1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- ADA.CONTAINERS.INDEFINITE_MULTIWAY_TREES --
9 -- Copyright (C) 2004-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada
.Unchecked_Deallocation
;
32 with System
; use type System
.Address
;
34 package body Ada
.Containers
.Indefinite_Multiway_Trees
is
40 type Root_Iterator
is abstract new Limited_Controlled
and
41 Tree_Iterator_Interfaces
.Forward_Iterator
with
43 Container
: Tree_Access
;
44 Subtree
: Tree_Node_Access
;
47 overriding
procedure Finalize
(Object
: in out Root_Iterator
);
49 -----------------------
50 -- Subtree_Iterator --
51 -----------------------
53 type Subtree_Iterator
is new Root_Iterator
with null record;
55 overriding
function First
(Object
: Subtree_Iterator
) return Cursor
;
57 overriding
function Next
58 (Object
: Subtree_Iterator
;
59 Position
: Cursor
) return Cursor
;
65 type Child_Iterator
is new Root_Iterator
and
66 Tree_Iterator_Interfaces
.Reversible_Iterator
with null record;
68 overriding
function First
(Object
: Child_Iterator
) return Cursor
;
70 overriding
function Next
71 (Object
: Child_Iterator
;
72 Position
: Cursor
) return Cursor
;
74 overriding
function Last
(Object
: Child_Iterator
) return Cursor
;
76 overriding
function Previous
77 (Object
: Child_Iterator
;
78 Position
: Cursor
) return Cursor
;
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 function Root_Node
(Container
: Tree
) return Tree_Node_Access
;
86 procedure Free_Element
is
87 new Ada
.Unchecked_Deallocation
(Element_Type
, Element_Access
);
89 procedure Deallocate_Node
(X
: in out Tree_Node_Access
);
91 procedure Deallocate_Children
92 (Subtree
: Tree_Node_Access
;
93 Count
: in out Count_Type
);
95 procedure Deallocate_Subtree
96 (Subtree
: in out Tree_Node_Access
;
97 Count
: in out Count_Type
);
99 function Equal_Children
100 (Left_Subtree
, Right_Subtree
: Tree_Node_Access
) return Boolean;
102 function Equal_Subtree
103 (Left_Subtree
, Right_Subtree
: Tree_Node_Access
) return Boolean;
105 procedure Iterate_Children
106 (Container
: Tree_Access
;
107 Subtree
: Tree_Node_Access
;
108 Process
: not null access procedure (Position
: Cursor
));
110 procedure Iterate_Subtree
111 (Container
: Tree_Access
;
112 Subtree
: Tree_Node_Access
;
113 Process
: not null access procedure (Position
: Cursor
));
115 procedure Copy_Children
116 (Source
: Children_Type
;
117 Parent
: Tree_Node_Access
;
118 Count
: in out Count_Type
);
120 procedure Copy_Subtree
121 (Source
: Tree_Node_Access
;
122 Parent
: Tree_Node_Access
;
123 Target
: out Tree_Node_Access
;
124 Count
: in out Count_Type
);
126 function Find_In_Children
127 (Subtree
: Tree_Node_Access
;
128 Item
: Element_Type
) return Tree_Node_Access
;
130 function Find_In_Subtree
131 (Subtree
: Tree_Node_Access
;
132 Item
: Element_Type
) return Tree_Node_Access
;
134 function Child_Count
(Children
: Children_Type
) return Count_Type
;
136 function Subtree_Node_Count
137 (Subtree
: Tree_Node_Access
) return Count_Type
;
139 function Is_Reachable
(From
, To
: Tree_Node_Access
) return Boolean;
141 procedure Remove_Subtree
(Subtree
: Tree_Node_Access
);
143 procedure Insert_Subtree_Node
144 (Subtree
: Tree_Node_Access
;
145 Parent
: Tree_Node_Access
;
146 Before
: Tree_Node_Access
);
148 procedure Insert_Subtree_List
149 (First
: Tree_Node_Access
;
150 Last
: Tree_Node_Access
;
151 Parent
: Tree_Node_Access
;
152 Before
: Tree_Node_Access
);
154 procedure Splice_Children
155 (Target_Parent
: Tree_Node_Access
;
156 Before
: Tree_Node_Access
;
157 Source_Parent
: Tree_Node_Access
);
163 function "=" (Left
, Right
: Tree
) return Boolean is
165 if Left
'Address = Right
'Address then
169 return Equal_Children
(Root_Node
(Left
), Root_Node
(Right
));
176 procedure Adjust
(Container
: in out Tree
) is
177 Source
: constant Children_Type
:= Container
.Root
.Children
;
178 Source_Count
: constant Count_Type
:= Container
.Count
;
179 Target_Count
: Count_Type
;
182 -- We first restore the target container to its default-initialized
183 -- state, before we attempt any allocation, to ensure that invariants
184 -- are preserved in the event that the allocation fails.
186 Container
.Root
.Children
:= Children_Type
'(others => null);
189 Container.Count := 0;
191 -- Copy_Children returns a count of the number of nodes that it
192 -- allocates, but it works by incrementing the value that is passed in.
193 -- We must therefore initialize the count value before calling
198 -- Now we attempt the allocation of subtrees. The invariants are
199 -- satisfied even if the allocation fails.
201 Copy_Children (Source, Root_Node (Container), Target_Count);
202 pragma Assert (Target_Count = Source_Count);
204 Container.Count := Source_Count;
207 procedure Adjust (Control : in out Reference_Control_Type) is
209 if Control.Container /= null then
211 C : Tree renames Control.Container.all;
212 B : Natural renames C.Busy;
213 L : Natural renames C.Lock;
225 function Ancestor_Find
227 Item : Element_Type) return Cursor
229 R, N : Tree_Node_Access;
232 if Position = No_Element then
233 raise Constraint_Error with "Position cursor has no element";
236 -- Commented-out pending ARG ruling. ???
238 -- if Position.Container /= Container'Unrestricted_Access then
239 -- raise Program_Error with "Position cursor not in container";
242 -- AI-0136 says to raise PE if Position equals the root node. This does
243 -- not seem correct, as this value is just the limiting condition of the
244 -- search. For now we omit this check pending a ruling from the ARG.???
246 -- if Is_Root (Position) then
247 -- raise Program_Error with "Position cursor designates root";
250 R := Root_Node (Position.Container.all);
253 if N.Element.all = Item then
254 return Cursor'(Position
.Container
, N
);
267 procedure Append_Child
268 (Container
: in out Tree
;
270 New_Item
: Element_Type
;
271 Count
: Count_Type
:= 1)
273 First
, Last
: Tree_Node_Access
;
274 Element
: Element_Access
;
277 if Parent
= No_Element
then
278 raise Constraint_Error
with "Parent cursor has no element";
281 if Parent
.Container
/= Container
'Unrestricted_Access then
282 raise Program_Error
with "Parent cursor not in container";
289 if Container
.Busy
> 0 then
291 with "attempt to tamper with cursors (tree is busy)";
295 -- The element allocator may need an accessibility check in the case
296 -- the actual type is class-wide or has access discriminants (see
297 -- RM 4.8(10.1) and AI12-0035). We don't unsuppress the check on the
298 -- allocator in the loop below, because the one in this block would
299 -- have failed already.
301 pragma Unsuppress
(Accessibility_Check
);
304 Element
:= new Element_Type
'(New_Item);
307 First := new Tree_Node_Type'(Parent
=> Parent
.Node
,
313 for J
in Count_Type
'(2) .. Count loop
315 -- Reclaim other nodes if Storage_Error. ???
