Daily bump.
[official-gcc.git] / gcc / ada / s-stratt-xdr.adb
blob86e190a98b5e14c04261e0f571c929c73ffce903
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . S T R E A M _ A T T R I B U T E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1996-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GARLIC is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This file is an alternate version of s-stratt.adb based on the XDR
33 -- standard. It is especially useful for exchanging streams between two
34 -- different systems with different basic type representations and endianness.
36 with Ada.IO_Exceptions;
37 with Ada.Streams; use Ada.Streams;
38 with Ada.Unchecked_Conversion;
40 package body System.Stream_Attributes is
42 pragma Suppress (Range_Check);
43 pragma Suppress (Overflow_Check);
45 use UST;
47 Data_Error : exception renames Ada.IO_Exceptions.End_Error;
48 -- Exception raised if insufficient data read (End_Error is mandated by
49 -- AI95-00132).
51 SU : constant := System.Storage_Unit;
52 -- The code in this body assumes that SU = 8
54 BB : constant := 2 ** SU; -- Byte base
55 BL : constant := 2 ** SU - 1; -- Byte last
56 BS : constant := 2 ** (SU - 1); -- Byte sign
58 US : constant := Unsigned'Size; -- Unsigned size
59 UB : constant := (US - 1) / SU + 1; -- Unsigned byte
60 UL : constant := 2 ** US - 1; -- Unsigned last
62 subtype SE is Ada.Streams.Stream_Element;
63 subtype SEA is Ada.Streams.Stream_Element_Array;
64 subtype SEO is Ada.Streams.Stream_Element_Offset;
66 generic function UC renames Ada.Unchecked_Conversion;
68 type Field_Type is
69 record
70 E_Size : Integer; -- Exponent bit size
71 E_Bias : Integer; -- Exponent bias
72 F_Size : Integer; -- Fraction bit size
73 E_Last : Integer; -- Max exponent value
74 F_Mask : SE; -- Mask to apply on first fraction byte
75 E_Bytes : SEO; -- N. of exponent bytes completely used
76 F_Bytes : SEO; -- N. of fraction bytes completely used
77 F_Bits : Integer; -- N. of bits used on first fraction word
78 end record;
80 type Precision is (Single, Double, Quadruple);
82 Fields : constant array (Precision) of Field_Type := (
84 -- Single precision
86 (E_Size => 8,
87 E_Bias => 127,
88 F_Size => 23,
89 E_Last => 2 ** 8 - 1,
90 F_Mask => 16#7F#, -- 2 ** 7 - 1,
91 E_Bytes => 2,
92 F_Bytes => 3,
93 F_Bits => 23 mod US),
95 -- Double precision
97 (E_Size => 11,
98 E_Bias => 1023,
99 F_Size => 52,
100 E_Last => 2 ** 11 - 1,
101 F_Mask => 16#0F#, -- 2 ** 4 - 1,
102 E_Bytes => 2,
103 F_Bytes => 7,
104 F_Bits => 52 mod US),
106 -- Quadruple precision
108 (E_Size => 15,
109 E_Bias => 16383,
110 F_Size => 112,
111 E_Last => 2 ** 8 - 1,
112 F_Mask => 16#FF#, -- 2 ** 8 - 1,
113 E_Bytes => 2,
114 F_Bytes => 14,
115 F_Bits => 112 mod US));
117 -- The representation of all items requires a multiple of four bytes
118 -- (or 32 bits) of data. The bytes are numbered 0 through n-1. The bytes
119 -- are read or written to some byte stream such that byte m always
120 -- precedes byte m+1. If the n bytes needed to contain the data are not
121 -- a multiple of four, then the n bytes are followed by enough (0 to 3)
122 -- residual zero bytes, r, to make the total byte count a multiple of 4.
124 -- An XDR signed integer is a 32-bit datum that encodes an integer
125 -- in the range [-2147483648,2147483647]. The integer is represented
126 -- in two's complement notation. The most and least significant bytes
127 -- are 0 and 3, respectively. Integers are declared as follows:
129 -- (MSB) (LSB)
130 -- +-------+-------+-------+-------+
131 -- |byte 0 |byte 1 |byte 2 |byte 3 |
132 -- +-------+-------+-------+-------+
133 -- <------------32 bits------------>
135 SSI_L : constant := 1;
136 SI_L : constant := 2;
137 I_L : constant := 4;
138 LI_L : constant := 8;
139 LLI_L : constant := 8;
141 subtype XDR_S_SSI is SEA (1 .. SSI_L);
142 subtype XDR_S_SI is SEA (1 .. SI_L);
143 subtype XDR_S_I is SEA (1 .. I_L);
144 subtype XDR_S_LI is SEA (1 .. LI_L);
145 subtype XDR_S_LLI is SEA (1 .. LLI_L);
147 function Short_Short_Integer_To_XDR_S_SSI is
148 new Ada.Unchecked_Conversion (Short_Short_Integer, XDR_S_SSI);
149 function XDR_S_SSI_To_Short_Short_Integer is
150 new Ada.Unchecked_Conversion (XDR_S_SSI, Short_Short_Integer);
152 function Short_Integer_To_XDR_S_SI is
153 new Ada.Unchecked_Conversion (Short_Integer, XDR_S_SI);
154 function XDR_S_SI_To_Short_Integer is
155 new Ada.Unchecked_Conversion (XDR_S_SI, Short_Integer);
157 function Integer_To_XDR_S_I is
158 new Ada.Unchecked_Conversion (Integer, XDR_S_I);
159 function XDR_S_I_To_Integer is
160 new Ada.Unchecked_Conversion (XDR_S_I, Integer);
162 function Long_Long_Integer_To_XDR_S_LI is
163 new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LI);
164 function XDR_S_LI_To_Long_Long_Integer is
165 new Ada.Unchecked_Conversion (XDR_S_LI, Long_Long_Integer);
167 function Long_Long_Integer_To_XDR_S_LLI is
168 new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LLI);
169 function XDR_S_LLI_To_Long_Long_Integer is
170 new Ada.Unchecked_Conversion (XDR_S_LLI, Long_Long_Integer);
172 -- An XDR unsigned integer is a 32-bit datum that encodes a nonnegative
173 -- integer in the range [0,4294967295]. It is represented by an unsigned
174 -- binary number whose most and least significant bytes are 0 and 3,
175 -- respectively. An unsigned integer is declared as follows:
177 -- (MSB) (LSB)
178 -- +-------+-------+-------+-------+
179 -- |byte 0 |byte 1 |byte 2 |byte 3 |
180 -- +-------+-------+-------+-------+
181 -- <------------32 bits------------>
183 SSU_L : constant := 1;
184 SU_L : constant := 2;
185 U_L : constant := 4;
186 LU_L : constant := 8;
187 LLU_L : constant := 8;
189 subtype XDR_S_SSU is SEA (1 .. SSU_L);
190 subtype XDR_S_SU is SEA (1 .. SU_L);
191 subtype XDR_S_U is SEA (1 .. U_L);
192 subtype XDR_S_LU is SEA (1 .. LU_L);
193 subtype XDR_S_LLU is SEA (1 .. LLU_L);
195 type XDR_SSU is mod BB ** SSU_L;
196 type XDR_SU is mod BB ** SU_L;
197 type XDR_U is mod BB ** U_L;
199 function Short_Unsigned_To_XDR_S_SU is
200 new Ada.Unchecked_Conversion (Short_Unsigned, XDR_S_SU);
201 function XDR_S_SU_To_Short_Unsigned is
202 new Ada.Unchecked_Conversion (XDR_S_SU, Short_Unsigned);
204 function Unsigned_To_XDR_S_U is
205 new Ada.Unchecked_Conversion (Unsigned, XDR_S_U);
206 function XDR_S_U_To_Unsigned is
207 new Ada.Unchecked_Conversion (XDR_S_U, Unsigned);
209 function Long_Long_Unsigned_To_XDR_S_LU is
210 new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LU);
211 function XDR_S_LU_To_Long_Long_Unsigned is
212 new Ada.Unchecked_Conversion (XDR_S_LU, Long_Long_Unsigned);
214 function Long_Long_Unsigned_To_XDR_S_LLU is
215 new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LLU);
216 function XDR_S_LLU_To_Long_Long_Unsigned is
217 new Ada.Unchecked_Conversion (XDR_S_LLU, Long_Long_Unsigned);
219 -- The standard defines the floating-point data type "float" (32 bits
220 -- or 4 bytes). The encoding used is the IEEE standard for normalized
221 -- single-precision floating-point numbers.
