_EXPR
261 || ops
->code
== WIDEN_MULT_MINUS_EXPR
)
262 icode
= find_widening_optab_handler (widen_pattern_optab
,
263 TYPE_MODE (TREE_TYPE (ops
->op2
)),
266 icode
= optab_handler (widen_pattern_optab
, tmode0
);
267 gcc_assert (icode
!= CODE_FOR_nothing
);
272 tmode1
= TYPE_MODE (TREE_TYPE (oprnd1
));
275 /* The last operand is of a wider mode than the rest of the operands. */
280 gcc_assert (tmode1
== tmode0
);
283 wmode
= TYPE_MODE (TREE_TYPE (oprnd2
));
287 create_output_operand (&eops
[op
++], target
, TYPE_MODE (ops
->type
));
288 create_convert_operand_from (&eops
[op
++], op0
, tmode0
, unsignedp
);
290 create_convert_operand_from (&eops
[op
++], op1
, tmode1
, unsignedp
);
292 create_convert_operand_from (&eops
[op
++], wide_op
, wmode
, unsignedp
);
293 expand_insn (icode
, op
, eops
);
294 return eops
[0].value
;
297 /* Generate code to perform an operation specified by TERNARY_OPTAB
298 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
300 UNSIGNEDP is for the case where we have to widen the operands
301 to perform the operation. It says to use zero-extension.
303 If TARGET is nonzero, the value
304 is generated there, if it is convenient to do so.
305 In all cases an rtx is returned for the locus of the value;
306 this may or may not be TARGET. */
309 expand_ternary_op (machine_mode mode
, optab ternary_optab
, rtx op0
,
310 rtx op1
, rtx op2
, rtx target
, int unsignedp
)
312 struct expand_operand ops
[4];
313 enum insn_code icode
= optab_handler (ternary_optab
, mode
);
315 gcc_assert (optab_handler (ternary_optab
, mode
) != CODE_FOR_nothing
);
317 create_output_operand (&ops
[0], target
, mode
);
318 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
319 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
320 create_convert_operand_from (&ops
[3], op2
, mode
, unsignedp
);
321 expand_insn (icode
, 4, ops
);
326 /* Like expand_binop, but return a constant rtx if the result can be
327 calculated at compile time. The arguments and return value are
328 otherwise the same as for expand_binop. */
331 simplify_expand_binop (machine_mode mode
, optab binoptab
,
332 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
333 enum optab_methods methods
)
335 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
337 rtx x
= simplify_binary_operation (optab_to_code (binoptab
),
343 return expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
);
346 /* Like simplify_expand_binop, but always put the result in TARGET.
347 Return true if the expansion succeeded. */
350 force_expand_binop (machine_mode mode
, optab binoptab
,
351 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
352 enum optab_methods methods
)
354 rtx x
= simplify_expand_binop (mode
, binoptab
, op0
, op1
,
355 target
, unsignedp
, methods
);
359 emit_move_insn (target
, x
);
363 /* Create a new vector value in VMODE with all elements set to OP. The
364 mode of OP must be the element mode of VMODE. If OP is a constant,
365 then the return value will be a constant. */
368 expand_vector_broadcast (machine_mode vmode
, rtx op
)
370 enum insn_code icode
;
375 gcc_checking_assert (VECTOR_MODE_P (vmode
));
377 n
= GET_MODE_NUNITS (vmode
);
378 vec
= rtvec_alloc (n
);
379 for (i
= 0; i
< n
; ++i
)
380 RTVEC_ELT (vec
, i
) = op
;
383 return gen_rtx_CONST_VECTOR (vmode
, vec
);
385 /* ??? If the target doesn't have a vec_init, then we have no easy way
386 of performing this operation. Most of this sort of generic support
387 is hidden away in the vector lowering support in gimple. */
388 icode
= optab_handler (vec_init_optab
, vmode
);
389 if (icode
== CODE_FOR_nothing
)
392 ret
= gen_reg_rtx (vmode
);
393 emit_insn (GEN_FCN (icode
) (ret
, gen_rtx_PARALLEL (vmode
, vec
)));
398 /* This subroutine of expand_doubleword_shift handles the cases in which
399 the effective shift value is >= BITS_PER_WORD. The arguments and return
400 value are the same as for the parent routine, except that SUPERWORD_OP1
401 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
402 INTO_TARGET may be null if the caller has decided to calculate it. */
405 expand_superword_shift (optab binoptab
, rtx outof_input
, rtx superword_op1
,
406 rtx outof_target
, rtx into_target
,
407 int unsignedp
, enum optab_methods methods
)
409 if (into_target
!= 0)
410 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, superword_op1
,
411 into_target
, unsignedp
, methods
))
414 if (outof_target
!= 0)
416 /* For a signed right shift, we must fill OUTOF_TARGET with copies
417 of the sign bit, otherwise we must fill it with zeros. */
418 if (binoptab
!= ashr_optab
)
419 emit_move_insn (outof_target
, CONST0_RTX (word_mode
));
421 if (!force_expand_binop (word_mode
, binoptab
,
422 outof_input
, GEN_INT (BITS_PER_WORD
- 1),
423 outof_target
, unsignedp
, methods
))
429 /* This subroutine of expand_doubleword_shift handles the cases in which
430 the effective shift value is < BITS_PER_WORD. The arguments and return
431 value are the same as for the parent routine. */
434 expand_subword_shift (machine_mode op1_mode
, optab binoptab
,
435 rtx outof_input
, rtx into_input
, rtx op1
,
436 rtx outof_target
, rtx into_target
,
437 int unsignedp
, enum optab_methods methods
,
438 unsigned HOST_WIDE_INT shift_mask
)
440 optab reverse_unsigned_shift
, unsigned_shift
;
443 reverse_unsigned_shift
= (binoptab
== ashl_optab
? lshr_optab
: ashl_optab
);
444 unsigned_shift
= (binoptab
== ashl_optab
? ashl_optab
: lshr_optab
);
446 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
447 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
448 the opposite direction to BINOPTAB. */
449 if (CONSTANT_P (op1
) || shift_mask
>= BITS_PER_WORD
)
451 carries
= outof_input
;
452 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
,
453 op1_mode
), op1_mode
);
454 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
459 /* We must avoid shifting by BITS_PER_WORD bits since that is either
460 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
461 has unknown behavior. Do a single shift first, then shift by the
462 remainder. It's OK to use ~OP1 as the remainder if shift counts
463 are truncated to the mode size. */
464 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
465 outof_input
, const1_rtx
, 0, unsignedp
, methods
);
466 if (shift_mask
== BITS_PER_WORD
- 1)
468 tmp
= immed_wide_int_const
469 (wi::minus_one (GET_MODE_PRECISION (op1_mode
)), op1_mode
);
470 tmp
= simplify_expand_binop (op1_mode
, xor_optab
, op1
, tmp
,
475 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
- 1,
476 op1_mode
), op1_mode
);
477 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
481 if (tmp
== 0 || carries
== 0)
483 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
484 carries
, tmp
, 0, unsignedp
, methods
);
488 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
489 so the result can go directly into INTO_TARGET if convenient. */
490 tmp
= expand_binop (word_mode
, unsigned_shift
, into_input
, op1
,
491 into_target
, unsignedp
, methods
);
495 /* Now OR in the bits carried over from OUTOF_INPUT. */
496 if (!force_expand_binop (word_mode
, ior_optab
, tmp
, carries
,
497 into_target
, unsignedp
, methods
))
500 /* Use a standard word_mode shift for the out-of half. */
501 if (outof_target
!= 0)
502 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
503 outof_target
, unsignedp
, methods
))
510 /* Try implementing expand_doubleword_shift using conditional moves.
511 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
512 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
513 are the shift counts to use in the former and latter case. All other
514 arguments are the same as the parent routine. */
517 expand_doubleword_shift_condmove (machine_mode op1_mode
, optab binoptab
,
518 enum rtx_code cmp_code
, rtx cmp1
, rtx cmp2
,
519 rtx outof_input
, rtx into_input
,
520 rtx subword_op1
, rtx superword_op1
,
521 rtx outof_target
, rtx into_target
,
522 int unsignedp
, enum optab_methods methods
,
523 unsigned HOST_WIDE_INT shift_mask
)
525 rtx outof_superword
, into_superword
;
527 /* Put the superword version of the output into OUTOF_SUPERWORD and
529 outof_superword
= outof_target
!= 0 ? gen_reg_rtx (word_mode
) : 0;
530 if (outof_target
!= 0 && subword_op1
== superword_op1
)
532 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
533 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
534 into_superword
= outof_target
;
535 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
536 outof_superword
, 0, unsignedp
, methods
))
541 into_superword
= gen_reg_rtx (word_mode
);
542 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
543 outof_superword
, into_superword
,
548 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
549 if (!expand_subword_shift (op1_mode
, binoptab
,
550 outof_input
, into_input
, subword_op1
,
551 outof_target
, into_target
,
552 unsignedp
, methods
, shift_mask
))
555 /* Select between them. Do the INTO half first because INTO_SUPERWORD
556 might be the current value of OUTOF_TARGET. */
557 if (!emit_conditional_move (into_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
558 into_target
, into_superword
, word_mode
, false))
561 if (outof_target
!= 0)
562 if (!emit_conditional_move (outof_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
563 outof_target
, outof_superword
,
570 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
571 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
572 input operand; the shift moves bits in the direction OUTOF_INPUT->
573 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
574 of the target. OP1 is the shift count and OP1_MODE is its mode.
575 If OP1 is constant, it will have been truncated as appropriate
576 and is known to be nonzero.
578 If SHIFT_MASK is zero, the result of word shifts is undefined when the
579 shift count is outside the range [0, BITS_PER_WORD). This routine must
580 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
582 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
583 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
584 fill with zeros or sign bits as appropriate.
586 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
587 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
588 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
589 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
592 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
593 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
594 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
595 function wants to calculate it itself.
597 Return true if the shift could be successfully synthesized. */
600 expand_doubleword_shift (machine_mode op1_mode
, optab binoptab
,
601 rtx outof_input
, rtx into_input
, rtx op1
,
602 rtx outof_target
, rtx into_target
,
603 int unsignedp
, enum optab_methods methods
,
604 unsigned HOST_WIDE_INT shift_mask
)
606 rtx superword_op1
, tmp
, cmp1
, cmp2
;
607 enum rtx_code cmp_code
;
609 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
610 fill the result with sign or zero bits as appropriate. If so, the value
611 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
612 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
613 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
615 This isn't worthwhile for constant shifts since the optimizers will
616 cope better with in-range shift counts. */
617 if (shift_mask
>= BITS_PER_WORD
619 && !CONSTANT_P (op1
))
621 if (!expand_doubleword_shift (op1_mode
, binoptab
,
622 outof_input
, into_input
, op1
,
624 unsignedp
, methods
, shift_mask
))
626 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
627 outof_target
, unsignedp
, methods
))
632 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
633 is true when the effective shift value is less than BITS_PER_WORD.
634 Set SUPERWORD_OP1 to the shift count that should be used to shift
635 OUTOF_INPUT into INTO_TARGET when the condition is false. */
636 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
, op1_mode
), op1_mode
);
637 if (!CONSTANT_P (op1
) && shift_mask
== BITS_PER_WORD
- 1)
639 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
640 is a subword shift count. */
641 cmp1
= simplify_expand_binop (op1_mode
, and_optab
, op1
, tmp
,
643 cmp2
= CONST0_RTX (op1_mode
);
649 /* Set CMP1 to OP1 - BITS_PER_WORD. */
650 cmp1
= simplify_expand_binop (op1_mode
, sub_optab
, op1
, tmp
,
652 cmp2
= CONST0_RTX (op1_mode
);
654 superword_op1
= cmp1
;
659 /* If we can compute the condition at compile time, pick the
660 appropriate subroutine. */
661 tmp
= simplify_relational_operation (cmp_code
, SImode
, op1_mode
, cmp1
, cmp2
);
662 if (tmp
!= 0 && CONST_INT_P (tmp
))
664 if (tmp
== const0_rtx
)
665 return expand_superword_shift (binoptab
, outof_input
, superword_op1
,
666 outof_target
, into_target
,
669 return expand_subword_shift (op1_mode
, binoptab
,
670 outof_input
, into_input
, op1
,
671 outof_target
, into_target
,
672 unsignedp
, methods
, shift_mask
);
675 /* Try using conditional moves to generate straight-line code. */
676 if (HAVE_conditional_move
)
678 rtx_insn
*start
= get_last_insn ();
679 if (expand_doubleword_shift_condmove (op1_mode
, binoptab
,
680 cmp_code
, cmp1
, cmp2
,
681 outof_input
, into_input
,
683 outof_target
, into_target
,
684 unsignedp
, methods
, shift_mask
))
686 delete_insns_since (start
);
689 /* As a last resort, use branches to select the correct alternative. */
690 rtx_code_label
*subword_label
= gen_label_rtx ();
691 rtx_code_label
*done_label
= gen_label_rtx ();
694 do_compare_rtx_and_jump (cmp1
, cmp2
, cmp_code
, false, op1_mode
,
695 0, 0, subword_label
, -1);
698 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
699 outof_target
, into_target
,
703 emit_jump_insn (targetm
.gen_jump (done_label
));
705 emit_label (subword_label
);
707 if (!expand_subword_shift (op1_mode
, binoptab
,
708 outof_input
, into_input
, op1
,
709 outof_target
, into_target
,
710 unsignedp
, methods
, shift_mask
))
713 emit_label (done_label
);
717 /* Subroutine of expand_binop. Perform a double word multiplication of
718 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
719 as the target's word_mode. This function return NULL_RTX if anything
720 goes wrong, in which case it may have already emitted instructions
721 which need to be deleted.
723 If we want to multiply two two-word values and have normal and widening
724 multiplies of single-word values, we can do this with three smaller
727 The multiplication proceeds as follows:
728 _______________________
729 [__op0_high_|__op0_low__]
730 _______________________
731 * [__op1_high_|__op1_low__]
732 _______________________________________________
733 _______________________
734 (1) [__op0_low__*__op1_low__]
735 _______________________
736 (2a) [__op0_low__*__op1_high_]
737 _______________________
738 (2b) [__op0_high_*__op1_low__]
739 _______________________
740 (3) [__op0_high_*__op1_high_]
743 This gives a 4-word result. Since we are only interested in the
744 lower 2 words, partial result (3) and the upper words of (2a) and
745 (2b) don't need to be calculated. Hence (2a) and (2b) can be
746 calculated using non-widening multiplication.
748 (1), however, needs to be calculated with an unsigned widening
749 multiplication. If this operation is not directly supported we
750 try using a signed widening multiplication and adjust the result.
751 This adjustment works as follows:
753 If both operands are positive then no adjustment is needed.
755 If the operands have different signs, for example op0_low < 0 and
756 op1_low >= 0, the instruction treats the most significant bit of
757 op0_low as a sign bit instead of a bit with significance
758 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
759 with 2**BITS_PER_WORD - op0_low, and two's complements the
760 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
763 Similarly, if both operands are negative, we need to add
764 (op0_low + op1_low) * 2**BITS_PER_WORD.
766 We use a trick to adjust quickly. We logically shift op0_low right
767 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
768 op0_high (op1_high) before it is used to calculate 2b (2a). If no
769 logical shift exists, we do an arithmetic right shift and subtract
773 expand_doubleword_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
774 bool umulp
, enum optab_methods methods
)
776 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
777 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
778 rtx wordm1
= umulp
? NULL_RTX
: GEN_INT (BITS_PER_WORD
- 1);
779 rtx product
, adjust
, product_high
, temp
;
781 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
782 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
783 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
784 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
786 /* If we're using an unsigned multiply to directly compute the product
787 of the low-order words of the operands and perform any required
788 adjustments of the operands, we begin by trying two more multiplications
789 and then computing the appropriate sum.
791 We have checked above that the required addition is provided.
792 Full-word addition will normally always succeed, especially if
793 it is provided at all, so we don't worry about its failure. The
794 multiplication may well fail, however, so we do handle that. */
798 /* ??? This could be done with emit_store_flag where available. */
799 temp
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
800 NULL_RTX
, 1, methods
);
802 op0_high
= expand_binop (word_mode
, add_optab
, op0_high
, temp
,
803 NULL_RTX
, 0, OPTAB_DIRECT
);
806 temp
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
807 NULL_RTX
, 0, methods
);
810 op0_high
= expand_binop (word_mode
, sub_optab
, op0_high
, temp
,
811 NULL_RTX
, 0, OPTAB_DIRECT
);
818 adjust
= expand_binop (word_mode
, smul_optab
, op0_high
, op1_low
,
819 NULL_RTX
, 0, OPTAB_DIRECT
);
823 /* OP0_HIGH should now be dead. */
827 /* ??? This could be done with emit_store_flag where available. */
828 temp
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
829 NULL_RTX
, 1, methods
);
831 op1_high
= expand_binop (word_mode
, add_optab
, op1_high
, temp
,
832 NULL_RTX
, 0, OPTAB_DIRECT
);
835 temp
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
836 NULL_RTX
, 0, methods
);
839 op1_high
= expand_binop (word_mode
, sub_optab
, op1_high
, temp
,
840 NULL_RTX
, 0, OPTAB_DIRECT
);
847 temp
= expand_binop (word_mode
, smul_optab
, op1_high
, op0_low
,
848 NULL_RTX
, 0, OPTAB_DIRECT
);
852 /* OP1_HIGH should now be dead. */
854 adjust
= expand_binop (word_mode
, add_optab
, adjust
, temp
,
855 NULL_RTX
, 0, OPTAB_DIRECT
);
857 if (target
&& !REG_P (target
))
861 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
862 target
, 1, OPTAB_DIRECT
);
864 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
865 target
, 1, OPTAB_DIRECT
);
870 product_high
= operand_subword (product
, high
, 1, mode
);
871 adjust
= expand_binop (word_mode
, add_optab
, product_high
, adjust
,
872 NULL_RTX
, 0, OPTAB_DIRECT
);
873 emit_move_insn (product_high
, adjust
);
877 /* Wrapper around expand_binop which takes an rtx code to specify
878 the operation to perform, not an optab pointer. All other
879 arguments are the same. */
881 expand_simple_binop (machine_mode mode
, enum rtx_code code
, rtx op0
,
882 rtx op1
, rtx target
, int unsignedp
,
883 enum optab_methods methods
)
885 optab binop
= code_to_optab (code
);
888 return expand_binop (mode
, binop
, op0
, op1
, target
, unsignedp
, methods
);
891 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
892 binop. Order them according to commutative_operand_precedence and, if
893 possible, try to put TARGET or a pseudo first. */
895 swap_commutative_operands_with_target (rtx target
, rtx op0
, rtx op1
)
897 int op0_prec
= commutative_operand_precedence (op0
);
898 int op1_prec
= commutative_operand_precedence (op1
);
900 if (op0_prec
< op1_prec
)
903 if (op0_prec
> op1_prec
)
906 /* With equal precedence, both orders are ok, but it is better if the
907 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
908 if (target
== 0 || REG_P (target
))
909 return (REG_P (op1
) && !REG_P (op0
)) || target
== op1
;
911 return rtx_equal_p (op1
, target
);
914 /* Return true if BINOPTAB implements a shift operation. */
917 shift_optab_p (optab binoptab
)
919 switch (optab_to_code (binoptab
))
935 /* Return true if BINOPTAB implements a commutative binary operation. */
938 commutative_optab_p (optab binoptab
)
940 return (GET_RTX_CLASS (optab_to_code (binoptab
)) == RTX_COMM_ARITH
941 || binoptab
== smul_widen_optab
942 || binoptab
== umul_widen_optab
943 || binoptab
== smul_highpart_optab
944 || binoptab
== umul_highpart_optab
);
947 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
948 optimizing, and if the operand is a constant that costs more than
949 1 instruction, force the constant into a register and return that
950 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
953 avoid_expensive_constant (machine_mode mode
, optab binoptab
,
954 int opn
, rtx x
, bool unsignedp
)
956 bool speed
= optimize_insn_for_speed_p ();
961 && (rtx_cost (x
, mode
, optab_to_code (binoptab
), opn
, speed
)
962 > set_src_cost (x
, mode
, speed
)))
966 HOST_WIDE_INT intval
= trunc_int_for_mode (INTVAL (x
), mode
);
967 if (intval
!= INTVAL (x
))
968 x
= GEN_INT (intval
);
971 x
= convert_modes (mode
, VOIDmode
, x
, unsignedp
);
972 x
= force_reg (mode
, x
);
977 /* Helper function for expand_binop: handle the case where there
978 is an insn that directly implements the indicated operation.
979 Returns null if this is not possible. */
981 expand_binop_directly (machine_mode mode
, optab binoptab
,
983 rtx target
, int unsignedp
, enum optab_methods methods
,
986 machine_mode from_mode
= widened_mode (mode
, op0
, op1
);
987 enum insn_code icode
= find_widening_optab_handler (binoptab
, mode
,
989 machine_mode xmode0
= insn_data
[(int) icode
].operand
[1].mode
;
990 machine_mode xmode1
= insn_data
[(int) icode
].operand
[2].mode
;
991 machine_mode mode0
, mode1
, tmp_mode
;
992 struct expand_operand ops
[3];
995 rtx xop0
= op0
, xop1
= op1
;
996 bool canonicalize_op1
= false;
998 /* If it is a commutative operator and the modes would match
999 if we would swap the operands, we can save the conversions. */
1000 commutative_p
= commutative_optab_p (binoptab
);
1002 && GET_MODE (xop0
) != xmode0
&& GET_MODE (xop1
) != xmode1
1003 && GET_MODE (xop0
) == xmode1
&& GET_MODE (xop1
) == xmode1
)
1004 std::swap (xop0
, xop1
);
1006 /* If we are optimizing, force expensive constants into a register. */
1007 xop0
= avoid_expensive_constant (xmode0
, binoptab
, 0, xop0
, unsignedp
);
1008 if (!shift_optab_p (binoptab
))
1009 xop1
= avoid_expensive_constant (xmode1
, binoptab
, 1, xop1
, unsignedp
);
1011 /* Shifts and rotates often use a different mode for op1 from op0;
1012 for VOIDmode constants we don't know the mode, so force it
1013 to be canonicalized using convert_modes. */
1014 canonicalize_op1
= true;
1016 /* In case the insn wants input operands in modes different from
1017 those of the actual operands, convert the operands. It would
1018 seem that we don't need to convert CONST_INTs, but we do, so
1019 that they're properly zero-extended, sign-extended or truncated
1022 mode0
= GET_MODE (xop0
) != VOIDmode
? GET_MODE (xop0
) : mode
;
1023 if (xmode0
!= VOIDmode
&& xmode0
!= mode0
)
1025 xop0
= convert_modes (xmode0
, mode0
, xop0
, unsignedp
);
1029 mode1
= ((GET_MODE (xop1
) != VOIDmode
|| canonicalize_op1
)
1030 ? GET_MODE (xop1
) : mode
);
1031 if (xmode1
!= VOIDmode
&& xmode1
!= mode1
)
1033 xop1
= convert_modes (xmode1
, mode1
, xop1
, unsignedp
);
1037 /* If operation is commutative,
1038 try to make the first operand a register.
