1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Debug_A
; use Debug_A
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Fname
; use Fname
;
39 with Freeze
; use Freeze
;
40 with Itypes
; use Itypes
;
42 with Lib
.Xref
; use Lib
.Xref
;
43 with Namet
; use Namet
;
44 with Nmake
; use Nmake
;
45 with Nlists
; use Nlists
;
47 with Output
; use Output
;
48 with Restrict
; use Restrict
;
49 with Rident
; use Rident
;
50 with Rtsfind
; use Rtsfind
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Aggr
; use Sem_Aggr
;
54 with Sem_Attr
; use Sem_Attr
;
55 with Sem_Cat
; use Sem_Cat
;
56 with Sem_Ch4
; use Sem_Ch4
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch8
; use Sem_Ch8
;
59 with Sem_Ch13
; use Sem_Ch13
;
60 with Sem_Dim
; use Sem_Dim
;
61 with Sem_Disp
; use Sem_Disp
;
62 with Sem_Dist
; use Sem_Dist
;
63 with Sem_Elim
; use Sem_Elim
;
64 with Sem_Elab
; use Sem_Elab
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Intr
; use Sem_Intr
;
67 with Sem_Util
; use Sem_Util
;
68 with Targparm
; use Targparm
;
69 with Sem_Type
; use Sem_Type
;
70 with Sem_Warn
; use Sem_Warn
;
71 with Sinfo
; use Sinfo
;
72 with Sinfo
.CN
; use Sinfo
.CN
;
73 with Snames
; use Snames
;
74 with Stand
; use Stand
;
75 with Stringt
; use Stringt
;
76 with Style
; use Style
;
77 with Tbuild
; use Tbuild
;
78 with Uintp
; use Uintp
;
79 with Urealp
; use Urealp
;
81 package body Sem_Res
is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 -- Second pass (top-down) type checking and overload resolution procedures
88 -- Typ is the type required by context. These procedures propagate the type
89 -- information recursively to the descendants of N. If the node is not
90 -- overloaded, its Etype is established in the first pass. If overloaded,
91 -- the Resolve routines set the correct type. For arith. operators, the
92 -- Etype is the base type of the context.
94 -- Note that Resolve_Attribute is separated off in Sem_Attr
96 function Bad_Unordered_Enumeration_Reference
98 T
: Entity_Id
) return Boolean;
99 -- Node N contains a potentially dubious reference to type T, either an
100 -- explicit comparison, or an explicit range. This function returns True
101 -- if the type T is an enumeration type for which No pragma Order has been
102 -- given, and the reference N is not in the same extended source unit as
103 -- the declaration of T.
105 procedure Check_Discriminant_Use
(N
: Node_Id
);
106 -- Enforce the restrictions on the use of discriminants when constraining
107 -- a component of a discriminated type (record or concurrent type).
109 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
);
110 -- Given a node for an operator associated with type T, check that
111 -- the operator is visible. Operators all of whose operands are
112 -- universal must be checked for visibility during resolution
113 -- because their type is not determinable based on their operands.
115 procedure Check_Fully_Declared_Prefix
118 -- Check that the type of the prefix of a dereference is not incomplete
120 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean;
121 -- Given a call node, N, which is known to occur immediately within the
122 -- subprogram being called, determines whether it is a detectable case of
123 -- an infinite recursion, and if so, outputs appropriate messages. Returns
124 -- True if an infinite recursion is detected, and False otherwise.
126 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
);
127 -- If the type of the object being initialized uses the secondary stack
128 -- directly or indirectly, create a transient scope for the call to the
129 -- init proc. This is because we do not create transient scopes for the
130 -- initialization of individual components within the init proc itself.
131 -- Could be optimized away perhaps?
133 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
);
134 -- N is the node for a logical operator. If the operator is predefined, and
135 -- the root type of the operands is Standard.Boolean, then a check is made
136 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
137 -- the style check for Style_Check_Boolean_And_Or.
139 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
153 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
);
176 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
);
177 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
);
178 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
179 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
180 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
);
181 procedure Resolve_Conditional_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
182 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
);
183 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
);
184 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
185 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
);
186 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
);
187 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
188 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
);
189 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
);
190 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
);
191 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
);
192 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
);
193 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
);
194 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
);
195 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
196 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
);
197 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
198 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
);
199 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
);
200 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
);
201 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
);
202 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
);
203 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
204 procedure Resolve_Subprogram_Info
(N
: Node_Id
; Typ
: Entity_Id
);
205 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
206 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
);
207 procedure Resolve_Unchecked_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
208 procedure Resolve_Unchecked_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
210 function Operator_Kind
212 Is_Binary
: Boolean) return Node_Kind
;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals
(N
: Node_Id
; Nam
: Entity_Id
);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
235 -- Ditto, for unary operators (arithmetic ones and "not" on signed
236 -- integer types for VMS).
238 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so
248 -- that operands are resolved properly. Recall that predefined operators
249 -- do not have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is
261 -- not a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype
(N
: Node_Id
);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion
(N
: Node_Id
);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Truncation attribute.
271 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character
(C
: Node_Id
) is
285 if Nkind
(C
) = N_Character_Literal
then
286 Error_Msg_N
("ambiguous character literal", C
);
288 -- First the ones in Standard
290 Error_Msg_N
("\\possible interpretation: Character!", C
);
291 Error_Msg_N
("\\possible interpretation: Wide_Character!", C
);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version
>= Ada_2005
then
296 Error_Msg_N
("\\possible interpretation: Wide_Wide_Character!", C
);
299 -- Now any other types that match
301 E
:= Current_Entity
(C
);
302 while Present
(E
) loop
303 Error_Msg_NE
("\\possible interpretation:}!", C
, Etype
(E
));
307 end Ambiguous_Character
;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve
(N
: Node_Id
) is
317 end Analyze_And_Resolve
;
319 procedure Analyze_And_Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
323 end Analyze_And_Resolve
;
325 -- Version withs check(s) suppressed
327 procedure Analyze_And_Resolve
332 Scop
: constant Entity_Id
:= Current_Scope
;
335 if Suppress
= All_Checks
then
337 Svg
: constant Suppress_Record
:= Scope_Suppress
;
339 Scope_Suppress
:= Suppress_All
;
340 Analyze_And_Resolve
(N
, Typ
);
341 Scope_Suppress
:= Svg
;
346 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
348 Scope_Suppress
.Suppress
(Suppress
) := True;
349 Analyze_And_Resolve
(N
, Typ
);
350 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
354 if Current_Scope
/= Scop
355 and then Scope_Is_Transient
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
363 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
366 end Analyze_And_Resolve
;
368 procedure Analyze_And_Resolve
372 Scop
: constant Entity_Id
:= Current_Scope
;
375 if Suppress
= All_Checks
then
377 Svg
: constant Suppress_Record
:= Scope_Suppress
;
379 Scope_Suppress
:= Suppress_All
;
380 Analyze_And_Resolve
(N
);
381 Scope_Suppress
:= Svg
;
386 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
388 Scope_Suppress
.Suppress
(Suppress
) := True;
389 Analyze_And_Resolve
(N
);
390 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
394 if Current_Scope
/= Scop
and then Scope_Is_Transient
then
395 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
398 end Analyze_And_Resolve
;
400 ----------------------------------------
401 -- Bad_Unordered_Enumeration_Reference --
402 ----------------------------------------
404 function Bad_Unordered_Enumeration_Reference
406 T
: Entity_Id
) return Boolean
409 return Is_Enumeration_Type
(T
)
410 and then Comes_From_Source
(N
)
411 and then Warn_On_Unordered_Enumeration_Type
412 and then not Has_Pragma_Ordered
(T
)
413 and then not In_Same_Extended_Unit
(N
, T
);
414 end Bad_Unordered_Enumeration_Reference
;
416 ----------------------------
417 -- Check_Discriminant_Use --
418 ----------------------------
420 procedure Check_Discriminant_Use
(N
: Node_Id
) is
421 PN
: constant Node_Id
:= Parent
(N
);
422 Disc
: constant Entity_Id
:= Entity
(N
);
427 -- Any use in a spec-expression is legal
429 if In_Spec_Expression
then
432 elsif Nkind
(PN
) = N_Range
then
434 -- Discriminant cannot be used to constrain a scalar type
438 if Nkind
(P
) = N_Range_Constraint
439 and then Nkind
(Parent
(P
)) = N_Subtype_Indication
440 and then Nkind
(Parent
(Parent
(P
))) = N_Component_Definition
442 Error_Msg_N
("discriminant cannot constrain scalar type", N
);
444 elsif Nkind
(P
) = N_Index_Or_Discriminant_Constraint
then
446 -- The following check catches the unusual case where a
447 -- discriminant appears within an index constraint that is part of
448 -- a larger expression within a constraint on a component, e.g. "C
449 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
450 -- of record components, and note that a similar check should also
451 -- apply in the case of discriminant constraints below. ???
453 -- Note that the check for N_Subtype_Declaration below is to
454 -- detect the valid use of discriminants in the constraints of a
455 -- subtype declaration when this subtype declaration appears
456 -- inside the scope of a record type (which is syntactically
457 -- illegal, but which may be created as part of derived type
458 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
461 if Ekind
(Current_Scope
) = E_Record_Type
462 and then Scope
(Disc
) = Current_Scope
464 (Nkind
(Parent
(P
)) = N_Subtype_Indication
466 Nkind_In
(Parent
(Parent
(P
)), N_Component_Definition
,
467 N_Subtype_Declaration
)
468 and then Paren_Count
(N
) = 0)
471 ("discriminant must appear alone in component constraint", N
);
475 -- Detect a common error:
477 -- type R (D : Positive := 100) is record
478 -- Name : String (1 .. D);
481 -- The default value causes an object of type R to be allocated
482 -- with room for Positive'Last characters. The RM does not mandate
483 -- the allocation of the maximum size, but that is what GNAT does
484 -- so we should warn the programmer that there is a problem.
486 Check_Large
: declare
492 function Large_Storage_Type
(T
: Entity_Id
) return Boolean;
493 -- Return True if type T has a large enough range that any
494 -- array whose index type covered the whole range of the type
495 -- would likely raise Storage_Error.
497 ------------------------
498 -- Large_Storage_Type --
499 ------------------------
501 function Large_Storage_Type
(T
: Entity_Id
) return Boolean is
503 -- The type is considered large if its bounds are known at
504 -- compile time and if it requires at least as many bits as
505 -- a Positive to store the possible values.
507 return Compile_Time_Known_Value
(Type_Low_Bound
(T
))
508 and then Compile_Time_Known_Value
(Type_High_Bound
(T
))
510 Minimum_Size
(T
, Biased
=> True) >=
511 RM_Size
(Standard_Positive
);
512 end Large_Storage_Type
;
514 -- Start of processing for Check_Large
517 -- Check that the Disc has a large range
519 if not Large_Storage_Type
(Etype
(Disc
)) then
523 -- If the enclosing type is limited, we allocate only the
524 -- default value, not the maximum, and there is no need for
527 if Is_Limited_Type
(Scope
(Disc
)) then
531 -- Check that it is the high bound
533 if N
/= High_Bound
(PN
)
534 or else No
(Discriminant_Default_Value
(Disc
))
539 -- Check the array allows a large range at this bound. First
544 if Nkind
(SI
) /= N_Subtype_Indication
then
548 T
:= Entity
(Subtype_Mark
(SI
));
550 if not Is_Array_Type
(T
) then
554 -- Next, find the dimension
556 TB
:= First_Index
(T
);
557 CB
:= First
(Constraints
(P
));
559 and then Present
(TB
)
560 and then Present
(CB
)
571 -- Now, check the dimension has a large range
573 if not Large_Storage_Type
(Etype
(TB
)) then
577 -- Warn about the danger
580 ("?creation of & object may raise Storage_Error!",
589 -- Legal case is in index or discriminant constraint
591 elsif Nkind_In
(PN
, N_Index_Or_Discriminant_Constraint
,
592 N_Discriminant_Association
)
594 if Paren_Count
(N
) > 0 then
596 ("discriminant in constraint must appear alone", N
);
598 elsif Nkind
(N
) = N_Expanded_Name
599 and then Comes_From_Source
(N
)
602 ("discriminant must appear alone as a direct name", N
);
607 -- Otherwise, context is an expression. It should not be within (i.e. a
608 -- subexpression of) a constraint for a component.
613 while not Nkind_In
(P
, N_Component_Declaration
,
614 N_Subtype_Indication
,
622 -- If the discriminant is used in an expression that is a bound of a
623 -- scalar type, an Itype is created and the bounds are attached to
624 -- its range, not to the original subtype indication. Such use is of
625 -- course a double fault.
627 if (Nkind
(P
) = N_Subtype_Indication
628 and then Nkind_In
(Parent
(P
), N_Component_Definition
,
629 N_Derived_Type_Definition
)
630 and then D
= Constraint
(P
))
632 -- The constraint itself may be given by a subtype indication,
633 -- rather than by a more common discrete range.
635 or else (Nkind
(P
) = N_Subtype_Indication
637 Nkind
(Parent
(P
)) = N_Index_Or_Discriminant_Constraint
)
638 or else Nkind
(P
) = N_Entry_Declaration
639 or else Nkind
(D
) = N_Defining_Identifier
642 ("discriminant in constraint must appear alone", N
);
645 end Check_Discriminant_Use
;
647 --------------------------------
648 -- Check_For_Visible_Operator --
649 --------------------------------
651 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
) is
653 if Is_Invisible_Operator
(N
, T
) then
654 Error_Msg_NE
-- CODEFIX
655 ("operator for} is not directly visible!", N
, First_Subtype
(T
));
656 Error_Msg_N
-- CODEFIX
657 ("use clause would make operation legal!", N
);
659 end Check_For_Visible_Operator
;
661 ----------------------------------
662 -- Check_Fully_Declared_Prefix --
663 ----------------------------------
665 procedure Check_Fully_Declared_Prefix
670 -- Check that the designated type of the prefix of a dereference is
671 -- not an incomplete type. This cannot be done unconditionally, because
672 -- dereferences of private types are legal in default expressions. This
673 -- case is taken care of in Check_Fully_Declared, called below. There
674 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
676 -- This consideration also applies to similar checks for allocators,
677 -- qualified expressions, and type conversions.
679 -- An additional exception concerns other per-object expressions that
680 -- are not directly related to component declarations, in particular
681 -- representation pragmas for tasks. These will be per-object
682 -- expressions if they depend on discriminants or some global entity.
683 -- If the task has access discriminants, the designated type may be
684 -- incomplete at the point the expression is resolved. This resolution
685 -- takes place within the body of the initialization procedure, where
686 -- the discriminant is replaced by its discriminal.
688 if Is_Entity_Name
(Pref
)
689 and then Ekind
(Entity
(Pref
)) = E_In_Parameter
693 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
694 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
695 -- Analyze_Object_Renaming, and Freeze_Entity.
697 elsif Ada_Version
>= Ada_2005
698 and then Is_Entity_Name
(Pref
)
699 and then Is_Access_Type
(Etype
(Pref
))
700 and then Ekind
(Directly_Designated_Type
(Etype
(Pref
))) =
702 and then Is_Tagged_Type
(Directly_Designated_Type
(Etype
(Pref
)))
706 Check_Fully_Declared
(Typ
, Parent
(Pref
));
708 end Check_Fully_Declared_Prefix
;
710 ------------------------------
711 -- Check_Infinite_Recursion --
712 ------------------------------
714 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean is
718 function Same_Argument_List
return Boolean;
719 -- Check whether list of actuals is identical to list of formals of
720 -- called function (which is also the enclosing scope).
722 ------------------------
723 -- Same_Argument_List --
724 ------------------------
726 function Same_Argument_List
return Boolean is
732 if not Is_Entity_Name
(Name
(N
)) then
735 Subp
:= Entity
(Name
(N
));
738 F
:= First_Formal
(Subp
);
739 A
:= First_Actual
(N
);
740 while Present
(F
) and then Present
(A
) loop
741 if not Is_Entity_Name
(A
)
742 or else Entity
(A
) /= F
752 end Same_Argument_List
;
754 -- Start of processing for Check_Infinite_Recursion
757 -- Special case, if this is a procedure call and is a call to the
758 -- current procedure with the same argument list, then this is for
759 -- sure an infinite recursion and we insert a call to raise SE.
761 if Is_List_Member
(N
)
762 and then List_Length
(List_Containing
(N
)) = 1
763 and then Same_Argument_List
766 P
: constant Node_Id
:= Parent
(N
);
768 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
769 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
770 and then Is_Empty_List
(Declarations
(Parent
(P
)))
772 Error_Msg_N
("!?infinite recursion", N
);
773 Error_Msg_N
("\!?Storage_Error will be raised at run time", N
);
775 Make_Raise_Storage_Error
(Sloc
(N
),
776 Reason
=> SE_Infinite_Recursion
));
782 -- If not that special case, search up tree, quitting if we reach a
783 -- construct (e.g. a conditional) that tells us that this is not a
784 -- case for an infinite recursion warning.
790 -- If no parent, then we were not inside a subprogram, this can for
791 -- example happen when processing certain pragmas in a spec. Just
792 -- return False in this case.
798 -- Done if we get to subprogram body, this is definitely an infinite
799 -- recursion case if we did not find anything to stop us.
801 exit when Nkind
(P
) = N_Subprogram_Body
;
803 -- If appearing in conditional, result is false
805 if Nkind_In
(P
, N_Or_Else
,
809 N_Conditional_Expression
,
814 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
815 and then C
/= First
(Statements
(P
))
817 -- If the call is the expression of a return statement and the
818 -- actuals are identical to the formals, it's worth a warning.
819 -- However, we skip this if there is an immediately preceding
820 -- raise statement, since the call is never executed.
822 -- Furthermore, this corresponds to a common idiom:
824 -- function F (L : Thing) return Boolean is
826 -- raise Program_Error;
830 -- for generating a stub function
832 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
833 and then Same_Argument_List
835 exit when not Is_List_Member
(Parent
(N
));
837 -- OK, return statement is in a statement list, look for raise
843 -- Skip past N_Freeze_Entity nodes generated by expansion
845 Nod
:= Prev
(Parent
(N
));
847 and then Nkind
(Nod
) = N_Freeze_Entity
852 -- If no raise statement, give warning. We look at the
853 -- original node, because in the case of "raise ... with
854 -- ...", the node has been transformed into a call.
856 exit when Nkind
(Original_Node
(Nod
)) /= N_Raise_Statement
858 (Nkind
(Nod
) not in N_Raise_xxx_Error
859 or else Present
(Condition
(Nod
)));
870 Error_Msg_N
("!?possible infinite recursion", N
);
871 Error_Msg_N
("\!?Storage_Error may be raised at run time", N
);
874 end Check_Infinite_Recursion
;
876 -------------------------------
877 -- Check_Initialization_Call --
878 -------------------------------
880 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
) is
881 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
883 function Uses_SS
(T
: Entity_Id
) return Boolean;
884 -- Check whether the creation of an object of the type will involve
885 -- use of the secondary stack. If T is a record type, this is true
886 -- if the expression for some component uses the secondary stack, e.g.
887 -- through a call to a function that returns an unconstrained value.
888 -- False if T is controlled, because cleanups occur elsewhere.
894 function Uses_SS
(T
: Entity_Id
) return Boolean is
897 Full_Type
: Entity_Id
:= Underlying_Type
(T
);
900 -- Normally we want to use the underlying type, but if it's not set
901 -- then continue with T.
903 if not Present
(Full_Type
) then
907 if Is_Controlled
(Full_Type
) then
910 elsif Is_Array_Type
(Full_Type
) then
911 return Uses_SS
(Component_Type
(Full_Type
));
913 elsif Is_Record_Type
(Full_Type
) then
914 Comp
:= First_Component
(Full_Type
);
915 while Present
(Comp
) loop
916 if Ekind
(Comp
) = E_Component
917 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
919 -- The expression for a dynamic component may be rewritten
920 -- as a dereference, so retrieve original node.
922 Expr
:= Original_Node
(Expression
(Parent
(Comp
)));
924 -- Return True if the expression is a call to a function
925 -- (including an attribute function such as Image, or a
926 -- user-defined operator) with a result that requires a
929 if (Nkind
(Expr
) = N_Function_Call
930 or else Nkind
(Expr
) in N_Op
931 or else (Nkind
(Expr
) = N_Attribute_Reference
932 and then Present
(Expressions
(Expr
))))
933 and then Requires_Transient_Scope
(Etype
(Expr
))
937 elsif Uses_SS
(Etype
(Comp
)) then
942 Next_Component
(Comp
);
952 -- Start of processing for Check_Initialization_Call
955 -- Establish a transient scope if the type needs it
957 if Uses_SS
(Typ
) then
958 Establish_Transient_Scope
(First_Actual
(N
), Sec_Stack
=> True);
960 end Check_Initialization_Call
;
962 ---------------------------------------
963 -- Check_No_Direct_Boolean_Operators --
964 ---------------------------------------
966 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
) is
968 if Scope
(Entity
(N
)) = Standard_Standard
969 and then Root_Type
(Etype
(Left_Opnd
(N
))) = Standard_Boolean
971 -- Restriction only applies to original source code
973 if Comes_From_Source
(N
) then
974 Check_Restriction
(No_Direct_Boolean_Operators
, N
);
979 Check_Boolean_Operator
(N
);
981 end Check_No_Direct_Boolean_Operators
;
983 ------------------------------
984 -- Check_Parameterless_Call --
985 ------------------------------
987 procedure Check_Parameterless_Call
(N
: Node_Id
) is
990 function Prefix_Is_Access_Subp
return Boolean;
991 -- If the prefix is of an access_to_subprogram type, the node must be
992 -- rewritten as a call. Ditto if the prefix is overloaded and all its
993 -- interpretations are access to subprograms.
995 ---------------------------
996 -- Prefix_Is_Access_Subp --
997 ---------------------------
999 function Prefix_Is_Access_Subp
return Boolean is
1004 -- If the context is an attribute reference that can apply to
1005 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1007 if Nkind
(Parent
(N
)) = N_Attribute_Reference
1008 and then (Attribute_Name
(Parent
(N
)) = Name_Address
or else
1009 Attribute_Name
(Parent
(N
)) = Name_Code_Address
or else
1010 Attribute_Name
(Parent
(N
)) = Name_Access
)
1015 if not Is_Overloaded
(N
) then
1017 Ekind
(Etype
(N
)) = E_Subprogram_Type
1018 and then Base_Type
(Etype
(Etype
(N
))) /= Standard_Void_Type
;
1020 Get_First_Interp
(N
, I
, It
);
1021 while Present
(It
.Typ
) loop
1022 if Ekind
(It
.Typ
) /= E_Subprogram_Type
1023 or else Base_Type
(Etype
(It
.Typ
)) = Standard_Void_Type
1028 Get_Next_Interp
(I
, It
);
1033 end Prefix_Is_Access_Subp
;
1035 -- Start of processing for Check_Parameterless_Call
1038 -- Defend against junk stuff if errors already detected
1040 if Total_Errors_Detected
/= 0 then
1041 if Nkind
(N
) in N_Has_Etype
and then Etype
(N
) = Any_Type
then
1043 elsif Nkind
(N
) in N_Has_Chars
1044 and then Chars
(N
) in Error_Name_Or_No_Name
1052 -- If the context expects a value, and the name is a procedure, this is
1053 -- most likely a missing 'Access. Don't try to resolve the parameterless
1054 -- call, error will be caught when the outer call is analyzed.
1056 if Is_Entity_Name
(N
)
1057 and then Ekind
(Entity
(N
)) = E_Procedure
1058 and then not Is_Overloaded
(N
)
1060 Nkind_In
(Parent
(N
), N_Parameter_Association
,
1062 N_Procedure_Call_Statement
)
1067 -- Rewrite as call if overloadable entity that is (or could be, in the
1068 -- overloaded case) a function call. If we know for sure that the entity
1069 -- is an enumeration literal, we do not rewrite it.
1071 -- If the entity is the name of an operator, it cannot be a call because
1072 -- operators cannot have default parameters. In this case, this must be
1073 -- a string whose contents coincide with an operator name. Set the kind
1074 -- of the node appropriately.
1076 if (Is_Entity_Name
(N
)
1077 and then Nkind
(N
) /= N_Operator_Symbol
1078 and then Is_Overloadable
(Entity
(N
))
1079 and then (Ekind
(Entity
(N
)) /= E_Enumeration_Literal
1080 or else Is_Overloaded
(N
)))
1082 -- Rewrite as call if it is an explicit dereference of an expression of
1083 -- a subprogram access type, and the subprogram type is not that of a
1084 -- procedure or entry.
1087 (Nkind
(N
) = N_Explicit_Dereference
and then Prefix_Is_Access_Subp
)
1089 -- Rewrite as call if it is a selected component which is a function,
1090 -- this is the case of a call to a protected function (which may be
1091 -- overloaded with other protected operations).
1094 (Nkind
(N
) = N_Selected_Component
1095 and then (Ekind
(Entity
(Selector_Name
(N
))) = E_Function
1097 (Ekind_In
(Entity
(Selector_Name
(N
)), E_Entry
,
1099 and then Is_Overloaded
(Selector_Name
(N
)))))
1101 -- If one of the above three conditions is met, rewrite as call. Apply
1102 -- the rewriting only once.
1105 if Nkind
(Parent
(N
)) /= N_Function_Call
1106 or else N
/= Name
(Parent
(N
))
1109 -- This may be a prefixed call that was not fully analyzed, e.g.
1110 -- an actual in an instance.
1112 if Ada_Version
>= Ada_2005
1113 and then Nkind
(N
) = N_Selected_Component
1114 and then Is_Dispatching_Operation
(Entity
(Selector_Name
(N
)))
1116 Analyze_Selected_Component
(N
);
1118 if Nkind
(N
) /= N_Selected_Component
then
1123 Nam
:= New_Copy
(N
);
1125 -- If overloaded, overload set belongs to new copy
1127 Save_Interps
(N
, Nam
);
1129 -- Change node to parameterless function call (note that the
1130 -- Parameter_Associations associations field is left set to Empty,
1131 -- its normal default value since there are no parameters)
1133 Change_Node
(N
, N_Function_Call
);
1135 Set_Sloc
(N
, Sloc
(Nam
));
1139 elsif Nkind
(N
) = N_Parameter_Association
then
1140 Check_Parameterless_Call
(Explicit_Actual_Parameter
(N
));
1142 elsif Nkind
(N
) = N_Operator_Symbol
then
1143 Change_Operator_Symbol_To_String_Literal
(N
);
1144 Set_Is_Overloaded
(N
, False);
1145 Set_Etype
(N
, Any_String
);
1147 end Check_Parameterless_Call
;
1149 -----------------------------
1150 -- Is_Definite_Access_Type --
1151 -----------------------------
1153 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean is
1154 Btyp
: constant Entity_Id
:= Base_Type
(E
);
1156 return Ekind
(Btyp
) = E_Access_Type
1157 or else (Ekind
(Btyp
) = E_Access_Subprogram_Type
1158 and then Comes_From_Source
(Btyp
));
1159 end Is_Definite_Access_Type
;
1161 ----------------------
1162 -- Is_Predefined_Op --
1163 ----------------------
1165 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean is
1167 -- Predefined operators are intrinsic subprograms
1169 if not Is_Intrinsic_Subprogram
(Nam
) then
1173 -- A call to a back-end builtin is never a predefined operator
1175 if Is_Imported
(Nam
) and then Present
(Interface_Name
(Nam
)) then
1179 return not Is_Generic_Instance
(Nam
)
1180 and then Chars
(Nam
) in Any_Operator_Name
1181 and then (No
(Alias
(Nam
)) or else Is_Predefined_Op
(Alias
(Nam
)));
1182 end Is_Predefined_Op
;
1184 -----------------------------
1185 -- Make_Call_Into_Operator --
1186 -----------------------------
1188 procedure Make_Call_Into_Operator
1193 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
1194 Act1
: Node_Id
:= First_Actual
(N
);
1195 Act2
: Node_Id
:= Next_Actual
(Act1
);
1196 Error
: Boolean := False;
1197 Func
: constant Entity_Id
:= Entity
(Name
(N
));
1198 Is_Binary
: constant Boolean := Present
(Act2
);
1200 Opnd_Type
: Entity_Id
;
1201 Orig_Type
: Entity_Id
:= Empty
;
1204 type Kind_Test
is access function (E
: Entity_Id
) return Boolean;
1206 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean;
1207 -- If the operand is not universal, and the operator is given by an
1208 -- expanded name, verify that the operand has an interpretation with a
1209 -- type defined in the given scope of the operator.
1211 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
;
1212 -- Find a type of the given class in package Pack that contains the
1215 ---------------------------
1216 -- Operand_Type_In_Scope --
1217 ---------------------------
1219 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean is
1220 Nod
: constant Node_Id
:= Right_Opnd
(Op_Node
);
1225 if not Is_Overloaded
(Nod
) then
1226 return Scope
(Base_Type
(Etype
(Nod
))) = S
;
1229 Get_First_Interp
(Nod
, I
, It
);
1230 while Present
(It
.Typ
) loop
1231 if Scope
(Base_Type
(It
.Typ
)) = S
then
1235 Get_Next_Interp
(I
, It
);
1240 end Operand_Type_In_Scope
;
1246 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
is
1249 function In_Decl
return Boolean;
1250 -- Verify that node is not part of the type declaration for the
1251 -- candidate type, which would otherwise be invisible.
1257 function In_Decl
return Boolean is
1258 Decl_Node
: constant Node_Id
:= Parent
(E
);
1264 if Etype
(E
) = Any_Type
then
1267 elsif No
(Decl_Node
) then
1272 and then Nkind
(N2
) /= N_Compilation_Unit
1274 if N2
= Decl_Node
then
1285 -- Start of processing for Type_In_P
1288 -- If the context type is declared in the prefix package, this is the
1289 -- desired base type.
1291 if Scope
(Base_Type
(Typ
)) = Pack
and then Test
(Typ
) then
1292 return Base_Type
(Typ
);
1295 E
:= First_Entity
(Pack
);
1296 while Present
(E
) loop
1298 and then not In_Decl
1310 -- Start of processing for Make_Call_Into_Operator
1313 Op_Node
:= New_Node
(Operator_Kind
(Op_Name
, Is_Binary
), Sloc
(N
));
1318 Set_Left_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1319 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act2
));
1320 Save_Interps
(Act1
, Left_Opnd
(Op_Node
));
1321 Save_Interps
(Act2
, Right_Opnd
(Op_Node
));
1322 Act1
:= Left_Opnd
(Op_Node
);
1323 Act2
:= Right_Opnd
(Op_Node
);
1328 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1329 Save_Interps
(Act1
, Right_Opnd
(Op_Node
));
1330 Act1
:= Right_Opnd
(Op_Node
);
1333 -- If the operator is denoted by an expanded name, and the prefix is
1334 -- not Standard, but the operator is a predefined one whose scope is
1335 -- Standard, then this is an implicit_operator, inserted as an
1336 -- interpretation by the procedure of the same name. This procedure
1337 -- overestimates the presence of implicit operators, because it does
1338 -- not examine the type of the operands. Verify now that the operand
1339 -- type appears in the given scope. If right operand is universal,
1340 -- check the other operand. In the case of concatenation, either
1341 -- argument can be the component type, so check the type of the result.
1342 -- If both arguments are literals, look for a type of the right kind
1343 -- defined in the given scope. This elaborate nonsense is brought to
1344 -- you courtesy of b33302a. The type itself must be frozen, so we must
1345 -- find the type of the proper class in the given scope.
1347 -- A final wrinkle is the multiplication operator for fixed point types,
1348 -- which is defined in Standard only, and not in the scope of the
1349 -- fixed point type itself.
1351 if Nkind
(Name
(N
)) = N_Expanded_Name
then
1352 Pack
:= Entity
(Prefix
(Name
(N
)));
1354 -- If the entity being called is defined in the given package, it is
1355 -- a renaming of a predefined operator, and known to be legal.
1357 if Scope
(Entity
(Name
(N
))) = Pack
1358 and then Pack
/= Standard_Standard
1362 -- Visibility does not need to be checked in an instance: if the
1363 -- operator was not visible in the generic it has been diagnosed
1364 -- already, else there is an implicit copy of it in the instance.
1366 elsif In_Instance
then
1369 elsif (Op_Name
= Name_Op_Multiply
or else Op_Name
= Name_Op_Divide
)
1370 and then Is_Fixed_Point_Type
(Etype
(Left_Opnd
(Op_Node
)))
1371 and then Is_Fixed_Point_Type
(Etype
(Right_Opnd
(Op_Node
)))
1373 if Pack
/= Standard_Standard
then
1377 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1380 elsif Ada_Version
>= Ada_2005
1381 and then (Op_Name
= Name_Op_Eq
or else Op_Name
= Name_Op_Ne
)
1382 and then Ekind
(Etype
(Act1
)) = E_Anonymous_Access_Type
1387 Opnd_Type
:= Base_Type
(Etype
(Right_Opnd
(Op_Node
)));
1389 if Op_Name
= Name_Op_Concat
then
1390 Opnd_Type
:= Base_Type
(Typ
);
1392 elsif (Scope
(Opnd_Type
) = Standard_Standard
1394 or else (Nkind
(Right_Opnd
(Op_Node
)) = N_Attribute_Reference
1396 and then not Comes_From_Source
(Opnd_Type
))
1398 Opnd_Type
:= Base_Type
(Etype
(Left_Opnd
(Op_Node
)));
1401 if Scope
(Opnd_Type
) = Standard_Standard
then
1403 -- Verify that the scope contains a type that corresponds to
1404 -- the given literal. Optimize the case where Pack is Standard.
1406 if Pack
/= Standard_Standard
then
1408 if Opnd_Type
= Universal_Integer
then
1409 Orig_Type
:= Type_In_P
(Is_Integer_Type
'Access);
1411 elsif Opnd_Type
= Universal_Real
then
1412 Orig_Type
:= Type_In_P
(Is_Real_Type
'Access);
1414 elsif Opnd_Type
= Any_String
then
1415 Orig_Type
:= Type_In_P
(Is_String_Type
'Access);
1417 elsif Opnd_Type
= Any_Access
then
1418 Orig_Type
:= Type_In_P
(Is_Definite_Access_Type
'Access);
1420 elsif Opnd_Type
= Any_Composite
then
1421 Orig_Type
:= Type_In_P
(Is_Composite_Type
'Access);
1423 if Present
(Orig_Type
) then
1424 if Has_Private_Component
(Orig_Type
) then
1427 Set_Etype
(Act1
, Orig_Type
);
1430 Set_Etype
(Act2
, Orig_Type
);
1439 Error
:= No
(Orig_Type
);
1442 elsif Ekind
(Opnd_Type
) = E_Allocator_Type
1443 and then No
(Type_In_P
(Is_Definite_Access_Type
'Access))
1447 -- If the type is defined elsewhere, and the operator is not
1448 -- defined in the given scope (by a renaming declaration, e.g.)
1449 -- then this is an error as well. If an extension of System is
1450 -- present, and the type may be defined there, Pack must be
1453 elsif Scope
(Opnd_Type
) /= Pack
1454 and then Scope
(Op_Id
) /= Pack
1455 and then (No
(System_Aux_Id
)
1456 or else Scope
(Opnd_Type
) /= System_Aux_Id
1457 or else Pack
/= Scope
(System_Aux_Id
))
1459 if not Is_Overloaded
(Right_Opnd
(Op_Node
)) then
1462 Error
:= not Operand_Type_In_Scope
(Pack
);
1465 elsif Pack
= Standard_Standard
1466 and then not Operand_Type_In_Scope
(Standard_Standard
)
1473 Error_Msg_Node_2
:= Pack
;
1475 ("& not declared in&", N
, Selector_Name
(Name
(N
)));
1476 Set_Etype
(N
, Any_Type
);
1479 -- Detect a mismatch between the context type and the result type
1480 -- in the named package, which is otherwise not detected if the
1481 -- operands are universal. Check is only needed if source entity is
1482 -- an operator, not a function that renames an operator.
1484 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
1485 and then Ekind
(Entity
(Name
(N
))) = E_Operator
1486 and then Is_Numeric_Type
(Typ
)
1487 and then not Is_Universal_Numeric_Type
(Typ
)
1488 and then Scope
(Base_Type
(Typ
)) /= Pack
1489 and then not In_Instance
1491 if Is_Fixed_Point_Type
(Typ
)
1492 and then (Op_Name
= Name_Op_Multiply
1494 Op_Name
= Name_Op_Divide
)
1496 -- Already checked above
1500 -- Operator may be defined in an extension of System
1502 elsif Present
(System_Aux_Id
)
1503 and then Scope
(Opnd_Type
) = System_Aux_Id
1508 -- Could we use Wrong_Type here??? (this would require setting
1509 -- Etype (N) to the actual type found where Typ was expected).
1511 Error_Msg_NE
("expect }", N
, Typ
);
1516 Set_Chars
(Op_Node
, Op_Name
);
1518 if not Is_Private_Type
(Etype
(N
)) then
1519 Set_Etype
(Op_Node
, Base_Type
(Etype
(N
)));
1521 Set_Etype
(Op_Node
, Etype
(N
));
1524 -- If this is a call to a function that renames a predefined equality,
1525 -- the renaming declaration provides a type that must be used to
1526 -- resolve the operands. This must be done now because resolution of
1527 -- the equality node will not resolve any remaining ambiguity, and it
1528 -- assumes that the first operand is not overloaded.
1530 if (Op_Name
= Name_Op_Eq
or else Op_Name
= Name_Op_Ne
)
1531 and then Ekind
(Func
) = E_Function
1532 and then Is_Overloaded
(Act1
)
1534 Resolve
(Act1
, Base_Type
(Etype
(First_Formal
(Func
))));
1535 Resolve
(Act2
, Base_Type
(Etype
(First_Formal
(Func
))));
1538 Set_Entity
(Op_Node
, Op_Id
);
1539 Generate_Reference
(Op_Id
, N
, ' ');
1541 -- Do rewrite setting Comes_From_Source on the result if the original
1542 -- call came from source. Although it is not strictly the case that the
1543 -- operator as such comes from the source, logically it corresponds
1544 -- exactly to the function call in the source, so it should be marked
1545 -- this way (e.g. to make sure that validity checks work fine).
1548 CS
: constant Boolean := Comes_From_Source
(N
);
1550 Rewrite
(N
, Op_Node
);
1551 Set_Comes_From_Source
(N
, CS
);
1554 -- If this is an arithmetic operator and the result type is private,
1555 -- the operands and the result must be wrapped in conversion to
1556 -- expose the underlying numeric type and expand the proper checks,
1557 -- e.g. on division.
1559 if Is_Private_Type
(Typ
) then
1561 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1562 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
1563 Resolve_Intrinsic_Operator
(N
, Typ
);
1565 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
1566 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
1574 end Make_Call_Into_Operator
;
1580 function Operator_Kind
1582 Is_Binary
: Boolean) return Node_Kind
1587 -- Use CASE statement or array???
1590 if Op_Name
= Name_Op_And
then
1592 elsif Op_Name
= Name_Op_Or
then
1594 elsif Op_Name
= Name_Op_Xor
then
1596 elsif Op_Name
= Name_Op_Eq
then
1598 elsif Op_Name
= Name_Op_Ne
then
1600 elsif Op_Name
= Name_Op_Lt
then
1602 elsif Op_Name
= Name_Op_Le
then
1604 elsif Op_Name
= Name_Op_Gt
then
1606 elsif Op_Name
= Name_Op_Ge
then
1608 elsif Op_Name
= Name_Op_Add
then
1610 elsif Op_Name
= Name_Op_Subtract
then
1611 Kind
:= N_Op_Subtract
;
1612 elsif Op_Name
= Name_Op_Concat
then
1613 Kind
:= N_Op_Concat
;
1614 elsif Op_Name
= Name_Op_Multiply
then
1615 Kind
:= N_Op_Multiply
;
1616 elsif Op_Name
= Name_Op_Divide
then
1617 Kind
:= N_Op_Divide
;
1618 elsif Op_Name
= Name_Op_Mod
then
1620 elsif Op_Name
= Name_Op_Rem
then
1622 elsif Op_Name
= Name_Op_Expon
then
1625 raise Program_Error
;
1631 if Op_Name
= Name_Op_Add
then
1633 elsif Op_Name
= Name_Op_Subtract
then
1635 elsif Op_Name
= Name_Op_Abs
then
1637 elsif Op_Name
= Name_Op_Not
then
1640 raise Program_Error
;
1647 ----------------------------
1648 -- Preanalyze_And_Resolve --
1649 ----------------------------
1651 procedure Preanalyze_And_Resolve
(N
: Node_Id
; T
: Entity_Id
) is
1652 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1655 Full_Analysis
:= False;
1656 Expander_Mode_Save_And_Set
(False);
1658 -- We suppress all checks for this analysis, since the checks will
1659 -- be applied properly, and in the right location, when the default
1660 -- expression is reanalyzed and reexpanded later on.
