fortran/
[official-gcc.git] / gcc / fortran / expr.c
blob7d745285c010dfcdf737a0ae28cb46c89816ec78
1 /* Routines for manipulation of expression nodes.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Andy Vaught
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "gfortran.h"
27 #include "arith.h"
28 #include "match.h"
29 #include "target-memory.h" /* for gfc_convert_boz */
30 #include "constructor.h"
33 /* The following set of functions provide access to gfc_expr* of
34 various types - actual all but EXPR_FUNCTION and EXPR_VARIABLE.
36 There are two functions available elsewhere that provide
37 slightly different flavours of variables. Namely:
38 expr.c (gfc_get_variable_expr)
39 symbol.c (gfc_lval_expr_from_sym)
40 TODO: Merge these functions, if possible. */
42 /* Get a new expression node. */
44 gfc_expr *
45 gfc_get_expr (void)
47 gfc_expr *e;
49 e = XCNEW (gfc_expr);
50 gfc_clear_ts (&e->ts);
51 e->shape = NULL;
52 e->ref = NULL;
53 e->symtree = NULL;
54 return e;
58 /* Get a new expression node that is an array constructor
59 of given type and kind. */
61 gfc_expr *
62 gfc_get_array_expr (bt type, int kind, locus *where)
64 gfc_expr *e;
66 e = gfc_get_expr ();
67 e->expr_type = EXPR_ARRAY;
68 e->value.constructor = NULL;
69 e->rank = 1;
70 e->shape = NULL;
72 e->ts.type = type;
73 e->ts.kind = kind;
74 if (where)
75 e->where = *where;
77 return e;
81 /* Get a new expression node that is the NULL expression. */
83 gfc_expr *
84 gfc_get_null_expr (locus *where)
86 gfc_expr *e;
88 e = gfc_get_expr ();
89 e->expr_type = EXPR_NULL;
90 e->ts.type = BT_UNKNOWN;
92 if (where)
93 e->where = *where;
95 return e;
99 /* Get a new expression node that is an operator expression node. */
101 gfc_expr *
102 gfc_get_operator_expr (locus *where, gfc_intrinsic_op op,
103 gfc_expr *op1, gfc_expr *op2)
105 gfc_expr *e;
107 e = gfc_get_expr ();
108 e->expr_type = EXPR_OP;
109 e->value.op.op = op;
110 e->value.op.op1 = op1;
111 e->value.op.op2 = op2;
113 if (where)
114 e->where = *where;
116 return e;
120 /* Get a new expression node that is an structure constructor
121 of given type and kind. */
123 gfc_expr *
124 gfc_get_structure_constructor_expr (bt type, int kind, locus *where)
126 gfc_expr *e;
128 e = gfc_get_expr ();
129 e->expr_type = EXPR_STRUCTURE;
130 e->value.constructor = NULL;
132 e->ts.type = type;
133 e->ts.kind = kind;
134 if (where)
135 e->where = *where;
137 return e;
141 /* Get a new expression node that is an constant of given type and kind. */
143 gfc_expr *
144 gfc_get_constant_expr (bt type, int kind, locus *where)
146 gfc_expr *e;
148 if (!where)
149 gfc_internal_error ("gfc_get_constant_expr(): locus 'where' cannot be NULL");
151 e = gfc_get_expr ();
153 e->expr_type = EXPR_CONSTANT;
154 e->ts.type = type;
155 e->ts.kind = kind;
156 e->where = *where;
158 switch (type)
160 case BT_INTEGER:
161 mpz_init (e->value.integer);
162 break;
164 case BT_REAL:
165 gfc_set_model_kind (kind);
166 mpfr_init (e->value.real);
167 break;
169 case BT_COMPLEX:
170 gfc_set_model_kind (kind);
171 mpc_init2 (e->value.complex, mpfr_get_default_prec());
172 break;
174 default:
175 break;
178 return e;
182 /* Get a new expression node that is an string constant.
183 If no string is passed, a string of len is allocated,
184 blanked and null-terminated. */
186 gfc_expr *
187 gfc_get_character_expr (int kind, locus *where, const char *src, int len)
189 gfc_expr *e;
190 gfc_char_t *dest;
192 if (!src)
194 dest = gfc_get_wide_string (len + 1);
195 gfc_wide_memset (dest, ' ', len);
196 dest[len] = '\0';
198 else
199 dest = gfc_char_to_widechar (src);
201 e = gfc_get_constant_expr (BT_CHARACTER, kind,
202 where ? where : &gfc_current_locus);
203 e->value.character.string = dest;
204 e->value.character.length = len;
206 return e;
210 /* Get a new expression node that is an integer constant. */
212 gfc_expr *
213 gfc_get_int_expr (int kind, locus *where, int value)
215 gfc_expr *p;
216 p = gfc_get_constant_expr (BT_INTEGER, kind,
217 where ? where : &gfc_current_locus);
219 mpz_set_si (p->value.integer, value);
221 return p;
225 /* Get a new expression node that is a logical constant. */
227 gfc_expr *
228 gfc_get_logical_expr (int kind, locus *where, bool value)
230 gfc_expr *p;
231 p = gfc_get_constant_expr (BT_LOGICAL, kind,
232 where ? where : &gfc_current_locus);
234 p->value.logical = value;
236 return p;
240 gfc_expr *
241 gfc_get_iokind_expr (locus *where, io_kind k)
243 gfc_expr *e;
245 /* Set the types to something compatible with iokind. This is needed to
246 get through gfc_free_expr later since iokind really has no Basic Type,
247 BT, of its own. */
249 e = gfc_get_expr ();
250 e->expr_type = EXPR_CONSTANT;
251 e->ts.type = BT_LOGICAL;
252 e->value.iokind = k;
253 e->where = *where;
255 return e;
259 /* Given an expression pointer, return a copy of the expression. This
260 subroutine is recursive. */
262 gfc_expr *
263 gfc_copy_expr (gfc_expr *p)
265 gfc_expr *q;
266 gfc_char_t *s;
267 char *c;
269 if (p == NULL)
270 return NULL;
272 q = gfc_get_expr ();
273 *q = *p;
275 switch (q->expr_type)
277 case EXPR_SUBSTRING:
278 s = gfc_get_wide_string (p->value.character.length + 1);
279 q->value.character.string = s;
280 memcpy (s, p->value.character.string,
281 (p->value.character.length + 1) * sizeof (gfc_char_t));
282 break;
284 case EXPR_CONSTANT:
285 /* Copy target representation, if it exists. */
286 if (p->representation.string)
288 c = XCNEWVEC (char, p->representation.length + 1);
289 q->representation.string = c;
290 memcpy (c, p->representation.string, (p->representation.length + 1));
293 /* Copy the values of any pointer components of p->value. */
294 switch (q->ts.type)
296 case BT_INTEGER:
297 mpz_init_set (q->value.integer, p->value.integer);
298 break;
300 case BT_REAL:
301 gfc_set_model_kind (q->ts.kind);
302 mpfr_init (q->value.real);
303 mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
304 break;
306 case BT_COMPLEX:
307 gfc_set_model_kind (q->ts.kind);
308 mpc_init2 (q->value.complex, mpfr_get_default_prec());
309 mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE);
310 break;
312 case BT_CHARACTER:
313 if (p->representation.string)
314 q->value.character.string
315 = gfc_char_to_widechar (q->representation.string);
316 else
318 s = gfc_get_wide_string (p->value.character.length + 1);
319 q->value.character.string = s;
321 /* This is the case for the C_NULL_CHAR named constant. */
322 if (p->value.character.length == 0
323 && (p->ts.is_c_interop || p->ts.is_iso_c))
325 *s = '\0';
326 /* Need to set the length to 1 to make sure the NUL
327 terminator is copied. */
328 q->value.character.length = 1;
330 else
331 memcpy (s, p->value.character.string,
332 (p->value.character.length + 1) * sizeof (gfc_char_t));
334 break;
336 case BT_HOLLERITH:
337 case BT_LOGICAL:
338 case BT_DERIVED:
339 case BT_CLASS:
340 case BT_ASSUMED:
341 break; /* Already done. */
343 case BT_PROCEDURE:
344 case BT_VOID:
345 /* Should never be reached. */
346 case BT_UNKNOWN:
347 gfc_internal_error ("gfc_copy_expr(): Bad expr node");
348 /* Not reached. */
351 break;
353 case EXPR_OP:
354 switch (q->value.op.op)
356 case INTRINSIC_NOT:
357 case INTRINSIC_PARENTHESES:
358 case INTRINSIC_UPLUS:
359 case INTRINSIC_UMINUS:
360 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
361 break;
363 default: /* Binary operators. */
364 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
365 q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
366 break;
369 break;
371 case EXPR_FUNCTION:
372 q->value.function.actual =
373 gfc_copy_actual_arglist (p->value.function.actual);
374 break;
376 case EXPR_COMPCALL:
377 case EXPR_PPC:
378 q->value.compcall.actual =
379 gfc_copy_actual_arglist (p->value.compcall.actual);
380 q->value.compcall.tbp = p->value.compcall.tbp;
381 break;
383 case EXPR_STRUCTURE:
384 case EXPR_ARRAY:
385 q->value.constructor = gfc_constructor_copy (p->value.constructor);
386 break;
388 case EXPR_VARIABLE:
389 case EXPR_NULL:
390 break;