1039 Even better, try to make it the same as the target.
1040 Also try to make the last operand a constant. */
1042 && swap_commutative_operands_with_target (target
, xop0
, xop1
))
1043 std::swap (xop0
, xop1
);
1045 /* Now, if insn's predicates don't allow our operands, put them into
1048 if (binoptab
== vec_pack_trunc_optab
1049 || binoptab
== vec_pack_usat_optab
1050 || binoptab
== vec_pack_ssat_optab
1051 || binoptab
== vec_pack_ufix_trunc_optab
1052 || binoptab
== vec_pack_sfix_trunc_optab
)
1054 /* The mode of the result is different then the mode of the
1056 tmp_mode
= insn_data
[(int) icode
].operand
[0].mode
;
1057 if (VECTOR_MODE_P (mode
)
1058 && GET_MODE_NUNITS (tmp_mode
) != 2 * GET_MODE_NUNITS (mode
))
1060 delete_insns_since (last
);
1067 create_output_operand (&ops
[0], target
, tmp_mode
);
1068 create_input_operand (&ops
[1], xop0
, mode0
);
1069 create_input_operand (&ops
[2], xop1
, mode1
);
1070 pat
= maybe_gen_insn (icode
, 3, ops
);
1073 /* If PAT is composed of more than one insn, try to add an appropriate
1074 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1075 operand, call expand_binop again, this time without a target. */
1076 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
1077 && ! add_equal_note (pat
, ops
[0].value
,
1078 optab_to_code (binoptab
),
1079 ops
[1].value
, ops
[2].value
))
1081 delete_insns_since (last
);
1082 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
1083 unsignedp
, methods
);
1087 return ops
[0].value
;
1089 delete_insns_since (last
);
1093 /* Generate code to perform an operation specified by BINOPTAB
1094 on operands OP0 and OP1, with result having machine-mode MODE.
1096 UNSIGNEDP is for the case where we have to widen the operands
1097 to perform the operation. It says to use zero-extension.
1099 If TARGET is nonzero, the value
1100 is generated there, if it is convenient to do so.
1101 In all cases an rtx is returned for the locus of the value;
1102 this may or may not be TARGET. */
1105 expand_binop (machine_mode mode
, optab binoptab
, rtx op0
, rtx op1
,
1106 rtx target
, int unsignedp
, enum optab_methods methods
)
1108 enum optab_methods next_methods
1109 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
1110 ? OPTAB_WIDEN
: methods
);
1111 enum mode_class mclass
;
1112 machine_mode wider_mode
;
1115 rtx_insn
*entry_last
= get_last_insn ();
1118 mclass
= GET_MODE_CLASS (mode
);
1120 /* If subtracting an integer constant, convert this into an addition of
1121 the negated constant. */
1123 if (binoptab
== sub_optab
&& CONST_INT_P (op1
))
1125 op1
= negate_rtx (mode
, op1
);
1126 binoptab
= add_optab
;
1128 /* For shifts, constant invalid op1 might be expanded from different
1129 mode than MODE. As those are invalid, force them to a register
1130 to avoid further problems during expansion. */
1131 else if (CONST_INT_P (op1
)
1132 && shift_optab_p (binoptab
)
1133 && UINTVAL (op1
) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode
)))
1135 op1
= gen_int_mode (INTVAL (op1
), GET_MODE_INNER (mode
));
1136 op1
= force_reg (GET_MODE_INNER (mode
), op1
);
1139 /* Record where to delete back to if we backtrack. */
1140 last
= get_last_insn ();
1142 /* If we can do it with a three-operand insn, do so. */
1144 if (methods
!= OPTAB_MUST_WIDEN
1145 && find_widening_optab_handler (binoptab
, mode
,
1146 widened_mode (mode
, op0
, op1
), 1)
1147 != CODE_FOR_nothing
)
1149 temp
= expand_binop_directly (mode
, binoptab
, op0
, op1
, target
,
1150 unsignedp
, methods
, last
);
1155 /* If we were trying to rotate, and that didn't work, try rotating
1156 the other direction before falling back to shifts and bitwise-or. */
1157 if (((binoptab
== rotl_optab
1158 && optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
1159 || (binoptab
== rotr_optab
1160 && optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
))
1161 && mclass
== MODE_INT
)
1163 optab otheroptab
= (binoptab
== rotl_optab
? rotr_optab
: rotl_optab
);
1165 unsigned int bits
= GET_MODE_PRECISION (mode
);
1167 if (CONST_INT_P (op1
))
1168 newop1
= GEN_INT (bits
- INTVAL (op1
));
1169 else if (targetm
.shift_truncation_mask (mode
) == bits
- 1)
1170 newop1
= negate_rtx (GET_MODE (op1
), op1
);
1172 newop1
= expand_binop (GET_MODE (op1
), sub_optab
,
1173 gen_int_mode (bits
, GET_MODE (op1
)), op1
,
1174 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1176 temp
= expand_binop_directly (mode
, otheroptab
, op0
, newop1
,
1177 target
, unsignedp
, methods
, last
);
1182 /* If this is a multiply, see if we can do a widening operation that
1183 takes operands of this mode and makes a wider mode. */
1185 if (binoptab
== smul_optab
1186 && GET_MODE_2XWIDER_MODE (mode
) != VOIDmode
1187 && (widening_optab_handler ((unsignedp
? umul_widen_optab
1188 : smul_widen_optab
),
1189 GET_MODE_2XWIDER_MODE (mode
), mode
)
1190 != CODE_FOR_nothing
))
1192 temp
= expand_binop (GET_MODE_2XWIDER_MODE (mode
),
1193 unsignedp
? umul_widen_optab
: smul_widen_optab
,
1194 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1198 if (GET_MODE_CLASS (mode
) == MODE_INT
1199 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (temp
)))
1200 return gen_lowpart (mode
, temp
);
1202 return convert_to_mode (mode
, temp
, unsignedp
);
1206 /* If this is a vector shift by a scalar, see if we can do a vector
1207 shift by a vector. If so, broadcast the scalar into a vector. */
1208 if (mclass
== MODE_VECTOR_INT
)
1210 optab otheroptab
= unknown_optab
;
1212 if (binoptab
== ashl_optab
)
1213 otheroptab
= vashl_optab
;
1214 else if (binoptab
== ashr_optab
)
1215 otheroptab
= vashr_optab
;
1216 else if (binoptab
== lshr_optab
)
1217 otheroptab
= vlshr_optab
;
1218 else if (binoptab
== rotl_optab
)
1219 otheroptab
= vrotl_optab
;
1220 else if (binoptab
== rotr_optab
)
1221 otheroptab
= vrotr_optab
;
1223 if (otheroptab
&& optab_handler (otheroptab
, mode
) != CODE_FOR_nothing
)
1225 /* The scalar may have been extended to be too wide. Truncate
1226 it back to the proper size to fit in the broadcast vector. */
1227 machine_mode inner_mode
= GET_MODE_INNER (mode
);
1228 if (!CONST_INT_P (op1
)
1229 && (GET_MODE_BITSIZE (inner_mode
)
1230 < GET_MODE_BITSIZE (GET_MODE (op1
))))
1231 op1
= force_reg (inner_mode
,
1232 simplify_gen_unary (TRUNCATE
, inner_mode
, op1
,
1234 rtx vop1
= expand_vector_broadcast (mode
, op1
);
1237 temp
= expand_binop_directly (mode
, otheroptab
, op0
, vop1
,
1238 target
, unsignedp
, methods
, last
);
1245 /* Look for a wider mode of the same class for which we think we
1246 can open-code the operation. Check for a widening multiply at the
1247 wider mode as well. */
1249 if (CLASS_HAS_WIDER_MODES_P (mclass
)
1250 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
1251 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
1252 wider_mode
!= VOIDmode
;
1253 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
1255 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1256 || (binoptab
== smul_optab
1257 && GET_MODE_WIDER_MODE (wider_mode
) != VOIDmode
1258 && (find_widening_optab_handler ((unsignedp
1260 : smul_widen_optab
),
1261 GET_MODE_WIDER_MODE (wider_mode
),
1263 != CODE_FOR_nothing
)))
1265 rtx xop0
= op0
, xop1
= op1
;
1268 /* For certain integer operations, we need not actually extend
1269 the narrow operands, as long as we will truncate
1270 the results to the same narrowness. */
1272 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1273 || binoptab
== xor_optab
1274 || binoptab
== add_optab
|| binoptab
== sub_optab
1275 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1276 && mclass
== MODE_INT
)
1279 xop0
= avoid_expensive_constant (mode
, binoptab
, 0,
1281 if (binoptab
!= ashl_optab
)
1282 xop1
= avoid_expensive_constant (mode
, binoptab
, 1,
1286 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
1288 /* The second operand of a shift must always be extended. */
1289 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1290 no_extend
&& binoptab
!= ashl_optab
);
1292 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1293 unsignedp
, OPTAB_DIRECT
);
1296 if (mclass
!= MODE_INT
1297 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1300 target
= gen_reg_rtx (mode
);
1301 convert_move (target
, temp
, 0);
1305 return gen_lowpart (mode
, temp
);
1308 delete_insns_since (last
);
1312 /* If operation is commutative,
1313 try to make the first operand a register.
1314 Even better, try to make it the same as the target.
1315 Also try to make the last operand a constant. */
1316 if (commutative_optab_p (binoptab
)
1317 && swap_commutative_operands_with_target (target
, op0
, op1
))
1318 std::swap (op0
, op1
);
1320 /* These can be done a word at a time. */
1321 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
1322 && mclass
== MODE_INT
1323 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
1324 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1329 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1330 won't be accurate, so use a new target. */
1334 || !valid_multiword_target_p (target
))
1335 target
= gen_reg_rtx (mode
);
1339 /* Do the actual arithmetic. */
1340 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
1342 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
1343 rtx x
= expand_binop (word_mode
, binoptab
,
1344 operand_subword_force (op0
, i
, mode
),
1345 operand_subword_force (op1
, i
, mode
),
1346 target_piece
, unsignedp
, next_methods
);
1351 if (target_piece
!= x
)
1352 emit_move_insn (target_piece
, x
);
1355 insns
= get_insns ();
1358 if (i
== GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
)
1365 /* Synthesize double word shifts from single word shifts. */
1366 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
1367 || binoptab
== ashr_optab
)
1368 && mclass
== MODE_INT
1369 && (CONST_INT_P (op1
) || optimize_insn_for_speed_p ())
1370 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1371 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
)
1372 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
1373 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1374 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1376 unsigned HOST_WIDE_INT shift_mask
, double_shift_mask
;
1377 machine_mode op1_mode
;
1379 double_shift_mask
= targetm
.shift_truncation_mask (mode
);
1380 shift_mask
= targetm
.shift_truncation_mask (word_mode
);
1381 op1_mode
= GET_MODE (op1
) != VOIDmode
? GET_MODE (op1
) : word_mode
;
1383 /* Apply the truncation to constant shifts. */
1384 if (double_shift_mask
> 0 && CONST_INT_P (op1
))
1385 op1
= GEN_INT (INTVAL (op1
) & double_shift_mask
);
1387 if (op1
== CONST0_RTX (op1_mode
))
1390 /* Make sure that this is a combination that expand_doubleword_shift
1391 can handle. See the comments there for details. */
1392 if (double_shift_mask
== 0
1393 || (shift_mask
== BITS_PER_WORD
- 1
1394 && double_shift_mask
== BITS_PER_WORD
* 2 - 1))
1397 rtx into_target
, outof_target
;
1398 rtx into_input
, outof_input
;
1399 int left_shift
, outof_word
;
1401 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1402 won't be accurate, so use a new target. */
1406 || !valid_multiword_target_p (target
))
1407 target
= gen_reg_rtx (mode
);
1411 /* OUTOF_* is the word we are shifting bits away from, and
1412 INTO_* is the word that we are shifting bits towards, thus
1413 they differ depending on the direction of the shift and
1414 WORDS_BIG_ENDIAN. */
1416 left_shift
= binoptab
== ashl_optab
;
1417 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1419 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1420 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1422 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1423 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1425 if (expand_doubleword_shift (op1_mode
, binoptab
,
1426 outof_input
, into_input
, op1
,
1427 outof_target
, into_target
,
1428 unsignedp
, next_methods
, shift_mask
))
1430 insns
= get_insns ();
1440 /* Synthesize double word rotates from single word shifts. */
1441 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1442 && mclass
== MODE_INT
1443 && CONST_INT_P (op1
)
1444 && GET_MODE_PRECISION (mode
) == 2 * BITS_PER_WORD
1445 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1446 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1449 rtx into_target
, outof_target
;
1450 rtx into_input
, outof_input
;
1452 int shift_count
, left_shift
, outof_word
;
1454 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1455 won't be accurate, so use a new target. Do this also if target is not
1456 a REG, first because having a register instead may open optimization
1457 opportunities, and second because if target and op0 happen to be MEMs
1458 designating the same location, we would risk clobbering it too early
1459 in the code sequence we generate below. */
1464 || !valid_multiword_target_p (target
))
1465 target
= gen_reg_rtx (mode
);
1469 shift_count
= INTVAL (op1
);
1471 /* OUTOF_* is the word we are shifting bits away from, and
1472 INTO_* is the word that we are shifting bits towards, thus
1473 they differ depending on the direction of the shift and
1474 WORDS_BIG_ENDIAN. */
1476 left_shift
= (binoptab
== rotl_optab
);
1477 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1479 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1480 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1482 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1483 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1485 if (shift_count
== BITS_PER_WORD
)
1487 /* This is just a word swap. */
1488 emit_move_insn (outof_target
, into_input
);
1489 emit_move_insn (into_target
, outof_input
);
1494 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1495 rtx first_shift_count
, second_shift_count
;
1496 optab reverse_unsigned_shift
, unsigned_shift
;
1498 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1499 ? lshr_optab
: ashl_optab
);
1501 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1502 ? ashl_optab
: lshr_optab
);
1504 if (shift_count
> BITS_PER_WORD
)
1506 first_shift_count
= GEN_INT (shift_count
- BITS_PER_WORD
);
1507 second_shift_count
= GEN_INT (2 * BITS_PER_WORD
- shift_count
);
1511 first_shift_count
= GEN_INT (BITS_PER_WORD
- shift_count
);
1512 second_shift_count
= GEN_INT (shift_count
);
1515 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1516 outof_input
, first_shift_count
,
1517 NULL_RTX
, unsignedp
, next_methods
);
1518 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1519 into_input
, second_shift_count
,
1520 NULL_RTX
, unsignedp
, next_methods
);
1522 if (into_temp1
!= 0 && into_temp2
!= 0)
1523 inter
= expand_binop (word_mode
, ior_optab
, into_temp1
, into_temp2
,
1524 into_target
, unsignedp
, next_methods
);
1528 if (inter
!= 0 && inter
!= into_target
)
1529 emit_move_insn (into_target
, inter
);
1531 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1532 into_input
, first_shift_count
,
1533 NULL_RTX
, unsignedp
, next_methods
);
1534 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1535 outof_input
, second_shift_count
,
1536 NULL_RTX
, unsignedp
, next_methods
);
1538 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1539 inter
= expand_binop (word_mode
, ior_optab
,
1540 outof_temp1
, outof_temp2
,
1541 outof_target
, unsignedp
, next_methods
);
1543 if (inter
!= 0 && inter
!= outof_target
)
1544 emit_move_insn (outof_target
, inter
);
1547 insns
= get_insns ();
1557 /* These can be done a word at a time by propagating carries. */
1558 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1559 && mclass
== MODE_INT
1560 && GET_MODE_SIZE (mode
) >= 2 * UNITS_PER_WORD
1561 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1564 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1565 const unsigned int nwords
= GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
;
1566 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1567 rtx xop0
, xop1
, xtarget
;
1569 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1570 value is one of those, use it. Otherwise, use 1 since it is the
1571 one easiest to get. */
1572 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1573 int normalizep
= STORE_FLAG_VALUE
;
1578 /* Prepare the operands. */
1579 xop0
= force_reg (mode
, op0
);
1580 xop1
= force_reg (mode
, op1
);
1582 xtarget
= gen_reg_rtx (mode
);
1584 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1587 /* Indicate for flow that the entire target reg is being set. */
1589 emit_clobber (xtarget
);
1591 /* Do the actual arithmetic. */
1592 for (i
= 0; i
< nwords
; i
++)
1594 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
1595 rtx target_piece
= operand_subword (xtarget
, index
, 1, mode
);
1596 rtx op0_piece
= operand_subword_force (xop0
, index
, mode
);
1597 rtx op1_piece
= operand_subword_force (xop1
, index
, mode
);
1600 /* Main add/subtract of the input operands. */
1601 x
= expand_binop (word_mode
, binoptab
,
1602 op0_piece
, op1_piece
,
1603 target_piece
, unsignedp
, next_methods
);
1609 /* Store carry from main add/subtract. */
1610 carry_out
= gen_reg_rtx (word_mode
);
1611 carry_out
= emit_store_flag_force (carry_out
,
1612 (binoptab
== add_optab
1615 word_mode
, 1, normalizep
);
1622 /* Add/subtract previous carry to main result. */
1623 newx
= expand_binop (word_mode
,
1624 normalizep
== 1 ? binoptab
: otheroptab
,
1626 NULL_RTX
, 1, next_methods
);
1630 /* Get out carry from adding/subtracting carry in. */
1631 rtx carry_tmp
= gen_reg_rtx (word_mode
);
1632 carry_tmp
= emit_store_flag_force (carry_tmp
,
1633 (binoptab
== add_optab
1636 word_mode
, 1, normalizep
);
1638 /* Logical-ior the two poss. carry together. */
1639 carry_out
= expand_binop (word_mode
, ior_optab
,
1640 carry_out
, carry_tmp
,
1641 carry_out
, 0, next_methods
);
1645 emit_move_insn (target_piece
, newx
);
1649 if (x
!= target_piece
)
1650 emit_move_insn (target_piece
, x
);
1653 carry_in
= carry_out
;
1656 if (i
== GET_MODE_BITSIZE (mode
) / (unsigned) BITS_PER_WORD
)
1658 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
1659 || ! rtx_equal_p (target
, xtarget
))
1661 rtx_insn
*temp
= emit_move_insn (target
, xtarget
);
1663 set_dst_reg_note (temp
, REG_EQUAL
,
1664 gen_rtx_fmt_ee (optab_to_code (binoptab
),
1665 mode
, copy_rtx (xop0
),
1676 delete_insns_since (last
);
1679 /* Attempt to synthesize double word multiplies using a sequence of word
1680 mode multiplications. We first attempt to generate a sequence using a
1681 more efficient unsigned widening multiply, and if that fails we then
1682 try using a signed widening multiply. */
1684 if (binoptab
== smul_optab
1685 && mclass
== MODE_INT
1686 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1687 && optab_handler (smul_optab
, word_mode
) != CODE_FOR_nothing
1688 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
)
1690 rtx product
= NULL_RTX
;
1691 if (widening_optab_handler (umul_widen_optab
, mode
, word_mode
)
1692 != CODE_FOR_nothing
)
1694 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
1697 delete_insns_since (last
);
1700 if (product
== NULL_RTX
1701 && widening_optab_handler (smul_widen_optab
, mode
, word_mode
)
1702 != CODE_FOR_nothing
)
1704 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
1707 delete_insns_since (last
);
1710 if (product
!= NULL_RTX
)
1712 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
)
1714 temp
= emit_move_insn (target
? target
: product
, product
);
1715 set_dst_reg_note (temp
,
1717 gen_rtx_fmt_ee (MULT
, mode
,
1720 target
? target
: product
);
1726 /* It can't be open-coded in this mode.
1727 Use a library call if one is available and caller says that's ok. */
1729 libfunc
= optab_libfunc (binoptab
, mode
);
1731 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
1735 machine_mode op1_mode
= mode
;
1740 if (shift_optab_p (binoptab
))
1742 op1_mode
= targetm
.libgcc_shift_count_mode ();
1743 /* Specify unsigned here,
1744 since negative shift counts are meaningless. */
1745 op1x
= convert_to_mode (op1_mode
, op1
, 1);
1748 if (GET_MODE (op0
) != VOIDmode
1749 && GET_MODE (op0
) != mode
)
1750 op0
= convert_to_mode (mode
, op0
, unsignedp
);
1752 /* Pass 1 for NO_QUEUE so we don't lose any increments
1753 if the libcall is cse'd or moved. */
1754 value
= emit_library_call_value (libfunc
,
1755 NULL_RTX
, LCT_CONST
, mode
, 2,
1756 op0
, mode
, op1x
, op1_mode
);
1758 insns
= get_insns ();
1761 bool trapv
= trapv_binoptab_p (binoptab
);
1762 target
= gen_reg_rtx (mode
);
1763 emit_libcall_block_1 (insns
, target
, value
,
1765 : gen_rtx_fmt_ee (optab_to_code (binoptab
),
1766 mode
, op0
, op1
), trapv
);
1771 delete_insns_since (last
);
1773 /* It can't be done in this mode. Can we do it in a wider mode? */
1775 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
1776 || methods
== OPTAB_MUST_WIDEN
))
1778 /* Caller says, don't even try. */
1779 delete_insns_since (entry_last
);
1783 /* Compute the value of METHODS to pass to recursive calls.
1784 Don't allow widening to be tried recursively. */
1786 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
1788 /* Look for a wider mode of the same class for which it appears we can do
1791 if (CLASS_HAS_WIDER_MODES_P (mclass
))
1793 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
1794 wider_mode
!= VOIDmode
;
1795 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
1797 if (find_widening_optab_handler (binoptab
, wider_mode
, mode
, 1)
1799 || (methods
== OPTAB_LIB
1800 && optab_libfunc (binoptab
, wider_mode
)))
1802 rtx xop0
= op0
, xop1
= op1
;
1805 /* For certain integer operations, we need not actually extend
1806 the narrow operands, as long as we will truncate
1807 the results to the same narrowness. */
1809 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1810 || binoptab
== xor_optab
1811 || binoptab
== add_optab
|| binoptab
== sub_optab
1812 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1813 && mclass
== MODE_INT
)
1816 xop0
= widen_operand (xop0
, wider_mode
, mode
,
1817 unsignedp
, no_extend
);
1819 /* The second operand of a shift must always be extended. */
1820 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1821 no_extend
&& binoptab
!= ashl_optab
);
1823 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1824 unsignedp
, methods
);
1827 if (mclass
!= MODE_INT
1828 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1831 target
= gen_reg_rtx (mode
);
1832 convert_move (target
, temp
, 0);
1836 return gen_lowpart (mode
, temp
);
1839 delete_insns_since (last
);
1844 delete_insns_since (entry_last
);
1848 /* Expand a binary operator which has both signed and unsigned forms.
1849 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1852 If we widen unsigned operands, we may use a signed wider operation instead
1853 of an unsigned wider operation, since the result would be the same. */
1856 sign_expand_binop (machine_mode mode
, optab uoptab
, optab soptab
,
1857 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
1858 enum optab_methods methods
)
1861 optab direct_optab
= unsignedp
? uoptab
: soptab
;
1864 /* Do it without widening, if possible. */
1865 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
1866 unsignedp
, OPTAB_DIRECT
);
1867 if (temp
|| methods
== OPTAB_DIRECT
)
1870 /* Try widening to a signed int. Disable any direct use of any
1871 signed insn in the current mode. */
1872 save_enable
= swap_optab_enable (soptab
, mode
, false);
1874 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
1875 unsignedp
, OPTAB_WIDEN
);
1877 /* For unsigned operands, try widening to an unsigned int. */
1878 if (!temp
&& unsignedp
)
1879 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
1880 unsignedp
, OPTAB_WIDEN
);
1881 if (temp
|| methods
== OPTAB_WIDEN
)
1884 /* Use the right width libcall if that exists. */
1885 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
1886 unsignedp
, OPTAB_LIB
);
1887 if (temp
|| methods
== OPTAB_LIB
)
1890 /* Must widen and use a libcall, use either signed or unsigned. */
1891 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
1892 unsignedp
, methods
);
1893 if (!temp
&& unsignedp
)
1894 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
1895 unsignedp
, methods
);
1898 /* Undo the fiddling above. */
1900 swap_optab_enable (soptab
, mode
, true);
1904 /* Generate code to perform an operation specified by UNOPPTAB
1905 on operand OP0, with two results to TARG0 and TARG1.
1906 We assume that the order of the operands for the instruction
1907 is TARG0, TARG1, OP0.
1909 Either TARG0 or TARG1 may be zero, but what that means is that
1910 the result is not actually wanted. We will generate it into
1911 a dummy pseudo-reg and discard it. They may not both be zero.