1662 Analyze_And_Resolve
(N
, T
, Suppress
=> All_Checks
);
1664 Expander_Mode_Restore
;
1665 Full_Analysis
:= Save_Full_Analysis
;
1666 end Preanalyze_And_Resolve
;
1668 -- Version without context type
1670 procedure Preanalyze_And_Resolve
(N
: Node_Id
) is
1671 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1674 Full_Analysis
:= False;
1675 Expander_Mode_Save_And_Set
(False);
1678 Resolve
(N
, Etype
(N
), Suppress
=> All_Checks
);
1680 Expander_Mode_Restore
;
1681 Full_Analysis
:= Save_Full_Analysis
;
1682 end Preanalyze_And_Resolve
;
1684 ----------------------------------
1685 -- Replace_Actual_Discriminants --
1686 ----------------------------------
1688 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
) is
1689 Loc
: constant Source_Ptr
:= Sloc
(N
);
1690 Tsk
: Node_Id
:= Empty
;
1692 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
;
1693 -- Comment needed???
1699 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
is
1703 if Nkind
(Nod
) = N_Identifier
then
1704 Ent
:= Entity
(Nod
);
1707 and then Ekind
(Ent
) = E_Discriminant
1710 Make_Selected_Component
(Loc
,
1711 Prefix
=> New_Copy_Tree
(Tsk
, New_Sloc
=> Loc
),
1712 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Ent
))));
1714 Set_Etype
(Nod
, Etype
(Ent
));
1722 procedure Replace_Discrs
is new Traverse_Proc
(Process_Discr
);
1724 -- Start of processing for Replace_Actual_Discriminants
1727 if not Full_Expander_Active
then
1731 if Nkind
(Name
(N
)) = N_Selected_Component
then
1732 Tsk
:= Prefix
(Name
(N
));
1734 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
1735 Tsk
:= Prefix
(Prefix
(Name
(N
)));
1741 Replace_Discrs
(Default
);
1743 end Replace_Actual_Discriminants
;
1749 procedure Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
1750 Ambiguous
: Boolean := False;
1751 Ctx_Type
: Entity_Id
:= Typ
;
1752 Expr_Type
: Entity_Id
:= Empty
; -- prevent junk warning
1753 Err_Type
: Entity_Id
:= Empty
;
1754 Found
: Boolean := False;
1757 I1
: Interp_Index
:= 0; -- prevent junk warning
1760 Seen
: Entity_Id
:= Empty
; -- prevent junk warning
1762 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean;
1763 -- Determine whether a node comes from a predefined library unit or
1766 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
);
1767 -- Try and fix up a literal so that it matches its expected type. New
1768 -- literals are manufactured if necessary to avoid cascaded errors.
1770 function Proper_Current_Scope
return Entity_Id
;
1771 -- Return the current scope. Skip loop scopes created for the purpose of
1772 -- quantified expression analysis since those do not appear in the tree.
1774 procedure Report_Ambiguous_Argument
;
1775 -- Additional diagnostics when an ambiguous call has an ambiguous
1776 -- argument (typically a controlling actual).
1778 procedure Resolution_Failed
;
1779 -- Called when attempt at resolving current expression fails
1781 ------------------------------------
1782 -- Comes_From_Predefined_Lib_Unit --
1783 -------------------------------------
1785 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean is
1788 Sloc
(Nod
) = Standard_Location
1789 or else Is_Predefined_File_Name
1790 (Unit_File_Name
(Get_Source_Unit
(Sloc
(Nod
))));
1791 end Comes_From_Predefined_Lib_Unit
;
1793 --------------------
1794 -- Patch_Up_Value --
1795 --------------------
1797 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
) is
1799 if Nkind
(N
) = N_Integer_Literal
and then Is_Real_Type
(Typ
) then
1801 Make_Real_Literal
(Sloc
(N
),
1802 Realval
=> UR_From_Uint
(Intval
(N
))));
1803 Set_Etype
(N
, Universal_Real
);
1804 Set_Is_Static_Expression
(N
);
1806 elsif Nkind
(N
) = N_Real_Literal
and then Is_Integer_Type
(Typ
) then
1808 Make_Integer_Literal
(Sloc
(N
),
1809 Intval
=> UR_To_Uint
(Realval
(N
))));
1810 Set_Etype
(N
, Universal_Integer
);
1811 Set_Is_Static_Expression
(N
);
1813 elsif Nkind
(N
) = N_String_Literal
1814 and then Is_Character_Type
(Typ
)
1816 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('A')));
1818 Make_Character_Literal
(Sloc
(N
),
1820 Char_Literal_Value
=>
1821 UI_From_Int
(Character'Pos ('A'))));
1822 Set_Etype
(N
, Any_Character
);
1823 Set_Is_Static_Expression
(N
);
1825 elsif Nkind
(N
) /= N_String_Literal
and then Is_String_Type
(Typ
) then
1827 Make_String_Literal
(Sloc
(N
),
1828 Strval
=> End_String
));
1830 elsif Nkind
(N
) = N_Range
then
1831 Patch_Up_Value
(Low_Bound
(N
), Typ
);
1832 Patch_Up_Value
(High_Bound
(N
), Typ
);
1836 --------------------------
1837 -- Proper_Current_Scope --
1838 --------------------------
1840 function Proper_Current_Scope
return Entity_Id
is
1841 S
: Entity_Id
:= Current_Scope
;
1844 while Present
(S
) loop
1846 -- Skip a loop scope created for quantified expression analysis
1848 if Ekind
(S
) = E_Loop
1849 and then Nkind
(Parent
(S
)) = N_Quantified_Expression
1858 end Proper_Current_Scope
;
1860 -------------------------------
1861 -- Report_Ambiguous_Argument --
1862 -------------------------------
1864 procedure Report_Ambiguous_Argument
is
1865 Arg
: constant Node_Id
:= First
(Parameter_Associations
(N
));
1870 if Nkind
(Arg
) = N_Function_Call
1871 and then Is_Entity_Name
(Name
(Arg
))
1872 and then Is_Overloaded
(Name
(Arg
))
1874 Error_Msg_NE
("ambiguous call to&", Arg
, Name
(Arg
));
1876 -- Could use comments on what is going on here???
1878 Get_First_Interp
(Name
(Arg
), I
, It
);
1879 while Present
(It
.Nam
) loop
1880 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
1882 if Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
then
1883 Error_Msg_N
("interpretation (inherited) #!", Arg
);
1885 Error_Msg_N
("interpretation #!", Arg
);
1888 Get_Next_Interp
(I
, It
);
1891 end Report_Ambiguous_Argument
;
1893 -----------------------
1894 -- Resolution_Failed --
1895 -----------------------
1897 procedure Resolution_Failed
is
1899 Patch_Up_Value
(N
, Typ
);
1901 Debug_A_Exit
("resolving ", N
, " (done, resolution failed)");
1902 Set_Is_Overloaded
(N
, False);
1904 -- The caller will return without calling the expander, so we need
1905 -- to set the analyzed flag. Note that it is fine to set Analyzed
1906 -- to True even if we are in the middle of a shallow analysis,
1907 -- (see the spec of sem for more details) since this is an error
1908 -- situation anyway, and there is no point in repeating the
1909 -- analysis later (indeed it won't work to repeat it later, since
1910 -- we haven't got a clear resolution of which entity is being
1913 Set_Analyzed
(N
, True);
1915 end Resolution_Failed
;
1917 -- Start of processing for Resolve
1924 -- Access attribute on remote subprogram cannot be used for a non-remote
1925 -- access-to-subprogram type.
1927 if Nkind
(N
) = N_Attribute_Reference
1928 and then (Attribute_Name
(N
) = Name_Access
or else
1929 Attribute_Name
(N
) = Name_Unrestricted_Access
or else
1930 Attribute_Name
(N
) = Name_Unchecked_Access
)
1931 and then Comes_From_Source
(N
)
1932 and then Is_Entity_Name
(Prefix
(N
))
1933 and then Is_Subprogram
(Entity
(Prefix
(N
)))
1934 and then Is_Remote_Call_Interface
(Entity
(Prefix
(N
)))
1935 and then not Is_Remote_Access_To_Subprogram_Type
(Typ
)
1938 ("prefix must statically denote a non-remote subprogram", N
);
1941 From_Lib
:= Comes_From_Predefined_Lib_Unit
(N
);
1943 -- If the context is a Remote_Access_To_Subprogram, access attributes
1944 -- must be resolved with the corresponding fat pointer. There is no need
1945 -- to check for the attribute name since the return type of an
1946 -- attribute is never a remote type.
1948 if Nkind
(N
) = N_Attribute_Reference
1949 and then Comes_From_Source
(N
)
1950 and then (Is_Remote_Call_Interface
(Typ
) or else Is_Remote_Types
(Typ
))
1953 Attr
: constant Attribute_Id
:=
1954 Get_Attribute_Id
(Attribute_Name
(N
));
1955 Pref
: constant Node_Id
:= Prefix
(N
);
1958 Is_Remote
: Boolean := True;
1961 -- Check that Typ is a remote access-to-subprogram type
1963 if Is_Remote_Access_To_Subprogram_Type
(Typ
) then
1965 -- Prefix (N) must statically denote a remote subprogram
1966 -- declared in a package specification.
1968 if Attr
= Attribute_Access
or else
1969 Attr
= Attribute_Unchecked_Access
or else
1970 Attr
= Attribute_Unrestricted_Access
1972 Decl
:= Unit_Declaration_Node
(Entity
(Pref
));
1974 if Nkind
(Decl
) = N_Subprogram_Body
then
1975 Spec
:= Corresponding_Spec
(Decl
);
1977 if not No
(Spec
) then
1978 Decl
:= Unit_Declaration_Node
(Spec
);
1982 Spec
:= Parent
(Decl
);
1984 if not Is_Entity_Name
(Prefix
(N
))
1985 or else Nkind
(Spec
) /= N_Package_Specification
1987 not Is_Remote_Call_Interface
(Defining_Entity
(Spec
))
1991 ("prefix must statically denote a remote subprogram ",
1995 -- If we are generating code in distributed mode, perform
1996 -- semantic checks against corresponding remote entities.
1998 if Full_Expander_Active
1999 and then Get_PCS_Name
/= Name_No_DSA
2001 Check_Subtype_Conformant
2002 (New_Id
=> Entity
(Prefix
(N
)),
2003 Old_Id
=> Designated_Type
2004 (Corresponding_Remote_Type
(Typ
)),
2008 Process_Remote_AST_Attribute
(N
, Typ
);
2016 Debug_A_Entry
("resolving ", N
);
2018 if Debug_Flag_V
then
2019 Write_Overloads
(N
);
2022 if Comes_From_Source
(N
) then
2023 if Is_Fixed_Point_Type
(Typ
) then
2024 Check_Restriction
(No_Fixed_Point
, N
);
2026 elsif Is_Floating_Point_Type
(Typ
)
2027 and then Typ
/= Universal_Real
2028 and then Typ
/= Any_Real
2030 Check_Restriction
(No_Floating_Point
, N
);
2034 -- Return if already analyzed
2036 if Analyzed
(N
) then
2037 Debug_A_Exit
("resolving ", N
, " (done, already analyzed)");
2038 Analyze_Dimension
(N
);
2041 -- Return if type = Any_Type (previous error encountered)
2043 elsif Etype
(N
) = Any_Type
then
2044 Debug_A_Exit
("resolving ", N
, " (done, Etype = Any_Type)");
2048 Check_Parameterless_Call
(N
);
2050 -- If not overloaded, then we know the type, and all that needs doing
2051 -- is to check that this type is compatible with the context.
2053 if not Is_Overloaded
(N
) then
2054 Found
:= Covers
(Typ
, Etype
(N
));
2055 Expr_Type
:= Etype
(N
);
2057 -- In the overloaded case, we must select the interpretation that
2058 -- is compatible with the context (i.e. the type passed to Resolve)
2061 -- Loop through possible interpretations
2063 Get_First_Interp
(N
, I
, It
);
2064 Interp_Loop
: while Present
(It
.Typ
) loop
2066 if Debug_Flag_V
then
2067 Write_Str
("Interp: ");
2071 -- We are only interested in interpretations that are compatible
2072 -- with the expected type, any other interpretations are ignored.
2074 if not Covers
(Typ
, It
.Typ
) then
2075 if Debug_Flag_V
then
2076 Write_Str
(" interpretation incompatible with context");
2081 -- Skip the current interpretation if it is disabled by an
2082 -- abstract operator. This action is performed only when the
2083 -- type against which we are resolving is the same as the
2084 -- type of the interpretation.
2086 if Ada_Version
>= Ada_2005
2087 and then It
.Typ
= Typ
2088 and then Typ
/= Universal_Integer
2089 and then Typ
/= Universal_Real
2090 and then Present
(It
.Abstract_Op
)
2092 if Debug_Flag_V
then
2093 Write_Line
("Skip.");
2099 -- First matching interpretation
2105 Expr_Type
:= It
.Typ
;
2107 -- Matching interpretation that is not the first, maybe an
2108 -- error, but there are some cases where preference rules are
2109 -- used to choose between the two possibilities. These and
2110 -- some more obscure cases are handled in Disambiguate.
2113 -- If the current statement is part of a predefined library
2114 -- unit, then all interpretations which come from user level
2115 -- packages should not be considered.
2118 and then not Comes_From_Predefined_Lib_Unit
(It
.Nam
)
2123 Error_Msg_Sloc
:= Sloc
(Seen
);
2124 It1
:= Disambiguate
(N
, I1
, I
, Typ
);
2126 -- Disambiguation has succeeded. Skip the remaining
2129 if It1
/= No_Interp
then
2131 Expr_Type
:= It1
.Typ
;
2133 while Present
(It
.Typ
) loop
2134 Get_Next_Interp
(I
, It
);
2138 -- Before we issue an ambiguity complaint, check for
2139 -- the case of a subprogram call where at least one
2140 -- of the arguments is Any_Type, and if so, suppress
2141 -- the message, since it is a cascaded error.
2143 if Nkind
(N
) in N_Subprogram_Call
then
2149 A
:= First_Actual
(N
);
2150 while Present
(A
) loop
2153 if Nkind
(E
) = N_Parameter_Association
then
2154 E
:= Explicit_Actual_Parameter
(E
);
2157 if Etype
(E
) = Any_Type
then
2158 if Debug_Flag_V
then
2159 Write_Str
("Any_Type in call");
2170 elsif Nkind
(N
) in N_Binary_Op
2171 and then (Etype
(Left_Opnd
(N
)) = Any_Type
2172 or else Etype
(Right_Opnd
(N
)) = Any_Type
)
2176 elsif Nkind
(N
) in N_Unary_Op
2177 and then Etype
(Right_Opnd
(N
)) = Any_Type
2182 -- Not that special case, so issue message using the
2183 -- flag Ambiguous to control printing of the header
2184 -- message only at the start of an ambiguous set.
2186 if not Ambiguous
then
2187 if Nkind
(N
) = N_Function_Call
2188 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2191 ("ambiguous expression "
2192 & "(cannot resolve indirect call)!", N
);
2194 Error_Msg_NE
-- CODEFIX
2195 ("ambiguous expression (cannot resolve&)!",
2201 if Nkind
(Parent
(Seen
)) = N_Full_Type_Declaration
then
2203 ("\\possible interpretation (inherited)#!", N
);
2205 Error_Msg_N
-- CODEFIX
2206 ("\\possible interpretation#!", N
);
2209 if Nkind
(N
) in N_Subprogram_Call
2210 and then Present
(Parameter_Associations
(N
))
2212 Report_Ambiguous_Argument
;
2216 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2218 -- By default, the error message refers to the candidate
2219 -- interpretation. But if it is a predefined operator, it
2220 -- is implicitly declared at the declaration of the type
2221 -- of the operand. Recover the sloc of that declaration
2222 -- for the error message.
2224 if Nkind
(N
) in N_Op
2225 and then Scope
(It
.Nam
) = Standard_Standard
2226 and then not Is_Overloaded
(Right_Opnd
(N
))
2227 and then Scope
(Base_Type
(Etype
(Right_Opnd
(N
)))) /=
2230 Err_Type
:= First_Subtype
(Etype
(Right_Opnd
(N
)));
2232 if Comes_From_Source
(Err_Type
)
2233 and then Present
(Parent
(Err_Type
))
2235 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2238 elsif Nkind
(N
) in N_Binary_Op
2239 and then Scope
(It
.Nam
) = Standard_Standard
2240 and then not Is_Overloaded
(Left_Opnd
(N
))
2241 and then Scope
(Base_Type
(Etype
(Left_Opnd
(N
)))) /=
2244 Err_Type
:= First_Subtype
(Etype
(Left_Opnd
(N
)));
2246 if Comes_From_Source
(Err_Type
)
2247 and then Present
(Parent
(Err_Type
))
2249 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2252 -- If this is an indirect call, use the subprogram_type
2253 -- in the message, to have a meaningful location. Also
2254 -- indicate if this is an inherited operation, created
2255 -- by a type declaration.
2257 elsif Nkind
(N
) = N_Function_Call
2258 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2259 and then Is_Type
(It
.Nam
)
2263 Sloc
(Associated_Node_For_Itype
(Err_Type
));
2268 if Nkind
(N
) in N_Op
2269 and then Scope
(It
.Nam
) = Standard_Standard
2270 and then Present
(Err_Type
)
2272 -- Special-case the message for universal_fixed
2273 -- operators, which are not declared with the type
2274 -- of the operand, but appear forever in Standard.
2276 if It
.Typ
= Universal_Fixed
2277 and then Scope
(It
.Nam
) = Standard_Standard
2280 ("\\possible interpretation as " &
2281 "universal_fixed operation " &
2282 "(RM 4.5.5 (19))", N
);
2285 ("\\possible interpretation (predefined)#!", N
);
2289 Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
2292 ("\\possible interpretation (inherited)#!", N
);
2294 Error_Msg_N
-- CODEFIX
2295 ("\\possible interpretation#!", N
);
2301 -- We have a matching interpretation, Expr_Type is the type
2302 -- from this interpretation, and Seen is the entity.
2304 -- For an operator, just set the entity name. The type will be
2305 -- set by the specific operator resolution routine.
2307 if Nkind
(N
) in N_Op
then
2308 Set_Entity
(N
, Seen
);
2309 Generate_Reference
(Seen
, N
);
2311 elsif Nkind
(N
) = N_Case_Expression
then
2312 Set_Etype
(N
, Expr_Type
);
2314 elsif Nkind
(N
) = N_Character_Literal
then
2315 Set_Etype
(N
, Expr_Type
);
2317 elsif Nkind
(N
) = N_Conditional_Expression
then
2318 Set_Etype
(N
, Expr_Type
);
2320 -- AI05-0139-2: Expression is overloaded because type has
2321 -- implicit dereference. If type matches context, no implicit
2322 -- dereference is involved.
2324 elsif Has_Implicit_Dereference
(Expr_Type
) then
2325 Set_Etype
(N
, Expr_Type
);
2326 Set_Is_Overloaded
(N
, False);
2329 elsif Is_Overloaded
(N
)
2330 and then Present
(It
.Nam
)
2331 and then Ekind
(It
.Nam
) = E_Discriminant
2332 and then Has_Implicit_Dereference
(It
.Nam
)
2334 Build_Explicit_Dereference
(N
, It
.Nam
);
2336 -- For an explicit dereference, attribute reference, range,
2337 -- short-circuit form (which is not an operator node), or call
2338 -- with a name that is an explicit dereference, there is
2339 -- nothing to be done at this point.
2341 elsif Nkind_In
(N
, N_Explicit_Dereference
,
2342 N_Attribute_Reference
,
2344 N_Indexed_Component
,
2347 N_Selected_Component
,
2349 or else Nkind
(Name
(N
)) = N_Explicit_Dereference
2353 -- For procedure or function calls, set the type of the name,
2354 -- and also the entity pointer for the prefix.
2356 elsif Nkind
(N
) in N_Subprogram_Call
2357 and then Is_Entity_Name
(Name
(N
))
2359 Set_Etype
(Name
(N
), Expr_Type
);
2360 Set_Entity
(Name
(N
), Seen
);
2361 Generate_Reference
(Seen
, Name
(N
));
2363 elsif Nkind
(N
) = N_Function_Call
2364 and then Nkind
(Name
(N
)) = N_Selected_Component
2366 Set_Etype
(Name
(N
), Expr_Type
);
2367 Set_Entity
(Selector_Name
(Name
(N
)), Seen
);
2368 Generate_Reference
(Seen
, Selector_Name
(Name
(N
)));
2370 -- For all other cases, just set the type of the Name
2373 Set_Etype
(Name
(N
), Expr_Type
);
2380 -- Move to next interpretation
2382 exit Interp_Loop
when No
(It
.Typ
);
2384 Get_Next_Interp
(I
, It
);
2385 end loop Interp_Loop
;
2388 -- At this stage Found indicates whether or not an acceptable
2389 -- interpretation exists. If not, then we have an error, except that if
2390 -- the context is Any_Type as a result of some other error, then we
2391 -- suppress the error report.
2394 if Typ
/= Any_Type
then
2396 -- If type we are looking for is Void, then this is the procedure
2397 -- call case, and the error is simply that what we gave is not a
2398 -- procedure name (we think of procedure calls as expressions with
2399 -- types internally, but the user doesn't think of them this way!)
2401 if Typ
= Standard_Void_Type
then
2403 -- Special case message if function used as a procedure
2405 if Nkind
(N
) = N_Procedure_Call_Statement
2406 and then Is_Entity_Name
(Name
(N
))
2407 and then Ekind
(Entity
(Name
(N
))) = E_Function
2410 ("cannot use function & in a procedure call",
2411 Name
(N
), Entity
(Name
(N
)));
2413 -- Otherwise give general message (not clear what cases this
2414 -- covers, but no harm in providing for them!)
2417 Error_Msg_N
("expect procedure name in procedure call", N
);
2422 -- Otherwise we do have a subexpression with the wrong type
2424 -- Check for the case of an allocator which uses an access type
2425 -- instead of the designated type. This is a common error and we
2426 -- specialize the message, posting an error on the operand of the
2427 -- allocator, complaining that we expected the designated type of
2430 elsif Nkind
(N
) = N_Allocator
2431 and then Ekind
(Typ
) in Access_Kind
2432 and then Ekind
(Etype
(N
)) in Access_Kind
2433 and then Designated_Type
(Etype
(N
)) = Typ
2435 Wrong_Type
(Expression
(N
), Designated_Type
(Typ
));
2438 -- Check for view mismatch on Null in instances, for which the
2439 -- view-swapping mechanism has no identifier.
2441 elsif (In_Instance
or else In_Inlined_Body
)
2442 and then (Nkind
(N
) = N_Null
)
2443 and then Is_Private_Type
(Typ
)
2444 and then Is_Access_Type
(Full_View
(Typ
))
2446 Resolve
(N
, Full_View
(Typ
));
2450 -- Check for an aggregate. Sometimes we can get bogus aggregates
2451 -- from misuse of parentheses, and we are about to complain about
2452 -- the aggregate without even looking inside it.
2454 -- Instead, if we have an aggregate of type Any_Composite, then
2455 -- analyze and resolve the component fields, and then only issue
2456 -- another message if we get no errors doing this (otherwise
2457 -- assume that the errors in the aggregate caused the problem).
2459 elsif Nkind
(N
) = N_Aggregate
2460 and then Etype
(N
) = Any_Composite
2462 -- Disable expansion in any case. If there is a type mismatch
2463 -- it may be fatal to try to expand the aggregate. The flag
2464 -- would otherwise be set to false when the error is posted.
2466 Expander_Active
:= False;
2469 procedure Check_Aggr
(Aggr
: Node_Id
);
2470 -- Check one aggregate, and set Found to True if we have a
2471 -- definite error in any of its elements
2473 procedure Check_Elmt
(Aelmt
: Node_Id
);
2474 -- Check one element of aggregate and set Found to True if
2475 -- we definitely have an error in the element.
2481 procedure Check_Aggr
(Aggr
: Node_Id
) is
2485 if Present
(Expressions
(Aggr
)) then
2486 Elmt
:= First
(Expressions
(Aggr
));
2487 while Present
(Elmt
) loop
2493 if Present
(Component_Associations
(Aggr
)) then
2494 Elmt
:= First
(Component_Associations
(Aggr
));
2495 while Present
(Elmt
) loop
2497 -- If this is a default-initialized component, then
2498 -- there is nothing to check. The box will be
2499 -- replaced by the appropriate call during late
2502 if not Box_Present
(Elmt
) then
2503 Check_Elmt
(Expression
(Elmt
));
2515 procedure Check_Elmt
(Aelmt
: Node_Id
) is
2517 -- If we have a nested aggregate, go inside it (to
2518 -- attempt a naked analyze-resolve of the aggregate can
2519 -- cause undesirable cascaded errors). Do not resolve
2520 -- expression if it needs a type from context, as for
2521 -- integer * fixed expression.
2523 if Nkind
(Aelmt
) = N_Aggregate
then
2529 if not Is_Overloaded
(Aelmt
)
2530 and then Etype
(Aelmt
) /= Any_Fixed
2535 if Etype
(Aelmt
) = Any_Type
then
2546 -- If an error message was issued already, Found got reset to
2547 -- True, so if it is still False, issue standard Wrong_Type msg.
2550 if Is_Overloaded
(N
)
2551 and then Nkind
(N
) = N_Function_Call
2554 Subp_Name
: Node_Id
;
2556 if Is_Entity_Name
(Name
(N
)) then
2557 Subp_Name
:= Name
(N
);
2559 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2561 -- Protected operation: retrieve operation name
2563 Subp_Name
:= Selector_Name
(Name
(N
));
2566 raise Program_Error
;
2569 Error_Msg_Node_2
:= Typ
;
2570 Error_Msg_NE
("no visible interpretation of&" &
2571 " matches expected type&", N
, Subp_Name
);
2574 if All_Errors_Mode
then
2576 Index
: Interp_Index
;
2580 Error_Msg_N
("\\possible interpretations:", N
);
2582 Get_First_Interp
(Name
(N
), Index
, It
);
2583 while Present
(It
.Nam
) loop
2584 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2585 Error_Msg_Node_2
:= It
.Nam
;
2587 ("\\ type& for & declared#", N
, It
.Typ
);
2588 Get_Next_Interp
(Index
, It
);
2593 Error_Msg_N
("\use -gnatf for details", N
);
2597 Wrong_Type
(N
, Typ
);
2605 -- Test if we have more than one interpretation for the context
2607 elsif Ambiguous
then
2611 -- Only one intepretation
2614 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2615 -- the "+" on T is abstract, and the operands are of universal type,
2616 -- the above code will have (incorrectly) resolved the "+" to the
2617 -- universal one in Standard. Therefore check for this case and give
2618 -- an error. We can't do this earlier, because it would cause legal
2619 -- cases to get errors (when some other type has an abstract "+").
2621 if Ada_Version
>= Ada_2005
2622 and then Nkind
(N
) in N_Op
2623 and then Is_Overloaded
(N
)
2624 and then Is_Universal_Numeric_Type
(Etype
(Entity
(N
)))
2626 Get_First_Interp
(N
, I
, It
);
2627 while Present
(It
.Typ
) loop
2628 if Present
(It
.Abstract_Op
) and then
2629 Etype
(It
.Abstract_Op
) = Typ
2632 ("cannot call abstract subprogram &!", N
, It
.Abstract_Op
);
2636 Get_Next_Interp
(I
, It
);
2640 -- Here we have an acceptable interpretation for the context
2642 -- Propagate type information and normalize tree for various
2643 -- predefined operations. If the context only imposes a class of
2644 -- types, rather than a specific type, propagate the actual type
2647 if Typ
= Any_Integer
or else
2648 Typ
= Any_Boolean
or else
2649 Typ
= Any_Modular
or else
2650 Typ
= Any_Real
or else
2653 Ctx_Type
:= Expr_Type
;
2655 -- Any_Fixed is legal in a real context only if a specific fixed-
2656 -- point type is imposed. If Norman Cohen can be confused by this,
2657 -- it deserves a separate message.
2660 and then Expr_Type
= Any_Fixed
2662 Error_Msg_N
("illegal context for mixed mode operation", N
);
2663 Set_Etype
(N
, Universal_Real
);
2664 Ctx_Type
:= Universal_Real
;
2668 -- A user-defined operator is transformed into a function call at
2669 -- this point, so that further processing knows that operators are
2670 -- really operators (i.e. are predefined operators). User-defined
2671 -- operators that are intrinsic are just renamings of the predefined
2672 -- ones, and need not be turned into calls either, but if they rename
2673 -- a different operator, we must transform the node accordingly.
2674 -- Instantiations of Unchecked_Conversion are intrinsic but are
2675 -- treated as functions, even if given an operator designator.
2677 if Nkind
(N
) in N_Op
2678 and then Present
(Entity
(N
))
2679 and then Ekind
(Entity
(N
)) /= E_Operator
2682 if not Is_Predefined_Op
(Entity
(N
)) then
2683 Rewrite_Operator_As_Call
(N
, Entity
(N
));
2685 elsif Present
(Alias
(Entity
(N
)))
2687 Nkind
(Parent
(Parent
(Entity
(N
)))) =
2688 N_Subprogram_Renaming_Declaration
2690 Rewrite_Renamed_Operator
(N
, Alias
(Entity
(N
)), Typ
);
2692 -- If the node is rewritten, it will be fully resolved in
2693 -- Rewrite_Renamed_Operator.
2695 if Analyzed
(N
) then
2701 case N_Subexpr
'(Nkind (N)) is
2703 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2705 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2707 when N_Short_Circuit
2708 => Resolve_Short_Circuit (N, Ctx_Type);
2710 when N_Attribute_Reference
2711 => Resolve_Attribute (N, Ctx_Type);
2713 when N_Case_Expression
2714 => Resolve_Case_Expression (N, Ctx_Type);
2716 when N_Character_Literal
2717 => Resolve_Character_Literal (N, Ctx_Type);
2719 when N_Conditional_Expression
2720 => Resolve_Conditional_Expression (N, Ctx_Type);
2722 when N_Expanded_Name
2723 => Resolve_Entity_Name (N, Ctx_Type);
2725 when N_Explicit_Dereference
2726 => Resolve_Explicit_Dereference (N, Ctx_Type);
2728 when N_Expression_With_Actions
2729 => Resolve_Expression_With_Actions (N, Ctx_Type);
2731 when N_Extension_Aggregate
2732 => Resolve_Extension_Aggregate (N, Ctx_Type);
2734 when N_Function_Call
2735 => Resolve_Call (N, Ctx_Type);
2738 => Resolve_Entity_Name (N, Ctx_Type);
2740 when N_Indexed_Component
2741 => Resolve_Indexed_Component (N, Ctx_Type);
2743 when N_Integer_Literal
2744 => Resolve_Integer_Literal (N, Ctx_Type);
2746 when N_Membership_Test
2747 => Resolve_Membership_Op (N, Ctx_Type);
2749 when N_Null => Resolve_Null (N, Ctx_Type);
2751 when N_Op_And | N_Op_Or | N_Op_Xor
2752 => Resolve_Logical_Op (N, Ctx_Type);
2754 when N_Op_Eq | N_Op_Ne
2755 => Resolve_Equality_Op (N, Ctx_Type);
2757 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2758 => Resolve_Comparison_Op (N, Ctx_Type);
2760 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2762 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2763 N_Op_Divide | N_Op_Mod | N_Op_Rem
2765 => Resolve_Arithmetic_Op (N, Ctx_Type);
2767 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2769 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2771 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2772 => Resolve_Unary_Op (N, Ctx_Type);
2774 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2776 when N_Procedure_Call_Statement
2777 => Resolve_Call (N, Ctx_Type);
2779 when N_Operator_Symbol
2780 => Resolve_Operator_Symbol (N, Ctx_Type);
2782 when N_Qualified_Expression
2783 => Resolve_Qualified_Expression (N, Ctx_Type);
2785 when N_Quantified_Expression => null;
2787 when N_Raise_xxx_Error
2788 => Set_Etype (N, Ctx_Type);
2790 when N_Range => Resolve_Range (N, Ctx_Type);
2793 => Resolve_Real_Literal (N, Ctx_Type);
2795 when N_Reference => Resolve_Reference (N, Ctx_Type);
2797 when N_Selected_Component
2798 => Resolve_Selected_Component (N, Ctx_Type);
2800 when N_Slice => Resolve_Slice (N, Ctx_Type);
2802 when N_String_Literal
2803 => Resolve_String_Literal (N, Ctx_Type);
2805 when N_Subprogram_Info
2806 => Resolve_Subprogram_Info (N, Ctx_Type);
2808 when N_Type_Conversion
2809 => Resolve_Type_Conversion (N, Ctx_Type);
2811 when N_Unchecked_Expression =>
2812 Resolve_Unchecked_Expression (N, Ctx_Type);
2814 when N_Unchecked_Type_Conversion =>
2815 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2818 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2819 -- expression of an anonymous access type that occurs in the context
2820 -- of a named general access type, except when the expression is that
2821 -- of a membership test. This ensures proper legality checking in
2822 -- terms of allowed conversions (expressions that would be illegal to
2823 -- convert implicitly are allowed in membership tests).
2825 if Ada_Version >= Ada_2012
2826 and then Ekind (Ctx_Type) = E_General_Access_Type
2827 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2828 and then Nkind (Parent (N)) not in N_Membership_Test
2830 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2831 Analyze_And_Resolve (N, Ctx_Type);
2834 -- If the subexpression was replaced by a non-subexpression, then
2835 -- all we do is to expand it. The only legitimate case we know of
2836 -- is converting procedure call statement to entry call statements,
2837 -- but there may be others, so we are making this test general.
2839 if Nkind (N) not in N_Subexpr then
2840 Debug_A_Exit ("resolving ", N, " (done)");
2845 -- AI05-144-2: Check dangerous order dependence within an expression
2846 -- that is not a subexpression. Exclude RHS of an assignment, because
2847 -- both sides may have side-effects and the check must be performed
2848 -- over the statement.
2850 if Nkind (Parent (N)) not in N_Subexpr
2851 and then Nkind (Parent (N)) /= N_Assignment_Statement
2852 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2854 Check_Order_Dependence;
2857 -- The expression is definitely NOT overloaded at this point, so
2858 -- we reset the Is_Overloaded flag to avoid any confusion when
2859 -- reanalyzing the node.
2861 Set_Is_Overloaded (N, False);
2863 -- Freeze expression type, entity if it is a name, and designated
2864 -- type if it is an allocator (RM 13.14(10,11,13)).
2866 -- Now that the resolution of the type of the node is complete, and
2867 -- we did not detect an error, we can expand this node. We skip the
2868 -- expand call if we are in a default expression, see section
2869 -- "Handling of Default Expressions" in Sem spec.
2871 Debug_A_Exit ("resolving ", N, " (done)");
2873 -- We unconditionally freeze the expression, even if we are in
2874 -- default expression mode (the Freeze_Expression routine tests this
2875 -- flag and only freezes static types if it is set).
2877 -- Ada 2012 (AI05-177): Expression functions do not freeze. Only
2878 -- their use (in an expanded call) freezes.
2880 if Ekind (Proper_Current_Scope) /= E_Function
2881 or else Nkind (Original_Node (Unit_Declaration_Node
2882 (Proper_Current_Scope))) /= N_Expression_Function
2884 Freeze_Expression (N);
2887 -- Now we can do the expansion
2897 -- Version with check(s) suppressed
2899 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2901 if Suppress = All_Checks then
2903 Svg : constant Suppress_Record := Scope_Suppress;
2905 Scope_Suppress := Suppress_All;
2907 Scope_Suppress := Svg;
2912 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
2914 Scope_Suppress.Suppress (Suppress) := True;
2916 Scope_Suppress.Suppress (Suppress) := Svg;
2925 -- Version with implicit type
2927 procedure Resolve (N : Node_Id) is
2929 Resolve (N, Etype (N));
2932 ---------------------
2933 -- Resolve_Actuals --
2934 ---------------------
2936 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2937 Loc : constant Source_Ptr := Sloc (N);
2942 Prev : Node_Id := Empty;
2945 procedure Check_Argument_Order;
2946 -- Performs a check for the case where the actuals are all simple
2947 -- identifiers that correspond to the formal names, but in the wrong
2948 -- order, which is considered suspicious and cause for a warning.
2950 procedure Check_Prefixed_Call;
2951 -- If the original node is an overloaded call in prefix notation,
2952 -- insert an 'Access or a dereference as needed over the first actual
.
2953 -- Try_Object_Operation has already verified that there is a valid
2954 -- interpretation, but the form of the actual can only be determined
2955 -- once the primitive operation is identified.
2957 procedure Insert_Default
;
2958 -- If the actual is missing in a call, insert in the actuals list
2959 -- an instance of the default expression. The insertion is always
2960 -- a named association.
2962 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
2963 -- Check whether T1 and T2, or their full views, are derived from a
2964 -- common type. Used to enforce the restrictions on array conversions
2967 function Static_Concatenation
(N
: Node_Id
) return Boolean;
2968 -- Predicate to determine whether an actual that is a concatenation
2969 -- will be evaluated statically and does not need a transient scope.
2970 -- This must be determined before the actual is resolved and expanded
2971 -- because if needed the transient scope must be introduced earlier.
2973 --------------------------
2974 -- Check_Argument_Order --
2975 --------------------------
2977 procedure Check_Argument_Order
is
2979 -- Nothing to do if no parameters, or original node is neither a
2980 -- function call nor a procedure call statement (happens in the
2981 -- operator-transformed-to-function call case), or the call does
2982 -- not come from source, or this warning is off.
2984 if not Warn_On_Parameter_Order
2985 or else No
(Parameter_Associations
(N
))
2986 or else Nkind
(Original_Node
(N
)) not in N_Subprogram_Call
2987 or else not Comes_From_Source
(N
)
2993 Nargs
: constant Nat
:= List_Length
(Parameter_Associations
(N
));
2996 -- Nothing to do if only one parameter
3002 -- Here if at least two arguments
3005 Actuals
: array (1 .. Nargs
) of Node_Id
;
3009 Wrong_Order
: Boolean := False;
3010 -- Set True if an out of order case is found
3013 -- Collect identifier names of actuals, fail if any actual is
3014 -- not a simple identifier, and record max length of name.
3016 Actual
:= First
(Parameter_Associations
(N
));
3017 for J
in Actuals
'Range loop
3018 if Nkind
(Actual
) /= N_Identifier
then
3021 Actuals
(J
) := Actual
;
3026 -- If we got this far, all actuals are identifiers and the list
3027 -- of their names is stored in the Actuals array.
3029 Formal
:= First_Formal
(Nam
);
3030 for J
in Actuals
'Range loop
3032 -- If we ran out of formals, that's odd, probably an error
3033 -- which will be detected elsewhere, but abandon the search.
3039 -- If name matches and is in order OK
3041 if Chars
(Formal
) = Chars
(Actuals
(J
)) then
3045 -- If no match, see if it is elsewhere in list and if so
3046 -- flag potential wrong order if type is compatible.
3048 for K
in Actuals
'Range loop
3049 if Chars
(Formal
) = Chars
(Actuals
(K
))
3051 Has_Compatible_Type
(Actuals
(K
), Etype
(Formal
))
3053 Wrong_Order
:= True;
3063 <<Continue
>> Next_Formal
(Formal
);
3066 -- If Formals left over, also probably an error, skip warning
3068 if Present
(Formal
) then
3072 -- Here we give the warning if something was out of order
3076 ("actuals for this call may be in wrong order?", N
);
3080 end Check_Argument_Order
;
3082 -------------------------
3083 -- Check_Prefixed_Call --
3084 -------------------------
3086 procedure Check_Prefixed_Call
is
3087 Act
: constant Node_Id
:= First_Actual
(N
);
3088 A_Type
: constant Entity_Id
:= Etype
(Act
);
3089 F_Type
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
3090 Orig
: constant Node_Id
:= Original_Node
(N
);
3094 -- Check whether the call is a prefixed call, with or without
3095 -- additional actuals.