223 -- The standard defines the encoding used for the double-precision
224 -- floating-point data type "double" (64 bits or 8 bytes). The encoding
225 -- used is the IEEE standard for normalized double-precision floating-point
226 -- numbers.
228 SF_L : constant := 4; -- Single precision
229 F_L : constant := 4; -- Single precision
230 LF_L : constant := 8; -- Double precision
231 LLF_L : constant := 16; -- Quadruple precision
233 TM_L : constant := 8;
234 subtype XDR_S_TM is SEA (1 .. TM_L);
235 type XDR_TM is mod BB ** TM_L;
237 type XDR_SA is mod 2 ** Standard'Address_Size;
238 function To_XDR_SA is new UC (System.Address, XDR_SA);
239 function To_XDR_SA is new UC (XDR_SA, System.Address);
241 -- Enumerations have the same representation as signed integers.
242 -- Enumerations are handy for describing subsets of the integers.
244 -- Booleans are important enough and occur frequently enough to warrant
245 -- their own explicit type in the standard. Booleans are declared as
246 -- an enumeration, with FALSE = 0 and TRUE = 1.
248 -- The standard defines a string of n (numbered 0 through n-1) ASCII
249 -- bytes to be the number n encoded as an unsigned integer (as described
250 -- above), and followed by the n bytes of the string. Byte m of the string
251 -- always precedes byte m+1 of the string, and byte 0 of the string always
252 -- follows the string's length. If n is not a multiple of four, then the
253 -- n bytes are followed by enough (0 to 3) residual zero bytes, r, to make
254 -- the total byte count a multiple of four.
256 -- To fit with XDR string, do not consider character as an enumeration
257 -- type.
259 C_L : constant := 1;
260 subtype XDR_S_C is SEA (1 .. C_L);
262 -- Consider Wide_Character as an enumeration type
264 WC_L : constant := 4;
265 subtype XDR_S_WC is SEA (1 .. WC_L);
266 type XDR_WC is mod BB ** WC_L;
268 -- Consider Wide_Wide_Character as an enumeration type
270 WWC_L : constant := 8;
271 subtype XDR_S_WWC is SEA (1 .. WWC_L);
272 type XDR_WWC is mod BB ** WWC_L;
274 -- Optimization: if we already have the correct Bit_Order, then some
275 -- computations can be avoided since the source and the target will be
276 -- identical anyway. They will be replaced by direct unchecked
277 -- conversions.
279 Optimize_Integers : constant Boolean :=
280 Default_Bit_Order = High_Order_First;
282 -----------------
283 -- Block_IO_OK --
284 -----------------
286 function Block_IO_OK return Boolean is
287 begin
288 return False;
289 end Block_IO_OK;
291 ----------
292 -- I_AD --
293 ----------
295 function I_AD (Stream : not null access RST) return Fat_Pointer is
296 FP : Fat_Pointer;
298 begin
299 FP.P1 := I_AS (Stream).P1;
300 FP.P2 := I_AS (Stream).P1;
302 return FP;
303 end I_AD;
305 ----------
306 -- I_AS --
307 ----------
309 function I_AS (Stream : not null access RST) return Thin_Pointer is
310 S : XDR_S_TM;
311 L : SEO;
312 U : XDR_TM := 0;
314 begin
315 Ada.Streams.Read (Stream.all, S, L);
317 if L /= S'Last then
318 raise Data_Error;
320 else
321 for N in S'Range loop
322 U := U * BB + XDR_TM (S (N));
323 end loop;
325 return (P1 => To_XDR_SA (XDR_SA (U)));
326 end if;
327 end I_AS;
329 ---------
330 -- I_B --
331 ---------
333 function I_B (Stream : not null access RST) return Boolean is
334 begin
335 case I_SSU (Stream) is
336 when 0 => return False;
337 when 1 => return True;
338 when others => raise Data_Error;
339 end case;
340 end I_B;
342 ---------
343 -- I_C --
344 ---------
346 function I_C (Stream : not null access RST) return Character is
347 S : XDR_S_C;
348 L : SEO;
350 begin
351 Ada.Streams.Read (Stream.all, S, L);
353 if L /= S'Last then
354 raise Data_Error;
356 else
357 -- Use Ada requirements on Character representation clause
359 return Character'Val (S (1));
360 end if;
361 end I_C;
363 ---------
364 -- I_F --
365 ---------
367 function I_F (Stream : not null access RST) return Float is
368 I : constant Precision := Single;
369 E_Size : Integer renames Fields (I).E_Size;
370 E_Bias : Integer renames Fields (I).E_Bias;
371 E_Last : Integer renames Fields (I).E_Last;
372 F_Mask : SE renames Fields (I).F_Mask;
373 E_Bytes : SEO renames Fields (I).E_Bytes;
374 F_Bytes : SEO renames Fields (I).F_Bytes;
375 F_Size : Integer renames Fields (I).F_Size;
377 Positive : Boolean;
378 Exponent : Long_Unsigned;
379 Fraction : Long_Unsigned;
380 Result : Float;
381 S : SEA (1 .. F_L);
382 L : SEO;
384 begin
385 Ada.Streams.Read (Stream.all, S, L);
387 if L /= S'Last then
388 raise Data_Error;
389 end if;
391 -- Extract Fraction, Sign and Exponent
393 Fraction := Long_Unsigned (S (F_L + 1 - F_Bytes) and F_Mask);
394 for N in F_L + 2 - F_Bytes .. F_L loop
395 Fraction := Fraction * BB + Long_Unsigned (S (N));
396 end loop;
397 Result := Float'Scaling (Float (Fraction), -F_Size);
399 if BS <= S (1) then
400 Positive := False;
401 Exponent := Long_Unsigned (S (1) - BS);
402 else
403 Positive := True;
404 Exponent := Long_Unsigned (S (1));
405 end if;
407 for N in 2 .. E_Bytes loop
408 Exponent := Exponent * BB + Long_Unsigned (S (N));
409 end loop;
410 Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
412 -- NaN or Infinities
414 if Integer (Exponent) = E_Last then
415 raise Constraint_Error;
417 elsif Exponent = 0 then
419 -- Signed zeros
421 if Fraction = 0 then
422 null;
424 -- Denormalized float
426 else
427 Result := Float'Scaling (Result, 1 - E_Bias);
428 end if;
430 -- Normalized float
432 else
433 Result := Float'Scaling
434 (1.0 + Result, Integer (Exponent) - E_Bias);
435 end if;
437 if not Positive then
438 Result := -Result;
439 end if;
441 return Result;
442 end I_F;
444 ---------
445 -- I_I --
446 ---------
448 function I_I (Stream : not null access RST) return Integer is
449 S : XDR_S_I;
450 L : SEO;
451 U : XDR_U := 0;
453 begin
454 Ada.Streams.Read (Stream.all, S, L);