393 q->shape = gfc_copy_shape (p->shape, p->rank);
395 q->ref = gfc_copy_ref (p->ref);
397 return q;
401 void
402 gfc_clear_shape (mpz_t *shape, int rank)
404 int i;
406 for (i = 0; i < rank; i++)
407 mpz_clear (shape[i]);
411 void
412 gfc_free_shape (mpz_t **shape, int rank)
414 if (*shape == NULL)
415 return;
417 gfc_clear_shape (*shape, rank);
418 free (*shape);
419 *shape = NULL;
423 /* Workhorse function for gfc_free_expr() that frees everything
424 beneath an expression node, but not the node itself. This is
425 useful when we want to simplify a node and replace it with
426 something else or the expression node belongs to another structure. */
428 static void
429 free_expr0 (gfc_expr *e)
431 switch (e->expr_type)
433 case EXPR_CONSTANT:
434 /* Free any parts of the value that need freeing. */
435 switch (e->ts.type)
437 case BT_INTEGER:
438 mpz_clear (e->value.integer);
439 break;
441 case BT_REAL:
442 mpfr_clear (e->value.real);
443 break;
445 case BT_CHARACTER:
446 free (e->value.character.string);
447 break;
449 case BT_COMPLEX:
450 mpc_clear (e->value.complex);
451 break;
453 default:
454 break;
457 /* Free the representation. */
458 free (e->representation.string);
460 break;
462 case EXPR_OP:
463 if (e->value.op.op1 != NULL)
464 gfc_free_expr (e->value.op.op1);
465 if (e->value.op.op2 != NULL)
466 gfc_free_expr (e->value.op.op2);
467 break;
469 case EXPR_FUNCTION:
470 gfc_free_actual_arglist (e->value.function.actual);
471 break;
473 case EXPR_COMPCALL:
474 case EXPR_PPC:
475 gfc_free_actual_arglist (e->value.compcall.actual);
476 break;
478 case EXPR_VARIABLE:
479 break;
481 case EXPR_ARRAY:
482 case EXPR_STRUCTURE:
483 gfc_constructor_free (e->value.constructor);
484 break;
486 case EXPR_SUBSTRING:
487 free (e->value.character.string);
488 break;
490 case EXPR_NULL:
491 break;
493 default:
494 gfc_internal_error ("free_expr0(): Bad expr type");
497 /* Free a shape array. */
498 gfc_free_shape (&e->shape, e->rank);
500 gfc_free_ref_list (e->ref);
502 memset (e, '\0', sizeof (gfc_expr));
506 /* Free an expression node and everything beneath it. */
508 void
509 gfc_free_expr (gfc_expr *e)
511 if (e == NULL)
512 return;
513 free_expr0 (e);
514 free (e);
518 /* Free an argument list and everything below it. */
520 void
521 gfc_free_actual_arglist (gfc_actual_arglist *a1)
523 gfc_actual_arglist *a2;
525 while (a1)
527 a2 = a1->next;
528 gfc_free_expr (a1->expr);
529 free (a1);
530 a1 = a2;
535 /* Copy an arglist structure and all of the arguments. */
537 gfc_actual_arglist *
538 gfc_copy_actual_arglist (gfc_actual_arglist *p)
540 gfc_actual_arglist *head, *tail, *new_arg;
542 head = tail = NULL;
544 for (; p; p = p->next)
546 new_arg = gfc_get_actual_arglist ();
547 *new_arg = *p;
549 new_arg->expr = gfc_copy_expr (p->expr);
550 new_arg->next = NULL;
552 if (head == NULL)
553 head = new_arg;
554 else
555 tail->next = new_arg;
557 tail = new_arg;
560 return head;
564 /* Free a list of reference structures. */
566 void
567 gfc_free_ref_list (gfc_ref *p)
569 gfc_ref *q;
570 int i;
572 for (; p; p = q)
574 q = p->next;
576 switch (p->type)
578 case REF_ARRAY:
579 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
581 gfc_free_expr (p->u.ar.start[i]);
582 gfc_free_expr (p->u.ar.end[i]);
583 gfc_free_expr (p->u.ar.stride[i]);
586 break;
588 case REF_SUBSTRING:
589 gfc_free_expr (p->u.ss.start);
590 gfc_free_expr (p->u.ss.end);
591 break;
593 case REF_COMPONENT:
594 break;
597 free (p);
602 /* Graft the *src expression onto the *dest subexpression. */
604 void
605 gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
607 free_expr0 (dest);
608 *dest = *src;
609 free (src);
613 /* Try to extract an integer constant from the passed expression node.
614 Returns an error message or NULL if the result is set. It is
615 tempting to generate an error and return SUCCESS or FAILURE, but
616 failure is OK for some callers. */
618 const char *
619 gfc_extract_int (gfc_expr *expr, int *result)
621 if (expr->expr_type != EXPR_CONSTANT)
622 return _("Constant expression required at %C");
624 if (expr->ts.type != BT_INTEGER)
625 return _("Integer expression required at %C");
627 if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
628 || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
630 return _("Integer value too large in expression at %C");
633 *result = (int) mpz_get_si (expr->value.integer);
635 return NULL;
639 /* Recursively copy a list of reference structures. */
641 gfc_ref *
642 gfc_copy_ref (gfc_ref *src)
644 gfc_array_ref *ar;
645 gfc_ref *dest;
647 if (src == NULL)
648 return NULL;
650 dest = gfc_get_ref ();
651 dest->type = src->type;
653 switch (src->type)
655 case REF_ARRAY:
656 ar = gfc_copy_array_ref (&src->u.ar);
657 dest->u.ar = *ar;
658 free (ar);
659 break;
661 case REF_COMPONENT:
662 dest->u.c = src->u.c;
663 break;
665 case REF_SUBSTRING:
666 dest->u.ss = src->u.ss;
667 dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
668 dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
669 break;
672 dest->next = gfc_copy_ref (src->next);
674 return dest;
678 /* Detect whether an expression has any vector index array references. */
681 gfc_has_vector_index (gfc_expr *e)
683 gfc_ref *ref;
684 int i;
685 for (ref = e->ref; ref; ref = ref->next)
686 if (ref->type == REF_ARRAY)
687 for (i = 0; i < ref->u.ar.dimen; i++)
688 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
689 return 1;
690 return 0;
694 /* Copy a shape array. */
696 mpz_t *
697 gfc_copy_shape (mpz_t *shape, int rank)
699 mpz_t *new_shape;
700 int n;
702 if (shape == NULL)
703 return NULL;
705 new_shape = gfc_get_shape (rank);
707 for (n = 0; n < rank; n++)
708 mpz_init_set (new_shape[n], shape[n]);
710 return new_shape;
714 /* Copy a shape array excluding dimension N, where N is an integer
715 constant expression. Dimensions are numbered in Fortran style --
716 starting with ONE.
718 So, if the original shape array contains R elements
719 { s1 ... sN-1 sN sN+1 ... sR-1 sR}
720 the result contains R-1 elements:
721 { s1 ... sN-1 sN+1 ... sR-1}
723 If anything goes wrong -- N is not a constant, its value is out
724 of range -- or anything else, just returns NULL. */
726 mpz_t *
727 gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
729 mpz_t *new_shape, *s;
730 int i, n;
732 if (shape == NULL
733 || rank <= 1
734 || dim == NULL
735 || dim->expr_type != EXPR_CONSTANT
736 || dim->ts.type != BT_INTEGER)
737 return NULL;
739 n = mpz_get_si (dim->value.integer);
740 n--; /* Convert to zero based index. */
741 if (n < 0 || n >= rank)
742 return NULL;
744 s = new_shape = gfc_get_shape (rank - 1);
746 for (i = 0; i < rank; i++)
748 if (i == n)
749 continue;
750 mpz_init_set (*s, shape[i]);
751 s++;
754 return new_shape;
758 /* Return the maximum kind of two expressions. In general, higher
759 kind numbers mean more precision for numeric types. */
762 gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
764 return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
768 /* Returns nonzero if the type is numeric, zero otherwise. */
770 static int
771 numeric_type (bt type)
773 return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
777 /* Returns nonzero if the typespec is a numeric type, zero otherwise. */
780 gfc_numeric_ts (gfc_typespec *ts)
782 return numeric_type (ts->type);
786 /* Return an expression node with an optional argument list attached.
787 A variable number of gfc_expr pointers are strung together in an
788 argument list with a NULL pointer terminating the list. */
790 gfc_expr *
791 gfc_build_conversion (gfc_expr *e)
793 gfc_expr *p;
795 p = gfc_get_expr ();
796 p->expr_type = EXPR_FUNCTION;
797 p->symtree = NULL;
798 p->value.function.actual = NULL;
800 p->value.function.actual = gfc_get_actual_arglist ();
801 p->value.function.actual->expr = e;
803 return p;
807 /* Given an expression node with some sort of numeric binary
808 expression, insert type conversions required to make the operands
809 have the same type. Conversion warnings are disabled if wconversion
810 is set to 0.