3097 if Nkind
(Orig
) = N_Selected_Component
3099 (Nkind
(Orig
) = N_Indexed_Component
3100 and then Nkind
(Prefix
(Orig
)) = N_Selected_Component
3101 and then Is_Entity_Name
(Prefix
(Prefix
(Orig
)))
3102 and then Is_Entity_Name
(Act
)
3103 and then Chars
(Act
) = Chars
(Prefix
(Prefix
(Orig
))))
3105 if Is_Access_Type
(A_Type
)
3106 and then not Is_Access_Type
(F_Type
)
3108 -- Introduce dereference on object in prefix
3111 Make_Explicit_Dereference
(Sloc
(Act
),
3112 Prefix
=> Relocate_Node
(Act
));
3113 Rewrite
(Act
, New_A
);
3116 elsif Is_Access_Type
(F_Type
)
3117 and then not Is_Access_Type
(A_Type
)
3119 -- Introduce an implicit 'Access in prefix
3121 if not Is_Aliased_View
(Act
) then
3123 ("object in prefixed call to& must be aliased"
3124 & " (RM-2005 4.3.1 (13))",
3129 Make_Attribute_Reference
(Loc
,
3130 Attribute_Name
=> Name_Access
,
3131 Prefix
=> Relocate_Node
(Act
)));
3136 end Check_Prefixed_Call
;
3138 --------------------
3139 -- Insert_Default --
3140 --------------------
3142 procedure Insert_Default
is
3147 -- Missing argument in call, nothing to insert
3149 if No
(Default_Value
(F
)) then
3153 -- Note that we do a full New_Copy_Tree, so that any associated
3154 -- Itypes are properly copied. This may not be needed any more,
3155 -- but it does no harm as a safety measure! Defaults of a generic
3156 -- formal may be out of bounds of the corresponding actual (see
3157 -- cc1311b) and an additional check may be required.
3162 New_Scope
=> Current_Scope
,
3165 if Is_Concurrent_Type
(Scope
(Nam
))
3166 and then Has_Discriminants
(Scope
(Nam
))
3168 Replace_Actual_Discriminants
(N
, Actval
);
3171 if Is_Overloadable
(Nam
)
3172 and then Present
(Alias
(Nam
))
3174 if Base_Type
(Etype
(F
)) /= Base_Type
(Etype
(Actval
))
3175 and then not Is_Tagged_Type
(Etype
(F
))
3177 -- If default is a real literal, do not introduce a
3178 -- conversion whose effect may depend on the run-time
3179 -- size of universal real.
3181 if Nkind
(Actval
) = N_Real_Literal
then
3182 Set_Etype
(Actval
, Base_Type
(Etype
(F
)));
3184 Actval
:= Unchecked_Convert_To
(Etype
(F
), Actval
);
3188 if Is_Scalar_Type
(Etype
(F
)) then
3189 Enable_Range_Check
(Actval
);
3192 Set_Parent
(Actval
, N
);
3194 -- Resolve aggregates with their base type, to avoid scope
3195 -- anomalies: the subtype was first built in the subprogram
3196 -- declaration, and the current call may be nested.
3198 if Nkind
(Actval
) = N_Aggregate
then
3199 Analyze_And_Resolve
(Actval
, Etype
(F
));
3201 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3205 Set_Parent
(Actval
, N
);
3207 -- See note above concerning aggregates
3209 if Nkind
(Actval
) = N_Aggregate
3210 and then Has_Discriminants
(Etype
(Actval
))
3212 Analyze_And_Resolve
(Actval
, Base_Type
(Etype
(Actval
)));
3214 -- Resolve entities with their own type, which may differ from
3215 -- the type of a reference in a generic context (the view
3216 -- swapping mechanism did not anticipate the re-analysis of
3217 -- default values in calls).
3219 elsif Is_Entity_Name
(Actval
) then
3220 Analyze_And_Resolve
(Actval
, Etype
(Entity
(Actval
)));
3223 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3227 -- If default is a tag indeterminate function call, propagate tag
3228 -- to obtain proper dispatching.
3230 if Is_Controlling_Formal
(F
)
3231 and then Nkind
(Default_Value
(F
)) = N_Function_Call
3233 Set_Is_Controlling_Actual
(Actval
);
3238 -- If the default expression raises constraint error, then just
3239 -- silently replace it with an N_Raise_Constraint_Error node, since
3240 -- we already gave the warning on the subprogram spec. If node is
3241 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3242 -- the warnings removal machinery.
3244 if Raises_Constraint_Error
(Actval
)
3245 and then Nkind
(Actval
) /= N_Raise_Constraint_Error
3248 Make_Raise_Constraint_Error
(Loc
,
3249 Reason
=> CE_Range_Check_Failed
));
3250 Set_Raises_Constraint_Error
(Actval
);
3251 Set_Etype
(Actval
, Etype
(F
));
3255 Make_Parameter_Association
(Loc
,
3256 Explicit_Actual_Parameter
=> Actval
,
3257 Selector_Name
=> Make_Identifier
(Loc
, Chars
(F
)));
3259 -- Case of insertion is first named actual
3261 if No
(Prev
) or else
3262 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
3264 Set_Next_Named_Actual
(Assoc
, First_Named_Actual
(N
));
3265 Set_First_Named_Actual
(N
, Actval
);
3268 if No
(Parameter_Associations
(N
)) then
3269 Set_Parameter_Associations
(N
, New_List
(Assoc
));
3271 Append
(Assoc
, Parameter_Associations
(N
));
3275 Insert_After
(Prev
, Assoc
);
3278 -- Case of insertion is not first named actual
3281 Set_Next_Named_Actual
3282 (Assoc
, Next_Named_Actual
(Parent
(Prev
)));
3283 Set_Next_Named_Actual
(Parent
(Prev
), Actval
);
3284 Append
(Assoc
, Parameter_Associations
(N
));
3287 Mark_Rewrite_Insertion
(Assoc
);
3288 Mark_Rewrite_Insertion
(Actval
);
3297 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean is
3298 FT1
: Entity_Id
:= T1
;
3299 FT2
: Entity_Id
:= T2
;
3302 if Is_Private_Type
(T1
)
3303 and then Present
(Full_View
(T1
))
3305 FT1
:= Full_View
(T1
);
3308 if Is_Private_Type
(T2
)
3309 and then Present
(Full_View
(T2
))
3311 FT2
:= Full_View
(T2
);
3314 return Root_Type
(Base_Type
(FT1
)) = Root_Type
(Base_Type
(FT2
));
3317 --------------------------
3318 -- Static_Concatenation --
3319 --------------------------
3321 function Static_Concatenation
(N
: Node_Id
) return Boolean is
3324 when N_String_Literal
=>
3329 -- Concatenation is static when both operands are static and
3330 -- the concatenation operator is a predefined one.
3332 return Scope
(Entity
(N
)) = Standard_Standard
3334 Static_Concatenation
(Left_Opnd
(N
))
3336 Static_Concatenation
(Right_Opnd
(N
));
3339 if Is_Entity_Name
(N
) then
3341 Ent
: constant Entity_Id
:= Entity
(N
);
3343 return Ekind
(Ent
) = E_Constant
3344 and then Present
(Constant_Value
(Ent
))
3346 Is_Static_Expression
(Constant_Value
(Ent
));
3353 end Static_Concatenation
;
3355 -- Start of processing for Resolve_Actuals
3358 Check_Argument_Order
;
3360 if Present
(First_Actual
(N
)) then
3361 Check_Prefixed_Call
;
3364 A
:= First_Actual
(N
);
3365 F
:= First_Formal
(Nam
);
3366 while Present
(F
) loop
3367 if No
(A
) and then Needs_No_Actuals
(Nam
) then
3370 -- If we have an error in any actual or formal, indicated by a type
3371 -- of Any_Type, then abandon resolution attempt, and set result type
3374 elsif (Present
(A
) and then Etype
(A
) = Any_Type
)
3375 or else Etype
(F
) = Any_Type
3377 Set_Etype
(N
, Any_Type
);
3381 -- Case where actual is present
3383 -- If the actual is an entity, generate a reference to it now. We
3384 -- do this before the actual is resolved, because a formal of some
3385 -- protected subprogram, or a task discriminant, will be rewritten
3386 -- during expansion, and the source entity reference may be lost.
3389 and then Is_Entity_Name
(A
)
3390 and then Comes_From_Source
(N
)
3392 Orig_A
:= Entity
(A
);
3394 if Present
(Orig_A
) then
3395 if Is_Formal
(Orig_A
)
3396 and then Ekind
(F
) /= E_In_Parameter
3398 Generate_Reference
(Orig_A
, A
, 'm');
3400 elsif not Is_Overloaded
(A
) then
3401 Generate_Reference
(Orig_A
, A
);
3407 and then (Nkind
(Parent
(A
)) /= N_Parameter_Association
3408 or else Chars
(Selector_Name
(Parent
(A
))) = Chars
(F
))
3410 -- If style checking mode on, check match of formal name
3413 if Nkind
(Parent
(A
)) = N_Parameter_Association
then
3414 Check_Identifier
(Selector_Name
(Parent
(A
)), F
);
3418 -- If the formal is Out or In_Out, do not resolve and expand the
3419 -- conversion, because it is subsequently expanded into explicit
3420 -- temporaries and assignments. However, the object of the
3421 -- conversion can be resolved. An exception is the case of tagged
3422 -- type conversion with a class-wide actual. In that case we want
3423 -- the tag check to occur and no temporary will be needed (no
3424 -- representation change can occur) and the parameter is passed by
3425 -- reference, so we go ahead and resolve the type conversion.
3426 -- Another exception is the case of reference to component or
3427 -- subcomponent of a bit-packed array, in which case we want to
3428 -- defer expansion to the point the in and out assignments are
3431 if Ekind
(F
) /= E_In_Parameter
3432 and then Nkind
(A
) = N_Type_Conversion
3433 and then not Is_Class_Wide_Type
(Etype
(Expression
(A
)))
3435 if Ekind
(F
) = E_In_Out_Parameter
3436 and then Is_Array_Type
(Etype
(F
))
3438 -- In a view conversion, the conversion must be legal in
3439 -- both directions, and thus both component types must be
3440 -- aliased, or neither (4.6 (8)).
3442 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3443 -- the privacy requirement should not apply to generic
3444 -- types, and should be checked in an instance. ARG query
3447 if Has_Aliased_Components
(Etype
(Expression
(A
))) /=
3448 Has_Aliased_Components
(Etype
(F
))
3451 ("both component types in a view conversion must be"
3452 & " aliased, or neither", A
);
3454 -- Comment here??? what set of cases???
3457 not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3459 -- Check view conv between unrelated by ref array types
3461 if Is_By_Reference_Type
(Etype
(F
))
3462 or else Is_By_Reference_Type
(Etype
(Expression
(A
)))
3465 ("view conversion between unrelated by reference " &
3466 "array types not allowed (\'A'I-00246)", A
);
3468 -- In Ada 2005 mode, check view conversion component
3469 -- type cannot be private, tagged, or volatile. Note
3470 -- that we only apply this to source conversions. The
3471 -- generated code can contain conversions which are
3472 -- not subject to this test, and we cannot extract the
3473 -- component type in such cases since it is not present.
3475 elsif Comes_From_Source
(A
)
3476 and then Ada_Version
>= Ada_2005
3479 Comp_Type
: constant Entity_Id
:=
3481 (Etype
(Expression
(A
)));
3483 if (Is_Private_Type
(Comp_Type
)
3484 and then not Is_Generic_Type
(Comp_Type
))
3485 or else Is_Tagged_Type
(Comp_Type
)
3486 or else Is_Volatile
(Comp_Type
)
3489 ("component type of a view conversion cannot"
3490 & " be private, tagged, or volatile"
3499 -- Resolve expression if conversion is all OK
3501 if (Conversion_OK
(A
)
3502 or else Valid_Conversion
(A
, Etype
(A
), Expression
(A
)))
3503 and then not Is_Ref_To_Bit_Packed_Array
(Expression
(A
))
3505 Resolve
(Expression
(A
));
3508 -- If the actual is a function call that returns a limited
3509 -- unconstrained object that needs finalization, create a
3510 -- transient scope for it, so that it can receive the proper
3511 -- finalization list.
3513 elsif Nkind
(A
) = N_Function_Call
3514 and then Is_Limited_Record
(Etype
(F
))
3515 and then not Is_Constrained
(Etype
(F
))
3516 and then Full_Expander_Active
3517 and then (Is_Controlled
(Etype
(F
)) or else Has_Task
(Etype
(F
)))
3519 Establish_Transient_Scope
(A
, False);
3520 Resolve
(A
, Etype
(F
));
3522 -- A small optimization: if one of the actuals is a concatenation
3523 -- create a block around a procedure call to recover stack space.
3524 -- This alleviates stack usage when several procedure calls in
3525 -- the same statement list use concatenation. We do not perform
3526 -- this wrapping for code statements, where the argument is a
3527 -- static string, and we want to preserve warnings involving
3528 -- sequences of such statements.
3530 elsif Nkind
(A
) = N_Op_Concat
3531 and then Nkind
(N
) = N_Procedure_Call_Statement
3532 and then Full_Expander_Active
3534 not (Is_Intrinsic_Subprogram
(Nam
)
3535 and then Chars
(Nam
) = Name_Asm
)
3536 and then not Static_Concatenation
(A
)
3538 Establish_Transient_Scope
(A
, False);
3539 Resolve
(A
, Etype
(F
));
3542 if Nkind
(A
) = N_Type_Conversion
3543 and then Is_Array_Type
(Etype
(F
))
3544 and then not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3546 (Is_Limited_Type
(Etype
(F
))
3547 or else Is_Limited_Type
(Etype
(Expression
(A
))))
3550 ("conversion between unrelated limited array types " &
3551 "not allowed (\A\I-00246)", A
);
3553 if Is_Limited_Type
(Etype
(F
)) then
3554 Explain_Limited_Type
(Etype
(F
), A
);
3557 if Is_Limited_Type
(Etype
(Expression
(A
))) then
3558 Explain_Limited_Type
(Etype
(Expression
(A
)), A
);
3562 -- (Ada 2005: AI-251): If the actual is an allocator whose
3563 -- directly designated type is a class-wide interface, we build
3564 -- an anonymous access type to use it as the type of the
3565 -- allocator. Later, when the subprogram call is expanded, if
3566 -- the interface has a secondary dispatch table the expander
3567 -- will add a type conversion to force the correct displacement
3570 if Nkind
(A
) = N_Allocator
then
3572 DDT
: constant Entity_Id
:=
3573 Directly_Designated_Type
(Base_Type
(Etype
(F
)));
3575 New_Itype
: Entity_Id
;
3578 if Is_Class_Wide_Type
(DDT
)
3579 and then Is_Interface
(DDT
)
3581 New_Itype
:= Create_Itype
(E_Anonymous_Access_Type
, A
);
3582 Set_Etype
(New_Itype
, Etype
(A
));
3583 Set_Directly_Designated_Type
(New_Itype
,
3584 Directly_Designated_Type
(Etype
(A
)));
3585 Set_Etype
(A
, New_Itype
);
3588 -- Ada 2005, AI-162:If the actual is an allocator, the
3589 -- innermost enclosing statement is the master of the
3590 -- created object. This needs to be done with expansion
3591 -- enabled only, otherwise the transient scope will not
3592 -- be removed in the expansion of the wrapped construct.
3594 if (Is_Controlled
(DDT
) or else Has_Task
(DDT
))
3595 and then Full_Expander_Active
3597 Establish_Transient_Scope
(A
, False);
3602 -- (Ada 2005): The call may be to a primitive operation of
3603 -- a tagged synchronized type, declared outside of the type.
3604 -- In this case the controlling actual must be converted to
3605 -- its corresponding record type, which is the formal type.
3606 -- The actual may be a subtype, either because of a constraint
3607 -- or because it is a generic actual, so use base type to
3608 -- locate concurrent type.
3610 F_Typ
:= Base_Type
(Etype
(F
));
3612 if Is_Tagged_Type
(F_Typ
)
3613 and then (Is_Concurrent_Type
(F_Typ
)
3614 or else Is_Concurrent_Record_Type
(F_Typ
))
3616 -- If the actual is overloaded, look for an interpretation
3617 -- that has a synchronized type.
3619 if not Is_Overloaded
(A
) then
3620 A_Typ
:= Base_Type
(Etype
(A
));
3624 Index
: Interp_Index
;
3628 Get_First_Interp
(A
, Index
, It
);
3629 while Present
(It
.Typ
) loop
3630 if Is_Concurrent_Type
(It
.Typ
)
3631 or else Is_Concurrent_Record_Type
(It
.Typ
)
3633 A_Typ
:= Base_Type
(It
.Typ
);
3637 Get_Next_Interp
(Index
, It
);
3643 Full_A_Typ
: Entity_Id
;
3646 if Present
(Full_View
(A_Typ
)) then
3647 Full_A_Typ
:= Base_Type
(Full_View
(A_Typ
));
3649 Full_A_Typ
:= A_Typ
;
3652 -- Tagged synchronized type (case 1): the actual is a
3655 if Is_Concurrent_Type
(A_Typ
)
3656 and then Corresponding_Record_Type
(A_Typ
) = F_Typ
3659 Unchecked_Convert_To
3660 (Corresponding_Record_Type
(A_Typ
), A
));
3661 Resolve
(A
, Etype
(F
));
3663 -- Tagged synchronized type (case 2): the formal is a
3666 elsif Ekind
(Full_A_Typ
) = E_Record_Type
3668 (Corresponding_Concurrent_Type
(Full_A_Typ
))
3669 and then Is_Concurrent_Type
(F_Typ
)
3670 and then Present
(Corresponding_Record_Type
(F_Typ
))
3671 and then Full_A_Typ
= Corresponding_Record_Type
(F_Typ
)
3673 Resolve
(A
, Corresponding_Record_Type
(F_Typ
));
3678 Resolve
(A
, Etype
(F
));
3683 -- not a synchronized operation.
3685 Resolve
(A
, Etype
(F
));
3692 if Comes_From_Source
(Original_Node
(N
))
3693 and then Nkind_In
(Original_Node
(N
), N_Function_Call
,
3694 N_Procedure_Call_Statement
)
3696 -- In formal mode, check that actual parameters matching
3697 -- formals of tagged types are objects (or ancestor type
3698 -- conversions of objects), not general expressions.
3700 if Is_Actual_Tagged_Parameter
(A
) then
3701 if Is_SPARK_Object_Reference
(A
) then
3704 elsif Nkind
(A
) = N_Type_Conversion
then
3706 Operand
: constant Node_Id
:= Expression
(A
);
3707 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
3708 Target_Typ
: constant Entity_Id
:= A_Typ
;
3711 if not Is_SPARK_Object_Reference
(Operand
) then
3712 Check_SPARK_Restriction
3713 ("object required", Operand
);
3715 -- In formal mode, the only view conversions are those
3716 -- involving ancestor conversion of an extended type.
3719 (Is_Tagged_Type
(Target_Typ
)
3720 and then not Is_Class_Wide_Type
(Target_Typ
)
3721 and then Is_Tagged_Type
(Operand_Typ
)
3722 and then not Is_Class_Wide_Type
(Operand_Typ
)
3723 and then Is_Ancestor
(Target_Typ
, Operand_Typ
))
3726 (F
, E_Out_Parameter
, E_In_Out_Parameter
)
3728 Check_SPARK_Restriction
3729 ("ancestor conversion is the only permitted "
3730 & "view conversion", A
);
3732 Check_SPARK_Restriction
3733 ("ancestor conversion required", A
);
3742 Check_SPARK_Restriction
("object required", A
);
3745 -- In formal mode, the only view conversions are those
3746 -- involving ancestor conversion of an extended type.
3748 elsif Nkind
(A
) = N_Type_Conversion
3749 and then Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
3751 Check_SPARK_Restriction
3752 ("ancestor conversion is the only permitted view "
3757 -- Save actual for subsequent check on order dependence, and
3758 -- indicate whether actual is modifiable. For AI05-0144-2.
3760 -- If this is a call to a reference function that is the result
3761 -- of expansion, as in element iterator loops, this does not lead
3762 -- to a dangerous order dependence: only subsequent use of the
3763 -- denoted element might, in some enclosing call.
3765 if not Has_Implicit_Dereference
(Etype
(Nam
))
3766 or else Comes_From_Source
(N
)
3768 Save_Actual
(A
, Ekind
(F
) /= E_In_Parameter
);
3771 -- For mode IN, if actual is an entity, and the type of the formal
3772 -- has warnings suppressed, then we reset Never_Set_In_Source for
3773 -- the calling entity. The reason for this is to catch cases like
3774 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3775 -- uses trickery to modify an IN parameter.
3777 if Ekind
(F
) = E_In_Parameter
3778 and then Is_Entity_Name
(A
)
3779 and then Present
(Entity
(A
))
3780 and then Ekind
(Entity
(A
)) = E_Variable
3781 and then Has_Warnings_Off
(F_Typ
)
3783 Set_Never_Set_In_Source
(Entity
(A
), False);
3786 -- Perform error checks for IN and IN OUT parameters
3788 if Ekind
(F
) /= E_Out_Parameter
then
3790 -- Check unset reference. For scalar parameters, it is clearly
3791 -- wrong to pass an uninitialized value as either an IN or
3792 -- IN-OUT parameter. For composites, it is also clearly an
3793 -- error to pass a completely uninitialized value as an IN
3794 -- parameter, but the case of IN OUT is trickier. We prefer
3795 -- not to give a warning here. For example, suppose there is
3796 -- a routine that sets some component of a record to False.
3797 -- It is perfectly reasonable to make this IN-OUT and allow
3798 -- either initialized or uninitialized records to be passed
3801 -- For partially initialized composite values, we also avoid
3802 -- warnings, since it is quite likely that we are passing a
3803 -- partially initialized value and only the initialized fields
3804 -- will in fact be read in the subprogram.
3806 if Is_Scalar_Type
(A_Typ
)
3807 or else (Ekind
(F
) = E_In_Parameter
3808 and then not Is_Partially_Initialized_Type
(A_Typ
))
3810 Check_Unset_Reference
(A
);
3813 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3814 -- actual to a nested call, since this is case of reading an
3815 -- out parameter, which is not allowed.
3817 if Ada_Version
= Ada_83
3818 and then Is_Entity_Name
(A
)
3819 and then Ekind
(Entity
(A
)) = E_Out_Parameter
3821 Error_Msg_N
("(Ada 83) illegal reading of out parameter", A
);
3825 -- Case of OUT or IN OUT parameter
3827 if Ekind
(F
) /= E_In_Parameter
then
3829 -- For an Out parameter, check for useless assignment. Note
3830 -- that we can't set Last_Assignment this early, because we may
3831 -- kill current values in Resolve_Call, and that call would
3832 -- clobber the Last_Assignment field.
3834 -- Note: call Warn_On_Useless_Assignment before doing the check
3835 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3836 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3837 -- reflects the last assignment, not this one!
3839 if Ekind
(F
) = E_Out_Parameter
then
3840 if Warn_On_Modified_As_Out_Parameter
(F
)
3841 and then Is_Entity_Name
(A
)
3842 and then Present
(Entity
(A
))
3843 and then Comes_From_Source
(N
)
3845 Warn_On_Useless_Assignment
(Entity
(A
), A
);
3849 -- Validate the form of the actual. Note that the call to
3850 -- Is_OK_Variable_For_Out_Formal generates the required
3851 -- reference in this case.
3853 -- A call to an initialization procedure for an aggregate
3854 -- component may initialize a nested component of a constant
3855 -- designated object. In this context the object is variable.
3857 if not Is_OK_Variable_For_Out_Formal
(A
)
3858 and then not Is_Init_Proc
(Nam
)
3860 Error_Msg_NE
("actual for& must be a variable", A
, F
);
3863 -- What's the following about???
3865 if Is_Entity_Name
(A
) then
3866 Kill_Checks
(Entity
(A
));
3872 if Etype
(A
) = Any_Type
then
3873 Set_Etype
(N
, Any_Type
);
3877 -- Apply appropriate range checks for in, out, and in-out
3878 -- parameters. Out and in-out parameters also need a separate
3879 -- check, if there is a type conversion, to make sure the return
3880 -- value meets the constraints of the variable before the
3883 -- Gigi looks at the check flag and uses the appropriate types.
3884 -- For now since one flag is used there is an optimization which
3885 -- might not be done in the In Out case since Gigi does not do
3886 -- any analysis. More thought required about this ???
3888 if Ekind_In
(F
, E_In_Parameter
, E_In_Out_Parameter
) then
3890 -- Apply predicate checks, unless this is a call to the
3891 -- predicate check function itself, which would cause an
3892 -- infinite recursion.
3894 if not (Ekind
(Nam
) = E_Function
3895 and then Has_Predicates
(Nam
))
3897 Apply_Predicate_Check
(A
, F_Typ
);
3900 -- Apply required constraint checks
3902 if Is_Scalar_Type
(Etype
(A
)) then
3903 Apply_Scalar_Range_Check
(A
, F_Typ
);
3905 elsif Is_Array_Type
(Etype
(A
)) then
3906 Apply_Length_Check
(A
, F_Typ
);
3908 elsif Is_Record_Type
(F_Typ
)
3909 and then Has_Discriminants
(F_Typ
)
3910 and then Is_Constrained
(F_Typ
)
3911 and then (not Is_Derived_Type
(F_Typ
)
3912 or else Comes_From_Source
(Nam
))
3914 Apply_Discriminant_Check
(A
, F_Typ
);
3916 elsif Is_Access_Type
(F_Typ
)
3917 and then Is_Array_Type
(Designated_Type
(F_Typ
))
3918 and then Is_Constrained
(Designated_Type
(F_Typ
))
3920 Apply_Length_Check
(A
, F_Typ
);
3922 elsif Is_Access_Type
(F_Typ
)
3923 and then Has_Discriminants
(Designated_Type
(F_Typ
))
3924 and then Is_Constrained
(Designated_Type
(F_Typ
))
3926 Apply_Discriminant_Check
(A
, F_Typ
);
3929 Apply_Range_Check
(A
, F_Typ
);
3932 -- Ada 2005 (AI-231): Note that the controlling parameter case
3933 -- already existed in Ada 95, which is partially checked
3934 -- elsewhere (see Checks), and we don't want the warning
3935 -- message to differ.
3937 if Is_Access_Type
(F_Typ
)
3938 and then Can_Never_Be_Null
(F_Typ
)
3939 and then Known_Null
(A
)
3941 if Is_Controlling_Formal
(F
) then
3942 Apply_Compile_Time_Constraint_Error
3944 Msg
=> "null value not allowed here?",
3945 Reason
=> CE_Access_Check_Failed
);
3947 elsif Ada_Version
>= Ada_2005
then
3948 Apply_Compile_Time_Constraint_Error
3950 Msg
=> "(Ada 2005) null not allowed in "
3951 & "null-excluding formal?",
3952 Reason
=> CE_Null_Not_Allowed
);
3957 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
) then
3958 if Nkind
(A
) = N_Type_Conversion
then
3959 if Is_Scalar_Type
(A_Typ
) then
3960 Apply_Scalar_Range_Check
3961 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
3964 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
3968 if Is_Scalar_Type
(F_Typ
) then
3969 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
3970 elsif Is_Array_Type
(F_Typ
)
3971 and then Ekind
(F
) = E_Out_Parameter
3973 Apply_Length_Check
(A
, F_Typ
);
3975 Apply_Range_Check
(A
, A_Typ
, F_Typ
);
3980 -- An actual associated with an access parameter is implicitly
3981 -- converted to the anonymous access type of the formal and must
3982 -- satisfy the legality checks for access conversions.
3984 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
3985 if not Valid_Conversion
(A
, F_Typ
, A
) then
3987 ("invalid implicit conversion for access parameter", A
);
3990 -- If the actual is an access selected component of a variable,
3991 -- the call may modify its designated object. It is reasonable
3992 -- to treat this as a potential modification of the enclosing
3993 -- record, to prevent spurious warnings that it should be
3994 -- declared as a constant, because intuitively programmers
3995 -- regard the designated subcomponent as part of the record.
3997 if Nkind
(A
) = N_Selected_Component
3998 and then Is_Entity_Name
(Prefix
(A
))
3999 and then not Is_Constant_Object
(Entity
(Prefix
(A
)))
4001 Note_Possible_Modification
(A
, Sure
=> False);
4005 -- Check bad case of atomic/volatile argument (RM C.6(12))
4007 if Is_By_Reference_Type
(Etype
(F
))
4008 and then Comes_From_Source
(N
)
4010 if Is_Atomic_Object
(A
)
4011 and then not Is_Atomic
(Etype
(F
))
4014 ("cannot pass atomic argument to non-atomic formal&",
4017 elsif Is_Volatile_Object
(A
)
4018 and then not Is_Volatile
(Etype
(F
))
4021 ("cannot pass volatile argument to non-volatile formal&",
4026 -- Check that subprograms don't have improper controlling
4027 -- arguments (RM 3.9.2 (9)).
4029 -- A primitive operation may have an access parameter of an
4030 -- incomplete tagged type, but a dispatching call is illegal
4031 -- if the type is still incomplete.
4033 if Is_Controlling_Formal
(F
) then
4034 Set_Is_Controlling_Actual
(A
);
4036 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4038 Desig
: constant Entity_Id
:= Designated_Type
(Etype
(F
));
4040 if Ekind
(Desig
) = E_Incomplete_Type
4041 and then No
(Full_View
(Desig
))
4042 and then No
(Non_Limited_View
(Desig
))
4045 ("premature use of incomplete type& " &
4046 "in dispatching call", A
, Desig
);
4051 elsif Nkind
(A
) = N_Explicit_Dereference
then
4052 Validate_Remote_Access_To_Class_Wide_Type
(A
);
4055 if (Is_Class_Wide_Type
(A_Typ
) or else Is_Dynamically_Tagged
(A
))
4056 and then not Is_Class_Wide_Type
(F_Typ
)
4057 and then not Is_Controlling_Formal
(F
)
4059 Error_Msg_N
("class-wide argument not allowed here!", A
);
4061 if Is_Subprogram
(Nam
)
4062 and then Comes_From_Source
(Nam
)
4064 Error_Msg_Node_2
:= F_Typ
;
4066 ("& is not a dispatching operation of &!", A
, Nam
);
4069 -- Apply the checks described in 3.10.2(27): if the context is a
4070 -- specific access-to-object, the actual cannot be class-wide.
4071 -- Use base type to exclude access_to_subprogram cases.
4073 elsif Is_Access_Type
(A_Typ
)
4074 and then Is_Access_Type
(F_Typ
)
4075 and then not Is_Access_Subprogram_Type
(Base_Type
(F_Typ
))
4076 and then (Is_Class_Wide_Type
(Designated_Type
(A_Typ
))
4077 or else (Nkind
(A
) = N_Attribute_Reference
4079 Is_Class_Wide_Type
(Etype
(Prefix
(A
)))))
4080 and then not Is_Class_Wide_Type
(Designated_Type
(F_Typ
))
4081 and then not Is_Controlling_Formal
(F
)
4083 -- Disable these checks for call to imported C++ subprograms
4086 (Is_Entity_Name
(Name
(N
))
4087 and then Is_Imported
(Entity
(Name
(N
)))
4088 and then Convention
(Entity
(Name
(N
))) = Convention_CPP
)
4091 ("access to class-wide argument not allowed here!", A
);
4093 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4094 Error_Msg_Node_2
:= Designated_Type
(F_Typ
);
4096 ("& is not a dispatching operation of &!", A
, Nam
);
4102 -- If it is a named association, treat the selector_name as a
4103 -- proper identifier, and mark the corresponding entity. Ignore
4104 -- this reference in Alfa mode, as it refers to an entity not in
4105 -- scope at the point of reference, so the reference should be
4106 -- ignored for computing effects of subprograms.
4108 if Nkind
(Parent
(A
)) = N_Parameter_Association
4109 and then not Alfa_Mode
4111 Set_Entity
(Selector_Name
(Parent
(A
)), F
);
4112 Generate_Reference
(F
, Selector_Name
(Parent
(A
)));
4113 Set_Etype
(Selector_Name
(Parent
(A
)), F_Typ
);
4114 Generate_Reference
(F_Typ
, N
, ' ');
4119 if Ekind
(F
) /= E_Out_Parameter
then
4120 Check_Unset_Reference
(A
);
4125 -- Case where actual is not present
4133 end Resolve_Actuals
;
4135 -----------------------
4136 -- Resolve_Allocator --
4137 -----------------------
4139 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
) is
4140 Desig_T
: constant Entity_Id
:= Designated_Type
(Typ
);
4141 E
: constant Node_Id
:= Expression
(N
);
4143 Discrim
: Entity_Id
;
4146 Assoc
: Node_Id
:= Empty
;
4149 procedure Check_Allocator_Discrim_Accessibility
4150 (Disc_Exp
: Node_Id
;
4151 Alloc_Typ
: Entity_Id
);
4152 -- Check that accessibility level associated with an access discriminant
4153 -- initialized in an allocator by the expression Disc_Exp is not deeper
4154 -- than the level of the allocator type Alloc_Typ. An error message is
4155 -- issued if this condition is violated. Specialized checks are done for
4156 -- the cases of a constraint expression which is an access attribute or
4157 -- an access discriminant.
4159 function In_Dispatching_Context
return Boolean;
4160 -- If the allocator is an actual in a call, it is allowed to be class-
4161 -- wide when the context is not because it is a controlling actual.
4163 -------------------------------------------
4164 -- Check_Allocator_Discrim_Accessibility --
4165 -------------------------------------------
4167 procedure Check_Allocator_Discrim_Accessibility
4168 (Disc_Exp
: Node_Id
;
4169 Alloc_Typ
: Entity_Id
)
4172 if Type_Access_Level
(Etype
(Disc_Exp
)) >
4173 Deepest_Type_Access_Level
(Alloc_Typ
)
4176 ("operand type has deeper level than allocator type", Disc_Exp
);
4178 -- When the expression is an Access attribute the level of the prefix
4179 -- object must not be deeper than that of the allocator's type.
4181 elsif Nkind
(Disc_Exp
) = N_Attribute_Reference
4182 and then Get_Attribute_Id
(Attribute_Name
(Disc_Exp
)) =
4184 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4185 Deepest_Type_Access_Level
(Alloc_Typ
)
4188 ("prefix of attribute has deeper level than allocator type",
4191 -- When the expression is an access discriminant the check is against
4192 -- the level of the prefix object.
4194 elsif Ekind
(Etype
(Disc_Exp
)) = E_Anonymous_Access_Type
4195 and then Nkind
(Disc_Exp
) = N_Selected_Component
4196 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4197 Deepest_Type_Access_Level
(Alloc_Typ
)
4200 ("access discriminant has deeper level than allocator type",
4203 -- All other cases are legal
4208 end Check_Allocator_Discrim_Accessibility
;
4210 ----------------------------
4211 -- In_Dispatching_Context --
4212 ----------------------------
4214 function In_Dispatching_Context
return Boolean is
4215 Par
: constant Node_Id
:= Parent
(N
);
4218 return Nkind
(Par
) in N_Subprogram_Call
4219 and then Is_Entity_Name
(Name
(Par
))
4220 and then Is_Dispatching_Operation
(Entity
(Name
(Par
)));
4221 end In_Dispatching_Context
;
4223 -- Start of processing for Resolve_Allocator
4226 -- Replace general access with specific type
4228 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
4229 Set_Etype
(N
, Base_Type
(Typ
));
4232 if Is_Abstract_Type
(Typ
) then
4233 Error_Msg_N
("type of allocator cannot be abstract", N
);
4236 -- For qualified expression, resolve the expression using the
4237 -- given subtype (nothing to do for type mark, subtype indication)
4239 if Nkind
(E
) = N_Qualified_Expression
then
4240 if Is_Class_Wide_Type
(Etype
(E
))
4241 and then not Is_Class_Wide_Type
(Desig_T
)
4242 and then not In_Dispatching_Context
4245 ("class-wide allocator not allowed for this access type", N
);
4248 Resolve
(Expression
(E
), Etype
(E
));
4249 Check_Unset_Reference
(Expression
(E
));
4251 -- A qualified expression requires an exact match of the type,
4252 -- class-wide matching is not allowed.
4254 if (Is_Class_Wide_Type
(Etype
(Expression
(E
)))
4255 or else Is_Class_Wide_Type
(Etype
(E
)))
4256 and then Base_Type
(Etype
(Expression
(E
))) /= Base_Type
(Etype
(E
))
4258 Wrong_Type
(Expression
(E
), Etype
(E
));
4261 -- Calls to build-in-place functions are not currently supported in
4262 -- allocators for access types associated with a simple storage pool.
4263 -- Supporting such allocators may require passing additional implicit
4264 -- parameters to build-in-place functions (or a significant revision
4265 -- of the current b-i-p implementation to unify the handling for
4266 -- multiple kinds of storage pools). ???
4268 if Is_Immutably_Limited_Type
(Desig_T
)
4269 and then Nkind
(Expression
(E
)) = N_Function_Call
4272 Pool
: constant Entity_Id
:=
4273 Associated_Storage_Pool
(Root_Type
(Typ
));
4277 Present
(Get_Rep_Pragma
4278 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4281 ("limited function calls not yet supported in simple " &
4282 "storage pool allocators", Expression
(E
));
4287 -- A special accessibility check is needed for allocators that
4288 -- constrain access discriminants. The level of the type of the
4289 -- expression used to constrain an access discriminant cannot be
4290 -- deeper than the type of the allocator (in contrast to access
4291 -- parameters, where the level of the actual can be arbitrary).
4293 -- We can't use Valid_Conversion to perform this check because
4294 -- in general the type of the allocator is unrelated to the type
4295 -- of the access discriminant.
4297 if Ekind
(Typ
) /= E_Anonymous_Access_Type
4298 or else Is_Local_Anonymous_Access
(Typ
)
4300 Subtyp
:= Entity
(Subtype_Mark
(E
));
4302 Aggr
:= Original_Node
(Expression
(E
));
4304 if Has_Discriminants
(Subtyp
)
4305 and then Nkind_In
(Aggr
, N_Aggregate
, N_Extension_Aggregate
)
4307 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4309 -- Get the first component expression of the aggregate
4311 if Present
(Expressions
(Aggr
)) then
4312 Disc_Exp
:= First
(Expressions
(Aggr
));
4314 elsif Present
(Component_Associations
(Aggr
)) then
4315 Assoc
:= First
(Component_Associations
(Aggr
));
4317 if Present
(Assoc
) then
4318 Disc_Exp
:= Expression
(Assoc
);
4327 while Present
(Discrim
) and then Present
(Disc_Exp
) loop
4328 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4329 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4332 Next_Discriminant
(Discrim
);
4334 if Present
(Discrim
) then
4335 if Present
(Assoc
) then
4337 Disc_Exp
:= Expression
(Assoc
);
4339 elsif Present
(Next
(Disc_Exp
)) then
4343 Assoc
:= First
(Component_Associations
(Aggr
));
4345 if Present
(Assoc
) then
4346 Disc_Exp
:= Expression
(Assoc
);
4356 -- For a subtype mark or subtype indication, freeze the subtype
4359 Freeze_Expression
(E
);
4361 if Is_Access_Constant
(Typ
) and then not No_Initialization
(N
) then
4363 ("initialization required for access-to-constant allocator", N
);
4366 -- A special accessibility check is needed for allocators that
4367 -- constrain access discriminants. The level of the type of the
4368 -- expression used to constrain an access discriminant cannot be
4369 -- deeper than the type of the allocator (in contrast to access
4370 -- parameters, where the level of the actual can be arbitrary).
4371 -- We can't use Valid_Conversion to perform this check because
4372 -- in general the type of the allocator is unrelated to the type
4373 -- of the access discriminant.
4375 if Nkind
(Original_Node
(E
)) = N_Subtype_Indication
4376 and then (Ekind
(Typ
) /= E_Anonymous_Access_Type
4377 or else Is_Local_Anonymous_Access
(Typ
))
4379 Subtyp
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4381 if Has_Discriminants
(Subtyp
) then
4382 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4383 Constr
:= First
(Constraints
(Constraint
(Original_Node
(E
))));
4384 while Present
(Discrim
) and then Present
(Constr
) loop
4385 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4386 if Nkind
(Constr
) = N_Discriminant_Association
then
4387 Disc_Exp
:= Original_Node
(Expression
(Constr
));
4389 Disc_Exp
:= Original_Node
(Constr
);
4392 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4395 Next_Discriminant
(Discrim
);
4402 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4403 -- check that the level of the type of the created object is not deeper
4404 -- than the level of the allocator's access type, since extensions can
4405 -- now occur at deeper levels than their ancestor types. This is a
4406 -- static accessibility level check; a run-time check is also needed in
4407 -- the case of an initialized allocator with a class-wide argument (see
4408 -- Expand_Allocator_Expression).
4410 if Ada_Version
>= Ada_2005
4411 and then Is_Class_Wide_Type
(Desig_T
)
4414 Exp_Typ
: Entity_Id
;
4417 if Nkind
(E
) = N_Qualified_Expression
then
4418 Exp_Typ
:= Etype
(E
);
4419 elsif Nkind
(E
) = N_Subtype_Indication
then
4420 Exp_Typ
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4422 Exp_Typ
:= Entity
(E
);
4425 if Type_Access_Level
(Exp_Typ
) >
4426 Deepest_Type_Access_Level
(Typ
)
4428 if In_Instance_Body
then
4429 Error_Msg_N
("?type in allocator has deeper level than" &
4430 " designated class-wide type", E
);
4431 Error_Msg_N
("\?Program_Error will be raised at run time",
4434 Make_Raise_Program_Error
(Sloc
(N
),
4435 Reason
=> PE_Accessibility_Check_Failed
));
4438 -- Do not apply Ada 2005 accessibility checks on a class-wide
4439 -- allocator if the type given in the allocator is a formal
4440 -- type. A run-time check will be performed in the instance.
