Daily bump.
[official-gcc.git] / gcc / ada / s-tassta.adb
blob57c28be4ee596fce9390fa2e8950c7f93fb9822b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 pragma Polling (Off);
33 -- Turn off polling, we do not want ATC polling to take place during tasking
34 -- operations. It causes infinite loops and other problems.
36 with Ada.Exceptions;
37 with Ada.Unchecked_Deallocation;
39 with System.Interrupt_Management;
40 with System.Tasking.Debug;
41 with System.Address_Image;
42 with System.Task_Primitives;
43 with System.Task_Primitives.Operations;
44 with System.Tasking.Utilities;
45 with System.Tasking.Queuing;
46 with System.Tasking.Rendezvous;
47 with System.OS_Primitives;
48 with System.Secondary_Stack;
49 with System.Storage_Elements;
50 with System.Restrictions;
51 with System.Standard_Library;
52 with System.Traces.Tasking;
53 with System.Stack_Usage;
55 with System.Soft_Links;
56 -- These are procedure pointers to non-tasking routines that use task
57 -- specific data. In the absence of tasking, these routines refer to global
58 -- data. In the presence of tasking, they must be replaced with pointers to
59 -- task-specific versions. Also used for Create_TSD, Destroy_TSD, Get_Current
60 -- _Excep, Finalize_Library_Objects, Task_Termination, Handler.
62 with System.Tasking.Initialization;
63 pragma Elaborate_All (System.Tasking.Initialization);
64 -- This insures that tasking is initialized if any tasks are created
66 package body System.Tasking.Stages is
68 package STPO renames System.Task_Primitives.Operations;
69 package SSL renames System.Soft_Links;
70 package SSE renames System.Storage_Elements;
71 package SST renames System.Secondary_Stack;
73 use Ada.Exceptions;
75 use Parameters;
76 use Task_Primitives;
77 use Task_Primitives.Operations;
78 use Task_Info;
80 use System.Traces;
81 use System.Traces.Tasking;
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 procedure Free is new
88 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
90 procedure Free_Entry_Names (T : Task_Id);
91 -- Deallocate all string names associated with task entries
93 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
94 -- This procedure outputs the task specific message for exception
95 -- tracing purposes.
97 procedure Task_Wrapper (Self_ID : Task_Id);
98 pragma Convention (C, Task_Wrapper);
99 -- This is the procedure that is called by the GNULL from the new context
100 -- when a task is created. It waits for activation and then calls the task
101 -- body procedure. When the task body procedure completes, it terminates
102 -- the task.
104 -- The Task_Wrapper's address will be provided to the underlying threads
105 -- library as the task entry point. Convention C is what makes most sense
106 -- for that purpose (Export C would make the function globally visible,
107 -- and affect the link name on which GDB depends). This will in addition
108 -- trigger an automatic stack alignment suitable for GCC's assumptions if
109 -- need be.
111 -- "Vulnerable_..." in the procedure names below means they must be called
112 -- with abort deferred.
114 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
115 -- Complete the calling task. This procedure must be called with
116 -- abort deferred. It should only be called by Complete_Task and
117 -- Finalize_Global_Tasks (for the environment task).
119 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
120 -- Complete the current master of the calling task. This procedure
121 -- must be called with abort deferred. It should only be called by
122 -- Vulnerable_Complete_Task and Complete_Master.
124 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
125 -- Signal to Self_ID's activator that Self_ID has completed activation.
126 -- This procedure must be called with abort deferred.
128 procedure Abort_Dependents (Self_ID : Task_Id);
129 -- Abort all the direct dependents of Self at its current master nesting
130 -- level, plus all of their dependents, transitively. RTS_Lock should be
131 -- locked by the caller.
133 procedure Vulnerable_Free_Task (T : Task_Id);
134 -- Recover all runtime system storage associated with the task T. This
135 -- should only be called after T has terminated and will no longer be
136 -- referenced.
138 -- For tasks created by an allocator that fails, due to an exception, it is
139 -- called from Expunge_Unactivated_Tasks.
141 -- Different code is used at master completion, in Terminate_Dependents,
142 -- due to a need for tighter synchronization with the master.
144 ----------------------
145 -- Abort_Dependents --
146 ----------------------
148 procedure Abort_Dependents (Self_ID : Task_Id) is
149 C : Task_Id;
150 P : Task_Id;
152 begin
153 C := All_Tasks_List;
154 while C /= null loop
155 P := C.Common.Parent;
156 while P /= null loop
157 if P = Self_ID then
159 -- ??? C is supposed to take care of its own dependents, so
160 -- there should be no need to worry about them. Need to double
161 -- check this.
163 if C.Master_of_Task = Self_ID.Master_Within then
164 Utilities.Abort_One_Task (Self_ID, C);
165 C.Dependents_Aborted := True;
166 end if;
168 exit;
169 end if;
171 P := P.Common.Parent;
172 end loop;
174 C := C.Common.All_Tasks_Link;
175 end loop;
177 Self_ID.Dependents_Aborted := True;
178 end Abort_Dependents;
180 -----------------
181 -- Abort_Tasks --
182 -----------------
184 procedure Abort_Tasks (Tasks : Task_List) is
185 begin
186 Utilities.Abort_Tasks (Tasks);
187 end Abort_Tasks;
189 --------------------
190 -- Activate_Tasks --
191 --------------------
193 -- Note that locks of activator and activated task are both locked here.
194 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
195 -- to be synchronized. This is safe from deadlock because the activator is
196 -- always created before the activated task. That satisfies our
197 -- in-order-of-creation ATCB locking policy.
199 -- At one point, we may also lock the parent, if the parent is different
200 -- from the activator. That is also consistent with the lock ordering
201 -- policy, since the activator cannot be created before the parent.
203 -- Since we are holding both the activator's lock, and Task_Wrapper locks
204 -- that before it does anything more than initialize the low-level ATCB
205 -- components, it should be safe to wait to update the counts until we see
206 -- that the thread creation is successful.
208 -- If the thread creation fails, we do need to close the entries of the
209 -- task. The first phase, of dequeuing calls, only requires locking the
210 -- acceptor's ATCB, but the waking up of the callers requires locking the
211 -- caller's ATCB. We cannot safely do this while we are holding other
212 -- locks. Therefore, the queue-clearing operation is done in a separate
213 -- pass over the activation chain.
215 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
216 Self_ID : constant Task_Id := STPO.Self;
217 P : Task_Id;
218 C : Task_Id;
219 Next_C, Last_C : Task_Id;
220 Activate_Prio : System.Any_Priority;
221 Success : Boolean;
222 All_Elaborated : Boolean := True;
224 begin
225 -- If pragma Detect_Blocking is active, then we must check whether this
226 -- potentially blocking operation is called from a protected action.
228 if System.Tasking.Detect_Blocking
229 and then Self_ID.Common.Protected_Action_Nesting > 0
230 then
231 raise Program_Error with "potentially blocking operation";
232 end if;
234 pragma Debug
235 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
237 Initialization.Defer_Abort_Nestable (Self_ID);
239 pragma Assert (Self_ID.Common.Wait_Count = 0);
241 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
242 -- we finish activating the chain.
244 Lock_RTS;
246 -- Check that all task bodies have been elaborated
248 C := Chain_Access.T_ID;
249 Last_C := null;
250 while C /= null loop
251 if C.Common.Elaborated /= null
252 and then not C.Common.Elaborated.all
253 then
254 All_Elaborated := False;
255 end if;
257 -- Reverse the activation chain so that tasks are activated in the
258 -- same order they're declared.
260 Next_C := C.Common.Activation_Link;
261 C.Common.Activation_Link := Last_C;
262 Last_C := C;
263 C := Next_C;
264 end loop;
266 Chain_Access.T_ID := Last_C;
268 if not All_Elaborated then
269 Unlock_RTS;
270 Initialization.Undefer_Abort_Nestable (Self_ID);
271 raise Program_Error with "Some tasks have not been elaborated";
272 end if;
274 -- Activate all the tasks in the chain. Creation of the thread of
275 -- control was deferred until activation. So create it now.
