Daily bump.
[official-gcc.git] / gcc / cselib.c
blob33a0666b0ead1d5184f57828a70ba5e8c0213602
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"/* FIXME: For hashing DEBUG_EXPR & friends. */
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "diagnostic-core.h"
38 #include "ggc.h"
39 #include "hashtab.h"
40 #include "dumpfile.h"
41 #include "cselib.h"
42 #include "valtrack.h"
43 #include "params.h"
44 #include "alloc-pool.h"
45 #include "target.h"
46 #include "bitmap.h"
48 /* A list of cselib_val structures. */
49 struct elt_list {
50 struct elt_list *next;
51 cselib_val *elt;
54 static bool cselib_record_memory;
55 static bool cselib_preserve_constants;
56 static bool cselib_any_perm_equivs;
57 static int entry_and_rtx_equal_p (const void *, const void *);
58 static hashval_t get_value_hash (const void *);
59 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
60 static void new_elt_loc_list (cselib_val *, rtx);
61 static void unchain_one_value (cselib_val *);
62 static void unchain_one_elt_list (struct elt_list **);
63 static void unchain_one_elt_loc_list (struct elt_loc_list **);
64 static int discard_useless_locs (void **, void *);
65 static int discard_useless_values (void **, void *);
66 static void remove_useless_values (void);
67 static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode);
68 static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode);
69 static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
70 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
71 static cselib_val *cselib_lookup_mem (rtx, int);
72 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
73 static void cselib_invalidate_mem (rtx);
74 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
75 static void cselib_record_sets (rtx);
77 struct expand_value_data
79 bitmap regs_active;
80 cselib_expand_callback callback;
81 void *callback_arg;
82 bool dummy;
85 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
87 /* There are three ways in which cselib can look up an rtx:
88 - for a REG, the reg_values table (which is indexed by regno) is used
89 - for a MEM, we recursively look up its address and then follow the
90 addr_list of that value
91 - for everything else, we compute a hash value and go through the hash
92 table. Since different rtx's can still have the same hash value,
93 this involves walking the table entries for a given value and comparing
94 the locations of the entries with the rtx we are looking up. */
96 /* A table that enables us to look up elts by their value. */
97 static htab_t cselib_hash_table;
99 /* This is a global so we don't have to pass this through every function.
100 It is used in new_elt_loc_list to set SETTING_INSN. */
101 static rtx cselib_current_insn;
103 /* The unique id that the next create value will take. */
104 static unsigned int next_uid;
106 /* The number of registers we had when the varrays were last resized. */
107 static unsigned int cselib_nregs;
109 /* Count values without known locations, or with only locations that
110 wouldn't have been known except for debug insns. Whenever this
111 grows too big, we remove these useless values from the table.
113 Counting values with only debug values is a bit tricky. We don't
114 want to increment n_useless_values when we create a value for a
115 debug insn, for this would get n_useless_values out of sync, but we
116 want increment it if all locs in the list that were ever referenced
117 in nondebug insns are removed from the list.
119 In the general case, once we do that, we'd have to stop accepting
120 nondebug expressions in the loc list, to avoid having two values
121 equivalent that, without debug insns, would have been made into
122 separate values. However, because debug insns never introduce
123 equivalences themselves (no assignments), the only means for
124 growing loc lists is through nondebug assignments. If the locs
125 also happen to be referenced in debug insns, it will work just fine.
127 A consequence of this is that there's at most one debug-only loc in
128 each loc list. If we keep it in the first entry, testing whether
129 we have a debug-only loc list takes O(1).
131 Furthermore, since any additional entry in a loc list containing a
132 debug loc would have to come from an assignment (nondebug) that
133 references both the initial debug loc and the newly-equivalent loc,
134 the initial debug loc would be promoted to a nondebug loc, and the
135 loc list would not contain debug locs any more.
137 So the only case we have to be careful with in order to keep
138 n_useless_values in sync between debug and nondebug compilations is
139 to avoid incrementing n_useless_values when removing the single loc
140 from a value that turns out to not appear outside debug values. We
141 increment n_useless_debug_values instead, and leave such values
142 alone until, for other reasons, we garbage-collect useless
143 values. */
144 static int n_useless_values;
145 static int n_useless_debug_values;
147 /* Count values whose locs have been taken exclusively from debug
148 insns for the entire life of the value. */
149 static int n_debug_values;
151 /* Number of useless values before we remove them from the hash table. */
152 #define MAX_USELESS_VALUES 32
154 /* This table maps from register number to values. It does not
155 contain pointers to cselib_val structures, but rather elt_lists.
156 The purpose is to be able to refer to the same register in
157 different modes. The first element of the list defines the mode in
158 which the register was set; if the mode is unknown or the value is
159 no longer valid in that mode, ELT will be NULL for the first
160 element. */
161 static struct elt_list **reg_values;
162 static unsigned int reg_values_size;
163 #define REG_VALUES(i) reg_values[i]
165 /* The largest number of hard regs used by any entry added to the
166 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
167 static unsigned int max_value_regs;
169 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
170 in cselib_clear_table() for fast emptying. */
171 static unsigned int *used_regs;
172 static unsigned int n_used_regs;
174 /* We pass this to cselib_invalidate_mem to invalidate all of
175 memory for a non-const call instruction. */
176 static GTY(()) rtx callmem;
178 /* Set by discard_useless_locs if it deleted the last location of any
179 value. */
180 static int values_became_useless;
182 /* Used as stop element of the containing_mem list so we can check
183 presence in the list by checking the next pointer. */
184 static cselib_val dummy_val;
186 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
187 that is constant through the whole function and should never be
188 eliminated. */
189 static cselib_val *cfa_base_preserved_val;
190 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
192 /* Used to list all values that contain memory reference.
193 May or may not contain the useless values - the list is compacted
194 each time memory is invalidated. */
195 static cselib_val *first_containing_mem = &dummy_val;
196 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
198 /* If nonnull, cselib will call this function before freeing useless
199 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
200 void (*cselib_discard_hook) (cselib_val *);
202 /* If nonnull, cselib will call this function before recording sets or
203 even clobbering outputs of INSN. All the recorded sets will be
204 represented in the array sets[n_sets]. new_val_min can be used to
205 tell whether values present in sets are introduced by this
206 instruction. */
207 void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
208 int n_sets);
210 #define PRESERVED_VALUE_P(RTX) \
211 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
215 /* Allocate a struct elt_list and fill in its two elements with the
216 arguments. */
218 static inline struct elt_list *
219 new_elt_list (struct elt_list *next, cselib_val *elt)
221 struct elt_list *el;
222 el = (struct elt_list *) pool_alloc (elt_list_pool);
223 el->next = next;
224 el->elt = elt;
225 return el;
228 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
229 list. */
231 static inline void
232 new_elt_loc_list (cselib_val *val, rtx loc)
234 struct elt_loc_list *el, *next = val->locs;
236 gcc_checking_assert (!next || !next->setting_insn
237 || !DEBUG_INSN_P (next->setting_insn)
238 || cselib_current_insn == next->setting_insn);
240 /* If we're creating the first loc in a debug insn context, we've
241 just created a debug value. Count it. */
242 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
243 n_debug_values++;
245 val = canonical_cselib_val (val);
246 next = val->locs;
248 if (GET_CODE (loc) == VALUE)
250 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
252 gcc_checking_assert (PRESERVED_VALUE_P (loc)
253 == PRESERVED_VALUE_P (val->val_rtx));
255 if (val->val_rtx == loc)
256 return;
257 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
259 /* Reverse the insertion. */
260 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
261 return;
264 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
266 if (CSELIB_VAL_PTR (loc)->locs)
268 /* Bring all locs from LOC to VAL. */
269 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
271 /* Adjust values that have LOC as canonical so that VAL
272 becomes their canonical. */
273 if (el->loc && GET_CODE (el->loc) == VALUE)