456 if L /= S'Last then
457 raise Data_Error;
459 elsif Optimize_Integers then
460 return XDR_S_I_To_Integer (S);
462 else
463 for N in S'Range loop
464 U := U * BB + XDR_U (S (N));
465 end loop;
467 -- Test sign and apply two complement notation
469 if S (1) < BL then
470 return Integer (U);
472 else
473 return Integer (-((XDR_U'Last xor U) + 1));
474 end if;
475 end if;
476 end I_I;
478 ----------
479 -- I_LF --
480 ----------
482 function I_LF (Stream : not null access RST) return Long_Float is
483 I : constant Precision := Double;
484 E_Size : Integer renames Fields (I).E_Size;
485 E_Bias : Integer renames Fields (I).E_Bias;
486 E_Last : Integer renames Fields (I).E_Last;
487 F_Mask : SE renames Fields (I).F_Mask;
488 E_Bytes : SEO renames Fields (I).E_Bytes;
489 F_Bytes : SEO renames Fields (I).F_Bytes;
490 F_Size : Integer renames Fields (I).F_Size;
492 Positive : Boolean;
493 Exponent : Long_Unsigned;
494 Fraction : Long_Long_Unsigned;
495 Result : Long_Float;
496 S : SEA (1 .. LF_L);
497 L : SEO;
499 begin
500 Ada.Streams.Read (Stream.all, S, L);
502 if L /= S'Last then
503 raise Data_Error;
504 end if;
506 -- Extract Fraction, Sign and Exponent
508 Fraction := Long_Long_Unsigned (S (LF_L + 1 - F_Bytes) and F_Mask);
509 for N in LF_L + 2 - F_Bytes .. LF_L loop
510 Fraction := Fraction * BB + Long_Long_Unsigned (S (N));
511 end loop;
513 Result := Long_Float'Scaling (Long_Float (Fraction), -F_Size);
515 if BS <= S (1) then
516 Positive := False;
517 Exponent := Long_Unsigned (S (1) - BS);
518 else
519 Positive := True;
520 Exponent := Long_Unsigned (S (1));
521 end if;
523 for N in 2 .. E_Bytes loop
524 Exponent := Exponent * BB + Long_Unsigned (S (N));
525 end loop;
527 Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
529 -- NaN or Infinities
531 if Integer (Exponent) = E_Last then
532 raise Constraint_Error;
534 elsif Exponent = 0 then
536 -- Signed zeros
538 if Fraction = 0 then
539 null;
541 -- Denormalized float
543 else
544 Result := Long_Float'Scaling (Result, 1 - E_Bias);
545 end if;
547 -- Normalized float
549 else
550 Result := Long_Float'Scaling
551 (1.0 + Result, Integer (Exponent) - E_Bias);
552 end if;
554 if not Positive then
555 Result := -Result;
556 end if;
558 return Result;
559 end I_LF;
561 ----------
562 -- I_LI --
563 ----------
565 function I_LI (Stream : not null access RST) return Long_Integer is
566 S : XDR_S_LI;
567 L : SEO;
568 U : Unsigned := 0;
569 X : Long_Unsigned := 0;
571 begin
572 Ada.Streams.Read (Stream.all, S, L);
574 if L /= S'Last then
575 raise Data_Error;
577 elsif Optimize_Integers then
578 return Long_Integer (XDR_S_LI_To_Long_Long_Integer (S));
580 else
582 -- Compute using machine unsigned
583 -- rather than long_long_unsigned
585 for N in S'Range loop
586 U := U * BB + Unsigned (S (N));
588 -- We have filled an unsigned
590 if N mod UB = 0 then
591 X := Shift_Left (X, US) + Long_Unsigned (U);
592 U := 0;
593 end if;
594 end loop;
596 -- Test sign and apply two complement notation
598 if S (1) < BL then
599 return Long_Integer (X);
600 else
601 return Long_Integer (-((Long_Unsigned'Last xor X) + 1));
602 end if;
604 end if;
605 end I_LI;
607 -----------
608 -- I_LLF --
609 -----------
611 function I_LLF (Stream : not null access RST) return Long_Long_Float is
612 I : constant Precision := Quadruple;
613 E_Size : Integer renames Fields (I).E_Size;
614 E_Bias : Integer renames Fields (I).E_Bias;
615 E_Last : Integer renames Fields (I).E_Last;
616 E_Bytes : SEO renames Fields (I).E_Bytes;
617 F_Bytes : SEO renames Fields (I).F_Bytes;
618 F_Size : Integer renames Fields (I).F_Size;
620 Positive : Boolean;
621 Exponent : Long_Unsigned;
622 Fraction_1 : Long_Long_Unsigned := 0;
623 Fraction_2 : Long_Long_Unsigned := 0;
624 Result : Long_Long_Float;
625 HF : constant Natural := F_Size / 2;
626 S : SEA (1 .. LLF_L);
627 L : SEO;
629 begin
630 Ada.Streams.Read (Stream.all, S, L);
632 if L /= S'Last then
633 raise Data_Error;
634 end if;
636 -- Extract Fraction, Sign and Exponent
638 for I in LLF_L - F_Bytes + 1 .. LLF_L - 7 loop
639 Fraction_1 := Fraction_1 * BB + Long_Long_Unsigned (S (I));
640 end loop;
642 for I in SEO (LLF_L - 6) .. SEO (LLF_L) loop
643 Fraction_2 := Fraction_2 * BB + Long_Long_Unsigned (S (I));
644 end loop;
646 Result := Long_Long_Float'Scaling (Long_Long_Float (Fraction_2), -HF);
647 Result := Long_Long_Float (Fraction_1) + Result;
648 Result := Long_Long_Float'Scaling (Result, HF - F_Size);
650 if BS <= S (1) then
651 Positive := False;
652 Exponent := Long_Unsigned (S (1) - BS);
653 else
654 Positive := True;
655 Exponent := Long_Unsigned (S (1));
656 end if;
658 for N in 2 .. E_Bytes loop
659 Exponent := Exponent * BB + Long_Unsigned (S (N));
660 end loop;
662 Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
664 -- NaN or Infinities
666 if Integer (Exponent) = E_Last then
667 raise Constraint_Error;
669 elsif Exponent = 0 then
671 -- Signed zeros
673 if Fraction_1 = 0 and then Fraction_2 = 0 then
674 null;
676 -- Denormalized float
678 else
679 Result := Long_Long_Float'Scaling (Result, 1 - E_Bias);
680 end if;
682 -- Normalized float
684 else
685 Result := Long_Long_Float'Scaling
686 (1.0 + Result, Integer (Exponent) - E_Bias);
687 end if;
689 if not Positive then
690 Result := -Result;
691 end if;
693 return Result;
694 end I_LLF;
696 -----------
697 -- I_LLI --
698 -----------
700 function I_LLI (Stream : not null access RST) return Long_Long_Integer is
701 S : XDR_S_LLI;
702 L : SEO;
703 U : Unsigned := 0;
704 X : Long_Long_Unsigned := 0;
706 begin
707 Ada.Streams.Read (Stream.all, S, L);
709 if L /= S'Last then
710 raise Data_Error;
712 elsif Optimize_Integers then
713 return XDR_S_LLI_To_Long_Long_Integer (S);
715 else
716 -- Compute using machine unsigned for computing
717 -- rather than long_long_unsigned.