1913 Returns 1 if this operation can be performed; 0 if not. */
1916 expand_twoval_unop (optab unoptab
, rtx op0
, rtx targ0
, rtx targ1
,
1919 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
1920 enum mode_class mclass
;
1921 machine_mode wider_mode
;
1922 rtx_insn
*entry_last
= get_last_insn ();
1925 mclass
= GET_MODE_CLASS (mode
);
1928 targ0
= gen_reg_rtx (mode
);
1930 targ1
= gen_reg_rtx (mode
);
1932 /* Record where to go back to if we fail. */
1933 last
= get_last_insn ();
1935 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
1937 struct expand_operand ops
[3];
1938 enum insn_code icode
= optab_handler (unoptab
, mode
);
1940 create_fixed_operand (&ops
[0], targ0
);
1941 create_fixed_operand (&ops
[1], targ1
);
1942 create_convert_operand_from (&ops
[2], op0
, mode
, unsignedp
);
1943 if (maybe_expand_insn (icode
, 3, ops
))
1947 /* It can't be done in this mode. Can we do it in a wider mode? */
1949 if (CLASS_HAS_WIDER_MODES_P (mclass
))
1951 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
1952 wider_mode
!= VOIDmode
;
1953 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
1955 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
1957 rtx t0
= gen_reg_rtx (wider_mode
);
1958 rtx t1
= gen_reg_rtx (wider_mode
);
1959 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
1961 if (expand_twoval_unop (unoptab
, cop0
, t0
, t1
, unsignedp
))
1963 convert_move (targ0
, t0
, unsignedp
);
1964 convert_move (targ1
, t1
, unsignedp
);
1968 delete_insns_since (last
);
1973 delete_insns_since (entry_last
);
1977 /* Generate code to perform an operation specified by BINOPTAB
1978 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1979 We assume that the order of the operands for the instruction
1980 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1981 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1983 Either TARG0 or TARG1 may be zero, but what that means is that
1984 the result is not actually wanted. We will generate it into
1985 a dummy pseudo-reg and discard it. They may not both be zero.
1987 Returns 1 if this operation can be performed; 0 if not. */
1990 expand_twoval_binop (optab binoptab
, rtx op0
, rtx op1
, rtx targ0
, rtx targ1
,
1993 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
1994 enum mode_class mclass
;
1995 machine_mode wider_mode
;
1996 rtx_insn
*entry_last
= get_last_insn ();
1999 mclass
= GET_MODE_CLASS (mode
);
2002 targ0
= gen_reg_rtx (mode
);
2004 targ1
= gen_reg_rtx (mode
);
2006 /* Record where to go back to if we fail. */
2007 last
= get_last_insn ();
2009 if (optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
2011 struct expand_operand ops
[4];
2012 enum insn_code icode
= optab_handler (binoptab
, mode
);
2013 machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2014 machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
2015 rtx xop0
= op0
, xop1
= op1
;
2017 /* If we are optimizing, force expensive constants into a register. */
2018 xop0
= avoid_expensive_constant (mode0
, binoptab
, 0, xop0
, unsignedp
);
2019 xop1
= avoid_expensive_constant (mode1
, binoptab
, 1, xop1
, unsignedp
);
2021 create_fixed_operand (&ops
[0], targ0
);
2022 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2023 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
2024 create_fixed_operand (&ops
[3], targ1
);
2025 if (maybe_expand_insn (icode
, 4, ops
))
2027 delete_insns_since (last
);
2030 /* It can't be done in this mode. Can we do it in a wider mode? */
2032 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2034 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2035 wider_mode
!= VOIDmode
;
2036 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2038 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
)
2040 rtx t0
= gen_reg_rtx (wider_mode
);
2041 rtx t1
= gen_reg_rtx (wider_mode
);
2042 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2043 rtx cop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
2045 if (expand_twoval_binop (binoptab
, cop0
, cop1
,
2048 convert_move (targ0
, t0
, unsignedp
);
2049 convert_move (targ1
, t1
, unsignedp
);
2053 delete_insns_since (last
);
2058 delete_insns_since (entry_last
);
2062 /* Expand the two-valued library call indicated by BINOPTAB, but
2063 preserve only one of the values. If TARG0 is non-NULL, the first
2064 value is placed into TARG0; otherwise the second value is placed
2065 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2066 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2067 This routine assumes that the value returned by the library call is
2068 as if the return value was of an integral mode twice as wide as the
2069 mode of OP0. Returns 1 if the call was successful. */
2072 expand_twoval_binop_libfunc (optab binoptab
, rtx op0
, rtx op1
,
2073 rtx targ0
, rtx targ1
, enum rtx_code code
)
2076 machine_mode libval_mode
;
2081 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2082 gcc_assert (!targ0
!= !targ1
);
2084 mode
= GET_MODE (op0
);
2085 libfunc
= optab_libfunc (binoptab
, mode
);
2089 /* The value returned by the library function will have twice as
2090 many bits as the nominal MODE. */
2091 libval_mode
= smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode
),
2094 libval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
2098 /* Get the part of VAL containing the value that we want. */
2099 libval
= simplify_gen_subreg (mode
, libval
, libval_mode
,
2100 targ0
? 0 : GET_MODE_SIZE (mode
));
2101 insns
= get_insns ();
2103 /* Move the into the desired location. */
2104 emit_libcall_block (insns
, targ0
? targ0
: targ1
, libval
,
2105 gen_rtx_fmt_ee (code
, mode
, op0
, op1
));
2111 /* Wrapper around expand_unop which takes an rtx code to specify
2112 the operation to perform, not an optab pointer. All other
2113 arguments are the same. */
2115 expand_simple_unop (machine_mode mode
, enum rtx_code code
, rtx op0
,
2116 rtx target
, int unsignedp
)
2118 optab unop
= code_to_optab (code
);
2121 return expand_unop (mode
, unop
, op0
, target
, unsignedp
);
2127 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2129 A similar operation can be used for clrsb. UNOPTAB says which operation
2130 we are trying to expand. */
2132 widen_leading (machine_mode mode
, rtx op0
, rtx target
, optab unoptab
)
2134 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2135 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2137 machine_mode wider_mode
;
2138 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2139 wider_mode
!= VOIDmode
;
2140 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2142 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2147 last
= get_last_insn ();
2150 target
= gen_reg_rtx (mode
);
2151 xop0
= widen_operand (op0
, wider_mode
, mode
,
2152 unoptab
!= clrsb_optab
, false);
2153 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2154 unoptab
!= clrsb_optab
);
2157 (wider_mode
, sub_optab
, temp
,
2158 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
2159 - GET_MODE_PRECISION (mode
),
2161 target
, true, OPTAB_DIRECT
);
2163 delete_insns_since (last
);
2172 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2173 quantities, choosing which based on whether the high word is nonzero. */
2175 expand_doubleword_clz (machine_mode mode
, rtx op0
, rtx target
)
2177 rtx xop0
= force_reg (mode
, op0
);
2178 rtx subhi
= gen_highpart (word_mode
, xop0
);
2179 rtx sublo
= gen_lowpart (word_mode
, xop0
);
2180 rtx_code_label
*hi0_label
= gen_label_rtx ();
2181 rtx_code_label
*after_label
= gen_label_rtx ();
2185 /* If we were not given a target, use a word_mode register, not a
2186 'mode' register. The result will fit, and nobody is expecting
2187 anything bigger (the return type of __builtin_clz* is int). */
2189 target
= gen_reg_rtx (word_mode
);
2191 /* In any case, write to a word_mode scratch in both branches of the
2192 conditional, so we can ensure there is a single move insn setting
2193 'target' to tag a REG_EQUAL note on. */
2194 result
= gen_reg_rtx (word_mode
);
2198 /* If the high word is not equal to zero,
2199 then clz of the full value is clz of the high word. */
2200 emit_cmp_and_jump_insns (subhi
, CONST0_RTX (word_mode
), EQ
, 0,
2201 word_mode
, true, hi0_label
);
2203 temp
= expand_unop_direct (word_mode
, clz_optab
, subhi
, result
, true);
2208 convert_move (result
, temp
, true);
2210 emit_jump_insn (targetm
.gen_jump (after_label
));
2213 /* Else clz of the full value is clz of the low word plus the number
2214 of bits in the high word. */
2215 emit_label (hi0_label
);
2217 temp
= expand_unop_direct (word_mode
, clz_optab
, sublo
, 0, true);
2220 temp
= expand_binop (word_mode
, add_optab
, temp
,
2221 gen_int_mode (GET_MODE_BITSIZE (word_mode
), word_mode
),
2222 result
, true, OPTAB_DIRECT
);
2226 convert_move (result
, temp
, true);
2228 emit_label (after_label
);
2229 convert_move (target
, result
, true);
2234 add_equal_note (seq
, target
, CLZ
, xop0
, 0);
2243 /* Try calculating popcount of a double-word quantity as two popcount's of
2244 word-sized quantities and summing up the results. */
2246 expand_doubleword_popcount (machine_mode mode
, rtx op0
, rtx target
)
2253 t0
= expand_unop_direct (word_mode
, popcount_optab
,
2254 operand_subword_force (op0
, 0, mode
), NULL_RTX
,
2256 t1
= expand_unop_direct (word_mode
, popcount_optab
,
2257 operand_subword_force (op0
, 1, mode
), NULL_RTX
,
2265 /* If we were not given a target, use a word_mode register, not a
2266 'mode' register. The result will fit, and nobody is expecting
2267 anything bigger (the return type of __builtin_popcount* is int). */
2269 target
= gen_reg_rtx (word_mode
);
2271 t
= expand_binop (word_mode
, add_optab
, t0
, t1
, target
, 0, OPTAB_DIRECT
);
2276 add_equal_note (seq
, t
, POPCOUNT
, op0
, 0);
2284 (parity:narrow (low (x) ^ high (x))) */
2286 expand_doubleword_parity (machine_mode mode
, rtx op0
, rtx target
)
2288 rtx t
= expand_binop (word_mode
, xor_optab
,
2289 operand_subword_force (op0
, 0, mode
),
2290 operand_subword_force (op0
, 1, mode
),
2291 NULL_RTX
, 0, OPTAB_DIRECT
);
2292 return expand_unop (word_mode
, parity_optab
, t
, target
, true);
2298 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2300 widen_bswap (machine_mode mode
, rtx op0
, rtx target
)
2302 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2303 machine_mode wider_mode
;
2307 if (!CLASS_HAS_WIDER_MODES_P (mclass
))
2310 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2311 wider_mode
!= VOIDmode
;
2312 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2313 if (optab_handler (bswap_optab
, wider_mode
) != CODE_FOR_nothing
)
2318 last
= get_last_insn ();
2320 x
= widen_operand (op0
, wider_mode
, mode
, true, true);
2321 x
= expand_unop (wider_mode
, bswap_optab
, x
, NULL_RTX
, true);
2323 gcc_assert (GET_MODE_PRECISION (wider_mode
) == GET_MODE_BITSIZE (wider_mode
)
2324 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
));
2326 x
= expand_shift (RSHIFT_EXPR
, wider_mode
, x
,
2327 GET_MODE_BITSIZE (wider_mode
)
2328 - GET_MODE_BITSIZE (mode
),
2334 target
= gen_reg_rtx (mode
);
2335 emit_move_insn (target
, gen_lowpart (mode
, x
));
2338 delete_insns_since (last
);
2343 /* Try calculating bswap as two bswaps of two word-sized operands. */
2346 expand_doubleword_bswap (machine_mode mode
, rtx op
, rtx target
)
2350 t1
= expand_unop (word_mode
, bswap_optab
,
2351 operand_subword_force (op
, 0, mode
), NULL_RTX
, true);
2352 t0
= expand_unop (word_mode
, bswap_optab
,
2353 operand_subword_force (op
, 1, mode
), NULL_RTX
, true);
2355 if (target
== 0 || !valid_multiword_target_p (target
))
2356 target
= gen_reg_rtx (mode
);
2358 emit_clobber (target
);
2359 emit_move_insn (operand_subword (target
, 0, 1, mode
), t0
);
2360 emit_move_insn (operand_subword (target
, 1, 1, mode
), t1
);
2365 /* Try calculating (parity x) as (and (popcount x) 1), where
2366 popcount can also be done in a wider mode. */
2368 expand_parity (machine_mode mode
, rtx op0
, rtx target
)
2370 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2371 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2373 machine_mode wider_mode
;
2374 for (wider_mode
= mode
; wider_mode
!= VOIDmode
;
2375 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2377 if (optab_handler (popcount_optab
, wider_mode
) != CODE_FOR_nothing
)
2382 last
= get_last_insn ();
2385 target
= gen_reg_rtx (mode
);
2386 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2387 temp
= expand_unop (wider_mode
, popcount_optab
, xop0
, NULL_RTX
,
2390 temp
= expand_binop (wider_mode
, and_optab
, temp
, const1_rtx
,
2391 target
, true, OPTAB_DIRECT
);
2393 delete_insns_since (last
);
2402 /* Try calculating ctz(x) as K - clz(x & -x) ,
2403 where K is GET_MODE_PRECISION(mode) - 1.
2405 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2406 don't have to worry about what the hardware does in that case. (If
2407 the clz instruction produces the usual value at 0, which is K, the
2408 result of this code sequence will be -1; expand_ffs, below, relies
2409 on this. It might be nice to have it be K instead, for consistency
2410 with the (very few) processors that provide a ctz with a defined
2411 value, but that would take one more instruction, and it would be
2412 less convenient for expand_ffs anyway. */
2415 expand_ctz (machine_mode mode
, rtx op0
, rtx target
)
2420 if (optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2425 temp
= expand_unop_direct (mode
, neg_optab
, op0
, NULL_RTX
, true);
2427 temp
= expand_binop (mode
, and_optab
, op0
, temp
, NULL_RTX
,
2428 true, OPTAB_DIRECT
);
2430 temp
= expand_unop_direct (mode
, clz_optab
, temp
, NULL_RTX
, true);
2432 temp
= expand_binop (mode
, sub_optab
,
2433 gen_int_mode (GET_MODE_PRECISION (mode
) - 1, mode
),
2435 true, OPTAB_DIRECT
);
2445 add_equal_note (seq
, temp
, CTZ
, op0
, 0);
2451 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2452 else with the sequence used by expand_clz.
2454 The ffs builtin promises to return zero for a zero value and ctz/clz
2455 may have an undefined value in that case. If they do not give us a
2456 convenient value, we have to generate a test and branch. */
2458 expand_ffs (machine_mode mode
, rtx op0
, rtx target
)
2460 HOST_WIDE_INT val
= 0;
2461 bool defined_at_zero
= false;
2465 if (optab_handler (ctz_optab
, mode
) != CODE_FOR_nothing
)
2469 temp
= expand_unop_direct (mode
, ctz_optab
, op0
, 0, true);
2473 defined_at_zero
= (CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2);
2475 else if (optab_handler (clz_optab
, mode
) != CODE_FOR_nothing
)
2478 temp
= expand_ctz (mode
, op0
, 0);
2482 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2)
2484 defined_at_zero
= true;
2485 val
= (GET_MODE_PRECISION (mode
) - 1) - val
;
2491 if (defined_at_zero
&& val
== -1)
2492 /* No correction needed at zero. */;
2495 /* We don't try to do anything clever with the situation found
2496 on some processors (eg Alpha) where ctz(0:mode) ==
2497 bitsize(mode). If someone can think of a way to send N to -1
2498 and leave alone all values in the range 0..N-1 (where N is a
2499 power of two), cheaper than this test-and-branch, please add it.
2501 The test-and-branch is done after the operation itself, in case
2502 the operation sets condition codes that can be recycled for this.
2503 (This is true on i386, for instance.) */
2505 rtx_code_label
*nonzero_label
= gen_label_rtx ();
2506 emit_cmp_and_jump_insns (op0
, CONST0_RTX (mode
), NE
, 0,
2507 mode
, true, nonzero_label
);
2509 convert_move (temp
, GEN_INT (-1), false);
2510 emit_label (nonzero_label
);
2513 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2514 to produce a value in the range 0..bitsize. */
2515 temp
= expand_binop (mode
, add_optab
, temp
, gen_int_mode (1, mode
),
2516 target
, false, OPTAB_DIRECT
);
2523 add_equal_note (seq
, temp
, FFS
, op0
, 0);
2532 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2533 conditions, VAL may already be a SUBREG against which we cannot generate
2534 a further SUBREG. In this case, we expect forcing the value into a
2535 register will work around the situation. */
2538 lowpart_subreg_maybe_copy (machine_mode omode
, rtx val
,
2542 ret
= lowpart_subreg (omode
, val
, imode
);
2545 val
= force_reg (imode
, val
);
2546 ret
= lowpart_subreg (omode
, val
, imode
);
2547 gcc_assert (ret
!= NULL
);
2552 /* Expand a floating point absolute value or negation operation via a
2553 logical operation on the sign bit. */
2556 expand_absneg_bit (enum rtx_code code
, machine_mode mode
,
2557 rtx op0
, rtx target
)
2559 const struct real_format
*fmt
;
2560 int bitpos
, word
, nwords
, i
;
2565 /* The format has to have a simple sign bit. */
2566 fmt
= REAL_MODE_FORMAT (mode
);
2570 bitpos
= fmt
->signbit_rw
;
2574 /* Don't create negative zeros if the format doesn't support them. */
2575 if (code
== NEG
&& !fmt
->has_signed_zero
)
2578 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
2580 imode
= int_mode_for_mode (mode
);
2581 if (imode
== BLKmode
)
2590 if (FLOAT_WORDS_BIG_ENDIAN
)
2591 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
2593 word
= bitpos
/ BITS_PER_WORD
;
2594 bitpos
= bitpos
% BITS_PER_WORD
;
2595 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
2598 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
2604 || (nwords
> 1 && !valid_multiword_target_p (target
)))
2605 target
= gen_reg_rtx (mode
);
2611 for (i
= 0; i
< nwords
; ++i
)
2613 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
2614 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
2618 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2620 immed_wide_int_const (mask
, imode
),
2621 targ_piece
, 1, OPTAB_LIB_WIDEN
);
2622 if (temp
!= targ_piece
)
2623 emit_move_insn (targ_piece
, temp
);
2626 emit_move_insn (targ_piece
, op0_piece
);
2629 insns
= get_insns ();
2636 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2637 gen_lowpart (imode
, op0
),
2638 immed_wide_int_const (mask
, imode
),
2639 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
2640 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
2642 set_dst_reg_note (get_last_insn (), REG_EQUAL
,
2643 gen_rtx_fmt_e (code
, mode
, copy_rtx (op0
)),
2650 /* As expand_unop, but will fail rather than attempt the operation in a
2651 different mode or with a libcall. */
2653 expand_unop_direct (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2656 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2658 struct expand_operand ops
[2];
2659 enum insn_code icode
= optab_handler (unoptab
, mode
);
2660 rtx_insn
*last
= get_last_insn ();
2663 create_output_operand (&ops
[0], target
, mode
);
2664 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2665 pat
= maybe_gen_insn (icode
, 2, ops
);
2668 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
2669 && ! add_equal_note (pat
, ops
[0].value
,
2670 optab_to_code (unoptab
),
2671 ops
[1].value
, NULL_RTX
))
2673 delete_insns_since (last
);
2674 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
2679 return ops
[0].value
;
2685 /* Generate code to perform an operation specified by UNOPTAB
2686 on operand OP0, with result having machine-mode MODE.
2688 UNSIGNEDP is for the case where we have to widen the operands
2689 to perform the operation. It says to use zero-extension.
2691 If TARGET is nonzero, the value
2692 is generated there, if it is convenient to do so.
2693 In all cases an rtx is returned for the locus of the value;
2694 this may or may not be TARGET. */
2697 expand_unop (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2700 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2701 machine_mode wider_mode
;
2705 temp
= expand_unop_direct (mode
, unoptab
, op0
, target
, unsignedp
);
2709 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2711 /* Widening (or narrowing) clz needs special treatment. */
2712 if (unoptab
== clz_optab
)
2714 temp
= widen_leading (mode
, op0
, target
, unoptab
);
2718 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2719 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2721 temp
= expand_doubleword_clz (mode
, op0
, target
);
2729 if (unoptab
== clrsb_optab
)
2731 temp
= widen_leading (mode
, op0
, target
, unoptab
);
2737 if (unoptab
== popcount_optab
2738 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2739 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
2740 && optimize_insn_for_speed_p ())
2742 temp
= expand_doubleword_popcount (mode
, op0
, target
);
2747 if (unoptab
== parity_optab
2748 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2749 && (optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
2750 || optab_handler (popcount_optab
, word_mode
) != CODE_FOR_nothing
)
2751 && optimize_insn_for_speed_p ())
2753 temp
= expand_doubleword_parity (mode
, op0
, target
);
2758 /* Widening (or narrowing) bswap needs special treatment. */
2759 if (unoptab
== bswap_optab
)
2761 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2762 or ROTATERT. First try these directly; if this fails, then try the
2763 obvious pair of shifts with allowed widening, as this will probably
2764 be always more efficient than the other fallback methods. */
2770 if (optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
)
2772 temp
= expand_binop (mode
, rotl_optab
, op0
, GEN_INT (8), target
,
2773 unsignedp
, OPTAB_DIRECT
);
2778 if (optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
2780 temp
= expand_binop (mode
, rotr_optab
, op0
, GEN_INT (8), target
,
2781 unsignedp
, OPTAB_DIRECT
);
2786 last
= get_last_insn ();
2788 temp1
= expand_binop (mode
, ashl_optab
, op0
, GEN_INT (8), NULL_RTX
,
2789 unsignedp
, OPTAB_WIDEN
);
2790 temp2
= expand_binop (mode
, lshr_optab
, op0
, GEN_INT (8), NULL_RTX
,
2791 unsignedp
, OPTAB_WIDEN
);
2794 temp
= expand_binop (mode
, ior_optab
, temp1
, temp2
, target
,
2795 unsignedp
, OPTAB_WIDEN
);
2800 delete_insns_since (last
);
2803 temp
= widen_bswap (mode
, op0
, target
);
2807 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2808 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2810 temp
= expand_doubleword_bswap (mode
, op0
, target
);
2818 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2819 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2820 wider_mode
!= VOIDmode
;
2821 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2823 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2826 rtx_insn
*last
= get_last_insn ();
2828 /* For certain operations, we need not actually extend
2829 the narrow operand, as long as we will truncate the
2830 results to the same narrowness. */
2832 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
2833 (unoptab
== neg_optab
2834 || unoptab
== one_cmpl_optab
)
2835 && mclass
== MODE_INT
);
2837 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2842 if (mclass
!= MODE_INT
2843 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2846 target
= gen_reg_rtx (mode
);
2847 convert_move (target
, temp
, 0);
2851 return gen_lowpart (mode
, temp
);
2854 delete_insns_since (last
);
2858 /* These can be done a word at a time. */
2859 if (unoptab
== one_cmpl_optab
2860 && mclass
== MODE_INT
2861 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
2862 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2867 if (target
== 0 || target
== op0
|| !valid_multiword_target_p (target
))
2868 target
= gen_reg_rtx (mode
);
2872 /* Do the actual arithmetic. */
2873 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
2875 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
2876 rtx x
= expand_unop (word_mode
, unoptab
,
2877 operand_subword_force (op0
, i
, mode
),
2878 target_piece
, unsignedp
);
2880 if (target_piece
!= x
)
2881 emit_move_insn (target_piece
, x
);
2884 insns
= get_insns ();
2891 if (optab_to_code (unoptab
) == NEG
)
2893 /* Try negating floating point values by flipping the sign bit. */
2894 if (SCALAR_FLOAT_MODE_P (mode
))
2896 temp
= expand_absneg_bit (NEG
, mode
, op0
, target
);
2901 /* If there is no negation pattern, and we have no negative zero,
2902 try subtracting from zero. */
2903 if (!HONOR_SIGNED_ZEROS (mode
))
2905 temp
= expand_binop (mode
, (unoptab
== negv_optab
2906 ? subv_optab
: sub_optab
),
2907 CONST0_RTX (mode
), op0
, target
,
2908 unsignedp
, OPTAB_DIRECT
);
2914 /* Try calculating parity (x) as popcount (x) % 2. */
2915 if (unoptab
== parity_optab
)
2917 temp
= expand_parity (mode
, op0
, target
);
2922 /* Try implementing ffs (x) in terms of clz (x). */
2923 if (unoptab
== ffs_optab
)
2925 temp
= expand_ffs (mode
, op0
, target
);
2930 /* Try implementing ctz (x) in terms of clz (x). */
2931 if (unoptab
== ctz_optab
)
2933 temp
= expand_ctz (mode
, op0
, target
);
2939 /* Now try a library call in this mode. */
2940 libfunc
= optab_libfunc (unoptab
, mode
);
2946 machine_mode outmode
= mode
;
2948 /* All of these functions return small values. Thus we choose to
2949 have them return something that isn't a double-word. */
2950 if (unoptab
== ffs_optab
|| unoptab
== clz_optab
|| unoptab
== ctz_optab
2951 || unoptab
== clrsb_optab
|| unoptab
== popcount_optab
2952 || unoptab
== parity_optab
)
2954 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node
),
2955 optab_libfunc (unoptab
, mode
)));
2959 /* Pass 1 for NO_QUEUE so we don't lose any increments
2960 if the libcall is cse'd or moved. */
2961 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, outmode
,
2963 insns
= get_insns ();
2966 target
= gen_reg_rtx (outmode
);
2967 bool trapv
= trapv_unoptab_p (unoptab
);
2969 eq_value
= NULL_RTX
;
2972 eq_value
= gen_rtx_fmt_e (optab_to_code (unoptab
), mode
, op0
);
2973 if (GET_MODE_SIZE (outmode
) < GET_MODE_SIZE (mode
))
2974 eq_value
= simplify_gen_unary (TRUNCATE
, outmode
, eq_value
, mode
);
2975 else if (GET_MODE_SIZE (outmode
) > GET_MODE_SIZE (mode
))
2976 eq_value
= simplify_gen_unary (ZERO_EXTEND
,
2977 outmode
, eq_value
, mode
);
2979 emit_libcall_block_1 (insns
, target
, value
, eq_value
, trapv
);
2984 /* It can't be done in this mode. Can we do it in a wider mode? */
2986 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2988 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2989 wider_mode
!= VOIDmode
;
2990 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2992 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
2993 || optab_libfunc (unoptab
, wider_mode
))
2996 rtx_insn
*last
= get_last_insn ();
2998 /* For certain operations, we need not actually extend
2999 the narrow operand, as long as we will truncate the
3000 results to the same narrowness. */
3001 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3002 (unoptab
== neg_optab
3003 || unoptab
== one_cmpl_optab
3004 || unoptab
== bswap_optab
)
3005 && mclass
== MODE_INT
);
3007 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3010 /* If we are generating clz using wider mode, adjust the
3011 result. Similarly for clrsb. */
3012 if ((unoptab
== clz_optab
|| unoptab
== clrsb_optab
)
3015 (wider_mode
, sub_optab
, temp
,
3016 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
3017 - GET_MODE_PRECISION (mode
),
3019 target
, true, OPTAB_DIRECT
);
3021 /* Likewise for bswap. */
3022 if (unoptab
== bswap_optab
&& temp
!= 0)
3024 gcc_assert (GET_MODE_PRECISION (wider_mode
)
3025 == GET_MODE_BITSIZE (wider_mode
)
3026 && GET_MODE_PRECISION (mode
)
3027 == GET_MODE_BITSIZE (mode
));
3029 temp
= expand_shift (RSHIFT_EXPR
, wider_mode
, temp
,
3030 GET_MODE_BITSIZE (wider_mode
)
3031 - GET_MODE_BITSIZE (mode
),
3037 if (mclass
!= MODE_INT
)
3040 target
= gen_reg_rtx (mode
);
3041 convert_move (target
, temp
, 0);
3045 return gen_lowpart (mode
, temp
);
3048 delete_insns_since (last
);
3053 /* One final attempt at implementing negation via subtraction,
3054 this time allowing widening of the operand. */
3055 if (optab_to_code (unoptab
) == NEG
&& !HONOR_SIGNED_ZEROS (mode
))
3058 temp
= expand_binop (mode
,
3059 unoptab
== negv_optab
? subv_optab
: sub_optab
,
3060 CONST0_RTX (mode
), op0
,
3061 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3069 /* Emit code to compute the absolute value of OP0, with result to
3070 TARGET if convenient. (TARGET may be 0.) The return value says
3071 where the result actually is to be found.