4442 elsif not Is_Generic_Type
(Exp_Typ
) then
4443 Error_Msg_N
("type in allocator has deeper level than" &
4444 " designated class-wide type", E
);
4450 -- Check for allocation from an empty storage pool
4452 if No_Pool_Assigned
(Typ
) then
4453 Error_Msg_N
("allocation from empty storage pool!", N
);
4455 -- If the context is an unchecked conversion, as may happen within an
4456 -- inlined subprogram, the allocator is being resolved with its own
4457 -- anonymous type. In that case, if the target type has a specific
4458 -- storage pool, it must be inherited explicitly by the allocator type.
4460 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
4461 and then No
(Associated_Storage_Pool
(Typ
))
4463 Set_Associated_Storage_Pool
4464 (Typ
, Associated_Storage_Pool
(Etype
(Parent
(N
))));
4467 if Ekind
(Etype
(N
)) = E_Anonymous_Access_Type
then
4468 Check_Restriction
(No_Anonymous_Allocators
, N
);
4471 -- Check that an allocator with task parts isn't for a nested access
4472 -- type when restriction No_Task_Hierarchy applies.
4474 if not Is_Library_Level_Entity
(Base_Type
(Typ
))
4475 and then Has_Task
(Base_Type
(Desig_T
))
4477 Check_Restriction
(No_Task_Hierarchy
, N
);
4480 -- An erroneous allocator may be rewritten as a raise Program_Error
4483 if Nkind
(N
) = N_Allocator
then
4485 -- An anonymous access discriminant is the definition of a
4488 if Ekind
(Typ
) = E_Anonymous_Access_Type
4489 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
4490 N_Discriminant_Specification
4493 Discr
: constant Entity_Id
:=
4494 Defining_Identifier
(Associated_Node_For_Itype
(Typ
));
4497 -- Ada 2012 AI05-0052: If the designated type of the allocator
4498 -- is limited, then the allocator shall not be used to define
4499 -- the value of an access discriminant unless the discriminated
4500 -- type is immutably limited.
4502 if Ada_Version
>= Ada_2012
4503 and then Is_Limited_Type
(Desig_T
)
4504 and then not Is_Immutably_Limited_Type
(Scope
(Discr
))
4507 ("only immutably limited types can have anonymous "
4508 & "access discriminants designating a limited type", N
);
4512 -- Avoid marking an allocator as a dynamic coextension if it is
4513 -- within a static construct.
4515 if not Is_Static_Coextension
(N
) then
4516 Set_Is_Dynamic_Coextension
(N
);
4519 -- Cleanup for potential static coextensions
4522 Set_Is_Dynamic_Coextension
(N
, False);
4523 Set_Is_Static_Coextension
(N
, False);
4527 -- Report a simple error: if the designated object is a local task,
4528 -- its body has not been seen yet, and its activation will fail an
4529 -- elaboration check.
4531 if Is_Task_Type
(Desig_T
)
4532 and then Scope
(Base_Type
(Desig_T
)) = Current_Scope
4533 and then Is_Compilation_Unit
(Current_Scope
)
4534 and then Ekind
(Current_Scope
) = E_Package
4535 and then not In_Package_Body
(Current_Scope
)
4537 Error_Msg_N
("?cannot activate task before body seen", N
);
4538 Error_Msg_N
("\?Program_Error will be raised at run time", N
);
4541 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4542 -- type with a task component on a subpool. This action must raise
4543 -- Program_Error at runtime.
4545 if Ada_Version
>= Ada_2012
4546 and then Nkind
(N
) = N_Allocator
4547 and then Present
(Subpool_Handle_Name
(N
))
4548 and then Has_Task
(Desig_T
)
4550 Error_Msg_N
("?cannot allocate task on subpool", N
);
4551 Error_Msg_N
("\?Program_Error will be raised at run time", N
);
4554 Make_Raise_Program_Error
(Sloc
(N
),
4555 Reason
=> PE_Explicit_Raise
));
4558 end Resolve_Allocator
;
4560 ---------------------------
4561 -- Resolve_Arithmetic_Op --
4562 ---------------------------
4564 -- Used for resolving all arithmetic operators except exponentiation
4566 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
4567 L
: constant Node_Id
:= Left_Opnd
(N
);
4568 R
: constant Node_Id
:= Right_Opnd
(N
);
4569 TL
: constant Entity_Id
:= Base_Type
(Etype
(L
));
4570 TR
: constant Entity_Id
:= Base_Type
(Etype
(R
));
4574 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
4575 -- We do the resolution using the base type, because intermediate values
4576 -- in expressions always are of the base type, not a subtype of it.
4578 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean;
4579 -- Returns True if N is in a context that expects "any real type"
4581 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean;
4582 -- Return True iff given type is Integer or universal real/integer
4584 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
);
4585 -- Choose type of integer literal in fixed-point operation to conform
4586 -- to available fixed-point type. T is the type of the other operand,
4587 -- which is needed to determine the expected type of N.
4589 procedure Set_Operand_Type
(N
: Node_Id
);
4590 -- Set operand type to T if universal
4592 -------------------------------
4593 -- Expected_Type_Is_Any_Real --
4594 -------------------------------
4596 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean is
4598 -- N is the expression after "delta" in a fixed_point_definition;
4601 return Nkind_In
(Parent
(N
), N_Ordinary_Fixed_Point_Definition
,
4602 N_Decimal_Fixed_Point_Definition
,
4604 -- N is one of the bounds in a real_range_specification;
4607 N_Real_Range_Specification
,
4609 -- N is the expression of a delta_constraint;
4612 N_Delta_Constraint
);
4613 end Expected_Type_Is_Any_Real
;
4615 -----------------------------
4616 -- Is_Integer_Or_Universal --
4617 -----------------------------
4619 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean is
4621 Index
: Interp_Index
;
4625 if not Is_Overloaded
(N
) then
4627 return Base_Type
(T
) = Base_Type
(Standard_Integer
)
4628 or else T
= Universal_Integer
4629 or else T
= Universal_Real
;
4631 Get_First_Interp
(N
, Index
, It
);
4632 while Present
(It
.Typ
) loop
4633 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
)
4634 or else It
.Typ
= Universal_Integer
4635 or else It
.Typ
= Universal_Real
4640 Get_Next_Interp
(Index
, It
);
4645 end Is_Integer_Or_Universal
;
4647 ----------------------------
4648 -- Set_Mixed_Mode_Operand --
4649 ----------------------------
4651 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
) is
4652 Index
: Interp_Index
;
4656 if Universal_Interpretation
(N
) = Universal_Integer
then
4658 -- A universal integer literal is resolved as standard integer
4659 -- except in the case of a fixed-point result, where we leave it
4660 -- as universal (to be handled by Exp_Fixd later on)
4662 if Is_Fixed_Point_Type
(T
) then
4663 Resolve
(N
, Universal_Integer
);
4665 Resolve
(N
, Standard_Integer
);
4668 elsif Universal_Interpretation
(N
) = Universal_Real
4669 and then (T
= Base_Type
(Standard_Integer
)
4670 or else T
= Universal_Integer
4671 or else T
= Universal_Real
)
4673 -- A universal real can appear in a fixed-type context. We resolve
4674 -- the literal with that context, even though this might raise an
4675 -- exception prematurely (the other operand may be zero).
4679 elsif Etype
(N
) = Base_Type
(Standard_Integer
)
4680 and then T
= Universal_Real
4681 and then Is_Overloaded
(N
)
4683 -- Integer arg in mixed-mode operation. Resolve with universal
4684 -- type, in case preference rule must be applied.
4686 Resolve
(N
, Universal_Integer
);
4689 and then B_Typ
/= Universal_Fixed
4691 -- Not a mixed-mode operation, resolve with context
4695 elsif Etype
(N
) = Any_Fixed
then
4697 -- N may itself be a mixed-mode operation, so use context type
4701 elsif Is_Fixed_Point_Type
(T
)
4702 and then B_Typ
= Universal_Fixed
4703 and then Is_Overloaded
(N
)
4705 -- Must be (fixed * fixed) operation, operand must have one
4706 -- compatible interpretation.
4708 Resolve
(N
, Any_Fixed
);
4710 elsif Is_Fixed_Point_Type
(B_Typ
)
4711 and then (T
= Universal_Real
4712 or else Is_Fixed_Point_Type
(T
))
4713 and then Is_Overloaded
(N
)
4715 -- C * F(X) in a fixed context, where C is a real literal or a
4716 -- fixed-point expression. F must have either a fixed type
4717 -- interpretation or an integer interpretation, but not both.
4719 Get_First_Interp
(N
, Index
, It
);
4720 while Present
(It
.Typ
) loop
4721 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
) then
4722 if Analyzed
(N
) then
4723 Error_Msg_N
("ambiguous operand in fixed operation", N
);
4725 Resolve
(N
, Standard_Integer
);
4728 elsif Is_Fixed_Point_Type
(It
.Typ
) then
4729 if Analyzed
(N
) then
4730 Error_Msg_N
("ambiguous operand in fixed operation", N
);
4732 Resolve
(N
, It
.Typ
);
4736 Get_Next_Interp
(Index
, It
);
4739 -- Reanalyze the literal with the fixed type of the context. If
4740 -- context is Universal_Fixed, we are within a conversion, leave
4741 -- the literal as a universal real because there is no usable
4742 -- fixed type, and the target of the conversion plays no role in
4756 if B_Typ
= Universal_Fixed
4757 and then Nkind
(Op2
) = N_Real_Literal
4759 T2
:= Universal_Real
;
4764 Set_Analyzed
(Op2
, False);
4771 end Set_Mixed_Mode_Operand
;
4773 ----------------------
4774 -- Set_Operand_Type --
4775 ----------------------
4777 procedure Set_Operand_Type
(N
: Node_Id
) is
4779 if Etype
(N
) = Universal_Integer
4780 or else Etype
(N
) = Universal_Real
4784 end Set_Operand_Type
;
4786 -- Start of processing for Resolve_Arithmetic_Op
4789 if Comes_From_Source
(N
)
4790 and then Ekind
(Entity
(N
)) = E_Function
4791 and then Is_Imported
(Entity
(N
))
4792 and then Is_Intrinsic_Subprogram
(Entity
(N
))
4794 Resolve_Intrinsic_Operator
(N
, Typ
);
4797 -- Special-case for mixed-mode universal expressions or fixed point type
4798 -- operation: each argument is resolved separately. The same treatment
4799 -- is required if one of the operands of a fixed point operation is
4800 -- universal real, since in this case we don't do a conversion to a
4801 -- specific fixed-point type (instead the expander handles the case).
4803 -- Set the type of the node to its universal interpretation because
4804 -- legality checks on an exponentiation operand need the context.
4806 elsif (B_Typ
= Universal_Integer
or else B_Typ
= Universal_Real
)
4807 and then Present
(Universal_Interpretation
(L
))
4808 and then Present
(Universal_Interpretation
(R
))
4810 Set_Etype
(N
, B_Typ
);
4811 Resolve
(L
, Universal_Interpretation
(L
));
4812 Resolve
(R
, Universal_Interpretation
(R
));
4814 elsif (B_Typ
= Universal_Real
4815 or else Etype
(N
) = Universal_Fixed
4816 or else (Etype
(N
) = Any_Fixed
4817 and then Is_Fixed_Point_Type
(B_Typ
))
4818 or else (Is_Fixed_Point_Type
(B_Typ
)
4819 and then (Is_Integer_Or_Universal
(L
)
4821 Is_Integer_Or_Universal
(R
))))
4822 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
4824 if TL
= Universal_Integer
or else TR
= Universal_Integer
then
4825 Check_For_Visible_Operator
(N
, B_Typ
);
4828 -- If context is a fixed type and one operand is integer, the other
4829 -- is resolved with the type of the context.
4831 if Is_Fixed_Point_Type
(B_Typ
)
4832 and then (Base_Type
(TL
) = Base_Type
(Standard_Integer
)
4833 or else TL
= Universal_Integer
)
4838 elsif Is_Fixed_Point_Type
(B_Typ
)
4839 and then (Base_Type
(TR
) = Base_Type
(Standard_Integer
)
4840 or else TR
= Universal_Integer
)
4846 Set_Mixed_Mode_Operand
(L
, TR
);
4847 Set_Mixed_Mode_Operand
(R
, TL
);
4850 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4851 -- multiplying operators from being used when the expected type is
4852 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4853 -- some cases where the expected type is actually Any_Real;
4854 -- Expected_Type_Is_Any_Real takes care of that case.
4856 if Etype
(N
) = Universal_Fixed
4857 or else Etype
(N
) = Any_Fixed
4859 if B_Typ
= Universal_Fixed
4860 and then not Expected_Type_Is_Any_Real
(N
)
4861 and then not Nkind_In
(Parent
(N
), N_Type_Conversion
,
4862 N_Unchecked_Type_Conversion
)
4864 Error_Msg_N
("type cannot be determined from context!", N
);
4865 Error_Msg_N
("\explicit conversion to result type required", N
);
4867 Set_Etype
(L
, Any_Type
);
4868 Set_Etype
(R
, Any_Type
);
4871 if Ada_Version
= Ada_83
4872 and then Etype
(N
) = Universal_Fixed
4874 Nkind_In
(Parent
(N
), N_Type_Conversion
,
4875 N_Unchecked_Type_Conversion
)
4878 ("(Ada 83) fixed-point operation "
4879 & "needs explicit conversion", N
);
4882 -- The expected type is "any real type" in contexts like
4884 -- type T is delta <universal_fixed-expression> ...
4886 -- in which case we need to set the type to Universal_Real
4887 -- so that static expression evaluation will work properly.
4889 if Expected_Type_Is_Any_Real
(N
) then
4890 Set_Etype
(N
, Universal_Real
);
4892 Set_Etype
(N
, B_Typ
);
4896 elsif Is_Fixed_Point_Type
(B_Typ
)
4897 and then (Is_Integer_Or_Universal
(L
)
4898 or else Nkind
(L
) = N_Real_Literal
4899 or else Nkind
(R
) = N_Real_Literal
4900 or else Is_Integer_Or_Universal
(R
))
4902 Set_Etype
(N
, B_Typ
);
4904 elsif Etype
(N
) = Any_Fixed
then
4906 -- If no previous errors, this is only possible if one operand is
4907 -- overloaded and the context is universal. Resolve as such.
4909 Set_Etype
(N
, B_Typ
);
4913 if (TL
= Universal_Integer
or else TL
= Universal_Real
)
4915 (TR
= Universal_Integer
or else TR
= Universal_Real
)
4917 Check_For_Visible_Operator
(N
, B_Typ
);
4920 -- If the context is Universal_Fixed and the operands are also
4921 -- universal fixed, this is an error, unless there is only one
4922 -- applicable fixed_point type (usually Duration).
4924 if B_Typ
= Universal_Fixed
and then Etype
(L
) = Universal_Fixed
then
4925 T
:= Unique_Fixed_Point_Type
(N
);
4927 if T
= Any_Type
then
4940 -- If one of the arguments was resolved to a non-universal type.
4941 -- label the result of the operation itself with the same type.
4942 -- Do the same for the universal argument, if any.
4944 T
:= Intersect_Types
(L
, R
);
4945 Set_Etype
(N
, Base_Type
(T
));
4946 Set_Operand_Type
(L
);
4947 Set_Operand_Type
(R
);
4950 Generate_Operator_Reference
(N
, Typ
);
4951 Analyze_Dimension
(N
);
4952 Eval_Arithmetic_Op
(N
);
4954 -- In SPARK, a multiplication or division with operands of fixed point
4955 -- types shall be qualified or explicitly converted to identify the
4958 if (Is_Fixed_Point_Type
(Etype
(L
))
4959 or else Is_Fixed_Point_Type
(Etype
(R
)))
4960 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
4962 not Nkind_In
(Parent
(N
), N_Qualified_Expression
, N_Type_Conversion
)
4964 Check_SPARK_Restriction
4965 ("operation should be qualified or explicitly converted", N
);
4968 -- Set overflow and division checking bit. Much cleverer code needed
4969 -- here eventually and perhaps the Resolve routines should be separated
4970 -- for the various arithmetic operations, since they will need
4971 -- different processing. ???
4973 if Nkind
(N
) in N_Op
then
4974 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
4975 Enable_Overflow_Check
(N
);
4978 -- Give warning if explicit division by zero
4980 if Nkind_In
(N
, N_Op_Divide
, N_Op_Rem
, N_Op_Mod
)
4981 and then not Division_Checks_Suppressed
(Etype
(N
))
4983 Rop
:= Right_Opnd
(N
);
4985 if Compile_Time_Known_Value
(Rop
)
4986 and then ((Is_Integer_Type
(Etype
(Rop
))
4987 and then Expr_Value
(Rop
) = Uint_0
)
4989 (Is_Real_Type
(Etype
(Rop
))
4990 and then Expr_Value_R
(Rop
) = Ureal_0
))
4992 -- Specialize the warning message according to the operation.
4993 -- The following warnings are for the case
4998 -- For division, we have two cases, for float division
4999 -- of an unconstrained float type, on a machine where
5000 -- Machine_Overflows is false, we don't get an exception
5001 -- at run-time, but rather an infinity or Nan. The Nan
5002 -- case is pretty obscure, so just warn about infinities.
5004 if Is_Floating_Point_Type
(Typ
)
5005 and then not Is_Constrained
(Typ
)
5006 and then not Machine_Overflows_On_Target
5009 ("float division by zero, " &
5010 "may generate '+'/'- infinity?", Right_Opnd
(N
));
5012 -- For all other cases, we get a Constraint_Error
5015 Apply_Compile_Time_Constraint_Error
5016 (N
, "division by zero?", CE_Divide_By_Zero
,
5017 Loc
=> Sloc
(Right_Opnd
(N
)));
5021 Apply_Compile_Time_Constraint_Error
5022 (N
, "rem with zero divisor?", CE_Divide_By_Zero
,
5023 Loc
=> Sloc
(Right_Opnd
(N
)));
5026 Apply_Compile_Time_Constraint_Error
5027 (N
, "mod with zero divisor?", CE_Divide_By_Zero
,
5028 Loc
=> Sloc
(Right_Opnd
(N
)));
5030 -- Division by zero can only happen with division, rem,
5031 -- and mod operations.
5034 raise Program_Error
;
5037 -- Otherwise just set the flag to check at run time
5040 Activate_Division_Check
(N
);
5044 -- If Restriction No_Implicit_Conditionals is active, then it is
5045 -- violated if either operand can be negative for mod, or for rem
5046 -- if both operands can be negative.
5048 if Restriction_Check_Required
(No_Implicit_Conditionals
)
5049 and then Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
)
5058 -- Set if corresponding operand might be negative
5062 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5063 LNeg
:= (not OK
) or else Lo
< 0;
5066 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5067 RNeg
:= (not OK
) or else Lo
< 0;
5069 -- Check if we will be generating conditionals. There are two
5070 -- cases where that can happen, first for REM, the only case
5071 -- is largest negative integer mod -1, where the division can
5072 -- overflow, but we still have to give the right result. The
5073 -- front end generates a test for this annoying case. Here we
5074 -- just test if both operands can be negative (that's what the
5075 -- expander does, so we match its logic here).
5077 -- The second case is mod where either operand can be negative.
5078 -- In this case, the back end has to generate additional tests.
5080 if (Nkind
(N
) = N_Op_Rem
and then (LNeg
and RNeg
))
5082 (Nkind
(N
) = N_Op_Mod
and then (LNeg
or RNeg
))
5084 Check_Restriction
(No_Implicit_Conditionals
, N
);
5090 Check_Unset_Reference
(L
);
5091 Check_Unset_Reference
(R
);
5092 end Resolve_Arithmetic_Op
;
5098 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
5099 Loc
: constant Source_Ptr
:= Sloc
(N
);
5100 Subp
: constant Node_Id
:= Name
(N
);
5108 function Same_Or_Aliased_Subprograms
5110 E
: Entity_Id
) return Boolean;
5111 -- Returns True if the subprogram entity S is the same as E or else
5112 -- S is an alias of E.
5114 ---------------------------------
5115 -- Same_Or_Aliased_Subprograms --
5116 ---------------------------------
5118 function Same_Or_Aliased_Subprograms
5120 E
: Entity_Id
) return Boolean
5122 Subp_Alias
: constant Entity_Id
:= Alias
(S
);
5125 or else (Present
(Subp_Alias
) and then Subp_Alias
= E
);
5126 end Same_Or_Aliased_Subprograms
;
5128 -- Start of processing for Resolve_Call
5131 -- The context imposes a unique interpretation with type Typ on a
5132 -- procedure or function call. Find the entity of the subprogram that
5133 -- yields the expected type, and propagate the corresponding formal
5134 -- constraints on the actuals. The caller has established that an
5135 -- interpretation exists, and emitted an error if not unique.
5137 -- First deal with the case of a call to an access-to-subprogram,
5138 -- dereference made explicit in Analyze_Call.
5140 if Ekind
(Etype
(Subp
)) = E_Subprogram_Type
then
5141 if not Is_Overloaded
(Subp
) then
5142 Nam
:= Etype
(Subp
);
5145 -- Find the interpretation whose type (a subprogram type) has a
5146 -- return type that is compatible with the context. Analysis of
5147 -- the node has established that one exists.
5151 Get_First_Interp
(Subp
, I
, It
);
5152 while Present
(It
.Typ
) loop
5153 if Covers
(Typ
, Etype
(It
.Typ
)) then
5158 Get_Next_Interp
(I
, It
);
5162 raise Program_Error
;
5166 -- If the prefix is not an entity, then resolve it
5168 if not Is_Entity_Name
(Subp
) then
5169 Resolve
(Subp
, Nam
);
5172 -- For an indirect call, we always invalidate checks, since we do not
5173 -- know whether the subprogram is local or global. Yes we could do
5174 -- better here, e.g. by knowing that there are no local subprograms,
5175 -- but it does not seem worth the effort. Similarly, we kill all
5176 -- knowledge of current constant values.
5178 Kill_Current_Values
;
5180 -- If this is a procedure call which is really an entry call, do
5181 -- the conversion of the procedure call to an entry call. Protected
5182 -- operations use the same circuitry because the name in the call
5183 -- can be an arbitrary expression with special resolution rules.
5185 elsif Nkind_In
(Subp
, N_Selected_Component
, N_Indexed_Component
)
5186 or else (Is_Entity_Name
(Subp
)
5187 and then Ekind
(Entity
(Subp
)) = E_Entry
)
5189 Resolve_Entry_Call
(N
, Typ
);
5190 Check_Elab_Call
(N
);
5192 -- Kill checks and constant values, as above for indirect case
5193 -- Who knows what happens when another task is activated?
5195 Kill_Current_Values
;
5198 -- Normal subprogram call with name established in Resolve
5200 elsif not (Is_Type
(Entity
(Subp
))) then
5201 Nam
:= Entity
(Subp
);
5202 Set_Entity_With_Style_Check
(Subp
, Nam
);
5204 -- Otherwise we must have the case of an overloaded call
5207 pragma Assert
(Is_Overloaded
(Subp
));
5209 -- Initialize Nam to prevent warning (we know it will be assigned
5210 -- in the loop below, but the compiler does not know that).
5214 Get_First_Interp
(Subp
, I
, It
);
5215 while Present
(It
.Typ
) loop
5216 if Covers
(Typ
, It
.Typ
) then
5218 Set_Entity_With_Style_Check
(Subp
, Nam
);
5222 Get_Next_Interp
(I
, It
);
5226 if Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
5227 and then not Is_Access_Subprogram_Type
(Base_Type
(Typ
))
5228 and then Nkind
(Subp
) /= N_Explicit_Dereference
5229 and then Present
(Parameter_Associations
(N
))
5231 -- The prefix is a parameterless function call that returns an access
5232 -- to subprogram. If parameters are present in the current call, add
5233 -- add an explicit dereference. We use the base type here because
5234 -- within an instance these may be subtypes.
5236 -- The dereference is added either in Analyze_Call or here. Should
5237 -- be consolidated ???
5239 Set_Is_Overloaded
(Subp
, False);
5240 Set_Etype
(Subp
, Etype
(Nam
));
5241 Insert_Explicit_Dereference
(Subp
);
5242 Nam
:= Designated_Type
(Etype
(Nam
));
5243 Resolve
(Subp
, Nam
);
5246 -- Check that a call to Current_Task does not occur in an entry body
5248 if Is_RTE
(Nam
, RE_Current_Task
) then
5257 -- Exclude calls that occur within the default of a formal
5258 -- parameter of the entry, since those are evaluated outside
5261 exit when No
(P
) or else Nkind
(P
) = N_Parameter_Specification
;
5263 if Nkind
(P
) = N_Entry_Body
5264 or else (Nkind
(P
) = N_Subprogram_Body
5265 and then Is_Entry_Barrier_Function
(P
))
5269 ("?& should not be used in entry body (RM C.7(17))",
5272 ("\Program_Error will be raised at run time?", N
, Nam
);
5274 Make_Raise_Program_Error
(Loc
,
5275 Reason
=> PE_Current_Task_In_Entry_Body
));
5276 Set_Etype
(N
, Rtype
);
5283 -- Check that a procedure call does not occur in the context of the
5284 -- entry call statement of a conditional or timed entry call. Note that
5285 -- the case of a call to a subprogram renaming of an entry will also be
5286 -- rejected. The test for N not being an N_Entry_Call_Statement is
5287 -- defensive, covering the possibility that the processing of entry
5288 -- calls might reach this point due to later modifications of the code
5291 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
5292 and then Nkind
(N
) /= N_Entry_Call_Statement
5293 and then Entry_Call_Statement
(Parent
(N
)) = N
5295 if Ada_Version
< Ada_2005
then
5296 Error_Msg_N
("entry call required in select statement", N
);
5298 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5299 -- for a procedure_or_entry_call, the procedure_name or
5300 -- procedure_prefix of the procedure_call_statement shall denote
5301 -- an entry renamed by a procedure, or (a view of) a primitive
5302 -- subprogram of a limited interface whose first parameter is
5303 -- a controlling parameter.
5305 elsif Nkind
(N
) = N_Procedure_Call_Statement
5306 and then not Is_Renamed_Entry
(Nam
)
5307 and then not Is_Controlling_Limited_Procedure
(Nam
)
5310 ("entry call or dispatching primitive of interface required", N
);
5314 -- Check that this is not a call to a protected procedure or entry from
5315 -- within a protected function.
5317 if Ekind
(Current_Scope
) = E_Function
5318 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
5319 and then Ekind
(Nam
) /= E_Function
5320 and then Scope
(Nam
) = Scope
(Current_Scope
)
5322 Error_Msg_N
("within protected function, protected " &
5323 "object is constant", N
);
5324 Error_Msg_N
("\cannot call operation that may modify it", N
);
5327 -- Freeze the subprogram name if not in a spec-expression. Note that we
5328 -- freeze procedure calls as well as function calls. Procedure calls are
5329 -- not frozen according to the rules (RM 13.14(14)) because it is
5330 -- impossible to have a procedure call to a non-frozen procedure in pure
5331 -- Ada, but in the code that we generate in the expander, this rule
5332 -- needs extending because we can generate procedure calls that need
5335 -- In Ada 2012, expression functions may be called within pre/post
5336 -- conditions of subsequent functions or expression functions. Such
5337 -- calls do not freeze when they appear within generated bodies, which
5338 -- would place the freeze node in the wrong scope. An expression
5339 -- function is frozen in the usual fashion, by the appearance of a real
5340 -- body, or at the end of a declarative part.
5342 if Is_Entity_Name
(Subp
) and then not In_Spec_Expression
5344 (not Is_Expression_Function
(Entity
(Subp
))
5345 or else Scope
(Entity
(Subp
)) = Current_Scope
)
5347 Freeze_Expression
(Subp
);
5350 -- For a predefined operator, the type of the result is the type imposed
5351 -- by context, except for a predefined operation on universal fixed.
5352 -- Otherwise The type of the call is the type returned by the subprogram
5355 if Is_Predefined_Op
(Nam
) then
5356 if Etype
(N
) /= Universal_Fixed
then
5360 -- If the subprogram returns an array type, and the context requires the
5361 -- component type of that array type, the node is really an indexing of
5362 -- the parameterless call. Resolve as such. A pathological case occurs
5363 -- when the type of the component is an access to the array type. In
5364 -- this case the call is truly ambiguous.
5366 elsif (Needs_No_Actuals
(Nam
) or else Needs_One_Actual
(Nam
))
5368 ((Is_Array_Type
(Etype
(Nam
))
5369 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
5370 or else (Is_Access_Type
(Etype
(Nam
))
5371 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
5375 Component_Type
(Designated_Type
(Etype
(Nam
))))))
5378 Index_Node
: Node_Id
;
5380 Ret_Type
: constant Entity_Id
:= Etype
(Nam
);
5383 if Is_Access_Type
(Ret_Type
)
5384 and then Ret_Type
= Component_Type
(Designated_Type
(Ret_Type
))
5387 ("cannot disambiguate function call and indexing", N
);
5389 New_Subp
:= Relocate_Node
(Subp
);
5390 Set_Entity
(Subp
, Nam
);
5392 if (Is_Array_Type
(Ret_Type
)
5393 and then Component_Type
(Ret_Type
) /= Any_Type
)
5395 (Is_Access_Type
(Ret_Type
)
5397 Component_Type
(Designated_Type
(Ret_Type
)) /= Any_Type
)
5399 if Needs_No_Actuals
(Nam
) then
5401 -- Indexed call to a parameterless function
5404 Make_Indexed_Component
(Loc
,
5406 Make_Function_Call
(Loc
,
5408 Expressions
=> Parameter_Associations
(N
));
5410 -- An Ada 2005 prefixed call to a primitive operation
5411 -- whose first parameter is the prefix. This prefix was
5412 -- prepended to the parameter list, which is actually a
5413 -- list of indexes. Remove the prefix in order to build
5414 -- the proper indexed component.
5417 Make_Indexed_Component
(Loc
,
5419 Make_Function_Call
(Loc
,
5421 Parameter_Associations
=>
5423 (Remove_Head
(Parameter_Associations
(N
)))),
5424 Expressions
=> Parameter_Associations
(N
));
5427 -- Preserve the parenthesis count of the node
5429 Set_Paren_Count
(Index_Node
, Paren_Count
(N
));
5431 -- Since we are correcting a node classification error made
5432 -- by the parser, we call Replace rather than Rewrite.
5434 Replace
(N
, Index_Node
);
5436 Set_Etype
(Prefix
(N
), Ret_Type
);
5438 Resolve_Indexed_Component
(N
, Typ
);
5439 Check_Elab_Call
(Prefix
(N
));
5447 Set_Etype
(N
, Etype
(Nam
));
5450 -- In the case where the call is to an overloaded subprogram, Analyze
5451 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5452 -- such a case Normalize_Actuals needs to be called once more to order
5453 -- the actuals correctly. Otherwise the call will have the ordering
5454 -- given by the last overloaded subprogram whether this is the correct
5455 -- one being called or not.
5457 if Is_Overloaded
(Subp
) then
5458 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
5459 pragma Assert
(Norm_OK
);
5462 -- In any case, call is fully resolved now. Reset Overload flag, to
5463 -- prevent subsequent overload resolution if node is analyzed again
5465 Set_Is_Overloaded
(Subp
, False);
5466 Set_Is_Overloaded
(N
, False);
5468 -- If we are calling the current subprogram from immediately within its
5469 -- body, then that is the case where we can sometimes detect cases of
5470 -- infinite recursion statically. Do not try this in case restriction
5471 -- No_Recursion is in effect anyway, and do it only for source calls.
5473 if Comes_From_Source
(N
) then
5474 Scop
:= Current_Scope
;
5476 -- Issue warning for possible infinite recursion in the absence
5477 -- of the No_Recursion restriction.
5479 if Same_Or_Aliased_Subprograms
(Nam
, Scop
)
5480 and then not Restriction_Active
(No_Recursion
)
5481 and then Check_Infinite_Recursion
(N
)
5483 -- Here we detected and flagged an infinite recursion, so we do
5484 -- not need to test the case below for further warnings. Also we
5485 -- are all done if we now have a raise SE node.
5487 if Nkind
(N
) = N_Raise_Storage_Error
then
5491 -- If call is to immediately containing subprogram, then check for
5492 -- the case of a possible run-time detectable infinite recursion.
5495 Scope_Loop
: while Scop
/= Standard_Standard
loop
5496 if Same_Or_Aliased_Subprograms
(Nam
, Scop
) then
5498 -- Although in general case, recursion is not statically
5499 -- checkable, the case of calling an immediately containing
5500 -- subprogram is easy to catch.
5502 Check_Restriction
(No_Recursion
, N
);
5504 -- If the recursive call is to a parameterless subprogram,
5505 -- then even if we can't statically detect infinite
5506 -- recursion, this is pretty suspicious, and we output a
5507 -- warning. Furthermore, we will try later to detect some
5508 -- cases here at run time by expanding checking code (see
5509 -- Detect_Infinite_Recursion in package Exp_Ch6).
5511 -- If the recursive call is within a handler, do not emit a
5512 -- warning, because this is a common idiom: loop until input
5513 -- is correct, catch illegal input in handler and restart.
5515 if No
(First_Formal
(Nam
))
5516 and then Etype
(Nam
) = Standard_Void_Type
5517 and then not Error_Posted
(N
)
5518 and then Nkind
(Parent
(N
)) /= N_Exception_Handler
5520 -- For the case of a procedure call. We give the message
5521 -- only if the call is the first statement in a sequence
5522 -- of statements, or if all previous statements are
5523 -- simple assignments. This is simply a heuristic to
5524 -- decrease false positives, without losing too many good
5525 -- warnings. The idea is that these previous statements
5526 -- may affect global variables the procedure depends on.
5527 -- We also exclude raise statements, that may arise from
5528 -- constraint checks and are probably unrelated to the
5529 -- intended control flow.
5531 if Nkind
(N
) = N_Procedure_Call_Statement
5532 and then Is_List_Member
(N
)
5538 while Present
(P
) loop
5540 N_Assignment_Statement
,
5541 N_Raise_Constraint_Error
)
5551 -- Do not give warning if we are in a conditional context
5554 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
5556 if (K
= N_Loop_Statement
5557 and then Present
(Iteration_Scheme
(Parent
(N
))))
5558 or else K
= N_If_Statement
5559 or else K
= N_Elsif_Part
5560 or else K
= N_Case_Statement_Alternative
5566 -- Here warning is to be issued
5568 Set_Has_Recursive_Call
(Nam
);
5570 ("?possible infinite recursion!", N
);
5572 ("\?Storage_Error may be raised at run time!", N
);
5578 Scop
:= Scope
(Scop
);
5579 end loop Scope_Loop
;
5583 -- Check obsolescent reference to Ada.Characters.Handling subprogram
5585 Check_Obsolescent_2005_Entity
(Nam
, Subp
);
5587 -- If subprogram name is a predefined operator, it was given in
5588 -- functional notation. Replace call node with operator node, so
5589 -- that actuals can be resolved appropriately.
5591 if Is_Predefined_Op
(Nam
) or else Ekind
(Nam
) = E_Operator
then
5592 Make_Call_Into_Operator
(N
, Typ
, Entity
(Name
(N
)));
5595 elsif Present
(Alias
(Nam
))
5596 and then Is_Predefined_Op
(Alias
(Nam
))
5598 Resolve_Actuals
(N
, Nam
);
5599 Make_Call_Into_Operator
(N
, Typ
, Alias
(Nam
));
5603 -- Create a transient scope if the resulting type requires it
5605 -- There are several notable exceptions:
5607 -- a) In init procs, the transient scope overhead is not needed, and is
5608 -- even incorrect when the call is a nested initialization call for a
5609 -- component whose expansion may generate adjust calls. However, if the
5610 -- call is some other procedure call within an initialization procedure
5611 -- (for example a call to Create_Task in the init_proc of the task
5612 -- run-time record) a transient scope must be created around this call.
5614 -- b) Enumeration literal pseudo-calls need no transient scope
5616 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5617 -- functions) do not use the secondary stack even though the return
5618 -- type may be unconstrained.
5620 -- d) Calls to a build-in-place function, since such functions may
5621 -- allocate their result directly in a target object, and cases where
5622 -- the result does get allocated in the secondary stack are checked for
5623 -- within the specialized Exp_Ch6 procedures for expanding those
5624 -- build-in-place calls.
5626 -- e) If the subprogram is marked Inline_Always, then even if it returns
5627 -- an unconstrained type the call does not require use of the secondary
5628 -- stack. However, inlining will only take place if the body to inline
5629 -- is already present. It may not be available if e.g. the subprogram is
5630 -- declared in a child instance.
5632 -- If this is an initialization call for a type whose construction
5633 -- uses the secondary stack, and it is not a nested call to initialize
5634 -- a component, we do need to create a transient scope for it. We
5635 -- check for this by traversing the type in Check_Initialization_Call.
5638 and then Has_Pragma_Inline_Always
(Nam
)
5639 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
5640 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
5641 and then not Debug_Flag_Dot_K
5645 elsif Is_Inlined
(Nam
)
5646 and then Has_Pragma_Inline
(Nam
)
5647 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
5648 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
5649 and then Debug_Flag_Dot_K
5653 elsif Ekind
(Nam
) = E_Enumeration_Literal
5654 or else Is_Build_In_Place_Function
(Nam
)
5655 or else Is_Intrinsic_Subprogram
(Nam
)
5659 elsif Full_Expander_Active
5660 and then Is_Type
(Etype
(Nam
))
5661 and then Requires_Transient_Scope
(Etype
(Nam
))
5663 (not Within_Init_Proc
5665 (not Is_Init_Proc
(Nam
) and then Ekind
(Nam
) /= E_Function
))
5667 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
5669 -- If the call appears within the bounds of a loop, it will
5670 -- be rewritten and reanalyzed, nothing left to do here.
5672 if Nkind
(N
) /= N_Function_Call
then
5676 elsif Is_Init_Proc
(Nam
)
5677 and then not Within_Init_Proc
5679 Check_Initialization_Call
(N
, Nam
);
5682 -- A protected function cannot be called within the definition of the
5683 -- enclosing protected type.
5685 if Is_Protected_Type
(Scope
(Nam
))
5686 and then In_Open_Scopes
(Scope
(Nam
))
5687 and then not Has_Completion
(Scope
(Nam
))
5690 ("& cannot be called before end of protected definition", N
, Nam
);
5693 -- Propagate interpretation to actuals, and add default expressions
5696 if Present
(First_Formal
(Nam
)) then
5697 Resolve_Actuals
(N
, Nam
);
5699 -- Overloaded literals are rewritten as function calls, for purpose of
5700 -- resolution. After resolution, we can replace the call with the
5703 elsif Ekind
(Nam
) = E_Enumeration_Literal
then
5704 Copy_Node
(Subp
, N
);
5705 Resolve_Entity_Name
(N
, Typ
);
5707 -- Avoid validation, since it is a static function call
5709 Generate_Reference
(Nam
, Subp
);
5713 -- If the subprogram is not global, then kill all saved values and
5714 -- checks. This is a bit conservative, since in many cases we could do
5715 -- better, but it is not worth the effort. Similarly, we kill constant
5716 -- values. However we do not need to do this for internal entities
5717 -- (unless they are inherited user-defined subprograms), since they
5718 -- are not in the business of molesting local values.
5720 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5721 -- kill all checks and values for calls to global subprograms. This
5722 -- takes care of the case where an access to a local subprogram is
5723 -- taken, and could be passed directly or indirectly and then called
5724 -- from almost any context.
5726 -- Note: we do not do this step till after resolving the actuals. That
5727 -- way we still take advantage of the current value information while
5728 -- scanning the actuals.
5730 -- We suppress killing values if we are processing the nodes associated
5731 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5732 -- type kills all the values as part of analyzing the code that
5733 -- initializes the dispatch tables.
5735 if Inside_Freezing_Actions
= 0
5736 and then (not Is_Library_Level_Entity
(Nam
)
5737 or else Suppress_Value_Tracking_On_Call
5738 (Nearest_Dynamic_Scope
(Current_Scope
)))
5739 and then (Comes_From_Source
(Nam
)
5740 or else (Present
(Alias
(Nam
))
5741 and then Comes_From_Source
(Alias
(Nam
))))
5743 Kill_Current_Values
;
5746 -- If we are warning about unread OUT parameters, this is the place to
5747 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5748 -- after the above call to Kill_Current_Values (since that call clears
5749 -- the Last_Assignment field of all local variables).