317 Element := new Element_Type'(New_Item
);
318 Last
.Next
:= new Tree_Node_Type
'(Parent => Parent.Node,
329 Parent => Parent.Node,
330 Before => null); -- null means "insert at end of list"
332 -- In order for operation Node_Count to complete in O(1) time, we cache
333 -- the count value. Here we increment the total count by the number of
334 -- nodes we just inserted.
336 Container.Count := Container.Count + Count;
343 procedure Assign (Target : in out Tree; Source : Tree) is
344 Source_Count : constant Count_Type := Source.Count;
345 Target_Count : Count_Type;
348 if Target'Address = Source'Address then
352 Target.Clear; -- checks busy bit
354 -- Copy_Children returns the number of nodes that it allocates, but it
355 -- does this by incrementing the count value passed in, so we must
356 -- initialize the count before calling Copy_Children.
360 -- Note that Copy_Children inserts the newly-allocated children into
361 -- their parent list only after the allocation of all the children has
362 -- succeeded. This preserves invariants even if the allocation fails.
364 Copy_Children (Source.Root.Children, Root_Node (Target), Target_Count);
365 pragma Assert (Target_Count = Source_Count);
367 Target.Count := Source_Count;
374 function Child_Count (Parent : Cursor) return Count_Type is
376 if Parent = No_Element then
379 return Child_Count (Parent.Node.Children);
383 function Child_Count (Children : Children_Type) return Count_Type is
385 Node : Tree_Node_Access;
389 Node := Children.First;
390 while Node /= null loop
391 Result := Result + 1;
402 function Child_Depth (Parent, Child : Cursor) return Count_Type is
404 N : Tree_Node_Access;
407 if Parent = No_Element then
408 raise Constraint_Error with "Parent cursor has no element";
411 if Child = No_Element then
412 raise Constraint_Error with "Child cursor has no element";
415 if Parent.Container /= Child.Container then
416 raise Program_Error with "Parent and Child in different containers";
421 while N /= Parent.Node loop
422 Result := Result + 1;
426 raise Program_Error with "Parent is not ancestor of Child";
437 procedure Clear (Container : in out Tree) is
438 Container_Count : Count_Type;
439 Children_Count : Count_Type;
442 if Container.Busy > 0 then
444 with "attempt to tamper with cursors (tree is busy)";
447 -- We first set the container count to 0, in order to preserve
448 -- invariants in case the deallocation fails. (This works because
449 -- Deallocate_Children immediately removes the children from their
450 -- parent, and then does the actual deallocation.)
452 Container_Count := Container.Count;
453 Container.Count := 0;
455 -- Deallocate_Children returns the number of nodes that it deallocates,
456 -- but it does this by incrementing the count value that is passed in,
457 -- so we must first initialize the count return value before calling it.
461 -- See comment above. Deallocate_Children immediately removes the
462 -- children list from their parent node (here, the root of the tree),
463 -- and only after that does it attempt the actual deallocation. So even
464 -- if the deallocation fails, the representation invariants
466 Deallocate_Children (Root_Node (Container), Children_Count);
467 pragma Assert (Children_Count = Container_Count);
470 ------------------------
471 -- Constant_Reference --
472 ------------------------
474 function Constant_Reference
475 (Container : aliased Tree;
476 Position : Cursor) return Constant_Reference_Type
479 if Position.Container = null then
480 raise Constraint_Error with
481 "Position cursor has no element";
484 if Position.Container /= Container'Unrestricted_Access then
485 raise Program_Error with
486 "Position cursor designates wrong container";
489 if Position.Node = Root_Node (Container) then
490 raise Program_Error with "Position cursor designates root";
493 if Position.Node.Element = null then
494 raise Program_Error with "Node has no element";
497 -- Implement Vet for multiway tree???
498 -- pragma Assert (Vet (Position),
499 -- "Position cursor in Constant_Reference is bad");
502 C : Tree renames Position.Container.all;
503 B : Natural renames C.Busy;
504 L : Natural renames C.Lock;
506 return R : constant Constant_Reference_Type :=
507 (Element => Position.Node.Element.all'Access,
509 (Controlled with Container'Unrestricted_Access))
515 end Constant_Reference;
523 Item : Element_Type) return Boolean
526 return Find (Container, Item) /= No_Element;
533 function Copy (Source : Tree) return Tree is
535 return Target : Tree do
537 (Source => Source.Root.Children,
538 Parent => Root_Node (Target),
539 Count => Target.Count);
541 pragma Assert (Target.Count = Source.Count);
549 procedure Copy_Children
550 (Source : Children_Type;
551 Parent : Tree_Node_Access;
552 Count : in out Count_Type)
554 pragma Assert (Parent /= null);
555 pragma Assert (Parent.Children.First = null);
556 pragma Assert (Parent.Children.Last = null);
559 C : Tree_Node_Access;
562 -- We special-case the first allocation, in order to establish the
563 -- representation invariants for type Children_Type.
579 -- The representation invariants for the Children_Type list have been
580 -- established, so we can now copy the remaining children of Source.
587 Target => CC.Last.Next,
590 CC.Last.Next.Prev := CC.Last;
591 CC.Last := CC.Last.Next;
596 -- We add the newly-allocated children to their parent list only after
597 -- the allocation has succeeded, in order to preserve invariants of the
600 Parent.Children := CC;
607 procedure Copy_Subtree
608 (Target : in out Tree;
613 Target_Subtree : Tree_Node_Access;
614 Target_Count : Count_Type;
617 if Parent = No_Element then
618 raise Constraint_Error with "Parent cursor has no element";
621 if Parent.Container /= Target'Unrestricted_Access then
622 raise Program_Error with "Parent cursor not in container";
625 if Before /= No_Element then
626 if Before.Container /= Target'Unrestricted_Access then
627 raise Program_Error with "Before cursor not in container";
630 if Before.Node.Parent /= Parent.Node then
631 raise Constraint_Error with "Before cursor not child of Parent";
635 if Source = No_Element then
639 if Is_Root (Source) then
640 raise Constraint_Error with "Source cursor designates root";
643 -- Copy_Subtree returns a count of the number of nodes that it
644 -- allocates, but it works by incrementing the value that is passed in.
645 -- We must therefore initialize the count value before calling
651 (Source => Source.Node,
652 Parent => Parent.Node,
653 Target => Target_Subtree,
654 Count => Target_Count);
656 pragma Assert (Target_Subtree /= null);
657 pragma Assert (Target_Subtree.Parent = Parent.Node);
658 pragma Assert (Target_Count >= 1);
661 (Subtree => Target_Subtree,
662 Parent => Parent.Node,
663 Before => Before.Node);
665 -- In order for operation Node_Count to complete in O(1) time, we cache
666 -- the count value. Here we increment the total count by the number of
667 -- nodes we just inserted.
669 Target.Count := Target.Count + Target_Count;
672 procedure Copy_Subtree
673 (Source : Tree_Node_Access;
674 Parent : Tree_Node_Access;
675 Target : out Tree_Node_Access;
676 Count : in out Count_Type)
678 E : constant Element_Access := new Element_Type'(Source
.Element
.all);
681 Target
:= new Tree_Node_Type
'(Element => E,
688 (Source => Source.Children,
693 -------------------------
694 -- Deallocate_Children --
695 -------------------------
697 procedure Deallocate_Children
698 (Subtree : Tree_Node_Access;
699 Count : in out Count_Type)
701 pragma Assert (Subtree /= null);
703 CC : Children_Type := Subtree.Children;
704 C : Tree_Node_Access;
707 -- We immediately remove the children from their parent, in order to
708 -- preserve invariants in case the deallocation fails.