812 The exception is that the operands of an exponential don't have to
813 have the same type. If possible, the base is promoted to the type
814 of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
815 1.0**2 stays as it is. */
817 void
818 gfc_type_convert_binary (gfc_expr *e, int wconversion)
820 gfc_expr *op1, *op2;
822 op1 = e->value.op.op1;
823 op2 = e->value.op.op2;
825 if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
827 gfc_clear_ts (&e->ts);
828 return;
831 /* Kind conversions of same type. */
832 if (op1->ts.type == op2->ts.type)
834 if (op1->ts.kind == op2->ts.kind)
836 /* No type conversions. */
837 e->ts = op1->ts;
838 goto done;
841 if (op1->ts.kind > op2->ts.kind)
842 gfc_convert_type_warn (op2, &op1->ts, 2, wconversion);
843 else
844 gfc_convert_type_warn (op1, &op2->ts, 2, wconversion);
846 e->ts = op1->ts;
847 goto done;
850 /* Integer combined with real or complex. */
851 if (op2->ts.type == BT_INTEGER)
853 e->ts = op1->ts;
855 /* Special case for ** operator. */
856 if (e->value.op.op == INTRINSIC_POWER)
857 goto done;
859 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
860 goto done;
863 if (op1->ts.type == BT_INTEGER)
865 e->ts = op2->ts;
866 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
867 goto done;
870 /* Real combined with complex. */
871 e->ts.type = BT_COMPLEX;
872 if (op1->ts.kind > op2->ts.kind)
873 e->ts.kind = op1->ts.kind;
874 else
875 e->ts.kind = op2->ts.kind;
876 if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
877 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
878 if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
879 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
881 done:
882 return;
886 /* Function to determine if an expression is constant or not. This
887 function expects that the expression has already been simplified. */
890 gfc_is_constant_expr (gfc_expr *e)
892 gfc_constructor *c;
893 gfc_actual_arglist *arg;
894 gfc_symbol *sym;
896 if (e == NULL)
897 return 1;
899 switch (e->expr_type)
901 case EXPR_OP:
902 return (gfc_is_constant_expr (e->value.op.op1)
903 && (e->value.op.op2 == NULL
904 || gfc_is_constant_expr (e->value.op.op2)));
906 case EXPR_VARIABLE:
907 return 0;
909 case EXPR_FUNCTION:
910 case EXPR_PPC:
911 case EXPR_COMPCALL:
912 gcc_assert (e->symtree || e->value.function.esym
913 || e->value.function.isym);
915 /* Call to intrinsic with at least one argument. */
916 if (e->value.function.isym && e->value.function.actual)
918 for (arg = e->value.function.actual; arg; arg = arg->next)
919 if (!gfc_is_constant_expr (arg->expr))
920 return 0;
923 /* Specification functions are constant. */
924 /* F95, 7.1.6.2; F2003, 7.1.7 */
925 sym = NULL;
926 if (e->symtree)
927 sym = e->symtree->n.sym;
928 if (e->value.function.esym)
929 sym = e->value.function.esym;
931 if (sym
932 && sym->attr.function
933 && sym->attr.pure
934 && !sym->attr.intrinsic
935 && !sym->attr.recursive
936 && sym->attr.proc != PROC_INTERNAL
937 && sym->attr.proc != PROC_ST_FUNCTION
938 && sym->attr.proc != PROC_UNKNOWN
939 && sym->formal == NULL)
940 return 1;
942 if (e->value.function.isym
943 && (e->value.function.isym->elemental
944 || e->value.function.isym->pure
945 || e->value.function.isym->inquiry
946 || e->value.function.isym->transformational))
947 return 1;
949 return 0;
951 case EXPR_CONSTANT:
952 case EXPR_NULL:
953 return 1;
955 case EXPR_SUBSTRING:
956 return e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
957 && gfc_is_constant_expr (e->ref->u.ss.end));
959 case EXPR_ARRAY:
960 case EXPR_STRUCTURE:
961 c = gfc_constructor_first (e->value.constructor);
962 if ((e->expr_type == EXPR_ARRAY) && c && c->iterator)
963 return gfc_constant_ac (e);
965 for (; c; c = gfc_constructor_next (c))
966 if (!gfc_is_constant_expr (c->expr))
967 return 0;
969 return 1;
972 default:
973 gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
974 return 0;
979 /* Is true if an array reference is followed by a component or substring
980 reference. */
981 bool
982 is_subref_array (gfc_expr * e)
984 gfc_ref * ref;
985 bool seen_array;
987 if (e->expr_type != EXPR_VARIABLE)
988 return false;
990 if (e->symtree->n.sym->attr.subref_array_pointer)
991 return true;
993 seen_array = false;
994 for (ref = e->ref; ref; ref = ref->next)
996 if (ref->type == REF_ARRAY
997 && ref->u.ar.type != AR_ELEMENT)
998 seen_array = true;
1000 if (seen_array
1001 && ref->type != REF_ARRAY)
1002 return seen_array;
1004 return false;
1008 /* Try to collapse intrinsic expressions. */
1010 static gfc_try
1011 simplify_intrinsic_op (gfc_expr *p, int type)
1013 gfc_intrinsic_op op;
1014 gfc_expr *op1, *op2, *result;
1016 if (p->value.op.op == INTRINSIC_USER)
1017 return SUCCESS;
1019 op1 = p->value.op.op1;
1020 op2 = p->value.op.op2;
1021 op = p->value.op.op;
1023 if (gfc_simplify_expr (op1, type) == FAILURE)
1024 return FAILURE;
1025 if (gfc_simplify_expr (op2, type) == FAILURE)
1026 return FAILURE;
1028 if (!gfc_is_constant_expr (op1)
1029 || (op2 != NULL && !gfc_is_constant_expr (op2)))
1030 return SUCCESS;
1032 /* Rip p apart. */
1033 p->value.op.op1 = NULL;
1034 p->value.op.op2 = NULL;
1036 switch (op)
1038 case INTRINSIC_PARENTHESES:
1039 result = gfc_parentheses (op1);
1040 break;
1042 case INTRINSIC_UPLUS:
1043 result = gfc_uplus (op1);
1044 break;
1046 case INTRINSIC_UMINUS:
1047 result = gfc_uminus (op1);
1048 break;
1050 case INTRINSIC_PLUS:
1051 result = gfc_add (op1, op2);
1052 break;
1054 case INTRINSIC_MINUS:
1055 result = gfc_subtract (op1, op2);
1056 break;
1058 case INTRINSIC_TIMES:
1059 result = gfc_multiply (op1, op2);
1060 break;
1062 case INTRINSIC_DIVIDE:
1063 result = gfc_divide (op1, op2);
1064 break;
1066 case INTRINSIC_POWER:
1067 result = gfc_power (op1, op2);
1068 break;
1070 case INTRINSIC_CONCAT:
1071 result = gfc_concat (op1, op2);
1072 break;
1074 case INTRINSIC_EQ:
1075 case INTRINSIC_EQ_OS:
1076 result = gfc_eq (op1, op2, op);
1077 break;
1079 case INTRINSIC_NE:
1080 case INTRINSIC_NE_OS:
1081 result = gfc_ne (op1, op2, op);
1082 break;
1084 case INTRINSIC_GT:
1085 case INTRINSIC_GT_OS:
1086 result = gfc_gt (op1, op2, op);
1087 break;
1089 case INTRINSIC_GE:
1090 case INTRINSIC_GE_OS:
1091 result = gfc_ge (op1, op2, op);
1092 break;
1094 case INTRINSIC_LT:
1095 case INTRINSIC_LT_OS:
1096 result = gfc_lt (op1, op2, op);
1097 break;
1099 case INTRINSIC_LE:
1100 case INTRINSIC_LE_OS:
1101 result = gfc_le (op1, op2, op);
1102 break;
1104 case INTRINSIC_NOT:
1105 result = gfc_not (op1);
1106 break;
1108 case INTRINSIC_AND:
1109 result = gfc_and (op1, op2);
1110 break;
1112 case INTRINSIC_OR:
1113 result = gfc_or (op1, op2);
1114 break;
1116 case INTRINSIC_EQV:
1117 result = gfc_eqv (op1, op2);
1118 break;
1120 case INTRINSIC_NEQV:
1121 result = gfc_neqv (op1, op2);
1122 break;
1124 default:
1125 gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
1128 if (result == NULL)
1130 gfc_free_expr (op1);
1131 gfc_free_expr (op2);
1132 return FAILURE;
1135 result->rank = p->rank;
1136 result->where = p->where;
1137 gfc_replace_expr (p, result);
1139 return SUCCESS;
1143 /* Subroutine to simplify constructor expressions. Mutually recursive
1144 with gfc_simplify_expr(). */
1146 static gfc_try
1147 simplify_constructor (gfc_constructor_base base, int type)
1149 gfc_constructor *c;
1150 gfc_expr *p;
1152 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1154 if (c->iterator
1155 && (gfc_simplify_expr (c->iterator->start, type) == FAILURE
1156 || gfc_simplify_expr (c->iterator->end, type) == FAILURE
1157 || gfc_simplify_expr (c->iterator->step, type) == FAILURE))
1158 return FAILURE;
1160 if (c->expr)
1162 /* Try and simplify a copy. Replace the original if successful
1163 but keep going through the constructor at all costs. Not
1164 doing so can make a dog's dinner of complicated things. */
1165 p = gfc_copy_expr (c->expr);