277 C := Chain_Access.T_ID;
278 while C /= null loop
279 if C.Common.State /= Terminated then
280 pragma Assert (C.Common.State = Unactivated);
282 P := C.Common.Parent;
283 Write_Lock (P);
284 Write_Lock (C);
286 Activate_Prio :=
287 (if C.Common.Base_Priority < Get_Priority (Self_ID)
288 then Get_Priority (Self_ID)
289 else C.Common.Base_Priority);
291 System.Task_Primitives.Operations.Create_Task
292 (C, Task_Wrapper'Address,
293 Parameters.Size_Type
294 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
295 Activate_Prio, Success);
297 -- There would be a race between the created task and the creator
298 -- to do the following initialization, if we did not have a
299 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
300 -- racing ahead.
302 if Success then
303 C.Common.State := Activating;
304 C.Awake_Count := 1;
305 C.Alive_Count := 1;
306 P.Awake_Count := P.Awake_Count + 1;
307 P.Alive_Count := P.Alive_Count + 1;
309 if P.Common.State = Master_Completion_Sleep and then
310 C.Master_of_Task = P.Master_Within
311 then
312 pragma Assert (Self_ID /= P);
313 P.Common.Wait_Count := P.Common.Wait_Count + 1;
314 end if;
316 for J in System.Tasking.Debug.Known_Tasks'Range loop
317 if System.Tasking.Debug.Known_Tasks (J) = null then
318 System.Tasking.Debug.Known_Tasks (J) := C;
319 C.Known_Tasks_Index := J;
320 exit;
321 end if;
322 end loop;
324 if Global_Task_Debug_Event_Set then
325 Debug.Signal_Debug_Event
326 (Debug.Debug_Event_Activating, C);
327 end if;
329 C.Common.State := Runnable;
331 Unlock (C);
332 Unlock (P);
334 else
335 -- No need to set Awake_Count, State, etc. here since the loop
336 -- below will do that for any Unactivated tasks.
338 Unlock (C);
339 Unlock (P);
340 Self_ID.Common.Activation_Failed := True;
341 end if;
342 end if;
344 C := C.Common.Activation_Link;
345 end loop;
347 if not Single_Lock then
348 Unlock_RTS;
349 end if;
351 -- Close the entries of any tasks that failed thread creation, and count
352 -- those that have not finished activation.
354 Write_Lock (Self_ID);
355 Self_ID.Common.State := Activator_Sleep;
357 C := Chain_Access.T_ID;
358 while C /= null loop
359 Write_Lock (C);
361 if C.Common.State = Unactivated then
362 C.Common.Activator := null;
363 C.Common.State := Terminated;
364 C.Callable := False;
365 Utilities.Cancel_Queued_Entry_Calls (C);
367 elsif C.Common.Activator /= null then
368 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
369 end if;
371 Unlock (C);
372 P := C.Common.Activation_Link;
373 C.Common.Activation_Link := null;
374 C := P;
375 end loop;
377 -- Wait for the activated tasks to complete activation. It is
378 -- unsafe to abort any of these tasks until the count goes to zero.
380 loop
381 exit when Self_ID.Common.Wait_Count = 0;
382 Sleep (Self_ID, Activator_Sleep);
383 end loop;
385 Self_ID.Common.State := Runnable;
386 Unlock (Self_ID);
388 if Single_Lock then
389 Unlock_RTS;
390 end if;
392 -- Remove the tasks from the chain
394 Chain_Access.T_ID := null;
395 Initialization.Undefer_Abort_Nestable (Self_ID);
397 if Self_ID.Common.Activation_Failed then
398 Self_ID.Common.Activation_Failed := False;
399 raise Tasking_Error with "Failure during activation";
400 end if;
401 end Activate_Tasks;
403 -------------------------
404 -- Complete_Activation --
405 -------------------------
407 procedure Complete_Activation is
408 Self_ID : constant Task_Id := STPO.Self;
410 begin
411 Initialization.Defer_Abort_Nestable (Self_ID);
413 if Single_Lock then
414 Lock_RTS;
415 end if;
417 Vulnerable_Complete_Activation (Self_ID);
419 if Single_Lock then
420 Unlock_RTS;
421 end if;
423 Initialization.Undefer_Abort_Nestable (Self_ID);
425 -- ??? Why do we need to allow for nested deferral here?
427 if Runtime_Traces then
428 Send_Trace_Info (T_Activate);
429 end if;
430 end Complete_Activation;
432 ---------------------
433 -- Complete_Master --
434 ---------------------
436 procedure Complete_Master is
437 Self_ID : constant Task_Id := STPO.Self;
438 begin
439 pragma Assert
440 (Self_ID.Deferral_Level > 0
441 or else not System.Restrictions.Abort_Allowed);
442 Vulnerable_Complete_Master (Self_ID);
443 end Complete_Master;
445 -------------------
446 -- Complete_Task --
447 -------------------
449 -- See comments on Vulnerable_Complete_Task for details
451 procedure Complete_Task is
452 Self_ID : constant Task_Id := STPO.Self;
454 begin
455 pragma Assert
456 (Self_ID.Deferral_Level > 0
457 or else not System.Restrictions.Abort_Allowed);
459 Vulnerable_Complete_Task (Self_ID);
461 -- All of our dependents have terminated. Never undefer abort again!
463 end Complete_Task;
465 -----------------
466 -- Create_Task --
467 -----------------
469 -- Compiler interface only. Do not call from within the RTS. This must be
470 -- called to create a new task.
472 procedure Create_Task
473 (Priority : Integer;
474 Size : System.Parameters.Size_Type;
475 Task_Info : System.Task_Info.Task_Info_Type;
476 CPU : Integer;
477 Relative_Deadline : Ada.Real_Time.Time_Span;
478 Domain : Dispatching_Domain_Access;
479 Num_Entries : Task_Entry_Index;
480 Master : Master_Level;
481 State : Task_Procedure_Access;
482 Discriminants : System.Address;
483 Elaborated : Access_Boolean;
484 Chain : in out Activation_Chain;
485 Task_Image : String;
486 Created_Task : out Task_Id;
487 Build_Entry_Names : Boolean)
489 T, P : Task_Id;
490 Self_ID : constant Task_Id := STPO.Self;
491 Success : Boolean;
492 Base_Priority : System.Any_Priority;
493 Len : Natural;
494 Base_CPU : System.Multiprocessors.CPU_Range;
496 use type System.Multiprocessors.CPU_Range;
498 pragma Unreferenced (Relative_Deadline);
499 -- EDF scheduling is not supported by any of the target platforms so
500 -- this parameter is not passed any further.
502 begin
503 -- If Master is greater than the current master, it means that Master
504 -- has already awaited its dependent tasks. This raises Program_Error,
505 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
507 if Self_ID.Master_of_Task /= Foreign_Task_Level
508 and then Master > Self_ID.Master_Within
509 then
510 raise Program_Error with
511 "create task after awaiting termination";
512 end if;
514 -- If pragma Detect_Blocking is active must be checked whether this
515 -- potentially blocking operation is called from a protected action.
517 if System.Tasking.Detect_Blocking
518 and then Self_ID.Common.Protected_Action_Nesting > 0
519 then
520 raise Program_Error with "potentially blocking operation";
521 end if;
523 pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));
525 Base_Priority :=
526 (if Priority = Unspecified_Priority
527 then Self_ID.Common.Base_Priority
528 else System.Any_Priority (Priority));
530 -- Legal values of CPU are the special Unspecified_CPU value which is
531 -- inserted by the compiler for tasks without CPU aspect, and those in
532 -- the range of CPU_Range but no greater than Number_Of_CPUs. Otherwise
533 -- the task is defined to have failed, and it becomes a completed task
534 -- (RM D.16(14/3)).
536 if CPU /= Unspecified_CPU
537 and then (CPU < Integer (System.Multiprocessors.CPU_Range'First)
538 or else
539 CPU > Integer (System.Multiprocessors.CPU_Range'Last)
540 or else
541 CPU > Integer (System.Multiprocessors.Number_Of_CPUs))
542 then
543 raise Tasking_Error with "CPU not in range";
545 -- Normal CPU affinity
547 else
548 -- When the application code says nothing about the task affinity
549 -- (task without CPU aspect) then the compiler inserts the
550 -- Unspecified_CPU value which indicates to the run-time library that
551 -- the task will activate and execute on the same processor as its
552 -- activating task if the activating task is assigned a processor
553 -- (RM D.16(14/3)).