275 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
276 == loc);
277 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
280 el->next = val->locs;
281 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
284 if (CSELIB_VAL_PTR (loc)->addr_list)
286 /* Bring in addr_list into canonical node. */
287 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
288 while (last->next)
289 last = last->next;
290 last->next = val->addr_list;
291 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
292 CSELIB_VAL_PTR (loc)->addr_list = NULL;
295 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
296 && val->next_containing_mem == NULL)
298 /* Add VAL to the containing_mem list after LOC. LOC will
299 be removed when we notice it doesn't contain any
300 MEMs. */
301 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
302 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
305 /* Chain LOC back to VAL. */
306 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
307 el->loc = val->val_rtx;
308 el->setting_insn = cselib_current_insn;
309 el->next = NULL;
310 CSELIB_VAL_PTR (loc)->locs = el;
313 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
314 el->loc = loc;
315 el->setting_insn = cselib_current_insn;
316 el->next = next;
317 val->locs = el;
320 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
321 originating from a debug insn, maintaining the debug values
322 count. */
324 static inline void
325 promote_debug_loc (struct elt_loc_list *l)
327 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
328 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
330 n_debug_values--;
331 l->setting_insn = cselib_current_insn;
332 if (cselib_preserve_constants && l->next)
334 gcc_assert (l->next->setting_insn
335 && DEBUG_INSN_P (l->next->setting_insn)
336 && !l->next->next);
337 l->next->setting_insn = cselib_current_insn;
339 else
340 gcc_assert (!l->next);
344 /* The elt_list at *PL is no longer needed. Unchain it and free its
345 storage. */
347 static inline void
348 unchain_one_elt_list (struct elt_list **pl)
350 struct elt_list *l = *pl;
352 *pl = l->next;
353 pool_free (elt_list_pool, l);
356 /* Likewise for elt_loc_lists. */
358 static void
359 unchain_one_elt_loc_list (struct elt_loc_list **pl)
361 struct elt_loc_list *l = *pl;
363 *pl = l->next;
364 pool_free (elt_loc_list_pool, l);
367 /* Likewise for cselib_vals. This also frees the addr_list associated with
368 V. */
370 static void
371 unchain_one_value (cselib_val *v)
373 while (v->addr_list)
374 unchain_one_elt_list (&v->addr_list);
376 pool_free (cselib_val_pool, v);
379 /* Remove all entries from the hash table. Also used during
380 initialization. */
382 void
383 cselib_clear_table (void)
385 cselib_reset_table (1);
388 /* Return TRUE if V is a constant, a function invariant or a VALUE
389 equivalence; FALSE otherwise. */
391 static bool
392 invariant_or_equiv_p (cselib_val *v)
394 struct elt_loc_list *l;
396 if (v == cfa_base_preserved_val)
397 return true;
399 /* Keep VALUE equivalences around. */
400 for (l = v->locs; l; l = l->next)
401 if (GET_CODE (l->loc) == VALUE)
402 return true;
404 if (v->locs != NULL
405 && v->locs->next == NULL)
407 if (CONSTANT_P (v->locs->loc)
408 && (GET_CODE (v->locs->loc) != CONST
409 || !references_value_p (v->locs->loc, 0)))
410 return true;
411 /* Although a debug expr may be bound to different expressions,
412 we can preserve it as if it was constant, to get unification
413 and proper merging within var-tracking. */
414 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
415 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
416 || GET_CODE (v->locs->loc) == ENTRY_VALUE
417 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
418 return true;
420 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
421 if (GET_CODE (v->locs->loc) == PLUS
422 && CONST_INT_P (XEXP (v->locs->loc, 1))
423 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
424 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
425 return true;
428 return false;
431 /* Remove from hash table all VALUEs except constants, function
432 invariants and VALUE equivalences. */
434 static int
435 preserve_constants_and_equivs (void **x, void *info ATTRIBUTE_UNUSED)
437 cselib_val *v = (cselib_val *)*x;
439 if (!invariant_or_equiv_p (v))
440 htab_clear_slot (cselib_hash_table, x);
441 return 1;
444 /* Remove all entries from the hash table, arranging for the next
445 value to be numbered NUM. */
447 void
448 cselib_reset_table (unsigned int num)
450 unsigned int i;
452 max_value_regs = 0;
454 if (cfa_base_preserved_val)
456 unsigned int regno = cfa_base_preserved_regno;
457 unsigned int new_used_regs = 0;
458 for (i = 0; i < n_used_regs; i++)
459 if (used_regs[i] == regno)
461 new_used_regs = 1;
462 continue;
464 else
465 REG_VALUES (used_regs[i]) = 0;
466 gcc_assert (new_used_regs == 1);
467 n_used_regs = new_used_regs;
468 used_regs[0] = regno;
469 max_value_regs
470 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
472 else
474 for (i = 0; i < n_used_regs; i++)
475 REG_VALUES (used_regs[i]) = 0;
476 n_used_regs = 0;
479 if (cselib_preserve_constants)
480 htab_traverse (cselib_hash_table, preserve_constants_and_equivs, NULL);
481 else
483 htab_empty (cselib_hash_table);
484 gcc_checking_assert (!cselib_any_perm_equivs);
487 n_useless_values = 0;
488 n_useless_debug_values = 0;
489 n_debug_values = 0;
491 next_uid = num;
493 first_containing_mem = &dummy_val;
496 /* Return the number of the next value that will be generated. */
498 unsigned int
499 cselib_get_next_uid (void)
501 return next_uid;
504 /* See the documentation of cselib_find_slot below. */
505 static enum machine_mode find_slot_memmode;
507 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
508 INSERTing if requested. When X is part of the address of a MEM,
509 MEMMODE should specify the mode of the MEM. While searching the
510 table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs
511 in X can be resolved. */
513 static void **
514 cselib_find_slot (rtx x, hashval_t hash, enum insert_option insert,
515 enum machine_mode memmode)
517 void **slot;
518 find_slot_memmode = memmode;
519 slot = htab_find_slot_with_hash (cselib_hash_table, x, hash, insert);
520 find_slot_memmode = VOIDmode;
521 return slot;
524 /* The equality test for our hash table. The first argument ENTRY is a table
525 element (i.e. a cselib_val), while the second arg X is an rtx. We know
526 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
527 CONST of an appropriate mode. */
529 static int
530 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
532 struct elt_loc_list *l;
533 const cselib_val *const v = (const cselib_val *) entry;
534 rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
535 enum machine_mode mode = GET_MODE (x);
537 gcc_assert (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
538 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
540 if (mode != GET_MODE (v->val_rtx))
541 return 0;
543 /* Unwrap X if necessary. */
544 if (GET_CODE (x) == CONST
545 && (CONST_INT_P (XEXP (x, 0))
546 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
547 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
548 x = XEXP (x, 0);
550 /* We don't guarantee that distinct rtx's have different hash values,
551 so we need to do a comparison. */
552 for (l = v->locs; l; l = l->next)
553 if (rtx_equal_for_cselib_1 (l->loc, x, find_slot_memmode))
555 promote_debug_loc (l);
556 return 1;
559 return 0;
562 /* The hash function for our hash table. The value is always computed with
563 cselib_hash_rtx when adding an element; this function just extracts the
564 hash value from a cselib_val structure. */
566 static hashval_t
567 get_value_hash (const void *entry)
569 const cselib_val *const v = (const cselib_val *) entry;
570 return v->hash;
573 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
574 only return true for values which point to a cselib_val whose value
575 element has been set to zero, which implies the cselib_val will be
576 removed. */
579 references_value_p (const_rtx x, int only_useless)
581 const enum rtx_code code = GET_CODE (x);
582 const char *fmt = GET_RTX_FORMAT (code);
583 int i, j;
585 if (GET_CODE (x) == VALUE
586 && (! only_useless ||
587 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
588 return 1;
590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
592 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
593 return 1;
594 else if (fmt[i] == 'E')
595 for (j = 0; j < XVECLEN (x, i); j++)
596 if (references_value_p (XVECEXP (x, i, j), only_useless))
597 return 1;
600 return 0;
603 /* For all locations found in X, delete locations that reference useless
604 values (i.e. values without any location). Called through
605 htab_traverse. */
607 static int
608 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
610 cselib_val *v = (cselib_val *)*x;
611 struct elt_loc_list **p = &v->locs;
612 bool had_locs = v->locs != NULL;
613 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
615 while (*p)
617 if (references_value_p ((*p)->loc, 1))
618 unchain_one_elt_loc_list (p);
619 else
620 p = &(*p)->next;
623 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
625 if (setting_insn && DEBUG_INSN_P (setting_insn))
626 n_useless_debug_values++;
627 else
628 n_useless_values++;
629 values_became_useless = 1;
631 return 1;
634 /* If X is a value with no locations, remove it from the hashtable. */