3073 MODE is the mode of the operand; the mode of the result is
3074 different but can be deduced from MODE.
3079 expand_abs_nojump (machine_mode mode
, rtx op0
, rtx target
,
3080 int result_unsignedp
)
3084 if (GET_MODE_CLASS (mode
) != MODE_INT
3086 result_unsignedp
= 1;
3088 /* First try to do it with a special abs instruction. */
3089 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
3094 /* For floating point modes, try clearing the sign bit. */
3095 if (SCALAR_FLOAT_MODE_P (mode
))
3097 temp
= expand_absneg_bit (ABS
, mode
, op0
, target
);
3102 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3103 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
3104 && !HONOR_SIGNED_ZEROS (mode
))
3106 rtx_insn
*last
= get_last_insn ();
3108 temp
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3111 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3117 delete_insns_since (last
);
3120 /* If this machine has expensive jumps, we can do integer absolute
3121 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3122 where W is the width of MODE. */
3124 if (GET_MODE_CLASS (mode
) == MODE_INT
3125 && BRANCH_COST (optimize_insn_for_speed_p (),
3128 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3129 GET_MODE_PRECISION (mode
) - 1,
3132 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3135 temp
= expand_binop (mode
, result_unsignedp
? sub_optab
: subv_optab
,
3136 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
3146 expand_abs (machine_mode mode
, rtx op0
, rtx target
,
3147 int result_unsignedp
, int safe
)
3150 rtx_code_label
*op1
;
3152 if (GET_MODE_CLASS (mode
) != MODE_INT
3154 result_unsignedp
= 1;
3156 temp
= expand_abs_nojump (mode
, op0
, target
, result_unsignedp
);
3160 /* If that does not win, use conditional jump and negate. */
3162 /* It is safe to use the target if it is the same
3163 as the source if this is also a pseudo register */
3164 if (op0
== target
&& REG_P (op0
)
3165 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
3168 op1
= gen_label_rtx ();
3169 if (target
== 0 || ! safe
3170 || GET_MODE (target
) != mode
3171 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
3173 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
3174 target
= gen_reg_rtx (mode
);
3176 emit_move_insn (target
, op0
);
3179 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
3180 NULL_RTX
, NULL
, op1
, -1);
3182 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3185 emit_move_insn (target
, op0
);
3191 /* Emit code to compute the one's complement absolute value of OP0
3192 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3193 (TARGET may be NULL_RTX.) The return value says where the result
3194 actually is to be found.
3196 MODE is the mode of the operand; the mode of the result is
3197 different but can be deduced from MODE. */
3200 expand_one_cmpl_abs_nojump (machine_mode mode
, rtx op0
, rtx target
)
3204 /* Not applicable for floating point modes. */
3205 if (FLOAT_MODE_P (mode
))
3208 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3209 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
)
3211 rtx_insn
*last
= get_last_insn ();
3213 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, NULL_RTX
, 0);
3215 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3221 delete_insns_since (last
);
3224 /* If this machine has expensive jumps, we can do one's complement
3225 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3227 if (GET_MODE_CLASS (mode
) == MODE_INT
3228 && BRANCH_COST (optimize_insn_for_speed_p (),
3231 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3232 GET_MODE_PRECISION (mode
) - 1,
3235 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3245 /* A subroutine of expand_copysign, perform the copysign operation using the
3246 abs and neg primitives advertised to exist on the target. The assumption
3247 is that we have a split register file, and leaving op0 in fp registers,
3248 and not playing with subregs so much, will help the register allocator. */
3251 expand_copysign_absneg (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3252 int bitpos
, bool op0_is_abs
)
3255 enum insn_code icode
;
3257 rtx_code_label
*label
;
3262 /* Check if the back end provides an insn that handles signbit for the
3264 icode
= optab_handler (signbit_optab
, mode
);
3265 if (icode
!= CODE_FOR_nothing
)
3267 imode
= insn_data
[(int) icode
].operand
[0].mode
;
3268 sign
= gen_reg_rtx (imode
);
3269 emit_unop_insn (icode
, sign
, op1
, UNKNOWN
);
3273 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3275 imode
= int_mode_for_mode (mode
);
3276 if (imode
== BLKmode
)
3278 op1
= gen_lowpart (imode
, op1
);
3285 if (FLOAT_WORDS_BIG_ENDIAN
)
3286 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3288 word
= bitpos
/ BITS_PER_WORD
;
3289 bitpos
= bitpos
% BITS_PER_WORD
;
3290 op1
= operand_subword_force (op1
, word
, mode
);
3293 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3294 sign
= expand_binop (imode
, and_optab
, op1
,
3295 immed_wide_int_const (mask
, imode
),
3296 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3301 op0
= expand_unop (mode
, abs_optab
, op0
, target
, 0);
3308 if (target
== NULL_RTX
)
3309 target
= copy_to_reg (op0
);
3311 emit_move_insn (target
, op0
);
3314 label
= gen_label_rtx ();
3315 emit_cmp_and_jump_insns (sign
, const0_rtx
, EQ
, NULL_RTX
, imode
, 1, label
);
3317 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3318 op0
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3320 op0
= expand_unop (mode
, neg_optab
, op0
, target
, 0);
3322 emit_move_insn (target
, op0
);
3330 /* A subroutine of expand_copysign, perform the entire copysign operation
3331 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3332 is true if op0 is known to have its sign bit clear. */
3335 expand_copysign_bit (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3336 int bitpos
, bool op0_is_abs
)
3339 int word
, nwords
, i
;
3343 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3345 imode
= int_mode_for_mode (mode
);
3346 if (imode
== BLKmode
)
3355 if (FLOAT_WORDS_BIG_ENDIAN
)
3356 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3358 word
= bitpos
/ BITS_PER_WORD
;
3359 bitpos
= bitpos
% BITS_PER_WORD
;
3360 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3363 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3368 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3369 target
= gen_reg_rtx (mode
);
3375 for (i
= 0; i
< nwords
; ++i
)
3377 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3378 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3384 = expand_binop (imode
, and_optab
, op0_piece
,
3385 immed_wide_int_const (~mask
, imode
),
3386 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3387 op1
= expand_binop (imode
, and_optab
,
3388 operand_subword_force (op1
, i
, mode
),
3389 immed_wide_int_const (mask
, imode
),
3390 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3392 temp
= expand_binop (imode
, ior_optab
, op0_piece
, op1
,
3393 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3394 if (temp
!= targ_piece
)
3395 emit_move_insn (targ_piece
, temp
);
3398 emit_move_insn (targ_piece
, op0_piece
);
3401 insns
= get_insns ();
3408 op1
= expand_binop (imode
, and_optab
, gen_lowpart (imode
, op1
),
3409 immed_wide_int_const (mask
, imode
),
3410 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3412 op0
= gen_lowpart (imode
, op0
);
3414 op0
= expand_binop (imode
, and_optab
, op0
,
3415 immed_wide_int_const (~mask
, imode
),
3416 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3418 temp
= expand_binop (imode
, ior_optab
, op0
, op1
,
3419 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
3420 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
3426 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3427 scalar floating point mode. Return NULL if we do not know how to
3428 expand the operation inline. */
3431 expand_copysign (rtx op0
, rtx op1
, rtx target
)
3433 machine_mode mode
= GET_MODE (op0
);
3434 const struct real_format
*fmt
;
3438 gcc_assert (SCALAR_FLOAT_MODE_P (mode
));
3439 gcc_assert (GET_MODE (op1
) == mode
);
3441 /* First try to do it with a special instruction. */
3442 temp
= expand_binop (mode
, copysign_optab
, op0
, op1
,
3443 target
, 0, OPTAB_DIRECT
);
3447 fmt
= REAL_MODE_FORMAT (mode
);
3448 if (fmt
== NULL
|| !fmt
->has_signed_zero
)
3452 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3454 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0
)))
3455 op0
= simplify_unary_operation (ABS
, mode
, op0
, mode
);
3459 if (fmt
->signbit_ro
>= 0
3460 && (CONST_DOUBLE_AS_FLOAT_P (op0
)
3461 || (optab_handler (neg_optab
, mode
) != CODE_FOR_nothing
3462 && optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)))
3464 temp
= expand_copysign_absneg (mode
, op0
, op1
, target
,
3465 fmt
->signbit_ro
, op0_is_abs
);
3470 if (fmt
->signbit_rw
< 0)
3472 return expand_copysign_bit (mode
, op0
, op1
, target
,
3473 fmt
->signbit_rw
, op0_is_abs
);
3476 /* Generate an instruction whose insn-code is INSN_CODE,
3477 with two operands: an output TARGET and an input OP0.
3478 TARGET *must* be nonzero, and the output is always stored there.
3479 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3480 the value that is stored into TARGET.
3482 Return false if expansion failed. */
3485 maybe_emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
,
3488 struct expand_operand ops
[2];
3491 create_output_operand (&ops
[0], target
, GET_MODE (target
));
3492 create_input_operand (&ops
[1], op0
, GET_MODE (op0
));
3493 pat
= maybe_gen_insn (icode
, 2, ops
);
3497 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
3499 add_equal_note (pat
, ops
[0].value
, code
, ops
[1].value
, NULL_RTX
);
3503 if (ops
[0].value
!= target
)
3504 emit_move_insn (target
, ops
[0].value
);
3507 /* Generate an instruction whose insn-code is INSN_CODE,
3508 with two operands: an output TARGET and an input OP0.
3509 TARGET *must* be nonzero, and the output is always stored there.
3510 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3511 the value that is stored into TARGET. */
3514 emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
, enum rtx_code code
)
3516 bool ok
= maybe_emit_unop_insn (icode
, target
, op0
, code
);
3520 struct no_conflict_data
3523 rtx_insn
*first
, *insn
;
3527 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3528 the currently examined clobber / store has to stay in the list of
3529 insns that constitute the actual libcall block. */
3531 no_conflict_move_test (rtx dest
, const_rtx set
, void *p0
)
3533 struct no_conflict_data
*p
= (struct no_conflict_data
*) p0
;
3535 /* If this inns directly contributes to setting the target, it must stay. */
3536 if (reg_overlap_mentioned_p (p
->target
, dest
))
3537 p
->must_stay
= true;
3538 /* If we haven't committed to keeping any other insns in the list yet,
3539 there is nothing more to check. */
3540 else if (p
->insn
== p
->first
)
3542 /* If this insn sets / clobbers a register that feeds one of the insns
3543 already in the list, this insn has to stay too. */
3544 else if (reg_overlap_mentioned_p (dest
, PATTERN (p
->first
))
3545 || (CALL_P (p
->first
) && (find_reg_fusage (p
->first
, USE
, dest
)))
3546 || reg_used_between_p (dest
, p
->first
, p
->insn
)
3547 /* Likewise if this insn depends on a register set by a previous
3548 insn in the list, or if it sets a result (presumably a hard
3549 register) that is set or clobbered by a previous insn.
3550 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3551 SET_DEST perform the former check on the address, and the latter
3552 check on the MEM. */
3553 || (GET_CODE (set
) == SET
3554 && (modified_in_p (SET_SRC (set
), p
->first
)
3555 || modified_in_p (SET_DEST (set
), p
->first
)
3556 || modified_between_p (SET_SRC (set
), p
->first
, p
->insn
)
3557 || modified_between_p (SET_DEST (set
), p
->first
, p
->insn
))))
3558 p
->must_stay
= true;
3562 /* Emit code to make a call to a constant function or a library call.
3564 INSNS is a list containing all insns emitted in the call.
3565 These insns leave the result in RESULT. Our block is to copy RESULT
3566 to TARGET, which is logically equivalent to EQUIV.
3568 We first emit any insns that set a pseudo on the assumption that these are
3569 loading constants into registers; doing so allows them to be safely cse'ed
3570 between blocks. Then we emit all the other insns in the block, followed by
3571 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3572 note with an operand of EQUIV. */
3575 emit_libcall_block_1 (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
,
3576 bool equiv_may_trap
)
3578 rtx final_dest
= target
;
3579 rtx_insn
*next
, *last
, *insn
;
3581 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3582 into a MEM later. Protect the libcall block from this change. */
3583 if (! REG_P (target
) || REG_USERVAR_P (target
))
3584 target
= gen_reg_rtx (GET_MODE (target
));
3586 /* If we're using non-call exceptions, a libcall corresponding to an
3587 operation that may trap may also trap. */
3588 /* ??? See the comment in front of make_reg_eh_region_note. */
3589 if (cfun
->can_throw_non_call_exceptions
3590 && (equiv_may_trap
|| may_trap_p (equiv
)))
3592 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3595 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
3598 int lp_nr
= INTVAL (XEXP (note
, 0));
3599 if (lp_nr
== 0 || lp_nr
== INT_MIN
)
3600 remove_note (insn
, note
);
3606 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3607 reg note to indicate that this call cannot throw or execute a nonlocal
3608 goto (unless there is already a REG_EH_REGION note, in which case
3610 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3612 make_reg_eh_region_note_nothrow_nononlocal (insn
);
3615 /* First emit all insns that set pseudos. Remove them from the list as
3616 we go. Avoid insns that set pseudos which were referenced in previous
3617 insns. These can be generated by move_by_pieces, for example,
3618 to update an address. Similarly, avoid insns that reference things
3619 set in previous insns. */
3621 for (insn
= insns
; insn
; insn
= next
)
3623 rtx set
= single_set (insn
);
3625 next
= NEXT_INSN (insn
);
3627 if (set
!= 0 && REG_P (SET_DEST (set
))
3628 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3630 struct no_conflict_data data
;
3632 data
.target
= const0_rtx
;
3636 note_stores (PATTERN (insn
), no_conflict_move_test
, &data
);
3637 if (! data
.must_stay
)
3639 if (PREV_INSN (insn
))
3640 SET_NEXT_INSN (PREV_INSN (insn
)) = next
;
3645 SET_PREV_INSN (next
) = PREV_INSN (insn
);
3651 /* Some ports use a loop to copy large arguments onto the stack.
3652 Don't move anything outside such a loop. */
3657 /* Write the remaining insns followed by the final copy. */
3658 for (insn
= insns
; insn
; insn
= next
)
3660 next
= NEXT_INSN (insn
);
3665 last
= emit_move_insn (target
, result
);
3667 set_dst_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
), target
);
3669 if (final_dest
!= target
)
3670 emit_move_insn (final_dest
, target
);
3674 emit_libcall_block (rtx insns
, rtx target
, rtx result
, rtx equiv
)
3676 emit_libcall_block_1 (safe_as_a
<rtx_insn
*> (insns
),
3677 target
, result
, equiv
, false);
3680 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3681 PURPOSE describes how this comparison will be used. CODE is the rtx
3682 comparison code we will be using.
3684 ??? Actually, CODE is slightly weaker than that. A target is still
3685 required to implement all of the normal bcc operations, but not
3686 required to implement all (or any) of the unordered bcc operations. */
3689 can_compare_p (enum rtx_code code
, machine_mode mode
,
3690 enum can_compare_purpose purpose
)
3693 test
= gen_rtx_fmt_ee (code
, mode
, const0_rtx
, const0_rtx
);
3696 enum insn_code icode
;
3698 if (purpose
== ccp_jump
3699 && (icode
= optab_handler (cbranch_optab
, mode
)) != CODE_FOR_nothing
3700 && insn_operand_matches (icode
, 0, test
))
3702 if (purpose
== ccp_store_flag
3703 && (icode
= optab_handler (cstore_optab
, mode
)) != CODE_FOR_nothing
3704 && insn_operand_matches (icode
, 1, test
))
3706 if (purpose
== ccp_cmov
3707 && optab_handler (cmov_optab
, mode
) != CODE_FOR_nothing
)
3710 mode
= GET_MODE_WIDER_MODE (mode
);
3711 PUT_MODE (test
, mode
);
3713 while (mode
!= VOIDmode
);
3718 /* This function is called when we are going to emit a compare instruction that
3719 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3721 *PMODE is the mode of the inputs (in case they are const_int).
3722 *PUNSIGNEDP nonzero says that the operands are unsigned;
3723 this matters if they need to be widened (as given by METHODS).
3725 If they have mode BLKmode, then SIZE specifies the size of both operands.
3727 This function performs all the setup necessary so that the caller only has
3728 to emit a single comparison insn. This setup can involve doing a BLKmode
3729 comparison or emitting a library call to perform the comparison if no insn
3730 is available to handle it.