1167 if (gfc_simplify_expr (p, type) == FAILURE)
1169 gfc_free_expr (p);
1170 continue;
1173 gfc_replace_expr (c->expr, p);
1177 return SUCCESS;
1181 /* Pull a single array element out of an array constructor. */
1183 static gfc_try
1184 find_array_element (gfc_constructor_base base, gfc_array_ref *ar,
1185 gfc_constructor **rval)
1187 unsigned long nelemen;
1188 int i;
1189 mpz_t delta;
1190 mpz_t offset;
1191 mpz_t span;
1192 mpz_t tmp;
1193 gfc_constructor *cons;
1194 gfc_expr *e;
1195 gfc_try t;
1197 t = SUCCESS;
1198 e = NULL;
1200 mpz_init_set_ui (offset, 0);
1201 mpz_init (delta);
1202 mpz_init (tmp);
1203 mpz_init_set_ui (span, 1);
1204 for (i = 0; i < ar->dimen; i++)
1206 if (gfc_reduce_init_expr (ar->as->lower[i]) == FAILURE
1207 || gfc_reduce_init_expr (ar->as->upper[i]) == FAILURE)
1209 t = FAILURE;
1210 cons = NULL;
1211 goto depart;
1214 e = gfc_copy_expr (ar->start[i]);
1215 if (e->expr_type != EXPR_CONSTANT)
1217 cons = NULL;
1218 goto depart;
1221 gcc_assert (ar->as->upper[i]->expr_type == EXPR_CONSTANT
1222 && ar->as->lower[i]->expr_type == EXPR_CONSTANT);
1224 /* Check the bounds. */
1225 if ((ar->as->upper[i]
1226 && mpz_cmp (e->value.integer,
1227 ar->as->upper[i]->value.integer) > 0)
1228 || (mpz_cmp (e->value.integer,
1229 ar->as->lower[i]->value.integer) < 0))
1231 gfc_error ("Index in dimension %d is out of bounds "
1232 "at %L", i + 1, &ar->c_where[i]);
1233 cons = NULL;
1234 t = FAILURE;
1235 goto depart;
1238 mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
1239 mpz_mul (delta, delta, span);
1240 mpz_add (offset, offset, delta);
1242 mpz_set_ui (tmp, 1);
1243 mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
1244 mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
1245 mpz_mul (span, span, tmp);
1248 for (cons = gfc_constructor_first (base), nelemen = mpz_get_ui (offset);
1249 cons && nelemen > 0; cons = gfc_constructor_next (cons), nelemen--)
1251 if (cons->iterator)
1253 cons = NULL;
1254 goto depart;
1258 depart:
1259 mpz_clear (delta);
1260 mpz_clear (offset);
1261 mpz_clear (span);
1262 mpz_clear (tmp);
1263 if (e)
1264 gfc_free_expr (e);
1265 *rval = cons;
1266 return t;
1270 /* Find a component of a structure constructor. */
1272 static gfc_constructor *
1273 find_component_ref (gfc_constructor_base base, gfc_ref *ref)
1275 gfc_component *comp;
1276 gfc_component *pick;
1277 gfc_constructor *c = gfc_constructor_first (base);
1279 comp = ref->u.c.sym->components;
1280 pick = ref->u.c.component;
1281 while (comp != pick)
1283 comp = comp->next;
1284 c = gfc_constructor_next (c);
1287 return c;
1291 /* Replace an expression with the contents of a constructor, removing
1292 the subobject reference in the process. */
1294 static void
1295 remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
1297 gfc_expr *e;
1299 if (cons)
1301 e = cons->expr;
1302 cons->expr = NULL;
1304 else
1305 e = gfc_copy_expr (p);
1306 e->ref = p->ref->next;
1307 p->ref->next = NULL;
1308 gfc_replace_expr (p, e);
1312 /* Pull an array section out of an array constructor. */
1314 static gfc_try
1315 find_array_section (gfc_expr *expr, gfc_ref *ref)
1317 int idx;
1318 int rank;
1319 int d;
1320 int shape_i;
1321 int limit;
1322 long unsigned one = 1;
1323 bool incr_ctr;
1324 mpz_t start[GFC_MAX_DIMENSIONS];
1325 mpz_t end[GFC_MAX_DIMENSIONS];
1326 mpz_t stride[GFC_MAX_DIMENSIONS];
1327 mpz_t delta[GFC_MAX_DIMENSIONS];
1328 mpz_t ctr[GFC_MAX_DIMENSIONS];
1329 mpz_t delta_mpz;
1330 mpz_t tmp_mpz;
1331 mpz_t nelts;
1332 mpz_t ptr;
1333 gfc_constructor_base base;
1334 gfc_constructor *cons, *vecsub[GFC_MAX_DIMENSIONS];
1335 gfc_expr *begin;
1336 gfc_expr *finish;
1337 gfc_expr *step;
1338 gfc_expr *upper;
1339 gfc_expr *lower;
1340 gfc_try t;
1342 t = SUCCESS;
1344 base = expr->value.constructor;
1345 expr->value.constructor = NULL;
1347 rank = ref->u.ar.as->rank;
1349 if (expr->shape == NULL)
1350 expr->shape = gfc_get_shape (rank);
1352 mpz_init_set_ui (delta_mpz, one);
1353 mpz_init_set_ui (nelts, one);
1354 mpz_init (tmp_mpz);
1356 /* Do the initialization now, so that we can cleanup without
1357 keeping track of where we were. */
1358 for (d = 0; d < rank; d++)
1360 mpz_init (delta[d]);
1361 mpz_init (start[d]);
1362 mpz_init (end[d]);
1363 mpz_init (ctr[d]);
1364 mpz_init (stride[d]);
1365 vecsub[d] = NULL;
1368 /* Build the counters to clock through the array reference. */
1369 shape_i = 0;
1370 for (d = 0; d < rank; d++)
1372 /* Make this stretch of code easier on the eye! */
1373 begin = ref->u.ar.start[d];
1374 finish = ref->u.ar.end[d];
1375 step = ref->u.ar.stride[d];
1376 lower = ref->u.ar.as->lower[d];
1377 upper = ref->u.ar.as->upper[d];
1379 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1381 gfc_constructor *ci;
1382 gcc_assert (begin);
1384 if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
1386 t = FAILURE;
1387 goto cleanup;
1390 gcc_assert (begin->rank == 1);
1391 /* Zero-sized arrays have no shape and no elements, stop early. */
1392 if (!begin->shape)
1394 mpz_init_set_ui (nelts, 0);
1395 break;
1398 vecsub[d] = gfc_constructor_first (begin->value.constructor);
1399 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1400 mpz_mul (nelts, nelts, begin->shape[0]);
1401 mpz_set (expr->shape[shape_i++], begin->shape[0]);
1403 /* Check bounds. */
1404 for (ci = vecsub[d]; ci; ci = gfc_constructor_next (ci))
1406 if (mpz_cmp (ci->expr->value.integer, upper->value.integer) > 0
1407 || mpz_cmp (ci->expr->value.integer,
1408 lower->value.integer) < 0)
1410 gfc_error ("index in dimension %d is out of bounds "
1411 "at %L", d + 1, &ref->u.ar.c_where[d]);
1412 t = FAILURE;
1413 goto cleanup;
1417 else
1419 if ((begin && begin->expr_type != EXPR_CONSTANT)
1420 || (finish && finish->expr_type != EXPR_CONSTANT)
1421 || (step && step->expr_type != EXPR_CONSTANT))
1423 t = FAILURE;
1424 goto cleanup;
1427 /* Obtain the stride. */
1428 if (step)
1429 mpz_set (stride[d], step->value.integer);
1430 else
1431 mpz_set_ui (stride[d], one);
1433 if (mpz_cmp_ui (stride[d], 0) == 0)
1434 mpz_set_ui (stride[d], one);
1436 /* Obtain the start value for the index. */
1437 if (begin)
1438 mpz_set (start[d], begin->value.integer);
1439 else
1440 mpz_set (start[d], lower->value.integer);
1442 mpz_set (ctr[d], start[d]);
1444 /* Obtain the end value for the index. */
1445 if (finish)
1446 mpz_set (end[d], finish->value.integer);
1447 else
1448 mpz_set (end[d], upper->value.integer);
1450 /* Separate 'if' because elements sometimes arrive with
1451 non-null end. */
1452 if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
1453 mpz_set (end [d], begin->value.integer);
1455 /* Check the bounds. */
1456 if (mpz_cmp (ctr[d], upper->value.integer) > 0
1457 || mpz_cmp (end[d], upper->value.integer) > 0
1458 || mpz_cmp (ctr[d], lower->value.integer) < 0
1459 || mpz_cmp (end[d], lower->value.integer) < 0)
1461 gfc_error ("index in dimension %d is out of bounds "
1462 "at %L", d + 1, &ref->u.ar.c_where[d]);
1463 t = FAILURE;
1464 goto cleanup;
1467 /* Calculate the number of elements and the shape. */
1468 mpz_set (tmp_mpz, stride[d]);
1469 mpz_add (tmp_mpz, end[d], tmp_mpz);
1470 mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
1471 mpz_div (tmp_mpz, tmp_mpz, stride[d]);
1472 mpz_mul (nelts, nelts, tmp_mpz);
1474 /* An element reference reduces the rank of the expression; don't
1475 add anything to the shape array. */
1476 if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
1477 mpz_set (expr->shape[shape_i++], tmp_mpz);
1480 /* Calculate the 'stride' (=delta) for conversion of the
1481 counter values into the index along the constructor. */
1482 mpz_set (delta[d], delta_mpz);
1483 mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
1484 mpz_add_ui (tmp_mpz, tmp_mpz, one);
1485 mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
1488 mpz_init (ptr);