636 static int
637 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
639 cselib_val *v = (cselib_val *)*x;
641 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
643 if (cselib_discard_hook)
644 cselib_discard_hook (v);
646 CSELIB_VAL_PTR (v->val_rtx) = NULL;
647 htab_clear_slot (cselib_hash_table, x);
648 unchain_one_value (v);
649 n_useless_values--;
652 return 1;
655 /* Clean out useless values (i.e. those which no longer have locations
656 associated with them) from the hash table. */
658 static void
659 remove_useless_values (void)
661 cselib_val **p, *v;
663 /* First pass: eliminate locations that reference the value. That in
664 turn can make more values useless. */
667 values_became_useless = 0;
668 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
670 while (values_became_useless);
672 /* Second pass: actually remove the values. */
674 p = &first_containing_mem;
675 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
676 if (v->locs && v == canonical_cselib_val (v))
678 *p = v;
679 p = &(*p)->next_containing_mem;
681 *p = &dummy_val;
683 n_useless_values += n_useless_debug_values;
684 n_debug_values -= n_useless_debug_values;
685 n_useless_debug_values = 0;
687 htab_traverse (cselib_hash_table, discard_useless_values, 0);
689 gcc_assert (!n_useless_values);
692 /* Arrange for a value to not be removed from the hash table even if
693 it becomes useless. */
695 void
696 cselib_preserve_value (cselib_val *v)
698 PRESERVED_VALUE_P (v->val_rtx) = 1;
701 /* Test whether a value is preserved. */
703 bool
704 cselib_preserved_value_p (cselib_val *v)
706 return PRESERVED_VALUE_P (v->val_rtx);
709 /* Arrange for a REG value to be assumed constant through the whole function,
710 never invalidated and preserved across cselib_reset_table calls. */
712 void
713 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
715 if (cselib_preserve_constants
716 && v->locs
717 && REG_P (v->locs->loc))
719 cfa_base_preserved_val = v;
720 cfa_base_preserved_regno = regno;
724 /* Clean all non-constant expressions in the hash table, but retain
725 their values. */
727 void
728 cselib_preserve_only_values (void)
730 int i;
732 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
733 cselib_invalidate_regno (i, reg_raw_mode[i]);
735 cselib_invalidate_mem (callmem);
737 remove_useless_values ();
739 gcc_assert (first_containing_mem == &dummy_val);
742 /* Return the mode in which a register was last set. If X is not a
743 register, return its mode. If the mode in which the register was
744 set is not known, or the value was already clobbered, return
745 VOIDmode. */
747 enum machine_mode
748 cselib_reg_set_mode (const_rtx x)
750 if (!REG_P (x))
751 return GET_MODE (x);
753 if (REG_VALUES (REGNO (x)) == NULL
754 || REG_VALUES (REGNO (x))->elt == NULL)
755 return VOIDmode;
757 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
760 /* Return nonzero if we can prove that X and Y contain the same value, taking
761 our gathered information into account. */
764 rtx_equal_for_cselib_p (rtx x, rtx y)
766 return rtx_equal_for_cselib_1 (x, y, VOIDmode);
769 /* If x is a PLUS or an autoinc operation, expand the operation,
770 storing the offset, if any, in *OFF. */
772 static rtx
773 autoinc_split (rtx x, rtx *off, enum machine_mode memmode)
775 switch (GET_CODE (x))
777 case PLUS:
778 *off = XEXP (x, 1);
779 return XEXP (x, 0);
781 case PRE_DEC:
782 if (memmode == VOIDmode)
783 return x;
785 *off = GEN_INT (-GET_MODE_SIZE (memmode));
786 return XEXP (x, 0);
787 break;
789 case PRE_INC:
790 if (memmode == VOIDmode)
791 return x;
793 *off = GEN_INT (GET_MODE_SIZE (memmode));
794 return XEXP (x, 0);
796 case PRE_MODIFY:
797 return XEXP (x, 1);
799 case POST_DEC:
800 case POST_INC:
801 case POST_MODIFY:
802 return XEXP (x, 0);
804 default:
805 return x;
809 /* Return nonzero if we can prove that X and Y contain the same value,
810 taking our gathered information into account. MEMMODE holds the
811 mode of the enclosing MEM, if any, as required to deal with autoinc
812 addressing modes. If X and Y are not (known to be) part of
813 addresses, MEMMODE should be VOIDmode. */
815 static int
816 rtx_equal_for_cselib_1 (rtx x, rtx y, enum machine_mode memmode)
818 enum rtx_code code;
819 const char *fmt;
820 int i;
822 if (REG_P (x) || MEM_P (x))
824 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
826 if (e)
827 x = e->val_rtx;
830 if (REG_P (y) || MEM_P (y))
832 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
834 if (e)
835 y = e->val_rtx;
838 if (x == y)
839 return 1;
841 if (GET_CODE (x) == VALUE)
843 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
844 struct elt_loc_list *l;
846 if (GET_CODE (y) == VALUE)
847 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
849 for (l = e->locs; l; l = l->next)
851 rtx t = l->loc;
853 /* Avoid infinite recursion. We know we have the canonical
854 value, so we can just skip any values in the equivalence
855 list. */
856 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
857 continue;
858 else if (rtx_equal_for_cselib_1 (t, y, memmode))
859 return 1;
862 return 0;
864 else if (GET_CODE (y) == VALUE)
866 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
867 struct elt_loc_list *l;
869 for (l = e->locs; l; l = l->next)
871 rtx t = l->loc;
873 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
874 continue;
875 else if (rtx_equal_for_cselib_1 (x, t, memmode))
876 return 1;
879 return 0;
882 if (GET_MODE (x) != GET_MODE (y))
883 return 0;
885 if (GET_CODE (x) != GET_CODE (y))
887 rtx xorig = x, yorig = y;
888 rtx xoff = NULL, yoff = NULL;
890 x = autoinc_split (x, &xoff, memmode);
891 y = autoinc_split (y, &yoff, memmode);
893 if (!xoff != !yoff)
894 return 0;
896 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode))
897 return 0;
899 /* Don't recurse if nothing changed. */
900 if (x != xorig || y != yorig)
901 return rtx_equal_for_cselib_1 (x, y, memmode);
903 return 0;
906 /* These won't be handled correctly by the code below. */
907 switch (GET_CODE (x))
909 case CONST_DOUBLE:
910 case CONST_FIXED:
911 case DEBUG_EXPR:
912 return 0;
914 case DEBUG_IMPLICIT_PTR:
915 return DEBUG_IMPLICIT_PTR_DECL (x)
916 == DEBUG_IMPLICIT_PTR_DECL (y);
918 case DEBUG_PARAMETER_REF:
919 return DEBUG_PARAMETER_REF_DECL (x)
920 == DEBUG_PARAMETER_REF_DECL (y);
922 case ENTRY_VALUE:
923 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
924 use rtx_equal_for_cselib_1 to compare the operands. */
925 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
927 case LABEL_REF:
928 return XEXP (x, 0) == XEXP (y, 0);
930 case MEM:
931 /* We have to compare any autoinc operations in the addresses
932 using this MEM's mode. */
933 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x));
935 default:
936 break;
939 code = GET_CODE (x);
940 fmt = GET_RTX_FORMAT (code);
942 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
944 int j;
946 switch (fmt[i])
948 case 'w':
949 if (XWINT (x, i) != XWINT (y, i))
950 return 0;
951 break;
953 case 'n':
954 case 'i':
955 if (XINT (x, i) != XINT (y, i))
956 return 0;
957 break;
959 case 'V':
960 case 'E':
961 /* Two vectors must have the same length. */
962 if (XVECLEN (x, i) != XVECLEN (y, i))
963 return 0;
965 /* And the corresponding elements must match. */
966 for (j = 0; j < XVECLEN (x, i); j++)
967 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
968 XVECEXP (y, i, j), memmode))
969 return 0;
970 break;
972 case 'e':
973 if (i == 1
974 && targetm.commutative_p (x, UNKNOWN)
975 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode)
976 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode))
977 return 1;
978 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode))
979 return 0;
980 break;
982 case 'S':
983 case 's':
984 if (strcmp (XSTR (x, i), XSTR (y, i)))
985 return 0;
986 break;
988 case 'u':
989 /* These are just backpointers, so they don't matter. */
990 break;
992 case '0':
993 case 't':
994 break;
996 /* It is believed that rtx's at this level will never
997 contain anything but integers and other rtx's,
998 except for within LABEL_REFs and SYMBOL_REFs. */
999 default:
1000 gcc_unreachable ();
1003 return 1;
1006 /* We need to pass down the mode of constants through the hash table
1007 functions. For that purpose, wrap them in a CONST of the appropriate
1008 mode. */
1009 static rtx
1010 wrap_constant (enum machine_mode mode, rtx x)
1012 if (!CONST_INT_P (x)
1013 && GET_CODE (x) != CONST_FIXED
1014 && !CONST_DOUBLE_AS_INT_P (x))
1015 return x;
1016 gcc_assert (mode != VOIDmode);
1017 return gen_rtx_CONST (mode, x);
1020 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1021 For registers and memory locations, we look up their cselib_val structure
1022 and return its VALUE element.
1023 Possible reasons for return 0 are: the object is volatile, or we couldn't
1024 find a register or memory location in the table and CREATE is zero. If
1025 CREATE is nonzero, table elts are created for regs and mem.
1026 N.B. this hash function returns the same hash value for RTXes that
1027 differ only in the order of operands, thus it is suitable for comparisons
1028 that take commutativity into account.
1029 If we wanted to also support associative rules, we'd have to use a different
1030 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1031 MEMMODE indicates the mode of an enclosing MEM, and it's only
1032 used to compute autoinc values.