719 for N in S'Range loop
720 U := U * BB + Unsigned (S (N));
722 -- We have filled an unsigned
724 if N mod UB = 0 then
725 X := Shift_Left (X, US) + Long_Long_Unsigned (U);
726 U := 0;
727 end if;
728 end loop;
730 -- Test sign and apply two complement notation
732 if S (1) < BL then
733 return Long_Long_Integer (X);
734 else
735 return Long_Long_Integer (-((Long_Long_Unsigned'Last xor X) + 1));
736 end if;
737 end if;
738 end I_LLI;
740 -----------
741 -- I_LLU --
742 -----------
744 function I_LLU (Stream : not null access RST) return Long_Long_Unsigned is
745 S : XDR_S_LLU;
746 L : SEO;
747 U : Unsigned := 0;
748 X : Long_Long_Unsigned := 0;
750 begin
751 Ada.Streams.Read (Stream.all, S, L);
753 if L /= S'Last then
754 raise Data_Error;
756 elsif Optimize_Integers then
757 return XDR_S_LLU_To_Long_Long_Unsigned (S);
759 else
760 -- Compute using machine unsigned
761 -- rather than long_long_unsigned.
763 for N in S'Range loop
764 U := U * BB + Unsigned (S (N));
766 -- We have filled an unsigned
768 if N mod UB = 0 then
769 X := Shift_Left (X, US) + Long_Long_Unsigned (U);
770 U := 0;
771 end if;
772 end loop;
774 return X;
775 end if;
776 end I_LLU;
778 ----------
779 -- I_LU --
780 ----------
782 function I_LU (Stream : not null access RST) return Long_Unsigned is
783 S : XDR_S_LU;
784 L : SEO;
785 U : Unsigned := 0;
786 X : Long_Unsigned := 0;
788 begin
789 Ada.Streams.Read (Stream.all, S, L);
791 if L /= S'Last then
792 raise Data_Error;
794 elsif Optimize_Integers then
795 return Long_Unsigned (XDR_S_LU_To_Long_Long_Unsigned (S));
797 else
798 -- Compute using machine unsigned
799 -- rather than long_unsigned.
801 for N in S'Range loop
802 U := U * BB + Unsigned (S (N));
804 -- We have filled an unsigned
806 if N mod UB = 0 then
807 X := Shift_Left (X, US) + Long_Unsigned (U);
808 U := 0;
809 end if;
810 end loop;
812 return X;
813 end if;
814 end I_LU;
816 ----------
817 -- I_SF --
818 ----------
820 function I_SF (Stream : not null access RST) return Short_Float is
821 I : constant Precision := Single;
822 E_Size : Integer renames Fields (I).E_Size;
823 E_Bias : Integer renames Fields (I).E_Bias;
824 E_Last : Integer renames Fields (I).E_Last;
825 F_Mask : SE renames Fields (I).F_Mask;
826 E_Bytes : SEO renames Fields (I).E_Bytes;
827 F_Bytes : SEO renames Fields (I).F_Bytes;
828 F_Size : Integer renames Fields (I).F_Size;
830 Exponent : Long_Unsigned;
831 Fraction : Long_Unsigned;
832 Positive : Boolean;
833 Result : Short_Float;
834 S : SEA (1 .. SF_L);
835 L : SEO;
837 begin
838 Ada.Streams.Read (Stream.all, S, L);
840 if L /= S'Last then
841 raise Data_Error;
842 end if;
844 -- Extract Fraction, Sign and Exponent
846 Fraction := Long_Unsigned (S (SF_L + 1 - F_Bytes) and F_Mask);
847 for N in SF_L + 2 - F_Bytes .. SF_L loop
848 Fraction := Fraction * BB + Long_Unsigned (S (N));
849 end loop;
850 Result := Short_Float'Scaling (Short_Float (Fraction), -F_Size);
852 if BS <= S (1) then
853 Positive := False;
854 Exponent := Long_Unsigned (S (1) - BS);
855 else
856 Positive := True;
857 Exponent := Long_Unsigned (S (1));
858 end if;
860 for N in 2 .. E_Bytes loop
861 Exponent := Exponent * BB + Long_Unsigned (S (N));
862 end loop;
863 Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
865 -- NaN or Infinities
867 if Integer (Exponent) = E_Last then
868 raise Constraint_Error;
870 elsif Exponent = 0 then
872 -- Signed zeros
874 if Fraction = 0 then
875 null;
877 -- Denormalized float
879 else
880 Result := Short_Float'Scaling (Result, 1 - E_Bias);
881 end if;
883 -- Normalized float
885 else
886 Result := Short_Float'Scaling
887 (1.0 + Result, Integer (Exponent) - E_Bias);
888 end if;
890 if not Positive then
891 Result := -Result;
892 end if;
894 return Result;
895 end I_SF;
897 ----------
898 -- I_SI --
899 ----------
901 function I_SI (Stream : not null access RST) return Short_Integer is
902 S : XDR_S_SI;
903 L : SEO;
904 U : XDR_SU := 0;
906 begin
907 Ada.Streams.Read (Stream.all, S, L);
909 if L /= S'Last then
910 raise Data_Error;
912 elsif Optimize_Integers then
913 return XDR_S_SI_To_Short_Integer (S);
915 else
916 for N in S'Range loop
917 U := U * BB + XDR_SU (S (N));
918 end loop;
920 -- Test sign and apply two complement notation
922 if S (1) < BL then
923 return Short_Integer (U);
924 else
925 return Short_Integer (-((XDR_SU'Last xor U) + 1));
926 end if;
927 end if;
928 end I_SI;
930 -----------
931 -- I_SSI --
932 -----------
934 function I_SSI (Stream : not null access RST) return Short_Short_Integer is
935 S : XDR_S_SSI;
936 L : SEO;
937 U : XDR_SSU;
939 begin
940 Ada.Streams.Read (Stream.all, S, L);
942 if L /= S'Last then
943 raise Data_Error;
945 elsif Optimize_Integers then
946 return XDR_S_SSI_To_Short_Short_Integer (S);
948 else
949 U := XDR_SSU (S (1));
951 -- Test sign and apply two complement notation
953 if S (1) < BL then
954 return Short_Short_Integer (U);