5751 if (Warn_On_Modified_Unread
or Warn_On_All_Unread_Out_Parameters
)
5752 and then Comes_From_Source
(N
)
5753 and then In_Extended_Main_Source_Unit
(N
)
5760 F
:= First_Formal
(Nam
);
5761 A
:= First_Actual
(N
);
5762 while Present
(F
) and then Present
(A
) loop
5763 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
5764 and then Warn_On_Modified_As_Out_Parameter
(F
)
5765 and then Is_Entity_Name
(A
)
5766 and then Present
(Entity
(A
))
5767 and then Comes_From_Source
(N
)
5768 and then Safe_To_Capture_Value
(N
, Entity
(A
))
5770 Set_Last_Assignment
(Entity
(A
), A
);
5779 -- If the subprogram is a primitive operation, check whether or not
5780 -- it is a correct dispatching call.
5782 if Is_Overloadable
(Nam
)
5783 and then Is_Dispatching_Operation
(Nam
)
5785 Check_Dispatching_Call
(N
);
5787 elsif Ekind
(Nam
) /= E_Subprogram_Type
5788 and then Is_Abstract_Subprogram
(Nam
)
5789 and then not In_Instance
5791 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Nam
);
5794 -- If this is a dispatching call, generate the appropriate reference,
5795 -- for better source navigation in GPS.
5797 if Is_Overloadable
(Nam
)
5798 and then Present
(Controlling_Argument
(N
))
5800 Generate_Reference
(Nam
, Subp
, 'R');
5802 -- Normal case, not a dispatching call: generate a call reference
5805 Generate_Reference
(Nam
, Subp
, 's');
5808 if Is_Intrinsic_Subprogram
(Nam
) then
5809 Check_Intrinsic_Call
(N
);
5812 -- Check for violation of restriction No_Specific_Termination_Handlers
5813 -- and warn on a potentially blocking call to Abort_Task.
5815 if Restriction_Check_Required
(No_Specific_Termination_Handlers
)
5816 and then (Is_RTE
(Nam
, RE_Set_Specific_Handler
)
5818 Is_RTE
(Nam
, RE_Specific_Handler
))
5820 Check_Restriction
(No_Specific_Termination_Handlers
, N
);
5822 elsif Is_RTE
(Nam
, RE_Abort_Task
) then
5823 Check_Potentially_Blocking_Operation
(N
);
5826 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
5827 -- timing event violates restriction No_Relative_Delay (AI-0211). We
5828 -- need to check the second argument to determine whether it is an
5829 -- absolute or relative timing event.
5831 if Restriction_Check_Required
(No_Relative_Delay
)
5832 and then Is_RTE
(Nam
, RE_Set_Handler
)
5833 and then Is_RTE
(Etype
(Next_Actual
(First_Actual
(N
))), RE_Time_Span
)
5835 Check_Restriction
(No_Relative_Delay
, N
);
5838 -- Issue an error for a call to an eliminated subprogram. This routine
5839 -- will not perform the check if the call appears within a default
5842 Check_For_Eliminated_Subprogram
(Subp
, Nam
);
5844 -- In formal mode, the primitive operations of a tagged type or type
5845 -- extension do not include functions that return the tagged type.
5847 -- Commented out as the call to Is_Inherited_Operation_For_Type may
5848 -- cause an error because the type entity of the parent node of
5849 -- Entity (Name (N) may not be set. ???
5850 -- So why not just add a guard ???
5852 -- if Nkind (N) = N_Function_Call
5853 -- and then Is_Tagged_Type (Etype (N))
5854 -- and then Is_Entity_Name (Name (N))
5855 -- and then Is_Inherited_Operation_For_Type
5856 -- (Entity (Name (N)), Etype (N))
5858 -- Check_SPARK_Restriction ("function not inherited", N);
5861 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
5862 -- class-wide and the call dispatches on result in a context that does
5863 -- not provide a tag, the call raises Program_Error.
5865 if Nkind
(N
) = N_Function_Call
5866 and then In_Instance
5867 and then Is_Generic_Actual_Type
(Typ
)
5868 and then Is_Class_Wide_Type
(Typ
)
5869 and then Has_Controlling_Result
(Nam
)
5870 and then Nkind
(Parent
(N
)) = N_Object_Declaration
5872 -- Verify that none of the formals are controlling
5875 Call_OK
: Boolean := False;
5879 F
:= First_Formal
(Nam
);
5880 while Present
(F
) loop
5881 if Is_Controlling_Formal
(F
) then
5890 Error_Msg_N
("!? cannot determine tag of result", N
);
5891 Error_Msg_N
("!? Program_Error will be raised", N
);
5893 Make_Raise_Program_Error
(Sloc
(N
),
5894 Reason
=> PE_Explicit_Raise
));
5899 Analyze_Dimension
(N
);
5901 -- All done, evaluate call and deal with elaboration issues
5904 Check_Elab_Call
(N
);
5905 Warn_On_Overlapping_Actuals
(Nam
, N
);
5908 -----------------------------
5909 -- Resolve_Case_Expression --
5910 -----------------------------
5912 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
5916 Alt
:= First
(Alternatives
(N
));
5917 while Present
(Alt
) loop
5918 Resolve
(Expression
(Alt
), Typ
);
5923 Eval_Case_Expression
(N
);
5924 end Resolve_Case_Expression
;
5926 -------------------------------
5927 -- Resolve_Character_Literal --
5928 -------------------------------
5930 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
5931 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5935 -- Verify that the character does belong to the type of the context
5937 Set_Etype
(N
, B_Typ
);
5938 Eval_Character_Literal
(N
);
5940 -- Wide_Wide_Character literals must always be defined, since the set
5941 -- of wide wide character literals is complete, i.e. if a character
5942 -- literal is accepted by the parser, then it is OK for wide wide
5943 -- character (out of range character literals are rejected).
5945 if Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
5948 -- Always accept character literal for type Any_Character, which
5949 -- occurs in error situations and in comparisons of literals, both
5950 -- of which should accept all literals.
5952 elsif B_Typ
= Any_Character
then
5955 -- For Standard.Character or a type derived from it, check that the
5956 -- literal is in range.
5958 elsif Root_Type
(B_Typ
) = Standard_Character
then
5959 if In_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
5963 -- For Standard.Wide_Character or a type derived from it, check that the
5964 -- literal is in range.
5966 elsif Root_Type
(B_Typ
) = Standard_Wide_Character
then
5967 if In_Wide_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
5971 -- For Standard.Wide_Wide_Character or a type derived from it, we
5972 -- know the literal is in range, since the parser checked!
5974 elsif Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
5977 -- If the entity is already set, this has already been resolved in a
5978 -- generic context, or comes from expansion. Nothing else to do.
5980 elsif Present
(Entity
(N
)) then
5983 -- Otherwise we have a user defined character type, and we can use the
5984 -- standard visibility mechanisms to locate the referenced entity.
5987 C
:= Current_Entity
(N
);
5988 while Present
(C
) loop
5989 if Etype
(C
) = B_Typ
then
5990 Set_Entity_With_Style_Check
(N
, C
);
5991 Generate_Reference
(C
, N
);
5999 -- If we fall through, then the literal does not match any of the
6000 -- entries of the enumeration type. This isn't just a constraint error
6001 -- situation, it is an illegality (see RM 4.2).
6004 ("character not defined for }", N
, First_Subtype
(B_Typ
));
6005 end Resolve_Character_Literal
;
6007 ---------------------------
6008 -- Resolve_Comparison_Op --
6009 ---------------------------
6011 -- Context requires a boolean type, and plays no role in resolution.
6012 -- Processing identical to that for equality operators. The result type is
6013 -- the base type, which matters when pathological subtypes of booleans with
6014 -- limited ranges are used.
6016 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6017 L
: constant Node_Id
:= Left_Opnd
(N
);
6018 R
: constant Node_Id
:= Right_Opnd
(N
);
6022 -- If this is an intrinsic operation which is not predefined, use the
6023 -- types of its declared arguments to resolve the possibly overloaded
6024 -- operands. Otherwise the operands are unambiguous and specify the
6027 if Scope
(Entity
(N
)) /= Standard_Standard
then
6028 T
:= Etype
(First_Entity
(Entity
(N
)));
6031 T
:= Find_Unique_Type
(L
, R
);
6033 if T
= Any_Fixed
then
6034 T
:= Unique_Fixed_Point_Type
(L
);
6038 Set_Etype
(N
, Base_Type
(Typ
));
6039 Generate_Reference
(T
, N
, ' ');
6041 -- Skip remaining processing if already set to Any_Type
6043 if T
= Any_Type
then
6047 -- Deal with other error cases
6049 if T
= Any_String
or else
6050 T
= Any_Composite
or else
6053 if T
= Any_Character
then
6054 Ambiguous_Character
(L
);
6056 Error_Msg_N
("ambiguous operands for comparison", N
);
6059 Set_Etype
(N
, Any_Type
);
6063 -- Resolve the operands if types OK
6067 Check_Unset_Reference
(L
);
6068 Check_Unset_Reference
(R
);
6069 Generate_Operator_Reference
(N
, T
);
6070 Check_Low_Bound_Tested
(N
);
6072 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6073 -- types or array types except String.
6075 if Is_Boolean_Type
(T
) then
6076 Check_SPARK_Restriction
6077 ("comparison is not defined on Boolean type", N
);
6079 elsif Is_Array_Type
(T
)
6080 and then Base_Type
(T
) /= Standard_String
6082 Check_SPARK_Restriction
6083 ("comparison is not defined on array types other than String", N
);
6086 -- Check comparison on unordered enumeration
6088 if Comes_From_Source
(N
)
6089 and then Bad_Unordered_Enumeration_Reference
(N
, Etype
(L
))
6091 Error_Msg_N
("comparison on unordered enumeration type?", N
);
6094 -- Evaluate the relation (note we do this after the above check since
6095 -- this Eval call may change N to True/False.
6097 Analyze_Dimension
(N
);
6098 Eval_Relational_Op
(N
);
6099 end Resolve_Comparison_Op
;
6101 ------------------------------------
6102 -- Resolve_Conditional_Expression --
6103 ------------------------------------
6105 procedure Resolve_Conditional_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
6106 Condition
: constant Node_Id
:= First
(Expressions
(N
));
6107 Then_Expr
: constant Node_Id
:= Next
(Condition
);
6108 Else_Expr
: Node_Id
:= Next
(Then_Expr
);
6109 Else_Typ
: Entity_Id
;
6110 Then_Typ
: Entity_Id
;
6113 Resolve
(Condition
, Any_Boolean
);
6114 Resolve
(Then_Expr
, Typ
);
6115 Then_Typ
:= Etype
(Then_Expr
);
6117 -- When the "then" and "else" expressions are of a scalar type, insert
6118 -- a conversion to ensure the generation of a constraint check.
6120 if Is_Scalar_Type
(Then_Typ
)
6121 and then Then_Typ
/= Typ
6123 Rewrite
(Then_Expr
, Convert_To
(Typ
, Then_Expr
));
6124 Analyze_And_Resolve
(Then_Expr
, Typ
);
6127 -- If ELSE expression present, just resolve using the determined type
6129 if Present
(Else_Expr
) then
6130 Resolve
(Else_Expr
, Typ
);
6131 Else_Typ
:= Etype
(Else_Expr
);
6133 if Is_Scalar_Type
(Else_Typ
)
6134 and then Else_Typ
/= Typ
6136 Rewrite
(Else_Expr
, Convert_To
(Typ
, Else_Expr
));
6137 Analyze_And_Resolve
(Else_Expr
, Typ
);
6140 -- If no ELSE expression is present, root type must be Standard.Boolean
6141 -- and we provide a Standard.True result converted to the appropriate
6142 -- Boolean type (in case it is a derived boolean type).
6144 elsif Root_Type
(Typ
) = Standard_Boolean
then
6146 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Sloc
(N
)));
6147 Analyze_And_Resolve
(Else_Expr
, Typ
);
6148 Append_To
(Expressions
(N
), Else_Expr
);
6151 Error_Msg_N
("can only omit ELSE expression in Boolean case", N
);
6152 Append_To
(Expressions
(N
), Error
);
6156 Eval_Conditional_Expression
(N
);
6157 end Resolve_Conditional_Expression
;
6159 -----------------------------------------
6160 -- Resolve_Discrete_Subtype_Indication --
6161 -----------------------------------------
6163 procedure Resolve_Discrete_Subtype_Indication
6171 Analyze
(Subtype_Mark
(N
));
6172 S
:= Entity
(Subtype_Mark
(N
));
6174 if Nkind
(Constraint
(N
)) /= N_Range_Constraint
then
6175 Error_Msg_N
("expect range constraint for discrete type", N
);
6176 Set_Etype
(N
, Any_Type
);
6179 R
:= Range_Expression
(Constraint
(N
));
6187 if Base_Type
(S
) /= Base_Type
(Typ
) then
6189 ("expect subtype of }", N
, First_Subtype
(Typ
));
6191 -- Rewrite the constraint as a range of Typ
6192 -- to allow compilation to proceed further.
6195 Rewrite
(Low_Bound
(R
),
6196 Make_Attribute_Reference
(Sloc
(Low_Bound
(R
)),
6197 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6198 Attribute_Name
=> Name_First
));
6199 Rewrite
(High_Bound
(R
),
6200 Make_Attribute_Reference
(Sloc
(High_Bound
(R
)),
6201 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6202 Attribute_Name
=> Name_First
));
6206 Set_Etype
(N
, Etype
(R
));
6208 -- Additionally, we must check that the bounds are compatible
6209 -- with the given subtype, which might be different from the
6210 -- type of the context.
6212 Apply_Range_Check
(R
, S
);
6214 -- ??? If the above check statically detects a Constraint_Error
6215 -- it replaces the offending bound(s) of the range R with a
6216 -- Constraint_Error node. When the itype which uses these bounds
6217 -- is frozen the resulting call to Duplicate_Subexpr generates
6218 -- a new temporary for the bounds.
6220 -- Unfortunately there are other itypes that are also made depend
6221 -- on these bounds, so when Duplicate_Subexpr is called they get
6222 -- a forward reference to the newly created temporaries and Gigi
6223 -- aborts on such forward references. This is probably sign of a
6224 -- more fundamental problem somewhere else in either the order of
6225 -- itype freezing or the way certain itypes are constructed.
6227 -- To get around this problem we call Remove_Side_Effects right
6228 -- away if either bounds of R are a Constraint_Error.
6231 L
: constant Node_Id
:= Low_Bound
(R
);
6232 H
: constant Node_Id
:= High_Bound
(R
);
6235 if Nkind
(L
) = N_Raise_Constraint_Error
then
6236 Remove_Side_Effects
(L
);
6239 if Nkind
(H
) = N_Raise_Constraint_Error
then
6240 Remove_Side_Effects
(H
);
6244 Check_Unset_Reference
(Low_Bound
(R
));
6245 Check_Unset_Reference
(High_Bound
(R
));
6248 end Resolve_Discrete_Subtype_Indication
;
6250 -------------------------
6251 -- Resolve_Entity_Name --
6252 -------------------------
6254 -- Used to resolve identifiers and expanded names
6256 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
6257 E
: constant Entity_Id
:= Entity
(N
);
6260 -- If garbage from errors, set to Any_Type and return
6262 if No
(E
) and then Total_Errors_Detected
/= 0 then
6263 Set_Etype
(N
, Any_Type
);
6267 -- Replace named numbers by corresponding literals. Note that this is
6268 -- the one case where Resolve_Entity_Name must reset the Etype, since
6269 -- it is currently marked as universal.
6271 if Ekind
(E
) = E_Named_Integer
then
6273 Eval_Named_Integer
(N
);
6275 elsif Ekind
(E
) = E_Named_Real
then
6277 Eval_Named_Real
(N
);
6279 -- For enumeration literals, we need to make sure that a proper style
6280 -- check is done, since such literals are overloaded, and thus we did
6281 -- not do a style check during the first phase of analysis.
6283 elsif Ekind
(E
) = E_Enumeration_Literal
then
6284 Set_Entity_With_Style_Check
(N
, E
);
6285 Eval_Entity_Name
(N
);
6287 -- Case of subtype name appearing as an operand in expression
6289 elsif Is_Type
(E
) then
6291 -- Allow use of subtype if it is a concurrent type where we are
6292 -- currently inside the body. This will eventually be expanded into a
6293 -- call to Self (for tasks) or _object (for protected objects). Any
6294 -- other use of a subtype is invalid.
6296 if Is_Concurrent_Type
(E
)
6297 and then In_Open_Scopes
(E
)
6301 -- Any other use is an error
6305 ("invalid use of subtype mark in expression or call", N
);
6308 -- Check discriminant use if entity is discriminant in current scope,
6309 -- i.e. discriminant of record or concurrent type currently being
6310 -- analyzed. Uses in corresponding body are unrestricted.
6312 elsif Ekind
(E
) = E_Discriminant
6313 and then Scope
(E
) = Current_Scope
6314 and then not Has_Completion
(Current_Scope
)
6316 Check_Discriminant_Use
(N
);
6318 -- A parameterless generic function cannot appear in a context that
6319 -- requires resolution.
6321 elsif Ekind
(E
) = E_Generic_Function
then
6322 Error_Msg_N
("illegal use of generic function", N
);
6324 elsif Ekind
(E
) = E_Out_Parameter
6325 and then Ada_Version
= Ada_83
6326 and then (Nkind
(Parent
(N
)) in N_Op
6327 or else (Nkind
(Parent
(N
)) = N_Assignment_Statement
6328 and then N
= Expression
(Parent
(N
)))
6329 or else Nkind
(Parent
(N
)) = N_Explicit_Dereference
)
6331 Error_Msg_N
("(Ada 83) illegal reading of out parameter", N
);
6333 -- In all other cases, just do the possible static evaluation
6336 -- A deferred constant that appears in an expression must have a
6337 -- completion, unless it has been removed by in-place expansion of
6340 if Ekind
(E
) = E_Constant
6341 and then Comes_From_Source
(E
)
6342 and then No
(Constant_Value
(E
))
6343 and then Is_Frozen
(Etype
(E
))
6344 and then not In_Spec_Expression
6345 and then not Is_Imported
(E
)
6347 if No_Initialization
(Parent
(E
))
6348 or else (Present
(Full_View
(E
))
6349 and then No_Initialization
(Parent
(Full_View
(E
))))
6354 "deferred constant is frozen before completion", N
);
6358 Eval_Entity_Name
(N
);
6360 end Resolve_Entity_Name
;
6366 procedure Resolve_Entry
(Entry_Name
: Node_Id
) is
6367 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
6375 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
;
6376 -- If the bounds of the entry family being called depend on task
6377 -- discriminants, build a new index subtype where a discriminant is
6378 -- replaced with the value of the discriminant of the target task.
6379 -- The target task is the prefix of the entry name in the call.
6381 -----------------------
6382 -- Actual_Index_Type --
6383 -----------------------
6385 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
is
6386 Typ
: constant Entity_Id
:= Entry_Index_Type
(E
);
6387 Tsk
: constant Entity_Id
:= Scope
(E
);
6388 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
6389 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
6392 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
;
6393 -- If the bound is given by a discriminant, replace with a reference
6394 -- to the discriminant of the same name in the target task. If the
6395 -- entry name is the target of a requeue statement and the entry is
6396 -- in the current protected object, the bound to be used is the
6397 -- discriminal of the object (see Apply_Range_Checks for details of
6398 -- the transformation).
6400 -----------------------------
6401 -- Actual_Discriminant_Ref --
6402 -----------------------------
6404 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
is
6405 Typ
: constant Entity_Id
:= Etype
(Bound
);
6409 Remove_Side_Effects
(Bound
);
6411 if not Is_Entity_Name
(Bound
)
6412 or else Ekind
(Entity
(Bound
)) /= E_Discriminant
6416 elsif Is_Protected_Type
(Tsk
)
6417 and then In_Open_Scopes
(Tsk
)
6418 and then Nkind
(Parent
(Entry_Name
)) = N_Requeue_Statement
6420 -- Note: here Bound denotes a discriminant of the corresponding
6421 -- record type tskV, whose discriminal is a formal of the
6422 -- init-proc tskVIP. What we want is the body discriminal,
6423 -- which is associated to the discriminant of the original
6424 -- concurrent type tsk.
6426 return New_Occurrence_Of
6427 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
);
6431 Make_Selected_Component
(Loc
,
6432 Prefix
=> New_Copy_Tree
(Prefix
(Prefix
(Entry_Name
))),
6433 Selector_Name
=> New_Occurrence_Of
(Entity
(Bound
), Loc
));
6438 end Actual_Discriminant_Ref
;
6440 -- Start of processing for Actual_Index_Type
6443 if not Has_Discriminants
(Tsk
)
6444 or else (not Is_Entity_Name
(Lo
) and then not Is_Entity_Name
(Hi
))
6446 return Entry_Index_Type
(E
);
6449 New_T
:= Create_Itype
(Ekind
(Typ
), Parent
(Entry_Name
));
6450 Set_Etype
(New_T
, Base_Type
(Typ
));
6451 Set_Size_Info
(New_T
, Typ
);
6452 Set_RM_Size
(New_T
, RM_Size
(Typ
));
6453 Set_Scalar_Range
(New_T
,
6454 Make_Range
(Sloc
(Entry_Name
),
6455 Low_Bound
=> Actual_Discriminant_Ref
(Lo
),
6456 High_Bound
=> Actual_Discriminant_Ref
(Hi
)));
6460 end Actual_Index_Type
;
6462 -- Start of processing of Resolve_Entry
6465 -- Find name of entry being called, and resolve prefix of name with its
6466 -- own type. The prefix can be overloaded, and the name and signature of
6467 -- the entry must be taken into account.
6469 if Nkind
(Entry_Name
) = N_Indexed_Component
then
6471 -- Case of dealing with entry family within the current tasks
6473 E_Name
:= Prefix
(Entry_Name
);
6476 E_Name
:= Entry_Name
;
6479 if Is_Entity_Name
(E_Name
) then
6481 -- Entry call to an entry (or entry family) in the current task. This
6482 -- is legal even though the task will deadlock. Rewrite as call to
6485 -- This can also be a call to an entry in an enclosing task. If this
6486 -- is a single task, we have to retrieve its name, because the scope
6487 -- of the entry is the task type, not the object. If the enclosing
6488 -- task is a task type, the identity of the task is given by its own
6491 -- Finally this can be a requeue on an entry of the same task or
6492 -- protected object.
6494 S
:= Scope
(Entity
(E_Name
));
6496 for J
in reverse 0 .. Scope_Stack
.Last
loop
6497 if Is_Task_Type
(Scope_Stack
.Table
(J
).Entity
)
6498 and then not Comes_From_Source
(S
)
6500 -- S is an enclosing task or protected object. The concurrent
6501 -- declaration has been converted into a type declaration, and
6502 -- the object itself has an object declaration that follows
6503 -- the type in the same declarative part.
6505 Tsk
:= Next_Entity
(S
);
6506 while Etype
(Tsk
) /= S
loop
6513 elsif S
= Scope_Stack
.Table
(J
).Entity
then
6515 -- Call to current task. Will be transformed into call to Self
6523 Make_Selected_Component
(Loc
,
6524 Prefix
=> New_Occurrence_Of
(S
, Loc
),
6526 New_Occurrence_Of
(Entity
(E_Name
), Loc
));
6527 Rewrite
(E_Name
, New_N
);
6530 elsif Nkind
(Entry_Name
) = N_Selected_Component
6531 and then Is_Overloaded
(Prefix
(Entry_Name
))
6533 -- Use the entry name (which must be unique at this point) to find
6534 -- the prefix that returns the corresponding task/protected type.
6537 Pref
: constant Node_Id
:= Prefix
(Entry_Name
);
6538 Ent
: constant Entity_Id
:= Entity
(Selector_Name
(Entry_Name
));
6543 Get_First_Interp
(Pref
, I
, It
);
6544 while Present
(It
.Typ
) loop
6545 if Scope
(Ent
) = It
.Typ
then
6546 Set_Etype
(Pref
, It
.Typ
);
6550 Get_Next_Interp
(I
, It
);
6555 if Nkind
(Entry_Name
) = N_Selected_Component
then
6556 Resolve
(Prefix
(Entry_Name
));
6558 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
6559 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
6560 Resolve
(Prefix
(Prefix
(Entry_Name
)));
6561 Index
:= First
(Expressions
(Entry_Name
));
6562 Resolve
(Index
, Entry_Index_Type
(Nam
));
6564 -- Up to this point the expression could have been the actual in a
6565 -- simple entry call, and be given by a named association.
6567 if Nkind
(Index
) = N_Parameter_Association
then
6568 Error_Msg_N
("expect expression for entry index", Index
);
6570 Apply_Range_Check
(Index
, Actual_Index_Type
(Nam
));
6575 ------------------------
6576 -- Resolve_Entry_Call --
6577 ------------------------
6579 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
6580 Entry_Name
: constant Node_Id
:= Name
(N
);
6581 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
6583 First_Named
: Node_Id
;
6590 -- We kill all checks here, because it does not seem worth the effort to
6591 -- do anything better, an entry call is a big operation.
6595 -- Processing of the name is similar for entry calls and protected
6596 -- operation calls. Once the entity is determined, we can complete
6597 -- the resolution of the actuals.
6599 -- The selector may be overloaded, in the case of a protected object
6600 -- with overloaded functions. The type of the context is used for
6603 if Nkind
(Entry_Name
) = N_Selected_Component
6604 and then Is_Overloaded
(Selector_Name
(Entry_Name
))
6605 and then Typ
/= Standard_Void_Type
6612 Get_First_Interp
(Selector_Name
(Entry_Name
), I
, It
);
6613 while Present
(It
.Typ
) loop
6614 if Covers
(Typ
, It
.Typ
) then
6615 Set_Entity
(Selector_Name
(Entry_Name
), It
.Nam
);
6616 Set_Etype
(Entry_Name
, It
.Typ
);
6618 Generate_Reference
(It
.Typ
, N
, ' ');
6621 Get_Next_Interp
(I
, It
);
6626 Resolve_Entry
(Entry_Name
);
6628 if Nkind
(Entry_Name
) = N_Selected_Component
then
6630 -- Simple entry call
6632 Nam
:= Entity
(Selector_Name
(Entry_Name
));
6633 Obj
:= Prefix
(Entry_Name
);
6634 Was_Over
:= Is_Overloaded
(Selector_Name
(Entry_Name
));
6636 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
6638 -- Call to member of entry family
6640 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
6641 Obj
:= Prefix
(Prefix
(Entry_Name
));
6642 Was_Over
:= Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)));
6645 -- We cannot in general check the maximum depth of protected entry calls
6646 -- at compile time. But we can tell that any protected entry call at all
6647 -- violates a specified nesting depth of zero.
6649 if Is_Protected_Type
(Scope
(Nam
)) then
6650 Check_Restriction
(Max_Entry_Queue_Length
, N
);
6653 -- Use context type to disambiguate a protected function that can be
6654 -- called without actuals and that returns an array type, and where the
6655 -- argument list may be an indexing of the returned value.
6657 if Ekind
(Nam
) = E_Function
6658 and then Needs_No_Actuals
(Nam
)
6659 and then Present
(Parameter_Associations
(N
))
6661 ((Is_Array_Type
(Etype
(Nam
))
6662 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
6664 or else (Is_Access_Type
(Etype
(Nam
))
6665 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
6669 Component_Type
(Designated_Type
(Etype
(Nam
))))))
6672 Index_Node
: Node_Id
;
6676 Make_Indexed_Component
(Loc
,
6678 Make_Function_Call
(Loc
, Name
=> Relocate_Node
(Entry_Name
)),
6679 Expressions
=> Parameter_Associations
(N
));
6681 -- Since we are correcting a node classification error made by the
6682 -- parser, we call Replace rather than Rewrite.
6684 Replace
(N
, Index_Node
);
6685 Set_Etype
(Prefix
(N
), Etype
(Nam
));
6687 Resolve_Indexed_Component
(N
, Typ
);
6692 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
)
6693 and then Present
(PPC_Wrapper
(Nam
))
6694 and then Current_Scope
/= PPC_Wrapper
(Nam
)
6696 -- Rewrite as call to the precondition wrapper, adding the task
6697 -- object to the list of actuals. If the call is to a member of an
6698 -- entry family, include the index as well.
6702 New_Actuals
: List_Id
;
6705 New_Actuals
:= New_List
(Obj
);
6707 if Nkind
(Entry_Name
) = N_Indexed_Component
then
6708 Append_To
(New_Actuals
,
6709 New_Copy_Tree
(First
(Expressions
(Entry_Name
))));
6712 Append_List
(Parameter_Associations
(N
), New_Actuals
);
6714 Make_Procedure_Call_Statement
(Loc
,
6716 New_Occurrence_Of
(PPC_Wrapper
(Nam
), Loc
),
6717 Parameter_Associations
=> New_Actuals
);
6718 Rewrite
(N
, New_Call
);
6719 Analyze_And_Resolve
(N
);
6724 -- The operation name may have been overloaded. Order the actuals
6725 -- according to the formals of the resolved entity, and set the return
6726 -- type to that of the operation.
6729 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
6730 pragma Assert
(Norm_OK
);
6731 Set_Etype
(N
, Etype
(Nam
));
6734 Resolve_Actuals
(N
, Nam
);
6736 -- Create a call reference to the entry
6738 Generate_Reference
(Nam
, Entry_Name
, 's');
6740 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
) then
6741 Check_Potentially_Blocking_Operation
(N
);
6744 -- Verify that a procedure call cannot masquerade as an entry
6745 -- call where an entry call is expected.
6747 if Ekind
(Nam
) = E_Procedure
then
6748 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
6749 and then N
= Entry_Call_Statement
(Parent
(N
))
6751 Error_Msg_N
("entry call required in select statement", N
);
6753 elsif Nkind
(Parent
(N
)) = N_Triggering_Alternative
6754 and then N
= Triggering_Statement
(Parent
(N
))
6756 Error_Msg_N
("triggering statement cannot be procedure call", N
);
6758 elsif Ekind
(Scope
(Nam
)) = E_Task_Type
6759 and then not In_Open_Scopes
(Scope
(Nam
))
6761 Error_Msg_N
("task has no entry with this name", Entry_Name
);
6765 -- After resolution, entry calls and protected procedure calls are
6766 -- changed into entry calls, for expansion. The structure of the node
6767 -- does not change, so it can safely be done in place. Protected
6768 -- function calls must keep their structure because they are
6771 if Ekind
(Nam
) /= E_Function
then
6773 -- A protected operation that is not a function may modify the
6774 -- corresponding object, and cannot apply to a constant. If this
6775 -- is an internal call, the prefix is the type itself.
6777 if Is_Protected_Type
(Scope
(Nam
))
6778 and then not Is_Variable
(Obj
)
6779 and then (not Is_Entity_Name
(Obj
)
6780 or else not Is_Type
(Entity
(Obj
)))
6783 ("prefix of protected procedure or entry call must be variable",
6787 Actuals
:= Parameter_Associations
(N
);
6788 First_Named
:= First_Named_Actual
(N
);
6791 Make_Entry_Call_Statement
(Loc
,
6793 Parameter_Associations
=> Actuals
));
6795 Set_First_Named_Actual
(N
, First_Named
);
6796 Set_Analyzed
(N
, True);
6798 -- Protected functions can return on the secondary stack, in which
6799 -- case we must trigger the transient scope mechanism.
6801 elsif Full_Expander_Active
6802 and then Requires_Transient_Scope
(Etype
(Nam
))
6804 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
6806 end Resolve_Entry_Call
;
6808 -------------------------
6809 -- Resolve_Equality_Op --
6810 -------------------------
6812 -- Both arguments must have the same type, and the boolean context does
6813 -- not participate in the resolution. The first pass verifies that the
6814 -- interpretation is not ambiguous, and the type of the left argument is
6815 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6816 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6817 -- though they carry a single (universal) type. Diagnose this case here.
6819 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6820 L
: constant Node_Id
:= Left_Opnd
(N
);
6821 R
: constant Node_Id
:= Right_Opnd
(N
);
6822 T
: Entity_Id
:= Find_Unique_Type
(L
, R
);
6824 procedure Check_Conditional_Expression
(Cond
: Node_Id
);
6825 -- The resolution rule for conditional expressions requires that each
6826 -- such must have a unique type. This means that if several dependent
6827 -- expressions are of a non-null anonymous access type, and the context
6828 -- does not impose an expected type (as can be the case in an equality
6829 -- operation) the expression must be rejected.
6831 function Find_Unique_Access_Type
return Entity_Id
;
6832 -- In the case of allocators, make a last-ditch attempt to find a single
6833 -- access type with the right designated type. This is semantically
6834 -- dubious, and of no interest to any real code, but c48008a makes it
6837 ----------------------------------
6838 -- Check_Conditional_Expression --
6839 ----------------------------------
6841 procedure Check_Conditional_Expression
(Cond
: Node_Id
) is
6842 Then_Expr
: Node_Id
;
6843 Else_Expr
: Node_Id
;
6846 if Nkind
(Cond
) = N_Conditional_Expression
then
6847 Then_Expr
:= Next
(First
(Expressions
(Cond
)));
6848 Else_Expr
:= Next
(Then_Expr
);
6850 if Nkind
(Then_Expr
) /= N_Null
6851 and then Nkind
(Else_Expr
) /= N_Null
6854 ("cannot determine type of conditional expression", Cond
);
6857 end Check_Conditional_Expression
;
6859 -----------------------------
6860 -- Find_Unique_Access_Type --
6861 -----------------------------
6863 function Find_Unique_Access_Type
return Entity_Id
is
6869 if Ekind
(Etype
(R
)) = E_Allocator_Type
then
6870 Acc
:= Designated_Type
(Etype
(R
));
6871 elsif Ekind
(Etype
(L
)) = E_Allocator_Type
then
6872 Acc
:= Designated_Type
(Etype
(L
));
6878 while S
/= Standard_Standard
loop
6879 E
:= First_Entity
(S
);
6880 while Present
(E
) loop
6882 and then Is_Access_Type
(E
)
6883 and then Ekind
(E
) /= E_Allocator_Type
6884 and then Designated_Type
(E
) = Base_Type
(Acc
)
6896 end Find_Unique_Access_Type
;
6898 -- Start of processing for Resolve_Equality_Op
6901 Set_Etype
(N
, Base_Type
(Typ
));
6902 Generate_Reference
(T
, N
, ' ');
6904 if T
= Any_Fixed
then
6905 T
:= Unique_Fixed_Point_Type
(L
);
6908 if T
/= Any_Type
then
6909 if T
= Any_String
or else
6910 T
= Any_Composite
or else
6913 if T
= Any_Character
then
6914 Ambiguous_Character
(L
);
6916 Error_Msg_N
("ambiguous operands for equality", N
);
6919 Set_Etype
(N
, Any_Type
);
6922 elsif T
= Any_Access
6923 or else Ekind_In
(T
, E_Allocator_Type
, E_Access_Attribute_Type
)
6925 T
:= Find_Unique_Access_Type
;
6928 Error_Msg_N
("ambiguous operands for equality", N
);
6929 Set_Etype
(N
, Any_Type
);
6933 -- Conditional expressions must have a single type, and if the
6934 -- context does not impose one the dependent expressions cannot
6935 -- be anonymous access types.
6937 elsif Ada_Version
>= Ada_2012
6938 and then Ekind_In
(Etype
(L
), E_Anonymous_Access_Type
,
6939 E_Anonymous_Access_Subprogram_Type
)
6940 and then Ekind_In
(Etype
(R
), E_Anonymous_Access_Type
,
6941 E_Anonymous_Access_Subprogram_Type
)
6943 Check_Conditional_Expression
(L
);
6944 Check_Conditional_Expression
(R
);
6950 -- In SPARK, equality operators = and /= for array types other than
6951 -- String are only defined when, for each index position, the
6952 -- operands have equal static bounds.
6954 if Is_Array_Type
(T
) then
6955 -- Protect call to Matching_Static_Array_Bounds to avoid costly
6956 -- operation if not needed.
6958 if Restriction_Check_Required
(SPARK
)
6959 and then Base_Type
(T
) /= Standard_String
6960 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
6961 and then Etype
(L
) /= Any_Composite
-- or else L in error
6962 and then Etype
(R
) /= Any_Composite
-- or else R in error
6963 and then not Matching_Static_Array_Bounds
(Etype
(L
), Etype
(R
))
6965 Check_SPARK_Restriction
6966 ("array types should have matching static bounds", N
);
6970 -- If the unique type is a class-wide type then it will be expanded
6971 -- into a dispatching call to the predefined primitive. Therefore we
6972 -- check here for potential violation of such restriction.
6974 if Is_Class_Wide_Type
(T
) then
6975 Check_Restriction
(No_Dispatching_Calls
, N
);
6978 if Warn_On_Redundant_Constructs
6979 and then Comes_From_Source
(N
)
6980 and then Is_Entity_Name
(R
)
6981 and then Entity
(R
) = Standard_True
6982 and then Comes_From_Source
(R
)
6984 Error_Msg_N
-- CODEFIX
6985 ("?comparison with True is redundant!", R
);
6988 Check_Unset_Reference
(L
);
6989 Check_Unset_Reference
(R
);
6990 Generate_Operator_Reference
(N
, T
);
6991 Check_Low_Bound_Tested
(N
);
6993 -- If this is an inequality, it may be the implicit inequality
6994 -- created for a user-defined operation, in which case the corres-
6995 -- ponding equality operation is not intrinsic, and the operation
6996 -- cannot be constant-folded. Else fold.
6998 if Nkind
(N
) = N_Op_Eq
6999 or else Comes_From_Source
(Entity
(N
))
7000 or else Ekind
(Entity
(N
)) = E_Operator
7001 or else Is_Intrinsic_Subprogram
7002 (Corresponding_Equality
(Entity
(N
)))
7004 Analyze_Dimension
(N
);
7005 Eval_Relational_Op
(N
);
7007 elsif Nkind
(N
) = N_Op_Ne
7008 and then Is_Abstract_Subprogram
(Entity
(N
))
7010 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Entity
(N
));
7013 -- Ada 2005: If one operand is an anonymous access type, convert the
7014 -- other operand to it, to ensure that the underlying types match in
7015 -- the back-end. Same for access_to_subprogram, and the conversion
7016 -- verifies that the types are subtype conformant.
7018 -- We apply the same conversion in the case one of the operands is a
7019 -- private subtype of the type of the other.
7021 -- Why the Expander_Active test here ???
7023 if Full_Expander_Active
7025 (Ekind_In
(T
, E_Anonymous_Access_Type
,
7026 E_Anonymous_Access_Subprogram_Type
)
7027 or else Is_Private_Type
(T
))
7029 if Etype
(L
) /= T
then
7031 Make_Unchecked_Type_Conversion
(Sloc
(L
),
7032 Subtype_Mark
=> New_Occurrence_Of
(T
, Sloc
(L
)),
7033 Expression
=> Relocate_Node
(L
)));
7034 Analyze_And_Resolve
(L
, T
);
7037 if (Etype
(R
)) /= T
then
7039 Make_Unchecked_Type_Conversion
(Sloc
(R
),
7040 Subtype_Mark
=> New_Occurrence_Of
(Etype
(L
), Sloc
(R
)),
7041 Expression
=> Relocate_Node
(R
)));
7042 Analyze_And_Resolve
(R
, T
);
7046 end Resolve_Equality_Op
;
7048 ----------------------------------
7049 -- Resolve_Explicit_Dereference --
7050 ----------------------------------
7052 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
7053 Loc
: constant Source_Ptr
:= Sloc
(N
);
7055 P
: constant Node_Id
:= Prefix
(N
);
7058 -- The candidate prefix type, if overloaded
7064 Check_Fully_Declared_Prefix
(Typ
, P
);
7067 if Is_Overloaded
(P
) then
7069 -- Use the context type to select the prefix that has the correct
7070 -- designated type. Keep the first match, which will be the inner-
7073 Get_First_Interp
(P
, I
, It
);
7075 while Present
(It
.Typ
) loop
7076 if Is_Access_Type
(It
.Typ
)
7077 and then Covers
(Typ
, Designated_Type
(It
.Typ
))
7083 -- Remove access types that do not match, but preserve access
7084 -- to subprogram interpretations, in case a further dereference
7085 -- is needed (see below).
7087 elsif Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
7091 Get_Next_Interp
(I
, It
);
7094 if Present
(P_Typ
) then
7096 Set_Etype
(N
, Designated_Type
(P_Typ
));
7099 -- If no interpretation covers the designated type of the prefix,
7100 -- this is the pathological case where not all implementations of
7101 -- the prefix allow the interpretation of the node as a call. Now
7102 -- that the expected type is known, Remove other interpretations
7103 -- from prefix, rewrite it as a call, and resolve again, so that
7104 -- the proper call node is generated.