1033 We used to have a MODE argument for hashing for CONST_INTs, but that
1034 didn't make sense, since it caused spurious hash differences between
1035 (set (reg:SI 1) (const_int))
1036 (plus:SI (reg:SI 2) (reg:SI 1))
1038 (plus:SI (reg:SI 2) (const_int))
1039 If the mode is important in any context, it must be checked specifically
1040 in a comparison anyway, since relying on hash differences is unsafe. */
1042 static unsigned int
1043 cselib_hash_rtx (rtx x, int create, enum machine_mode memmode)
1045 cselib_val *e;
1046 int i, j;
1047 enum rtx_code code;
1048 const char *fmt;
1049 unsigned int hash = 0;
1051 code = GET_CODE (x);
1052 hash += (unsigned) code + (unsigned) GET_MODE (x);
1054 switch (code)
1056 case VALUE:
1057 e = CSELIB_VAL_PTR (x);
1058 return e->hash;
1060 case MEM:
1061 case REG:
1062 e = cselib_lookup (x, GET_MODE (x), create, memmode);
1063 if (! e)
1064 return 0;
1066 return e->hash;
1068 case DEBUG_EXPR:
1069 hash += ((unsigned) DEBUG_EXPR << 7)
1070 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1071 return hash ? hash : (unsigned int) DEBUG_EXPR;
1073 case DEBUG_IMPLICIT_PTR:
1074 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1075 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1076 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1078 case DEBUG_PARAMETER_REF:
1079 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1080 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1081 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1083 case ENTRY_VALUE:
1084 /* ENTRY_VALUEs are function invariant, thus try to avoid
1085 recursing on argument if ENTRY_VALUE is one of the
1086 forms emitted by expand_debug_expr, otherwise
1087 ENTRY_VALUE hash would depend on the current value
1088 in some register or memory. */
1089 if (REG_P (ENTRY_VALUE_EXP (x)))
1090 hash += (unsigned int) REG
1091 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1092 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1093 else if (MEM_P (ENTRY_VALUE_EXP (x))
1094 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1095 hash += (unsigned int) MEM
1096 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1097 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1098 else
1099 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1100 return hash ? hash : (unsigned int) ENTRY_VALUE;
1102 case CONST_INT:
1103 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
1104 return hash ? hash : (unsigned int) CONST_INT;
1106 case CONST_DOUBLE:
1107 /* This is like the general case, except that it only counts
1108 the integers representing the constant. */
1109 hash += (unsigned) code + (unsigned) GET_MODE (x);
1110 if (GET_MODE (x) != VOIDmode)
1111 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1112 else
1113 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1114 + (unsigned) CONST_DOUBLE_HIGH (x));
1115 return hash ? hash : (unsigned int) CONST_DOUBLE;
1117 case CONST_FIXED:
1118 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1119 hash += fixed_hash (CONST_FIXED_VALUE (x));
1120 return hash ? hash : (unsigned int) CONST_FIXED;
1122 case CONST_VECTOR:
1124 int units;
1125 rtx elt;
1127 units = CONST_VECTOR_NUNITS (x);
1129 for (i = 0; i < units; ++i)
1131 elt = CONST_VECTOR_ELT (x, i);
1132 hash += cselib_hash_rtx (elt, 0, memmode);
1135 return hash;
1138 /* Assume there is only one rtx object for any given label. */
1139 case LABEL_REF:
1140 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1141 differences and differences between each stage's debugging dumps. */
1142 hash += (((unsigned int) LABEL_REF << 7)
1143 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1144 return hash ? hash : (unsigned int) LABEL_REF;
1146 case SYMBOL_REF:
1148 /* Don't hash on the symbol's address to avoid bootstrap differences.
1149 Different hash values may cause expressions to be recorded in
1150 different orders and thus different registers to be used in the
1151 final assembler. This also avoids differences in the dump files
1152 between various stages. */
1153 unsigned int h = 0;
1154 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1156 while (*p)
1157 h += (h << 7) + *p++; /* ??? revisit */
1159 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1160 return hash ? hash : (unsigned int) SYMBOL_REF;
1163 case PRE_DEC:
1164 case PRE_INC:
1165 /* We can't compute these without knowing the MEM mode. */
1166 gcc_assert (memmode != VOIDmode);
1167 i = GET_MODE_SIZE (memmode);
1168 if (code == PRE_DEC)
1169 i = -i;
1170 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1171 like (mem:MEMMODE (plus (reg) (const_int I))). */
1172 hash += (unsigned) PLUS - (unsigned)code
1173 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1174 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1175 return hash ? hash : 1 + (unsigned) PLUS;
1177 case PRE_MODIFY:
1178 gcc_assert (memmode != VOIDmode);
1179 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1181 case POST_DEC:
1182 case POST_INC:
1183 case POST_MODIFY:
1184 gcc_assert (memmode != VOIDmode);
1185 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1187 case PC:
1188 case CC0:
1189 case CALL:
1190 case UNSPEC_VOLATILE:
1191 return 0;
1193 case ASM_OPERANDS:
1194 if (MEM_VOLATILE_P (x))
1195 return 0;
1197 break;
1199 default:
1200 break;
1203 i = GET_RTX_LENGTH (code) - 1;
1204 fmt = GET_RTX_FORMAT (code);
1205 for (; i >= 0; i--)
1207 switch (fmt[i])
1209 case 'e':
1211 rtx tem = XEXP (x, i);
1212 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1214 if (tem_hash == 0)
1215 return 0;
1217 hash += tem_hash;
1219 break;
1220 case 'E':
1221 for (j = 0; j < XVECLEN (x, i); j++)
1223 unsigned int tem_hash
1224 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1226 if (tem_hash == 0)
1227 return 0;
1229 hash += tem_hash;
1231 break;
1233 case 's':
1235 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1237 if (p)
1238 while (*p)
1239 hash += *p++;
1240 break;
1243 case 'i':
1244 hash += XINT (x, i);
1245 break;
1247 case '0':
1248 case 't':
1249 /* unused */
1250 break;
1252 default:
1253 gcc_unreachable ();
1257 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1260 /* Create a new value structure for VALUE and initialize it. The mode of the
1261 value is MODE. */
1263 static inline cselib_val *
1264 new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
1266 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
1268 gcc_assert (hash);
1269 gcc_assert (next_uid);
1271 e->hash = hash;
1272 e->uid = next_uid++;
1273 /* We use an alloc pool to allocate this RTL construct because it
1274 accounts for about 8% of the overall memory usage. We know
1275 precisely when we can have VALUE RTXen (when cselib is active)
1276 so we don't need to put them in garbage collected memory.
1277 ??? Why should a VALUE be an RTX in the first place? */
1278 e->val_rtx = (rtx) pool_alloc (value_pool);
1279 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1280 PUT_CODE (e->val_rtx, VALUE);
1281 PUT_MODE (e->val_rtx, mode);
1282 CSELIB_VAL_PTR (e->val_rtx) = e;
1283 e->addr_list = 0;
1284 e->locs = 0;
1285 e->next_containing_mem = 0;
1287 if (dump_file && (dump_flags & TDF_CSELIB))
1289 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1290 if (flag_dump_noaddr || flag_dump_unnumbered)
1291 fputs ("# ", dump_file);
1292 else
1293 fprintf (dump_file, "%p ", (void*)e);
1294 print_rtl_single (dump_file, x);
1295 fputc ('\n', dump_file);
1298 return e;
1301 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1302 contains the data at this address. X is a MEM that represents the
1303 value. Update the two value structures to represent this situation. */
1305 static void
1306 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1308 struct elt_loc_list *l;
1310 addr_elt = canonical_cselib_val (addr_elt);
1311 mem_elt = canonical_cselib_val (mem_elt);
1313 /* Avoid duplicates. */
1314 for (l = mem_elt->locs; l; l = l->next)
1315 if (MEM_P (l->loc)
1316 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
1318 promote_debug_loc (l);
1319 return;
1322 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1323 new_elt_loc_list (mem_elt,
1324 replace_equiv_address_nv (x, addr_elt->val_rtx));
1325 if (mem_elt->next_containing_mem == NULL)
1327 mem_elt->next_containing_mem = first_containing_mem;
1328 first_containing_mem = mem_elt;
1332 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1333 If CREATE, make a new one if we haven't seen it before. */
1335 static cselib_val *
1336 cselib_lookup_mem (rtx x, int create)
1338 enum machine_mode mode = GET_MODE (x);
1339 enum machine_mode addr_mode;
1340 void **slot;
1341 cselib_val *addr;
1342 cselib_val *mem_elt;
1343 struct elt_list *l;
1345 if (MEM_VOLATILE_P (x) || mode == BLKmode
1346 || !cselib_record_memory
1347 || (FLOAT_MODE_P (mode) && flag_float_store))
1348 return 0;
1350 addr_mode = GET_MODE (XEXP (x, 0));
1351 if (addr_mode == VOIDmode)
1352 addr_mode = Pmode;
1354 /* Look up the value for the address. */
1355 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1356 if (! addr)
1357 return 0;
1359 addr = canonical_cselib_val (addr);
1360 /* Find a value that describes a value of our mode at that address. */
1361 for (l = addr->addr_list; l; l = l->next)
1362 if (GET_MODE (l->elt->val_rtx) == mode)
1364 promote_debug_loc (l->elt->locs);
1365 return l->elt;
1368 if (! create)
1369 return 0;
1371 mem_elt = new_cselib_val (next_uid, mode, x);
1372 add_mem_for_addr (addr, mem_elt, x);
1373 slot = cselib_find_slot (wrap_constant (mode, x), mem_elt->hash,
1374 INSERT, mode);
1375 *slot = mem_elt;
1376 return mem_elt;
1379 /* Search through the possible substitutions in P. We prefer a non reg
1380 substitution because this allows us to expand the tree further. If
1381 we find, just a reg, take the lowest regno. There may be several
1382 non-reg results, we just take the first one because they will all
1383 expand to the same place. */
1385 static rtx
1386 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1387 int max_depth)
1389 rtx reg_result = NULL;
1390 unsigned int regno = UINT_MAX;
1391 struct elt_loc_list *p_in = p;
1393 for (; p; p = p->next)
1395 /* Return these right away to avoid returning stack pointer based
1396 expressions for frame pointer and vice versa, which is something
1397 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1398 for more details. */
1399 if (REG_P (p->loc)
1400 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1401 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1402 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1403 || REGNO (p->loc) == cfa_base_preserved_regno))
1404 return p->loc;
1405 /* Avoid infinite recursion trying to expand a reg into a
1406 the same reg. */
1407 if ((REG_P (p->loc))
1408 && (REGNO (p->loc) < regno)
1409 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1411 reg_result = p->loc;
1412 regno = REGNO (p->loc);
1414 /* Avoid infinite recursion and do not try to expand the
1415 value. */
1416 else if (GET_CODE (p->loc) == VALUE
1417 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1418 continue;
1419 else if (!REG_P (p->loc))
1421 rtx result, note;
1422 if (dump_file && (dump_flags & TDF_CSELIB))
1424 print_inline_rtx (dump_file, p->loc, 0);
1425 fprintf (dump_file, "\n");
1427 if (GET_CODE (p->loc) == LO_SUM
1428 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1429 && p->setting_insn
1430 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1431 && XEXP (note, 0) == XEXP (p->loc, 1))
1432 return XEXP (p->loc, 1);
1433 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1434 if (result)
1435 return result;
1440 if (regno != UINT_MAX)
1442 rtx result;
1443 if (dump_file && (dump_flags & TDF_CSELIB))
1444 fprintf (dump_file, "r%d\n", regno);
1446 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1447 if (result)
1448 return result;
1451 if (dump_file && (dump_flags & TDF_CSELIB))
1453 if (reg_result)
1455 print_inline_rtx (dump_file, reg_result, 0);
1456 fprintf (dump_file, "\n");
1458 else
1459 fprintf (dump_file, "NULL\n");
1461 return reg_result;
1465 /* Forward substitute and expand an expression out to its roots.