1489 cons = gfc_constructor_first (base);
1491 /* Now clock through the array reference, calculating the index in
1492 the source constructor and transferring the elements to the new
1493 constructor. */
1494 for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
1496 mpz_init_set_ui (ptr, 0);
1498 incr_ctr = true;
1499 for (d = 0; d < rank; d++)
1501 mpz_set (tmp_mpz, ctr[d]);
1502 mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
1503 mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
1504 mpz_add (ptr, ptr, tmp_mpz);
1506 if (!incr_ctr) continue;
1508 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1510 gcc_assert(vecsub[d]);
1512 if (!gfc_constructor_next (vecsub[d]))
1513 vecsub[d] = gfc_constructor_first (ref->u.ar.start[d]->value.constructor);
1514 else
1516 vecsub[d] = gfc_constructor_next (vecsub[d]);
1517 incr_ctr = false;
1519 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1521 else
1523 mpz_add (ctr[d], ctr[d], stride[d]);
1525 if (mpz_cmp_ui (stride[d], 0) > 0
1526 ? mpz_cmp (ctr[d], end[d]) > 0
1527 : mpz_cmp (ctr[d], end[d]) < 0)
1528 mpz_set (ctr[d], start[d]);
1529 else
1530 incr_ctr = false;
1534 limit = mpz_get_ui (ptr);
1535 if (limit >= gfc_option.flag_max_array_constructor)
1537 gfc_error ("The number of elements in the array constructor "
1538 "at %L requires an increase of the allowed %d "
1539 "upper limit. See -fmax-array-constructor "
1540 "option", &expr->where,
1541 gfc_option.flag_max_array_constructor);
1542 return FAILURE;
1545 cons = gfc_constructor_lookup (base, limit);
1546 gcc_assert (cons);
1547 gfc_constructor_append_expr (&expr->value.constructor,
1548 gfc_copy_expr (cons->expr), NULL);
1551 mpz_clear (ptr);
1553 cleanup:
1555 mpz_clear (delta_mpz);
1556 mpz_clear (tmp_mpz);
1557 mpz_clear (nelts);
1558 for (d = 0; d < rank; d++)
1560 mpz_clear (delta[d]);
1561 mpz_clear (start[d]);
1562 mpz_clear (end[d]);
1563 mpz_clear (ctr[d]);
1564 mpz_clear (stride[d]);
1566 gfc_constructor_free (base);
1567 return t;
1570 /* Pull a substring out of an expression. */
1572 static gfc_try
1573 find_substring_ref (gfc_expr *p, gfc_expr **newp)
1575 int end;
1576 int start;
1577 int length;
1578 gfc_char_t *chr;
1580 if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
1581 || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
1582 return FAILURE;
1584 *newp = gfc_copy_expr (p);
1585 free ((*newp)->value.character.string);
1587 end = (int) mpz_get_ui (p->ref->u.ss.end->value.integer);
1588 start = (int) mpz_get_ui (p->ref->u.ss.start->value.integer);
1589 length = end - start + 1;
1591 chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1);
1592 (*newp)->value.character.length = length;
1593 memcpy (chr, &p->value.character.string[start - 1],
1594 length * sizeof (gfc_char_t));
1595 chr[length] = '\0';
1596 return SUCCESS;
1601 /* Simplify a subobject reference of a constructor. This occurs when
1602 parameter variable values are substituted. */
1604 static gfc_try
1605 simplify_const_ref (gfc_expr *p)
1607 gfc_constructor *cons, *c;
1608 gfc_expr *newp;
1609 gfc_ref *last_ref;
1611 while (p->ref)
1613 switch (p->ref->type)
1615 case REF_ARRAY:
1616 switch (p->ref->u.ar.type)
1618 case AR_ELEMENT:
1619 /* <type/kind spec>, parameter :: x(<int>) = scalar_expr
1620 will generate this. */
1621 if (p->expr_type != EXPR_ARRAY)
1623 remove_subobject_ref (p, NULL);
1624 break;
1626 if (find_array_element (p->value.constructor, &p->ref->u.ar,
1627 &cons) == FAILURE)
1628 return FAILURE;
1630 if (!cons)
1631 return SUCCESS;
1633 remove_subobject_ref (p, cons);
1634 break;
1636 case AR_SECTION:
1637 if (find_array_section (p, p->ref) == FAILURE)
1638 return FAILURE;
1639 p->ref->u.ar.type = AR_FULL;
1641 /* Fall through. */
1643 case AR_FULL:
1644 if (p->ref->next != NULL
1645 && (p->ts.type == BT_CHARACTER || p->ts.type == BT_DERIVED))
1647 for (c = gfc_constructor_first (p->value.constructor);
1648 c; c = gfc_constructor_next (c))
1650 c->expr->ref = gfc_copy_ref (p->ref->next);
1651 if (simplify_const_ref (c->expr) == FAILURE)
1652 return FAILURE;
1655 if (p->ts.type == BT_DERIVED
1656 && p->ref->next
1657 && (c = gfc_constructor_first (p->value.constructor)))
1659 /* There may have been component references. */
1660 p->ts = c->expr->ts;
1663 last_ref = p->ref;
1664 for (; last_ref->next; last_ref = last_ref->next) {};
1666 if (p->ts.type == BT_CHARACTER
1667 && last_ref->type == REF_SUBSTRING)
1669 /* If this is a CHARACTER array and we possibly took
1670 a substring out of it, update the type-spec's
1671 character length according to the first element
1672 (as all should have the same length). */
1673 int string_len;
1674 if ((c = gfc_constructor_first (p->value.constructor)))
1676 const gfc_expr* first = c->expr;
1677 gcc_assert (first->expr_type == EXPR_CONSTANT);
1678 gcc_assert (first->ts.type == BT_CHARACTER);
1679 string_len = first->value.character.length;
1681 else
1682 string_len = 0;
1684 if (!p->ts.u.cl)
1685 p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns,
1686 NULL);
1687 else
1688 gfc_free_expr (p->ts.u.cl->length);
1690 p->ts.u.cl->length
1691 = gfc_get_int_expr (gfc_default_integer_kind,
1692 NULL, string_len);
1695 gfc_free_ref_list (p->ref);
1696 p->ref = NULL;
1697 break;
1699 default:
1700 return SUCCESS;
1703 break;
1705 case REF_COMPONENT:
1706 cons = find_component_ref (p->value.constructor, p->ref);
1707 remove_subobject_ref (p, cons);
1708 break;
1710 case REF_SUBSTRING:
1711 if (find_substring_ref (p, &newp) == FAILURE)
1712 return FAILURE;
1714 gfc_replace_expr (p, newp);
1715 gfc_free_ref_list (p->ref);
1716 p->ref = NULL;
1717 break;
1721 return SUCCESS;
1725 /* Simplify a chain of references. */
1727 static gfc_try
1728 simplify_ref_chain (gfc_ref *ref, int type)
1730 int n;
1732 for (; ref; ref = ref->next)
1734 switch (ref->type)
1736 case REF_ARRAY:
1737 for (n = 0; n < ref->u.ar.dimen; n++)
1739 if (gfc_simplify_expr (ref->u.ar.start[n], type) == FAILURE)
1740 return FAILURE;
1741 if (gfc_simplify_expr (ref->u.ar.end[n], type) == FAILURE)
1742 return FAILURE;
1743 if (gfc_simplify_expr (ref->u.ar.stride[n], type) == FAILURE)
1744 return FAILURE;
1746 break;
1748 case REF_SUBSTRING:
1749 if (gfc_simplify_expr (ref->u.ss.start, type) == FAILURE)
1750 return FAILURE;
1751 if (gfc_simplify_expr (ref->u.ss.end, type) == FAILURE)
1752 return FAILURE;
1753 break;
1755 default:
1756 break;
1759 return SUCCESS;
1763 /* Try to substitute the value of a parameter variable. */
1765 static gfc_try
1766 simplify_parameter_variable (gfc_expr *p, int type)
1768 gfc_expr *e;
1769 gfc_try t;
1771 e = gfc_copy_expr (p->symtree->n.sym->value);
1772 if (e == NULL)
1773 return FAILURE;
1775 e->rank = p->rank;
1777 /* Do not copy subobject refs for constant. */
1778 if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
1779 e->ref = gfc_copy_ref (p->ref);
1780 t = gfc_simplify_expr (e, type);
1782 /* Only use the simplification if it eliminated all subobject references. */
1783 if (t == SUCCESS && !e->ref)
1784 gfc_replace_expr (p, e);
1785 else
1786 gfc_free_expr (e);
1788 return t;
1791 /* Given an expression, simplify it by collapsing constant
1792 expressions. Most simplification takes place when the expression
1793 tree is being constructed. If an intrinsic function is simplified
1794 at some point, we get called again to collapse the result against
1795 other constants.
1797 We work by recursively simplifying expression nodes, simplifying
1798 intrinsic functions where possible, which can lead to further
1799 constant collapsing. If an operator has constant operand(s), we
1800 rip the expression apart, and rebuild it, hoping that it becomes
1801 something simpler.
1803 The expression type is defined for:
1804 0 Basic expression parsing
1805 1 Simplifying array constructors -- will substitute
1806 iterator values.