7106 Get_First_Interp
(P
, I
, It
);
7107 while Present
(It
.Typ
) loop
7108 if Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
7112 Get_Next_Interp
(I
, It
);
7116 Make_Function_Call
(Loc
,
7118 Make_Explicit_Dereference
(Loc
,
7120 Parameter_Associations
=> New_List
);
7122 Save_Interps
(N
, New_N
);
7124 Analyze_And_Resolve
(N
, Typ
);
7128 -- If not overloaded, resolve P with its own type
7134 if Is_Access_Type
(Etype
(P
)) then
7135 Apply_Access_Check
(N
);
7138 -- If the designated type is a packed unconstrained array type, and the
7139 -- explicit dereference is not in the context of an attribute reference,
7140 -- then we must compute and set the actual subtype, since it is needed
7141 -- by Gigi. The reason we exclude the attribute case is that this is
7142 -- handled fine by Gigi, and in fact we use such attributes to build the
7143 -- actual subtype. We also exclude generated code (which builds actual
7144 -- subtypes directly if they are needed).
7146 if Is_Array_Type
(Etype
(N
))
7147 and then Is_Packed
(Etype
(N
))
7148 and then not Is_Constrained
(Etype
(N
))
7149 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
7150 and then Comes_From_Source
(N
)
7152 Set_Etype
(N
, Get_Actual_Subtype
(N
));
7155 -- Note: No Eval processing is required for an explicit dereference,
7156 -- because such a name can never be static.
7158 end Resolve_Explicit_Dereference
;
7160 -------------------------------------
7161 -- Resolve_Expression_With_Actions --
7162 -------------------------------------
7164 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
) is
7167 end Resolve_Expression_With_Actions
;
7169 -------------------------------
7170 -- Resolve_Indexed_Component --
7171 -------------------------------
7173 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
7174 Name
: constant Node_Id
:= Prefix
(N
);
7176 Array_Type
: Entity_Id
:= Empty
; -- to prevent junk warning
7180 if Is_Overloaded
(Name
) then
7182 -- Use the context type to select the prefix that yields the correct
7188 I1
: Interp_Index
:= 0;
7189 P
: constant Node_Id
:= Prefix
(N
);
7190 Found
: Boolean := False;
7193 Get_First_Interp
(P
, I
, It
);
7194 while Present
(It
.Typ
) loop
7195 if (Is_Array_Type
(It
.Typ
)
7196 and then Covers
(Typ
, Component_Type
(It
.Typ
)))
7197 or else (Is_Access_Type
(It
.Typ
)
7198 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
7202 Component_Type
(Designated_Type
(It
.Typ
))))
7205 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
7207 if It
= No_Interp
then
7208 Error_Msg_N
("ambiguous prefix for indexing", N
);
7214 Array_Type
:= It
.Typ
;
7220 Array_Type
:= It
.Typ
;
7225 Get_Next_Interp
(I
, It
);
7230 Array_Type
:= Etype
(Name
);
7233 Resolve
(Name
, Array_Type
);
7234 Array_Type
:= Get_Actual_Subtype_If_Available
(Name
);
7236 -- If prefix is access type, dereference to get real array type.
7237 -- Note: we do not apply an access check because the expander always
7238 -- introduces an explicit dereference, and the check will happen there.
7240 if Is_Access_Type
(Array_Type
) then
7241 Array_Type
:= Designated_Type
(Array_Type
);
7244 -- If name was overloaded, set component type correctly now
7245 -- If a misplaced call to an entry family (which has no index types)
7246 -- return. Error will be diagnosed from calling context.
7248 if Is_Array_Type
(Array_Type
) then
7249 Set_Etype
(N
, Component_Type
(Array_Type
));
7254 Index
:= First_Index
(Array_Type
);
7255 Expr
:= First
(Expressions
(N
));
7257 -- The prefix may have resolved to a string literal, in which case its
7258 -- etype has a special representation. This is only possible currently
7259 -- if the prefix is a static concatenation, written in functional
7262 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
7263 Resolve
(Expr
, Standard_Positive
);
7266 while Present
(Index
) and Present
(Expr
) loop
7267 Resolve
(Expr
, Etype
(Index
));
7268 Check_Unset_Reference
(Expr
);
7270 if Is_Scalar_Type
(Etype
(Expr
)) then
7271 Apply_Scalar_Range_Check
(Expr
, Etype
(Index
));
7273 Apply_Range_Check
(Expr
, Get_Actual_Subtype
(Index
));
7281 Analyze_Dimension
(N
);
7283 -- Do not generate the warning on suspicious index if we are analyzing
7284 -- package Ada.Tags; otherwise we will report the warning with the
7285 -- Prims_Ptr field of the dispatch table.
7287 if Scope
(Etype
(Prefix
(N
))) = Standard_Standard
7289 Is_RTU
(Cunit_Entity
(Get_Source_Unit
(Etype
(Prefix
(N
)))),
7292 Warn_On_Suspicious_Index
(Name
, First
(Expressions
(N
)));
7293 Eval_Indexed_Component
(N
);
7296 -- If the array type is atomic, and is packed, and we are in a left side
7297 -- context, then this is worth a warning, since we have a situation
7298 -- where the access to the component may cause extra read/writes of
7299 -- the atomic array object, which could be considered unexpected.
7301 if Nkind
(N
) = N_Indexed_Component
7302 and then (Is_Atomic
(Array_Type
)
7303 or else (Is_Entity_Name
(Prefix
(N
))
7304 and then Is_Atomic
(Entity
(Prefix
(N
)))))
7305 and then Is_Bit_Packed_Array
(Array_Type
)
7308 Error_Msg_N
("?assignment to component of packed atomic array",
7310 Error_Msg_N
("?\may cause unexpected accesses to atomic object",
7313 end Resolve_Indexed_Component
;
7315 -----------------------------
7316 -- Resolve_Integer_Literal --
7317 -----------------------------
7319 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
7322 Eval_Integer_Literal
(N
);
7323 end Resolve_Integer_Literal
;
7325 --------------------------------
7326 -- Resolve_Intrinsic_Operator --
7327 --------------------------------
7329 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
) is
7330 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
7332 Orig_Op
: constant Entity_Id
:= Entity
(N
);
7336 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
;
7337 -- If the operand is a literal, it cannot be the expression in a
7338 -- conversion. Use a qualified expression instead.
7340 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
is
7341 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
7344 if Nkind_In
(Opnd
, N_Integer_Literal
, N_Real_Literal
) then
7346 Make_Qualified_Expression
(Loc
,
7347 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
7348 Expression
=> Relocate_Node
(Opnd
));
7352 Res
:= Unchecked_Convert_To
(Btyp
, Opnd
);
7356 end Convert_Operand
;
7358 -- Start of processing for Resolve_Intrinsic_Operator
7361 -- We must preserve the original entity in a generic setting, so that
7362 -- the legality of the operation can be verified in an instance.
7364 if not Full_Expander_Active
then
7369 while Scope
(Op
) /= Standard_Standard
loop
7371 pragma Assert
(Present
(Op
));
7375 Set_Is_Overloaded
(N
, False);
7377 -- If the result or operand types are private, rewrite with unchecked
7378 -- conversions on the operands and the result, to expose the proper
7379 -- underlying numeric type.
7381 if Is_Private_Type
(Typ
)
7382 or else Is_Private_Type
(Etype
(Left_Opnd
(N
)))
7383 or else Is_Private_Type
(Etype
(Right_Opnd
(N
)))
7385 Arg1
:= Convert_Operand
(Left_Opnd
(N
));
7386 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
7387 -- What on earth is this commented out fragment of code???
7389 if Nkind
(N
) = N_Op_Expon
then
7390 Arg2
:= Unchecked_Convert_To
(Standard_Integer
, Right_Opnd
(N
));
7392 Arg2
:= Convert_Operand
(Right_Opnd
(N
));
7395 if Nkind
(Arg1
) = N_Type_Conversion
then
7396 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
7399 if Nkind
(Arg2
) = N_Type_Conversion
then
7400 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
7403 Set_Left_Opnd
(N
, Arg1
);
7404 Set_Right_Opnd
(N
, Arg2
);
7406 Set_Etype
(N
, Btyp
);
7407 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
7410 elsif Typ
/= Etype
(Left_Opnd
(N
))
7411 or else Typ
/= Etype
(Right_Opnd
(N
))
7413 -- Add explicit conversion where needed, and save interpretations in
7414 -- case operands are overloaded. If the context is a VMS operation,
7415 -- assert that the conversion is legal (the operands have the proper
7416 -- types to select the VMS intrinsic). Note that in rare cases the
7417 -- VMS operators may be visible, but the default System is being used
7418 -- and Address is a private type.
7420 Arg1
:= Convert_To
(Typ
, Left_Opnd
(N
));
7421 Arg2
:= Convert_To
(Typ
, Right_Opnd
(N
));
7423 if Nkind
(Arg1
) = N_Type_Conversion
then
7424 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
7426 if Is_VMS_Operator
(Orig_Op
) then
7427 Set_Conversion_OK
(Arg1
);
7430 Save_Interps
(Left_Opnd
(N
), Arg1
);
7433 if Nkind
(Arg2
) = N_Type_Conversion
then
7434 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
7436 if Is_VMS_Operator
(Orig_Op
) then
7437 Set_Conversion_OK
(Arg2
);
7440 Save_Interps
(Right_Opnd
(N
), Arg2
);
7443 Rewrite
(Left_Opnd
(N
), Arg1
);
7444 Rewrite
(Right_Opnd
(N
), Arg2
);
7447 Resolve_Arithmetic_Op
(N
, Typ
);
7450 Resolve_Arithmetic_Op
(N
, Typ
);
7452 end Resolve_Intrinsic_Operator
;
7454 --------------------------------------
7455 -- Resolve_Intrinsic_Unary_Operator --
7456 --------------------------------------
7458 procedure Resolve_Intrinsic_Unary_Operator
7462 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
7468 while Scope
(Op
) /= Standard_Standard
loop
7470 pragma Assert
(Present
(Op
));
7475 if Is_Private_Type
(Typ
) then
7476 Arg2
:= Unchecked_Convert_To
(Btyp
, Right_Opnd
(N
));
7477 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
7479 Set_Right_Opnd
(N
, Arg2
);
7481 Set_Etype
(N
, Btyp
);
7482 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
7486 Resolve_Unary_Op
(N
, Typ
);
7488 end Resolve_Intrinsic_Unary_Operator
;
7490 ------------------------
7491 -- Resolve_Logical_Op --
7492 ------------------------
7494 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7498 Check_No_Direct_Boolean_Operators
(N
);
7500 -- Predefined operations on scalar types yield the base type. On the
7501 -- other hand, logical operations on arrays yield the type of the
7502 -- arguments (and the context).
7504 if Is_Array_Type
(Typ
) then
7507 B_Typ
:= Base_Type
(Typ
);
7510 -- OK if this is a VMS-specific intrinsic operation
7512 if Is_VMS_Operator
(Entity
(N
)) then
7515 -- The following test is required because the operands of the operation
7516 -- may be literals, in which case the resulting type appears to be
7517 -- compatible with a signed integer type, when in fact it is compatible
7518 -- only with modular types. If the context itself is universal, the
7519 -- operation is illegal.
7521 elsif not Valid_Boolean_Arg
(Typ
) then
7522 Error_Msg_N
("invalid context for logical operation", N
);
7523 Set_Etype
(N
, Any_Type
);
7526 elsif Typ
= Any_Modular
then
7528 ("no modular type available in this context", N
);
7529 Set_Etype
(N
, Any_Type
);
7532 elsif Is_Modular_Integer_Type
(Typ
)
7533 and then Etype
(Left_Opnd
(N
)) = Universal_Integer
7534 and then Etype
(Right_Opnd
(N
)) = Universal_Integer
7536 Check_For_Visible_Operator
(N
, B_Typ
);
7539 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
7540 -- is active and the result type is standard Boolean (do not mess with
7541 -- ops that return a nonstandard Boolean type, because something strange
7544 -- Note: you might expect this replacement to be done during expansion,
7545 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
7546 -- is used, no part of the right operand of an "and" or "or" operator
7547 -- should be executed if the left operand would short-circuit the
7548 -- evaluation of the corresponding "and then" or "or else". If we left
7549 -- the replacement to expansion time, then run-time checks associated
7550 -- with such operands would be evaluated unconditionally, due to being
7551 -- before the condition prior to the rewriting as short-circuit forms
7552 -- during expansion.
7554 if Short_Circuit_And_Or
7555 and then B_Typ
= Standard_Boolean
7556 and then Nkind_In
(N
, N_Op_And
, N_Op_Or
)
7558 if Nkind
(N
) = N_Op_And
then
7560 Make_And_Then
(Sloc
(N
),
7561 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
7562 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
7563 Analyze_And_Resolve
(N
, B_Typ
);
7565 -- Case of OR changed to OR ELSE
7569 Make_Or_Else
(Sloc
(N
),
7570 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
7571 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
7572 Analyze_And_Resolve
(N
, B_Typ
);
7575 -- Return now, since analysis of the rewritten ops will take care of
7576 -- other reference bookkeeping and expression folding.
7581 Resolve
(Left_Opnd
(N
), B_Typ
);
7582 Resolve
(Right_Opnd
(N
), B_Typ
);
7584 Check_Unset_Reference
(Left_Opnd
(N
));
7585 Check_Unset_Reference
(Right_Opnd
(N
));
7587 Set_Etype
(N
, B_Typ
);
7588 Generate_Operator_Reference
(N
, B_Typ
);
7589 Eval_Logical_Op
(N
);
7591 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
7592 -- only when both operands have same static lower and higher bounds. Of
7593 -- course the types have to match, so only check if operands are
7594 -- compatible and the node itself has no errors.
7596 if Is_Array_Type
(B_Typ
)
7597 and then Nkind
(N
) in N_Binary_Op
7600 Left_Typ
: constant Node_Id
:= Etype
(Left_Opnd
(N
));
7601 Right_Typ
: constant Node_Id
:= Etype
(Right_Opnd
(N
));
7604 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7605 -- operation if not needed.
7607 if Restriction_Check_Required
(SPARK
)
7608 and then Base_Type
(Left_Typ
) = Base_Type
(Right_Typ
)
7609 and then Left_Typ
/= Any_Composite
-- or Left_Opnd in error
7610 and then Right_Typ
/= Any_Composite
-- or Right_Opnd in error
7611 and then not Matching_Static_Array_Bounds
(Left_Typ
, Right_Typ
)
7613 Check_SPARK_Restriction
7614 ("array types should have matching static bounds", N
);
7618 end Resolve_Logical_Op
;
7620 ---------------------------
7621 -- Resolve_Membership_Op --
7622 ---------------------------
7624 -- The context can only be a boolean type, and does not determine the
7625 -- arguments. Arguments should be unambiguous, but the preference rule for
7626 -- universal types applies.
7628 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7629 pragma Warnings
(Off
, Typ
);
7631 L
: constant Node_Id
:= Left_Opnd
(N
);
7632 R
: constant Node_Id
:= Right_Opnd
(N
);
7635 procedure Resolve_Set_Membership
;
7636 -- Analysis has determined a unique type for the left operand. Use it to
7637 -- resolve the disjuncts.
7639 ----------------------------
7640 -- Resolve_Set_Membership --
7641 ----------------------------
7643 procedure Resolve_Set_Membership
is
7647 Resolve
(L
, Etype
(L
));
7649 Alt
:= First
(Alternatives
(N
));
7650 while Present
(Alt
) loop
7652 -- Alternative is an expression, a range
7653 -- or a subtype mark.
7655 if not Is_Entity_Name
(Alt
)
7656 or else not Is_Type
(Entity
(Alt
))
7658 Resolve
(Alt
, Etype
(L
));
7663 end Resolve_Set_Membership
;
7665 -- Start of processing for Resolve_Membership_Op
7668 if L
= Error
or else R
= Error
then
7672 if Present
(Alternatives
(N
)) then
7673 Resolve_Set_Membership
;
7676 elsif not Is_Overloaded
(R
)
7678 (Etype
(R
) = Universal_Integer
7680 Etype
(R
) = Universal_Real
)
7681 and then Is_Overloaded
(L
)
7685 -- Ada 2005 (AI-251): Support the following case:
7687 -- type I is interface;
7688 -- type T is tagged ...
7690 -- function Test (O : I'Class) is
7692 -- return O in T'Class.
7695 -- In this case we have nothing else to do. The membership test will be
7696 -- done at run time.
7698 elsif Ada_Version
>= Ada_2005
7699 and then Is_Class_Wide_Type
(Etype
(L
))
7700 and then Is_Interface
(Etype
(L
))
7701 and then Is_Class_Wide_Type
(Etype
(R
))
7702 and then not Is_Interface
(Etype
(R
))
7706 T
:= Intersect_Types
(L
, R
);
7709 -- If mixed-mode operations are present and operands are all literal,
7710 -- the only interpretation involves Duration, which is probably not
7711 -- the intention of the programmer.
7713 if T
= Any_Fixed
then
7714 T
:= Unique_Fixed_Point_Type
(N
);
7716 if T
= Any_Type
then
7722 Check_Unset_Reference
(L
);
7724 if Nkind
(R
) = N_Range
7725 and then not Is_Scalar_Type
(T
)
7727 Error_Msg_N
("scalar type required for range", R
);
7730 if Is_Entity_Name
(R
) then
7731 Freeze_Expression
(R
);
7734 Check_Unset_Reference
(R
);
7737 Eval_Membership_Op
(N
);
7738 end Resolve_Membership_Op
;
7744 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
) is
7745 Loc
: constant Source_Ptr
:= Sloc
(N
);
7748 -- Handle restriction against anonymous null access values This
7749 -- restriction can be turned off using -gnatdj.
7751 -- Ada 2005 (AI-231): Remove restriction
7753 if Ada_Version
< Ada_2005
7754 and then not Debug_Flag_J
7755 and then Ekind
(Typ
) = E_Anonymous_Access_Type
7756 and then Comes_From_Source
(N
)
7758 -- In the common case of a call which uses an explicitly null value
7759 -- for an access parameter, give specialized error message.
7761 if Nkind
(Parent
(N
)) in N_Subprogram_Call
then
7763 ("null is not allowed as argument for an access parameter", N
);
7765 -- Standard message for all other cases (are there any?)
7769 ("null cannot be of an anonymous access type", N
);
7773 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
7774 -- assignment to a null-excluding object
7776 if Ada_Version
>= Ada_2005
7777 and then Can_Never_Be_Null
(Typ
)
7778 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
7780 if not Inside_Init_Proc
then
7782 (Compile_Time_Constraint_Error
(N
,
7783 "(Ada 2005) null not allowed in null-excluding objects?"),
7784 Make_Raise_Constraint_Error
(Loc
,
7785 Reason
=> CE_Access_Check_Failed
));
7788 Make_Raise_Constraint_Error
(Loc
,
7789 Reason
=> CE_Access_Check_Failed
));
7793 -- In a distributed context, null for a remote access to subprogram may
7794 -- need to be replaced with a special record aggregate. In this case,
7795 -- return after having done the transformation.
7797 if (Ekind
(Typ
) = E_Record_Type
7798 or else Is_Remote_Access_To_Subprogram_Type
(Typ
))
7799 and then Remote_AST_Null_Value
(N
, Typ
)
7804 -- The null literal takes its type from the context
7809 -----------------------
7810 -- Resolve_Op_Concat --
7811 -----------------------
7813 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
) is
7815 -- We wish to avoid deep recursion, because concatenations are often
7816 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
7817 -- operands nonrecursively until we find something that is not a simple
7818 -- concatenation (A in this case). We resolve that, and then walk back
7819 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
7820 -- to do the rest of the work at each level. The Parent pointers allow
7821 -- us to avoid recursion, and thus avoid running out of memory. See also
7822 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
7828 -- The following code is equivalent to:
7830 -- Resolve_Op_Concat_First (NN, Typ);
7831 -- Resolve_Op_Concat_Arg (N, ...);
7832 -- Resolve_Op_Concat_Rest (N, Typ);
7834 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
7835 -- operand is a concatenation.
7837 -- Walk down left operands
7840 Resolve_Op_Concat_First
(NN
, Typ
);
7841 Op1
:= Left_Opnd
(NN
);
7842 exit when not (Nkind
(Op1
) = N_Op_Concat
7843 and then not Is_Array_Type
(Component_Type
(Typ
))
7844 and then Entity
(Op1
) = Entity
(NN
));
7848 -- Now (given the above example) NN is A&B and Op1 is A
7850 -- First resolve Op1 ...
7852 Resolve_Op_Concat_Arg
(NN
, Op1
, Typ
, Is_Component_Left_Opnd
(NN
));
7854 -- ... then walk NN back up until we reach N (where we started), calling
7855 -- Resolve_Op_Concat_Rest along the way.
7858 Resolve_Op_Concat_Rest
(NN
, Typ
);
7863 if Base_Type
(Etype
(N
)) /= Standard_String
then
7864 Check_SPARK_Restriction
7865 ("result of concatenation should have type String", N
);
7867 end Resolve_Op_Concat
;
7869 ---------------------------
7870 -- Resolve_Op_Concat_Arg --
7871 ---------------------------
7873 procedure Resolve_Op_Concat_Arg
7879 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
7880 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
7885 or else (not Is_Overloaded
(Arg
)
7886 and then Etype
(Arg
) /= Any_Composite
7887 and then Covers
(Ctyp
, Etype
(Arg
)))
7889 Resolve
(Arg
, Ctyp
);
7891 Resolve
(Arg
, Btyp
);
7894 -- If both Array & Array and Array & Component are visible, there is a
7895 -- potential ambiguity that must be reported.
7897 elsif Has_Compatible_Type
(Arg
, Ctyp
) then
7898 if Nkind
(Arg
) = N_Aggregate
7899 and then Is_Composite_Type
(Ctyp
)
7901 if Is_Private_Type
(Ctyp
) then
7902 Resolve
(Arg
, Btyp
);
7904 -- If the operation is user-defined and not overloaded use its
7905 -- profile. The operation may be a renaming, in which case it has
7906 -- been rewritten, and we want the original profile.
7908 elsif not Is_Overloaded
(N
)
7909 and then Comes_From_Source
(Entity
(Original_Node
(N
)))
7910 and then Ekind
(Entity
(Original_Node
(N
))) = E_Function
7914 (Next_Formal
(First_Formal
(Entity
(Original_Node
(N
))))));
7917 -- Otherwise an aggregate may match both the array type and the
7921 Error_Msg_N
("ambiguous aggregate must be qualified", Arg
);
7922 Set_Etype
(Arg
, Any_Type
);
7926 if Is_Overloaded
(Arg
)
7927 and then Has_Compatible_Type
(Arg
, Typ
)
7928 and then Etype
(Arg
) /= Any_Type
7936 Get_First_Interp
(Arg
, I
, It
);
7938 Get_Next_Interp
(I
, It
);
7940 -- Special-case the error message when the overloading is
7941 -- caused by a function that yields an array and can be
7942 -- called without parameters.
7944 if It
.Nam
= Func
then
7945 Error_Msg_Sloc
:= Sloc
(Func
);
7946 Error_Msg_N
("ambiguous call to function#", Arg
);
7948 ("\\interpretation as call yields&", Arg
, Typ
);
7950 ("\\interpretation as indexing of call yields&",
7951 Arg
, Component_Type
(Typ
));
7954 Error_Msg_N
("ambiguous operand for concatenation!", Arg
);
7956 Get_First_Interp
(Arg
, I
, It
);
7957 while Present
(It
.Nam
) loop
7958 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
7960 if Base_Type
(It
.Typ
) = Btyp
7962 Base_Type
(It
.Typ
) = Base_Type
(Ctyp
)
7964 Error_Msg_N
-- CODEFIX
7965 ("\\possible interpretation#", Arg
);
7968 Get_Next_Interp
(I
, It
);
7974 Resolve
(Arg
, Component_Type
(Typ
));
7976 if Nkind
(Arg
) = N_String_Literal
then
7977 Set_Etype
(Arg
, Component_Type
(Typ
));
7980 if Arg
= Left_Opnd
(N
) then
7981 Set_Is_Component_Left_Opnd
(N
);
7983 Set_Is_Component_Right_Opnd
(N
);
7988 Resolve
(Arg
, Btyp
);
7991 -- Concatenation is restricted in SPARK: each operand must be either a
7992 -- string literal, the name of a string constant, a static character or
7993 -- string expression, or another concatenation. Arg cannot be a
7994 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
7995 -- separately on each final operand, past concatenation operations.
7997 if Is_Character_Type
(Etype
(Arg
)) then
7998 if not Is_Static_Expression
(Arg
) then
7999 Check_SPARK_Restriction
8000 ("character operand for concatenation should be static", Arg
);
8003 elsif Is_String_Type
(Etype
(Arg
)) then
8004 if not (Nkind_In
(Arg
, N_Identifier
, N_Expanded_Name
)
8005 and then Is_Constant_Object
(Entity
(Arg
)))
8006 and then not Is_Static_Expression
(Arg
)
8008 Check_SPARK_Restriction
8009 ("string operand for concatenation should be static", Arg
);
8012 -- Do not issue error on an operand that is neither a character nor a
8013 -- string, as the error is issued in Resolve_Op_Concat.
8019 Check_Unset_Reference
(Arg
);
8020 end Resolve_Op_Concat_Arg
;
8022 -----------------------------
8023 -- Resolve_Op_Concat_First --
8024 -----------------------------
8026 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
) is
8027 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
8028 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8029 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8032 -- The parser folds an enormous sequence of concatenations of string
8033 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
8034 -- in the right operand. If the expression resolves to a predefined "&"
8035 -- operator, all is well. Otherwise, the parser's folding is wrong, so
8036 -- we give an error. See P_Simple_Expression in Par.Ch4.
8038 if Nkind
(Op2
) = N_String_Literal
8039 and then Is_Folded_In_Parser
(Op2
)
8040 and then Ekind
(Entity
(N
)) = E_Function
8042 pragma Assert
(Nkind
(Op1
) = N_String_Literal
-- should be ""
8043 and then String_Length
(Strval
(Op1
)) = 0);
8044 Error_Msg_N
("too many user-defined concatenations", N
);
8048 Set_Etype
(N
, Btyp
);
8050 if Is_Limited_Composite
(Btyp
) then
8051 Error_Msg_N
("concatenation not available for limited array", N
);
8052 Explain_Limited_Type
(Btyp
, N
);
8054 end Resolve_Op_Concat_First
;
8056 ----------------------------
8057 -- Resolve_Op_Concat_Rest --
8058 ----------------------------
8060 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
) is
8061 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8062 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8065 Resolve_Op_Concat_Arg
(N
, Op2
, Typ
, Is_Component_Right_Opnd
(N
));
8067 Generate_Operator_Reference
(N
, Typ
);
8069 if Is_String_Type
(Typ
) then
8070 Eval_Concatenation
(N
);
8073 -- If this is not a static concatenation, but the result is a string
8074 -- type (and not an array of strings) ensure that static string operands
8075 -- have their subtypes properly constructed.
8077 if Nkind
(N
) /= N_String_Literal
8078 and then Is_Character_Type
(Component_Type
(Typ
))
8080 Set_String_Literal_Subtype
(Op1
, Typ
);
8081 Set_String_Literal_Subtype
(Op2
, Typ
);
8083 end Resolve_Op_Concat_Rest
;
8085 ----------------------
8086 -- Resolve_Op_Expon --
8087 ----------------------
8089 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
) is
8090 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
8093 -- Catch attempts to do fixed-point exponentiation with universal
8094 -- operands, which is a case where the illegality is not caught during
8095 -- normal operator analysis.
8097 if Is_Fixed_Point_Type
(Typ
) and then Comes_From_Source
(N
) then
8098 Error_Msg_N
("exponentiation not available for fixed point", N
);
8101 elsif Nkind
(Parent
(N
)) in N_Op
8102 and then Is_Fixed_Point_Type
(Etype
(Parent
(N
)))
8103 and then Etype
(N
) = Universal_Real
8104 and then Comes_From_Source
(N
)
8106 Error_Msg_N
("exponentiation not available for fixed point", N
);
8110 if Comes_From_Source
(N
)
8111 and then Ekind
(Entity
(N
)) = E_Function
8112 and then Is_Imported
(Entity
(N
))
8113 and then Is_Intrinsic_Subprogram
(Entity
(N
))
8115 Resolve_Intrinsic_Operator
(N
, Typ
);
8119 if Etype
(Left_Opnd
(N
)) = Universal_Integer
8120 or else Etype
(Left_Opnd
(N
)) = Universal_Real
8122 Check_For_Visible_Operator
(N
, B_Typ
);
8125 -- We do the resolution using the base type, because intermediate values
8126 -- in expressions always are of the base type, not a subtype of it.
8128 Resolve
(Left_Opnd
(N
), B_Typ
);
8129 Resolve
(Right_Opnd
(N
), Standard_Integer
);
8131 Check_Unset_Reference
(Left_Opnd
(N
));
8132 Check_Unset_Reference
(Right_Opnd
(N
));
8134 Set_Etype
(N
, B_Typ
);
8135 Generate_Operator_Reference
(N
, B_Typ
);
8137 Analyze_Dimension
(N
);
8139 if Ada_Version
>= Ada_2012
and then Has_Dimension_System
(B_Typ
) then
8140 -- Evaluate the exponentiation operator for dimensioned type
8142 Eval_Op_Expon_For_Dimensioned_Type
(N
, B_Typ
);
8147 -- Set overflow checking bit. Much cleverer code needed here eventually
8148 -- and perhaps the Resolve routines should be separated for the various
8149 -- arithmetic operations, since they will need different processing. ???
8151 if Nkind
(N
) in N_Op
then
8152 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
8153 Enable_Overflow_Check
(N
);
8156 end Resolve_Op_Expon
;
8158 --------------------
8159 -- Resolve_Op_Not --
8160 --------------------
8162 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
) is
8165 function Parent_Is_Boolean
return Boolean;
8166 -- This function determines if the parent node is a boolean operator or
8167 -- operation (comparison op, membership test, or short circuit form) and
8168 -- the not in question is the left operand of this operation. Note that
8169 -- if the not is in parens, then false is returned.
8171 -----------------------
8172 -- Parent_Is_Boolean --
8173 -----------------------
8175 function Parent_Is_Boolean
return Boolean is
8177 if Paren_Count
(N
) /= 0 then
8181 case Nkind
(Parent
(N
)) is
8196 return Left_Opnd
(Parent
(N
)) = N
;
8202 end Parent_Is_Boolean
;
8204 -- Start of processing for Resolve_Op_Not
8207 -- Predefined operations on scalar types yield the base type. On the
8208 -- other hand, logical operations on arrays yield the type of the
8209 -- arguments (and the context).
8211 if Is_Array_Type
(Typ
) then
8214 B_Typ
:= Base_Type
(Typ
);
8217 if Is_VMS_Operator
(Entity
(N
)) then
8220 -- Straightforward case of incorrect arguments
8222 elsif not Valid_Boolean_Arg
(Typ
) then
8223 Error_Msg_N
("invalid operand type for operator&", N
);
8224 Set_Etype
(N
, Any_Type
);
8227 -- Special case of probable missing parens
8229 elsif Typ
= Universal_Integer
or else Typ
= Any_Modular
then
8230 if Parent_Is_Boolean
then
8232 ("operand of not must be enclosed in parentheses",
8236 ("no modular type available in this context", N
);
8239 Set_Etype
(N
, Any_Type
);
8242 -- OK resolution of NOT
8245 -- Warn if non-boolean types involved. This is a case like not a < b
8246 -- where a and b are modular, where we will get (not a) < b and most
8247 -- likely not (a < b) was intended.
8249 if Warn_On_Questionable_Missing_Parens
8250 and then not Is_Boolean_Type
(Typ
)
8251 and then Parent_Is_Boolean
8253 Error_Msg_N
("?not expression should be parenthesized here!", N
);
8256 -- Warn on double negation if checking redundant constructs
8258 if Warn_On_Redundant_Constructs
8259 and then Comes_From_Source
(N
)
8260 and then Comes_From_Source
(Right_Opnd
(N
))
8261 and then Root_Type
(Typ
) = Standard_Boolean
8262 and then Nkind
(Right_Opnd
(N
)) = N_Op_Not
8264 Error_Msg_N
("redundant double negation?", N
);
8267 -- Complete resolution and evaluation of NOT
8269 Resolve
(Right_Opnd
(N
), B_Typ
);
8270 Check_Unset_Reference
(Right_Opnd
(N
));
8271 Set_Etype
(N
, B_Typ
);
8272 Generate_Operator_Reference
(N
, B_Typ
);
8277 -----------------------------
8278 -- Resolve_Operator_Symbol --
8279 -----------------------------
8281 -- Nothing to be done, all resolved already
8283 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
) is
8284 pragma Warnings
(Off
, N
);
8285 pragma Warnings
(Off
, Typ
);
8289 end Resolve_Operator_Symbol
;
8291 ----------------------------------
8292 -- Resolve_Qualified_Expression --
8293 ----------------------------------
8295 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
8296 pragma Warnings
(Off
, Typ
);
8298 Target_Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
8299 Expr
: constant Node_Id
:= Expression
(N
);
8302 Resolve
(Expr
, Target_Typ
);
8304 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8305 -- operation if not needed.
8307 if Restriction_Check_Required
(SPARK
)
8308 and then Is_Array_Type
(Target_Typ
)
8309 and then Is_Array_Type
(Etype
(Expr
))
8310 and then Etype
(Expr
) /= Any_Composite
-- or else Expr in error
8311 and then not Matching_Static_Array_Bounds
(Target_Typ
, Etype
(Expr
))
8313 Check_SPARK_Restriction
8314 ("array types should have matching static bounds", N
);
8317 -- A qualified expression requires an exact match of the type, class-
8318 -- wide matching is not allowed. However, if the qualifying type is
8319 -- specific and the expression has a class-wide type, it may still be
8320 -- okay, since it can be the result of the expansion of a call to a
8321 -- dispatching function, so we also have to check class-wideness of the
8322 -- type of the expression's original node.
8324 if (Is_Class_Wide_Type
(Target_Typ
)
8326 (Is_Class_Wide_Type
(Etype
(Expr
))
8327 and then Is_Class_Wide_Type
(Etype
(Original_Node
(Expr
)))))
8328 and then Base_Type
(Etype
(Expr
)) /= Base_Type
(Target_Typ
)
8330 Wrong_Type
(Expr
, Target_Typ
);
8333 -- If the target type is unconstrained, then we reset the type of the
8334 -- result from the type of the expression. For other cases, the actual
8335 -- subtype of the expression is the target type.
8337 if Is_Composite_Type
(Target_Typ
)
8338 and then not Is_Constrained
(Target_Typ
)
8340 Set_Etype
(N
, Etype
(Expr
));
8343 Analyze_Dimension
(N
);
8344 Eval_Qualified_Expression
(N
);
8345 end Resolve_Qualified_Expression
;
8351 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
) is
8352 L
: constant Node_Id
:= Low_Bound
(N
);
8353 H
: constant Node_Id
:= High_Bound
(N
);
8355 function First_Last_Ref
return Boolean;
8356 -- Returns True if N is of the form X'First .. X'Last where X is the
8357 -- same entity for both attributes.
8359 --------------------
8360 -- First_Last_Ref --
8361 --------------------
8363 function First_Last_Ref
return Boolean is
8364 Lorig
: constant Node_Id
:= Original_Node
(L
);
8365 Horig
: constant Node_Id
:= Original_Node
(H
);
8368 if Nkind
(Lorig
) = N_Attribute_Reference
8369 and then Nkind
(Horig
) = N_Attribute_Reference
8370 and then Attribute_Name
(Lorig
) = Name_First
8371 and then Attribute_Name
(Horig
) = Name_Last
8374 PL
: constant Node_Id
:= Prefix
(Lorig
);
8375 PH
: constant Node_Id
:= Prefix
(Horig
);
8377 if Is_Entity_Name
(PL
)
8378 and then Is_Entity_Name
(PH
)
8379 and then Entity
(PL
) = Entity
(PH
)
8389 -- Start of processing for Resolve_Range
8396 -- Check for inappropriate range on unordered enumeration type
8398 if Bad_Unordered_Enumeration_Reference
(N
, Typ
)
8400 -- Exclude X'First .. X'Last if X is the same entity for both
8402 and then not First_Last_Ref
8404 Error_Msg
("subrange of unordered enumeration type?", Sloc
(N
));
8407 Check_Unset_Reference
(L
);
8408 Check_Unset_Reference
(H
);
8410 -- We have to check the bounds for being within the base range as
8411 -- required for a non-static context. Normally this is automatic and
8412 -- done as part of evaluating expressions, but the N_Range node is an
8413 -- exception, since in GNAT we consider this node to be a subexpression,
8414 -- even though in Ada it is not. The circuit in Sem_Eval could check for
8415 -- this, but that would put the test on the main evaluation path for
8418 Check_Non_Static_Context
(L
);
8419 Check_Non_Static_Context
(H
);
8421 -- Check for an ambiguous range over character literals. This will
8422 -- happen with a membership test involving only literals.
8424 if Typ
= Any_Character
then
8425 Ambiguous_Character
(L
);
8426 Set_Etype
(N
, Any_Type
);
8430 -- If bounds are static, constant-fold them, so size computations are
8431 -- identical between front-end and back-end. Do not perform this
8432 -- transformation while analyzing generic units, as type information
8433 -- would be lost when reanalyzing the constant node in the instance.
8435 if Is_Discrete_Type
(Typ
) and then Full_Expander_Active
then
8436 if Is_OK_Static_Expression
(L
) then
8437 Fold_Uint
(L
, Expr_Value
(L
), Is_Static_Expression
(L
));
8440 if Is_OK_Static_Expression
(H
) then
8441 Fold_Uint
(H
, Expr_Value
(H
), Is_Static_Expression
(H
));
8446 --------------------------
8447 -- Resolve_Real_Literal --
8448 --------------------------
8450 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
8451 Actual_Typ
: constant Entity_Id
:= Etype
(N
);
8454 -- Special processing for fixed-point literals to make sure that the
8455 -- value is an exact multiple of small where this is required. We skip
8456 -- this for the universal real case, and also for generic types.
8458 if Is_Fixed_Point_Type
(Typ
)
8459 and then Typ
/= Universal_Fixed
8460 and then Typ
/= Any_Fixed
8461 and then not Is_Generic_Type
(Typ
)
8464 Val
: constant Ureal
:= Realval
(N
);
8465 Cintr
: constant Ureal
:= Val
/ Small_Value
(Typ
);
8466 Cint
: constant Uint
:= UR_Trunc
(Cintr
);
8467 Den
: constant Uint
:= Norm_Den
(Cintr
);
8471 -- Case of literal is not an exact multiple of the Small
8475 -- For a source program literal for a decimal fixed-point type,
8476 -- this is statically illegal (RM 4.9(36)).
8478 if Is_Decimal_Fixed_Point_Type
(Typ
)
8479 and then Actual_Typ
= Universal_Real
8480 and then Comes_From_Source
(N
)
8482 Error_Msg_N
("value has extraneous low order digits", N
);
8485 -- Generate a warning if literal from source
8487 if Is_Static_Expression
(N
)
8488 and then Warn_On_Bad_Fixed_Value
8491 ("?static fixed-point value is not a multiple of Small!",
8495 -- Replace literal by a value that is the exact representation
8496 -- of a value of the type, i.e. a multiple of the small value,
8497 -- by truncation, since Machine_Rounds is false for all GNAT
8498 -- fixed-point types (RM 4.9(38)).
8500 Stat
:= Is_Static_Expression
(N
);
8502 Make_Real_Literal
(Sloc
(N
),
8503 Realval
=> Small_Value
(Typ
) * Cint
));
8505 Set_Is_Static_Expression
(N
, Stat
);
8508 -- In all cases, set the corresponding integer field
8510 Set_Corresponding_Integer_Value
(N
, Cint
);
8514 -- Now replace the actual type by the expected type as usual
8517 Eval_Real_Literal
(N
);
8518 end Resolve_Real_Literal
;
8520 -----------------------
8521 -- Resolve_Reference --
8522 -----------------------
8524 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
) is
8525 P
: constant Node_Id
:= Prefix
(N
);
8528 -- Replace general access with specific type
8530 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
8531 Set_Etype
(N
, Base_Type
(Typ
));
8534 Resolve
(P
, Designated_Type
(Etype
(N
)));
8536 -- If we are taking the reference of a volatile entity, then treat it as
8537 -- a potential modification of this entity. This is too conservative,
8538 -- but necessary because remove side effects can cause transformations
8539 -- of normal assignments into reference sequences that otherwise fail to
8540 -- notice the modification.
8542 if Is_Entity_Name
(P
) and then Treat_As_Volatile
(Entity
(P
)) then
8543 Note_Possible_Modification
(P
, Sure
=> False);
8545 end Resolve_Reference
;
8547 --------------------------------
8548 -- Resolve_Selected_Component --
8549 --------------------------------
8551 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
8553 Comp1
: Entity_Id
:= Empty
; -- prevent junk warning
8554 P
: constant Node_Id
:= Prefix
(N
);
8555 S
: constant Node_Id
:= Selector_Name
(N
);
8556 T
: Entity_Id
:= Etype
(P
);
8558 I1
: Interp_Index
:= 0; -- prevent junk warning
8563 function Init_Component
return Boolean;
8564 -- Check whether this is the initialization of a component within an
8565 -- init proc (by assignment or call to another init proc). If true,
8566 -- there is no need for a discriminant check.