1466 This is the opposite of common subexpression. Because local value
1467 numbering is such a weak optimization, the expanded expression is
1468 pretty much unique (not from a pointer equals point of view but
1469 from a tree shape point of view.
1471 This function returns NULL if the expansion fails. The expansion
1472 will fail if there is no value number for one of the operands or if
1473 one of the operands has been overwritten between the current insn
1474 and the beginning of the basic block. For instance x has no
1475 expansion in:
1477 r1 <- r1 + 3
1478 x <- r1 + 8
1480 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1481 It is clear on return. */
1484 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1486 struct expand_value_data evd;
1488 evd.regs_active = regs_active;
1489 evd.callback = NULL;
1490 evd.callback_arg = NULL;
1491 evd.dummy = false;
1493 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1496 /* Same as cselib_expand_value_rtx, but using a callback to try to
1497 resolve some expressions. The CB function should return ORIG if it
1498 can't or does not want to deal with a certain RTX. Any other
1499 return value, including NULL, will be used as the expansion for
1500 VALUE, without any further changes. */
1503 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1504 cselib_expand_callback cb, void *data)
1506 struct expand_value_data evd;
1508 evd.regs_active = regs_active;
1509 evd.callback = cb;
1510 evd.callback_arg = data;
1511 evd.dummy = false;
1513 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1516 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1517 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1518 would return NULL or non-NULL, without allocating new rtx. */
1520 bool
1521 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1522 cselib_expand_callback cb, void *data)
1524 struct expand_value_data evd;
1526 evd.regs_active = regs_active;
1527 evd.callback = cb;
1528 evd.callback_arg = data;
1529 evd.dummy = true;
1531 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1534 /* Internal implementation of cselib_expand_value_rtx and
1535 cselib_expand_value_rtx_cb. */
1537 static rtx
1538 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1539 int max_depth)
1541 rtx copy, scopy;
1542 int i, j;
1543 RTX_CODE code;
1544 const char *format_ptr;
1545 enum machine_mode mode;
1547 code = GET_CODE (orig);
1549 /* For the context of dse, if we end up expand into a huge tree, we
1550 will not have a useful address, so we might as well just give up
1551 quickly. */
1552 if (max_depth <= 0)
1553 return NULL;
1555 switch (code)
1557 case REG:
1559 struct elt_list *l = REG_VALUES (REGNO (orig));
1561 if (l && l->elt == NULL)
1562 l = l->next;
1563 for (; l; l = l->next)
1564 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1566 rtx result;
1567 unsigned regno = REGNO (orig);
1569 /* The only thing that we are not willing to do (this
1570 is requirement of dse and if others potential uses
1571 need this function we should add a parm to control
1572 it) is that we will not substitute the
1573 STACK_POINTER_REGNUM, FRAME_POINTER or the
1574 HARD_FRAME_POINTER.
1576 These expansions confuses the code that notices that
1577 stores into the frame go dead at the end of the
1578 function and that the frame is not effected by calls
1579 to subroutines. If you allow the
1580 STACK_POINTER_REGNUM substitution, then dse will
1581 think that parameter pushing also goes dead which is
1582 wrong. If you allow the FRAME_POINTER or the
1583 HARD_FRAME_POINTER then you lose the opportunity to
1584 make the frame assumptions. */
1585 if (regno == STACK_POINTER_REGNUM
1586 || regno == FRAME_POINTER_REGNUM
1587 || regno == HARD_FRAME_POINTER_REGNUM
1588 || regno == cfa_base_preserved_regno)
1589 return orig;
1591 bitmap_set_bit (evd->regs_active, regno);
1593 if (dump_file && (dump_flags & TDF_CSELIB))
1594 fprintf (dump_file, "expanding: r%d into: ", regno);
1596 result = expand_loc (l->elt->locs, evd, max_depth);
1597 bitmap_clear_bit (evd->regs_active, regno);
1599 if (result)
1600 return result;
1601 else
1602 return orig;
1606 case CONST_INT:
1607 case CONST_DOUBLE:
1608 case CONST_VECTOR:
1609 case SYMBOL_REF:
1610 case CODE_LABEL:
1611 case PC:
1612 case CC0:
1613 case SCRATCH:
1614 /* SCRATCH must be shared because they represent distinct values. */
1615 return orig;
1616 case CLOBBER:
1617 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1618 return orig;
1619 break;
1621 case CONST:
1622 if (shared_const_p (orig))
1623 return orig;
1624 break;
1626 case SUBREG:
1628 rtx subreg;
1630 if (evd->callback)
1632 subreg = evd->callback (orig, evd->regs_active, max_depth,
1633 evd->callback_arg);
1634 if (subreg != orig)
1635 return subreg;
1638 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1639 max_depth - 1);
1640 if (!subreg)
1641 return NULL;
1642 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1643 GET_MODE (SUBREG_REG (orig)),
1644 SUBREG_BYTE (orig));
1645 if (scopy == NULL
1646 || (GET_CODE (scopy) == SUBREG
1647 && !REG_P (SUBREG_REG (scopy))
1648 && !MEM_P (SUBREG_REG (scopy))))
1649 return NULL;
1651 return scopy;
1654 case VALUE:
1656 rtx result;
1658 if (dump_file && (dump_flags & TDF_CSELIB))
1660 fputs ("\nexpanding ", dump_file);
1661 print_rtl_single (dump_file, orig);
1662 fputs (" into...", dump_file);
1665 if (evd->callback)
1667 result = evd->callback (orig, evd->regs_active, max_depth,
1668 evd->callback_arg);
1670 if (result != orig)
1671 return result;
1674 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1675 return result;
1678 case DEBUG_EXPR:
1679 if (evd->callback)
1680 return evd->callback (orig, evd->regs_active, max_depth,
1681 evd->callback_arg);
1682 return orig;
1684 default:
1685 break;
1688 /* Copy the various flags, fields, and other information. We assume
1689 that all fields need copying, and then clear the fields that should
1690 not be copied. That is the sensible default behavior, and forces
1691 us to explicitly document why we are *not* copying a flag. */
1692 if (evd->dummy)
1693 copy = NULL;
1694 else
1695 copy = shallow_copy_rtx (orig);
1697 format_ptr = GET_RTX_FORMAT (code);
1699 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1700 switch (*format_ptr++)
1702 case 'e':
1703 if (XEXP (orig, i) != NULL)
1705 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1706 max_depth - 1);
1707 if (!result)
1708 return NULL;
1709 if (copy)
1710 XEXP (copy, i) = result;
1712 break;
1714 case 'E':
1715 case 'V':
1716 if (XVEC (orig, i) != NULL)
1718 if (copy)
1719 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1720 for (j = 0; j < XVECLEN (orig, i); j++)
1722 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1723 evd, max_depth - 1);
1724 if (!result)
1725 return NULL;
1726 if (copy)
1727 XVECEXP (copy, i, j) = result;
1730 break;
1732 case 't':
1733 case 'w':
1734 case 'i':
1735 case 's':
1736 case 'S':
1737 case 'T':
1738 case 'u':
1739 case 'B':
1740 case '0':
1741 /* These are left unchanged. */
1742 break;
1744 default:
1745 gcc_unreachable ();
1748 if (evd->dummy)
1749 return orig;
1751 mode = GET_MODE (copy);
1752 /* If an operand has been simplified into CONST_INT, which doesn't
1753 have a mode and the mode isn't derivable from whole rtx's mode,
1754 try simplify_*_operation first with mode from original's operand
1755 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1756 scopy = copy;
1757 switch (GET_RTX_CLASS (code))
1759 case RTX_UNARY:
1760 if (CONST_INT_P (XEXP (copy, 0))
1761 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1763 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1764 GET_MODE (XEXP (orig, 0)));
1765 if (scopy)
1766 return scopy;
1768 break;
1769 case RTX_COMM_ARITH:
1770 case RTX_BIN_ARITH:
1771 /* These expressions can derive operand modes from the whole rtx's mode. */
1772 break;
1773 case RTX_TERNARY:
1774 case RTX_BITFIELD_OPS:
1775 if (CONST_INT_P (XEXP (copy, 0))
1776 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1778 scopy = simplify_ternary_operation (code, mode,
1779 GET_MODE (XEXP (orig, 0)),
1780 XEXP (copy, 0), XEXP (copy, 1),
1781 XEXP (copy, 2));
1782 if (scopy)
1783 return scopy;
1785 break;
1786 case RTX_COMPARE:
1787 case RTX_COMM_COMPARE:
1788 if (CONST_INT_P (XEXP (copy, 0))
1789 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1790 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1791 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1793 scopy = simplify_relational_operation (code, mode,
1794 (GET_MODE (XEXP (orig, 0))
1795 != VOIDmode)
1796 ? GET_MODE (XEXP (orig, 0))
1797 : GET_MODE (XEXP (orig, 1)),
1798 XEXP (copy, 0),
1799 XEXP (copy, 1));
1800 if (scopy)
1801 return scopy;
1803 break;
1804 default:
1805 break;
1807 scopy = simplify_rtx (copy);
1808 if (scopy)
1809 return scopy;
1810 return copy;
1813 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1814 with VALUE expressions. This way, it becomes independent of changes
1815 to registers and memory.