3731 The values which are passed in through pointers can be modified; the caller
3732 should perform the comparison on the modified values. Constant
3733 comparisons must have already been folded. */
3736 prepare_cmp_insn (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
3737 int unsignedp
, enum optab_methods methods
,
3738 rtx
*ptest
, machine_mode
*pmode
)
3740 machine_mode mode
= *pmode
;
3742 machine_mode cmp_mode
;
3743 enum mode_class mclass
;
3745 /* The other methods are not needed. */
3746 gcc_assert (methods
== OPTAB_DIRECT
|| methods
== OPTAB_WIDEN
3747 || methods
== OPTAB_LIB_WIDEN
);
3749 /* If we are optimizing, force expensive constants into a register. */
3750 if (CONSTANT_P (x
) && optimize
3751 && (rtx_cost (x
, mode
, COMPARE
, 0, optimize_insn_for_speed_p ())
3752 > COSTS_N_INSNS (1)))
3753 x
= force_reg (mode
, x
);
3755 if (CONSTANT_P (y
) && optimize
3756 && (rtx_cost (y
, mode
, COMPARE
, 1, optimize_insn_for_speed_p ())
3757 > COSTS_N_INSNS (1)))
3758 y
= force_reg (mode
, y
);
3761 /* Make sure if we have a canonical comparison. The RTL
3762 documentation states that canonical comparisons are required only
3763 for targets which have cc0. */
3764 gcc_assert (!CONSTANT_P (x
) || CONSTANT_P (y
));
3767 /* Don't let both operands fail to indicate the mode. */
3768 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
3769 x
= force_reg (mode
, x
);
3770 if (mode
== VOIDmode
)
3771 mode
= GET_MODE (x
) != VOIDmode
? GET_MODE (x
) : GET_MODE (y
);
3773 /* Handle all BLKmode compares. */
3775 if (mode
== BLKmode
)
3777 machine_mode result_mode
;
3778 enum insn_code cmp_code
;
3783 = GEN_INT (MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)) / BITS_PER_UNIT
);
3787 /* Try to use a memory block compare insn - either cmpstr
3788 or cmpmem will do. */
3789 for (cmp_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
3790 cmp_mode
!= VOIDmode
;
3791 cmp_mode
= GET_MODE_WIDER_MODE (cmp_mode
))
3793 cmp_code
= direct_optab_handler (cmpmem_optab
, cmp_mode
);
3794 if (cmp_code
== CODE_FOR_nothing
)
3795 cmp_code
= direct_optab_handler (cmpstr_optab
, cmp_mode
);
3796 if (cmp_code
== CODE_FOR_nothing
)
3797 cmp_code
= direct_optab_handler (cmpstrn_optab
, cmp_mode
);
3798 if (cmp_code
== CODE_FOR_nothing
)
3801 /* Must make sure the size fits the insn's mode. */
3802 if ((CONST_INT_P (size
)
3803 && INTVAL (size
) >= (1 << GET_MODE_BITSIZE (cmp_mode
)))
3804 || (GET_MODE_BITSIZE (GET_MODE (size
))
3805 > GET_MODE_BITSIZE (cmp_mode
)))
3808 result_mode
= insn_data
[cmp_code
].operand
[0].mode
;
3809 result
= gen_reg_rtx (result_mode
);
3810 size
= convert_to_mode (cmp_mode
, size
, 1);
3811 emit_insn (GEN_FCN (cmp_code
) (result
, x
, y
, size
, opalign
));
3813 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
3814 *pmode
= result_mode
;
3818 if (methods
!= OPTAB_LIB
&& methods
!= OPTAB_LIB_WIDEN
)
3821 /* Otherwise call a library function, memcmp. */
3822 libfunc
= memcmp_libfunc
;
3823 length_type
= sizetype
;
3824 result_mode
= TYPE_MODE (integer_type_node
);
3825 cmp_mode
= TYPE_MODE (length_type
);
3826 size
= convert_to_mode (TYPE_MODE (length_type
), size
,
3827 TYPE_UNSIGNED (length_type
));
3829 result
= emit_library_call_value (libfunc
, 0, LCT_PURE
,
3837 methods
= OPTAB_LIB_WIDEN
;
3841 /* Don't allow operands to the compare to trap, as that can put the
3842 compare and branch in different basic blocks. */
3843 if (cfun
->can_throw_non_call_exceptions
)
3846 x
= force_reg (mode
, x
);
3848 y
= force_reg (mode
, y
);
3851 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3853 enum insn_code icode
= optab_handler (cbranch_optab
, CCmode
);
3854 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3855 gcc_assert (icode
!= CODE_FOR_nothing
3856 && insn_operand_matches (icode
, 0, test
));
3861 mclass
= GET_MODE_CLASS (mode
);
3862 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3866 enum insn_code icode
;
3867 icode
= optab_handler (cbranch_optab
, cmp_mode
);
3868 if (icode
!= CODE_FOR_nothing
3869 && insn_operand_matches (icode
, 0, test
))
3871 rtx_insn
*last
= get_last_insn ();
3872 rtx op0
= prepare_operand (icode
, x
, 1, mode
, cmp_mode
, unsignedp
);
3873 rtx op1
= prepare_operand (icode
, y
, 2, mode
, cmp_mode
, unsignedp
);
3875 && insn_operand_matches (icode
, 1, op0
)
3876 && insn_operand_matches (icode
, 2, op1
))
3878 XEXP (test
, 0) = op0
;
3879 XEXP (test
, 1) = op1
;
3884 delete_insns_since (last
);
3887 if (methods
== OPTAB_DIRECT
|| !CLASS_HAS_WIDER_MODES_P (mclass
))
3889 cmp_mode
= GET_MODE_WIDER_MODE (cmp_mode
);
3891 while (cmp_mode
!= VOIDmode
);
3893 if (methods
!= OPTAB_LIB_WIDEN
)
3896 if (!SCALAR_FLOAT_MODE_P (mode
))
3899 machine_mode ret_mode
;
3901 /* Handle a libcall just for the mode we are using. */
3902 libfunc
= optab_libfunc (cmp_optab
, mode
);
3903 gcc_assert (libfunc
);
3905 /* If we want unsigned, and this mode has a distinct unsigned
3906 comparison routine, use that. */
3909 rtx ulibfunc
= optab_libfunc (ucmp_optab
, mode
);
3914 ret_mode
= targetm
.libgcc_cmp_return_mode ();
3915 result
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
3916 ret_mode
, 2, x
, mode
, y
, mode
);
3918 /* There are two kinds of comparison routines. Biased routines
3919 return 0/1/2, and unbiased routines return -1/0/1. Other parts
3920 of gcc expect that the comparison operation is equivalent
3921 to the modified comparison. For signed comparisons compare the
3922 result against 1 in the biased case, and zero in the unbiased
3923 case. For unsigned comparisons always compare against 1 after
3924 biasing the unbiased result by adding 1. This gives us a way to
3926 The comparisons in the fixed-point helper library are always
3931 if (!TARGET_LIB_INT_CMP_BIASED
&& !ALL_FIXED_POINT_MODE_P (mode
))
3934 x
= plus_constant (ret_mode
, result
, 1);
3940 prepare_cmp_insn (x
, y
, comparison
, NULL_RTX
, unsignedp
, methods
,
3944 prepare_float_lib_cmp (x
, y
, comparison
, ptest
, pmode
);
3952 /* Before emitting an insn with code ICODE, make sure that X, which is going
3953 to be used for operand OPNUM of the insn, is converted from mode MODE to
3954 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3955 that it is accepted by the operand predicate. Return the new value. */
3958 prepare_operand (enum insn_code icode
, rtx x
, int opnum
, machine_mode mode
,
3959 machine_mode wider_mode
, int unsignedp
)
3961 if (mode
!= wider_mode
)
3962 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
3964 if (!insn_operand_matches (icode
, opnum
, x
))
3966 machine_mode op_mode
= insn_data
[(int) icode
].operand
[opnum
].mode
;
3967 if (reload_completed
)
3969 if (GET_MODE (x
) != op_mode
&& GET_MODE (x
) != VOIDmode
)
3971 x
= copy_to_mode_reg (op_mode
, x
);
3977 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3978 we can do the branch. */
3981 emit_cmp_and_jump_insn_1 (rtx test
, machine_mode mode
, rtx label
, int prob
)
3983 machine_mode optab_mode
;
3984 enum mode_class mclass
;
3985 enum insn_code icode
;
3988 mclass
= GET_MODE_CLASS (mode
);
3989 optab_mode
= (mclass
== MODE_CC
) ? CCmode
: mode
;
3990 icode
= optab_handler (cbranch_optab
, optab_mode
);
3992 gcc_assert (icode
!= CODE_FOR_nothing
);
3993 gcc_assert (insn_operand_matches (icode
, 0, test
));
3994 insn
= emit_jump_insn (GEN_FCN (icode
) (test
, XEXP (test
, 0),
3995 XEXP (test
, 1), label
));
3997 && profile_status_for_fn (cfun
) != PROFILE_ABSENT
4000 && any_condjump_p (insn
)
4001 && !find_reg_note (insn
, REG_BR_PROB
, 0))
4002 add_int_reg_note (insn
, REG_BR_PROB
, prob
);
4005 /* Generate code to compare X with Y so that the condition codes are
4006 set and to jump to LABEL if the condition is true. If X is a
4007 constant and Y is not a constant, then the comparison is swapped to
4008 ensure that the comparison RTL has the canonical form.
4010 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4011 need to be widened. UNSIGNEDP is also used to select the proper
4012 branch condition code.
4014 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4016 MODE is the mode of the inputs (in case they are const_int).
4018 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4019 It will be potentially converted into an unsigned variant based on
4020 UNSIGNEDP to select a proper jump instruction.
4022 PROB is the probability of jumping to LABEL. */
4025 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4026 machine_mode mode
, int unsignedp
, rtx label
,
4029 rtx op0
= x
, op1
= y
;
4032 /* Swap operands and condition to ensure canonical RTL. */
4033 if (swap_commutative_operands_p (x
, y
)
4034 && can_compare_p (swap_condition (comparison
), mode
, ccp_jump
))
4037 comparison
= swap_condition (comparison
);
4040 /* If OP0 is still a constant, then both X and Y must be constants
4041 or the opposite comparison is not supported. Force X into a register
4042 to create canonical RTL. */
4043 if (CONSTANT_P (op0
))
4044 op0
= force_reg (mode
, op0
);
4047 comparison
= unsigned_condition (comparison
);
4049 prepare_cmp_insn (op0
, op1
, comparison
, size
, unsignedp
, OPTAB_LIB_WIDEN
,
4051 emit_cmp_and_jump_insn_1 (test
, mode
, label
, prob
);
4055 /* Emit a library call comparison between floating point X and Y.
4056 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4059 prepare_float_lib_cmp (rtx x
, rtx y
, enum rtx_code comparison
,
4060 rtx
*ptest
, machine_mode
*pmode
)
4062 enum rtx_code swapped
= swap_condition (comparison
);
4063 enum rtx_code reversed
= reverse_condition_maybe_unordered (comparison
);
4064 machine_mode orig_mode
= GET_MODE (x
);
4065 machine_mode mode
, cmp_mode
;
4066 rtx true_rtx
, false_rtx
;
4067 rtx value
, target
, equiv
;
4070 bool reversed_p
= false;
4071 cmp_mode
= targetm
.libgcc_cmp_return_mode ();
4073 for (mode
= orig_mode
;
4075 mode
= GET_MODE_WIDER_MODE (mode
))
4077 if (code_to_optab (comparison
)
4078 && (libfunc
= optab_libfunc (code_to_optab (comparison
), mode
)))
4081 if (code_to_optab (swapped
)
4082 && (libfunc
= optab_libfunc (code_to_optab (swapped
), mode
)))
4085 comparison
= swapped
;
4089 if (code_to_optab (reversed
)
4090 && (libfunc
= optab_libfunc (code_to_optab (reversed
), mode
)))
4092 comparison
= reversed
;
4098 gcc_assert (mode
!= VOIDmode
);
4100 if (mode
!= orig_mode
)
4102 x
= convert_to_mode (mode
, x
, 0);
4103 y
= convert_to_mode (mode
, y
, 0);
4106 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4107 the RTL. The allows the RTL optimizers to delete the libcall if the
4108 condition can be determined at compile-time. */
4109 if (comparison
== UNORDERED
4110 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4112 true_rtx
= const_true_rtx
;
4113 false_rtx
= const0_rtx
;
4120 true_rtx
= const0_rtx
;
4121 false_rtx
= const_true_rtx
;
4125 true_rtx
= const_true_rtx
;
4126 false_rtx
= const0_rtx
;
4130 true_rtx
= const1_rtx
;
4131 false_rtx
= const0_rtx
;
4135 true_rtx
= const0_rtx
;
4136 false_rtx
= constm1_rtx
;
4140 true_rtx
= constm1_rtx
;
4141 false_rtx
= const0_rtx
;
4145 true_rtx
= const0_rtx
;
4146 false_rtx
= const1_rtx
;
4154 if (comparison
== UNORDERED
)
4156 rtx temp
= simplify_gen_relational (NE
, cmp_mode
, mode
, x
, x
);
4157 equiv
= simplify_gen_relational (NE
, cmp_mode
, mode
, y
, y
);
4158 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4159 temp
, const_true_rtx
, equiv
);
4163 equiv
= simplify_gen_relational (comparison
, cmp_mode
, mode
, x
, y
);
4164 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4165 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4166 equiv
, true_rtx
, false_rtx
);
4170 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4171 cmp_mode
, 2, x
, mode
, y
, mode
);
4172 insns
= get_insns ();
4175 target
= gen_reg_rtx (cmp_mode
);
4176 emit_libcall_block (insns
, target
, value
, equiv
);
4178 if (comparison
== UNORDERED
4179 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
)
4181 *ptest
= gen_rtx_fmt_ee (reversed_p
? EQ
: NE
, VOIDmode
, target
, false_rtx
);
4183 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, target
, const0_rtx
);
4188 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4191 emit_indirect_jump (rtx loc
)
4193 if (!targetm
.have_indirect_jump ())
4194 sorry ("indirect jumps are not available on this target");
4197 struct expand_operand ops
[1];
4198 create_address_operand (&ops
[0], loc
);
4199 expand_jump_insn (targetm
.code_for_indirect_jump
, 1, ops
);
4205 /* Emit a conditional move instruction if the machine supports one for that
4206 condition and machine mode.
4208 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4209 the mode to use should they be constants. If it is VOIDmode, they cannot
4212 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4213 should be stored there. MODE is the mode to use should they be constants.
4214 If it is VOIDmode, they cannot both be constants.
4216 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4217 is not supported. */
4220 emit_conditional_move (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4221 machine_mode cmode
, rtx op2
, rtx op3
,
4222 machine_mode mode
, int unsignedp
)
4226 enum insn_code icode
;
4227 enum rtx_code reversed
;
4229 /* If one operand is constant, make it the second one. Only do this
4230 if the other operand is not constant as well. */
4232 if (swap_commutative_operands_p (op0
, op1
))
4234 std::swap (op0
, op1
);
4235 code
= swap_condition (code
);
4238 /* get_condition will prefer to generate LT and GT even if the old
4239 comparison was against zero, so undo that canonicalization here since
4240 comparisons against zero are cheaper. */
4241 if (code
== LT
&& op1
== const1_rtx
)
4242 code
= LE
, op1
= const0_rtx
;
4243 else if (code
== GT
&& op1
== constm1_rtx
)
4244 code
= GE
, op1
= const0_rtx
;
4246 if (cmode
== VOIDmode
)
4247 cmode
= GET_MODE (op0
);
4249 if (swap_commutative_operands_p (op2
, op3
)
4250 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
4253 std::swap (op2
, op3
);
4257 if (mode
== VOIDmode
)
4258 mode
= GET_MODE (op2
);
4260 icode
= direct_optab_handler (movcc_optab
, mode
);
4262 if (icode
== CODE_FOR_nothing
)
4266 target
= gen_reg_rtx (mode
);
4268 code
= unsignedp
? unsigned_condition (code
) : code
;
4269 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4271 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4272 return NULL and let the caller figure out how best to deal with this
4274 if (!COMPARISON_P (comparison
))
4277 saved_pending_stack_adjust save
;
4278 save_pending_stack_adjust (&save
);
4279 last
= get_last_insn ();
4280 do_pending_stack_adjust ();
4281 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4282 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4283 &comparison
, &cmode
);
4286 struct expand_operand ops
[4];
4288 create_output_operand (&ops
[0], target
, mode
);
4289 create_fixed_operand (&ops
[1], comparison
);
4290 create_input_operand (&ops
[2], op2
, mode
);
4291 create_input_operand (&ops
[3], op3
, mode
);
4292 if (maybe_expand_insn (icode
, 4, ops
))
4294 if (ops
[0].value
!= target
)
4295 convert_move (target
, ops
[0].value
, false);
4299 delete_insns_since (last
);
4300 restore_pending_stack_adjust (&save
);
4305 /* Emit a conditional negate or bitwise complement using the
4306 negcc or notcc optabs if available. Return NULL_RTX if such operations
4307 are not available. Otherwise return the RTX holding the result.
4308 TARGET is the desired destination of the result. COMP is the comparison
4309 on which to negate. If COND is true move into TARGET the negation
4310 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4311 CODE is either NEG or NOT. MODE is the machine mode in which the
4312 operation is performed. */
4315 emit_conditional_neg_or_complement (rtx target
, rtx_code code
,
4316 machine_mode mode
, rtx cond
, rtx op1
,
4319 optab op
= unknown_optab
;
4322 else if (code
== NOT
)
4327 insn_code icode
= direct_optab_handler (op
, mode
);
4329 if (icode
== CODE_FOR_nothing
)
4333 target
= gen_reg_rtx (mode
);
4335 rtx_insn
*last
= get_last_insn ();
4336 struct expand_operand ops
[4];
4338 create_output_operand (&ops
[0], target
, mode
);
4339 create_fixed_operand (&ops
[1], cond
);
4340 create_input_operand (&ops
[2], op1
, mode
);
4341 create_input_operand (&ops
[3], op2
, mode
);
4343 if (maybe_expand_insn (icode
, 4, ops
))
4345 if (ops
[0].value
!= target
)
4346 convert_move (target
, ops
[0].value
, false);
4350 delete_insns_since (last
);
4354 /* Emit a conditional addition instruction if the machine supports one for that
4355 condition and machine mode.
4357 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4358 the mode to use should they be constants. If it is VOIDmode, they cannot
4361 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4362 should be stored there. MODE is the mode to use should they be constants.
4363 If it is VOIDmode, they cannot both be constants.
4365 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4366 is not supported. */
4369 emit_conditional_add (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4370 machine_mode cmode
, rtx op2
, rtx op3
,
4371 machine_mode mode
, int unsignedp
)
4375 enum insn_code icode
;
4377 /* If one operand is constant, make it the second one. Only do this
4378 if the other operand is not constant as well. */
4380 if (swap_commutative_operands_p (op0
, op1
))
4382 std::swap (op0
, op1
);
4383 code
= swap_condition (code
);
4386 /* get_condition will prefer to generate LT and GT even if the old
4387 comparison was against zero, so undo that canonicalization here since
4388 comparisons against zero are cheaper. */
4389 if (code
== LT
&& op1
== const1_rtx
)
4390 code
= LE
, op1
= const0_rtx
;
4391 else if (code
== GT
&& op1
== constm1_rtx
)
4392 code
= GE
, op1
= const0_rtx
;
4394 if (cmode
== VOIDmode
)
4395 cmode
= GET_MODE (op0
);
4397 if (mode
== VOIDmode
)
4398 mode
= GET_MODE (op2
);
4400 icode
= optab_handler (addcc_optab
, mode
);
4402 if (icode
== CODE_FOR_nothing
)
4406 target
= gen_reg_rtx (mode
);
4408 code
= unsignedp
? unsigned_condition (code
) : code
;
4409 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4411 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4412 return NULL and let the caller figure out how best to deal with this
4414 if (!COMPARISON_P (comparison
))
4417 do_pending_stack_adjust ();
4418 last
= get_last_insn ();
4419 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4420 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4421 &comparison
, &cmode
);
4424 struct expand_operand ops
[4];
4426 create_output_operand (&ops
[0], target
, mode
);
4427 create_fixed_operand (&ops
[1], comparison
);
4428 create_input_operand (&ops
[2], op2
, mode
);
4429 create_input_operand (&ops
[3], op3
, mode
);
4430 if (maybe_expand_insn (icode
, 4, ops
))
4432 if (ops
[0].value
!= target
)
4433 convert_move (target
, ops
[0].value
, false);
4437 delete_insns_since (last
);
4441 /* These functions attempt to generate an insn body, rather than
4442 emitting the insn, but if the gen function already emits them, we
4443 make no attempt to turn them back into naked patterns. */
4445 /* Generate and return an insn body to add Y to X. */
4448 gen_add2_insn (rtx x
, rtx y
)
4450 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
4452 gcc_assert (insn_operand_matches (icode
, 0, x
));
4453 gcc_assert (insn_operand_matches (icode
, 1, x
));
4454 gcc_assert (insn_operand_matches (icode
, 2, y
));
4456 return GEN_FCN (icode
) (x
, x
, y
);
4459 /* Generate and return an insn body to add r1 and c,
4460 storing the result in r0. */
4463 gen_add3_insn (rtx r0
, rtx r1
, rtx c
)
4465 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (r0
));
4467 if (icode
== CODE_FOR_nothing
4468 || !insn_operand_matches (icode
, 0, r0
)
4469 || !insn_operand_matches (icode
, 1, r1
)
4470 || !insn_operand_matches (icode
, 2, c
))
4473 return GEN_FCN (icode
) (r0
, r1
, c
);
4477 have_add2_insn (rtx x
, rtx y
)
4479 enum insn_code icode
;
4481 gcc_assert (GET_MODE (x
) != VOIDmode
);
4483 icode
= optab_handler (add_optab
, GET_MODE (x
));
4485 if (icode
== CODE_FOR_nothing
)
4488 if (!insn_operand_matches (icode
, 0, x
)
4489 || !insn_operand_matches (icode
, 1, x
)
4490 || !insn_operand_matches (icode
, 2, y
))
4496 /* Generate and return an insn body to add Y to X. */
4499 gen_addptr3_insn (rtx x
, rtx y
, rtx z
)
4501 enum insn_code icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4503 gcc_assert (insn_operand_matches (icode
, 0, x
));
4504 gcc_assert (insn_operand_matches (icode
, 1, y
));
4505 gcc_assert (insn_operand_matches (icode
, 2, z
));
4507 return GEN_FCN (icode
) (x
, y
, z
);
4510 /* Return true if the target implements an addptr pattern and X, Y,
4511 and Z are valid for the pattern predicates. */
4514 have_addptr3_insn (rtx x
, rtx y
, rtx z
)
4516 enum insn_code icode
;
4518 gcc_assert (GET_MODE (x
) != VOIDmode
);
4520 icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4522 if (icode
== CODE_FOR_nothing
)
4525 if (!insn_operand_matches (icode
, 0, x
)
4526 || !insn_operand_matches (icode
, 1, y
)
4527 || !insn_operand_matches (icode
, 2, z
))
4533 /* Generate and return an insn body to subtract Y from X. */
4536 gen_sub2_insn (rtx x
, rtx y
)
4538 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (x
));
4540 gcc_assert (insn_operand_matches (icode
, 0, x
));
4541 gcc_assert (insn_operand_matches (icode
, 1, x
));
4542 gcc_assert (insn_operand_matches (icode
, 2, y
));
4544 return GEN_FCN (icode
) (x
, x
, y
);
4547 /* Generate and return an insn body to subtract r1 and c,
4548 storing the result in r0. */
4551 gen_sub3_insn (rtx r0
, rtx r1
, rtx c
)
4553 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (r0
));
4555 if (icode
== CODE_FOR_nothing
4556 || !insn_operand_matches (icode
, 0, r0
)
4557 || !insn_operand_matches (icode
, 1, r1
)
4558 || !insn_operand_matches (icode
, 2, c
))
4561 return GEN_FCN (icode
) (r0
, r1
, c
);
4565 have_sub2_insn (rtx x
, rtx y
)
4567 enum insn_code icode
;
4569 gcc_assert (GET_MODE (x
) != VOIDmode
);
4571 icode
= optab_handler (sub_optab
, GET_MODE (x
));
4573 if (icode
== CODE_FOR_nothing
)
4576 if (!insn_operand_matches (icode
, 0, x
)
4577 || !insn_operand_matches (icode
, 1, x
)
4578 || !insn_operand_matches (icode
, 2, y
))
4584 /* Generate the body of an insn to extend Y (with mode MFROM)
4585 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4588 gen_extend_insn (rtx x
, rtx y
, machine_mode mto
,
4589 machine_mode mfrom
, int unsignedp
)
4591 enum insn_code icode
= can_extend_p (mto
, mfrom
, unsignedp
);
4592 return GEN_FCN (icode
) (x
, y
);
4595 /* Generate code to convert FROM to floating point
4596 and store in TO. FROM must be fixed point and not VOIDmode.
4597 UNSIGNEDP nonzero means regard FROM as unsigned.
4598 Normally this is done by correcting the final value
4599 if it is negative. */
4602 expand_float (rtx to
, rtx from
, int unsignedp
)
4604 enum insn_code icode
;
4606 machine_mode fmode
, imode
;
4607 bool can_do_signed
= false;
4609 /* Crash now, because we won't be able to decide which mode to use. */
4610 gcc_assert (GET_MODE (from
) != VOIDmode
);
4612 /* Look for an insn to do the conversion. Do it in the specified
4613 modes if possible; otherwise convert either input, output or both to
4614 wider mode. If the integer mode is wider than the mode of FROM,
4615 we can do the conversion signed even if the input is unsigned. */
4617 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
4618 fmode
= GET_MODE_WIDER_MODE (fmode
))
4619 for (imode
= GET_MODE (from
); imode
!= VOIDmode
;
4620 imode
= GET_MODE_WIDER_MODE (imode
))
4622 int doing_unsigned
= unsignedp
;
4624 if (fmode
!= GET_MODE (to
)
4625 && significand_size (fmode
) < GET_MODE_PRECISION (GET_MODE (from
)))
4628 icode
= can_float_p (fmode
, imode
, unsignedp
);
4629 if (icode
== CODE_FOR_nothing
&& unsignedp
)
4631 enum insn_code scode
= can_float_p (fmode
, imode
, 0);
4632 if (scode
!= CODE_FOR_nothing
)
4633 can_do_signed
= true;
4634 if (imode
!= GET_MODE (from
))
4635 icode
= scode
, doing_unsigned
= 0;
4638 if (icode
!= CODE_FOR_nothing
)
4640 if (imode
!= GET_MODE (from
))
4641 from
= convert_to_mode (imode
, from
, unsignedp
);
4643 if (fmode
!= GET_MODE (to
))
4644 target
= gen_reg_rtx (fmode
);
4646 emit_unop_insn (icode
, target
, from
,
4647 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
4650 convert_move (to
, target
, 0);
4655 /* Unsigned integer, and no way to convert directly. Convert as signed,
4656 then unconditionally adjust the result. */
4657 if (unsignedp
&& can_do_signed
)
4659 rtx_code_label
*label
= gen_label_rtx ();
4661 REAL_VALUE_TYPE offset
;
4663 /* Look for a usable floating mode FMODE wider than the source and at
4664 least as wide as the target. Using FMODE will avoid rounding woes
4665 with unsigned values greater than the signed maximum value. */
4667 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
4668 fmode
= GET_MODE_WIDER_MODE (fmode
))
4669 if (GET_MODE_PRECISION (GET_MODE (from
)) < GET_MODE_BITSIZE (fmode
)
4670 && can_float_p (fmode
, GET_MODE (from
), 0) != CODE_FOR_nothing
)
4673 if (fmode
== VOIDmode
)
4675 /* There is no such mode. Pretend the target is wide enough. */
4676 fmode
= GET_MODE (to
);
4678 /* Avoid double-rounding when TO is narrower than FROM. */
4679 if ((significand_size (fmode
) + 1)
4680 < GET_MODE_PRECISION (GET_MODE (from
)))
4683 rtx_code_label
*neglabel
= gen_label_rtx ();
4685 /* Don't use TARGET if it isn't a register, is a hard register,
4686 or is the wrong mode. */
4688 || REGNO (target
) < FIRST_PSEUDO_REGISTER
4689 || GET_MODE (target
) != fmode
)
4690 target
= gen_reg_rtx (fmode
);
4692 imode
= GET_MODE (from
);
4693 do_pending_stack_adjust ();
4695 /* Test whether the sign bit is set. */
4696 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
4699 /* The sign bit is not set. Convert as signed. */
4700 expand_float (target
, from
, 0);
4701 emit_jump_insn (targetm
.gen_jump (label
));
4704 /* The sign bit is set.