710 Subtree.Children := Children_Type'(others => null);
712 while CC
.First
/= null loop
716 Deallocate_Subtree
(C
, Count
);
718 end Deallocate_Children
;
720 ---------------------
721 -- Deallocate_Node --
722 ---------------------
724 procedure Deallocate_Node
(X
: in out Tree_Node_Access
) is
725 procedure Free_Node
is
726 new Ada
.Unchecked_Deallocation
(Tree_Node_Type
, Tree_Node_Access
);
728 -- Start of processing for Deallocate_Node
732 Free_Element
(X
.Element
);
737 ------------------------
738 -- Deallocate_Subtree --
739 ------------------------
741 procedure Deallocate_Subtree
742 (Subtree
: in out Tree_Node_Access
;
743 Count
: in out Count_Type
)
746 Deallocate_Children
(Subtree
, Count
);
747 Deallocate_Node
(Subtree
);
749 end Deallocate_Subtree
;
751 ---------------------
752 -- Delete_Children --
753 ---------------------
755 procedure Delete_Children
756 (Container
: in out Tree
;
762 if Parent
= No_Element
then
763 raise Constraint_Error
with "Parent cursor has no element";
766 if Parent
.Container
/= Container
'Unrestricted_Access then
767 raise Program_Error
with "Parent cursor not in container";
770 if Container
.Busy
> 0 then
772 with "attempt to tamper with cursors (tree is busy)";
775 -- Deallocate_Children returns a count of the number of nodes
776 -- that it deallocates, but it works by incrementing the
777 -- value that is passed in. We must therefore initialize
778 -- the count value before calling Deallocate_Children.
782 Deallocate_Children
(Parent
.Node
, Count
);
783 pragma Assert
(Count
<= Container
.Count
);
785 Container
.Count
:= Container
.Count
- Count
;
792 procedure Delete_Leaf
793 (Container
: in out Tree
;
794 Position
: in out Cursor
)
796 X
: Tree_Node_Access
;
799 if Position
= No_Element
then
800 raise Constraint_Error
with "Position cursor has no element";
803 if Position
.Container
/= Container
'Unrestricted_Access then
804 raise Program_Error
with "Position cursor not in container";
807 if Is_Root
(Position
) then
808 raise Program_Error
with "Position cursor designates root";
811 if not Is_Leaf
(Position
) then
812 raise Constraint_Error
with "Position cursor does not designate leaf";
815 if Container
.Busy
> 0 then
817 with "attempt to tamper with cursors (tree is busy)";
821 Position
:= No_Element
;
823 -- Restore represention invariants before attempting the actual
827 Container
.Count
:= Container
.Count
- 1;
829 -- It is now safe to attempt the deallocation. This leaf node has been
830 -- disassociated from the tree, so even if the deallocation fails,
831 -- representation invariants will remain satisfied.
840 procedure Delete_Subtree
841 (Container
: in out Tree
;
842 Position
: in out Cursor
)
844 X
: Tree_Node_Access
;
848 if Position
= No_Element
then
849 raise Constraint_Error
with "Position cursor has no element";
852 if Position
.Container
/= Container
'Unrestricted_Access then
853 raise Program_Error
with "Position cursor not in container";
856 if Is_Root
(Position
) then
857 raise Program_Error
with "Position cursor designates root";
860 if Container
.Busy
> 0 then
862 with "attempt to tamper with cursors (tree is busy)";
866 Position
:= No_Element
;
868 -- Here is one case where a deallocation failure can result in the
869 -- violation of a representation invariant. We disassociate the subtree
870 -- from the tree now, but we only decrement the total node count after
871 -- we attempt the deallocation. However, if the deallocation fails, the
872 -- total node count will not get decremented.
874 -- One way around this dilemma is to count the nodes in the subtree
875 -- before attempt to delete the subtree, but that is an O(n) operation,
876 -- so it does not seem worth it.
878 -- Perhaps this is much ado about nothing, since the only way
879 -- deallocation can fail is if Controlled Finalization fails: this
880 -- propagates Program_Error so all bets are off anyway. ???
884 -- Deallocate_Subtree returns a count of the number of nodes that it
885 -- deallocates, but it works by incrementing the value that is passed
886 -- in. We must therefore initialize the count value before calling
887 -- Deallocate_Subtree.
891 Deallocate_Subtree
(X
, Count
);
892 pragma Assert
(Count
<= Container
.Count
);
894 -- See comments above. We would prefer to do this sooner, but there's no
895 -- way to satisfy that goal without an potentially severe execution
898 Container
.Count
:= Container
.Count
- Count
;
905 function Depth
(Position
: Cursor
) return Count_Type
is
907 N
: Tree_Node_Access
;
914 Result
:= Result
+ 1;
924 function Element
(Position
: Cursor
) return Element_Type
is
926 if Position
.Container
= null then
927 raise Constraint_Error
with "Position cursor has no element";
930 if Position
.Node
= Root_Node
(Position
.Container
.all) then
931 raise Program_Error
with "Position cursor designates root";
934 return Position
.Node
.Element
.all;
941 function Equal_Children
942 (Left_Subtree
: Tree_Node_Access
;
943 Right_Subtree
: Tree_Node_Access
) return Boolean
945 Left_Children
: Children_Type
renames Left_Subtree
.Children
;
946 Right_Children
: Children_Type
renames Right_Subtree
.Children
;
948 L
, R
: Tree_Node_Access
;
951 if Child_Count
(Left_Children
) /= Child_Count
(Right_Children
) then
955 L
:= Left_Children
.First
;
956 R
:= Right_Children
.First
;
958 if not Equal_Subtree
(L
, R
) then
973 function Equal_Subtree
974 (Left_Position
: Cursor
;
975 Right_Position
: Cursor
) return Boolean
978 if Left_Position
= No_Element
then
979 raise Constraint_Error
with "Left cursor has no element";
982 if Right_Position
= No_Element
then
983 raise Constraint_Error
with "Right cursor has no element";
986 if Left_Position
= Right_Position
then
990 if Is_Root
(Left_Position
) then
991 if not Is_Root
(Right_Position
) then
995 return Equal_Children
(Left_Position
.Node
, Right_Position
.Node
);
998 if Is_Root
(Right_Position
) then
1002 return Equal_Subtree
(Left_Position
.Node
, Right_Position
.Node
);
1005 function Equal_Subtree
1006 (Left_Subtree
: Tree_Node_Access
;
1007 Right_Subtree
: Tree_Node_Access
) return Boolean
1010 if Left_Subtree
.Element
.all /= Right_Subtree
.Element
.all then
1014 return Equal_Children
(Left_Subtree
, Right_Subtree
);
1021 procedure Finalize
(Object
: in out Root_Iterator
) is
1022 B
: Natural renames Object
.Container
.Busy
;
1027 procedure Finalize
(Control
: in out Reference_Control_Type
) is
1029 if Control
.Container
/= null then
1031 C
: Tree
renames Control
.Container
.all;
1032 B
: Natural renames C
.Busy
;
1033 L
: Natural renames C
.Lock
;
1039 Control
.Container
:= null;
1049 Item
: Element_Type
) return Cursor
1051 N
: constant Tree_Node_Access
:=
1052 Find_In_Children
(Root_Node
(Container
), Item
);
1059 return Cursor
'(Container'Unrestricted_Access, N);
1066 overriding function First (Object : Subtree_Iterator) return Cursor is
1068 if Object.Subtree = Root_Node (Object.Container.all) then
1069 return First_Child (Root (Object.Container.all));
1071 return Cursor'(Object
.Container
, Object
.Subtree
);
1075 overriding
function First
(Object
: Child_Iterator
) return Cursor
is
1077 return First_Child
(Cursor
'(Object.Container, Object.Subtree));
1084 function First_Child (Parent : Cursor) return Cursor is
1085 Node : Tree_Node_Access;
1088 if Parent = No_Element then
1089 raise Constraint_Error with "Parent cursor has no element";
1092 Node := Parent.Node.Children.First;
1098 return Cursor'(Parent
.Container
, Node
);
1101 -------------------------
1102 -- First_Child_Element --
1103 -------------------------
1105 function First_Child_Element
(Parent
: Cursor
) return Element_Type
is
1107 return Element
(First_Child
(Parent
));
1108 end First_Child_Element
;
1110 ----------------------
1111 -- Find_In_Children --
1112 ----------------------
1114 function Find_In_Children
1115 (Subtree
: Tree_Node_Access
;
1116 Item
: Element_Type
) return Tree_Node_Access
1118 N
, Result
: Tree_Node_Access
;
1121 N
:= Subtree
.Children
.First
;
1122 while N
/= null loop
1123 Result
:= Find_In_Subtree
(N
, Item
);
1125 if Result
/= null then
1133 end Find_In_Children
;
1135 ---------------------
1136 -- Find_In_Subtree --
1137 ---------------------
1139 function Find_In_Subtree
1141 Item
: Element_Type
) return Cursor
1143 Result
: Tree_Node_Access
;
1146 if Position
= No_Element
then
1147 raise Constraint_Error
with "Position cursor has no element";
1150 -- Commented-out pending ruling from ARG. ???