1816 X isn't actually modified; if modifications are needed, new rtl is
1817 allocated. However, the return value can share rtl with X.
1818 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1821 cselib_subst_to_values (rtx x, enum machine_mode memmode)
1823 enum rtx_code code = GET_CODE (x);
1824 const char *fmt = GET_RTX_FORMAT (code);
1825 cselib_val *e;
1826 struct elt_list *l;
1827 rtx copy = x;
1828 int i;
1830 switch (code)
1832 case REG:
1833 l = REG_VALUES (REGNO (x));
1834 if (l && l->elt == NULL)
1835 l = l->next;
1836 for (; l; l = l->next)
1837 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1838 return l->elt->val_rtx;
1840 gcc_unreachable ();
1842 case MEM:
1843 e = cselib_lookup_mem (x, 0);
1844 /* This used to happen for autoincrements, but we deal with them
1845 properly now. Remove the if stmt for the next release. */
1846 if (! e)
1848 /* Assign a value that doesn't match any other. */
1849 e = new_cselib_val (next_uid, GET_MODE (x), x);
1851 return e->val_rtx;
1853 case ENTRY_VALUE:
1854 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1855 if (! e)
1856 break;
1857 return e->val_rtx;
1859 case CONST_DOUBLE:
1860 case CONST_VECTOR:
1861 case CONST_INT:
1862 case CONST_FIXED:
1863 return x;
1865 case PRE_DEC:
1866 case PRE_INC:
1867 gcc_assert (memmode != VOIDmode);
1868 i = GET_MODE_SIZE (memmode);
1869 if (code == PRE_DEC)
1870 i = -i;
1871 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1872 XEXP (x, 0), i),
1873 memmode);
1875 case PRE_MODIFY:
1876 gcc_assert (memmode != VOIDmode);
1877 return cselib_subst_to_values (XEXP (x, 1), memmode);
1879 case POST_DEC:
1880 case POST_INC:
1881 case POST_MODIFY:
1882 gcc_assert (memmode != VOIDmode);
1883 return cselib_subst_to_values (XEXP (x, 0), memmode);
1885 default:
1886 break;
1889 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1891 if (fmt[i] == 'e')
1893 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1895 if (t != XEXP (x, i))
1897 if (x == copy)
1898 copy = shallow_copy_rtx (x);
1899 XEXP (copy, i) = t;
1902 else if (fmt[i] == 'E')
1904 int j;
1906 for (j = 0; j < XVECLEN (x, i); j++)
1908 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1910 if (t != XVECEXP (x, i, j))
1912 if (XVEC (x, i) == XVEC (copy, i))
1914 if (x == copy)
1915 copy = shallow_copy_rtx (x);
1916 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1918 XVECEXP (copy, i, j) = t;
1924 return copy;
1927 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1930 cselib_subst_to_values_from_insn (rtx x, enum machine_mode memmode, rtx insn)
1932 rtx ret;
1933 gcc_assert (!cselib_current_insn);
1934 cselib_current_insn = insn;
1935 ret = cselib_subst_to_values (x, memmode);
1936 cselib_current_insn = NULL;
1937 return ret;
1940 /* Look up the rtl expression X in our tables and return the value it
1941 has. If CREATE is zero, we return NULL if we don't know the value.
1942 Otherwise, we create a new one if possible, using mode MODE if X
1943 doesn't have a mode (i.e. because it's a constant). When X is part
1944 of an address, MEMMODE should be the mode of the enclosing MEM if
1945 we're tracking autoinc expressions. */
1947 static cselib_val *
1948 cselib_lookup_1 (rtx x, enum machine_mode mode,
1949 int create, enum machine_mode memmode)
1951 void **slot;
1952 cselib_val *e;
1953 unsigned int hashval;
1955 if (GET_MODE (x) != VOIDmode)
1956 mode = GET_MODE (x);
1958 if (GET_CODE (x) == VALUE)
1959 return CSELIB_VAL_PTR (x);
1961 if (REG_P (x))
1963 struct elt_list *l;
1964 unsigned int i = REGNO (x);
1966 l = REG_VALUES (i);
1967 if (l && l->elt == NULL)
1968 l = l->next;
1969 for (; l; l = l->next)
1970 if (mode == GET_MODE (l->elt->val_rtx))
1972 promote_debug_loc (l->elt->locs);
1973 return l->elt;
1976 if (! create)
1977 return 0;
1979 if (i < FIRST_PSEUDO_REGISTER)
1981 unsigned int n = hard_regno_nregs[i][mode];
1983 if (n > max_value_regs)
1984 max_value_regs = n;
1987 e = new_cselib_val (next_uid, GET_MODE (x), x);
1988 new_elt_loc_list (e, x);
1989 if (REG_VALUES (i) == 0)
1991 /* Maintain the invariant that the first entry of
1992 REG_VALUES, if present, must be the value used to set the
1993 register, or NULL. */
1994 used_regs[n_used_regs++] = i;
1995 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1997 else if (cselib_preserve_constants
1998 && GET_MODE_CLASS (mode) == MODE_INT)
2000 /* During var-tracking, try harder to find equivalences
2001 for SUBREGs. If a setter sets say a DImode register
2002 and user uses that register only in SImode, add a lowpart
2003 subreg location. */
2004 struct elt_list *lwider = NULL;
2005 l = REG_VALUES (i);
2006 if (l && l->elt == NULL)
2007 l = l->next;
2008 for (; l; l = l->next)
2009 if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT
2010 && GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
2011 > GET_MODE_SIZE (mode)
2012 && (lwider == NULL
2013 || GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
2014 < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx))))
2016 struct elt_loc_list *el;
2017 if (i < FIRST_PSEUDO_REGISTER
2018 && hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1)
2019 continue;
2020 for (el = l->elt->locs; el; el = el->next)
2021 if (!REG_P (el->loc))
2022 break;
2023 if (el)
2024 lwider = l;
2026 if (lwider)
2028 rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx,
2029 GET_MODE (lwider->elt->val_rtx));
2030 if (sub)
2031 new_elt_loc_list (e, sub);
2034 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2035 slot = cselib_find_slot (x, e->hash, INSERT, memmode);
2036 *slot = e;
2037 return e;
2040 if (MEM_P (x))
2041 return cselib_lookup_mem (x, create);
2043 hashval = cselib_hash_rtx (x, create, memmode);
2044 /* Can't even create if hashing is not possible. */
2045 if (! hashval)
2046 return 0;
2048 slot = cselib_find_slot (wrap_constant (mode, x), hashval,
2049 create ? INSERT : NO_INSERT, memmode);
2050 if (slot == 0)
2051 return 0;
2053 e = (cselib_val *) *slot;
2054 if (e)
2055 return e;
2057 e = new_cselib_val (hashval, mode, x);
2059 /* We have to fill the slot before calling cselib_subst_to_values:
2060 the hash table is inconsistent until we do so, and
2061 cselib_subst_to_values will need to do lookups. */
2062 *slot = (void *) e;
2063 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
2064 return e;
2067 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2069 cselib_val *
2070 cselib_lookup_from_insn (rtx x, enum machine_mode mode,
2071 int create, enum machine_mode memmode, rtx insn)
2073 cselib_val *ret;
2075 gcc_assert (!cselib_current_insn);
2076 cselib_current_insn = insn;
2078 ret = cselib_lookup (x, mode, create, memmode);
2080 cselib_current_insn = NULL;
2082 return ret;
2085 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2086 maintains invariants related with debug insns. */
2088 cselib_val *
2089 cselib_lookup (rtx x, enum machine_mode mode,
2090 int create, enum machine_mode memmode)
2092 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2094 /* ??? Should we return NULL if we're not to create an entry, the
2095 found loc is a debug loc and cselib_current_insn is not DEBUG?