1807 Returns FAILURE on error, SUCCESS otherwise.
1808 NOTE: Will return SUCCESS even if the expression can not be simplified. */
1810 gfc_try
1811 gfc_simplify_expr (gfc_expr *p, int type)
1813 gfc_actual_arglist *ap;
1815 if (p == NULL)
1816 return SUCCESS;
1818 switch (p->expr_type)
1820 case EXPR_CONSTANT:
1821 case EXPR_NULL:
1822 break;
1824 case EXPR_FUNCTION:
1825 for (ap = p->value.function.actual; ap; ap = ap->next)
1826 if (gfc_simplify_expr (ap->expr, type) == FAILURE)
1827 return FAILURE;
1829 if (p->value.function.isym != NULL
1830 && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
1831 return FAILURE;
1833 break;
1835 case EXPR_SUBSTRING:
1836 if (simplify_ref_chain (p->ref, type) == FAILURE)
1837 return FAILURE;
1839 if (gfc_is_constant_expr (p))
1841 gfc_char_t *s;
1842 int start, end;
1844 start = 0;
1845 if (p->ref && p->ref->u.ss.start)
1847 gfc_extract_int (p->ref->u.ss.start, &start);
1848 start--; /* Convert from one-based to zero-based. */
1851 end = p->value.character.length;
1852 if (p->ref && p->ref->u.ss.end)
1853 gfc_extract_int (p->ref->u.ss.end, &end);
1855 if (end < start)
1856 end = start;
1858 s = gfc_get_wide_string (end - start + 2);
1859 memcpy (s, p->value.character.string + start,
1860 (end - start) * sizeof (gfc_char_t));
1861 s[end - start + 1] = '\0'; /* TODO: C-style string. */
1862 free (p->value.character.string);
1863 p->value.character.string = s;
1864 p->value.character.length = end - start;
1865 p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1866 p->ts.u.cl->length = gfc_get_int_expr (gfc_default_integer_kind,
1867 NULL,
1868 p->value.character.length);
1869 gfc_free_ref_list (p->ref);
1870 p->ref = NULL;
1871 p->expr_type = EXPR_CONSTANT;
1873 break;
1875 case EXPR_OP:
1876 if (simplify_intrinsic_op (p, type) == FAILURE)
1877 return FAILURE;
1878 break;
1880 case EXPR_VARIABLE:
1881 /* Only substitute array parameter variables if we are in an
1882 initialization expression, or we want a subsection. */
1883 if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
1884 && (gfc_init_expr_flag || p->ref
1885 || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
1887 if (simplify_parameter_variable (p, type) == FAILURE)
1888 return FAILURE;
1889 break;
1892 if (type == 1)
1894 gfc_simplify_iterator_var (p);
1897 /* Simplify subcomponent references. */
1898 if (simplify_ref_chain (p->ref, type) == FAILURE)
1899 return FAILURE;
1901 break;
1903 case EXPR_STRUCTURE:
1904 case EXPR_ARRAY:
1905 if (simplify_ref_chain (p->ref, type) == FAILURE)
1906 return FAILURE;
1908 if (simplify_constructor (p->value.constructor, type) == FAILURE)
1909 return FAILURE;
1911 if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
1912 && p->ref->u.ar.type == AR_FULL)
1913 gfc_expand_constructor (p, false);
1915 if (simplify_const_ref (p) == FAILURE)
1916 return FAILURE;
1918 break;
1920 case EXPR_COMPCALL:
1921 case EXPR_PPC:
1922 gcc_unreachable ();
1923 break;
1926 return SUCCESS;
1930 /* Returns the type of an expression with the exception that iterator
1931 variables are automatically integers no matter what else they may
1932 be declared as. */
1934 static bt
1935 et0 (gfc_expr *e)
1937 if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e) == SUCCESS)
1938 return BT_INTEGER;
1940 return e->ts.type;
1944 /* Scalarize an expression for an elemental intrinsic call. */
1946 static gfc_try
1947 scalarize_intrinsic_call (gfc_expr *e)
1949 gfc_actual_arglist *a, *b;
1950 gfc_constructor_base ctor;
1951 gfc_constructor *args[5];
1952 gfc_constructor *ci, *new_ctor;
1953 gfc_expr *expr, *old;
1954 int n, i, rank[5], array_arg;
1956 /* Find which, if any, arguments are arrays. Assume that the old
1957 expression carries the type information and that the first arg
1958 that is an array expression carries all the shape information.*/
1959 n = array_arg = 0;
1960 a = e->value.function.actual;
1961 for (; a; a = a->next)
1963 n++;
1964 if (a->expr->expr_type != EXPR_ARRAY)
1965 continue;
1966 array_arg = n;
1967 expr = gfc_copy_expr (a->expr);
1968 break;
1971 if (!array_arg)
1972 return FAILURE;
1974 old = gfc_copy_expr (e);
1976 gfc_constructor_free (expr->value.constructor);
1977 expr->value.constructor = NULL;
1978 expr->ts = old->ts;
1979 expr->where = old->where;
1980 expr->expr_type = EXPR_ARRAY;
1982 /* Copy the array argument constructors into an array, with nulls
1983 for the scalars. */
1984 n = 0;
1985 a = old->value.function.actual;
1986 for (; a; a = a->next)
1988 /* Check that this is OK for an initialization expression. */
1989 if (a->expr && gfc_check_init_expr (a->expr) == FAILURE)
1990 goto cleanup;
1992 rank[n] = 0;
1993 if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
1995 rank[n] = a->expr->rank;
1996 ctor = a->expr->symtree->n.sym->value->value.constructor;
1997 args[n] = gfc_constructor_first (ctor);
1999 else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
2001 if (a->expr->rank)
2002 rank[n] = a->expr->rank;
2003 else
2004 rank[n] = 1;
2005 ctor = gfc_constructor_copy (a->expr->value.constructor);
2006 args[n] = gfc_constructor_first (ctor);
2008 else
2009 args[n] = NULL;
2011 n++;
2015 /* Using the array argument as the master, step through the array
2016 calling the function for each element and advancing the array
2017 constructors together. */
2018 for (ci = args[array_arg - 1]; ci; ci = gfc_constructor_next (ci))
2020 new_ctor = gfc_constructor_append_expr (&expr->value.constructor,
2021 gfc_copy_expr (old), NULL);
2023 gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
2024 a = NULL;
2025 b = old->value.function.actual;
2026 for (i = 0; i < n; i++)
2028 if (a == NULL)
2029 new_ctor->expr->value.function.actual
2030 = a = gfc_get_actual_arglist ();
2031 else
2033 a->next = gfc_get_actual_arglist ();
2034 a = a->next;
2037 if (args[i])
2038 a->expr = gfc_copy_expr (args[i]->expr);
2039 else
2040 a->expr = gfc_copy_expr (b->expr);
2042 b = b->next;
2045 /* Simplify the function calls. If the simplification fails, the
2046 error will be flagged up down-stream or the library will deal
2047 with it. */
2048 gfc_simplify_expr (new_ctor->expr, 0);
2050 for (i = 0; i < n; i++)
2051 if (args[i])
2052 args[i] = gfc_constructor_next (args[i]);
2054 for (i = 1; i < n; i++)
2055 if (rank[i] && ((args[i] != NULL && args[array_arg - 1] == NULL)
2056 || (args[i] == NULL && args[array_arg - 1] != NULL)))
2057 goto compliance;
2060 free_expr0 (e);
2061 *e = *expr;
2062 gfc_free_expr (old);
2063 return SUCCESS;
2065 compliance:
2066 gfc_error_now ("elemental function arguments at %C are not compliant");
2068 cleanup:
2069 gfc_free_expr (expr);
2070 gfc_free_expr (old);
2071 return FAILURE;
2075 static gfc_try
2076 check_intrinsic_op (gfc_expr *e, gfc_try (*check_function) (gfc_expr *))
2078 gfc_expr *op1 = e->value.op.op1;
2079 gfc_expr *op2 = e->value.op.op2;
2081 if ((*check_function) (op1) == FAILURE)
2082 return FAILURE;
2084 switch (e->value.op.op)
2086 case INTRINSIC_UPLUS:
2087 case INTRINSIC_UMINUS:
2088 if (!numeric_type (et0 (op1)))
2089 goto not_numeric;
2090 break;
2092 case INTRINSIC_EQ:
2093 case INTRINSIC_EQ_OS:
2094 case INTRINSIC_NE:
2095 case INTRINSIC_NE_OS:
2096 case INTRINSIC_GT:
2097 case INTRINSIC_GT_OS:
2098 case INTRINSIC_GE:
2099 case INTRINSIC_GE_OS:
2100 case INTRINSIC_LT:
2101 case INTRINSIC_LT_OS:
2102 case INTRINSIC_LE:
2103 case INTRINSIC_LE_OS:
2104 if ((*check_function) (op2) == FAILURE)
2105 return FAILURE;
2107 if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
2108 && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
2110 gfc_error ("Numeric or CHARACTER operands are required in "
2111 "expression at %L", &e->where);
2112 return FAILURE;
2114 break;
2116 case INTRINSIC_PLUS:
2117 case INTRINSIC_MINUS:
2118 case INTRINSIC_TIMES:
2119 case INTRINSIC_DIVIDE:
2120 case INTRINSIC_POWER:
2121 if ((*check_function) (op2) == FAILURE)
2122 return FAILURE;
2124 if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
2125 goto not_numeric;
2127 break;
2129 case INTRINSIC_CONCAT:
2130 if ((*check_function) (op2) == FAILURE)
2131 return FAILURE;
2133 if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
2135 gfc_error ("Concatenation operator in expression at %L "
2136 "must have two CHARACTER operands", &op1->where);
2137 return FAILURE;
2140 if (op1->ts.kind != op2->ts.kind)
2142 gfc_error ("Concat operator at %L must concatenate strings of the "
2143 "same kind", &e->where);
2144 return FAILURE;
2147 break;
2149 case INTRINSIC_NOT:
2150 if (et0 (op1) != BT_LOGICAL)
2152 gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
2153 "operand", &op1->where);
2154 return FAILURE;
2157 break;
2159 case INTRINSIC_AND:
2160 case INTRINSIC_OR:
2161 case INTRINSIC_EQV:
2162 case INTRINSIC_NEQV:
2163 if ((*check_function) (op2) == FAILURE)
2164 return FAILURE;
2166 if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
2168 gfc_error ("LOGICAL operands are required in expression at %L",
2169 &e->where);
2170 return FAILURE;
2173 break;
2175 case INTRINSIC_PARENTHESES:
2176 break;
2178 default:
2179 gfc_error ("Only intrinsic operators can be used in expression at %L",
2180 &e->where);
2181 return FAILURE;
2184 return SUCCESS;
2186 not_numeric:
2187 gfc_error ("Numeric operands are required in expression at %L", &e->where);
2189 return FAILURE;
2192 /* F2003, 7.1.7 (3): In init expression, allocatable components
2193 must not be data-initialized. */
2194 static gfc_try
2195 check_alloc_comp_init (gfc_expr *e)
2197 gfc_component *comp;
2198 gfc_constructor *ctor;
2200 gcc_assert (e->expr_type == EXPR_STRUCTURE);
2201 gcc_assert (e->ts.type == BT_DERIVED);
2203 for (comp = e->ts.u.derived->components,
2204 ctor = gfc_constructor_first (e->value.constructor);
2205 comp; comp = comp->next, ctor = gfc_constructor_next (ctor))
2207 if (comp->attr.allocatable
2208 && ctor->expr->expr_type != EXPR_NULL)
2210 gfc_error("Invalid initialization expression for ALLOCATABLE "
2211 "component '%s' in structure constructor at %L",