1152 -- if Position.Container /= Container'Unrestricted_Access then
1153 -- raise Program_Error with "Position cursor not in container";
1156 if Is_Root
(Position
) then
1157 Result
:= Find_In_Children
(Position
.Node
, Item
);
1160 Result
:= Find_In_Subtree
(Position
.Node
, Item
);
1163 if Result
= null then
1167 return Cursor
'(Position.Container, Result);
1168 end Find_In_Subtree;
1170 function Find_In_Subtree
1171 (Subtree : Tree_Node_Access;
1172 Item : Element_Type) return Tree_Node_Access
1175 if Subtree.Element.all = Item then
1179 return Find_In_Children (Subtree, Item);
1180 end Find_In_Subtree;
1186 function Has_Element (Position : Cursor) return Boolean is
1188 if Position = No_Element then
1192 return Position.Node.Parent /= null;
1199 procedure Insert_Child
1200 (Container : in out Tree;
1203 New_Item : Element_Type;
1204 Count : Count_Type := 1)
1207 pragma Unreferenced (Position);
1210 Insert_Child (Container, Parent, Before, New_Item, Position, Count);
1213 procedure Insert_Child
1214 (Container : in out Tree;
1217 New_Item : Element_Type;
1218 Position : out Cursor;
1219 Count : Count_Type := 1)
1221 Last : Tree_Node_Access;
1222 Element : Element_Access;
1225 if Parent = No_Element then
1226 raise Constraint_Error with "Parent cursor has no element";
1229 if Parent.Container /= Container'Unrestricted_Access then
1230 raise Program_Error with "Parent cursor not in container";
1233 if Before /= No_Element then
1234 if Before.Container /= Container'Unrestricted_Access then
1235 raise Program_Error with "Before cursor not in container";
1238 if Before.Node.Parent /= Parent.Node then
1239 raise Constraint_Error with "Parent cursor not parent of Before";
1244 Position := No_Element; -- Need ruling from ARG ???
1248 if Container.Busy > 0 then
1250 with "attempt to tamper with cursors (tree is busy)";
1253 Position.Container := Parent.Container;
1256 -- The element allocator may need an accessibility check in the case
1257 -- the actual type is class-wide or has access discriminants (see
1258 -- RM 4.8(10.1) and AI12-0035). We don't unsuppress the check on the
1259 -- allocator in the loop below, because the one in this block would
1260 -- have failed already.
1262 pragma Unsuppress (Accessibility_Check);
1265 Element := new Element_Type'(New_Item
);
1268 Position
.Node
:= new Tree_Node_Type
'(Parent => Parent.Node,
1272 Last := Position.Node;
1274 for J in Count_Type'(2) .. Count
loop
1275 -- Reclaim other nodes if Storage_Error. ???
1277 Element
:= new Element_Type
'(New_Item);
1278 Last.Next := new Tree_Node_Type'(Parent
=> Parent
.Node
,
1287 (First
=> Position
.Node
,
1289 Parent
=> Parent
.Node
,
1290 Before
=> Before
.Node
);
1292 -- In order for operation Node_Count to complete in O(1) time, we cache
1293 -- the count value. Here we increment the total count by the number of
1294 -- nodes we just inserted.
1296 Container
.Count
:= Container
.Count
+ Count
;
1299 -------------------------
1300 -- Insert_Subtree_List --
1301 -------------------------
1303 procedure Insert_Subtree_List
1304 (First
: Tree_Node_Access
;
1305 Last
: Tree_Node_Access
;
1306 Parent
: Tree_Node_Access
;
1307 Before
: Tree_Node_Access
)
1309 pragma Assert
(Parent
/= null);
1310 C
: Children_Type
renames Parent
.Children
;
1313 -- This is a simple utility operation to insert a list of nodes (from
1314 -- First..Last) as children of Parent. The Before node specifies where
1315 -- the new children should be inserted relative to the existing
1318 if First
= null then
1319 pragma Assert
(Last
= null);
1323 pragma Assert
(Last
/= null);
1324 pragma Assert
(Before
= null or else Before
.Parent
= Parent
);
1326 if C
.First
= null then
1328 C
.First
.Prev
:= null;
1330 C
.Last
.Next
:= null;
1332 elsif Before
= null then -- means "insert after existing nodes"
1333 C
.Last
.Next
:= First
;
1334 First
.Prev
:= C
.Last
;
1336 C
.Last
.Next
:= null;
1338 elsif Before
= C
.First
then
1339 Last
.Next
:= C
.First
;
1340 C
.First
.Prev
:= Last
;
1342 C
.First
.Prev
:= null;
1345 Before
.Prev
.Next
:= First
;
1346 First
.Prev
:= Before
.Prev
;
1347 Last
.Next
:= Before
;
1348 Before
.Prev
:= Last
;
1350 end Insert_Subtree_List
;
1352 -------------------------
1353 -- Insert_Subtree_Node --
1354 -------------------------
1356 procedure Insert_Subtree_Node
1357 (Subtree
: Tree_Node_Access
;
1358 Parent
: Tree_Node_Access
;
1359 Before
: Tree_Node_Access
)
1362 -- This is a simple wrapper operation to insert a single child into the
1363 -- Parent's children list.