4705 Convert to a usable (positive signed) value by shifting right
4706 one bit, while remembering if a nonzero bit was shifted
4707 out; i.e., compute (from & 1) | (from >> 1). */
4709 emit_label (neglabel
);
4710 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
4711 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4712 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, 1, NULL_RTX
, 1);
4713 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
4715 expand_float (target
, temp
, 0);
4717 /* Multiply by 2 to undo the shift above. */
4718 temp
= expand_binop (fmode
, add_optab
, target
, target
,
4719 target
, 0, OPTAB_LIB_WIDEN
);
4721 emit_move_insn (target
, temp
);
4723 do_pending_stack_adjust ();
4729 /* If we are about to do some arithmetic to correct for an
4730 unsigned operand, do it in a pseudo-register. */
4732 if (GET_MODE (to
) != fmode
4733 || !REG_P (to
) || REGNO (to
) < FIRST_PSEUDO_REGISTER
)
4734 target
= gen_reg_rtx (fmode
);
4736 /* Convert as signed integer to floating. */
4737 expand_float (target
, from
, 0);
4739 /* If FROM is negative (and therefore TO is negative),
4740 correct its value by 2**bitwidth. */
4742 do_pending_stack_adjust ();
4743 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, GET_MODE (from
),
4747 real_2expN (&offset
, GET_MODE_PRECISION (GET_MODE (from
)), fmode
);
4748 temp
= expand_binop (fmode
, add_optab
, target
,
4749 const_double_from_real_value (offset
, fmode
),
4750 target
, 0, OPTAB_LIB_WIDEN
);
4752 emit_move_insn (target
, temp
);
4754 do_pending_stack_adjust ();
4759 /* No hardware instruction available; call a library routine. */
4764 convert_optab tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
4766 if (GET_MODE_PRECISION (GET_MODE (from
)) < GET_MODE_PRECISION (SImode
))
4767 from
= convert_to_mode (SImode
, from
, unsignedp
);
4769 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
4770 gcc_assert (libfunc
);
4774 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4775 GET_MODE (to
), 1, from
,
4777 insns
= get_insns ();
4780 emit_libcall_block (insns
, target
, value
,
4781 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FLOAT
: FLOAT
,
4782 GET_MODE (to
), from
));
4787 /* Copy result to requested destination
4788 if we have been computing in a temp location. */
4792 if (GET_MODE (target
) == GET_MODE (to
))
4793 emit_move_insn (to
, target
);
4795 convert_move (to
, target
, 0);
4799 /* Generate code to convert FROM to fixed point and store in TO. FROM
4800 must be floating point. */
4803 expand_fix (rtx to
, rtx from
, int unsignedp
)
4805 enum insn_code icode
;
4807 machine_mode fmode
, imode
;
4808 bool must_trunc
= false;
4810 /* We first try to find a pair of modes, one real and one integer, at
4811 least as wide as FROM and TO, respectively, in which we can open-code
4812 this conversion. If the integer mode is wider than the mode of TO,
4813 we can do the conversion either signed or unsigned. */
4815 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
4816 fmode
= GET_MODE_WIDER_MODE (fmode
))
4817 for (imode
= GET_MODE (to
); imode
!= VOIDmode
;
4818 imode
= GET_MODE_WIDER_MODE (imode
))
4820 int doing_unsigned
= unsignedp
;
4822 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
4823 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
4824 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
4826 if (icode
!= CODE_FOR_nothing
)
4828 rtx_insn
*last
= get_last_insn ();
4829 if (fmode
!= GET_MODE (from
))
4830 from
= convert_to_mode (fmode
, from
, 0);
4834 rtx temp
= gen_reg_rtx (GET_MODE (from
));
4835 from
= expand_unop (GET_MODE (from
), ftrunc_optab
, from
,
4839 if (imode
!= GET_MODE (to
))
4840 target
= gen_reg_rtx (imode
);
4842 if (maybe_emit_unop_insn (icode
, target
, from
,
4843 doing_unsigned
? UNSIGNED_FIX
: FIX
))
4846 convert_move (to
, target
, unsignedp
);
4849 delete_insns_since (last
);
4853 /* For an unsigned conversion, there is one more way to do it.
4854 If we have a signed conversion, we generate code that compares
4855 the real value to the largest representable positive number. If if
4856 is smaller, the conversion is done normally. Otherwise, subtract
4857 one plus the highest signed number, convert, and add it back.
4859 We only need to check all real modes, since we know we didn't find
4860 anything with a wider integer mode.
4862 This code used to extend FP value into mode wider than the destination.
4863 This is needed for decimal float modes which cannot accurately
4864 represent one plus the highest signed number of the same size, but
4865 not for binary modes. Consider, for instance conversion from SFmode
4868 The hot path through the code is dealing with inputs smaller than 2^63
4869 and doing just the conversion, so there is no bits to lose.
4871 In the other path we know the value is positive in the range 2^63..2^64-1
4872 inclusive. (as for other input overflow happens and result is undefined)
4873 So we know that the most important bit set in mantissa corresponds to
4874 2^63. The subtraction of 2^63 should not generate any rounding as it
4875 simply clears out that bit. The rest is trivial. */
4877 if (unsignedp
&& GET_MODE_PRECISION (GET_MODE (to
)) <= HOST_BITS_PER_WIDE_INT
)
4878 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
4879 fmode
= GET_MODE_WIDER_MODE (fmode
))
4880 if (CODE_FOR_nothing
!= can_fix_p (GET_MODE (to
), fmode
, 0, &must_trunc
)
4881 && (!DECIMAL_FLOAT_MODE_P (fmode
)
4882 || GET_MODE_BITSIZE (fmode
) > GET_MODE_PRECISION (GET_MODE (to
))))
4885 REAL_VALUE_TYPE offset
;
4887 rtx_code_label
*lab1
, *lab2
;
4890 bitsize
= GET_MODE_PRECISION (GET_MODE (to
));
4891 real_2expN (&offset
, bitsize
- 1, fmode
);
4892 limit
= const_double_from_real_value (offset
, fmode
);
4893 lab1
= gen_label_rtx ();
4894 lab2
= gen_label_rtx ();
4896 if (fmode
!= GET_MODE (from
))
4897 from
= convert_to_mode (fmode
, from
, 0);
4899 /* See if we need to do the subtraction. */
4900 do_pending_stack_adjust ();
4901 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
, GET_MODE (from
),
4904 /* If not, do the signed "fix" and branch around fixup code. */
4905 expand_fix (to
, from
, 0);
4906 emit_jump_insn (targetm
.gen_jump (lab2
));
4909 /* Otherwise, subtract 2**(N-1), convert to signed number,
4910 then add 2**(N-1). Do the addition using XOR since this
4911 will often generate better code. */
4913 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
4914 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4915 expand_fix (to
, target
, 0);
4916 target
= expand_binop (GET_MODE (to
), xor_optab
, to
,
4918 ((HOST_WIDE_INT
) 1 << (bitsize
- 1),
4920 to
, 1, OPTAB_LIB_WIDEN
);
4923 emit_move_insn (to
, target
);
4927 if (optab_handler (mov_optab
, GET_MODE (to
)) != CODE_FOR_nothing
)
4929 /* Make a place for a REG_NOTE and add it. */
4930 insn
= emit_move_insn (to
, to
);
4931 set_dst_reg_note (insn
, REG_EQUAL
,
4932 gen_rtx_fmt_e (UNSIGNED_FIX
, GET_MODE (to
),
4940 /* We can't do it with an insn, so use a library call. But first ensure
4941 that the mode of TO is at least as wide as SImode, since those are the
4942 only library calls we know about. */
4944 if (GET_MODE_PRECISION (GET_MODE (to
)) < GET_MODE_PRECISION (SImode
))
4946 target
= gen_reg_rtx (SImode
);
4948 expand_fix (target
, from
, unsignedp
);
4956 convert_optab tab
= unsignedp
? ufix_optab
: sfix_optab
;
4957 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
4958 gcc_assert (libfunc
);
4962 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4963 GET_MODE (to
), 1, from
,
4965 insns
= get_insns ();
4968 emit_libcall_block (insns
, target
, value
,
4969 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
4970 GET_MODE (to
), from
));
4975 if (GET_MODE (to
) == GET_MODE (target
))
4976 emit_move_insn (to
, target
);
4978 convert_move (to
, target
, 0);
4983 /* Promote integer arguments for a libcall if necessary.
4984 emit_library_call_value cannot do the promotion because it does not
4985 know if it should do a signed or unsigned promotion. This is because
4986 there are no tree types defined for libcalls. */
4989 prepare_libcall_arg (rtx arg
, int uintp
)
4991 machine_mode mode
= GET_MODE (arg
);
4992 machine_mode arg_mode
;
4993 if (SCALAR_INT_MODE_P (mode
))
4995 /* If we need to promote the integer function argument we need to do
4996 it here instead of inside emit_library_call_value because in
4997 emit_library_call_value we don't know if we should do a signed or
4998 unsigned promotion. */
5001 arg_mode
= promote_function_mode (NULL_TREE
, mode
,
5002 &unsigned_p
, NULL_TREE
, 0);
5003 if (arg_mode
!= mode
)
5004 return convert_to_mode (arg_mode
, arg
, uintp
);
5009 /* Generate code to convert FROM or TO a fixed-point.
5010 If UINTP is true, either TO or FROM is an unsigned integer.
5011 If SATP is true, we need to saturate the result. */
5014 expand_fixed_convert (rtx to
, rtx from
, int uintp
, int satp
)
5016 machine_mode to_mode
= GET_MODE (to
);
5017 machine_mode from_mode
= GET_MODE (from
);
5019 enum rtx_code this_code
;
5020 enum insn_code code
;
5025 if (to_mode
== from_mode
)
5027 emit_move_insn (to
, from
);
5033 tab
= satp
? satfractuns_optab
: fractuns_optab
;
5034 this_code
= satp
? UNSIGNED_SAT_FRACT
: UNSIGNED_FRACT_CONVERT
;
5038 tab
= satp
? satfract_optab
: fract_optab
;
5039 this_code
= satp
? SAT_FRACT
: FRACT_CONVERT
;
5041 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
5042 if (code
!= CODE_FOR_nothing
)
5044 emit_unop_insn (code
, to
, from
, this_code
);
5048 libfunc
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
5049 gcc_assert (libfunc
);
5051 from
= prepare_libcall_arg (from
, uintp
);
5052 from_mode
= GET_MODE (from
);
5055 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, to_mode
,
5056 1, from
, from_mode
);
5057 insns
= get_insns ();
5060 emit_libcall_block (insns
, to
, value
,
5061 gen_rtx_fmt_e (optab_to_code (tab
), to_mode
, from
));
5064 /* Generate code to convert FROM to fixed point and store in TO. FROM
5065 must be floating point, TO must be signed. Use the conversion optab
5066 TAB to do the conversion. */
5069 expand_sfix_optab (rtx to
, rtx from
, convert_optab tab
)
5071 enum insn_code icode
;
5073 machine_mode fmode
, imode
;
5075 /* We first try to find a pair of modes, one real and one integer, at
5076 least as wide as FROM and TO, respectively, in which we can open-code
5077 this conversion. If the integer mode is wider than the mode of TO,
5078 we can do the conversion either signed or unsigned. */
5080 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
5081 fmode
= GET_MODE_WIDER_MODE (fmode
))
5082 for (imode
= GET_MODE (to
); imode
!= VOIDmode
;
5083 imode
= GET_MODE_WIDER_MODE (imode
))
5085 icode
= convert_optab_handler (tab
, imode
, fmode
);
5086 if (icode
!= CODE_FOR_nothing
)
5088 rtx_insn
*last
= get_last_insn ();
5089 if (fmode
!= GET_MODE (from
))
5090 from
= convert_to_mode (fmode
, from
, 0);
5092 if (imode
!= GET_MODE (to
))
5093 target
= gen_reg_rtx (imode
);
5095 if (!maybe_emit_unop_insn (icode
, target
, from
, UNKNOWN
))
5097 delete_insns_since (last
);
5101 convert_move (to
, target
, 0);
5109 /* Report whether we have an instruction to perform the operation
5110 specified by CODE on operands of mode MODE. */
5112 have_insn_for (enum rtx_code code
, machine_mode mode
)
5114 return (code_to_optab (code
)
5115 && (optab_handler (code_to_optab (code
), mode
)
5116 != CODE_FOR_nothing
));
5119 /* Print information about the current contents of the optabs on
5123 debug_optab_libfuncs (void)
5127 /* Dump the arithmetic optabs. */
5128 for (i
= FIRST_NORM_OPTAB
; i
<= LAST_NORMLIB_OPTAB
; ++i
)
5129 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5131 rtx l
= optab_libfunc ((optab
) i
, (machine_mode
) j
);
5134 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5135 fprintf (stderr
, "%s\t%s:\t%s\n",
5136 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5142 /* Dump the conversion optabs. */
5143 for (i
= FIRST_CONV_OPTAB
; i
<= LAST_CONVLIB_OPTAB
; ++i
)
5144 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5145 for (k
= 0; k
< NUM_MACHINE_MODES
; ++k
)
5147 rtx l
= convert_optab_libfunc ((optab
) i
, (machine_mode
) j
,
5151 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5152 fprintf (stderr
, "%s\t%s\t%s:\t%s\n",
5153 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5161 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5162 CODE. Return 0 on failure. */
5165 gen_cond_trap (enum rtx_code code
, rtx op1
, rtx op2
, rtx tcode
)
5167 machine_mode mode
= GET_MODE (op1
);
5168 enum insn_code icode
;
5172 if (mode
== VOIDmode
)
5175 icode
= optab_handler (ctrap_optab
, mode
);
5176 if (icode
== CODE_FOR_nothing
)
5179 /* Some targets only accept a zero trap code. */
5180 if (!insn_operand_matches (icode
, 3, tcode
))
5183 do_pending_stack_adjust ();
5185 prepare_cmp_insn (op1
, op2
, code
, NULL_RTX
, false, OPTAB_DIRECT
,
5190 insn
= GEN_FCN (icode
) (trap_rtx
, XEXP (trap_rtx
, 0), XEXP (trap_rtx
, 1),
5193 /* If that failed, then give up. */
5201 insn
= get_insns ();
5206 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5207 or unsigned operation code. */
5210 get_rtx_code (enum tree_code tcode
, bool unsignedp
)
5222 code
= unsignedp
? LTU
: LT
;
5225 code
= unsignedp
? LEU
: LE
;
5228 code
= unsignedp
? GTU
: GT
;
5231 code
= unsignedp
? GEU
: GE
;
5234 case UNORDERED_EXPR
:
5273 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
5274 unsigned operators. OPNO holds an index of the first comparison
5275 operand in insn with code ICODE. Do not generate compare instruction. */
5278 vector_compare_rtx (enum tree_code tcode
, tree t_op0
, tree t_op1
,
5279 bool unsignedp
, enum insn_code icode
,
5282 struct expand_operand ops
[2];
5283 rtx rtx_op0
, rtx_op1
;
5284 machine_mode m0
, m1
;
5285 enum rtx_code rcode
= get_rtx_code (tcode
, unsignedp
);
5287 gcc_assert (TREE_CODE_CLASS (tcode
) == tcc_comparison
);
5289 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5290 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5291 cases, use the original mode. */
5292 rtx_op0
= expand_expr (t_op0
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op0
)),
5294 m0
= GET_MODE (rtx_op0
);
5296 m0
= TYPE_MODE (TREE_TYPE (t_op0
));
5298 rtx_op1
= expand_expr (t_op1
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op1
)),
5300 m1
= GET_MODE (rtx_op1
);
5302 m1
= TYPE_MODE (TREE_TYPE (t_op1
));
5304 create_input_operand (&ops
[0], rtx_op0
, m0
);
5305 create_input_operand (&ops
[1], rtx_op1
, m1
);
5306 if (!maybe_legitimize_operands (icode
, opno
, 2, ops
))
5308 return gen_rtx_fmt_ee (rcode
, VOIDmode
, ops
[0].value
, ops
[1].value
);
5311 /* Checks if vec_perm mask SEL is a constant equivalent to a shift of the first
5312 vec_perm operand, assuming the second operand is a constant vector of zeroes.
5313 Return the shift distance in bits if so, or NULL_RTX if the vec_perm is not a
5316 shift_amt_for_vec_perm_mask (rtx sel
)
5318 unsigned int i
, first
, nelt
= GET_MODE_NUNITS (GET_MODE (sel
));
5319 unsigned int bitsize
= GET_MODE_UNIT_BITSIZE (GET_MODE (sel
));
5321 if (GET_CODE (sel
) != CONST_VECTOR
)
5324 first
= INTVAL (CONST_VECTOR_ELT (sel
, 0));
5327 for (i
= 1; i
< nelt
; i
++)
5329 int idx
= INTVAL (CONST_VECTOR_ELT (sel
, i
));
5330 unsigned int expected
= i
+ first
;
5331 /* Indices into the second vector are all equivalent. */
5332 if (idx
< 0 || (MIN (nelt
, (unsigned) idx
) != MIN (nelt
, expected
)))
5336 return GEN_INT (first
* bitsize
);
5339 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
5342 expand_vec_perm_1 (enum insn_code icode
, rtx target
,
5343 rtx v0
, rtx v1
, rtx sel
)
5345 machine_mode tmode
= GET_MODE (target
);
5346 machine_mode smode
= GET_MODE (sel
);
5347 struct expand_operand ops
[4];
5349 create_output_operand (&ops
[0], target
, tmode
);
5350 create_input_operand (&ops
[3], sel
, smode
);
5352 /* Make an effort to preserve v0 == v1. The target expander is able to
5353 rely on this to determine if we're permuting a single input operand. */
5354 if (rtx_equal_p (v0
, v1
))
5356 if (!insn_operand_matches (icode
, 1, v0
))
5357 v0
= force_reg (tmode
, v0
);
5358 gcc_checking_assert (insn_operand_matches (icode
, 1, v0
));
5359 gcc_checking_assert (insn_operand_matches (icode
, 2, v0
));
5361 create_fixed_operand (&ops
[1], v0
);
5362 create_fixed_operand (&ops
[2], v0
);
5366 create_input_operand (&ops
[1], v0
, tmode
);
5367 create_input_operand (&ops
[2], v1
, tmode
);
5370 if (maybe_expand_insn (icode
, 4, ops
))
5371 return ops
[0].value
;
5375 /* Generate instructions for vec_perm optab given its mode
5376 and three operands. */
5379 expand_vec_perm (machine_mode mode
, rtx v0
, rtx v1
, rtx sel
, rtx target
)
5381 enum insn_code icode
;
5382 machine_mode qimode
;
5383 unsigned int i
, w
, e
, u
;
5384 rtx tmp
, sel_qi
= NULL
;
5387 if (!target
|| GET_MODE (target
) != mode
)
5388 target
= gen_reg_rtx (mode
);
5390 w
= GET_MODE_SIZE (mode
);
5391 e
= GET_MODE_NUNITS (mode
);
5392 u
= GET_MODE_UNIT_SIZE (mode
);
5394 /* Set QIMODE to a different vector mode with byte elements.