555 Base_CPU :=
556 (if CPU = Unspecified_CPU
557 then Self_ID.Common.Base_CPU
558 else System.Multiprocessors.CPU_Range (CPU));
559 end if;
561 -- Find parent P of new Task, via master level number
563 P := Self_ID;
565 if P /= null then
566 while P.Master_of_Task >= Master loop
567 P := P.Common.Parent;
568 exit when P = null;
569 end loop;
570 end if;
572 Initialization.Defer_Abort_Nestable (Self_ID);
574 begin
575 T := New_ATCB (Num_Entries);
576 exception
577 when others =>
578 Initialization.Undefer_Abort_Nestable (Self_ID);
579 raise Storage_Error with "Cannot allocate task";
580 end;
582 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
583 -- point, it is possible that we may be part of a family of tasks that
584 -- is being aborted.
586 Lock_RTS;
587 Write_Lock (Self_ID);
589 -- Now, we must check that we have not been aborted. If so, we should
590 -- give up on creating this task, and simply return.
592 if not Self_ID.Callable then
593 pragma Assert (Self_ID.Pending_ATC_Level = 0);
594 pragma Assert (Self_ID.Pending_Action);
595 pragma Assert
596 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
598 Unlock (Self_ID);
599 Unlock_RTS;
600 Initialization.Undefer_Abort_Nestable (Self_ID);
602 -- ??? Should never get here
604 pragma Assert (False);
605 raise Standard'Abort_Signal;
606 end if;
608 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
609 Base_Priority, Base_CPU, Domain, Task_Info, Size, T, Success);
611 if not Success then
612 Free (T);
613 Unlock (Self_ID);
614 Unlock_RTS;
615 Initialization.Undefer_Abort_Nestable (Self_ID);
616 raise Storage_Error with "Failed to initialize task";
617 end if;
619 if Master = Foreign_Task_Level + 2 then
621 -- This should not happen, except when a foreign task creates non
622 -- library-level Ada tasks. In this case, we pretend the master is
623 -- a regular library level task, otherwise the run-time will get
624 -- confused when waiting for these tasks to terminate.
626 T.Master_of_Task := Library_Task_Level;
628 else
629 T.Master_of_Task := Master;
630 end if;
632 T.Master_Within := T.Master_of_Task + 1;
634 for L in T.Entry_Calls'Range loop
635 T.Entry_Calls (L).Self := T;
636 T.Entry_Calls (L).Level := L;
637 end loop;
639 if Task_Image'Length = 0 then
640 T.Common.Task_Image_Len := 0;
641 else
642 Len := 1;
643 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
645 -- Remove unwanted blank space generated by 'Image
647 for J in Task_Image'First + 1 .. Task_Image'Last loop
648 if Task_Image (J) /= ' '
649 or else Task_Image (J - 1) /= '('
650 then
651 Len := Len + 1;
652 T.Common.Task_Image (Len) := Task_Image (J);
653 exit when Len = T.Common.Task_Image'Last;
654 end if;
655 end loop;
657 T.Common.Task_Image_Len := Len;
658 end if;
660 -- The task inherits the dispatching domain of the parent only if no
661 -- specific domain has been defined in the spec of the task (using the
662 -- dispatching domain pragma or aspect).
664 if T.Common.Domain /= null then
665 null;
666 elsif T.Common.Activator /= null then
667 T.Common.Domain := T.Common.Activator.Common.Domain;
668 else
669 T.Common.Domain := System.Tasking.System_Domain;
670 end if;
672 Unlock (Self_ID);
673 Unlock_RTS;
675 -- The CPU associated to the task (if any) must belong to the
676 -- dispatching domain.
678 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
679 and then
680 (Base_CPU not in T.Common.Domain'Range
681 or else not T.Common.Domain (Base_CPU))
682 then
683 Initialization.Undefer_Abort_Nestable (Self_ID);
684 raise Tasking_Error with "CPU not in dispatching domain";
685 end if;
687 -- To handle the interaction between pragma CPU and dispatching domains
688 -- we need to signal that this task is being allocated to a processor.
689 -- This is needed only for tasks belonging to the system domain (the
690 -- creation of new dispatching domains can only take processors from the
691 -- system domain) and only before the environment task calls the main
692 -- procedure (dispatching domains cannot be created after this).
694 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
695 and then T.Common.Domain = System.Tasking.System_Domain
696 and then not System.Tasking.Dispatching_Domains_Frozen
697 then
698 -- Increase the number of tasks attached to the CPU to which this
699 -- task is being moved.
701 Dispatching_Domain_Tasks (Base_CPU) :=
702 Dispatching_Domain_Tasks (Base_CPU) + 1;
703 end if;
705 -- Note: we should not call 'new' while holding locks since new may use
706 -- locks (e.g. RTS_Lock under Windows) itself and cause a deadlock.
708 if Build_Entry_Names then
709 T.Entry_Names :=
710 new Entry_Names_Array (1 .. Entry_Index (Num_Entries));
711 end if;
713 -- Create TSD as early as possible in the creation of a task, since it
714 -- may be used by the operation of Ada code within the task.
716 SSL.Create_TSD (T.Common.Compiler_Data);
717 T.Common.Activation_Link := Chain.T_ID;
718 Chain.T_ID := T;
719 Initialization.Initialize_Attributes_Link.all (T);
720 Created_Task := T;
721 Initialization.Undefer_Abort_Nestable (Self_ID);
723 if Runtime_Traces then
724 Send_Trace_Info (T_Create, T);
725 end if;
726 end Create_Task;
728 --------------------
729 -- Current_Master --
730 --------------------
732 function Current_Master return Master_Level is
733 begin
734 return STPO.Self.Master_Within;
735 end Current_Master;
737 ------------------
738 -- Enter_Master --
739 ------------------
741 procedure Enter_Master is
742 Self_ID : constant Task_Id := STPO.Self;
743 begin
744 Self_ID.Master_Within := Self_ID.Master_Within + 1;
745 end Enter_Master;
747 -------------------------------
748 -- Expunge_Unactivated_Tasks --
749 -------------------------------
751 -- See procedure Close_Entries for the general case
753 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
754 Self_ID : constant Task_Id := STPO.Self;
755 C : Task_Id;
756 Call : Entry_Call_Link;
757 Temp : Task_Id;
759 begin
760 pragma Debug
761 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
763 Initialization.Defer_Abort_Nestable (Self_ID);
765 -- ???
766 -- Experimentation has shown that abort is sometimes (but not always)
767 -- already deferred when this is called.
769 -- That may indicate an error. Find out what is going on
771 C := Chain.T_ID;
772 while C /= null loop
773 pragma Assert (C.Common.State = Unactivated);
775 Temp := C.Common.Activation_Link;
777 if C.Common.State = Unactivated then
778 Lock_RTS;
779 Write_Lock (C);
781 for J in 1 .. C.Entry_Num loop
782 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
783 pragma Assert (Call = null);
784 end loop;
786 Unlock (C);
788 Initialization.Remove_From_All_Tasks_List (C);
789 Unlock_RTS;
791 Vulnerable_Free_Task (C);
792 C := Temp;
793 end if;
794 end loop;
796 Chain.T_ID := null;
797 Initialization.Undefer_Abort_Nestable (Self_ID);
798 end Expunge_Unactivated_Tasks;
800 ---------------------------
801 -- Finalize_Global_Tasks --
802 ---------------------------
804 -- ???
805 -- We have a potential problem here if finalization of global objects does
806 -- anything with signals or the timer server, since by that time those
807 -- servers have terminated.
809 -- It is hard to see how that would occur
811 -- However, a better solution might be to do all this finalization
812 -- using the global finalization chain.
814 procedure Finalize_Global_Tasks is
815 Self_ID : constant Task_Id := STPO.Self;
817 Ignore : Boolean;
818 pragma Unreferenced (Ignore);
820 function State
821 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
822 pragma Import (C, State, "__gnat_get_interrupt_state");
823 -- Get interrupt state for interrupt number Int. Defined in init.c
825 Default : constant Character := 's';
826 -- 's' Interrupt_State pragma set state to System (use "default"
827 -- system handler)
829 begin
830 if Self_ID.Deferral_Level = 0 then
831 -- ???