8568 --------------------
8569 -- Init_Component --
8570 --------------------
8572 function Init_Component
return Boolean is
8574 return Inside_Init_Proc
8575 and then Nkind
(Prefix
(N
)) = N_Identifier
8576 and then Chars
(Prefix
(N
)) = Name_uInit
8577 and then Nkind
(Parent
(Parent
(N
))) = N_Case_Statement_Alternative
;
8580 -- Start of processing for Resolve_Selected_Component
8583 if Is_Overloaded
(P
) then
8585 -- Use the context type to select the prefix that has a selector
8586 -- of the correct name and type.
8589 Get_First_Interp
(P
, I
, It
);
8591 Search
: while Present
(It
.Typ
) loop
8592 if Is_Access_Type
(It
.Typ
) then
8593 T
:= Designated_Type
(It
.Typ
);
8598 -- Locate selected component. For a private prefix the selector
8599 -- can denote a discriminant.
8601 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
8603 -- The visible components of a class-wide type are those of
8606 if Is_Class_Wide_Type
(T
) then
8610 Comp
:= First_Entity
(T
);
8611 while Present
(Comp
) loop
8612 if Chars
(Comp
) = Chars
(S
)
8613 and then Covers
(Etype
(Comp
), Typ
)
8622 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8624 if It
= No_Interp
then
8626 ("ambiguous prefix for selected component", N
);
8633 -- There may be an implicit dereference. Retrieve
8634 -- designated record type.
8636 if Is_Access_Type
(It1
.Typ
) then
8637 T
:= Designated_Type
(It1
.Typ
);
8642 if Scope
(Comp1
) /= T
then
8644 -- Resolution chooses the new interpretation.
8645 -- Find the component with the right name.
8647 Comp1
:= First_Entity
(T
);
8648 while Present
(Comp1
)
8649 and then Chars
(Comp1
) /= Chars
(S
)
8651 Comp1
:= Next_Entity
(Comp1
);
8660 Comp
:= Next_Entity
(Comp
);
8664 Get_Next_Interp
(I
, It
);
8667 Resolve
(P
, It1
.Typ
);
8669 Set_Entity_With_Style_Check
(S
, Comp1
);
8672 -- Resolve prefix with its type
8677 -- Generate cross-reference. We needed to wait until full overloading
8678 -- resolution was complete to do this, since otherwise we can't tell if
8679 -- we are an lvalue or not.
8681 if May_Be_Lvalue
(N
) then
8682 Generate_Reference
(Entity
(S
), S
, 'm');
8684 Generate_Reference
(Entity
(S
), S
, 'r');
8687 -- If prefix is an access type, the node will be transformed into an
8688 -- explicit dereference during expansion. The type of the node is the
8689 -- designated type of that of the prefix.
8691 if Is_Access_Type
(Etype
(P
)) then
8692 T
:= Designated_Type
(Etype
(P
));
8693 Check_Fully_Declared_Prefix
(T
, P
);
8698 if Has_Discriminants
(T
)
8699 and then Ekind_In
(Entity
(S
), E_Component
, E_Discriminant
)
8700 and then Present
(Original_Record_Component
(Entity
(S
)))
8701 and then Ekind
(Original_Record_Component
(Entity
(S
))) = E_Component
8702 and then Present
(Discriminant_Checking_Func
8703 (Original_Record_Component
(Entity
(S
))))
8704 and then not Discriminant_Checks_Suppressed
(T
)
8705 and then not Init_Component
8707 Set_Do_Discriminant_Check
(N
);
8710 if Ekind
(Entity
(S
)) = E_Void
then
8711 Error_Msg_N
("premature use of component", S
);
8714 -- If the prefix is a record conversion, this may be a renamed
8715 -- discriminant whose bounds differ from those of the original
8716 -- one, so we must ensure that a range check is performed.
8718 if Nkind
(P
) = N_Type_Conversion
8719 and then Ekind
(Entity
(S
)) = E_Discriminant
8720 and then Is_Discrete_Type
(Typ
)
8722 Set_Etype
(N
, Base_Type
(Typ
));
8725 -- Note: No Eval processing is required, because the prefix is of a
8726 -- record type, or protected type, and neither can possibly be static.
8728 -- If the array type is atomic, and is packed, and we are in a left side
8729 -- context, then this is worth a warning, since we have a situation
8730 -- where the access to the component may cause extra read/writes of the
8731 -- atomic array object, which could be considered unexpected.
8733 if Nkind
(N
) = N_Selected_Component
8734 and then (Is_Atomic
(T
)
8735 or else (Is_Entity_Name
(Prefix
(N
))
8736 and then Is_Atomic
(Entity
(Prefix
(N
)))))
8737 and then Is_Packed
(T
)
8741 ("?assignment to component of packed atomic record", Prefix
(N
));
8743 ("?\may cause unexpected accesses to atomic object", Prefix
(N
));
8746 Analyze_Dimension
(N
);
8747 end Resolve_Selected_Component
;
8753 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
) is
8754 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
8755 L
: constant Node_Id
:= Left_Opnd
(N
);
8756 R
: constant Node_Id
:= Right_Opnd
(N
);
8759 -- We do the resolution using the base type, because intermediate values
8760 -- in expressions always are of the base type, not a subtype of it.
8763 Resolve
(R
, Standard_Natural
);
8765 Check_Unset_Reference
(L
);
8766 Check_Unset_Reference
(R
);
8768 Set_Etype
(N
, B_Typ
);
8769 Generate_Operator_Reference
(N
, B_Typ
);
8773 ---------------------------
8774 -- Resolve_Short_Circuit --
8775 ---------------------------
8777 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
) is
8778 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
8779 L
: constant Node_Id
:= Left_Opnd
(N
);
8780 R
: constant Node_Id
:= Right_Opnd
(N
);
8786 -- Check for issuing warning for always False assert/check, this happens
8787 -- when assertions are turned off, in which case the pragma Assert/Check
8788 -- was transformed into:
8790 -- if False and then <condition> then ...
8792 -- and we detect this pattern
8794 if Warn_On_Assertion_Failure
8795 and then Is_Entity_Name
(R
)
8796 and then Entity
(R
) = Standard_False
8797 and then Nkind
(Parent
(N
)) = N_If_Statement
8798 and then Nkind
(N
) = N_And_Then
8799 and then Is_Entity_Name
(L
)
8800 and then Entity
(L
) = Standard_False
8803 Orig
: constant Node_Id
:= Original_Node
(Parent
(N
));
8806 if Nkind
(Orig
) = N_Pragma
8807 and then Pragma_Name
(Orig
) = Name_Assert
8809 -- Don't want to warn if original condition is explicit False
8812 Expr
: constant Node_Id
:=
8815 (First
(Pragma_Argument_Associations
(Orig
))));
8817 if Is_Entity_Name
(Expr
)
8818 and then Entity
(Expr
) = Standard_False
8822 -- Issue warning. We do not want the deletion of the
8823 -- IF/AND-THEN to take this message with it. We achieve
8824 -- this by making sure that the expanded code points to
8825 -- the Sloc of the expression, not the original pragma.
8827 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
8828 -- The source location of the expression is not usually
8829 -- the best choice here. For example, it gets located on
8830 -- the last AND keyword in a chain of boolean expressiond
8831 -- AND'ed together. It is best to put the message on the
8832 -- first character of the assertion, which is the effect
8833 -- of the First_Node call here.
8836 ("?assertion would fail at run time!",
8838 (First
(Pragma_Argument_Associations
(Orig
))));
8842 -- Similar processing for Check pragma
8844 elsif Nkind
(Orig
) = N_Pragma
8845 and then Pragma_Name
(Orig
) = Name_Check
8847 -- Don't want to warn if original condition is explicit False
8850 Expr
: constant Node_Id
:=
8854 (Pragma_Argument_Associations
(Orig
)))));
8856 if Is_Entity_Name
(Expr
)
8857 and then Entity
(Expr
) = Standard_False
8864 -- Again use Error_Msg_F rather than Error_Msg_N, see
8865 -- comment above for an explanation of why we do this.
8868 ("?check would fail at run time!",
8870 (Last
(Pragma_Argument_Associations
(Orig
))));
8877 -- Continue with processing of short circuit
8879 Check_Unset_Reference
(L
);
8880 Check_Unset_Reference
(R
);
8882 Set_Etype
(N
, B_Typ
);
8883 Eval_Short_Circuit
(N
);
8884 end Resolve_Short_Circuit
;
8890 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
) is
8891 Drange
: constant Node_Id
:= Discrete_Range
(N
);
8892 Name
: constant Node_Id
:= Prefix
(N
);
8893 Array_Type
: Entity_Id
:= Empty
;
8894 Index_Type
: Entity_Id
;
8897 if Is_Overloaded
(Name
) then
8899 -- Use the context type to select the prefix that yields the correct
8904 I1
: Interp_Index
:= 0;
8906 P
: constant Node_Id
:= Prefix
(N
);
8907 Found
: Boolean := False;
8910 Get_First_Interp
(P
, I
, It
);
8911 while Present
(It
.Typ
) loop
8912 if (Is_Array_Type
(It
.Typ
)
8913 and then Covers
(Typ
, It
.Typ
))
8914 or else (Is_Access_Type
(It
.Typ
)
8915 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
8916 and then Covers
(Typ
, Designated_Type
(It
.Typ
)))
8919 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8921 if It
= No_Interp
then
8922 Error_Msg_N
("ambiguous prefix for slicing", N
);
8927 Array_Type
:= It
.Typ
;
8932 Array_Type
:= It
.Typ
;
8937 Get_Next_Interp
(I
, It
);
8942 Array_Type
:= Etype
(Name
);
8945 Resolve
(Name
, Array_Type
);
8947 if Is_Access_Type
(Array_Type
) then
8948 Apply_Access_Check
(N
);
8949 Array_Type
:= Designated_Type
(Array_Type
);
8951 -- If the prefix is an access to an unconstrained array, we must use
8952 -- the actual subtype of the object to perform the index checks. The
8953 -- object denoted by the prefix is implicit in the node, so we build
8954 -- an explicit representation for it in order to compute the actual
8957 if not Is_Constrained
(Array_Type
) then
8958 Remove_Side_Effects
(Prefix
(N
));
8961 Obj
: constant Node_Id
:=
8962 Make_Explicit_Dereference
(Sloc
(N
),
8963 Prefix
=> New_Copy_Tree
(Prefix
(N
)));
8965 Set_Etype
(Obj
, Array_Type
);
8966 Set_Parent
(Obj
, Parent
(N
));
8967 Array_Type
:= Get_Actual_Subtype
(Obj
);
8971 elsif Is_Entity_Name
(Name
)
8972 or else Nkind
(Name
) = N_Explicit_Dereference
8973 or else (Nkind
(Name
) = N_Function_Call
8974 and then not Is_Constrained
(Etype
(Name
)))
8976 Array_Type
:= Get_Actual_Subtype
(Name
);
8978 -- If the name is a selected component that depends on discriminants,
8979 -- build an actual subtype for it. This can happen only when the name
8980 -- itself is overloaded; otherwise the actual subtype is created when
8981 -- the selected component is analyzed.
8983 elsif Nkind
(Name
) = N_Selected_Component
8984 and then Full_Analysis
8985 and then Depends_On_Discriminant
(First_Index
(Array_Type
))
8988 Act_Decl
: constant Node_Id
:=
8989 Build_Actual_Subtype_Of_Component
(Array_Type
, Name
);
8991 Insert_Action
(N
, Act_Decl
);
8992 Array_Type
:= Defining_Identifier
(Act_Decl
);
8995 -- Maybe this should just be "else", instead of checking for the
8996 -- specific case of slice??? This is needed for the case where the
8997 -- prefix is an Image attribute, which gets expanded to a slice, and so
8998 -- has a constrained subtype which we want to use for the slice range
8999 -- check applied below (the range check won't get done if the
9000 -- unconstrained subtype of the 'Image is used).
9002 elsif Nkind
(Name
) = N_Slice
then
9003 Array_Type
:= Etype
(Name
);
9006 -- If name was overloaded, set slice type correctly now
9008 Set_Etype
(N
, Array_Type
);
9010 -- If the range is specified by a subtype mark, no resolution is
9011 -- necessary. Else resolve the bounds, and apply needed checks.
9013 if not Is_Entity_Name
(Drange
) then
9014 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
9015 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
9017 Index_Type
:= Etype
(First_Index
(Array_Type
));
9020 Resolve
(Drange
, Base_Type
(Index_Type
));
9022 if Nkind
(Drange
) = N_Range
then
9024 -- Ensure that side effects in the bounds are properly handled
9026 Force_Evaluation
(Low_Bound
(Drange
));
9027 Force_Evaluation
(High_Bound
(Drange
));
9029 -- Do not apply the range check to nodes associated with the
9030 -- frontend expansion of the dispatch table. We first check
9031 -- if Ada.Tags is already loaded to avoid the addition of an
9032 -- undesired dependence on such run-time unit.
9034 if not Tagged_Type_Expansion
9036 (RTU_Loaded
(Ada_Tags
)
9037 and then Nkind
(Prefix
(N
)) = N_Selected_Component
9038 and then Present
(Entity
(Selector_Name
(Prefix
(N
))))
9039 and then Entity
(Selector_Name
(Prefix
(N
))) =
9040 RTE_Record_Component
(RE_Prims_Ptr
))
9042 Apply_Range_Check
(Drange
, Index_Type
);
9047 Set_Slice_Subtype
(N
);
9049 -- Check bad use of type with predicates
9051 if Has_Predicates
(Etype
(Drange
)) then
9052 Bad_Predicated_Subtype_Use
9053 ("subtype& has predicate, not allowed in slice",
9054 Drange
, Etype
(Drange
));
9056 -- Otherwise here is where we check suspicious indexes
9058 elsif Nkind
(Drange
) = N_Range
then
9059 Warn_On_Suspicious_Index
(Name
, Low_Bound
(Drange
));
9060 Warn_On_Suspicious_Index
(Name
, High_Bound
(Drange
));
9063 Analyze_Dimension
(N
);
9067 ----------------------------
9068 -- Resolve_String_Literal --
9069 ----------------------------
9071 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
9072 C_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
9073 R_Typ
: constant Entity_Id
:= Root_Type
(C_Typ
);
9074 Loc
: constant Source_Ptr
:= Sloc
(N
);
9075 Str
: constant String_Id
:= Strval
(N
);
9076 Strlen
: constant Nat
:= String_Length
(Str
);
9077 Subtype_Id
: Entity_Id
;
9078 Need_Check
: Boolean;
9081 -- For a string appearing in a concatenation, defer creation of the
9082 -- string_literal_subtype until the end of the resolution of the
9083 -- concatenation, because the literal may be constant-folded away. This
9084 -- is a useful optimization for long concatenation expressions.
9086 -- If the string is an aggregate built for a single character (which
9087 -- happens in a non-static context) or a is null string to which special
9088 -- checks may apply, we build the subtype. Wide strings must also get a
9089 -- string subtype if they come from a one character aggregate. Strings
9090 -- generated by attributes might be static, but it is often hard to
9091 -- determine whether the enclosing context is static, so we generate
9092 -- subtypes for them as well, thus losing some rarer optimizations ???
9093 -- Same for strings that come from a static conversion.
9096 (Strlen
= 0 and then Typ
/= Standard_String
)
9097 or else Nkind
(Parent
(N
)) /= N_Op_Concat
9098 or else (N
/= Left_Opnd
(Parent
(N
))
9099 and then N
/= Right_Opnd
(Parent
(N
)))
9100 or else ((Typ
= Standard_Wide_String
9101 or else Typ
= Standard_Wide_Wide_String
)
9102 and then Nkind
(Original_Node
(N
)) /= N_String_Literal
);
9104 -- If the resolving type is itself a string literal subtype, we can just
9105 -- reuse it, since there is no point in creating another.
9107 if Ekind
(Typ
) = E_String_Literal_Subtype
then
9110 elsif Nkind
(Parent
(N
)) = N_Op_Concat
9111 and then not Need_Check
9112 and then not Nkind_In
(Original_Node
(N
), N_Character_Literal
,
9113 N_Attribute_Reference
,
9114 N_Qualified_Expression
,
9119 -- Otherwise we must create a string literal subtype. Note that the
9120 -- whole idea of string literal subtypes is simply to avoid the need
9121 -- for building a full fledged array subtype for each literal.
9124 Set_String_Literal_Subtype
(N
, Typ
);
9125 Subtype_Id
:= Etype
(N
);
9128 if Nkind
(Parent
(N
)) /= N_Op_Concat
9131 Set_Etype
(N
, Subtype_Id
);
9132 Eval_String_Literal
(N
);
9135 if Is_Limited_Composite
(Typ
)
9136 or else Is_Private_Composite
(Typ
)
9138 Error_Msg_N
("string literal not available for private array", N
);
9139 Set_Etype
(N
, Any_Type
);
9143 -- The validity of a null string has been checked in the call to
9144 -- Eval_String_Literal.
9149 -- Always accept string literal with component type Any_Character, which
9150 -- occurs in error situations and in comparisons of literals, both of
9151 -- which should accept all literals.
9153 elsif R_Typ
= Any_Character
then
9156 -- If the type is bit-packed, then we always transform the string
9157 -- literal into a full fledged aggregate.
9159 elsif Is_Bit_Packed_Array
(Typ
) then
9162 -- Deal with cases of Wide_Wide_String, Wide_String, and String
9165 -- For Standard.Wide_Wide_String, or any other type whose component
9166 -- type is Standard.Wide_Wide_Character, we know that all the
9167 -- characters in the string must be acceptable, since the parser
9168 -- accepted the characters as valid character literals.
9170 if R_Typ
= Standard_Wide_Wide_Character
then
9173 -- For the case of Standard.String, or any other type whose component
9174 -- type is Standard.Character, we must make sure that there are no
9175 -- wide characters in the string, i.e. that it is entirely composed
9176 -- of characters in range of type Character.
9178 -- If the string literal is the result of a static concatenation, the
9179 -- test has already been performed on the components, and need not be
9182 elsif R_Typ
= Standard_Character
9183 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
9185 for J
in 1 .. Strlen
loop
9186 if not In_Character_Range
(Get_String_Char
(Str
, J
)) then
9188 -- If we are out of range, post error. This is one of the
9189 -- very few places that we place the flag in the middle of
9190 -- a token, right under the offending wide character. Not
9191 -- quite clear if this is right wrt wide character encoding
9192 -- sequences, but it's only an error message!
9195 ("literal out of range of type Standard.Character",
9196 Source_Ptr
(Int
(Loc
) + J
));
9201 -- For the case of Standard.Wide_String, or any other type whose
9202 -- component type is Standard.Wide_Character, we must make sure that
9203 -- there are no wide characters in the string, i.e. that it is
9204 -- entirely composed of characters in range of type Wide_Character.
9206 -- If the string literal is the result of a static concatenation,
9207 -- the test has already been performed on the components, and need
9210 elsif R_Typ
= Standard_Wide_Character
9211 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
9213 for J
in 1 .. Strlen
loop
9214 if not In_Wide_Character_Range
(Get_String_Char
(Str
, J
)) then
9216 -- If we are out of range, post error. This is one of the
9217 -- very few places that we place the flag in the middle of
9218 -- a token, right under the offending wide character.
9220 -- This is not quite right, because characters in general
9221 -- will take more than one character position ???
9224 ("literal out of range of type Standard.Wide_Character",
9225 Source_Ptr
(Int
(Loc
) + J
));
9230 -- If the root type is not a standard character, then we will convert
9231 -- the string into an aggregate and will let the aggregate code do
9232 -- the checking. Standard Wide_Wide_Character is also OK here.
9238 -- See if the component type of the array corresponding to the string
9239 -- has compile time known bounds. If yes we can directly check
9240 -- whether the evaluation of the string will raise constraint error.
9241 -- Otherwise we need to transform the string literal into the
9242 -- corresponding character aggregate and let the aggregate code do
9245 if Is_Standard_Character_Type
(R_Typ
) then
9247 -- Check for the case of full range, where we are definitely OK
9249 if Component_Type
(Typ
) = Base_Type
(Component_Type
(Typ
)) then
9253 -- Here the range is not the complete base type range, so check
9256 Comp_Typ_Lo
: constant Node_Id
:=
9257 Type_Low_Bound
(Component_Type
(Typ
));
9258 Comp_Typ_Hi
: constant Node_Id
:=
9259 Type_High_Bound
(Component_Type
(Typ
));
9264 if Compile_Time_Known_Value
(Comp_Typ_Lo
)
9265 and then Compile_Time_Known_Value
(Comp_Typ_Hi
)
9267 for J
in 1 .. Strlen
loop
9268 Char_Val
:= UI_From_Int
(Int
(Get_String_Char
(Str
, J
)));
9270 if Char_Val
< Expr_Value
(Comp_Typ_Lo
)
9271 or else Char_Val
> Expr_Value
(Comp_Typ_Hi
)
9273 Apply_Compile_Time_Constraint_Error
9274 (N
, "character out of range?", CE_Range_Check_Failed
,
9275 Loc
=> Source_Ptr
(Int
(Loc
) + J
));
9285 -- If we got here we meed to transform the string literal into the
9286 -- equivalent qualified positional array aggregate. This is rather
9287 -- heavy artillery for this situation, but it is hard work to avoid.
9290 Lits
: constant List_Id
:= New_List
;
9291 P
: Source_Ptr
:= Loc
+ 1;
9295 -- Build the character literals, we give them source locations that
9296 -- correspond to the string positions, which is a bit tricky given
9297 -- the possible presence of wide character escape sequences.
9299 for J
in 1 .. Strlen
loop
9300 C
:= Get_String_Char
(Str
, J
);
9301 Set_Character_Literal_Name
(C
);
9304 Make_Character_Literal
(P
,
9306 Char_Literal_Value
=> UI_From_CC
(C
)));
9308 if In_Character_Range
(C
) then
9311 -- Should we have a call to Skip_Wide here ???
9320 Make_Qualified_Expression
(Loc
,
9321 Subtype_Mark
=> New_Reference_To
(Typ
, Loc
),
9323 Make_Aggregate
(Loc
, Expressions
=> Lits
)));
9325 Analyze_And_Resolve
(N
, Typ
);
9327 end Resolve_String_Literal
;
9329 -----------------------------
9330 -- Resolve_Subprogram_Info --
9331 -----------------------------
9333 procedure Resolve_Subprogram_Info
(N
: Node_Id
; Typ
: Entity_Id
) is
9336 end Resolve_Subprogram_Info
;
9338 -----------------------------
9339 -- Resolve_Type_Conversion --
9340 -----------------------------
9342 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
) is
9343 Conv_OK
: constant Boolean := Conversion_OK
(N
);
9344 Operand
: constant Node_Id
:= Expression
(N
);
9345 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
9346 Target_Typ
: constant Entity_Id
:= Etype
(N
);
9351 Test_Redundant
: Boolean := Warn_On_Redundant_Constructs
;
9352 -- Set to False to suppress cases where we want to suppress the test
9353 -- for redundancy to avoid possible false positives on this warning.
9357 and then not Valid_Conversion
(N
, Target_Typ
, Operand
)
9362 -- If the Operand Etype is Universal_Fixed, then the conversion is
9363 -- never redundant. We need this check because by the time we have
9364 -- finished the rather complex transformation, the conversion looks
9365 -- redundant when it is not.
9367 if Operand_Typ
= Universal_Fixed
then
9368 Test_Redundant
:= False;
9370 -- If the operand is marked as Any_Fixed, then special processing is
9371 -- required. This is also a case where we suppress the test for a
9372 -- redundant conversion, since most certainly it is not redundant.
9374 elsif Operand_Typ
= Any_Fixed
then
9375 Test_Redundant
:= False;
9377 -- Mixed-mode operation involving a literal. Context must be a fixed
9378 -- type which is applied to the literal subsequently.
9380 if Is_Fixed_Point_Type
(Typ
) then
9381 Set_Etype
(Operand
, Universal_Real
);
9383 elsif Is_Numeric_Type
(Typ
)
9384 and then Nkind_In
(Operand
, N_Op_Multiply
, N_Op_Divide
)
9385 and then (Etype
(Right_Opnd
(Operand
)) = Universal_Real
9387 Etype
(Left_Opnd
(Operand
)) = Universal_Real
)
9389 -- Return if expression is ambiguous
9391 if Unique_Fixed_Point_Type
(N
) = Any_Type
then
9394 -- If nothing else, the available fixed type is Duration
9397 Set_Etype
(Operand
, Standard_Duration
);
9400 -- Resolve the real operand with largest available precision
9402 if Etype
(Right_Opnd
(Operand
)) = Universal_Real
then
9403 Rop
:= New_Copy_Tree
(Right_Opnd
(Operand
));
9405 Rop
:= New_Copy_Tree
(Left_Opnd
(Operand
));
9408 Resolve
(Rop
, Universal_Real
);
9410 -- If the operand is a literal (it could be a non-static and
9411 -- illegal exponentiation) check whether the use of Duration
9412 -- is potentially inaccurate.
9414 if Nkind
(Rop
) = N_Real_Literal
9415 and then Realval
(Rop
) /= Ureal_0
9416 and then abs (Realval
(Rop
)) < Delta_Value
(Standard_Duration
)
9419 ("?universal real operand can only " &
9420 "be interpreted as Duration!",
9423 ("\?precision will be lost in the conversion!", Rop
);
9426 elsif Is_Numeric_Type
(Typ
)
9427 and then Nkind
(Operand
) in N_Op
9428 and then Unique_Fixed_Point_Type
(N
) /= Any_Type
9430 Set_Etype
(Operand
, Standard_Duration
);
9433 Error_Msg_N
("invalid context for mixed mode operation", N
);
9434 Set_Etype
(Operand
, Any_Type
);
9441 -- In SPARK, a type conversion between array types should be restricted
9442 -- to types which have matching static bounds.
9444 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9445 -- operation if not needed.
9447 if Restriction_Check_Required
(SPARK
)
9448 and then Is_Array_Type
(Target_Typ
)
9449 and then Is_Array_Type
(Operand_Typ
)
9450 and then Operand_Typ
/= Any_Composite
-- or else Operand in error
9451 and then not Matching_Static_Array_Bounds
(Target_Typ
, Operand_Typ
)
9453 Check_SPARK_Restriction
9454 ("array types should have matching static bounds", N
);
9457 -- In formal mode, the operand of an ancestor type conversion must be an
9458 -- object (not an expression).
9460 if Is_Tagged_Type
(Target_Typ
)
9461 and then not Is_Class_Wide_Type
(Target_Typ
)
9462 and then Is_Tagged_Type
(Operand_Typ
)
9463 and then not Is_Class_Wide_Type
(Operand_Typ
)
9464 and then Is_Ancestor
(Target_Typ
, Operand_Typ
)
9465 and then not Is_SPARK_Object_Reference
(Operand
)
9467 Check_SPARK_Restriction
("object required", Operand
);
9470 Analyze_Dimension
(N
);
9472 -- Note: we do the Eval_Type_Conversion call before applying the
9473 -- required checks for a subtype conversion. This is important, since
9474 -- both are prepared under certain circumstances to change the type
9475 -- conversion to a constraint error node, but in the case of
9476 -- Eval_Type_Conversion this may reflect an illegality in the static
9477 -- case, and we would miss the illegality (getting only a warning
9478 -- message), if we applied the type conversion checks first.
9480 Eval_Type_Conversion
(N
);
9482 -- Even when evaluation is not possible, we may be able to simplify the
9483 -- conversion or its expression. This needs to be done before applying
9484 -- checks, since otherwise the checks may use the original expression
9485 -- and defeat the simplifications. This is specifically the case for
9486 -- elimination of the floating-point Truncation attribute in
9487 -- float-to-int conversions.
9489 Simplify_Type_Conversion
(N
);
9491 -- If after evaluation we still have a type conversion, then we may need
9492 -- to apply checks required for a subtype conversion.
9494 -- Skip these type conversion checks if universal fixed operands
9495 -- operands involved, since range checks are handled separately for
9496 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
9498 if Nkind
(N
) = N_Type_Conversion
9499 and then not Is_Generic_Type
(Root_Type
(Target_Typ
))
9500 and then Target_Typ
/= Universal_Fixed
9501 and then Operand_Typ
/= Universal_Fixed
9503 Apply_Type_Conversion_Checks
(N
);
9506 -- Issue warning for conversion of simple object to its own type. We
9507 -- have to test the original nodes, since they may have been rewritten
9508 -- by various optimizations.
9510 Orig_N
:= Original_Node
(N
);
9512 -- Here we test for a redundant conversion if the warning mode is
9513 -- active (and was not locally reset), and we have a type conversion
9514 -- from source not appearing in a generic instance.
9517 and then Nkind
(Orig_N
) = N_Type_Conversion
9518 and then Comes_From_Source
(Orig_N
)
9519 and then not In_Instance
9521 Orig_N
:= Original_Node
(Expression
(Orig_N
));
9522 Orig_T
:= Target_Typ
;
9524 -- If the node is part of a larger expression, the Target_Type
9525 -- may not be the original type of the node if the context is a
9526 -- condition. Recover original type to see if conversion is needed.
9528 if Is_Boolean_Type
(Orig_T
)
9529 and then Nkind
(Parent
(N
)) in N_Op
9531 Orig_T
:= Etype
(Parent
(N
));
9534 -- If we have an entity name, then give the warning if the entity
9535 -- is the right type, or if it is a loop parameter covered by the
9536 -- original type (that's needed because loop parameters have an
9537 -- odd subtype coming from the bounds).
9539 if (Is_Entity_Name
(Orig_N
)
9541 (Etype
(Entity
(Orig_N
)) = Orig_T
9543 (Ekind
(Entity
(Orig_N
)) = E_Loop_Parameter
9544 and then Covers
(Orig_T
, Etype
(Entity
(Orig_N
))))))
9546 -- If not an entity, then type of expression must match
9548 or else Etype
(Orig_N
) = Orig_T
9550 -- One more check, do not give warning if the analyzed conversion
9551 -- has an expression with non-static bounds, and the bounds of the
9552 -- target are static. This avoids junk warnings in cases where the
9553 -- conversion is necessary to establish staticness, for example in
9554 -- a case statement.
9556 if not Is_OK_Static_Subtype
(Operand_Typ
)
9557 and then Is_OK_Static_Subtype
(Target_Typ
)
9561 -- Finally, if this type conversion occurs in a context requiring
9562 -- a prefix, and the expression is a qualified expression then the
9563 -- type conversion is not redundant, since a qualified expression
9564 -- is not a prefix, whereas a type conversion is. For example, "X
9565 -- := T'(Funx(...)).Y;" is illegal because a selected component
9566 -- requires a prefix, but a type conversion makes it legal: "X :=
9567 -- T(T'(Funx(...))).Y;"
9569 -- In Ada 2012, a qualified expression is a name, so this idiom is
9570 -- no longer needed, but we still suppress the warning because it
9571 -- seems unfriendly for warnings to pop up when you switch to the
9572 -- newer language version.
9574 elsif Nkind
(Orig_N
) = N_Qualified_Expression
9575 and then Nkind_In
(Parent
(N
), N_Attribute_Reference
,
9576 N_Indexed_Component
,
9577 N_Selected_Component
,
9579 N_Explicit_Dereference
)
9583 -- Here we give the redundant conversion warning. If it is an
9584 -- entity, give the name of the entity in the message. If not,
9585 -- just mention the expression.
9588 if Is_Entity_Name
(Orig_N
) then
9589 Error_Msg_Node_2
:= Orig_T
;
9590 Error_Msg_NE
-- CODEFIX
9591 ("?redundant conversion, & is of type &!",
9592 N
, Entity
(Orig_N
));
9595 ("?redundant conversion, expression is of type&!",
9602 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
9603 -- No need to perform any interface conversion if the type of the
9604 -- expression coincides with the target type.
9606 if Ada_Version
>= Ada_2005
9607 and then Full_Expander_Active
9608 and then Operand_Typ
/= Target_Typ
9611 Opnd
: Entity_Id
:= Operand_Typ
;
9612 Target
: Entity_Id
:= Target_Typ
;
9615 if Is_Access_Type
(Opnd
) then
9616 Opnd
:= Designated_Type
(Opnd
);
9619 if Is_Access_Type
(Target_Typ
) then
9620 Target
:= Designated_Type
(Target
);
9623 if Opnd
= Target
then
9626 -- Conversion from interface type
9628 elsif Is_Interface
(Opnd
) then
9630 -- Ada 2005 (AI-217): Handle entities from limited views
9632 if From_With_Type
(Opnd
) then
9633 Error_Msg_Qual_Level
:= 99;
9634 Error_Msg_NE
-- CODEFIX
9635 ("missing WITH clause on package &", N
,
9636 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Opnd
))));
9638 ("type conversions require visibility of the full view",
9641 elsif From_With_Type
(Target
)
9643 (Is_Access_Type
(Target_Typ
)
9644 and then Present
(Non_Limited_View
(Etype
(Target
))))
9646 Error_Msg_Qual_Level
:= 99;
9647 Error_Msg_NE
-- CODEFIX
9648 ("missing WITH clause on package &", N
,
9649 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Target
))));
9651 ("type conversions require visibility of the full view",
9655 Expand_Interface_Conversion
(N
, Is_Static
=> False);
9658 -- Conversion to interface type
9660 elsif Is_Interface
(Target
) then
9664 if Ekind_In
(Opnd
, E_Protected_Subtype
, E_Task_Subtype
) then
9665 Opnd
:= Etype
(Opnd
);
9668 if not Interface_Present_In_Ancestor
9672 if Is_Class_Wide_Type
(Opnd
) then
9674 -- The static analysis is not enough to know if the
9675 -- interface is implemented or not. Hence we must pass
9676 -- the work to the expander to generate code to evaluate
9677 -- the conversion at run time.
9679 Expand_Interface_Conversion
(N
, Is_Static
=> False);
9682 Error_Msg_Name_1
:= Chars
(Etype
(Target
));
9683 Error_Msg_Name_2
:= Chars
(Opnd
);
9685 ("wrong interface conversion (% is not a progenitor " &
9690 Expand_Interface_Conversion
(N
);
9695 end Resolve_Type_Conversion
;
9697 ----------------------
9698 -- Resolve_Unary_Op --
9699 ----------------------
9701 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
9702 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9703 R
: constant Node_Id
:= Right_Opnd
(N
);
9709 if Is_Modular_Integer_Type
(Typ
) and then Nkind
(N
) /= N_Op_Not
then
9710 Error_Msg_Name_1
:= Chars
(Typ
);
9711 Check_SPARK_Restriction
9712 ("unary operator not defined for modular type%", N
);
9715 -- Deal with intrinsic unary operators
9717 if Comes_From_Source
(N
)
9718 and then Ekind
(Entity
(N
)) = E_Function
9719 and then Is_Imported
(Entity
(N
))
9720 and then Is_Intrinsic_Subprogram
(Entity
(N
))
9722 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
9726 -- Deal with universal cases
9728 if Etype
(R
) = Universal_Integer
9730 Etype
(R
) = Universal_Real
9732 Check_For_Visible_Operator
(N
, B_Typ
);
9735 Set_Etype
(N
, B_Typ
);
9738 -- Generate warning for expressions like abs (x mod 2)
9740 if Warn_On_Redundant_Constructs
9741 and then Nkind
(N
) = N_Op_Abs
9743 Determine_Range
(Right_Opnd
(N
), OK
, Lo
, Hi
);
9745 if OK
and then Hi
>= Lo
and then Lo
>= 0 then
9746 Error_Msg_N
-- CODEFIX
9747 ("?abs applied to known non-negative value has no effect", N
);
9751 -- Deal with reference generation
9753 Check_Unset_Reference
(R
);
9754 Generate_Operator_Reference
(N
, B_Typ
);
9755 Analyze_Dimension
(N
);
9758 -- Set overflow checking bit. Much cleverer code needed here eventually
9759 -- and perhaps the Resolve routines should be separated for the various
9760 -- arithmetic operations, since they will need different processing ???
9762 if Nkind
(N
) in N_Op
then
9763 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
9764 Enable_Overflow_Check
(N
);
9768 -- Generate warning for expressions like -5 mod 3 for integers. No need
9769 -- to worry in the floating-point case, since parens do not affect the
9770 -- result so there is no point in giving in a warning.
9773 Norig
: constant Node_Id
:= Original_Node
(N
);
9782 if Warn_On_Questionable_Missing_Parens
9783 and then Comes_From_Source
(Norig
)
9784 and then Is_Integer_Type
(Typ
)
9785 and then Nkind
(Norig
) = N_Op_Minus
9787 Rorig
:= Original_Node
(Right_Opnd
(Norig
));
9789 -- We are looking for cases where the right operand is not
9790 -- parenthesized, and is a binary operator, multiply, divide, or
9791 -- mod. These are the cases where the grouping can affect results.
9793 if Paren_Count
(Rorig
) = 0
9794 and then Nkind_In
(Rorig
, N_Op_Mod
, N_Op_Multiply
, N_Op_Divide
)
9796 -- For mod, we always give the warning, since the value is
9797 -- affected by the parenthesization (e.g. (-5) mod 315 /=
9798 -- -(5 mod 315)). But for the other cases, the only concern is
9799 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
9800 -- overflows, but (-2) * 64 does not). So we try to give the
9801 -- message only when overflow is possible.
9803 if Nkind
(Rorig
) /= N_Op_Mod
9804 and then Compile_Time_Known_Value
(R
)
9806 Val
:= Expr_Value
(R
);
9808 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
9809 HB
:= Expr_Value
(Type_High_Bound
(Typ
));
9811 HB
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
9814 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
9815 LB
:= Expr_Value
(Type_Low_Bound
(Typ
));
9817 LB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
9820 -- Note that the test below is deliberately excluding the
9821 -- largest negative number, since that is a potentially
9822 -- troublesome case (e.g. -2 * x, where the result is the
9823 -- largest negative integer has an overflow with 2 * x).
9825 if Val
> LB
and then Val
<= HB
then
9830 -- For the multiplication case, the only case we have to worry
9831 -- about is when (-a)*b is exactly the largest negative number
9832 -- so that -(a*b) can cause overflow. This can only happen if
9833 -- a is a power of 2, and more generally if any operand is a
9834 -- constant that is not a power of 2, then the parentheses
9835 -- cannot affect whether overflow occurs. We only bother to
9836 -- test the left most operand
9838 -- Loop looking at left operands for one that has known value
9841 Opnd_Loop
: while Nkind
(Opnd
) = N_Op_Multiply
loop
9842 if Compile_Time_Known_Value
(Left_Opnd
(Opnd
)) then
9843 Lval
:= UI_Abs
(Expr_Value
(Left_Opnd
(Opnd
)));
9845 -- Operand value of 0 or 1 skips warning
9850 -- Otherwise check power of 2, if power of 2, warn, if
9851 -- anything else, skip warning.
9854 while Lval
/= 2 loop
9855 if Lval
mod 2 = 1 then
9866 -- Keep looking at left operands
9868 Opnd
:= Left_Opnd
(Opnd
);
9871 -- For rem or "/" we can only have a problematic situation
9872 -- if the divisor has a value of minus one or one. Otherwise
9873 -- overflow is impossible (divisor > 1) or we have a case of
9874 -- division by zero in any case.
9876 if Nkind_In
(Rorig
, N_Op_Divide
, N_Op_Rem
)
9877 and then Compile_Time_Known_Value
(Right_Opnd
(Rorig
))
9878 and then UI_Abs
(Expr_Value
(Right_Opnd
(Rorig
))) /= 1
9883 -- If we fall through warning should be issued
9886 ("?unary minus expression should be parenthesized here!", N
);
9890 end Resolve_Unary_Op
;
9892 ----------------------------------
9893 -- Resolve_Unchecked_Expression --
9894 ----------------------------------
9896 procedure Resolve_Unchecked_Expression
9901 Resolve
(Expression
(N
), Typ
, Suppress
=> All_Checks
);
9903 end Resolve_Unchecked_Expression
;
9905 ---------------------------------------
9906 -- Resolve_Unchecked_Type_Conversion --
9907 ---------------------------------------
9909 procedure Resolve_Unchecked_Type_Conversion
9913 pragma Warnings
(Off
, Typ
);
9915 Operand
: constant Node_Id
:= Expression
(N
);
9916 Opnd_Type
: constant Entity_Id
:= Etype
(Operand
);
9919 -- Resolve operand using its own type
9921 Resolve
(Operand
, Opnd_Type
);
9922 Analyze_Dimension
(N
);
9923 Eval_Unchecked_Conversion
(N
);
9924 end Resolve_Unchecked_Type_Conversion
;
9926 ------------------------------
9927 -- Rewrite_Operator_As_Call --
9928 ------------------------------
9930 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
) is
9931 Loc
: constant Source_Ptr
:= Sloc
(N
);
9932 Actuals
: constant List_Id
:= New_List
;
9936 if Nkind
(N
) in N_Binary_Op
then
9937 Append
(Left_Opnd
(N
), Actuals
);
9940 Append
(Right_Opnd
(N
), Actuals
);
9943 Make_Function_Call
(Sloc
=> Loc
,
9944 Name
=> New_Occurrence_Of
(Nam
, Loc
),
9945 Parameter_Associations
=> Actuals
);
9947 Preserve_Comes_From_Source
(New_N
, N
);
9948 Preserve_Comes_From_Source
(Name
(New_N
), N
);
9950 Set_Etype
(N
, Etype
(Nam
));
9951 end Rewrite_Operator_As_Call
;
9953 ------------------------------
9954 -- Rewrite_Renamed_Operator --
9955 ------------------------------
9957 procedure Rewrite_Renamed_Operator
9962 Nam
: constant Name_Id
:= Chars
(Op
);
9963 Is_Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
9967 -- Rewrite the operator node using the real operator, not its renaming.