5395 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5397 if (GET_MODE_INNER (mode
) != QImode
)
5399 qimode
= mode_for_vector (QImode
, w
);
5400 if (!VECTOR_MODE_P (qimode
))
5404 /* If the input is a constant, expand it specially. */
5405 gcc_assert (GET_MODE_CLASS (GET_MODE (sel
)) == MODE_VECTOR_INT
);
5406 if (GET_CODE (sel
) == CONST_VECTOR
)
5408 /* See if this can be handled with a vec_shr. We only do this if the
5409 second vector is all zeroes. */
5410 enum insn_code shift_code
= optab_handler (vec_shr_optab
, mode
);
5411 enum insn_code shift_code_qi
= ((qimode
!= VOIDmode
&& qimode
!= mode
)
5412 ? optab_handler (vec_shr_optab
, qimode
)
5413 : CODE_FOR_nothing
);
5414 rtx shift_amt
= NULL_RTX
;
5415 if (v1
== CONST0_RTX (GET_MODE (v1
))
5416 && (shift_code
!= CODE_FOR_nothing
5417 || shift_code_qi
!= CODE_FOR_nothing
))
5419 shift_amt
= shift_amt_for_vec_perm_mask (sel
);
5422 struct expand_operand ops
[3];
5423 if (shift_code
!= CODE_FOR_nothing
)
5425 create_output_operand (&ops
[0], target
, mode
);
5426 create_input_operand (&ops
[1], v0
, mode
);
5427 create_convert_operand_from_type (&ops
[2], shift_amt
,
5429 if (maybe_expand_insn (shift_code
, 3, ops
))
5430 return ops
[0].value
;
5432 if (shift_code_qi
!= CODE_FOR_nothing
)
5434 tmp
= gen_reg_rtx (qimode
);
5435 create_output_operand (&ops
[0], tmp
, qimode
);
5436 create_input_operand (&ops
[1], gen_lowpart (qimode
, v0
),
5438 create_convert_operand_from_type (&ops
[2], shift_amt
,
5440 if (maybe_expand_insn (shift_code_qi
, 3, ops
))
5441 return gen_lowpart (mode
, ops
[0].value
);
5446 icode
= direct_optab_handler (vec_perm_const_optab
, mode
);
5447 if (icode
!= CODE_FOR_nothing
)
5449 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
5454 /* Fall back to a constant byte-based permutation. */
5455 if (qimode
!= VOIDmode
)
5457 vec
= rtvec_alloc (w
);
5458 for (i
= 0; i
< e
; ++i
)
5460 unsigned int j
, this_e
;
5462 this_e
= INTVAL (CONST_VECTOR_ELT (sel
, i
));
5463 this_e
&= 2 * e
- 1;
5466 for (j
= 0; j
< u
; ++j
)
5467 RTVEC_ELT (vec
, i
* u
+ j
) = GEN_INT (this_e
+ j
);
5469 sel_qi
= gen_rtx_CONST_VECTOR (qimode
, vec
);
5471 icode
= direct_optab_handler (vec_perm_const_optab
, qimode
);
5472 if (icode
!= CODE_FOR_nothing
)
5474 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
5475 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
5476 gen_lowpart (qimode
, v1
), sel_qi
);
5478 return gen_lowpart (mode
, tmp
);
5483 /* Otherwise expand as a fully variable permuation. */
5484 icode
= direct_optab_handler (vec_perm_optab
, mode
);
5485 if (icode
!= CODE_FOR_nothing
)
5487 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
5492 /* As a special case to aid several targets, lower the element-based
5493 permutation to a byte-based permutation and try again. */
5494 if (qimode
== VOIDmode
)
5496 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
5497 if (icode
== CODE_FOR_nothing
)
5502 /* Multiply each element by its byte size. */
5503 machine_mode selmode
= GET_MODE (sel
);
5505 sel
= expand_simple_binop (selmode
, PLUS
, sel
, sel
,
5506 NULL
, 0, OPTAB_DIRECT
);
5508 sel
= expand_simple_binop (selmode
, ASHIFT
, sel
,
5509 GEN_INT (exact_log2 (u
)),
5510 NULL
, 0, OPTAB_DIRECT
);
5511 gcc_assert (sel
!= NULL
);
5513 /* Broadcast the low byte each element into each of its bytes. */
5514 vec
= rtvec_alloc (w
);
5515 for (i
= 0; i
< w
; ++i
)
5517 int this_e
= i
/ u
* u
;
5518 if (BYTES_BIG_ENDIAN
)
5520 RTVEC_ELT (vec
, i
) = GEN_INT (this_e
);
5522 tmp
= gen_rtx_CONST_VECTOR (qimode
, vec
);
5523 sel
= gen_lowpart (qimode
, sel
);
5524 sel
= expand_vec_perm (qimode
, sel
, sel
, tmp
, NULL
);
5525 gcc_assert (sel
!= NULL
);
5527 /* Add the byte offset to each byte element. */
5528 /* Note that the definition of the indicies here is memory ordering,
5529 so there should be no difference between big and little endian. */
5530 vec
= rtvec_alloc (w
);
5531 for (i
= 0; i
< w
; ++i
)
5532 RTVEC_ELT (vec
, i
) = GEN_INT (i
% u
);
5533 tmp
= gen_rtx_CONST_VECTOR (qimode
, vec
);
5534 sel_qi
= expand_simple_binop (qimode
, PLUS
, sel
, tmp
,
5535 sel
, 0, OPTAB_DIRECT
);
5536 gcc_assert (sel_qi
!= NULL
);
5539 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
5540 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
5541 gen_lowpart (qimode
, v1
), sel_qi
);
5543 tmp
= gen_lowpart (mode
, tmp
);
5547 /* Generate insns for a VEC_COND_EXPR with mask, given its TYPE and its
5551 expand_vec_cond_mask_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
5554 struct expand_operand ops
[4];
5555 machine_mode mode
= TYPE_MODE (vec_cond_type
);
5556 machine_mode mask_mode
= TYPE_MODE (TREE_TYPE (op0
));
5557 enum insn_code icode
= get_vcond_mask_icode (mode
, mask_mode
);
5558 rtx mask
, rtx_op1
, rtx_op2
;
5560 if (icode
== CODE_FOR_nothing
)
5563 mask
= expand_normal (op0
);
5564 rtx_op1
= expand_normal (op1
);
5565 rtx_op2
= expand_normal (op2
);
5567 mask
= force_reg (mask_mode
, mask
);
5568 rtx_op1
= force_reg (GET_MODE (rtx_op1
), rtx_op1
);
5570 create_output_operand (&ops
[0], target
, mode
);
5571 create_input_operand (&ops
[1], rtx_op1
, mode
);
5572 create_input_operand (&ops
[2], rtx_op2
, mode
);
5573 create_input_operand (&ops
[3], mask
, mask_mode
);
5574 expand_insn (icode
, 4, ops
);
5576 return ops
[0].value
;
5579 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
5583 expand_vec_cond_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
5586 struct expand_operand ops
[6];
5587 enum insn_code icode
;
5588 rtx comparison
, rtx_op1
, rtx_op2
;
5589 machine_mode mode
= TYPE_MODE (vec_cond_type
);
5590 machine_mode cmp_op_mode
;
5593 enum tree_code tcode
;
5595 if (COMPARISON_CLASS_P (op0
))
5597 op0a
= TREE_OPERAND (op0
, 0);
5598 op0b
= TREE_OPERAND (op0
, 1);
5599 tcode
= TREE_CODE (op0
);
5603 gcc_assert (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (op0
)));
5604 if (get_vcond_mask_icode (mode
, TYPE_MODE (TREE_TYPE (op0
)))
5605 != CODE_FOR_nothing
)
5606 return expand_vec_cond_mask_expr (vec_cond_type
, op0
, op1
,
5611 gcc_assert (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (op0
)))
5612 == MODE_VECTOR_INT
);
5614 op0b
= build_zero_cst (TREE_TYPE (op0
));
5618 cmp_op_mode
= TYPE_MODE (TREE_TYPE (op0a
));
5619 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
5622 gcc_assert (GET_MODE_SIZE (mode
) == GET_MODE_SIZE (cmp_op_mode
)
5623 && GET_MODE_NUNITS (mode
) == GET_MODE_NUNITS (cmp_op_mode
));
5625 icode
= get_vcond_icode (mode
, cmp_op_mode
, unsignedp
);
5626 if (icode
== CODE_FOR_nothing
)
5629 comparison
= vector_compare_rtx (tcode
, op0a
, op0b
, unsignedp
, icode
, 4);
5630 rtx_op1
= expand_normal (op1
);
5631 rtx_op2
= expand_normal (op2
);
5633 create_output_operand (&ops
[0], target
, mode
);
5634 create_input_operand (&ops
[1], rtx_op1
, mode
);
5635 create_input_operand (&ops
[2], rtx_op2
, mode
);
5636 create_fixed_operand (&ops
[3], comparison
);
5637 create_fixed_operand (&ops
[4], XEXP (comparison
, 0));
5638 create_fixed_operand (&ops
[5], XEXP (comparison
, 1));
5639 expand_insn (icode
, 6, ops
);
5640 return ops
[0].value
;
5643 /* Generate insns for a vector comparison into a mask. */
5646 expand_vec_cmp_expr (tree type
, tree exp
, rtx target
)
5648 struct expand_operand ops
[4];
5649 enum insn_code icode
;
5651 machine_mode mask_mode
= TYPE_MODE (type
);
5655 enum tree_code tcode
;
5657 op0a
= TREE_OPERAND (exp
, 0);
5658 op0b
= TREE_OPERAND (exp
, 1);
5659 tcode
= TREE_CODE (exp
);
5661 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
5662 vmode
= TYPE_MODE (TREE_TYPE (op0a
));
5664 icode
= get_vec_cmp_icode (vmode
, mask_mode
, unsignedp
);
5665 if (icode
== CODE_FOR_nothing
)
5668 comparison
= vector_compare_rtx (tcode
, op0a
, op0b
, unsignedp
, icode
, 2);
5669 create_output_operand (&ops
[0], target
, mask_mode
);
5670 create_fixed_operand (&ops
[1], comparison
);
5671 create_fixed_operand (&ops
[2], XEXP (comparison
, 0));
5672 create_fixed_operand (&ops
[3], XEXP (comparison
, 1));
5673 expand_insn (icode
, 4, ops
);
5674 return ops
[0].value
;
5677 /* Expand a highpart multiply. */
5680 expand_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
5681 rtx target
, bool uns_p
)
5683 struct expand_operand eops
[3];
5684 enum insn_code icode
;
5685 int method
, i
, nunits
;
5691 method
= can_mult_highpart_p (mode
, uns_p
);
5697 tab1
= uns_p
? umul_highpart_optab
: smul_highpart_optab
;
5698 return expand_binop (mode
, tab1
, op0
, op1
, target
, uns_p
,
5701 tab1
= uns_p
? vec_widen_umult_even_optab
: vec_widen_smult_even_optab
;
5702 tab2
= uns_p
? vec_widen_umult_odd_optab
: vec_widen_smult_odd_optab
;
5705 tab1
= uns_p
? vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
5706 tab2
= uns_p
? vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
5707 if (BYTES_BIG_ENDIAN
)
5708 std::swap (tab1
, tab2
);
5714 icode
= optab_handler (tab1
, mode
);
5715 nunits
= GET_MODE_NUNITS (mode
);
5716 wmode
= insn_data
[icode
].operand
[0].mode
;
5717 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode
) == nunits
);
5718 gcc_checking_assert (GET_MODE_SIZE (wmode
) == GET_MODE_SIZE (mode
));
5720 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
5721 create_input_operand (&eops
[1], op0
, mode
);
5722 create_input_operand (&eops
[2], op1
, mode
);
5723 expand_insn (icode
, 3, eops
);
5724 m1
= gen_lowpart (mode
, eops
[0].value
);
5726 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
5727 create_input_operand (&eops
[1], op0
, mode
);
5728 create_input_operand (&eops
[2], op1
, mode
);
5729 expand_insn (optab_handler (tab2
, mode
), 3, eops
);
5730 m2
= gen_lowpart (mode
, eops
[0].value
);
5732 v
= rtvec_alloc (nunits
);
5735 for (i
= 0; i
< nunits
; ++i
)
5736 RTVEC_ELT (v
, i
) = GEN_INT (!BYTES_BIG_ENDIAN
+ (i
& ~1)
5737 + ((i
& 1) ? nunits
: 0));
5741 for (i
= 0; i
< nunits
; ++i
)
5742 RTVEC_ELT (v
, i
) = GEN_INT (2 * i
+ (BYTES_BIG_ENDIAN
? 0 : 1));
5744 perm
= gen_rtx_CONST_VECTOR (mode
, v
);
5746 return expand_vec_perm (mode
, m1
, m2
, perm
, target
);
5749 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
5753 find_cc_set (rtx x
, const_rtx pat
, void *data
)
5755 if (REG_P (x
) && GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
5756 && GET_CODE (pat
) == SET
)
5758 rtx
*p_cc_reg
= (rtx
*) data
;
5759 gcc_assert (!*p_cc_reg
);
5764 /* This is a helper function for the other atomic operations. This function
5765 emits a loop that contains SEQ that iterates until a compare-and-swap
5766 operation at the end succeeds. MEM is the memory to be modified. SEQ is
5767 a set of instructions that takes a value from OLD_REG as an input and
5768 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
5769 set to the current contents of MEM. After SEQ, a compare-and-swap will
5770 attempt to update MEM with NEW_REG. The function returns true when the
5771 loop was generated successfully. */
5774 expand_compare_and_swap_loop (rtx mem
, rtx old_reg
, rtx new_reg
, rtx seq
)
5776 machine_mode mode
= GET_MODE (mem
);
5777 rtx_code_label
*label
;
5778 rtx cmp_reg
, success
, oldval
;
5780 /* The loop we want to generate looks like
5786 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
5790 Note that we only do the plain load from memory once. Subsequent
5791 iterations use the value loaded by the compare-and-swap pattern. */
5793 label
= gen_label_rtx ();
5794 cmp_reg
= gen_reg_rtx (mode
);
5796 emit_move_insn (cmp_reg
, mem
);
5798 emit_move_insn (old_reg
, cmp_reg
);
5804 if (!expand_atomic_compare_and_swap (&success
, &oldval
, mem
, old_reg
,
5805 new_reg
, false, MEMMODEL_SYNC_SEQ_CST
,
5809 if (oldval
!= cmp_reg
)
5810 emit_move_insn (cmp_reg
, oldval
);
5812 /* Mark this jump predicted not taken. */
5813 emit_cmp_and_jump_insns (success
, const0_rtx
, EQ
, const0_rtx
,
5814 GET_MODE (success
), 1, label
, 0);
5819 /* This function tries to emit an atomic_exchange intruction. VAL is written
5820 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
5821 using TARGET if possible. */
5824 maybe_emit_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
5826 machine_mode mode
= GET_MODE (mem
);
5827 enum insn_code icode
;
5829 /* If the target supports the exchange directly, great. */
5830 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
5831 if (icode
!= CODE_FOR_nothing
)
5833 struct expand_operand ops
[4];
5835 create_output_operand (&ops
[0], target
, mode
);
5836 create_fixed_operand (&ops
[1], mem
);
5837 create_input_operand (&ops
[2], val
, mode
);
5838 create_integer_operand (&ops
[3], model
);
5839 if (maybe_expand_insn (icode
, 4, ops
))
5840 return ops
[0].value
;
5846 /* This function tries to implement an atomic exchange operation using
5847 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
5848 The previous contents of *MEM are returned, using TARGET if possible.
5849 Since this instructionn is an acquire barrier only, stronger memory
5850 models may require additional barriers to be emitted. */
5853 maybe_emit_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
,
5854 enum memmodel model
)
5856 machine_mode mode
= GET_MODE (mem
);
5857 enum insn_code icode
;
5858 rtx_insn
*last_insn
= get_last_insn ();
5860 icode
= optab_handler (sync_lock_test_and_set_optab
, mode
);
5862 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
5863 exists, and the memory model is stronger than acquire, add a release
5864 barrier before the instruction. */
5866 if (is_mm_seq_cst (model
) || is_mm_release (model
) || is_mm_acq_rel (model
))
5867 expand_mem_thread_fence (model
);
5869 if (icode
!= CODE_FOR_nothing
)
5871 struct expand_operand ops
[3];
5872 create_output_operand (&ops
[0], target
, mode
);
5873 create_fixed_operand (&ops
[1], mem
);
5874 create_input_operand (&ops
[2], val
, mode
);
5875 if (maybe_expand_insn (icode
, 3, ops
))
5876 return ops
[0].value
;
5879 /* If an external test-and-set libcall is provided, use that instead of
5880 any external compare-and-swap that we might get from the compare-and-
5881 swap-loop expansion later. */
5882 if (!can_compare_and_swap_p (mode
, false))
5884 rtx libfunc
= optab_libfunc (sync_lock_test_and_set_optab
, mode
);
5885 if (libfunc
!= NULL
)
5889 addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
5890 return emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
5891 mode
, 2, addr
, ptr_mode
,
5896 /* If the test_and_set can't be emitted, eliminate any barrier that might
5897 have been emitted. */
5898 delete_insns_since (last_insn
);
5902 /* This function tries to implement an atomic exchange operation using a
5903 compare_and_swap loop. VAL is written to *MEM. The previous contents of
5904 *MEM are returned, using TARGET if possible. No memory model is required
5905 since a compare_and_swap loop is seq-cst. */
5908 maybe_emit_compare_and_swap_exchange_loop (rtx target
, rtx mem
, rtx val
)
5910 machine_mode mode
= GET_MODE (mem
);
5912 if (can_compare_and_swap_p (mode
, true))
5914 if (!target
|| !register_operand (target
, mode
))
5915 target
= gen_reg_rtx (mode
);
5916 if (expand_compare_and_swap_loop (mem
, target
, val
, NULL_RTX
))
5923 /* This function tries to implement an atomic test-and-set operation
5924 using the atomic_test_and_set instruction pattern. A boolean value
5925 is returned from the operation, using TARGET if possible. */
5928 maybe_emit_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
5930 machine_mode pat_bool_mode
;
5931 struct expand_operand ops
[3];
5933 if (!targetm
.have_atomic_test_and_set ())
5936 /* While we always get QImode from __atomic_test_and_set, we get
5937 other memory modes from __sync_lock_test_and_set. Note that we
5938 use no endian adjustment here. This matches the 4.6 behavior
5939 in the Sparc backend. */
5940 enum insn_code icode
= targetm
.code_for_atomic_test_and_set
;
5941 gcc_checking_assert (insn_data
[icode
].operand
[1].mode
== QImode
);
5942 if (GET_MODE (mem
) != QImode
)
5943 mem
= adjust_address_nv (mem
, QImode
, 0);
5945 pat_bool_mode
= insn_data
[icode
].operand
[0].mode
;
5946 create_output_operand (&ops
[0], target
, pat_bool_mode
);
5947 create_fixed_operand (&ops
[1], mem
);
5948 create_integer_operand (&ops
[2], model
);
5950 if (maybe_expand_insn (icode
, 3, ops
))
5951 return ops
[0].value
;
5955 /* This function expands the legacy _sync_lock test_and_set operation which is
5956 generally an atomic exchange. Some limited targets only allow the
5957 constant 1 to be stored. This is an ACQUIRE operation.
5959 TARGET is an optional place to stick the return value.
5960 MEM is where VAL is stored. */
5963 expand_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
)
5967 /* Try an atomic_exchange first. */
5968 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, MEMMODEL_SYNC_ACQUIRE
);
5972 ret
= maybe_emit_sync_lock_test_and_set (target
, mem
, val
,
5973 MEMMODEL_SYNC_ACQUIRE
);
5977 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
5981 /* If there are no other options, try atomic_test_and_set if the value
5982 being stored is 1. */
5983 if (val
== const1_rtx
)
5984 ret
= maybe_emit_atomic_test_and_set (target
, mem
, MEMMODEL_SYNC_ACQUIRE
);
5989 /* This function expands the atomic test_and_set operation:
5990 atomically store a boolean TRUE into MEM and return the previous value.
5992 MEMMODEL is the memory model variant to use.
5993 TARGET is an optional place to stick the return value. */
5996 expand_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
5998 machine_mode mode
= GET_MODE (mem
);
5999 rtx ret
, trueval
, subtarget
;
6001 ret
= maybe_emit_atomic_test_and_set (target
, mem
, model
);
6005 /* Be binary compatible with non-default settings of trueval, and different
6006 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6007 another only has atomic-exchange. */
6008 if (targetm
.atomic_test_and_set_trueval
== 1)
6010 trueval
= const1_rtx
;
6011 subtarget
= target
? target
: gen_reg_rtx (mode
);
6015 trueval
= gen_int_mode (targetm
.atomic_test_and_set_trueval
, mode
);
6016 subtarget
= gen_reg_rtx (mode
);
6019 /* Try the atomic-exchange optab... */
6020 ret
= maybe_emit_atomic_exchange (subtarget
, mem
, trueval
, model
);
6022 /* ... then an atomic-compare-and-swap loop ... */
6024 ret
= maybe_emit_compare_and_swap_exchange_loop (subtarget
, mem
, trueval
);
6026 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6028 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, trueval
, model
);
6030 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6031 things with the value 1. Thus we try again without trueval. */
6032 if (!ret
&& targetm
.atomic_test_and_set_trueval
!= 1)
6033 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, const1_rtx
, model
);
6035 /* Failing all else, assume a single threaded environment and simply
6036 perform the operation. */
6039 /* If the result is ignored skip the move to target. */
6040 if (subtarget
!= const0_rtx
)
6041 emit_move_insn (subtarget
, mem
);
6043 emit_move_insn (mem
, trueval
);
6047 /* Recall that have to return a boolean value; rectify if trueval
6048 is not exactly one. */
6049 if (targetm
.atomic_test_and_set_trueval
!= 1)
6050 ret
= emit_store_flag_force (target
, NE
, ret
, const0_rtx
, mode
, 0, 1);
6055 /* This function expands the atomic exchange operation:
6056 atomically store VAL in MEM and return the previous value in MEM.
6058 MEMMODEL is the memory model variant to use.
6059 TARGET is an optional place to stick the return value. */
6062 expand_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
6066 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6068 /* Next try a compare-and-swap loop for the exchange. */
6070 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
6075 /* This function expands the atomic compare exchange operation:
6077 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6078 *PTARGET_OVAL is an optional place to store the old value from memory.
6079 Both target parameters may be NULL or const0_rtx to indicate that we do
6080 not care about that return value. Both target parameters are updated on
6081 success to the actual location of the corresponding result.
6083 MEMMODEL is the memory model variant to use.
6085 The return value of the function is true for success. */
6088 expand_atomic_compare_and_swap (rtx
*ptarget_bool
, rtx
*ptarget_oval
,
6089 rtx mem
, rtx expected
, rtx desired
,
6090 bool is_weak
, enum memmodel succ_model
,
6091 enum memmodel fail_model
)
6093 machine_mode mode
= GET_MODE (mem
);
6094 struct expand_operand ops
[8];
6095 enum insn_code icode
;
6096 rtx target_oval
, target_bool
= NULL_RTX
;
6099 /* Load expected into a register for the compare and swap. */
6100 if (MEM_P (expected
))
6101 expected
= copy_to_reg (expected
);
6103 /* Make sure we always have some place to put the return oldval.
6104 Further, make sure that place is distinct from the input expected,
6105 just in case we need that path down below. */
6106 if (ptarget_oval
&& *ptarget_oval
== const0_rtx
)
6107 ptarget_oval
= NULL
;
6109 if (ptarget_oval
== NULL
6110 || (target_oval
= *ptarget_oval
) == NULL
6111 || reg_overlap_mentioned_p (expected
, target_oval
))
6112 target_oval
= gen_reg_rtx (mode
);
6114 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
6115 if (icode
!= CODE_FOR_nothing
)
6117 machine_mode bool_mode
= insn_data
[icode
].operand
[0].mode
;
6119 if (ptarget_bool
&& *ptarget_bool
== const0_rtx
)
6120 ptarget_bool
= NULL
;
6122 /* Make sure we always have a place for the bool operand. */
6123 if (ptarget_bool
== NULL
6124 || (target_bool
= *ptarget_bool
) == NULL
6125 || GET_MODE (target_bool
) != bool_mode
)
6126 target_bool
= gen_reg_rtx (bool_mode
);
6128 /* Emit the compare_and_swap. */
6129 create_output_operand (&ops
[0], target_bool
, bool_mode
);
6130 create_output_operand (&ops
[1], target_oval
, mode
);
6131 create_fixed_operand (&ops
[2], mem
);
6132 create_input_operand (&ops
[3], expected
, mode
);
6133 create_input_operand (&ops
[4], desired
, mode
);
6134 create_integer_operand (&ops
[5], is_weak
);
6135 create_integer_operand (&ops
[6], succ_model
);
6136 create_integer_operand (&ops
[7], fail_model
);
6137 if (maybe_expand_insn (icode
, 8, ops
))
6139 /* Return success/failure. */
6140 target_bool
= ops
[0].value
;
6141 target_oval
= ops
[1].value
;
6146 /* Otherwise fall back to the original __sync_val_compare_and_swap
6147 which is always seq-cst. */
6148 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
6149 if (icode
!= CODE_FOR_nothing
)
6153 create_output_operand (&ops
[0], target_oval
, mode
);
6154 create_fixed_operand (&ops
[1], mem
);
6155 create_input_operand (&ops
[2], expected
, mode
);
6156 create_input_operand (&ops
[3], desired
, mode
);
6157 if (!maybe_expand_insn (icode
, 4, ops
))
6160 target_oval
= ops
[0].value
;
6162 /* If the caller isn't interested in the boolean return value,
6163 skip the computation of it. */
6164 if (ptarget_bool
== NULL
)
6167 /* Otherwise, work out if the compare-and-swap succeeded. */
6169 if (have_insn_for (COMPARE
, CCmode
))
6170 note_stores (PATTERN (get_last_insn ()), find_cc_set
, &cc_reg
);
6173 target_bool
= emit_store_flag_force (target_bool
, EQ
, cc_reg
,
6174 const0_rtx
, VOIDmode
, 0, 1);
6177 goto success_bool_from_val
;
6180 /* Also check for library support for __sync_val_compare_and_swap. */
6181 libfunc
= optab_libfunc (sync_compare_and_swap_optab
, mode
);
6182 if (libfunc
!= NULL
)
6184 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6185 rtx target
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
6186 mode
, 3, addr
, ptr_mode
,
6187 expected
, mode
, desired
, mode
);
6188 emit_move_insn (target_oval
, target
);
6190 /* Compute the boolean return value only if requested. */
6192 goto success_bool_from_val
;
6200 success_bool_from_val
:
6201 target_bool
= emit_store_flag_force (target_bool
, EQ
, target_oval
,
6202 expected
, VOIDmode
, 1, 1);
6204 /* Make sure that the oval output winds up where the caller asked. */
6206 *ptarget_oval
= target_oval
;
6208 *ptarget_bool
= target_bool
;
6212 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
6215 expand_asm_memory_barrier (void)
6219 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, empty_string
, empty_string
, 0,
6220 rtvec_alloc (0), rtvec_alloc (0),
6221 rtvec_alloc (0), UNKNOWN_LOCATION
);
6222 MEM_VOLATILE_P (asm_op
) = 1;
6224 clob
= gen_rtx_SCRATCH (VOIDmode
);
6225 clob
= gen_rtx_MEM (BLKmode
, clob
);
6226 clob
= gen_rtx_CLOBBER (VOIDmode
, clob
);
6228 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, asm_op
, clob
)));
6231 /* This routine will either emit the mem_thread_fence pattern or issue a
6232 sync_synchronize to generate a fence for memory model MEMMODEL. */
6235 expand_mem_thread_fence (enum memmodel model
)
6237 if (targetm
.have_mem_thread_fence ())
6238 emit_insn (targetm
.gen_mem_thread_fence (GEN_INT (model
)));
6239 else if (!is_mm_relaxed (model
))
6241 if (targetm
.have_memory_barrier ())
6242 emit_insn (targetm
.gen_memory_barrier ());
6243 else if (synchronize_libfunc
!= NULL_RTX
)
6244 emit_library_call (synchronize_libfunc
, LCT_NORMAL
, VOIDmode
, 0);
6246 expand_asm_memory_barrier ();
6250 /* This routine will either emit the mem_signal_fence pattern or issue a
6251 sync_synchronize to generate a fence for memory model MEMMODEL. */
6254 expand_mem_signal_fence (enum memmodel model
)
6256 if (targetm
.have_mem_signal_fence ())
6257 emit_insn (targetm
.gen_mem_signal_fence (GEN_INT (model
)));
6258 else if (!is_mm_relaxed (model
))
6260 /* By default targets are coherent between a thread and the signal
6261 handler running on the same thread. Thus this really becomes a
6262 compiler barrier, in that stores must not be sunk past
6263 (or raised above) a given point. */
6264 expand_asm_memory_barrier ();
6268 /* This function expands the atomic load operation:
6269 return the atomically loaded value in MEM.