832 -- In principle, we should be able to predict whether abort is
833 -- already deferred here (and it should not be deferred yet but in
834 -- practice it seems Finalize_Global_Tasks is being called sometimes,
835 -- from RTS code for exceptions, with abort already deferred.
837 Initialization.Defer_Abort_Nestable (Self_ID);
839 -- Never undefer again!!!
840 end if;
842 -- This code is only executed by the environment task
844 pragma Assert (Self_ID = Environment_Task);
846 -- Set Environment_Task'Callable to false to notify library-level tasks
847 -- that it is waiting for them.
849 Self_ID.Callable := False;
851 -- Exit level 2 master, for normal tasks in library-level packages
853 Complete_Master;
855 -- Force termination of "independent" library-level server tasks
857 Lock_RTS;
859 Abort_Dependents (Self_ID);
861 if not Single_Lock then
862 Unlock_RTS;
863 end if;
865 -- We need to explicitly wait for the task to be terminated here
866 -- because on true concurrent system, we may end this procedure before
867 -- the tasks are really terminated.
869 Write_Lock (Self_ID);
871 -- If the Abort_Task signal is set to system, it means that we may not
872 -- have been able to abort all independent tasks (in particular
873 -- Server_Task may be blocked, waiting for a signal), in which case,
874 -- do not wait for Independent_Task_Count to go down to 0.
876 if State
877 (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
878 then
879 loop
880 exit when Utilities.Independent_Task_Count = 0;
882 -- We used to yield here, but this did not take into account low
883 -- priority tasks that would cause dead lock in some cases (true
884 -- FIFO scheduling).
886 Timed_Sleep
887 (Self_ID, 0.01, System.OS_Primitives.Relative,
888 Self_ID.Common.State, Ignore, Ignore);
889 end loop;
890 end if;
892 -- ??? On multi-processor environments, it seems that the above loop
893 -- isn't sufficient, so we need to add an additional delay.
895 Timed_Sleep
896 (Self_ID, 0.01, System.OS_Primitives.Relative,
897 Self_ID.Common.State, Ignore, Ignore);
899 Unlock (Self_ID);
901 if Single_Lock then
902 Unlock_RTS;
903 end if;
905 -- Complete the environment task
907 Vulnerable_Complete_Task (Self_ID);
909 -- Handle normal task termination by the environment task, but only
910 -- for the normal task termination. In the case of Abnormal and
911 -- Unhandled_Exception they must have been handled before, and the
912 -- task termination soft link must have been changed so the task
913 -- termination routine is not executed twice.
915 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
917 -- Finalize all library-level controlled objects
919 if not SSL."=" (SSL.Finalize_Library_Objects, null) then
920 SSL.Finalize_Library_Objects.all;
921 end if;
923 -- Reset the soft links to non-tasking
925 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
926 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
927 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
928 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
929 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
930 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
931 SSL.Get_Sec_Stack_Addr := SSL.Get_Sec_Stack_Addr_NT'Access;
932 SSL.Set_Sec_Stack_Addr := SSL.Set_Sec_Stack_Addr_NT'Access;
933 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
934 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
936 -- Don't bother trying to finalize Initialization.Global_Task_Lock
937 -- and System.Task_Primitives.RTS_Lock.
939 end Finalize_Global_Tasks;
941 ----------------------
942 -- Free_Entry_Names --
943 ----------------------
945 procedure Free_Entry_Names (T : Task_Id) is
946 Names : Entry_Names_Array_Access := T.Entry_Names;
948 procedure Free_Entry_Names_Array_Access is new
949 Ada.Unchecked_Deallocation
950 (Entry_Names_Array, Entry_Names_Array_Access);
952 begin
953 if Names = null then
954 return;
955 end if;
957 Free_Entry_Names_Array (Names.all);
958 Free_Entry_Names_Array_Access (Names);
959 end Free_Entry_Names;
961 ---------------
962 -- Free_Task --
963 ---------------
965 procedure Free_Task (T : Task_Id) is
966 Self_Id : constant Task_Id := Self;
968 begin
969 if T.Common.State = Terminated then
971 -- It is not safe to call Abort_Defer or Write_Lock at this stage
973 Initialization.Task_Lock (Self_Id);
975 Lock_RTS;
976 Initialization.Finalize_Attributes_Link.all (T);
977 Initialization.Remove_From_All_Tasks_List (T);
978 Unlock_RTS;
980 Initialization.Task_Unlock (Self_Id);
982 Free_Entry_Names (T);
983 System.Task_Primitives.Operations.Finalize_TCB (T);
985 else
986 -- If the task is not terminated, then mark the task as to be freed
987 -- upon termination.
989 T.Free_On_Termination := True;
990 end if;
991 end Free_Task;
993 ---------------------------
994 -- Move_Activation_Chain --
995 ---------------------------
997 procedure Move_Activation_Chain
998 (From, To : Activation_Chain_Access;
999 New_Master : Master_ID)
1001 Self_ID : constant Task_Id := STPO.Self;
1002 C : Task_Id;
1004 begin
1005 pragma Debug
1006 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
1008 -- Nothing to do if From is empty, and we can check that without
1009 -- deferring aborts.
1011 C := From.all.T_ID;
1013 if C = null then
1014 return;
1015 end if;
1017 Initialization.Defer_Abort (Self_ID);
1019 -- Loop through the From chain, changing their Master_of_Task fields,
1020 -- and to find the end of the chain.
1022 loop
1023 C.Master_of_Task := New_Master;
1024 exit when C.Common.Activation_Link = null;
1025 C := C.Common.Activation_Link;
1026 end loop;
1028 -- Hook From in at the start of To
1030 C.Common.Activation_Link := To.all.T_ID;
1031 To.all.T_ID := From.all.T_ID;
1033 -- Set From to empty
1035 From.all.T_ID := null;
1037 Initialization.Undefer_Abort (Self_ID);
1038 end Move_Activation_Chain;
1040 -- Compiler interface only. Do not call from within the RTS
1042 --------------------
1043 -- Set_Entry_Name --
1044 --------------------
1046 procedure Set_Entry_Name
1047 (T : Task_Id;
1048 Pos : Task_Entry_Index;
1049 Val : String_Access)
1051 begin
1052 pragma Assert (T.Entry_Names /= null);
1054 T.Entry_Names (Entry_Index (Pos)) := Val;
1055 end Set_Entry_Name;
1057 ------------------
1058 -- Task_Wrapper --
1059 ------------------
1061 -- The task wrapper is a procedure that is called first for each task body
1062 -- and which in turn calls the compiler-generated task body procedure.
1063 -- The wrapper's main job is to do initialization for the task. It also
1064 -- has some locally declared objects that serve as per-task local data.
1065 -- Task finalization is done by Complete_Task, which is called from an
1066 -- at-end handler that the compiler generates.
1068 procedure Task_Wrapper (Self_ID : Task_Id) is
1069 use type SSE.Storage_Offset;
1070 use System.Standard_Library;
1071 use System.Stack_Usage;
1073 Bottom_Of_Stack : aliased Integer;
1075 Task_Alternate_Stack :
1076 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
1077 -- The alternate signal stack for this task, if any
1079 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
1080 -- Whether to use above alternate signal stack for stack overflows
1082 Secondary_Stack_Size :
1083 constant SSE.Storage_Offset :=
1084 Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size *
1085 SSE.Storage_Offset (Parameters.Sec_Stack_Percentage) / 100;
1087 Secondary_Stack : aliased SSE.Storage_Array (1 .. Secondary_Stack_Size);
1088 -- Actual area allocated for secondary stack
1090 Secondary_Stack_Address : System.Address := Secondary_Stack'Address;
1091 -- Address of secondary stack. In the fixed secondary stack case, this
1092 -- value is not modified, causing a warning, hence the bracketing with
1093 -- Warnings (Off/On). But why is so much *more* bracketed???
1095 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1096 -- Structured Exception Registration table (2 words)
1098 procedure Install_SEH_Handler (Addr : System.Address);
1099 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1100 -- Install the SEH (Structured Exception Handling) handler
1102 Cause : Cause_Of_Termination := Normal;
1103 -- Indicates the reason why this task terminates. Normal corresponds to
1104 -- a task terminating due to completing the last statement of its body,
1105 -- or as a result of waiting on a terminate alternative. If the task
1106 -- terminates because it is being aborted then Cause will be set
1107 -- to Abnormal. If the task terminates because of an exception
1108 -- raised by the execution of its task body, then Cause is set
1109 -- to Unhandled_Exception.