1370 end Insert_Subtree_Node
;
1376 function Is_Empty
(Container
: Tree
) return Boolean is
1378 return Container
.Root
.Children
.First
= null;
1385 function Is_Leaf
(Position
: Cursor
) return Boolean is
1387 if Position
= No_Element
then
1391 return Position
.Node
.Children
.First
= null;
1398 function Is_Reachable
(From
, To
: Tree_Node_Access
) return Boolean is
1399 pragma Assert
(From
/= null);
1400 pragma Assert
(To
/= null);
1402 N
: Tree_Node_Access
;
1406 while N
/= null loop
1421 function Is_Root
(Position
: Cursor
) return Boolean is
1423 if Position
.Container
= null then
1427 return Position
= Root
(Position
.Container
.all);
1436 Process
: not null access procedure (Position
: Cursor
))
1438 B
: Natural renames Container
'Unrestricted_Access.all.Busy
;
1444 (Container
=> Container
'Unrestricted_Access,
1445 Subtree
=> Root_Node
(Container
),
1446 Process
=> Process
);
1456 function Iterate
(Container
: Tree
)
1457 return Tree_Iterator_Interfaces
.Forward_Iterator
'Class
1460 return Iterate_Subtree
(Root
(Container
));
1463 ----------------------
1464 -- Iterate_Children --
1465 ----------------------
1467 procedure Iterate_Children
1469 Process
: not null access procedure (Position
: Cursor
))
1472 if Parent
= No_Element
then
1473 raise Constraint_Error
with "Parent cursor has no element";
1477 B
: Natural renames Parent
.Container
.Busy
;
1478 C
: Tree_Node_Access
;
1483 C
:= Parent
.Node
.Children
.First
;
1484 while C
/= null loop
1485 Process
(Position
=> Cursor
'(Parent.Container, Node => C));
1496 end Iterate_Children;
1498 procedure Iterate_Children
1499 (Container : Tree_Access;
1500 Subtree : Tree_Node_Access;
1501 Process : not null access procedure (Position : Cursor))
1503 Node : Tree_Node_Access;
1506 -- This is a helper function to recursively iterate over all the nodes
1507 -- in a subtree, in depth-first fashion. This particular helper just
1508 -- visits the children of this subtree, not the root of the subtree node
1509 -- itself. This is useful when starting from the ultimate root of the
1510 -- entire tree (see Iterate), as that root does not have an element.
1512 Node := Subtree.Children.First;
1513 while Node /= null loop
1514 Iterate_Subtree (Container, Node, Process);
1517 end Iterate_Children;
1519 function Iterate_Children
1522 return Tree_Iterator_Interfaces.Reversible_Iterator'Class
1524 C : constant Tree_Access := Container'Unrestricted_Access;
1525 B : Natural renames C.Busy;
1528 if Parent = No_Element then
1529 raise Constraint_Error with "Parent cursor has no element";
1532 if Parent.Container /= C then
1533 raise Program_Error with "Parent cursor not in container";
1536 return It : constant Child_Iterator :=
1537 Child_Iterator'(Limited_Controlled
with
1539 Subtree
=> Parent
.Node
)
1543 end Iterate_Children
;
1545 ---------------------
1546 -- Iterate_Subtree --
1547 ---------------------
1549 function Iterate_Subtree
1551 return Tree_Iterator_Interfaces
.Forward_Iterator
'Class
1554 if Position
= No_Element
then
1555 raise Constraint_Error
with "Position cursor has no element";
1558 -- Implement Vet for multiway trees???
1559 -- pragma Assert (Vet (Position), "bad subtree cursor");
1562 B
: Natural renames Position
.Container
.Busy
;
1564 return It
: constant Subtree_Iterator
:=
1565 (Limited_Controlled
with
1566 Container
=> Position
.Container
,
1567 Subtree
=> Position
.Node
)
1572 end Iterate_Subtree
;
1574 procedure Iterate_Subtree
1576 Process
: not null access procedure (Position
: Cursor
))
1579 if Position
= No_Element
then
1580 raise Constraint_Error
with "Position cursor has no element";
1584 B
: Natural renames Position
.Container
.Busy
;
1589 if Is_Root
(Position
) then
1590 Iterate_Children
(Position
.Container
, Position
.Node
, Process
);
1592 Iterate_Subtree
(Position
.Container
, Position
.Node
, Process
);
1602 end Iterate_Subtree
;
1604 procedure Iterate_Subtree
1605 (Container
: Tree_Access
;
1606 Subtree
: Tree_Node_Access
;
1607 Process
: not null access procedure (Position
: Cursor
))
1610 -- This is a helper function to recursively iterate over all the nodes
1611 -- in a subtree, in depth-first fashion. It first visits the root of the
1612 -- subtree, then visits its children.
1614 Process
(Cursor
'(Container, Subtree));
1615 Iterate_Children (Container, Subtree, Process);
1616 end Iterate_Subtree;
1622 overriding function Last (Object : Child_Iterator) return Cursor is
1624 return Last_Child (Cursor'(Object
.Container
, Object
.Subtree
));
1631 function Last_Child
(Parent
: Cursor
) return Cursor
is
1632 Node
: Tree_Node_Access
;
1635 if Parent
= No_Element
then
1636 raise Constraint_Error
with "Parent cursor has no element";
1639 Node
:= Parent
.Node
.Children
.Last
;
1645 return (Parent
.Container
, Node
);
1648 ------------------------
1649 -- Last_Child_Element --
1650 ------------------------
1652 function Last_Child_Element
(Parent
: Cursor
) return Element_Type
is
1654 return Element
(Last_Child
(Parent
));
1655 end Last_Child_Element
;
1661 procedure Move
(Target
: in out Tree
; Source
: in out Tree
) is
1662 Node
: Tree_Node_Access
;
1665 if Target
'Address = Source
'Address then
1669 if Source
.Busy
> 0 then
1671 with "attempt to tamper with cursors of Source (tree is busy)";
1674 Target
.Clear
; -- checks busy bit
1676 Target
.Root
.Children
:= Source
.Root
.Children
;
1677 Source
.Root
.Children
:= Children_Type
'(others => null);
1679 Node := Target.Root.Children.First;
1680 while Node /= null loop
1681 Node.Parent := Root_Node (Target);
1685 Target.Count := Source.Count;
1694 (Object : Subtree_Iterator;
1695 Position : Cursor) return Cursor
1697 Node : Tree_Node_Access;
1700 if Position.Container = null then
1704 if Position.Container /= Object.Container then
1705 raise Program_Error with
1706 "Position cursor of Next designates wrong tree";
1709 Node := Position.Node;
1711 if Node.Children.First /= null then
1712 return Cursor'(Object
.Container
, Node
.Children
.First
);
1715 while Node
/= Object
.Subtree
loop
1716 if Node
.Next
/= null then
1717 return Cursor
'(Object.Container, Node.Next);
1720 Node := Node.Parent;
1727 (Object : Child_Iterator;
1728 Position : Cursor) return Cursor
1731 if Position.Container = null then
1735 if Position.Container /= Object.Container then
1736 raise Program_Error with
1737 "Position cursor of Next designates wrong tree";
1740 return Next_Sibling (Position);
1747 function Next_Sibling (Position : Cursor) return Cursor is
1749 if Position = No_Element then
1753 if Position.Node.Next = null then
1757 return Cursor'(Position
.Container
, Position
.Node
.Next
);
1760 procedure Next_Sibling
(Position
: in out Cursor
) is
1762 Position
:= Next_Sibling
(Position
);
1769 function Node_Count
(Container
: Tree
) return Count_Type
is
1771 -- Container.Count is the number of nodes we have actually allocated. We
1772 -- cache the value specifically so this Node_Count operation can execute
1773 -- in O(1) time, which makes it behave similarly to how the Length
1774 -- selector function behaves for other containers.
1776 -- The cached node count value only describes the nodes we have
1777 -- allocated; the root node itself is not included in that count. The
1778 -- Node_Count operation returns a value that includes the root node
1779 -- (because the RM says so), so we must add 1 to our cached value.