955 else
956 return Short_Short_Integer (-((XDR_SSU'Last xor U) + 1));
957 end if;
958 end if;
959 end I_SSI;
961 -----------
962 -- I_SSU --
963 -----------
965 function I_SSU (Stream : not null access RST) return Short_Short_Unsigned is
966 S : XDR_S_SSU;
967 L : SEO;
968 U : XDR_SSU := 0;
970 begin
971 Ada.Streams.Read (Stream.all, S, L);
973 if L /= S'Last then
974 raise Data_Error;
976 else
977 U := XDR_SSU (S (1));
978 return Short_Short_Unsigned (U);
979 end if;
980 end I_SSU;
982 ----------
983 -- I_SU --
984 ----------
986 function I_SU (Stream : not null access RST) return Short_Unsigned is
987 S : XDR_S_SU;
988 L : SEO;
989 U : XDR_SU := 0;
991 begin
992 Ada.Streams.Read (Stream.all, S, L);
994 if L /= S'Last then
995 raise Data_Error;
997 elsif Optimize_Integers then
998 return XDR_S_SU_To_Short_Unsigned (S);
1000 else
1001 for N in S'Range loop
1002 U := U * BB + XDR_SU (S (N));
1003 end loop;
1005 return Short_Unsigned (U);
1006 end if;
1007 end I_SU;
1009 ---------
1010 -- I_U --
1011 ---------
1013 function I_U (Stream : not null access RST) return Unsigned is
1014 S : XDR_S_U;
1015 L : SEO;
1016 U : XDR_U := 0;
1018 begin
1019 Ada.Streams.Read (Stream.all, S, L);
1021 if L /= S'Last then
1022 raise Data_Error;
1024 elsif Optimize_Integers then
1025 return XDR_S_U_To_Unsigned (S);
1027 else
1028 for N in S'Range loop
1029 U := U * BB + XDR_U (S (N));
1030 end loop;
1032 return Unsigned (U);
1033 end if;
1034 end I_U;
1036 ----------
1037 -- I_WC --
1038 ----------
1040 function I_WC (Stream : not null access RST) return Wide_Character is
1041 S : XDR_S_WC;
1042 L : SEO;
1043 U : XDR_WC := 0;
1045 begin
1046 Ada.Streams.Read (Stream.all, S, L);
1048 if L /= S'Last then
1049 raise Data_Error;
1051 else
1052 for N in S'Range loop
1053 U := U * BB + XDR_WC (S (N));
1054 end loop;
1056 -- Use Ada requirements on Wide_Character representation clause
1058 return Wide_Character'Val (U);
1059 end if;
1060 end I_WC;
1062 -----------
1063 -- I_WWC --
1064 -----------
1066 function I_WWC (Stream : not null access RST) return Wide_Wide_Character is
1067 S : XDR_S_WWC;
1068 L : SEO;
1069 U : XDR_WWC := 0;
1071 begin
1072 Ada.Streams.Read (Stream.all, S, L);
1074 if L /= S'Last then
1075 raise Data_Error;
1077 else
1078 for N in S'Range loop
1079 U := U * BB + XDR_WWC (S (N));
1080 end loop;
1082 -- Use Ada requirements on Wide_Wide_Character representation clause
1084 return Wide_Wide_Character'Val (U);
1085 end if;
1086 end I_WWC;
1088 ----------
1089 -- W_AD --
1090 ----------
1092 procedure W_AD (Stream : not null access RST; Item : Fat_Pointer) is
1093 S : XDR_S_TM;
1094 U : XDR_TM;
1096 begin
1097 U := XDR_TM (To_XDR_SA (Item.P1));
1098 for N in reverse S'Range loop
1099 S (N) := SE (U mod BB);
1100 U := U / BB;
1101 end loop;
1103 Ada.Streams.Write (Stream.all, S);
1105 U := XDR_TM (To_XDR_SA (Item.P2));
1106 for N in reverse S'Range loop
1107 S (N) := SE (U mod BB);
1108 U := U / BB;
1109 end loop;
1111 Ada.Streams.Write (Stream.all, S);
1113 if U /= 0 then
1114 raise Data_Error;
1115 end if;
1116 end W_AD;
1118 ----------
1119 -- W_AS --
1120 ----------
1122 procedure W_AS (Stream : not null access RST; Item : Thin_Pointer) is
1123 S : XDR_S_TM;
1124 U : XDR_TM := XDR_TM (To_XDR_SA (Item.P1));
1126 begin
1127 for N in reverse S'Range loop
1128 S (N) := SE (U mod BB);
1129 U := U / BB;
1130 end loop;
1132 Ada.Streams.Write (Stream.all, S);
1134 if U /= 0 then
1135 raise Data_Error;
1136 end if;
1137 end W_AS;
1139 ---------
1140 -- W_B --
1141 ---------
1143 procedure W_B (Stream : not null access RST; Item : Boolean) is
1144 begin
1145 if Item then
1146 W_SSU (Stream, 1);
1147 else
1148 W_SSU (Stream, 0);
1149 end if;
1150 end W_B;
1152 ---------
1153 -- W_C --
1154 ---------
1156 procedure W_C (Stream : not null access RST; Item : Character) is
1157 S : XDR_S_C;
1159 pragma Assert (C_L = 1);
1161 begin
1162 -- Use Ada requirements on Character representation clause
1164 S (1) := SE (Character'Pos (Item));
1166 Ada.Streams.Write (Stream.all, S);
1167 end W_C;
1169 ---------
1170 -- W_F --
1171 ---------
1173 procedure W_F (Stream : not null access RST; Item : Float) is
1174 I : constant Precision := Single;
1175 E_Size : Integer renames Fields (I).E_Size;
1176 E_Bias : Integer renames Fields (I).E_Bias;
1177 E_Bytes : SEO renames Fields (I).E_Bytes;
1178 F_Bytes : SEO renames Fields (I).F_Bytes;
1179 F_Size : Integer renames Fields (I).F_Size;
1180 F_Mask : SE renames Fields (I).F_Mask;
1182 Exponent : Long_Unsigned;
1183 Fraction : Long_Unsigned;
1184 Positive : Boolean;
1185 E : Integer;
1186 F : Float;
1187 S : SEA (1 .. F_L) := (others => 0);
1189 begin
1190 if not Item'Valid then
1191 raise Constraint_Error;
1192 end if;
1194 -- Compute Sign
1196 Positive := (0.0 <= Item);
1197 F := abs (Item);
1199 -- Signed zero
1201 if F = 0.0 then
1202 Exponent := 0;