1111 EO : Exception_Occurrence;
1112 -- If the task terminates because of an exception raised by the
1113 -- execution of its task body, then EO will contain the associated
1114 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1116 TH : Termination_Handler := null;
1117 -- Pointer to the protected procedure to be executed upon task
1118 -- termination.
1120 procedure Search_Fall_Back_Handler (ID : Task_Id);
1121 -- Procedure that searches recursively a fall-back handler through the
1122 -- master relationship. If the handler is found, its pointer is stored
1123 -- in TH.
1125 ------------------------------
1126 -- Search_Fall_Back_Handler --
1127 ------------------------------
1129 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1130 begin
1131 -- If there is a fall back handler, store its pointer for later
1132 -- execution.
1134 if ID.Common.Fall_Back_Handler /= null then
1135 TH := ID.Common.Fall_Back_Handler;
1137 -- Otherwise look for a fall back handler in the parent
1139 elsif ID.Common.Parent /= null then
1140 Search_Fall_Back_Handler (ID.Common.Parent);
1142 -- Otherwise, do nothing
1144 else
1145 return;
1146 end if;
1147 end Search_Fall_Back_Handler;
1149 -- Start of processing for Task_Wrapper
1151 begin
1152 pragma Assert (Self_ID.Deferral_Level = 1);
1154 -- Assume a size of the stack taken at this stage
1156 if not Parameters.Sec_Stack_Dynamic then
1157 Self_ID.Common.Compiler_Data.Sec_Stack_Addr :=
1158 Secondary_Stack'Address;
1159 SST.SS_Init (Secondary_Stack_Address, Integer (Secondary_Stack'Last));
1160 end if;
1162 if Use_Alternate_Stack then
1163 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1164 end if;
1166 -- Set the guard page at the bottom of the stack. The call to unprotect
1167 -- the page is done in Terminate_Task
1169 Stack_Guard (Self_ID, True);
1171 -- Initialize low-level TCB components, that cannot be initialized by
1172 -- the creator. Enter_Task sets Self_ID.LL.Thread.
1174 Enter_Task (Self_ID);
1176 -- Initialize dynamic stack usage
1178 if System.Stack_Usage.Is_Enabled then
1179 declare
1180 Guard_Page_Size : constant := 16 * 1024;
1181 -- Part of the stack used as a guard page. This is an OS dependent
1182 -- value, so we need to use the maximum. This value is only used
1183 -- when the stack address is known, that is currently Windows.
1185 Small_Overflow_Guard : constant := 12 * 1024;
1186 -- Note: this used to be 4K, but was changed to 12K, since
1187 -- smaller values resulted in segmentation faults from dynamic
1188 -- stack analysis.
1190 Big_Overflow_Guard : constant := 64 * 1024 + 8 * 1024;
1191 Small_Stack_Limit : constant := 64 * 1024;
1192 -- ??? These three values are experimental, and seem to work on
1193 -- most platforms. They still need to be analyzed further. They
1194 -- also need documentation, what are they and why does the logic
1195 -- differ depending on whether the stack is large or small???
1197 Pattern_Size : Natural :=
1198 Natural (Self_ID.Common.
1199 Compiler_Data.Pri_Stack_Info.Size);
1200 -- Size of the pattern
1202 Stack_Base : Address;
1203 -- Address of the base of the stack
1205 begin
1206 Stack_Base := Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base;
1208 if Stack_Base = Null_Address then
1210 -- On many platforms, we don't know the real stack base
1211 -- address. Estimate it using an address in the frame.
1213 Stack_Base := Bottom_Of_Stack'Address;
1215 -- Also reduce the size of the stack to take into account the
1216 -- secondary stack array declared in this frame. This is for
1217 -- sure very conservative.
1219 if not Parameters.Sec_Stack_Dynamic then
1220 Pattern_Size :=
1221 Pattern_Size - Natural (Secondary_Stack_Size);
1222 end if;
1224 -- Adjustments for inner frames
1226 Pattern_Size := Pattern_Size -
1227 (if Pattern_Size < Small_Stack_Limit
1228 then Small_Overflow_Guard
1229 else Big_Overflow_Guard);
1230 else
1231 -- Reduce by the size of the final guard page
1233 Pattern_Size := Pattern_Size - Guard_Page_Size;
1234 end if;
1236 STPO.Lock_RTS;
1237 Initialize_Analyzer
1238 (Self_ID.Common.Analyzer,
1239 Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len),
1240 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1241 SSE.To_Integer (Stack_Base),
1242 Pattern_Size);
1243 STPO.Unlock_RTS;
1244 Fill_Stack (Self_ID.Common.Analyzer);
1245 end;
1246 end if;
1248 -- We setup the SEH (Structured Exception Handling) handler if supported
1249 -- on the target.
1251 Install_SEH_Handler (SEH_Table'Address);
1253 -- Initialize exception occurrence
1255 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1257 -- We lock RTS_Lock to wait for activator to finish activating the rest
1258 -- of the chain, so that everyone in the chain comes out in priority
1259 -- order.
1261 -- This also protects the value of
1262 -- Self_ID.Common.Activator.Common.Wait_Count.
1264 Lock_RTS;
1265 Unlock_RTS;
1267 if not System.Restrictions.Abort_Allowed then
1269 -- If Abort is not allowed, reset the deferral level since it will
1270 -- not get changed by the generated code. Keeping a default value
1271 -- of one would prevent some operations (e.g. select or delay) to
1272 -- proceed successfully.
1274 Self_ID.Deferral_Level := 0;
1275 end if;
1277 if Global_Task_Debug_Event_Set then
1278 Debug.Signal_Debug_Event (Debug.Debug_Event_Run, Self_ID);
1279 end if;
1281 begin
1282 -- We are separating the following portion of the code in order to
1283 -- place the exception handlers in a different block. In this way,
1284 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1285 -- set Self in Enter_Task
1287 -- Call the task body procedure
1289 -- The task body is called with abort still deferred. That
1290 -- eliminates a dangerous window, for which we had to patch-up in
1291 -- Terminate_Task.
1293 -- During the expansion of the task body, we insert an RTS-call
1294 -- to Abort_Undefer, at the first point where abort should be
1295 -- allowed.
1297 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1298 Initialization.Defer_Abort_Nestable (Self_ID);
1300 exception
1301 -- We can't call Terminate_Task in the exception handlers below,
1302 -- since there may be (e.g. in the case of GCC exception handling)
1303 -- clean ups associated with the exception handler that need to
1304 -- access task specific data.
1306 -- Defer abort so that this task can't be aborted while exiting
1308 when Standard'Abort_Signal =>
1309 Initialization.Defer_Abort_Nestable (Self_ID);
1311 -- Update the cause that motivated the task termination so that
1312 -- the appropriate information is passed to the task termination
1313 -- procedure. Task termination as a result of waiting on a
1314 -- terminate alternative is a normal termination, although it is
1315 -- implemented using the abort mechanisms.
1317 if Self_ID.Terminate_Alternative then
1318 Cause := Normal;
1320 if Global_Task_Debug_Event_Set then
1321 Debug.Signal_Debug_Event
1322 (Debug.Debug_Event_Terminated, Self_ID);
1323 end if;
1324 else
1325 Cause := Abnormal;
1327 if Global_Task_Debug_Event_Set then
1328 Debug.Signal_Debug_Event
1329 (Debug.Debug_Event_Abort_Terminated, Self_ID);
1330 end if;
1331 end if;
1333 when others =>
1334 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1336 Initialization.Defer_Abort_Nestable (Self_ID);
1338 -- Perform the task specific exception tracing duty. We handle
1339 -- these outputs here and not in the common notification routine
1340 -- because we need access to tasking related data and we don't
1341 -- want to drag dependencies against tasking related units in the
1342 -- the common notification units. Additionally, no trace is ever
1343 -- triggered from the common routine for the Unhandled_Raise case
1344 -- in tasks, since an exception never appears unhandled in this
1345 -- context because of this handler.
1347 if Exception_Trace = Unhandled_Raise then
1348 Trace_Unhandled_Exception_In_Task (Self_ID);
1349 end if;
1351 -- Update the cause that motivated the task termination so that
1352 -- the appropriate information is passed to the task termination
1353 -- procedure, as well as the associated Exception_Occurrence.