1781 return 1 + Container
.Count
;
1788 function Parent
(Position
: Cursor
) return Cursor
is
1790 if Position
= No_Element
then
1794 if Position
.Node
.Parent
= null then
1798 return Cursor
'(Position.Container, Position.Node.Parent);
1805 procedure Prepend_Child
1806 (Container : in out Tree;
1808 New_Item : Element_Type;
1809 Count : Count_Type := 1)
1811 First, Last : Tree_Node_Access;
1812 Element : Element_Access;
1815 if Parent = No_Element then
1816 raise Constraint_Error with "Parent cursor has no element";
1819 if Parent.Container /= Container'Unrestricted_Access then
1820 raise Program_Error with "Parent cursor not in container";
1827 if Container.Busy > 0 then
1829 with "attempt to tamper with cursors (tree is busy)";
1833 -- The element allocator may need an accessibility check in the case
1834 -- the actual type is class-wide or has access discriminants (see
1835 -- RM 4.8(10.1) and AI12-0035). We don't unsuppress the check on the
1836 -- allocator in the loop below, because the one in this block would
1837 -- have failed already.
1839 pragma Unsuppress (Accessibility_Check);
1842 Element := new Element_Type'(New_Item
);
1845 First
:= new Tree_Node_Type
'(Parent => Parent.Node,
1851 for J in Count_Type'(2) .. Count
loop
1853 -- Reclaim other nodes if Storage_Error. ???
1855 Element
:= new Element_Type
'(New_Item);
1856 Last.Next := new Tree_Node_Type'(Parent
=> Parent
.Node
,
1867 Parent
=> Parent
.Node
,
1868 Before
=> Parent
.Node
.Children
.First
);
1870 -- In order for operation Node_Count to complete in O(1) time, we cache
1871 -- the count value. Here we increment the total count by the number of
1872 -- nodes we just inserted.
1874 Container
.Count
:= Container
.Count
+ Count
;
1881 overriding
function Previous
1882 (Object
: Child_Iterator
;
1883 Position
: Cursor
) return Cursor
1886 if Position
.Container
= null then
1890 if Position
.Container
/= Object
.Container
then
1891 raise Program_Error
with
1892 "Position cursor of Previous designates wrong tree";
1895 return Previous_Sibling
(Position
);
1898 ----------------------
1899 -- Previous_Sibling --
1900 ----------------------
1902 function Previous_Sibling
(Position
: Cursor
) return Cursor
is
1904 if Position
= No_Element
then
1908 if Position
.Node
.Prev
= null then
1912 return Cursor
'(Position.Container, Position.Node.Prev);
1913 end Previous_Sibling;
1915 procedure Previous_Sibling (Position : in out Cursor) is
1917 Position := Previous_Sibling (Position);
1918 end Previous_Sibling;
1924 procedure Query_Element
1926 Process : not null access procedure (Element : Element_Type))
1929 if Position = No_Element then
1930 raise Constraint_Error with "Position cursor has no element";
1933 if Is_Root (Position) then
1934 raise Program_Error with "Position cursor designates root";
1938 T : Tree renames Position.Container.all'Unrestricted_Access.all;
1939 B : Natural renames T.Busy;
1940 L : Natural renames T.Lock;
1946 Process (Position.Node.Element.all);
1964 (Stream : not null access Root_Stream_Type'Class;
1965 Container : out Tree)
1967 procedure Read_Children (Subtree : Tree_Node_Access);
1969 function Read_Subtree
1970 (Parent : Tree_Node_Access) return Tree_Node_Access;
1972 Total_Count : Count_Type'Base;
1973 -- Value read from the stream that says how many elements follow
1975 Read_Count : Count_Type'Base;
1976 -- Actual number of elements read from the stream
1982 procedure Read_Children (Subtree : Tree_Node_Access) is
1983 pragma Assert (Subtree /= null);
1984 pragma Assert (Subtree.Children.First = null);
1985 pragma Assert (Subtree.Children.Last = null);
1987 Count : Count_Type'Base;
1988 -- Number of child subtrees
1993 Count_Type'Read (Stream, Count);
1996 raise Program_Error with "attempt to read from corrupt stream";
2003 C.First := Read_Subtree (Parent => Subtree);
2006 for J in Count_Type'(2) .. Count
loop
2007 C
.Last
.Next
:= Read_Subtree
(Parent
=> Subtree
);
2008 C
.Last
.Next
.Prev
:= C
.Last
;
2009 C
.Last
:= C
.Last
.Next
;
2012 -- Now that the allocation and reads have completed successfully, it
2013 -- is safe to link the children to their parent.
2015 Subtree
.Children
:= C
;
2022 function Read_Subtree
2023 (Parent
: Tree_Node_Access
) return Tree_Node_Access
2025 Element
: constant Element_Access
:=
2026 new Element_Type
'(Element_Type'Input (Stream));
2028 Subtree : constant Tree_Node_Access :=
2035 Read_Count
:= Read_Count
+ 1;
2037 Read_Children
(Subtree
);
2042 -- Start of processing for Read
2045 Container
.Clear
; -- checks busy bit
2047 Count_Type
'Read (Stream
, Total_Count
);
2049 if Total_Count
< 0 then
2050 raise Program_Error
with "attempt to read from corrupt stream";
2053 if Total_Count
= 0 then
2059 Read_Children
(Root_Node
(Container
));
2061 if Read_Count
/= Total_Count
then
2062 raise Program_Error
with "attempt to read from corrupt stream";
2065 Container
.Count
:= Total_Count
;
2069 (Stream
: not null access Root_Stream_Type
'Class;
2070 Position
: out Cursor
)
2073 raise Program_Error
with "attempt to read tree cursor from stream";
2077 (Stream
: not null access Root_Stream_Type
'Class;
2078 Item
: out Reference_Type
)
2081 raise Program_Error
with "attempt to stream reference";
2085 (Stream
: not null access Root_Stream_Type
'Class;
2086 Item
: out Constant_Reference_Type
)
2089 raise Program_Error
with "attempt to stream reference";
2097 (Container
: aliased in out Tree
;
2098 Position
: Cursor
) return Reference_Type
2101 if Position
.Container
= null then
2102 raise Constraint_Error
with
2103 "Position cursor has no element";
2106 if Position
.Container
/= Container
'Unrestricted_Access then
2107 raise Program_Error
with
2108 "Position cursor designates wrong container";
2111 if Position
.Node
= Root_Node
(Container
) then
2112 raise Program_Error
with "Position cursor designates root";
2115 if Position
.Node
.Element
= null then
2116 raise Program_Error
with "Node has no element";
2119 -- Implement Vet for multiway tree???
2120 -- pragma Assert (Vet (Position),
2121 -- "Position cursor in Constant_Reference is bad");
2124 C
: Tree
renames Position
.Container
.all;
2125 B
: Natural renames C
.Busy
;
2126 L
: Natural renames C
.Lock
;
2128 return R
: constant Reference_Type
:=
2129 (Element
=> Position
.Node
.Element
.all'Access,
2130 Control
=> (Controlled
with Position
.Container
))
2138 --------------------
2139 -- Remove_Subtree --
2140 --------------------
2142 procedure Remove_Subtree
(Subtree
: Tree_Node_Access
) is
2143 C
: Children_Type
renames Subtree
.Parent
.Children
;
2146 -- This is a utility operation to remove a subtree node from its
2147 -- parent's list of children.