2212 comp->name, &ctor->expr->where);
2213 return FAILURE;
2217 return SUCCESS;
2220 static match
2221 check_init_expr_arguments (gfc_expr *e)
2223 gfc_actual_arglist *ap;
2225 for (ap = e->value.function.actual; ap; ap = ap->next)
2226 if (gfc_check_init_expr (ap->expr) == FAILURE)
2227 return MATCH_ERROR;
2229 return MATCH_YES;
2232 static gfc_try check_restricted (gfc_expr *);
2234 /* F95, 7.1.6.1, Initialization expressions, (7)
2235 F2003, 7.1.7 Initialization expression, (8) */
2237 static match
2238 check_inquiry (gfc_expr *e, int not_restricted)
2240 const char *name;
2241 const char *const *functions;
2243 static const char *const inquiry_func_f95[] = {
2244 "lbound", "shape", "size", "ubound",
2245 "bit_size", "len", "kind",
2246 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2247 "precision", "radix", "range", "tiny",
2248 NULL
2251 static const char *const inquiry_func_f2003[] = {
2252 "lbound", "shape", "size", "ubound",
2253 "bit_size", "len", "kind",
2254 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2255 "precision", "radix", "range", "tiny",
2256 "new_line", NULL
2259 int i;
2260 gfc_actual_arglist *ap;
2262 if (!e->value.function.isym
2263 || !e->value.function.isym->inquiry)
2264 return MATCH_NO;
2266 /* An undeclared parameter will get us here (PR25018). */
2267 if (e->symtree == NULL)
2268 return MATCH_NO;
2270 name = e->symtree->n.sym->name;
2272 functions = (gfc_option.warn_std & GFC_STD_F2003)
2273 ? inquiry_func_f2003 : inquiry_func_f95;
2275 for (i = 0; functions[i]; i++)
2276 if (strcmp (functions[i], name) == 0)
2277 break;
2279 if (functions[i] == NULL)
2280 return MATCH_ERROR;
2282 /* At this point we have an inquiry function with a variable argument. The
2283 type of the variable might be undefined, but we need it now, because the
2284 arguments of these functions are not allowed to be undefined. */
2286 for (ap = e->value.function.actual; ap; ap = ap->next)
2288 if (!ap->expr)
2289 continue;
2291 if (ap->expr->ts.type == BT_UNKNOWN)
2293 if (ap->expr->symtree->n.sym->ts.type == BT_UNKNOWN
2294 && gfc_set_default_type (ap->expr->symtree->n.sym, 0, gfc_current_ns)
2295 == FAILURE)
2296 return MATCH_NO;
2298 ap->expr->ts = ap->expr->symtree->n.sym->ts;
2301 /* Assumed character length will not reduce to a constant expression
2302 with LEN, as required by the standard. */
2303 if (i == 5 && not_restricted
2304 && ap->expr->symtree->n.sym->ts.type == BT_CHARACTER
2305 && (ap->expr->symtree->n.sym->ts.u.cl->length == NULL
2306 || ap->expr->symtree->n.sym->ts.deferred))
2308 gfc_error ("Assumed or deferred character length variable '%s' "
2309 " in constant expression at %L",
2310 ap->expr->symtree->n.sym->name,
2311 &ap->expr->where);
2312 return MATCH_ERROR;
2314 else if (not_restricted && gfc_check_init_expr (ap->expr) == FAILURE)
2315 return MATCH_ERROR;
2317 if (not_restricted == 0
2318 && ap->expr->expr_type != EXPR_VARIABLE
2319 && check_restricted (ap->expr) == FAILURE)
2320 return MATCH_ERROR;
2322 if (not_restricted == 0
2323 && ap->expr->expr_type == EXPR_VARIABLE
2324 && ap->expr->symtree->n.sym->attr.dummy
2325 && ap->expr->symtree->n.sym->attr.optional)
2326 return MATCH_NO;
2329 return MATCH_YES;
2333 /* F95, 7.1.6.1, Initialization expressions, (5)
2334 F2003, 7.1.7 Initialization expression, (5) */
2336 static match
2337 check_transformational (gfc_expr *e)
2339 static const char * const trans_func_f95[] = {
2340 "repeat", "reshape", "selected_int_kind",
2341 "selected_real_kind", "transfer", "trim", NULL
2344 static const char * const trans_func_f2003[] = {
2345 "all", "any", "count", "dot_product", "matmul", "null", "pack",
2346 "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
2347 "selected_real_kind", "spread", "sum", "transfer", "transpose",
2348 "trim", "unpack", NULL
2351 int i;
2352 const char *name;
2353 const char *const *functions;
2355 if (!e->value.function.isym
2356 || !e->value.function.isym->transformational)
2357 return MATCH_NO;
2359 name = e->symtree->n.sym->name;
2361 functions = (gfc_option.allow_std & GFC_STD_F2003)
2362 ? trans_func_f2003 : trans_func_f95;
2364 /* NULL() is dealt with below. */
2365 if (strcmp ("null", name) == 0)
2366 return MATCH_NO;
2368 for (i = 0; functions[i]; i++)
2369 if (strcmp (functions[i], name) == 0)
2370 break;
2372 if (functions[i] == NULL)
2374 gfc_error("transformational intrinsic '%s' at %L is not permitted "
2375 "in an initialization expression", name, &e->where);
2376 return MATCH_ERROR;
2379 return check_init_expr_arguments (e);
2383 /* F95, 7.1.6.1, Initialization expressions, (6)
2384 F2003, 7.1.7 Initialization expression, (6) */
2386 static match
2387 check_null (gfc_expr *e)
2389 if (strcmp ("null", e->symtree->n.sym->name) != 0)
2390 return MATCH_NO;
2392 return check_init_expr_arguments (e);
2396 static match
2397 check_elemental (gfc_expr *e)
2399 if (!e->value.function.isym
2400 || !e->value.function.isym->elemental)
2401 return MATCH_NO;
2403 if (e->ts.type != BT_INTEGER
2404 && e->ts.type != BT_CHARACTER
2405 && gfc_notify_std (GFC_STD_F2003, "Evaluation of "
2406 "nonstandard initialization expression at %L",
2407 &e->where) == FAILURE)
2408 return MATCH_ERROR;
2410 return check_init_expr_arguments (e);
2414 static match
2415 check_conversion (gfc_expr *e)
2417 if (!e->value.function.isym
2418 || !e->value.function.isym->conversion)
2419 return MATCH_NO;
2421 return check_init_expr_arguments (e);
2425 /* Verify that an expression is an initialization expression. A side
2426 effect is that the expression tree is reduced to a single constant
2427 node if all goes well. This would normally happen when the
2428 expression is constructed but function references are assumed to be
2429 intrinsics in the context of initialization expressions. If
2430 FAILURE is returned an error message has been generated. */
2432 gfc_try
2433 gfc_check_init_expr (gfc_expr *e)
2435 match m;
2436 gfc_try t;
2438 if (e == NULL)
2439 return SUCCESS;
2441 switch (e->expr_type)
2443 case EXPR_OP:
2444 t = check_intrinsic_op (e, gfc_check_init_expr);
2445 if (t == SUCCESS)
2446 t = gfc_simplify_expr (e, 0);
2448 break;
2450 case EXPR_FUNCTION:
2451 t = FAILURE;
2454 gfc_intrinsic_sym* isym;
2455 gfc_symbol* sym;
2457 sym = e->symtree->n.sym;
2458 if (!gfc_is_intrinsic (sym, 0, e->where)
2459 || (m = gfc_intrinsic_func_interface (e, 0)) != MATCH_YES)
2461 gfc_error ("Function '%s' in initialization expression at %L "
2462 "must be an intrinsic function",
2463 e->symtree->n.sym->name, &e->where);
2464 break;
2467 if ((m = check_conversion (e)) == MATCH_NO
2468 && (m = check_inquiry (e, 1)) == MATCH_NO
2469 && (m = check_null (e)) == MATCH_NO
2470 && (m = check_transformational (e)) == MATCH_NO
2471 && (m = check_elemental (e)) == MATCH_NO)
2473 gfc_error ("Intrinsic function '%s' at %L is not permitted "
2474 "in an initialization expression",
2475 e->symtree->n.sym->name, &e->where);
2476 m = MATCH_ERROR;
2479 if (m == MATCH_ERROR)
2480 return FAILURE;
2482 /* Try to scalarize an elemental intrinsic function that has an
2483 array argument. */
2484 isym = gfc_find_function (e->symtree->n.sym->name);
2485 if (isym && isym->elemental
2486 && (t = scalarize_intrinsic_call (e)) == SUCCESS)
2487 break;
2490 if (m == MATCH_YES)
2491 t = gfc_simplify_expr (e, 0);
2493 break;
2495 case EXPR_VARIABLE:
2496 t = SUCCESS;
2498 if (gfc_check_iter_variable (e) == SUCCESS)
2499 break;
2501 if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
2503 /* A PARAMETER shall not be used to define itself, i.e.
2504 REAL, PARAMETER :: x = transfer(0, x)
2505 is invalid. */
2506 if (!e->symtree->n.sym->value)
2508 gfc_error("PARAMETER '%s' is used at %L before its definition "
2509 "is complete", e->symtree->n.sym->name, &e->where);
2510 t = FAILURE;
2512 else
2513 t = simplify_parameter_variable (e, 0);
2515 break;
2518 if (gfc_in_match_data ())
2519 break;
2521 t = FAILURE;
2523 if (e->symtree->n.sym->as)
2525 switch (e->symtree->n.sym->as->type)
2527 case AS_ASSUMED_SIZE:
2528 gfc_error ("Assumed size array '%s' at %L is not permitted "
2529 "in an initialization expression",
2530 e->symtree->n.sym->name, &e->where);
2531 break;
2533 case AS_ASSUMED_SHAPE:
2534 gfc_error ("Assumed shape array '%s' at %L is not permitted "
2535 "in an initialization expression",
2536 e->symtree->n.sym->name, &e->where);
2537 break;
2539 case AS_DEFERRED:
2540 gfc_error ("Deferred array '%s' at %L is not permitted "
2541 "in an initialization expression",
2542 e->symtree->n.sym->name, &e->where);
2543 break;
2545 case AS_EXPLICIT:
2546 gfc_error ("Array '%s' at %L is a variable, which does "
2547 "not reduce to a constant expression",
2548 e->symtree->n.sym->name, &e->where);
2549 break;
2551 default:
2552 gcc_unreachable();
2555 else
2556 gfc_error ("Parameter '%s' at %L has not been declared or is "
2557 "a variable, which does not reduce to a constant "
2558 "expression", e->symtree->n.sym->name, &e->where);
2560 break;
2562 case EXPR_CONSTANT:
2563 case EXPR_NULL:
2564 t = SUCCESS;
2565 break;
2567 case EXPR_SUBSTRING:
2568 t = gfc_check_init_expr (e->ref->u.ss.start);
2569 if (t == FAILURE)
2570 break;
2572 t = gfc_check_init_expr (e->ref->u.ss.end);
2573 if (t == SUCCESS)
2574 t = gfc_simplify_expr (e, 0);
2576 break;
2578 case EXPR_STRUCTURE:
2579 t = e->ts.is_iso_c ? SUCCESS : FAILURE;
2580 if (t == SUCCESS)
2581 break;
2583 t = check_alloc_comp_init (e);
2584 if (t == FAILURE)
2585 break;
2587 t = gfc_check_constructor (e, gfc_check_init_expr);
2588 if (t == FAILURE)
2589 break;
2591 break;
2593 case EXPR_ARRAY:
2594 t = gfc_check_constructor (e, gfc_check_init_expr);
2595 if (t == FAILURE)
2596 break;
2598 t = gfc_expand_constructor (e, true);
2599 if (t == FAILURE)
2600 break;
2602 t = gfc_check_constructor_type (e);
2603 break;
2605 default:
2606 gfc_internal_error ("check_init_expr(): Unknown expression type");
2609 return t;
2612 /* Reduces a general expression to an initialization expression (a constant).