1355 Cause := Unhandled_Exception;
1357 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1359 if Global_Task_Debug_Event_Set then
1360 Debug.Signal_Debug_Event
1361 (Debug.Debug_Event_Exception_Terminated, Self_ID);
1362 end if;
1363 end;
1365 -- Look for a task termination handler. This code is for all tasks but
1366 -- the environment task. The task termination code for the environment
1367 -- task is executed by SSL.Task_Termination_Handler.
1369 if Single_Lock then
1370 Lock_RTS;
1371 end if;
1373 Write_Lock (Self_ID);
1375 if Self_ID.Common.Specific_Handler /= null then
1376 TH := Self_ID.Common.Specific_Handler;
1377 else
1378 -- Look for a fall-back handler following the master relationship
1379 -- for the task.
1381 Search_Fall_Back_Handler (Self_ID);
1382 end if;
1384 Unlock (Self_ID);
1386 if Single_Lock then
1387 Unlock_RTS;
1388 end if;
1390 -- Execute the task termination handler if we found it
1392 if TH /= null then
1393 begin
1394 TH.all (Cause, Self_ID, EO);
1396 exception
1398 -- RM-C.7.3 requires all exceptions raised here to be ignored
1400 when others =>
1401 null;
1402 end;
1403 end if;
1405 if System.Stack_Usage.Is_Enabled then
1406 Compute_Result (Self_ID.Common.Analyzer);
1407 Report_Result (Self_ID.Common.Analyzer);
1408 end if;
1410 Terminate_Task (Self_ID);
1411 end Task_Wrapper;
1413 --------------------
1414 -- Terminate_Task --
1415 --------------------
1417 -- Before we allow the thread to exit, we must clean up. This is a delicate
1418 -- job. We must wake up the task's master, who may immediately try to
1419 -- deallocate the ATCB from the current task WHILE IT IS STILL EXECUTING.
1421 -- To avoid this, the parent task must be blocked up to the latest
1422 -- statement executed. The trouble is that we have another step that we
1423 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1424 -- We have to postpone that until the end because compiler-generated code
1425 -- is likely to try to access that data at just about any point.
1427 -- We can't call Destroy_TSD while we are holding any other locks, because
1428 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1429 -- that to be the outermost lock. Our first "solution" was to just lock
1430 -- Global_Task_Lock in addition to the other locks, and force the parent to
1431 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1432 -- Complete_Task for the parent-side of the code that has the matching
1433 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1434 -- since the operation Task_Unlock continued to access the ATCB after
1435 -- unlocking, after which the parent was observed to race ahead, deallocate
1436 -- the ATCB, and then reallocate it to another task. The call to
1437 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1438 -- the data of the new task that reused the ATCB! To solve this problem, we
1439 -- introduced the new operation Final_Task_Unlock.
1441 procedure Terminate_Task (Self_ID : Task_Id) is
1442 Environment_Task : constant Task_Id := STPO.Environment_Task;
1443 Master_of_Task : Integer;
1444 Deallocate : Boolean;
1446 begin
1447 Debug.Task_Termination_Hook;
1449 if Runtime_Traces then
1450 Send_Trace_Info (T_Terminate);
1451 end if;
1453 -- Since GCC cannot allocate stack chunks efficiently without reordering
1454 -- some of the allocations, we have to handle this unexpected situation
1455 -- here. Normally we never have to call Vulnerable_Complete_Task here.
1457 if Self_ID.Common.Activator /= null then
1458 Vulnerable_Complete_Task (Self_ID);
1459 end if;
1461 Initialization.Task_Lock (Self_ID);
1463 if Single_Lock then
1464 Lock_RTS;
1465 end if;
1467 Master_of_Task := Self_ID.Master_of_Task;
1469 -- Check if the current task is an independent task If so, decrement
1470 -- the Independent_Task_Count value.
1472 if Master_of_Task = Independent_Task_Level then
1473 if Single_Lock then
1474 Utilities.Independent_Task_Count :=
1475 Utilities.Independent_Task_Count - 1;
1477 else
1478 Write_Lock (Environment_Task);
1479 Utilities.Independent_Task_Count :=
1480 Utilities.Independent_Task_Count - 1;
1481 Unlock (Environment_Task);
1482 end if;
1483 end if;
1485 -- Unprotect the guard page if needed
1487 Stack_Guard (Self_ID, False);
1489 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1490 Deallocate := Self_ID.Free_On_Termination;
1492 if Single_Lock then
1493 Unlock_RTS;
1494 end if;
1496 pragma Assert (Check_Exit (Self_ID));
1498 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1499 Initialization.Final_Task_Unlock (Self_ID);
1501 -- WARNING: past this point, this thread must assume that the ATCB has
1502 -- been deallocated, and can't access it anymore (which is why we have
1503 -- saved the Free_On_Termination flag in a temporary variable).
1505 if Deallocate then
1506 Free_Task (Self_ID);
1507 end if;
1509 if Master_of_Task > 0 then
1510 STPO.Exit_Task;
1511 end if;
1512 end Terminate_Task;
1514 ----------------
1515 -- Terminated --
1516 ----------------
1518 function Terminated (T : Task_Id) return Boolean is
1519 Self_ID : constant Task_Id := STPO.Self;
1520 Result : Boolean;
1522 begin
1523 Initialization.Defer_Abort_Nestable (Self_ID);
1525 if Single_Lock then
1526 Lock_RTS;
1527 end if;
1529 Write_Lock (T);
1530 Result := T.Common.State = Terminated;
1531 Unlock (T);
1533 if Single_Lock then
1534 Unlock_RTS;
1535 end if;
1537 Initialization.Undefer_Abort_Nestable (Self_ID);
1538 return Result;
1539 end Terminated;
1541 ----------------------------------------
1542 -- Trace_Unhandled_Exception_In_Task --
1543 ----------------------------------------
1545 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1546 procedure To_Stderr (S : String);
1547 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1549 use System.Soft_Links;
1550 use System.Standard_Library;
1552 function To_Address is new
1553 Ada.Unchecked_Conversion
1554 (Task_Id, System.Task_Primitives.Task_Address);
1556 function Tailored_Exception_Information
1557 (E : Exception_Occurrence) return String;
1558 pragma Import
1559 (Ada, Tailored_Exception_Information,
1560 "__gnat_tailored_exception_information");
1562 Excep : constant Exception_Occurrence_Access :=
1563 SSL.Get_Current_Excep.all;
1565 begin
1566 -- This procedure is called by the task outermost handler in
1567 -- Task_Wrapper below, so only once the task stack has been fully
1568 -- unwound. The common notification routine has been called at the
1569 -- raise point already.
1571 -- Lock to prevent unsynchronized output
1573 Initialization.Task_Lock (Self_Id);
1574 To_Stderr ("task ");
1576 if Self_Id.Common.Task_Image_Len /= 0 then
1577 To_Stderr
1578 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1579 To_Stderr ("_");
1580 end if;
1582 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1583 To_Stderr (" terminated by unhandled exception");
1584 To_Stderr ((1 => ASCII.LF));
1585 To_Stderr (Tailored_Exception_Information (Excep.all));
1586 Initialization.Task_Unlock (Self_Id);
1587 end Trace_Unhandled_Exception_In_Task;
1589 ------------------------------------
1590 -- Vulnerable_Complete_Activation --
1591 ------------------------------------
1593 -- As in several other places, the locks of the activator and activated
1594 -- task are both locked here. This follows our deadlock prevention lock
1595 -- ordering policy, since the activated task must be created after the
1596 -- activator.
1598 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1599 Activator : constant Task_Id := Self_ID.Common.Activator;
1601 begin
1602 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1604 Write_Lock (Activator);
1605 Write_Lock (Self_ID);
1607 pragma Assert (Self_ID.Common.Activator /= null);
1609 -- Remove dangling reference to Activator, since a task may outlive its
1610 -- activator.
1612 Self_ID.Common.Activator := null;
1614 -- Wake up the activator, if it is waiting for a chain of tasks to
1615 -- activate, and we are the last in the chain to complete activation.