2149 if C
.First
= Subtree
then
2150 pragma Assert
(Subtree
.Prev
= null);
2152 if C
.Last
= Subtree
then
2153 pragma Assert
(Subtree
.Next
= null);
2158 C
.First
:= Subtree
.Next
;
2159 C
.First
.Prev
:= null;
2162 elsif C
.Last
= Subtree
then
2163 pragma Assert
(Subtree
.Next
= null);
2164 C
.Last
:= Subtree
.Prev
;
2165 C
.Last
.Next
:= null;
2168 Subtree
.Prev
.Next
:= Subtree
.Next
;
2169 Subtree
.Next
.Prev
:= Subtree
.Prev
;
2173 ----------------------
2174 -- Replace_Element --
2175 ----------------------
2177 procedure Replace_Element
2178 (Container
: in out Tree
;
2180 New_Item
: Element_Type
)
2182 E
, X
: Element_Access
;
2185 if Position
= No_Element
then
2186 raise Constraint_Error
with "Position cursor has no element";
2189 if Position
.Container
/= Container
'Unrestricted_Access then
2190 raise Program_Error
with "Position cursor not in container";
2193 if Is_Root
(Position
) then
2194 raise Program_Error
with "Position cursor designates root";
2197 if Container
.Lock
> 0 then
2199 with "attempt to tamper with elements (tree is locked)";
2203 -- The element allocator may need an accessibility check in the case
2204 -- the actual type is class-wide or has access discriminants (see
2205 -- RM 4.8(10.1) and AI12-0035).
2207 pragma Unsuppress
(Accessibility_Check
);
2210 E
:= new Element_Type
'(New_Item);
2213 X := Position.Node.Element;
2214 Position.Node.Element := E;
2217 end Replace_Element;
2219 ------------------------------
2220 -- Reverse_Iterate_Children --
2221 ------------------------------
2223 procedure Reverse_Iterate_Children
2225 Process : not null access procedure (Position : Cursor))
2228 if Parent = No_Element then
2229 raise Constraint_Error with "Parent cursor has no element";
2233 B : Natural renames Parent.Container.Busy;
2234 C : Tree_Node_Access;
2239 C := Parent.Node.Children.Last;
2240 while C /= null loop
2241 Process (Position => Cursor'(Parent
.Container
, Node
=> C
));
2252 end Reverse_Iterate_Children
;
2258 function Root
(Container
: Tree
) return Cursor
is
2260 return (Container
'Unrestricted_Access, Root_Node
(Container
));
2267 function Root_Node
(Container
: Tree
) return Tree_Node_Access
is
2269 return Container
.Root
'Unrestricted_Access;
2272 ---------------------
2273 -- Splice_Children --
2274 ---------------------
2276 procedure Splice_Children
2277 (Target
: in out Tree
;
2278 Target_Parent
: Cursor
;
2280 Source
: in out Tree
;
2281 Source_Parent
: Cursor
)
2286 if Target_Parent
= No_Element
then
2287 raise Constraint_Error
with "Target_Parent cursor has no element";
2290 if Target_Parent
.Container
/= Target
'Unrestricted_Access then
2292 with "Target_Parent cursor not in Target container";
2295 if Before
/= No_Element
then
2296 if Before
.Container
/= Target
'Unrestricted_Access then
2298 with "Before cursor not in Target container";
2301 if Before
.Node
.Parent
/= Target_Parent
.Node
then
2302 raise Constraint_Error
2303 with "Before cursor not child of Target_Parent";
2307 if Source_Parent
= No_Element
then
2308 raise Constraint_Error
with "Source_Parent cursor has no element";
2311 if Source_Parent
.Container
/= Source
'Unrestricted_Access then
2313 with "Source_Parent cursor not in Source container";
2316 if Target
'Address = Source
'Address then
2317 if Target_Parent
= Source_Parent
then
2321 if Target
.Busy
> 0 then
2323 with "attempt to tamper with cursors (Target tree is busy)";
2326 if Is_Reachable
(From
=> Target_Parent
.Node
,
2327 To
=> Source_Parent
.Node
)
2329 raise Constraint_Error
2330 with "Source_Parent is ancestor of Target_Parent";
2334 (Target_Parent
=> Target_Parent
.Node
,
2335 Before
=> Before
.Node
,
2336 Source_Parent
=> Source_Parent
.Node
);
2341 if Target
.Busy
> 0 then
2343 with "attempt to tamper with cursors (Target tree is busy)";
2346 if Source
.Busy
> 0 then
2348 with "attempt to tamper with cursors (Source tree is busy)";
2351 -- We cache the count of the nodes we have allocated, so that operation
2352 -- Node_Count can execute in O(1) time. But that means we must count the
2353 -- nodes in the subtree we remove from Source and insert into Target, in
2354 -- order to keep the count accurate.
2356 Count
:= Subtree_Node_Count
(Source_Parent
.Node
);
2357 pragma Assert
(Count
>= 1);
2359 Count
:= Count
- 1; -- because Source_Parent node does not move
2362 (Target_Parent
=> Target_Parent
.Node
,
2363 Before
=> Before
.Node
,
2364 Source_Parent
=> Source_Parent
.Node
);
2366 Source
.Count
:= Source
.Count
- Count
;
2367 Target
.Count
:= Target
.Count
+ Count
;
2368 end Splice_Children
;
2370 procedure Splice_Children
2371 (Container
: in out Tree
;
2372 Target_Parent
: Cursor
;
2374 Source_Parent
: Cursor
)
2377 if Target_Parent
= No_Element
then
2378 raise Constraint_Error
with "Target_Parent cursor has no element";
2381 if Target_Parent
.Container
/= Container
'Unrestricted_Access then
2383 with "Target_Parent cursor not in container";
2386 if Before
/= No_Element
then
2387 if Before
.Container
/= Container
'Unrestricted_Access then
2389 with "Before cursor not in container";
2392 if Before
.Node
.Parent
/= Target_Parent
.Node
then
2393 raise Constraint_Error
2394 with "Before cursor not child of Target_Parent";
2398 if Source_Parent
= No_Element
then
2399 raise Constraint_Error
with "Source_Parent cursor has no element";
2402 if Source_Parent
.Container
/= Container
'Unrestricted_Access then
2404 with "Source_Parent cursor not in container";
2407 if Target_Parent
= Source_Parent
then
2411 if Container
.Busy
> 0 then
2413 with "attempt to tamper with cursors (tree is busy)";
2416 if Is_Reachable
(From
=> Target_Parent
.Node
,
2417 To
=> Source_Parent
.Node
)
2419 raise Constraint_Error
2420 with "Source_Parent is ancestor of Target_Parent";
2424 (Target_Parent
=> Target_Parent
.Node
,
2425 Before
=> Before
.Node
,
2426 Source_Parent
=> Source_Parent
.Node
);
2427 end Splice_Children
;
2429 procedure Splice_Children
2430 (Target_Parent
: Tree_Node_Access
;
2431 Before
: Tree_Node_Access
;
2432 Source_Parent
: Tree_Node_Access
)
2434 CC
: constant Children_Type
:= Source_Parent
.Children
;
2435 C
: Tree_Node_Access
;
2438 -- This is a utility operation to remove the children from Source parent
2439 -- and insert them into Target parent.