1203 Fraction := 0;
1205 else
1206 E := Float'Exponent (F) - 1;
1208 -- Denormalized float
1210 if E <= -E_Bias then
1211 F := Float'Scaling (F, F_Size + E_Bias - 1);
1212 E := -E_Bias;
1213 else
1214 F := Float'Scaling (Float'Fraction (F), F_Size + 1);
1215 end if;
1217 -- Compute Exponent and Fraction
1219 Exponent := Long_Unsigned (E + E_Bias);
1220 Fraction := Long_Unsigned (F * 2.0) / 2;
1221 end if;
1223 -- Store Fraction
1225 for I in reverse F_L - F_Bytes + 1 .. F_L loop
1226 S (I) := SE (Fraction mod BB);
1227 Fraction := Fraction / BB;
1228 end loop;
1230 -- Remove implicit bit
1232 S (F_L - F_Bytes + 1) := S (F_L - F_Bytes + 1) and F_Mask;
1234 -- Store Exponent (not always at the beginning of a byte)
1236 Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
1237 for N in reverse 1 .. E_Bytes loop
1238 S (N) := SE (Exponent mod BB) + S (N);
1239 Exponent := Exponent / BB;
1240 end loop;
1242 -- Store Sign
1244 if not Positive then
1245 S (1) := S (1) + BS;
1246 end if;
1248 Ada.Streams.Write (Stream.all, S);
1249 end W_F;
1251 ---------
1252 -- W_I --
1253 ---------
1255 procedure W_I (Stream : not null access RST; Item : Integer) is
1256 S : XDR_S_I;
1257 U : XDR_U;
1259 begin
1260 if Optimize_Integers then
1261 S := Integer_To_XDR_S_I (Item);
1263 else
1264 -- Test sign and apply two complement notation
1266 U := (if Item < 0
1267 then XDR_U'Last xor XDR_U (-(Item + 1))
1268 else XDR_U (Item));
1270 for N in reverse S'Range loop
1271 S (N) := SE (U mod BB);
1272 U := U / BB;
1273 end loop;
1275 if U /= 0 then
1276 raise Data_Error;
1277 end if;
1278 end if;
1280 Ada.Streams.Write (Stream.all, S);
1281 end W_I;
1283 ----------
1284 -- W_LF --
1285 ----------
1287 procedure W_LF (Stream : not null access RST; Item : Long_Float) is
1288 I : constant Precision := Double;
1289 E_Size : Integer renames Fields (I).E_Size;
1290 E_Bias : Integer renames Fields (I).E_Bias;
1291 E_Bytes : SEO renames Fields (I).E_Bytes;
1292 F_Bytes : SEO renames Fields (I).F_Bytes;
1293 F_Size : Integer renames Fields (I).F_Size;
1294 F_Mask : SE renames Fields (I).F_Mask;
1296 Exponent : Long_Unsigned;
1297 Fraction : Long_Long_Unsigned;
1298 Positive : Boolean;
1299 E : Integer;
1300 F : Long_Float;
1301 S : SEA (1 .. LF_L) := (others => 0);
1303 begin
1304 if not Item'Valid then
1305 raise Constraint_Error;
1306 end if;
1308 -- Compute Sign
1310 Positive := (0.0 <= Item);
1311 F := abs (Item);
1313 -- Signed zero
1315 if F = 0.0 then
1316 Exponent := 0;
1317 Fraction := 0;
1319 else
1320 E := Long_Float'Exponent (F) - 1;
1322 -- Denormalized float
1324 if E <= -E_Bias then
1325 E := -E_Bias;
1326 F := Long_Float'Scaling (F, F_Size + E_Bias - 1);
1327 else
1328 F := Long_Float'Scaling (F, F_Size - E);
1329 end if;
1331 -- Compute Exponent and Fraction
1333 Exponent := Long_Unsigned (E + E_Bias);
1334 Fraction := Long_Long_Unsigned (F * 2.0) / 2;
1335 end if;
1337 -- Store Fraction
1339 for I in reverse LF_L - F_Bytes + 1 .. LF_L loop
1340 S (I) := SE (Fraction mod BB);
1341 Fraction := Fraction / BB;
1342 end loop;
1344 -- Remove implicit bit
1346 S (LF_L - F_Bytes + 1) := S (LF_L - F_Bytes + 1) and F_Mask;
1348 -- Store Exponent (not always at the beginning of a byte)
1350 Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
1351 for N in reverse 1 .. E_Bytes loop
1352 S (N) := SE (Exponent mod BB) + S (N);
1353 Exponent := Exponent / BB;
1354 end loop;
1356 -- Store Sign
1358 if not Positive then
1359 S (1) := S (1) + BS;
1360 end if;
1362 Ada.Streams.Write (Stream.all, S);
1363 end W_LF;
1365 ----------
1366 -- W_LI --
1367 ----------
1369 procedure W_LI (Stream : not null access RST; Item : Long_Integer) is
1370 S : XDR_S_LI;
1371 U : Unsigned;
1372 X : Long_Unsigned;
1374 begin
1375 if Optimize_Integers then
1376 S := Long_Long_Integer_To_XDR_S_LI (Long_Long_Integer (Item));
1378 else
1379 -- Test sign and apply two complement notation
1381 if Item < 0 then
1382 X := Long_Unsigned'Last xor Long_Unsigned (-(Item + 1));
1383 else
1384 X := Long_Unsigned (Item);
1385 end if;
1387 -- Compute using machine unsigned rather than long_unsigned
1389 for N in reverse S'Range loop
1391 -- We have filled an unsigned
1393 if (LU_L - N) mod UB = 0 then
1394 U := Unsigned (X and UL);
1395 X := Shift_Right (X, US);
1396 end if;
1398 S (N) := SE (U mod BB);
1399 U := U / BB;
1400 end loop;
1402 if U /= 0 then
1403 raise Data_Error;
1404 end if;
1405 end if;
1407 Ada.Streams.Write (Stream.all, S);
1408 end W_LI;
1410 -----------
1411 -- W_LLF --
1412 -----------
1414 procedure W_LLF (Stream : not null access RST; Item : Long_Long_Float) is
1415 I : constant Precision := Quadruple;
1416 E_Size : Integer renames Fields (I).E_Size;
1417 E_Bias : Integer renames Fields (I).E_Bias;
1418 E_Bytes : SEO renames Fields (I).E_Bytes;
1419 F_Bytes : SEO renames Fields (I).F_Bytes;
1420 F_Size : Integer renames Fields (I).F_Size;