1617 if Activator.Common.State = Activator_Sleep then
1618 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1620 if Activator.Common.Wait_Count = 0 then
1621 Wakeup (Activator, Activator_Sleep);
1622 end if;
1623 end if;
1625 -- The activator raises a Tasking_Error if any task it is activating
1626 -- is completed before the activation is done. However, if the reason
1627 -- for the task completion is an abort, we do not raise an exception.
1628 -- See RM 9.2(5).
1630 if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then
1631 Activator.Common.Activation_Failed := True;
1632 end if;
1634 Unlock (Self_ID);
1635 Unlock (Activator);
1637 -- After the activation, active priority should be the same as base
1638 -- priority. We must unlock the Activator first, though, since it
1639 -- should not wait if we have lower priority.
1641 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1642 Write_Lock (Self_ID);
1643 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1644 Unlock (Self_ID);
1645 end if;
1646 end Vulnerable_Complete_Activation;
1648 --------------------------------
1649 -- Vulnerable_Complete_Master --
1650 --------------------------------
1652 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1653 C : Task_Id;
1654 P : Task_Id;
1655 CM : constant Master_Level := Self_ID.Master_Within;
1656 T : aliased Task_Id;
1658 To_Be_Freed : Task_Id;
1659 -- This is a list of ATCBs to be freed, after we have released all RTS
1660 -- locks. This is necessary because of the locking order rules, since
1661 -- the storage manager uses Global_Task_Lock.
1663 pragma Warnings (Off);
1664 function Check_Unactivated_Tasks return Boolean;
1665 pragma Warnings (On);
1666 -- Temporary error-checking code below. This is part of the checks
1667 -- added in the new run time. Call it only inside a pragma Assert.
1669 -----------------------------
1670 -- Check_Unactivated_Tasks --
1671 -----------------------------
1673 function Check_Unactivated_Tasks return Boolean is
1674 begin
1675 if not Single_Lock then
1676 Lock_RTS;
1677 end if;
1679 Write_Lock (Self_ID);
1681 C := All_Tasks_List;
1682 while C /= null loop
1683 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1684 return False;
1685 end if;
1687 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1688 Write_Lock (C);
1690 if C.Common.State = Unactivated then
1691 return False;
1692 end if;
1694 Unlock (C);
1695 end if;
1697 C := C.Common.All_Tasks_Link;
1698 end loop;
1700 Unlock (Self_ID);
1702 if not Single_Lock then
1703 Unlock_RTS;
1704 end if;
1706 return True;
1707 end Check_Unactivated_Tasks;
1709 -- Start of processing for Vulnerable_Complete_Master
1711 begin
1712 pragma Debug
1713 (Debug.Trace (Self_ID, "V_Complete_Master", 'C'));
1715 pragma Assert (Self_ID.Common.Wait_Count = 0);
1716 pragma Assert
1717 (Self_ID.Deferral_Level > 0
1718 or else not System.Restrictions.Abort_Allowed);
1720 -- Count how many active dependent tasks this master currently has, and
1721 -- record this in Wait_Count.
1723 -- This count should start at zero, since it is initialized to zero for
1724 -- new tasks, and the task should not exit the sleep-loops that use this
1725 -- count until the count reaches zero.
1727 -- While we're counting, if we run across any unactivated tasks that
1728 -- belong to this master, we summarily terminate them as required by
1729 -- RM-9.2(6).
1731 Lock_RTS;
1732 Write_Lock (Self_ID);
1734 C := All_Tasks_List;
1735 while C /= null loop
1737 -- Terminate unactivated (never-to-be activated) tasks
1739 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1741 -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task
1742 -- = CM. The only case where C is pending activation by this
1743 -- task, but the master of C is not CM is in Ada 2005, when C is
1744 -- part of a return object of a build-in-place function.
1746 pragma Assert (C.Common.State = Unactivated);
1748 Write_Lock (C);
1749 C.Common.Activator := null;
1750 C.Common.State := Terminated;
1751 C.Callable := False;
1752 Utilities.Cancel_Queued_Entry_Calls (C);
1753 Unlock (C);
1754 end if;
1756 -- Count it if dependent on this master
1758 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1759 Write_Lock (C);
1761 if C.Awake_Count /= 0 then
1762 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1763 end if;
1765 Unlock (C);
1766 end if;
1768 C := C.Common.All_Tasks_Link;
1769 end loop;
1771 Self_ID.Common.State := Master_Completion_Sleep;
1772 Unlock (Self_ID);
1774 if not Single_Lock then
1775 Unlock_RTS;
1776 end if;
1778 -- Wait until dependent tasks are all terminated or ready to terminate.
1779 -- While waiting, the task may be awakened if the task's priority needs
1780 -- changing, or this master is aborted. In the latter case, we abort the
1781 -- dependents, and resume waiting until Wait_Count goes to zero.
1783 Write_Lock (Self_ID);
1785 loop
1786 exit when Self_ID.Common.Wait_Count = 0;
1788 -- Here is a difference as compared to Complete_Master
1790 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1791 and then not Self_ID.Dependents_Aborted
1792 then
1793 if Single_Lock then
1794 Abort_Dependents (Self_ID);
1795 else
1796 Unlock (Self_ID);
1797 Lock_RTS;
1798 Abort_Dependents (Self_ID);
1799 Unlock_RTS;
1800 Write_Lock (Self_ID);
1801 end if;
1802 else
1803 Sleep (Self_ID, Master_Completion_Sleep);
1804 end if;
1805 end loop;
1807 Self_ID.Common.State := Runnable;
1808 Unlock (Self_ID);
1810 -- Dependents are all terminated or on terminate alternatives. Now,
1811 -- force those on terminate alternatives to terminate, by aborting them.
1813 pragma Assert (Check_Unactivated_Tasks);
1815 if Self_ID.Alive_Count > 1 then
1816 -- ???
1817 -- Consider finding a way to skip the following extra steps if there
1818 -- are no dependents with terminate alternatives. This could be done
1819 -- by adding another count to the ATCB, similar to Awake_Count, but
1820 -- keeping track of tasks that are on terminate alternatives.
1822 pragma Assert (Self_ID.Common.Wait_Count = 0);
1824 -- Force any remaining dependents to terminate by aborting them
1826 if not Single_Lock then
1827 Lock_RTS;
1828 end if;
1830 Abort_Dependents (Self_ID);
1832 -- Above, when we "abort" the dependents we are simply using this
1833 -- operation for convenience. We are not required to support the full
1834 -- abort-statement semantics; in particular, we are not required to
1835 -- immediately cancel any queued or in-service entry calls. That is
1836 -- good, because if we tried to cancel a call we would need to lock
1837 -- the caller, in order to wake the caller up. Our anti-deadlock
1838 -- rules prevent us from doing that without releasing the locks on C
1839 -- and Self_ID. Releasing and retaking those locks would be wasteful
1840 -- at best, and should not be considered further without more
1841 -- detailed analysis of potential concurrent accesses to the ATCBs
1842 -- of C and Self_ID.
1844 -- Count how many "alive" dependent tasks this master currently has,
1845 -- and record this in Wait_Count. This count should start at zero,
1846 -- since it is initialized to zero for new tasks, and the task should
1847 -- not exit the sleep-loops that use this count until the count
1848 -- reaches zero.
1850 pragma Assert (Self_ID.Common.Wait_Count = 0);
1852 Write_Lock (Self_ID);
1854 C := All_Tasks_List;
1855 while C /= null loop
1856 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1857 Write_Lock (C);
1859 pragma Assert (C.Awake_Count = 0);
1861 if C.Alive_Count > 0 then
1862 pragma Assert (C.Terminate_Alternative);
1863 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1864 end if;
1866 Unlock (C);
1867 end if;
1869 C := C.Common.All_Tasks_Link;
1870 end loop;
1872 Self_ID.Common.State := Master_Phase_2_Sleep;
1873 Unlock (Self_ID);
1875 if not Single_Lock then
1876 Unlock_RTS;
1877 end if;
1879 -- Wait for all counted tasks to finish terminating themselves
1881 Write_Lock (Self_ID);
1883 loop
1884 exit when Self_ID.Common.Wait_Count = 0;
1885 Sleep (Self_ID, Master_Phase_2_Sleep);
1886 end loop;
1888 Self_ID.Common.State := Runnable;
1889 Unlock (Self_ID);
1890 end if;
1892 -- We don't wake up for abort here. We are already terminating just as
1893 -- fast as we can, so there is no point.