9968 -- Exclude user-defined intrinsic operations of the same name, which are
9969 -- treated separately and rewritten as calls.
9971 if Ekind
(Op
) /= E_Function
or else Chars
(N
) /= Nam
then
9972 Op_Node
:= New_Node
(Operator_Kind
(Nam
, Is_Binary
), Sloc
(N
));
9973 Set_Chars
(Op_Node
, Nam
);
9974 Set_Etype
(Op_Node
, Etype
(N
));
9975 Set_Entity
(Op_Node
, Op
);
9976 Set_Right_Opnd
(Op_Node
, Right_Opnd
(N
));
9978 -- Indicate that both the original entity and its renaming are
9979 -- referenced at this point.
9981 Generate_Reference
(Entity
(N
), N
);
9982 Generate_Reference
(Op
, N
);
9985 Set_Left_Opnd
(Op_Node
, Left_Opnd
(N
));
9988 Rewrite
(N
, Op_Node
);
9990 -- If the context type is private, add the appropriate conversions so
9991 -- that the operator is applied to the full view. This is done in the
9992 -- routines that resolve intrinsic operators.
9994 if Is_Intrinsic_Subprogram
(Op
)
9995 and then Is_Private_Type
(Typ
)
9998 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
9999 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
10000 Resolve_Intrinsic_Operator
(N
, Typ
);
10002 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
10003 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
10010 elsif Ekind
(Op
) = E_Function
and then Is_Intrinsic_Subprogram
(Op
) then
10012 -- Operator renames a user-defined operator of the same name. Use the
10013 -- original operator in the node, which is the one Gigi knows about.
10015 Set_Entity
(N
, Op
);
10016 Set_Is_Overloaded
(N
, False);
10018 end Rewrite_Renamed_Operator
;
10020 -----------------------
10021 -- Set_Slice_Subtype --
10022 -----------------------
10024 -- Build an implicit subtype declaration to represent the type delivered by
10025 -- the slice. This is an abbreviated version of an array subtype. We define
10026 -- an index subtype for the slice, using either the subtype name or the
10027 -- discrete range of the slice. To be consistent with index usage elsewhere
10028 -- we create a list header to hold the single index. This list is not
10029 -- otherwise attached to the syntax tree.
10031 procedure Set_Slice_Subtype
(N
: Node_Id
) is
10032 Loc
: constant Source_Ptr
:= Sloc
(N
);
10033 Index_List
: constant List_Id
:= New_List
;
10035 Index_Subtype
: Entity_Id
;
10036 Index_Type
: Entity_Id
;
10037 Slice_Subtype
: Entity_Id
;
10038 Drange
: constant Node_Id
:= Discrete_Range
(N
);
10041 if Is_Entity_Name
(Drange
) then
10042 Index_Subtype
:= Entity
(Drange
);
10045 -- We force the evaluation of a range. This is definitely needed in
10046 -- the renamed case, and seems safer to do unconditionally. Note in
10047 -- any case that since we will create and insert an Itype referring
10048 -- to this range, we must make sure any side effect removal actions
10049 -- are inserted before the Itype definition.
10051 if Nkind
(Drange
) = N_Range
then
10052 Force_Evaluation
(Low_Bound
(Drange
));
10053 Force_Evaluation
(High_Bound
(Drange
));
10056 Index_Type
:= Base_Type
(Etype
(Drange
));
10058 Index_Subtype
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
10060 -- Take a new copy of Drange (where bounds have been rewritten to
10061 -- reference side-effect-free names). Using a separate tree ensures
10062 -- that further expansion (e.g. while rewriting a slice assignment
10063 -- into a FOR loop) does not attempt to remove side effects on the
10064 -- bounds again (which would cause the bounds in the index subtype
10065 -- definition to refer to temporaries before they are defined) (the
10066 -- reason is that some names are considered side effect free here
10067 -- for the subtype, but not in the context of a loop iteration
10070 Set_Scalar_Range
(Index_Subtype
, New_Copy_Tree
(Drange
));
10071 Set_Parent
(Scalar_Range
(Index_Subtype
), Index_Subtype
);
10072 Set_Etype
(Index_Subtype
, Index_Type
);
10073 Set_Size_Info
(Index_Subtype
, Index_Type
);
10074 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
10077 Slice_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
10079 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
10080 Set_Etype
(Index
, Index_Subtype
);
10081 Append
(Index
, Index_List
);
10083 Set_First_Index
(Slice_Subtype
, Index
);
10084 Set_Etype
(Slice_Subtype
, Base_Type
(Etype
(N
)));
10085 Set_Is_Constrained
(Slice_Subtype
, True);
10087 Check_Compile_Time_Size
(Slice_Subtype
);
10089 -- The Etype of the existing Slice node is reset to this slice subtype.
10090 -- Its bounds are obtained from its first index.
10092 Set_Etype
(N
, Slice_Subtype
);
10094 -- For packed slice subtypes, freeze immediately (except in the case of
10095 -- being in a "spec expression" where we never freeze when we first see
10096 -- the expression).
10098 if Is_Packed
(Slice_Subtype
) and not In_Spec_Expression
then
10099 Freeze_Itype
(Slice_Subtype
, N
);
10101 -- For all other cases insert an itype reference in the slice's actions
10102 -- so that the itype is frozen at the proper place in the tree (i.e. at
10103 -- the point where actions for the slice are analyzed). Note that this
10104 -- is different from freezing the itype immediately, which might be
10105 -- premature (e.g. if the slice is within a transient scope). This needs
10106 -- to be done only if expansion is enabled.
10108 elsif Full_Expander_Active
then
10109 Ensure_Defined
(Typ
=> Slice_Subtype
, N
=> N
);
10111 end Set_Slice_Subtype
;
10113 --------------------------------
10114 -- Set_String_Literal_Subtype --
10115 --------------------------------
10117 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) is
10118 Loc
: constant Source_Ptr
:= Sloc
(N
);
10119 Low_Bound
: constant Node_Id
:=
10120 Type_Low_Bound
(Etype
(First_Index
(Typ
)));
10121 Subtype_Id
: Entity_Id
;
10124 if Nkind
(N
) /= N_String_Literal
then
10128 Subtype_Id
:= Create_Itype
(E_String_Literal_Subtype
, N
);
10129 Set_String_Literal_Length
(Subtype_Id
, UI_From_Int
10130 (String_Length
(Strval
(N
))));
10131 Set_Etype
(Subtype_Id
, Base_Type
(Typ
));
10132 Set_Is_Constrained
(Subtype_Id
);
10133 Set_Etype
(N
, Subtype_Id
);
10135 -- The low bound is set from the low bound of the corresponding index
10136 -- type. Note that we do not store the high bound in the string literal
10137 -- subtype, but it can be deduced if necessary from the length and the
10140 if Is_OK_Static_Expression
(Low_Bound
) then
10141 Set_String_Literal_Low_Bound
(Subtype_Id
, Low_Bound
);
10143 -- If the lower bound is not static we create a range for the string
10144 -- literal, using the index type and the known length of the literal.
10145 -- The index type is not necessarily Positive, so the upper bound is
10146 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
10150 Index_List
: constant List_Id
:= New_List
;
10151 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
10152 High_Bound
: constant Node_Id
:=
10153 Make_Attribute_Reference
(Loc
,
10154 Attribute_Name
=> Name_Val
,
10156 New_Occurrence_Of
(Index_Type
, Loc
),
10157 Expressions
=> New_List
(
10160 Make_Attribute_Reference
(Loc
,
10161 Attribute_Name
=> Name_Pos
,
10163 New_Occurrence_Of
(Index_Type
, Loc
),
10165 New_List
(New_Copy_Tree
(Low_Bound
))),
10167 Make_Integer_Literal
(Loc
,
10168 String_Length
(Strval
(N
)) - 1))));
10170 Array_Subtype
: Entity_Id
;
10173 Index_Subtype
: Entity_Id
;
10176 if Is_Integer_Type
(Index_Type
) then
10177 Set_String_Literal_Low_Bound
10178 (Subtype_Id
, Make_Integer_Literal
(Loc
, 1));
10181 -- If the index type is an enumeration type, build bounds
10182 -- expression with attributes.
10184 Set_String_Literal_Low_Bound
10186 Make_Attribute_Reference
(Loc
,
10187 Attribute_Name
=> Name_First
,
10189 New_Occurrence_Of
(Base_Type
(Index_Type
), Loc
)));
10190 Set_Etype
(String_Literal_Low_Bound
(Subtype_Id
), Index_Type
);
10193 Analyze_And_Resolve
(String_Literal_Low_Bound
(Subtype_Id
));
10195 -- Build bona fide subtype for the string, and wrap it in an
10196 -- unchecked conversion, because the backend expects the
10197 -- String_Literal_Subtype to have a static lower bound.
10200 Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
10201 Drange
:= Make_Range
(Loc
, New_Copy_Tree
(Low_Bound
), High_Bound
);
10202 Set_Scalar_Range
(Index_Subtype
, Drange
);
10203 Set_Parent
(Drange
, N
);
10204 Analyze_And_Resolve
(Drange
, Index_Type
);
10206 -- In the context, the Index_Type may already have a constraint,
10207 -- so use common base type on string subtype. The base type may
10208 -- be used when generating attributes of the string, for example
10209 -- in the context of a slice assignment.
10211 Set_Etype
(Index_Subtype
, Base_Type
(Index_Type
));
10212 Set_Size_Info
(Index_Subtype
, Index_Type
);
10213 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
10215 Array_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
10217 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
10218 Set_Etype
(Index
, Index_Subtype
);
10219 Append
(Index
, Index_List
);
10221 Set_First_Index
(Array_Subtype
, Index
);
10222 Set_Etype
(Array_Subtype
, Base_Type
(Typ
));
10223 Set_Is_Constrained
(Array_Subtype
, True);
10226 Make_Unchecked_Type_Conversion
(Loc
,
10227 Subtype_Mark
=> New_Occurrence_Of
(Array_Subtype
, Loc
),
10228 Expression
=> Relocate_Node
(N
)));
10229 Set_Etype
(N
, Array_Subtype
);
10232 end Set_String_Literal_Subtype
;
10234 ------------------------------
10235 -- Simplify_Type_Conversion --
10236 ------------------------------
10238 procedure Simplify_Type_Conversion
(N
: Node_Id
) is
10240 if Nkind
(N
) = N_Type_Conversion
then
10242 Operand
: constant Node_Id
:= Expression
(N
);
10243 Target_Typ
: constant Entity_Id
:= Etype
(N
);
10244 Opnd_Typ
: constant Entity_Id
:= Etype
(Operand
);
10247 if Is_Floating_Point_Type
(Opnd_Typ
)
10249 (Is_Integer_Type
(Target_Typ
)
10250 or else (Is_Fixed_Point_Type
(Target_Typ
)
10251 and then Conversion_OK
(N
)))
10252 and then Nkind
(Operand
) = N_Attribute_Reference
10253 and then Attribute_Name
(Operand
) = Name_Truncation
10255 -- Special processing required if the conversion is the expression
10256 -- of a Truncation attribute reference. In this case we replace:
10258 -- ityp (ftyp'Truncation (x))
10264 -- with the Float_Truncate flag set, which is more efficient.
10268 Relocate_Node
(First
(Expressions
(Operand
))));
10269 Set_Float_Truncate
(N
, True);
10273 end Simplify_Type_Conversion
;
10275 -----------------------------
10276 -- Unique_Fixed_Point_Type --
10277 -----------------------------
10279 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
is
10280 T1
: Entity_Id
:= Empty
;
10285 procedure Fixed_Point_Error
;
10286 -- Give error messages for true ambiguity. Messages are posted on node
10287 -- N, and entities T1, T2 are the possible interpretations.
10289 -----------------------
10290 -- Fixed_Point_Error --
10291 -----------------------
10293 procedure Fixed_Point_Error
is
10295 Error_Msg_N
("ambiguous universal_fixed_expression", N
);
10296 Error_Msg_NE
("\\possible interpretation as}", N
, T1
);
10297 Error_Msg_NE
("\\possible interpretation as}", N
, T2
);
10298 end Fixed_Point_Error
;
10300 -- Start of processing for Unique_Fixed_Point_Type
10303 -- The operations on Duration are visible, so Duration is always a
10304 -- possible interpretation.
10306 T1
:= Standard_Duration
;
10308 -- Look for fixed-point types in enclosing scopes
10310 Scop
:= Current_Scope
;
10311 while Scop
/= Standard_Standard
loop
10312 T2
:= First_Entity
(Scop
);
10313 while Present
(T2
) loop
10314 if Is_Fixed_Point_Type
(T2
)
10315 and then Current_Entity
(T2
) = T2
10316 and then Scope
(Base_Type
(T2
)) = Scop
10318 if Present
(T1
) then
10329 Scop
:= Scope
(Scop
);
10332 -- Look for visible fixed type declarations in the context
10334 Item
:= First
(Context_Items
(Cunit
(Current_Sem_Unit
)));
10335 while Present
(Item
) loop
10336 if Nkind
(Item
) = N_With_Clause
then
10337 Scop
:= Entity
(Name
(Item
));
10338 T2
:= First_Entity
(Scop
);
10339 while Present
(T2
) loop
10340 if Is_Fixed_Point_Type
(T2
)
10341 and then Scope
(Base_Type
(T2
)) = Scop
10342 and then (Is_Potentially_Use_Visible
(T2
) or else In_Use
(T2
))
10344 if Present
(T1
) then
10359 if Nkind
(N
) = N_Real_Literal
then
10360 Error_Msg_NE
("?real literal interpreted as }!", N
, T1
);
10362 Error_Msg_NE
("?universal_fixed expression interpreted as }!", N
, T1
);
10366 end Unique_Fixed_Point_Type
;
10368 ----------------------
10369 -- Valid_Conversion --
10370 ----------------------
10372 function Valid_Conversion
10374 Target
: Entity_Id
;
10376 Report_Errs
: Boolean := True) return Boolean
10378 Target_Type
: constant Entity_Id
:= Base_Type
(Target
);
10379 Opnd_Type
: Entity_Id
:= Etype
(Operand
);
10381 function Conversion_Check
10383 Msg
: String) return Boolean;
10384 -- Little routine to post Msg if Valid is False, returns Valid value
10386 -- The following are badly named, this kind of overloading is actively
10387 -- confusing in reading code, please rename to something like
10388 -- Error_Msg_N_If_Reporting ???
10390 procedure Error_Msg_N
(Msg
: String; N
: Node_Or_Entity_Id
);
10391 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
10393 procedure Error_Msg_NE
10395 N
: Node_Or_Entity_Id
;
10396 E
: Node_Or_Entity_Id
);
10397 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
10399 function Valid_Tagged_Conversion
10400 (Target_Type
: Entity_Id
;
10401 Opnd_Type
: Entity_Id
) return Boolean;
10402 -- Specifically test for validity of tagged conversions
10404 function Valid_Array_Conversion
return Boolean;
10405 -- Check index and component conformance, and accessibility levels if
10406 -- the component types are anonymous access types (Ada 2005).
10408 ----------------------
10409 -- Conversion_Check --
10410 ----------------------
10412 function Conversion_Check
10414 Msg
: String) return Boolean
10419 -- A generic unit has already been analyzed and we have verified
10420 -- that a particular conversion is OK in that context. Since the
10421 -- instance is reanalyzed without relying on the relationships
10422 -- established during the analysis of the generic, it is possible
10423 -- to end up with inconsistent views of private types. Do not emit
10424 -- the error message in such cases. The rest of the machinery in
10425 -- Valid_Conversion still ensures the proper compatibility of
10426 -- target and operand types.
10428 and then not In_Instance
10430 Error_Msg_N
(Msg
, Operand
);
10434 end Conversion_Check
;
10440 procedure Error_Msg_N
(Msg
: String; N
: Node_Or_Entity_Id
) is
10442 if Report_Errs
then
10443 Errout
.Error_Msg_N
(Msg
, N
);
10451 procedure Error_Msg_NE
10453 N
: Node_Or_Entity_Id
;
10454 E
: Node_Or_Entity_Id
)
10457 if Report_Errs
then
10458 Errout
.Error_Msg_NE
(Msg
, N
, E
);
10462 ----------------------------
10463 -- Valid_Array_Conversion --
10464 ----------------------------
10466 function Valid_Array_Conversion
return Boolean
10468 Opnd_Comp_Type
: constant Entity_Id
:= Component_Type
(Opnd_Type
);
10469 Opnd_Comp_Base
: constant Entity_Id
:= Base_Type
(Opnd_Comp_Type
);
10471 Opnd_Index
: Node_Id
;
10472 Opnd_Index_Type
: Entity_Id
;
10474 Target_Comp_Type
: constant Entity_Id
:=
10475 Component_Type
(Target_Type
);
10476 Target_Comp_Base
: constant Entity_Id
:=
10477 Base_Type
(Target_Comp_Type
);
10479 Target_Index
: Node_Id
;
10480 Target_Index_Type
: Entity_Id
;
10483 -- Error if wrong number of dimensions
10486 Number_Dimensions
(Target_Type
) /= Number_Dimensions
(Opnd_Type
)
10489 ("incompatible number of dimensions for conversion", Operand
);
10492 -- Number of dimensions matches
10495 -- Loop through indexes of the two arrays
10497 Target_Index
:= First_Index
(Target_Type
);
10498 Opnd_Index
:= First_Index
(Opnd_Type
);
10499 while Present
(Target_Index
) and then Present
(Opnd_Index
) loop
10500 Target_Index_Type
:= Etype
(Target_Index
);
10501 Opnd_Index_Type
:= Etype
(Opnd_Index
);
10503 -- Error if index types are incompatible
10505 if not (Is_Integer_Type
(Target_Index_Type
)
10506 and then Is_Integer_Type
(Opnd_Index_Type
))
10507 and then (Root_Type
(Target_Index_Type
)
10508 /= Root_Type
(Opnd_Index_Type
))
10511 ("incompatible index types for array conversion",
10516 Next_Index
(Target_Index
);
10517 Next_Index
(Opnd_Index
);
10520 -- If component types have same base type, all set
10522 if Target_Comp_Base
= Opnd_Comp_Base
then
10525 -- Here if base types of components are not the same. The only
10526 -- time this is allowed is if we have anonymous access types.
10528 -- The conversion of arrays of anonymous access types can lead
10529 -- to dangling pointers. AI-392 formalizes the accessibility
10530 -- checks that must be applied to such conversions to prevent
10531 -- out-of-scope references.
10534 (Target_Comp_Base
, E_Anonymous_Access_Type
,
10535 E_Anonymous_Access_Subprogram_Type
)
10536 and then Ekind
(Opnd_Comp_Base
) = Ekind
(Target_Comp_Base
)
10538 Subtypes_Statically_Match
(Target_Comp_Type
, Opnd_Comp_Type
)
10540 if Type_Access_Level
(Target_Type
) <
10541 Deepest_Type_Access_Level
(Opnd_Type
)
10543 if In_Instance_Body
then
10545 ("?source array type has " &
10546 "deeper accessibility level than target", Operand
);
10548 ("\?Program_Error will be raised at run time",
10551 Make_Raise_Program_Error
(Sloc
(N
),
10552 Reason
=> PE_Accessibility_Check_Failed
));
10553 Set_Etype
(N
, Target_Type
);
10556 -- Conversion not allowed because of accessibility levels
10560 ("source array type has " &
10561 "deeper accessibility level than target", Operand
);
10569 -- All other cases where component base types do not match
10573 ("incompatible component types for array conversion",
10578 -- Check that component subtypes statically match. For numeric
10579 -- types this means that both must be either constrained or
10580 -- unconstrained. For enumeration types the bounds must match.
10581 -- All of this is checked in Subtypes_Statically_Match.
10583 if not Subtypes_Statically_Match
10584 (Target_Comp_Type
, Opnd_Comp_Type
)
10587 ("component subtypes must statically match", Operand
);
10593 end Valid_Array_Conversion
;
10595 -----------------------------
10596 -- Valid_Tagged_Conversion --
10597 -----------------------------
10599 function Valid_Tagged_Conversion
10600 (Target_Type
: Entity_Id
;
10601 Opnd_Type
: Entity_Id
) return Boolean
10604 -- Upward conversions are allowed (RM 4.6(22))
10606 if Covers
(Target_Type
, Opnd_Type
)
10607 or else Is_Ancestor
(Target_Type
, Opnd_Type
)
10611 -- Downward conversion are allowed if the operand is class-wide
10614 elsif Is_Class_Wide_Type
(Opnd_Type
)
10615 and then Covers
(Opnd_Type
, Target_Type
)
10619 elsif Covers
(Opnd_Type
, Target_Type
)
10620 or else Is_Ancestor
(Opnd_Type
, Target_Type
)
10623 Conversion_Check
(False,
10624 "downward conversion of tagged objects not allowed");
10626 -- Ada 2005 (AI-251): The conversion to/from interface types is
10629 elsif Is_Interface
(Target_Type
) or else Is_Interface
(Opnd_Type
) then
10632 -- If the operand is a class-wide type obtained through a limited_
10633 -- with clause, and the context includes the non-limited view, use
10634 -- it to determine whether the conversion is legal.
10636 elsif Is_Class_Wide_Type
(Opnd_Type
)
10637 and then From_With_Type
(Opnd_Type
)
10638 and then Present
(Non_Limited_View
(Etype
(Opnd_Type
)))
10639 and then Is_Interface
(Non_Limited_View
(Etype
(Opnd_Type
)))
10643 elsif Is_Access_Type
(Opnd_Type
)
10644 and then Is_Interface
(Directly_Designated_Type
(Opnd_Type
))
10650 ("invalid tagged conversion, not compatible with}",
10651 N
, First_Subtype
(Opnd_Type
));
10654 end Valid_Tagged_Conversion
;
10656 -- Start of processing for Valid_Conversion
10659 Check_Parameterless_Call
(Operand
);
10661 if Is_Overloaded
(Operand
) then
10671 -- Remove procedure calls, which syntactically cannot appear in
10672 -- this context, but which cannot be removed by type checking,
10673 -- because the context does not impose a type.
10675 -- When compiling for VMS, spurious ambiguities can be produced
10676 -- when arithmetic operations have a literal operand and return
10677 -- System.Address or a descendant of it. These ambiguities are
10678 -- otherwise resolved by the context, but for conversions there
10679 -- is no context type and the removal of the spurious operations
10680 -- must be done explicitly here.
10682 -- The node may be labelled overloaded, but still contain only one
10683 -- interpretation because others were discarded earlier. If this
10684 -- is the case, retain the single interpretation if legal.
10686 Get_First_Interp
(Operand
, I
, It
);
10687 Opnd_Type
:= It
.Typ
;
10688 Get_Next_Interp
(I
, It
);
10690 if Present
(It
.Typ
)
10691 and then Opnd_Type
/= Standard_Void_Type
10693 -- More than one candidate interpretation is available
10695 Get_First_Interp
(Operand
, I
, It
);
10696 while Present
(It
.Typ
) loop
10697 if It
.Typ
= Standard_Void_Type
then
10701 if Present
(System_Aux_Id
)
10702 and then Is_Descendent_Of_Address
(It
.Typ
)
10707 Get_Next_Interp
(I
, It
);
10711 Get_First_Interp
(Operand
, I
, It
);
10715 if No
(It
.Typ
) then
10716 Error_Msg_N
("illegal operand in conversion", Operand
);
10720 Get_Next_Interp
(I
, It
);
10722 if Present
(It
.Typ
) then
10725 It1
:= Disambiguate
(Operand
, I1
, I
, Any_Type
);
10727 if It1
= No_Interp
then
10728 Error_Msg_N
("ambiguous operand in conversion", Operand
);
10730 -- If the interpretation involves a standard operator, use
10731 -- the location of the type, which may be user-defined.
10733 if Sloc
(It
.Nam
) = Standard_Location
then
10734 Error_Msg_Sloc
:= Sloc
(It
.Typ
);
10736 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
10739 Error_Msg_N
-- CODEFIX
10740 ("\\possible interpretation#!", Operand
);
10742 if Sloc
(N1
) = Standard_Location
then
10743 Error_Msg_Sloc
:= Sloc
(T1
);
10745 Error_Msg_Sloc
:= Sloc
(N1
);
10748 Error_Msg_N
-- CODEFIX
10749 ("\\possible interpretation#!", Operand
);
10755 Set_Etype
(Operand
, It1
.Typ
);
10756 Opnd_Type
:= It1
.Typ
;
10762 if Is_Numeric_Type
(Target_Type
) then
10764 -- A universal fixed expression can be converted to any numeric type
10766 if Opnd_Type
= Universal_Fixed
then
10769 -- Also no need to check when in an instance or inlined body, because
10770 -- the legality has been established when the template was analyzed.
10771 -- Furthermore, numeric conversions may occur where only a private
10772 -- view of the operand type is visible at the instantiation point.
10773 -- This results in a spurious error if we check that the operand type
10774 -- is a numeric type.
10776 -- Note: in a previous version of this unit, the following tests were
10777 -- applied only for generated code (Comes_From_Source set to False),
10778 -- but in fact the test is required for source code as well, since
10779 -- this situation can arise in source code.
10781 elsif In_Instance
or else In_Inlined_Body
then
10784 -- Otherwise we need the conversion check
10787 return Conversion_Check
10788 (Is_Numeric_Type
(Opnd_Type
),
10789 "illegal operand for numeric conversion");
10794 elsif Is_Array_Type
(Target_Type
) then
10795 if not Is_Array_Type
(Opnd_Type
)
10796 or else Opnd_Type
= Any_Composite
10797 or else Opnd_Type
= Any_String
10799 Error_Msg_N
("illegal operand for array conversion", Operand
);
10802 return Valid_Array_Conversion
;
10805 -- Ada 2005 (AI-251): Anonymous access types where target references an
10808 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
10809 E_Anonymous_Access_Type
)
10810 and then Is_Interface
(Directly_Designated_Type
(Target_Type
))
10812 -- Check the static accessibility rule of 4.6(17). Note that the
10813 -- check is not enforced when within an instance body, since the
10814 -- RM requires such cases to be caught at run time.
10816 -- If the operand is a rewriting of an allocator no check is needed
10817 -- because there are no accessibility issues.
10819 if Nkind
(Original_Node
(N
)) = N_Allocator
then
10822 elsif Ekind
(Target_Type
) /= E_Anonymous_Access_Type
then
10823 if Type_Access_Level
(Opnd_Type
) >
10824 Deepest_Type_Access_Level
(Target_Type
)
10826 -- In an instance, this is a run-time check, but one we know
10827 -- will fail, so generate an appropriate warning. The raise
10828 -- will be generated by Expand_N_Type_Conversion.
10830 if In_Instance_Body
then
10832 ("?cannot convert local pointer to non-local access type",
10835 ("\?Program_Error will be raised at run time", Operand
);
10839 ("cannot convert local pointer to non-local access type",
10844 -- Special accessibility checks are needed in the case of access
10845 -- discriminants declared for a limited type.
10847 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
10848 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
10850 -- When the operand is a selected access discriminant the check
10851 -- needs to be made against the level of the object denoted by
10852 -- the prefix of the selected name (Object_Access_Level handles
10853 -- checking the prefix of the operand for this case).
10855 if Nkind
(Operand
) = N_Selected_Component
10856 and then Object_Access_Level
(Operand
) >
10857 Deepest_Type_Access_Level
(Target_Type
)
10859 -- In an instance, this is a run-time check, but one we know
10860 -- will fail, so generate an appropriate warning. The raise
10861 -- will be generated by Expand_N_Type_Conversion.
10863 if In_Instance_Body
then
10865 ("?cannot convert access discriminant to non-local" &
10866 " access type", Operand
);
10868 ("\?Program_Error will be raised at run time", Operand
);
10871 ("cannot convert access discriminant to non-local" &
10872 " access type", Operand
);
10877 -- The case of a reference to an access discriminant from
10878 -- within a limited type declaration (which will appear as
10879 -- a discriminal) is always illegal because the level of the
10880 -- discriminant is considered to be deeper than any (nameable)
10883 if Is_Entity_Name
(Operand
)
10884 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
10886 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
10887 and then Present
(Discriminal_Link
(Entity
(Operand
)))
10890 ("discriminant has deeper accessibility level than target",
10899 -- General and anonymous access types
10901 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
10902 E_Anonymous_Access_Type
)
10905 (Is_Access_Type
(Opnd_Type
)
10907 Ekind_In
(Opnd_Type
, E_Access_Subprogram_Type
,
10908 E_Access_Protected_Subprogram_Type
),
10909 "must be an access-to-object type")
10911 if Is_Access_Constant
(Opnd_Type
)
10912 and then not Is_Access_Constant
(Target_Type
)
10915 ("access-to-constant operand type not allowed", Operand
);
10919 -- Check the static accessibility rule of 4.6(17). Note that the
10920 -- check is not enforced when within an instance body, since the RM
10921 -- requires such cases to be caught at run time.
10923 if Ekind
(Target_Type
) /= E_Anonymous_Access_Type
10924 or else Is_Local_Anonymous_Access
(Target_Type
)
10925 or else Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
10926 N_Object_Declaration
10928 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
10929 -- conversions from an anonymous access type to a named general
10930 -- access type. Such conversions are not allowed in the case of
10931 -- access parameters and stand-alone objects of an anonymous
10932 -- access type. The implicit conversion case is recognized by
10933 -- testing that Comes_From_Source is False and that it's been
10934 -- rewritten. The Comes_From_Source test isn't sufficient because
10935 -- nodes in inlined calls to predefined library routines can have
10936 -- Comes_From_Source set to False. (Is there a better way to test
10937 -- for implicit conversions???)
10939 if Ada_Version
>= Ada_2012
10940 and then not Comes_From_Source
(N
)
10941 and then N
/= Original_Node
(N
)
10942 and then Ekind
(Target_Type
) = E_General_Access_Type
10943 and then Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
10945 if Is_Itype
(Opnd_Type
) then
10947 -- Implicit conversions aren't allowed for objects of an
10948 -- anonymous access type, since such objects have nonstatic
10949 -- levels in Ada 2012.
10951 if Nkind
(Associated_Node_For_Itype
(Opnd_Type
)) =
10952 N_Object_Declaration
10955 ("implicit conversion of stand-alone anonymous " &
10956 "access object not allowed", Operand
);
10959 -- Implicit conversions aren't allowed for anonymous access
10960 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
10961 -- is done to exclude anonymous access results.
10963 elsif not Is_Local_Anonymous_Access
(Opnd_Type
)
10964 and then Nkind_In
(Associated_Node_For_Itype
(Opnd_Type
),
10965 N_Function_Specification
,
10966 N_Procedure_Specification
)
10969 ("implicit conversion of anonymous access formal " &
10970 "not allowed", Operand
);
10973 -- This is a case where there's an enclosing object whose
10974 -- to which the "statically deeper than" relationship does
10975 -- not apply (such as an access discriminant selected from
10976 -- a dereference of an access parameter).
10978 elsif Object_Access_Level
(Operand
)
10979 = Scope_Depth
(Standard_Standard
)
10982 ("implicit conversion of anonymous access value " &
10983 "not allowed", Operand
);
10986 -- In other cases, the level of the operand's type must be
10987 -- statically less deep than that of the target type, else
10988 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
10990 elsif Type_Access_Level
(Opnd_Type
) >
10991 Deepest_Type_Access_Level
(Target_Type
)
10994 ("implicit conversion of anonymous access value " &
10995 "violates accessibility", Operand
);
11000 elsif Type_Access_Level
(Opnd_Type
) >
11001 Deepest_Type_Access_Level
(Target_Type
)
11003 -- In an instance, this is a run-time check, but one we know
11004 -- will fail, so generate an appropriate warning. The raise
11005 -- will be generated by Expand_N_Type_Conversion.
11007 if In_Instance_Body
then
11009 ("?cannot convert local pointer to non-local access type",
11012 ("\?Program_Error will be raised at run time", Operand
);
11015 -- Avoid generation of spurious error message
11017 if not Error_Posted
(N
) then
11019 ("cannot convert local pointer to non-local access type",
11026 -- Special accessibility checks are needed in the case of access
11027 -- discriminants declared for a limited type.
11029 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
11030 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
11032 -- When the operand is a selected access discriminant the check
11033 -- needs to be made against the level of the object denoted by
11034 -- the prefix of the selected name (Object_Access_Level handles
11035 -- checking the prefix of the operand for this case).
11037 if Nkind
(Operand
) = N_Selected_Component
11038 and then Object_Access_Level
(Operand
) >
11039 Deepest_Type_Access_Level
(Target_Type
)
11041 -- In an instance, this is a run-time check, but one we know
11042 -- will fail, so generate an appropriate warning. The raise
11043 -- will be generated by Expand_N_Type_Conversion.
11045 if In_Instance_Body
then
11047 ("?cannot convert access discriminant to non-local" &
11048 " access type", Operand
);
11050 ("\?Program_Error will be raised at run time",
11055 ("cannot convert access discriminant to non-local" &
11056 " access type", Operand
);
11061 -- The case of a reference to an access discriminant from
11062 -- within a limited type declaration (which will appear as
11063 -- a discriminal) is always illegal because the level of the
11064 -- discriminant is considered to be deeper than any (nameable)
11067 if Is_Entity_Name
(Operand
)
11069 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
11070 and then Present
(Discriminal_Link
(Entity
(Operand
)))
11073 ("discriminant has deeper accessibility level than target",
11080 -- In the presence of limited_with clauses we have to use non-limited
11081 -- views, if available.
11083 Check_Limited
: declare
11084 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
;
11085 -- Helper function to handle limited views
11087 --------------------------
11088 -- Full_Designated_Type --
11089 --------------------------
11091 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
11092 Desig
: constant Entity_Id
:= Designated_Type
(T
);
11095 -- Handle the limited view of a type
11097 if Is_Incomplete_Type
(Desig
)
11098 and then From_With_Type
(Desig
)
11099 and then Present
(Non_Limited_View
(Desig
))
11101 return Available_View
(Desig
);
11105 end Full_Designated_Type
;
11107 -- Local Declarations
11109 Target
: constant Entity_Id
:= Full_Designated_Type
(Target_Type
);
11110 Opnd
: constant Entity_Id
:= Full_Designated_Type
(Opnd_Type
);
11112 Same_Base
: constant Boolean :=
11113 Base_Type
(Target
) = Base_Type
(Opnd
);
11115 -- Start of processing for Check_Limited
11118 if Is_Tagged_Type
(Target
) then
11119 return Valid_Tagged_Conversion
(Target
, Opnd
);
11122 if not Same_Base
then
11124 ("target designated type not compatible with }",
11125 N
, Base_Type
(Opnd
));
11128 -- Ada 2005 AI-384: legality rule is symmetric in both
11129 -- designated types. The conversion is legal (with possible
11130 -- constraint check) if either designated type is
11133 elsif Subtypes_Statically_Match
(Target
, Opnd
)
11135 (Has_Discriminants
(Target
)
11137 (not Is_Constrained
(Opnd
)
11138 or else not Is_Constrained
(Target
)))
11140 -- Special case, if Value_Size has been used to make the
11141 -- sizes different, the conversion is not allowed even
11142 -- though the subtypes statically match.
11144 if Known_Static_RM_Size
(Target
)
11145 and then Known_Static_RM_Size
(Opnd
)
11146 and then RM_Size
(Target
) /= RM_Size
(Opnd
)
11149 ("target designated subtype not compatible with }",
11152 ("\because sizes of the two designated subtypes differ",
11156 -- Normal case where conversion is allowed
11164 ("target designated subtype not compatible with }",
11171 -- Access to subprogram types. If the operand is an access parameter,
11172 -- the type has a deeper accessibility that any master, and cannot be
11173 -- assigned. We must make an exception if the conversion is part of an
11174 -- assignment and the target is the return object of an extended return
11175 -- statement, because in that case the accessibility check takes place
11176 -- after the return.
11178 elsif Is_Access_Subprogram_Type
(Target_Type
)
11179 and then No
(Corresponding_Remote_Type
(Opnd_Type
))
11181 if Ekind
(Base_Type
(Opnd_Type
)) = E_Anonymous_Access_Subprogram_Type
11182 and then Is_Entity_Name
(Operand
)
11183 and then Ekind
(Entity
(Operand
)) = E_In_Parameter
11185 (Nkind
(Parent
(N
)) /= N_Assignment_Statement
11186 or else not Is_Entity_Name
(Name
(Parent
(N
)))
11187 or else not Is_Return_Object
(Entity
(Name
(Parent
(N
)))))
11190 ("illegal attempt to store anonymous access to subprogram",
11193 ("\value has deeper accessibility than any master " &
11194 "(RM 3.10.2 (13))",
11198 ("\use named access type for& instead of access parameter",
11199 Operand
, Entity
(Operand
));
11202 -- Check that the designated types are subtype conformant
11204 Check_Subtype_Conformant
(New_Id
=> Designated_Type
(Target_Type
),
11205 Old_Id
=> Designated_Type
(Opnd_Type
),
11208 -- Check the static accessibility rule of 4.6(20)
11210 if Type_Access_Level
(Opnd_Type
) >
11211 Deepest_Type_Access_Level
(Target_Type
)
11214 ("operand type has deeper accessibility level than target",
11217 -- Check that if the operand type is declared in a generic body,
11218 -- then the target type must be declared within that same body
11219 -- (enforces last sentence of 4.6(20)).
11221 elsif Present
(Enclosing_Generic_Body
(Opnd_Type
)) then
11223 O_Gen
: constant Node_Id
:=
11224 Enclosing_Generic_Body
(Opnd_Type
);
11229 T_Gen
:= Enclosing_Generic_Body
(Target_Type
);
11230 while Present
(T_Gen
) and then T_Gen
/= O_Gen
loop
11231 T_Gen
:= Enclosing_Generic_Body
(T_Gen
);
11234 if T_Gen
/= O_Gen
then
11236 ("target type must be declared in same generic body"
11237 & " as operand type", N
);
11244 -- Remote subprogram access types
11246 elsif Is_Remote_Access_To_Subprogram_Type
(Target_Type
)
11247 and then Is_Remote_Access_To_Subprogram_Type
(Opnd_Type
)
11249 -- It is valid to convert from one RAS type to another provided
11250 -- that their specification statically match.
11252 Check_Subtype_Conformant
11254 Designated_Type
(Corresponding_Remote_Type
(Target_Type
)),
11256 Designated_Type
(Corresponding_Remote_Type
(Opnd_Type
)),
11261 -- If it was legal in the generic, it's legal in the instance
11263 elsif In_Instance_Body
then
11266 -- If both are tagged types, check legality of view conversions
11268 elsif Is_Tagged_Type
(Target_Type
)
11270 Is_Tagged_Type
(Opnd_Type
)
11272 return Valid_Tagged_Conversion
(Target_Type
, Opnd_Type
);
11274 -- Types derived from the same root type are convertible
11276 elsif Root_Type
(Target_Type
) = Root_Type
(Opnd_Type
) then
11279 -- In an instance or an inlined body, there may be inconsistent views of
11280 -- the same type, or of types derived from a common root.
11282 elsif (In_Instance
or In_Inlined_Body
)
11284 Root_Type
(Underlying_Type
(Target_Type
)) =
11285 Root_Type
(Underlying_Type
(Opnd_Type
))
11289 -- Special check for common access type error case
11291 elsif Ekind
(Target_Type
) = E_Access_Type
11292 and then Is_Access_Type
(Opnd_Type
)
11294 Error_Msg_N
("target type must be general access type!", N
);
11295 Error_Msg_NE
-- CODEFIX
11296 ("add ALL to }!", N
, Target_Type
);
11300 Error_Msg_NE
("invalid conversion, not compatible with }",
11304 end Valid_Conversion
;