1422 HFS : constant Integer := F_Size / 2;
1424 Exponent : Long_Unsigned;
1425 Fraction_1 : Long_Long_Unsigned;
1426 Fraction_2 : Long_Long_Unsigned;
1427 Positive : Boolean;
1428 E : Integer;
1429 F : Long_Long_Float := Item;
1430 S : SEA (1 .. LLF_L) := (others => 0);
1432 begin
1433 if not Item'Valid then
1434 raise Constraint_Error;
1435 end if;
1437 -- Compute Sign
1439 Positive := (0.0 <= Item);
1440 if F < 0.0 then
1441 F := -Item;
1442 end if;
1444 -- Signed zero
1446 if F = 0.0 then
1447 Exponent := 0;
1448 Fraction_1 := 0;
1449 Fraction_2 := 0;
1451 else
1452 E := Long_Long_Float'Exponent (F) - 1;
1454 -- Denormalized float
1456 if E <= -E_Bias then
1457 F := Long_Long_Float'Scaling (F, E_Bias - 1);
1458 E := -E_Bias;
1459 else
1460 F := Long_Long_Float'Scaling
1461 (Long_Long_Float'Fraction (F), 1);
1462 end if;
1464 -- Compute Exponent and Fraction
1466 Exponent := Long_Unsigned (E + E_Bias);
1467 F := Long_Long_Float'Scaling (F, F_Size - HFS);
1468 Fraction_1 := Long_Long_Unsigned (Long_Long_Float'Floor (F));
1469 F := F - Long_Long_Float (Fraction_1);
1470 F := Long_Long_Float'Scaling (F, HFS);
1471 Fraction_2 := Long_Long_Unsigned (Long_Long_Float'Floor (F));
1472 end if;
1474 -- Store Fraction_1
1476 for I in reverse LLF_L - F_Bytes + 1 .. LLF_L - 7 loop
1477 S (I) := SE (Fraction_1 mod BB);
1478 Fraction_1 := Fraction_1 / BB;
1479 end loop;
1481 -- Store Fraction_2
1483 for I in reverse LLF_L - 6 .. LLF_L loop
1484 S (SEO (I)) := SE (Fraction_2 mod BB);
1485 Fraction_2 := Fraction_2 / BB;
1486 end loop;
1488 -- Store Exponent (not always at the beginning of a byte)
1490 Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
1491 for N in reverse 1 .. E_Bytes loop
1492 S (N) := SE (Exponent mod BB) + S (N);
1493 Exponent := Exponent / BB;
1494 end loop;
1496 -- Store Sign
1498 if not Positive then
1499 S (1) := S (1) + BS;
1500 end if;
1502 Ada.Streams.Write (Stream.all, S);
1503 end W_LLF;
1505 -----------
1506 -- W_LLI --
1507 -----------
1509 procedure W_LLI
1510 (Stream : not null access RST;
1511 Item : Long_Long_Integer)
1513 S : XDR_S_LLI;
1514 U : Unsigned;
1515 X : Long_Long_Unsigned;
1517 begin
1518 if Optimize_Integers then
1519 S := Long_Long_Integer_To_XDR_S_LLI (Item);
1521 else
1522 -- Test sign and apply two complement notation
1524 if Item < 0 then
1525 X := Long_Long_Unsigned'Last xor Long_Long_Unsigned (-(Item + 1));
1526 else
1527 X := Long_Long_Unsigned (Item);
1528 end if;
1530 -- Compute using machine unsigned rather than long_long_unsigned
1532 for N in reverse S'Range loop
1534 -- We have filled an unsigned
1536 if (LLU_L - N) mod UB = 0 then
1537 U := Unsigned (X and UL);
1538 X := Shift_Right (X, US);
1539 end if;
1541 S (N) := SE (U mod BB);
1542 U := U / BB;
1543 end loop;
1545 if U /= 0 then
1546 raise Data_Error;
1547 end if;
1548 end if;
1550 Ada.Streams.Write (Stream.all, S);
1551 end W_LLI;
1553 -----------
1554 -- W_LLU --
1555 -----------
1557 procedure W_LLU
1558 (Stream : not null access RST;
1559 Item : Long_Long_Unsigned)
1561 S : XDR_S_LLU;
1562 U : Unsigned;
1563 X : Long_Long_Unsigned := Item;
1565 begin
1566 if Optimize_Integers then
1567 S := Long_Long_Unsigned_To_XDR_S_LLU (Item);
1569 else
1570 -- Compute using machine unsigned rather than long_long_unsigned
1572 for N in reverse S'Range loop
1574 -- We have filled an unsigned
1576 if (LLU_L - N) mod UB = 0 then
1577 U := Unsigned (X and UL);
1578 X := Shift_Right (X, US);
1579 end if;
1581 S (N) := SE (U mod BB);
1582 U := U / BB;
1583 end loop;
1585 if U /= 0 then
1586 raise Data_Error;
1587 end if;
1588 end if;
1590 Ada.Streams.Write (Stream.all, S);
1591 end W_LLU;
1593 ----------
1594 -- W_LU --
1595 ----------
1597 procedure W_LU (Stream : not null access RST; Item : Long_Unsigned) is
1598 S : XDR_S_LU;
1599 U : Unsigned;
1600 X : Long_Unsigned := Item;
1602 begin
1603 if Optimize_Integers then
1604 S := Long_Long_Unsigned_To_XDR_S_LU (Long_Long_Unsigned (Item));
1606 else
1607 -- Compute using machine unsigned rather than long_unsigned
1609 for N in reverse S'Range loop
1611 -- We have filled an unsigned
1613 if (LU_L - N) mod UB = 0 then
1614 U := Unsigned (X and UL);
1615 X := Shift_Right (X, US);
1616 end if;
1617 S (N) := SE (U mod BB);
1618 U := U / BB;
1619 end loop;
1621 if U /= 0 then
1622 raise Data_Error;
1623 end if;
1624 end if;
1626 Ada.Streams.Write (Stream.all, S);
1627 end W_LU;
1629 ----------
1630 -- W_SF --
1631 ----------
1633 procedure W_SF (Stream : not null access RST; Item : Short_Float) is
1634 I : constant Precision := Single;
1635 E_Size : Integer renames Fields (I).E_Size;
1636 E_Bias : Integer renames Fields (I).E_Bias;
1637 E_Bytes : SEO renames Fields (I).E_Bytes;
1638 F_Bytes : SEO renames Fields (I).F_Bytes;
1639 F_Size : Integer renames Fields (I).F_Size;
1640 F_Mask : SE renames Fields (I).F_Mask;
1642 Exponent : Long_Unsigned;