2441 Source_Parent
.Children
:= Children_Type
'(others => null);
2443 -- Fix up the Parent pointers of each child to designate its new Target
2447 while C /= null loop
2448 C.Parent := Target_Parent;
2455 Parent => Target_Parent,
2457 end Splice_Children;
2459 --------------------
2460 -- Splice_Subtree --
2461 --------------------
2463 procedure Splice_Subtree
2464 (Target : in out Tree;
2467 Source : in out Tree;
2468 Position : in out Cursor)
2470 Subtree_Count : Count_Type;
2473 if Parent = No_Element then
2474 raise Constraint_Error with "Parent cursor has no element";
2477 if Parent.Container /= Target'Unrestricted_Access then
2478 raise Program_Error with "Parent cursor not in Target container";
2481 if Before /= No_Element then
2482 if Before.Container /= Target'Unrestricted_Access then
2483 raise Program_Error with "Before cursor not in Target container";
2486 if Before.Node.Parent /= Parent.Node then
2487 raise Constraint_Error with "Before cursor not child of Parent";
2491 if Position = No_Element then
2492 raise Constraint_Error with "Position cursor has no element";
2495 if Position.Container /= Source'Unrestricted_Access then
2496 raise Program_Error with "Position cursor not in Source container";
2499 if Is_Root (Position) then
2500 raise Program_Error with "Position cursor designates root";
2503 if Target'Address = Source'Address then
2504 if Position.Node.Parent = Parent.Node then
2505 if Position.Node = Before.Node then
2509 if Position.Node.Next = Before.Node then
2514 if Target.Busy > 0 then
2516 with "attempt to tamper with cursors (Target tree is busy)";
2519 if Is_Reachable (From => Parent.Node, To => Position.Node) then
2520 raise Constraint_Error with "Position is ancestor of Parent";
2523 Remove_Subtree (Position.Node);
2525 Position.Node.Parent := Parent.Node;
2526 Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
2531 if Target.Busy > 0 then
2533 with "attempt to tamper with cursors (Target tree is busy)";
2536 if Source.Busy > 0 then
2538 with "attempt to tamper with cursors (Source tree is busy)";
2541 -- This is an unfortunate feature of this API: we must count the nodes
2542 -- in the subtree that we remove from the source tree, which is an O(n)
2543 -- operation. It would have been better if the Tree container did not
2544 -- have a Node_Count selector; a user that wants the number of nodes in
2545 -- the tree could simply call Subtree_Node_Count, with the understanding
2546 -- that such an operation is O(n).
2548 -- Of course, we could choose to implement the Node_Count selector as an
2549 -- O(n) operation, which would turn this splice operation into an O(1)
2552 Subtree_Count := Subtree_Node_Count (Position.Node);
2553 pragma Assert (Subtree_Count <= Source.Count);
2555 Remove_Subtree (Position.Node);
2556 Source.Count := Source.Count - Subtree_Count;
2558 Position.Node.Parent := Parent.Node;
2559 Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
2561 Target.Count := Target.Count + Subtree_Count;
2563 Position.Container := Target'Unrestricted_Access;
2566 procedure Splice_Subtree
2567 (Container : in out Tree;
2573 if Parent = No_Element then
2574 raise Constraint_Error with "Parent cursor has no element";
2577 if Parent.Container /= Container'Unrestricted_Access then
2578 raise Program_Error with "Parent cursor not in container";
2581 if Before /= No_Element then
2582 if Before.Container /= Container'Unrestricted_Access then
2583 raise Program_Error with "Before cursor not in container";
2586 if Before.Node.Parent /= Parent.Node then
2587 raise Constraint_Error with "Before cursor not child of Parent";
2591 if Position = No_Element then
2592 raise Constraint_Error with "Position cursor has no element";
2595 if Position.Container /= Container'Unrestricted_Access then
2596 raise Program_Error with "Position cursor not in container";
2599 if Is_Root (Position) then
2601 -- Should this be PE instead? Need ARG confirmation. ???
2603 raise Constraint_Error with "Position cursor designates root";
2606 if Position.Node.Parent = Parent.Node then
2607 if Position.Node = Before.Node then
2611 if Position.Node.Next = Before.Node then
2616 if Container.Busy > 0 then
2618 with "attempt to tamper with cursors (tree is busy)";
2621 if Is_Reachable (From => Parent.Node, To => Position.Node) then
2622 raise Constraint_Error with "Position is ancestor of Parent";
2625 Remove_Subtree (Position.Node);
2627 Position.Node.Parent := Parent.Node;
2628 Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
2631 ------------------------
2632 -- Subtree_Node_Count --
2633 ------------------------
2635 function Subtree_Node_Count (Position : Cursor) return Count_Type is
2637 if Position = No_Element then
2641 return Subtree_Node_Count (Position.Node);
2642 end Subtree_Node_Count;
2644 function Subtree_Node_Count
2645 (Subtree : Tree_Node_Access) return Count_Type
2647 Result : Count_Type;
2648 Node : Tree_Node_Access;
2652 Node := Subtree.Children.First;
2653 while Node /= null loop
2654 Result := Result + Subtree_Node_Count (Node);
2659 end Subtree_Node_Count;
2666 (Container : in out Tree;
2670 if I = No_Element then
2671 raise Constraint_Error with "I cursor has no element";
2674 if I.Container /= Container'Unrestricted_Access then
2675 raise Program_Error with "I cursor not in container";
2679 raise Program_Error with "I cursor designates root";
2682 if I = J then -- make this test sooner???
2686 if J = No_Element then
2687 raise Constraint_Error with "J cursor has no element";
2690 if J.Container /= Container'Unrestricted_Access then
2691 raise Program_Error with "J cursor not in container";
2695 raise Program_Error with "J cursor designates root";
2698 if Container.Lock > 0 then
2700 with "attempt to tamper with elements (tree is locked)";
2704 EI : constant Element_Access := I.Node.Element;
2707 I.Node.Element := J.Node.Element;
2708 J.Node.Element := EI;
2712 --------------------
2713 -- Update_Element --
2714 --------------------
2716 procedure Update_Element
2717 (Container : in out Tree;
2719 Process : not null access procedure (Element : in out Element_Type))
2722 if Position = No_Element then
2723 raise Constraint_Error with "Position cursor has no element";
2726 if Position.Container /= Container'Unrestricted_Access then
2727 raise Program_Error with "Position cursor not in container";
2730 if Is_Root (Position) then
2731 raise Program_Error with "Position cursor designates root";
2735 T : Tree renames Position.Container.all'Unrestricted_Access.all;
2736 B : Natural renames T.Busy;
2737 L : Natural renames T.Lock;
2743 Process (Position.Node.Element.all);
2761 (Stream : not null access Root_Stream_Type'Class;
2764 procedure Write_Children (Subtree : Tree_Node_Access);
2765 procedure Write_Subtree (Subtree : Tree_Node_Access);
2767 --------------------
2768 -- Write_Children --
2769 --------------------
2771 procedure Write_Children (Subtree : Tree_Node_Access) is
2772 CC : Children_Type renames Subtree.Children;
2773 C : Tree_Node_Access;
2776 Count_Type'Write (Stream, Child_Count (CC));
2779 while C /= null loop
2789 procedure Write_Subtree (Subtree : Tree_Node_Access) is
2791 Element_Type'Output (Stream, Subtree.Element.all);
2792 Write_Children (Subtree);
2795 -- Start of processing for Write
2798 Count_Type'Write (Stream, Container.Count);
2800 if Container.Count = 0 then
2804 Write_Children (Root_Node (Container));
2808 (Stream : not null access Root_Stream_Type'Class;
2812 raise Program_Error with "attempt to write tree cursor to stream";
2816 (Stream : not null access Root_Stream_Type'Class;
2817 Item : Reference_Type)
2820 raise Program_Error with "attempt to stream reference";
2824 (Stream : not null access Root_Stream_Type'Class;
2825 Item : Constant_Reference_Type)
2828 raise Program_Error with "attempt to stream reference";
2831 end Ada.Containers.Indefinite_Multiway_Trees;