2096 If so, we should also avoid converting val to non-DEBUG; probably
2097 easiest setting cselib_current_insn to NULL before the call
2098 above. */
2100 if (dump_file && (dump_flags & TDF_CSELIB))
2102 fputs ("cselib lookup ", dump_file);
2103 print_inline_rtx (dump_file, x, 2);
2104 fprintf (dump_file, " => %u:%u\n",
2105 ret ? ret->uid : 0,
2106 ret ? ret->hash : 0);
2109 return ret;
2112 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2113 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2114 is used to determine how many hard registers are being changed. If MODE
2115 is VOIDmode, then only REGNO is being changed; this is used when
2116 invalidating call clobbered registers across a call. */
2118 static void
2119 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
2121 unsigned int endregno;
2122 unsigned int i;
2124 /* If we see pseudos after reload, something is _wrong_. */
2125 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2126 || reg_renumber[regno] < 0);
2128 /* Determine the range of registers that must be invalidated. For
2129 pseudos, only REGNO is affected. For hard regs, we must take MODE
2130 into account, and we must also invalidate lower register numbers
2131 if they contain values that overlap REGNO. */
2132 if (regno < FIRST_PSEUDO_REGISTER)
2134 gcc_assert (mode != VOIDmode);
2136 if (regno < max_value_regs)
2137 i = 0;
2138 else
2139 i = regno - max_value_regs;
2141 endregno = end_hard_regno (mode, regno);
2143 else
2145 i = regno;
2146 endregno = regno + 1;
2149 for (; i < endregno; i++)
2151 struct elt_list **l = &REG_VALUES (i);
2153 /* Go through all known values for this reg; if it overlaps the range
2154 we're invalidating, remove the value. */
2155 while (*l)
2157 cselib_val *v = (*l)->elt;
2158 bool had_locs;
2159 rtx setting_insn;
2160 struct elt_loc_list **p;
2161 unsigned int this_last = i;
2163 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2164 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2166 if (this_last < regno || v == NULL
2167 || (v == cfa_base_preserved_val
2168 && i == cfa_base_preserved_regno))
2170 l = &(*l)->next;
2171 continue;
2174 /* We have an overlap. */
2175 if (*l == REG_VALUES (i))
2177 /* Maintain the invariant that the first entry of
2178 REG_VALUES, if present, must be the value used to set
2179 the register, or NULL. This is also nice because
2180 then we won't push the same regno onto user_regs
2181 multiple times. */
2182 (*l)->elt = NULL;
2183 l = &(*l)->next;
2185 else
2186 unchain_one_elt_list (l);
2188 v = canonical_cselib_val (v);
2190 had_locs = v->locs != NULL;
2191 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2193 /* Now, we clear the mapping from value to reg. It must exist, so
2194 this code will crash intentionally if it doesn't. */
2195 for (p = &v->locs; ; p = &(*p)->next)
2197 rtx x = (*p)->loc;
2199 if (REG_P (x) && REGNO (x) == i)
2201 unchain_one_elt_loc_list (p);
2202 break;
2206 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2208 if (setting_insn && DEBUG_INSN_P (setting_insn))
2209 n_useless_debug_values++;
2210 else
2211 n_useless_values++;
2217 /* Invalidate any locations in the table which are changed because of a
2218 store to MEM_RTX. If this is called because of a non-const call
2219 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2221 static void
2222 cselib_invalidate_mem (rtx mem_rtx)
2224 cselib_val **vp, *v, *next;
2225 int num_mems = 0;
2226 rtx mem_addr;
2228 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2229 mem_rtx = canon_rtx (mem_rtx);
2231 vp = &first_containing_mem;
2232 for (v = *vp; v != &dummy_val; v = next)
2234 bool has_mem = false;
2235 struct elt_loc_list **p = &v->locs;
2236 bool had_locs = v->locs != NULL;
2237 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
2239 while (*p)
2241 rtx x = (*p)->loc;
2242 cselib_val *addr;
2243 struct elt_list **mem_chain;
2245 /* MEMs may occur in locations only at the top level; below
2246 that every MEM or REG is substituted by its VALUE. */
2247 if (!MEM_P (x))
2249 p = &(*p)->next;
2250 continue;
2252 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2253 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx),
2254 mem_addr, x, NULL_RTX))
2256 has_mem = true;
2257 num_mems++;
2258 p = &(*p)->next;
2259 continue;
2262 /* This one overlaps. */
2263 /* We must have a mapping from this MEM's address to the
2264 value (E). Remove that, too. */
2265 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2266 addr = canonical_cselib_val (addr);
2267 gcc_checking_assert (v == canonical_cselib_val (v));
2268 mem_chain = &addr->addr_list;
2269 for (;;)
2271 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2273 if (canon == v)
2275 unchain_one_elt_list (mem_chain);
2276 break;
2279 /* Record canonicalized elt. */
2280 (*mem_chain)->elt = canon;
2282 mem_chain = &(*mem_chain)->next;
2285 unchain_one_elt_loc_list (p);
2288 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2290 if (setting_insn && DEBUG_INSN_P (setting_insn))
2291 n_useless_debug_values++;
2292 else
2293 n_useless_values++;
2296 next = v->next_containing_mem;
2297 if (has_mem)
2299 *vp = v;
2300 vp = &(*vp)->next_containing_mem;
2302 else
2303 v->next_containing_mem = NULL;
2305 *vp = &dummy_val;
2308 /* Invalidate DEST, which is being assigned to or clobbered. */
2310 void
2311 cselib_invalidate_rtx (rtx dest)
2313 while (GET_CODE (dest) == SUBREG
2314 || GET_CODE (dest) == ZERO_EXTRACT
2315 || GET_CODE (dest) == STRICT_LOW_PART)
2316 dest = XEXP (dest, 0);
2318 if (REG_P (dest))
2319 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2320 else if (MEM_P (dest))
2321 cselib_invalidate_mem (dest);
2324 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2326 static void
2327 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
2328 void *data ATTRIBUTE_UNUSED)
2330 cselib_invalidate_rtx (dest);
2333 /* Record the result of a SET instruction. DEST is being set; the source
2334 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2335 describes its address. */
2337 static void
2338 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2340 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
2342 if (src_elt == 0 || side_effects_p (dest))
2343 return;
2345 if (dreg >= 0)
2347 if (dreg < FIRST_PSEUDO_REGISTER)
2349 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
2351 if (n > max_value_regs)
2352 max_value_regs = n;
2355 if (REG_VALUES (dreg) == 0)
2357 used_regs[n_used_regs++] = dreg;
2358 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2360 else
2362 /* The register should have been invalidated. */
2363 gcc_assert (REG_VALUES (dreg)->elt == 0);
2364 REG_VALUES (dreg)->elt = src_elt;
2367 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2368 n_useless_values--;
2369 new_elt_loc_list (src_elt, dest);
2371 else if (MEM_P (dest) && dest_addr_elt != 0
2372 && cselib_record_memory)
2374 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2375 n_useless_values--;
2376 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2380 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2382 void
2383 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx insn)
2385 cselib_val *nelt;
2386 rtx save_cselib_current_insn = cselib_current_insn;
2388 gcc_checking_assert (elt);
2389 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2390 gcc_checking_assert (!side_effects_p (x));
2392 cselib_current_insn = insn;
2394 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2396 if (nelt != elt)
2398 cselib_any_perm_equivs = true;
2400 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2401 cselib_preserve_value (nelt);
2403 new_elt_loc_list (nelt, elt->val_rtx);
2406 cselib_current_insn = save_cselib_current_insn;
2409 /* Return TRUE if any permanent equivalences have been recorded since
2410 the table was last initialized. */
2411 bool
2412 cselib_have_permanent_equivalences (void)
2414 return cselib_any_perm_equivs;
2417 /* There is no good way to determine how many elements there can be
2418 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2419 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2421 struct cselib_record_autoinc_data
2423 struct cselib_set *sets;
2424 int n_sets;
2427 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2428 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2430 static int
2431 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2432 rtx dest, rtx src, rtx srcoff, void *arg)
2434 struct cselib_record_autoinc_data *data;
2435 data = (struct cselib_record_autoinc_data *)arg;
2437 data->sets[data->n_sets].dest = dest;
2439 if (srcoff)
2440 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2441 else
2442 data->sets[data->n_sets].src = src;
2444 data->n_sets++;
2446 return -1;
2449 /* Record the effects of any sets and autoincs in INSN. */
2450 static void
2451 cselib_record_sets (rtx insn)
2453 int n_sets = 0;
2454 int i;
2455 struct cselib_set sets[MAX_SETS];
2456 rtx body = PATTERN (insn);
2457 rtx cond = 0;
2458 int n_sets_before_autoinc;
2459 struct cselib_record_autoinc_data data;
2461 body = PATTERN (insn);
2462 if (GET_CODE (body) == COND_EXEC)
2464 cond = COND_EXEC_TEST (body);
2465 body = COND_EXEC_CODE (body);
2468 /* Find all sets. */
2469 if (GET_CODE (body) == SET)