6271 MEMMODEL is the memory model variant to use.
6272 TARGET is an option place to stick the return value. */
6275 expand_atomic_load (rtx target
, rtx mem
, enum memmodel model
)
6277 machine_mode mode
= GET_MODE (mem
);
6278 enum insn_code icode
;
6280 /* If the target supports the load directly, great. */
6281 icode
= direct_optab_handler (atomic_load_optab
, mode
);
6282 if (icode
!= CODE_FOR_nothing
)
6284 struct expand_operand ops
[3];
6286 create_output_operand (&ops
[0], target
, mode
);
6287 create_fixed_operand (&ops
[1], mem
);
6288 create_integer_operand (&ops
[2], model
);
6289 if (maybe_expand_insn (icode
, 3, ops
))
6290 return ops
[0].value
;
6293 /* If the size of the object is greater than word size on this target,
6294 then we assume that a load will not be atomic. */
6295 if (GET_MODE_PRECISION (mode
) > BITS_PER_WORD
)
6297 /* Issue val = compare_and_swap (mem, 0, 0).
6298 This may cause the occasional harmless store of 0 when the value is
6299 already 0, but it seems to be OK according to the standards guys. */
6300 if (expand_atomic_compare_and_swap (NULL
, &target
, mem
, const0_rtx
,
6301 const0_rtx
, false, model
, model
))
6304 /* Otherwise there is no atomic load, leave the library call. */
6308 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6309 if (!target
|| target
== const0_rtx
)
6310 target
= gen_reg_rtx (mode
);
6312 /* For SEQ_CST, emit a barrier before the load. */
6313 if (is_mm_seq_cst (model
))
6314 expand_mem_thread_fence (model
);
6316 emit_move_insn (target
, mem
);
6318 /* Emit the appropriate barrier after the load. */
6319 expand_mem_thread_fence (model
);
6324 /* This function expands the atomic store operation:
6325 Atomically store VAL in MEM.
6326 MEMMODEL is the memory model variant to use.
6327 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6328 function returns const0_rtx if a pattern was emitted. */
6331 expand_atomic_store (rtx mem
, rtx val
, enum memmodel model
, bool use_release
)
6333 machine_mode mode
= GET_MODE (mem
);
6334 enum insn_code icode
;
6335 struct expand_operand ops
[3];
6337 /* If the target supports the store directly, great. */
6338 icode
= direct_optab_handler (atomic_store_optab
, mode
);
6339 if (icode
!= CODE_FOR_nothing
)
6341 create_fixed_operand (&ops
[0], mem
);
6342 create_input_operand (&ops
[1], val
, mode
);
6343 create_integer_operand (&ops
[2], model
);
6344 if (maybe_expand_insn (icode
, 3, ops
))
6348 /* If using __sync_lock_release is a viable alternative, try it. */
6351 icode
= direct_optab_handler (sync_lock_release_optab
, mode
);
6352 if (icode
!= CODE_FOR_nothing
)
6354 create_fixed_operand (&ops
[0], mem
);
6355 create_input_operand (&ops
[1], const0_rtx
, mode
);
6356 if (maybe_expand_insn (icode
, 2, ops
))
6358 /* lock_release is only a release barrier. */
6359 if (is_mm_seq_cst (model
))
6360 expand_mem_thread_fence (model
);
6366 /* If the size of the object is greater than word size on this target,
6367 a default store will not be atomic, Try a mem_exchange and throw away
6368 the result. If that doesn't work, don't do anything. */
6369 if (GET_MODE_PRECISION (mode
) > BITS_PER_WORD
)
6371 rtx target
= maybe_emit_atomic_exchange (NULL_RTX
, mem
, val
, model
);
6373 target
= maybe_emit_compare_and_swap_exchange_loop (NULL_RTX
, mem
, val
);
6380 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6381 expand_mem_thread_fence (model
);
6383 emit_move_insn (mem
, val
);
6385 /* For SEQ_CST, also emit a barrier after the store. */
6386 if (is_mm_seq_cst (model
))
6387 expand_mem_thread_fence (model
);
6393 /* Structure containing the pointers and values required to process the
6394 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6396 struct atomic_op_functions
6398 direct_optab mem_fetch_before
;
6399 direct_optab mem_fetch_after
;
6400 direct_optab mem_no_result
;
6403 direct_optab no_result
;
6404 enum rtx_code reverse_code
;
6408 /* Fill in structure pointed to by OP with the various optab entries for an
6409 operation of type CODE. */
6412 get_atomic_op_for_code (struct atomic_op_functions
*op
, enum rtx_code code
)
6414 gcc_assert (op
!= NULL
);
6416 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6417 in the source code during compilation, and the optab entries are not
6418 computable until runtime. Fill in the values at runtime. */
6422 op
->mem_fetch_before
= atomic_fetch_add_optab
;
6423 op
->mem_fetch_after
= atomic_add_fetch_optab
;
6424 op
->mem_no_result
= atomic_add_optab
;
6425 op
->fetch_before
= sync_old_add_optab
;
6426 op
->fetch_after
= sync_new_add_optab
;
6427 op
->no_result
= sync_add_optab
;
6428 op
->reverse_code
= MINUS
;
6431 op
->mem_fetch_before
= atomic_fetch_sub_optab
;
6432 op
->mem_fetch_after
= atomic_sub_fetch_optab
;
6433 op
->mem_no_result
= atomic_sub_optab
;
6434 op
->fetch_before
= sync_old_sub_optab
;
6435 op
->fetch_after
= sync_new_sub_optab
;
6436 op
->no_result
= sync_sub_optab
;
6437 op
->reverse_code
= PLUS
;
6440 op
->mem_fetch_before
= atomic_fetch_xor_optab
;
6441 op
->mem_fetch_after
= atomic_xor_fetch_optab
;
6442 op
->mem_no_result
= atomic_xor_optab
;
6443 op
->fetch_before
= sync_old_xor_optab
;
6444 op
->fetch_after
= sync_new_xor_optab
;
6445 op
->no_result
= sync_xor_optab
;
6446 op
->reverse_code
= XOR
;
6449 op
->mem_fetch_before
= atomic_fetch_and_optab
;
6450 op
->mem_fetch_after
= atomic_and_fetch_optab
;
6451 op
->mem_no_result
= atomic_and_optab
;
6452 op
->fetch_before
= sync_old_and_optab
;
6453 op
->fetch_after
= sync_new_and_optab
;
6454 op
->no_result
= sync_and_optab
;
6455 op
->reverse_code
= UNKNOWN
;
6458 op
->mem_fetch_before
= atomic_fetch_or_optab
;
6459 op
->mem_fetch_after
= atomic_or_fetch_optab
;
6460 op
->mem_no_result
= atomic_or_optab
;
6461 op
->fetch_before
= sync_old_ior_optab
;
6462 op
->fetch_after
= sync_new_ior_optab
;
6463 op
->no_result
= sync_ior_optab
;
6464 op
->reverse_code
= UNKNOWN
;
6467 op
->mem_fetch_before
= atomic_fetch_nand_optab
;
6468 op
->mem_fetch_after
= atomic_nand_fetch_optab
;
6469 op
->mem_no_result
= atomic_nand_optab
;
6470 op
->fetch_before
= sync_old_nand_optab
;
6471 op
->fetch_after
= sync_new_nand_optab
;
6472 op
->no_result
= sync_nand_optab
;
6473 op
->reverse_code
= UNKNOWN
;
6480 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6481 using memory order MODEL. If AFTER is true the operation needs to return
6482 the value of *MEM after the operation, otherwise the previous value.
6483 TARGET is an optional place to place the result. The result is unused if
6485 Return the result if there is a better sequence, otherwise NULL_RTX. */
6488 maybe_optimize_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
6489 enum memmodel model
, bool after
)
6491 /* If the value is prefetched, or not used, it may be possible to replace
6492 the sequence with a native exchange operation. */
6493 if (!after
|| target
== const0_rtx
)
6495 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6496 if (code
== AND
&& val
== const0_rtx
)
6498 if (target
== const0_rtx
)
6499 target
= gen_reg_rtx (GET_MODE (mem
));
6500 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6503 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6504 if (code
== IOR
&& val
== constm1_rtx
)
6506 if (target
== const0_rtx
)
6507 target
= gen_reg_rtx (GET_MODE (mem
));
6508 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6515 /* Try to emit an instruction for a specific operation varaition.
6516 OPTAB contains the OP functions.
6517 TARGET is an optional place to return the result. const0_rtx means unused.
6518 MEM is the memory location to operate on.
6519 VAL is the value to use in the operation.
6520 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6521 MODEL is the memory model, if used.
6522 AFTER is true if the returned result is the value after the operation. */
6525 maybe_emit_op (const struct atomic_op_functions
*optab
, rtx target
, rtx mem
,
6526 rtx val
, bool use_memmodel
, enum memmodel model
, bool after
)
6528 machine_mode mode
= GET_MODE (mem
);
6529 struct expand_operand ops
[4];
6530 enum insn_code icode
;
6534 /* Check to see if there is a result returned. */
6535 if (target
== const0_rtx
)
6539 icode
= direct_optab_handler (optab
->mem_no_result
, mode
);
6540 create_integer_operand (&ops
[2], model
);
6545 icode
= direct_optab_handler (optab
->no_result
, mode
);
6549 /* Otherwise, we need to generate a result. */
6554 icode
= direct_optab_handler (after
? optab
->mem_fetch_after
6555 : optab
->mem_fetch_before
, mode
);
6556 create_integer_operand (&ops
[3], model
);
6561 icode
= optab_handler (after
? optab
->fetch_after
6562 : optab
->fetch_before
, mode
);
6565 create_output_operand (&ops
[op_counter
++], target
, mode
);
6567 if (icode
== CODE_FOR_nothing
)
6570 create_fixed_operand (&ops
[op_counter
++], mem
);
6571 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6572 create_convert_operand_to (&ops
[op_counter
++], val
, mode
, true);
6574 if (maybe_expand_insn (icode
, num_ops
, ops
))
6575 return (target
== const0_rtx
? const0_rtx
: ops
[0].value
);
6581 /* This function expands an atomic fetch_OP or OP_fetch operation:
6582 TARGET is an option place to stick the return value. const0_rtx indicates
6583 the result is unused.
6584 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6585 CODE is the operation being performed (OP)
6586 MEMMODEL is the memory model variant to use.
6587 AFTER is true to return the result of the operation (OP_fetch).
6588 AFTER is false to return the value before the operation (fetch_OP).
6590 This function will *only* generate instructions if there is a direct
6591 optab. No compare and swap loops or libcalls will be generated. */
6594 expand_atomic_fetch_op_no_fallback (rtx target
, rtx mem
, rtx val
,
6595 enum rtx_code code
, enum memmodel model
,
6598 machine_mode mode
= GET_MODE (mem
);
6599 struct atomic_op_functions optab
;
6601 bool unused_result
= (target
== const0_rtx
);
6603 get_atomic_op_for_code (&optab
, code
);
6605 /* Check to see if there are any better instructions. */
6606 result
= maybe_optimize_fetch_op (target
, mem
, val
, code
, model
, after
);
6610 /* Check for the case where the result isn't used and try those patterns. */
6613 /* Try the memory model variant first. */
6614 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, true);
6618 /* Next try the old style withuot a memory model. */
6619 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, true);
6623 /* There is no no-result pattern, so try patterns with a result. */
6627 /* Try the __atomic version. */
6628 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, after
);
6632 /* Try the older __sync version. */
6633 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, after
);
6637 /* If the fetch value can be calculated from the other variation of fetch,
6638 try that operation. */
6639 if (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
)
6641 /* Try the __atomic version, then the older __sync version. */
6642 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, !after
);
6644 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, !after
);
6648 /* If the result isn't used, no need to do compensation code. */
6652 /* Issue compensation code. Fetch_after == fetch_before OP val.
6653 Fetch_before == after REVERSE_OP val. */
6655 code
= optab
.reverse_code
;
6658 result
= expand_simple_binop (mode
, AND
, result
, val
, NULL_RTX
,
6659 true, OPTAB_LIB_WIDEN
);
6660 result
= expand_simple_unop (mode
, NOT
, result
, target
, true);
6663 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
6664 true, OPTAB_LIB_WIDEN
);
6669 /* No direct opcode can be generated. */
6675 /* This function expands an atomic fetch_OP or OP_fetch operation:
6676 TARGET is an option place to stick the return value. const0_rtx indicates
6677 the result is unused.
6678 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6679 CODE is the operation being performed (OP)
6680 MEMMODEL is the memory model variant to use.
6681 AFTER is true to return the result of the operation (OP_fetch).
6682 AFTER is false to return the value before the operation (fetch_OP). */
6684 expand_atomic_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
6685 enum memmodel model
, bool after
)
6687 machine_mode mode
= GET_MODE (mem
);
6689 bool unused_result
= (target
== const0_rtx
);
6691 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, val
, code
, model
,
6697 /* Add/sub can be implemented by doing the reverse operation with -(val). */
6698 if (code
== PLUS
|| code
== MINUS
)
6701 enum rtx_code reverse
= (code
== PLUS
? MINUS
: PLUS
);
6704 tmp
= expand_simple_unop (mode
, NEG
, val
, NULL_RTX
, true);
6705 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, tmp
, reverse
,
6709 /* PLUS worked so emit the insns and return. */
6716 /* PLUS did not work, so throw away the negation code and continue. */
6720 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
6721 if (!can_compare_and_swap_p (mode
, false))
6725 enum rtx_code orig_code
= code
;
6726 struct atomic_op_functions optab
;
6728 get_atomic_op_for_code (&optab
, code
);
6729 libfunc
= optab_libfunc (after
? optab
.fetch_after
6730 : optab
.fetch_before
, mode
);
6732 && (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
))
6736 code
= optab
.reverse_code
;
6737 libfunc
= optab_libfunc (after
? optab
.fetch_before
6738 : optab
.fetch_after
, mode
);
6740 if (libfunc
!= NULL
)
6742 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6743 result
= emit_library_call_value (libfunc
, NULL
, LCT_NORMAL
, mode
,
6744 2, addr
, ptr_mode
, val
, mode
);
6746 if (!unused_result
&& fixup
)
6747 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
6748 true, OPTAB_LIB_WIDEN
);
6752 /* We need the original code for any further attempts. */
6756 /* If nothing else has succeeded, default to a compare and swap loop. */
6757 if (can_compare_and_swap_p (mode
, true))
6760 rtx t0
= gen_reg_rtx (mode
), t1
;
6764 /* If the result is used, get a register for it. */
6767 if (!target
|| !register_operand (target
, mode
))
6768 target
= gen_reg_rtx (mode
);
6769 /* If fetch_before, copy the value now. */
6771 emit_move_insn (target
, t0
);
6774 target
= const0_rtx
;
6779 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
6780 true, OPTAB_LIB_WIDEN
);
6781 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
6784 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
, true,
6787 /* For after, copy the value now. */
6788 if (!unused_result
&& after
)
6789 emit_move_insn (target
, t1
);
6790 insn
= get_insns ();
6793 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
6800 /* Return true if OPERAND is suitable for operand number OPNO of
6801 instruction ICODE. */
6804 insn_operand_matches (enum insn_code icode
, unsigned int opno
, rtx operand
)
6806 return (!insn_data
[(int) icode
].operand
[opno
].predicate
6807 || (insn_data
[(int) icode
].operand
[opno
].predicate
6808 (operand
, insn_data
[(int) icode
].operand
[opno
].mode
)));
6811 /* TARGET is a target of a multiword operation that we are going to
6812 implement as a series of word-mode operations. Return true if
6813 TARGET is suitable for this purpose. */
6816 valid_multiword_target_p (rtx target
)
6821 mode
= GET_MODE (target
);
6822 for (i
= 0; i
< GET_MODE_SIZE (mode
); i
+= UNITS_PER_WORD
)
6823 if (!validate_subreg (word_mode
, mode
, target
, i
))
6828 /* Like maybe_legitimize_operand, but do not change the code of the
6829 current rtx value. */
6832 maybe_legitimize_operand_same_code (enum insn_code icode
, unsigned int opno
,
6833 struct expand_operand
*op
)
6835 /* See if the operand matches in its current form. */
6836 if (insn_operand_matches (icode
, opno
, op
->value
))
6839 /* If the operand is a memory whose address has no side effects,
6840 try forcing the address into a non-virtual pseudo register.
6841 The check for side effects is important because copy_to_mode_reg
6842 cannot handle things like auto-modified addresses. */
6843 if (insn_data
[(int) icode
].operand
[opno
].allows_mem
&& MEM_P (op
->value
))
6848 addr
= XEXP (mem
, 0);
6849 if (!(REG_P (addr
) && REGNO (addr
) > LAST_VIRTUAL_REGISTER
)
6850 && !side_effects_p (addr
))
6855 last
= get_last_insn ();
6856 mode
= get_address_mode (mem
);
6857 mem
= replace_equiv_address (mem
, copy_to_mode_reg (mode
, addr
));
6858 if (insn_operand_matches (icode
, opno
, mem
))
6863 delete_insns_since (last
);
6870 /* Try to make OP match operand OPNO of instruction ICODE. Return true
6871 on success, storing the new operand value back in OP. */
6874 maybe_legitimize_operand (enum insn_code icode
, unsigned int opno
,
6875 struct expand_operand
*op
)
6877 machine_mode mode
, imode
;
6878 bool old_volatile_ok
, result
;
6884 old_volatile_ok
= volatile_ok
;
6886 result
= maybe_legitimize_operand_same_code (icode
, opno
, op
);
6887 volatile_ok
= old_volatile_ok
;
6891 gcc_assert (mode
!= VOIDmode
);
6893 && op
->value
!= const0_rtx
6894 && GET_MODE (op
->value
) == mode
6895 && maybe_legitimize_operand_same_code (icode
, opno
, op
))
6898 op
->value
= gen_reg_rtx (mode
);
6903 gcc_assert (mode
!= VOIDmode
);
6904 gcc_assert (GET_MODE (op
->value
) == VOIDmode
6905 || GET_MODE (op
->value
) == mode
);
6906 if (maybe_legitimize_operand_same_code (icode
, opno
, op
))
6909 op
->value
= copy_to_mode_reg (mode
, op
->value
);
6912 case EXPAND_CONVERT_TO
:
6913 gcc_assert (mode
!= VOIDmode
);
6914 op
->value
= convert_to_mode (mode
, op
->value
, op
->unsigned_p
);
6917 case EXPAND_CONVERT_FROM
:
6918 if (GET_MODE (op
->value
) != VOIDmode
)
6919 mode
= GET_MODE (op
->value
);
6921 /* The caller must tell us what mode this value has. */
6922 gcc_assert (mode
!= VOIDmode
);
6924 imode
= insn_data
[(int) icode
].operand
[opno
].mode
;
6925 if (imode
!= VOIDmode
&& imode
!= mode
)
6927 op
->value
= convert_modes (imode
, mode
, op
->value
, op
->unsigned_p
);
6932 case EXPAND_ADDRESS
:
6933 gcc_assert (mode
!= VOIDmode
);
6934 op
->value
= convert_memory_address (mode
, op
->value
);
6937 case EXPAND_INTEGER
:
6938 mode
= insn_data
[(int) icode
].operand
[opno
].mode
;
6939 if (mode
!= VOIDmode
&& const_int_operand (op
->value
, mode
))
6943 return insn_operand_matches (icode
, opno
, op
->value
);
6946 /* Make OP describe an input operand that should have the same value
6947 as VALUE, after any mode conversion that the target might request.
6948 TYPE is the type of VALUE. */
6951 create_convert_operand_from_type (struct expand_operand
*op
,
6952 rtx value
, tree type
)
6954 create_convert_operand_from (op
, value
, TYPE_MODE (type
),
6955 TYPE_UNSIGNED (type
));
6958 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
6959 of instruction ICODE. Return true on success, leaving the new operand
6960 values in the OPS themselves. Emit no code on failure. */
6963 maybe_legitimize_operands (enum insn_code icode
, unsigned int opno
,
6964 unsigned int nops
, struct expand_operand
*ops
)
6969 last
= get_last_insn ();
6970 for (i
= 0; i
< nops
; i
++)
6971 if (!maybe_legitimize_operand (icode
, opno
+ i
, &ops
[i
]))
6973 delete_insns_since (last
);
6979 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
6980 as its operands. Return the instruction pattern on success,
6981 and emit any necessary set-up code. Return null and emit no
6985 maybe_gen_insn (enum insn_code icode
, unsigned int nops
,
6986 struct expand_operand
*ops
)
6988 gcc_assert (nops
== (unsigned int) insn_data
[(int) icode
].n_generator_args
);
6989 if (!maybe_legitimize_operands (icode
, 0, nops
, ops
))
6995 return GEN_FCN (icode
) (ops
[0].value
);
6997 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
);
6999 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
);
7001 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7004 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7005 ops
[3].value
, ops
[4].value
);
7007 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7008 ops
[3].value
, ops
[4].value
, ops
[5].value
);
7010 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7011 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7014 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7015 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7016 ops
[6].value
, ops
[7].value
);
7018 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7019 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7020 ops
[6].value
, ops
[7].value
, ops
[8].value
);
7025 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7026 as its operands. Return true on success and emit no code on failure. */
7029 maybe_expand_insn (enum insn_code icode
, unsigned int nops
,
7030 struct expand_operand
*ops
)
7032 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
7041 /* Like maybe_expand_insn, but for jumps. */
7044 maybe_expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7045 struct expand_operand
*ops
)
7047 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
7050 emit_jump_insn (pat
);
7056 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7060 expand_insn (enum insn_code icode
, unsigned int nops
,
7061 struct expand_operand
*ops
)
7063 if (!maybe_expand_insn (icode
, nops
, ops
))
7067 /* Like expand_insn, but for jumps. */
7070 expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7071 struct expand_operand
*ops
)
7073 if (!maybe_expand_jump_insn (icode
, nops
, ops
))