1895 -- Remove terminated tasks from the list of Self_ID's dependents, but
1896 -- don't free their ATCBs yet, because of lock order restrictions, which
1897 -- don't allow us to call "free" or "malloc" while holding any other
1898 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1899 -- called To_Be_Freed.
1901 if not Single_Lock then
1902 Lock_RTS;
1903 end if;
1905 C := All_Tasks_List;
1906 P := null;
1907 while C /= null loop
1908 if C.Common.Parent = Self_ID and then C.Master_of_Task >= CM then
1909 if P /= null then
1910 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1911 else
1912 All_Tasks_List := C.Common.All_Tasks_Link;
1913 end if;
1915 T := C.Common.All_Tasks_Link;
1916 C.Common.All_Tasks_Link := To_Be_Freed;
1917 To_Be_Freed := C;
1918 C := T;
1920 else
1921 P := C;
1922 C := C.Common.All_Tasks_Link;
1923 end if;
1924 end loop;
1926 Unlock_RTS;
1928 -- Free all the ATCBs on the list To_Be_Freed
1930 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1931 -- any interrupt entries are detached from them they should no longer
1932 -- be referenced.
1934 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1935 -- avoid a race between a terminating task and its parent. The parent
1936 -- might try to deallocate the ACTB out from underneath the exiting
1937 -- task. Note that Free will also lock Global_Task_Lock, but that is
1938 -- OK, since this is the *one* lock for which we have a mechanism to
1939 -- support nested locking. See Task_Wrapper and its finalizer for more
1940 -- explanation.
1942 -- ???
1943 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1944 -- references to terminated library-level tasks, which could otherwise
1945 -- occur during finalization of library-level objects. A better solution
1946 -- might be to hook task objects into the finalization chain and
1947 -- deallocate the ATCB when the task object is deallocated. However,
1948 -- this change is not likely to gain anything significant, since all
1949 -- this storage should be recovered en-masse when the process exits.
1951 while To_Be_Freed /= null loop
1952 T := To_Be_Freed;
1953 To_Be_Freed := T.Common.All_Tasks_Link;
1955 -- ??? On SGI there is currently no Interrupt_Manager, that's why we
1956 -- need to check if the Interrupt_Manager_ID is null.
1958 if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then
1959 declare
1960 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1961 -- Corresponds to the entry index of System.Interrupts.
1962 -- Interrupt_Manager.Detach_Interrupt_Entries. Be sure
1963 -- to update this value when changing Interrupt_Manager specs.
1965 type Param_Type is access all Task_Id;
1967 Param : aliased Param_Type := T'Access;
1969 begin
1970 System.Tasking.Rendezvous.Call_Simple
1971 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1972 Param'Address);
1973 end;
1974 end if;
1976 if (T.Common.Parent /= null
1977 and then T.Common.Parent.Common.Parent /= null)
1978 or else T.Master_of_Task > Library_Task_Level
1979 then
1980 Initialization.Task_Lock (Self_ID);
1982 -- If Sec_Stack_Addr is not null, it means that Destroy_TSD
1983 -- has not been called yet (case of an unactivated task).
1985 if T.Common.Compiler_Data.Sec_Stack_Addr /= Null_Address then
1986 SSL.Destroy_TSD (T.Common.Compiler_Data);
1987 end if;
1989 Vulnerable_Free_Task (T);
1990 Initialization.Task_Unlock (Self_ID);
1991 end if;
1992 end loop;
1994 -- It might seem nice to let the terminated task deallocate its own
1995 -- ATCB. That would not cover the case of unactivated tasks. It also
1996 -- would force us to keep the underlying thread around past termination,
1997 -- since references to the ATCB are possible past termination.
1999 -- Currently, we get rid of the thread as soon as the task terminates,
2000 -- and let the parent recover the ATCB later.
2002 -- Some day, if we want to recover the ATCB earlier, at task
2003 -- termination, we could consider using "fat task IDs", that include the
2004 -- serial number with the ATCB pointer, to catch references to tasks
2005 -- that no longer have ATCBs. It is not clear how much this would gain,
2006 -- since the user-level task object would still be occupying storage.
2008 -- Make next master level up active. We don't need to lock the ATCB,
2009 -- since the value is only updated by each task for itself.
2011 Self_ID.Master_Within := CM - 1;
2012 end Vulnerable_Complete_Master;
2014 ------------------------------
2015 -- Vulnerable_Complete_Task --
2016 ------------------------------
2018 -- Complete the calling task
2020 -- This procedure must be called with abort deferred. It should only be
2021 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
2022 -- task).
2024 -- The effect is similar to that of Complete_Master. Differences include
2025 -- the closing of entries here, and computation of the number of active
2026 -- dependent tasks in Complete_Master.
2028 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
2029 -- because that does its own locking, and because we do not need the lock
2030 -- to test Self_ID.Common.Activator. That value should only be read and
2031 -- modified by Self.
2033 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
2034 begin
2035 pragma Assert
2036 (Self_ID.Deferral_Level > 0
2037 or else not System.Restrictions.Abort_Allowed);
2038 pragma Assert (Self_ID = Self);
2039 pragma Assert (Self_ID.Master_Within = Self_ID.Master_of_Task + 1
2040 or else
2041 Self_ID.Master_Within = Self_ID.Master_of_Task + 2);
2042 pragma Assert (Self_ID.Common.Wait_Count = 0);
2043 pragma Assert (Self_ID.Open_Accepts = null);
2044 pragma Assert (Self_ID.ATC_Nesting_Level = 1);
2046 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
2048 if Single_Lock then
2049 Lock_RTS;
2050 end if;
2052 Write_Lock (Self_ID);
2053 Self_ID.Callable := False;
2055 -- In theory, Self should have no pending entry calls left on its
2056 -- call-stack. Each async. select statement should clean its own call,
2057 -- and blocking entry calls should defer abort until the calls are
2058 -- cancelled, then clean up.
2060 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
2061 Unlock (Self_ID);
2063 if Self_ID.Common.Activator /= null then
2064 Vulnerable_Complete_Activation (Self_ID);
2065 end if;
2067 if Single_Lock then
2068 Unlock_RTS;
2069 end if;
2071 -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have
2072 -- dependent tasks for which we need to wait. Otherwise we just exit.
2074 if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then
2075 Vulnerable_Complete_Master (Self_ID);
2076 end if;
2077 end Vulnerable_Complete_Task;
2079 --------------------------
2080 -- Vulnerable_Free_Task --
2081 --------------------------
2083 -- Recover all runtime system storage associated with the task T. This
2084 -- should only be called after T has terminated and will no longer be
2085 -- referenced.
2087 -- For tasks created by an allocator that fails, due to an exception, it
2088 -- is called from Expunge_Unactivated_Tasks.
2090 -- For tasks created by elaboration of task object declarations it is
2091 -- called from the finalization code of the Task_Wrapper procedure. It is
2092 -- also called from Ada.Unchecked_Deallocation, for objects that are or
2093 -- contain tasks.
2095 procedure Vulnerable_Free_Task (T : Task_Id) is
2096 begin
2097 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
2099 if Single_Lock then
2100 Lock_RTS;
2101 end if;
2103 Write_Lock (T);
2104 Initialization.Finalize_Attributes_Link.all (T);
2105 Unlock (T);
2107 if Single_Lock then
2108 Unlock_RTS;
2109 end if;
2111 Free_Entry_Names (T);
2112 System.Task_Primitives.Operations.Finalize_TCB (T);
2113 end Vulnerable_Free_Task;
2115 -- Package elaboration code
2117 begin
2118 -- Establish the Adafinal softlink
2120 -- This is not done inside the central RTS initialization routine
2121 -- to avoid with'ing this package from System.Tasking.Initialization.
2123 SSL.Adafinal := Finalize_Global_Tasks'Access;
2125 -- Establish soft links for subprograms that manipulate master_id's.
2126 -- This cannot be done when the RTS is initialized, because of various
2127 -- elaboration constraints.
2129 SSL.Current_Master := Stages.Current_Master'Access;
2130 SSL.Enter_Master := Stages.Enter_Master'Access;
2131 SSL.Complete_Master := Stages.Complete_Master'Access;
2132 end System.Tasking.Stages;