2471 sets[0].src = SET_SRC (body);
2472 sets[0].dest = SET_DEST (body);
2473 n_sets = 1;
2475 else if (GET_CODE (body) == PARALLEL)
2477 /* Look through the PARALLEL and record the values being
2478 set, if possible. Also handle any CLOBBERs. */
2479 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2481 rtx x = XVECEXP (body, 0, i);
2483 if (GET_CODE (x) == SET)
2485 sets[n_sets].src = SET_SRC (x);
2486 sets[n_sets].dest = SET_DEST (x);
2487 n_sets++;
2492 if (n_sets == 1
2493 && MEM_P (sets[0].src)
2494 && !cselib_record_memory
2495 && MEM_READONLY_P (sets[0].src))
2497 rtx note = find_reg_equal_equiv_note (insn);
2499 if (note && CONSTANT_P (XEXP (note, 0)))
2500 sets[0].src = XEXP (note, 0);
2503 data.sets = sets;
2504 data.n_sets = n_sets_before_autoinc = n_sets;
2505 for_each_inc_dec (&insn, cselib_record_autoinc_cb, &data);
2506 n_sets = data.n_sets;
2508 /* Look up the values that are read. Do this before invalidating the
2509 locations that are written. */
2510 for (i = 0; i < n_sets; i++)
2512 rtx dest = sets[i].dest;
2514 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2515 the low part after invalidating any knowledge about larger modes. */
2516 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2517 sets[i].dest = dest = XEXP (dest, 0);
2519 /* We don't know how to record anything but REG or MEM. */
2520 if (REG_P (dest)
2521 || (MEM_P (dest) && cselib_record_memory))
2523 rtx src = sets[i].src;
2524 if (cond)
2525 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2526 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2527 if (MEM_P (dest))
2529 enum machine_mode address_mode = get_address_mode (dest);
2531 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2532 address_mode, 1,
2533 GET_MODE (dest));
2535 else
2536 sets[i].dest_addr_elt = 0;
2540 if (cselib_record_sets_hook)
2541 cselib_record_sets_hook (insn, sets, n_sets);
2543 /* Invalidate all locations written by this insn. Note that the elts we
2544 looked up in the previous loop aren't affected, just some of their
2545 locations may go away. */
2546 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2548 for (i = n_sets_before_autoinc; i < n_sets; i++)
2549 cselib_invalidate_rtx (sets[i].dest);
2551 /* If this is an asm, look for duplicate sets. This can happen when the
2552 user uses the same value as an output multiple times. This is valid
2553 if the outputs are not actually used thereafter. Treat this case as
2554 if the value isn't actually set. We do this by smashing the destination
2555 to pc_rtx, so that we won't record the value later. */
2556 if (n_sets >= 2 && asm_noperands (body) >= 0)
2558 for (i = 0; i < n_sets; i++)
2560 rtx dest = sets[i].dest;
2561 if (REG_P (dest) || MEM_P (dest))
2563 int j;
2564 for (j = i + 1; j < n_sets; j++)
2565 if (rtx_equal_p (dest, sets[j].dest))
2567 sets[i].dest = pc_rtx;
2568 sets[j].dest = pc_rtx;
2574 /* Now enter the equivalences in our tables. */
2575 for (i = 0; i < n_sets; i++)
2577 rtx dest = sets[i].dest;
2578 if (REG_P (dest)
2579 || (MEM_P (dest) && cselib_record_memory))
2580 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2584 /* Record the effects of INSN. */
2586 void
2587 cselib_process_insn (rtx insn)
2589 int i;
2590 rtx x;
2592 cselib_current_insn = insn;
2594 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
2595 if (LABEL_P (insn)
2596 || (CALL_P (insn)
2597 && find_reg_note (insn, REG_SETJMP, NULL))
2598 || (NONJUMP_INSN_P (insn)
2599 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2600 && MEM_VOLATILE_P (PATTERN (insn))))
2602 cselib_reset_table (next_uid);
2603 cselib_current_insn = NULL_RTX;
2604 return;
2607 if (! INSN_P (insn))
2609 cselib_current_insn = NULL_RTX;
2610 return;
2613 /* If this is a call instruction, forget anything stored in a
2614 call clobbered register, or, if this is not a const call, in
2615 memory. */
2616 if (CALL_P (insn))
2618 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2619 if (call_used_regs[i]
2620 || (REG_VALUES (i) && REG_VALUES (i)->elt
2621 && HARD_REGNO_CALL_PART_CLOBBERED (i,
2622 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2623 cselib_invalidate_regno (i, reg_raw_mode[i]);
2625 /* Since it is not clear how cselib is going to be used, be
2626 conservative here and treat looping pure or const functions
2627 as if they were regular functions. */
2628 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2629 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2630 cselib_invalidate_mem (callmem);
2633 cselib_record_sets (insn);
2635 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2636 after we have processed the insn. */
2637 if (CALL_P (insn))
2638 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2639 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2640 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2642 cselib_current_insn = NULL_RTX;
2644 if (n_useless_values > MAX_USELESS_VALUES
2645 /* remove_useless_values is linear in the hash table size. Avoid
2646 quadratic behavior for very large hashtables with very few
2647 useless elements. */
2648 && ((unsigned int)n_useless_values
2649 > (cselib_hash_table->n_elements
2650 - cselib_hash_table->n_deleted
2651 - n_debug_values) / 4))
2652 remove_useless_values ();
2655 /* Initialize cselib for one pass. The caller must also call
2656 init_alias_analysis. */
2658 void
2659 cselib_init (int record_what)
2661 elt_list_pool = create_alloc_pool ("elt_list",
2662 sizeof (struct elt_list), 10);
2663 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
2664 sizeof (struct elt_loc_list), 10);
2665 cselib_val_pool = create_alloc_pool ("cselib_val_list",
2666 sizeof (cselib_val), 10);
2667 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
2668 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2669 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2670 cselib_any_perm_equivs = false;
2672 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2673 see canon_true_dependence. This is only created once. */
2674 if (! callmem)
2675 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2677 cselib_nregs = max_reg_num ();
2679 /* We preserve reg_values to allow expensive clearing of the whole thing.
2680 Reallocate it however if it happens to be too large. */
2681 if (!reg_values || reg_values_size < cselib_nregs
2682 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2684 free (reg_values);
2685 /* Some space for newly emit instructions so we don't end up
2686 reallocating in between passes. */
2687 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2688 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2690 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2691 n_used_regs = 0;
2692 cselib_hash_table = htab_create (31, get_value_hash,
2693 entry_and_rtx_equal_p, NULL);
2694 next_uid = 1;
2697 /* Called when the current user is done with cselib. */
2699 void
2700 cselib_finish (void)
2702 cselib_discard_hook = NULL;
2703 cselib_preserve_constants = false;
2704 cselib_any_perm_equivs = false;
2705 cfa_base_preserved_val = NULL;
2706 cfa_base_preserved_regno = INVALID_REGNUM;
2707 free_alloc_pool (elt_list_pool);
2708 free_alloc_pool (elt_loc_list_pool);
2709 free_alloc_pool (cselib_val_pool);
2710 free_alloc_pool (value_pool);
2711 cselib_clear_table ();
2712 htab_delete (cselib_hash_table);
2713 free (used_regs);
2714 used_regs = 0;
2715 cselib_hash_table = 0;
2716 n_useless_values = 0;
2717 n_useless_debug_values = 0;
2718 n_debug_values = 0;
2719 next_uid = 0;
2722 /* Dump the cselib_val *X to FILE *info. */
2724 static int
2725 dump_cselib_val (void **x, void *info)
2727 cselib_val *v = (cselib_val *)*x;
2728 FILE *out = (FILE *)info;
2729 bool need_lf = true;
2731 print_inline_rtx (out, v->val_rtx, 0);
2733 if (v->locs)
2735 struct elt_loc_list *l = v->locs;
2736 if (need_lf)
2738 fputc ('\n', out);
2739 need_lf = false;
2741 fputs (" locs:", out);
2744 if (l->setting_insn)
2745 fprintf (out, "\n from insn %i ",
2746 INSN_UID (l->setting_insn));
2747 else
2748 fprintf (out, "\n ");
2749 print_inline_rtx (out, l->loc, 4);
2751 while ((l = l->next));
2752 fputc ('\n', out);
2754 else
2756 fputs (" no locs", out);
2757 need_lf = true;
2760 if (v->addr_list)
2762 struct elt_list *e = v->addr_list;
2763 if (need_lf)
2765 fputc ('\n', out);
2766 need_lf = false;
2768 fputs (" addr list:", out);
2771 fputs ("\n ", out);
2772 print_inline_rtx (out, e->elt->val_rtx, 2);
2774 while ((e = e->next));
2775 fputc ('\n', out);
2777 else
2779 fputs (" no addrs", out);
2780 need_lf = true;
2783 if (v->next_containing_mem == &dummy_val)
2784 fputs (" last mem\n", out);
2785 else if (v->next_containing_mem)
2787 fputs (" next mem ", out);
2788 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2789 fputc ('\n', out);
2791 else if (need_lf)
2792 fputc ('\n', out);
2794 return 1;
2797 /* Dump to OUT everything in the CSELIB table. */
2799 void
2800 dump_cselib_table (FILE *out)
2802 fprintf (out, "cselib hash table:\n");
2803 htab_traverse (cselib_hash_table, dump_cselib_val, out);
2804 if (first_containing_mem != &dummy_val)
2806 fputs ("first mem ", out);
2807 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2808 fputc ('\n', out);
2810 fprintf (out, "next uid %i\n", next_uid);
2813 #include "gt-cselib.h"