1643 Fraction : Long_Unsigned;
1644 Positive : Boolean;
1645 E : Integer;
1646 F : Short_Float;
1647 S : SEA (1 .. SF_L) := (others => 0);
1649 begin
1650 if not Item'Valid then
1651 raise Constraint_Error;
1652 end if;
1654 -- Compute Sign
1656 Positive := (0.0 <= Item);
1657 F := abs (Item);
1659 -- Signed zero
1661 if F = 0.0 then
1662 Exponent := 0;
1663 Fraction := 0;
1665 else
1666 E := Short_Float'Exponent (F) - 1;
1668 -- Denormalized float
1670 if E <= -E_Bias then
1671 E := -E_Bias;
1672 F := Short_Float'Scaling (F, F_Size + E_Bias - 1);
1673 else
1674 F := Short_Float'Scaling (F, F_Size - E);
1675 end if;
1677 -- Compute Exponent and Fraction
1679 Exponent := Long_Unsigned (E + E_Bias);
1680 Fraction := Long_Unsigned (F * 2.0) / 2;
1681 end if;
1683 -- Store Fraction
1685 for I in reverse SF_L - F_Bytes + 1 .. SF_L loop
1686 S (I) := SE (Fraction mod BB);
1687 Fraction := Fraction / BB;
1688 end loop;
1690 -- Remove implicit bit
1692 S (SF_L - F_Bytes + 1) := S (SF_L - F_Bytes + 1) and F_Mask;
1694 -- Store Exponent (not always at the beginning of a byte)
1696 Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
1697 for N in reverse 1 .. E_Bytes loop
1698 S (N) := SE (Exponent mod BB) + S (N);
1699 Exponent := Exponent / BB;
1700 end loop;
1702 -- Store Sign
1704 if not Positive then
1705 S (1) := S (1) + BS;
1706 end if;
1708 Ada.Streams.Write (Stream.all, S);
1709 end W_SF;
1711 ----------
1712 -- W_SI --
1713 ----------
1715 procedure W_SI (Stream : not null access RST; Item : Short_Integer) is
1716 S : XDR_S_SI;
1717 U : XDR_SU;
1719 begin
1720 if Optimize_Integers then
1721 S := Short_Integer_To_XDR_S_SI (Item);
1723 else
1724 -- Test sign and apply two complement's notation
1726 U := (if Item < 0
1727 then XDR_SU'Last xor XDR_SU (-(Item + 1))
1728 else XDR_SU (Item));
1730 for N in reverse S'Range loop
1731 S (N) := SE (U mod BB);
1732 U := U / BB;
1733 end loop;
1735 if U /= 0 then
1736 raise Data_Error;
1737 end if;
1738 end if;
1740 Ada.Streams.Write (Stream.all, S);
1741 end W_SI;
1743 -----------
1744 -- W_SSI --
1745 -----------
1747 procedure W_SSI
1748 (Stream : not null access RST;
1749 Item : Short_Short_Integer)
1751 S : XDR_S_SSI;
1752 U : XDR_SSU;
1754 begin
1755 if Optimize_Integers then
1756 S := Short_Short_Integer_To_XDR_S_SSI (Item);
1758 else
1759 -- Test sign and apply two complement's notation
1761 U := (if Item < 0
1762 then XDR_SSU'Last xor XDR_SSU (-(Item + 1))
1763 else XDR_SSU (Item));
1765 S (1) := SE (U);
1766 end if;
1768 Ada.Streams.Write (Stream.all, S);
1769 end W_SSI;
1771 -----------
1772 -- W_SSU --
1773 -----------
1775 procedure W_SSU
1776 (Stream : not null access RST;
1777 Item : Short_Short_Unsigned)
1779 U : constant XDR_SSU := XDR_SSU (Item);
1780 S : XDR_S_SSU;
1782 begin
1783 S (1) := SE (U);
1784 Ada.Streams.Write (Stream.all, S);
1785 end W_SSU;
1787 ----------
1788 -- W_SU --
1789 ----------
1791 procedure W_SU (Stream : not null access RST; Item : Short_Unsigned) is
1792 S : XDR_S_SU;
1793 U : XDR_SU := XDR_SU (Item);
1795 begin
1796 if Optimize_Integers then
1797 S := Short_Unsigned_To_XDR_S_SU (Item);
1799 else
1800 for N in reverse S'Range loop
1801 S (N) := SE (U mod BB);
1802 U := U / BB;
1803 end loop;
1805 if U /= 0 then
1806 raise Data_Error;
1807 end if;
1808 end if;
1810 Ada.Streams.Write (Stream.all, S);
1811 end W_SU;
1813 ---------
1814 -- W_U --
1815 ---------
1817 procedure W_U (Stream : not null access RST; Item : Unsigned) is
1818 S : XDR_S_U;
1819 U : XDR_U := XDR_U (Item);
1821 begin
1822 if Optimize_Integers then
1823 S := Unsigned_To_XDR_S_U (Item);
1825 else
1826 for N in reverse S'Range loop
1827 S (N) := SE (U mod BB);
1828 U := U / BB;
1829 end loop;
1831 if U /= 0 then
1832 raise Data_Error;
1833 end if;
1834 end if;
1836 Ada.Streams.Write (Stream.all, S);
1837 end W_U;
1839 ----------
1840 -- W_WC --
1841 ----------
1843 procedure W_WC (Stream : not null access RST; Item : Wide_Character) is
1844 S : XDR_S_WC;
1845 U : XDR_WC;
1847 begin
1848 -- Use Ada requirements on Wide_Character representation clause
1850 U := XDR_WC (Wide_Character'Pos (Item));
1852 for N in reverse S'Range loop
1853 S (N) := SE (U mod BB);
1854 U := U / BB;
1855 end loop;
1857 Ada.Streams.Write (Stream.all, S);
1859 if U /= 0 then
1860 raise Data_Error;
1861 end if;
1862 end W_WC;
1864 -----------
1865 -- W_WWC --
1866 -----------
1868 procedure W_WWC
1869 (Stream : not null access RST; Item : Wide_Wide_Character)
1871 S : XDR_S_WWC;
1872 U : XDR_WWC;
1874 begin
1875 -- Use Ada requirements on Wide_Wide_Character representation clause
1877 U := XDR_WWC (Wide_Wide_Character'Pos (Item));
1879 for N in reverse S'Range loop
1880 S (N) := SE (U mod BB);
1881 U := U / BB;
1882 end loop;
1884 Ada.Streams.Write (Stream.all, S);
1886 if U /= 0 then
1887 raise Data_Error;
1888 end if;
1889 end W_WWC;
1891 end System.Stream_Attributes;