2613 This used to be part of gfc_match_init_expr.
2614 Note that this function doesn't free the given expression on FAILURE. */
2616 gfc_try
2617 gfc_reduce_init_expr (gfc_expr *expr)
2619 gfc_try t;
2621 gfc_init_expr_flag = true;
2622 t = gfc_resolve_expr (expr);
2623 if (t == SUCCESS)
2624 t = gfc_check_init_expr (expr);
2625 gfc_init_expr_flag = false;
2627 if (t == FAILURE)
2628 return FAILURE;
2630 if (expr->expr_type == EXPR_ARRAY)
2632 if (gfc_check_constructor_type (expr) == FAILURE)
2633 return FAILURE;
2634 if (gfc_expand_constructor (expr, true) == FAILURE)
2635 return FAILURE;
2638 return SUCCESS;
2642 /* Match an initialization expression. We work by first matching an
2643 expression, then reducing it to a constant. */
2645 match
2646 gfc_match_init_expr (gfc_expr **result)
2648 gfc_expr *expr;
2649 match m;
2650 gfc_try t;
2652 expr = NULL;
2654 gfc_init_expr_flag = true;
2656 m = gfc_match_expr (&expr);
2657 if (m != MATCH_YES)
2659 gfc_init_expr_flag = false;
2660 return m;
2663 t = gfc_reduce_init_expr (expr);
2664 if (t != SUCCESS)
2666 gfc_free_expr (expr);
2667 gfc_init_expr_flag = false;
2668 return MATCH_ERROR;
2671 *result = expr;
2672 gfc_init_expr_flag = false;
2674 return MATCH_YES;
2678 /* Given an actual argument list, test to see that each argument is a
2679 restricted expression and optionally if the expression type is
2680 integer or character. */
2682 static gfc_try
2683 restricted_args (gfc_actual_arglist *a)
2685 for (; a; a = a->next)
2687 if (check_restricted (a->expr) == FAILURE)
2688 return FAILURE;
2691 return SUCCESS;
2695 /************* Restricted/specification expressions *************/
2698 /* Make sure a non-intrinsic function is a specification function. */
2700 static gfc_try
2701 external_spec_function (gfc_expr *e)
2703 gfc_symbol *f;
2705 f = e->value.function.esym;
2707 if (f->attr.proc == PROC_ST_FUNCTION)
2709 gfc_error ("Specification function '%s' at %L cannot be a statement "
2710 "function", f->name, &e->where);
2711 return FAILURE;
2714 if (f->attr.proc == PROC_INTERNAL)
2716 gfc_error ("Specification function '%s' at %L cannot be an internal "
2717 "function", f->name, &e->where);
2718 return FAILURE;
2721 if (!f->attr.pure && !f->attr.elemental)
2723 gfc_error ("Specification function '%s' at %L must be PURE", f->name,
2724 &e->where);
2725 return FAILURE;
2728 if (f->attr.recursive)
2730 gfc_error ("Specification function '%s' at %L cannot be RECURSIVE",
2731 f->name, &e->where);
2732 return FAILURE;
2735 return restricted_args (e->value.function.actual);
2739 /* Check to see that a function reference to an intrinsic is a
2740 restricted expression. */
2742 static gfc_try
2743 restricted_intrinsic (gfc_expr *e)
2745 /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
2746 if (check_inquiry (e, 0) == MATCH_YES)
2747 return SUCCESS;
2749 return restricted_args (e->value.function.actual);
2753 /* Check the expressions of an actual arglist. Used by check_restricted. */
2755 static gfc_try
2756 check_arglist (gfc_actual_arglist* arg, gfc_try (*checker) (gfc_expr*))
2758 for (; arg; arg = arg->next)
2759 if (checker (arg->expr) == FAILURE)
2760 return FAILURE;
2762 return SUCCESS;
2766 /* Check the subscription expressions of a reference chain with a checking
2767 function; used by check_restricted. */
2769 static gfc_try
2770 check_references (gfc_ref* ref, gfc_try (*checker) (gfc_expr*))
2772 int dim;
2774 if (!ref)
2775 return SUCCESS;
2777 switch (ref->type)
2779 case REF_ARRAY:
2780 for (dim = 0; dim != ref->u.ar.dimen; ++dim)
2782 if (checker (ref->u.ar.start[dim]) == FAILURE)
2783 return FAILURE;
2784 if (checker (ref->u.ar.end[dim]) == FAILURE)
2785 return FAILURE;
2786 if (checker (ref->u.ar.stride[dim]) == FAILURE)
2787 return FAILURE;
2789 break;
2791 case REF_COMPONENT:
2792 /* Nothing needed, just proceed to next reference. */
2793 break;
2795 case REF_SUBSTRING:
2796 if (checker (ref->u.ss.start) == FAILURE)
2797 return FAILURE;
2798 if (checker (ref->u.ss.end) == FAILURE)
2799 return FAILURE;
2800 break;
2802 default:
2803 gcc_unreachable ();
2804 break;
2807 return check_references (ref->next, checker);
2811 /* Verify that an expression is a restricted expression. Like its
2812 cousin check_init_expr(), an error message is generated if we
2813 return FAILURE. */
2815 static gfc_try
2816 check_restricted (gfc_expr *e)
2818 gfc_symbol* sym;
2819 gfc_try t;
2821 if (e == NULL)
2822 return SUCCESS;
2824 switch (e->expr_type)
2826 case EXPR_OP:
2827 t = check_intrinsic_op (e, check_restricted);
2828 if (t == SUCCESS)
2829 t = gfc_simplify_expr (e, 0);
2831 break;
2833 case EXPR_FUNCTION:
2834 if (e->value.function.esym)
2836 t = check_arglist (e->value.function.actual, &check_restricted);
2837 if (t == SUCCESS)
2838 t = external_spec_function (e);
2840 else
2842 if (e->value.function.isym && e->value.function.isym->inquiry)
2843 t = SUCCESS;
2844 else
2845 t = check_arglist (e->value.function.actual, &check_restricted);
2847 if (t == SUCCESS)
2848 t = restricted_intrinsic (e);
2850 break;
2852 case EXPR_VARIABLE:
2853 sym = e->symtree->n.sym;
2854 t = FAILURE;
2856 /* If a dummy argument appears in a context that is valid for a
2857 restricted expression in an elemental procedure, it will have
2858 already been simplified away once we get here. Therefore we
2859 don't need to jump through hoops to distinguish valid from
2860 invalid cases. */
2861 if (sym->attr.dummy && sym->ns == gfc_current_ns
2862 && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
2864 gfc_error ("Dummy argument '%s' not allowed in expression at %L",
2865 sym->name, &e->where);
2866 break;
2869 if (sym->attr.optional)
2871 gfc_error ("Dummy argument '%s' at %L cannot be OPTIONAL",
2872 sym->name, &e->where);
2873 break;
2876 if (sym->attr.intent == INTENT_OUT)
2878 gfc_error ("Dummy argument '%s' at %L cannot be INTENT(OUT)",
2879 sym->name, &e->where);
2880 break;
2883 /* Check reference chain if any. */
2884 if (check_references (e->ref, &check_restricted) == FAILURE)
2885 break;
2887 /* gfc_is_formal_arg broadcasts that a formal argument list is being
2888 processed in resolve.c(resolve_formal_arglist). This is done so
2889 that host associated dummy array indices are accepted (PR23446).
2890 This mechanism also does the same for the specification expressions
2891 of array-valued functions. */
2892 if (e->error
2893 || sym->attr.in_common
2894 || sym->attr.use_assoc
2895 || sym->attr.dummy
2896 || sym->attr.implied_index
2897 || sym->attr.flavor == FL_PARAMETER
2898 || (sym->ns && sym->ns == gfc_current_ns->parent)
2899 || (sym->ns && gfc_current_ns->parent
2900 && sym->ns == gfc_current_ns->parent->parent)
2901 || (sym->ns->proc_name != NULL
2902 && sym->ns->proc_name->attr.flavor == FL_MODULE)
2903 || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
2905 t = SUCCESS;
2906 break;
2909 gfc_error ("Variable '%s' cannot appear in the expression at %L",
2910 sym->name, &e->where);
2911 /* Prevent a repetition of the error. */
2912 e->error = 1;
2913 break;
2915 case EXPR_NULL:
2916 case EXPR_CONSTANT:
2917 t = SUCCESS;
2918 break;
2920 case EXPR_SUBSTRING:
2921 t = gfc_specification_expr (e->ref->u.ss.start);
2922 if (t == FAILURE)
2923 break;
2925 t = gfc_specification_expr (e->ref->u.ss.end);
2926 if (t == SUCCESS)
2927 t = gfc_simplify_expr (e, 0);
2929 break;
2931 case EXPR_STRUCTURE:
2932 t = gfc_check_constructor (e, check_restricted);
2933 break;
2935 case EXPR_ARRAY:
2936 t = gfc_check_constructor (e, check_restricted);
2937 break;
2939 default:
2940 gfc_internal_error ("check_restricted(): Unknown expression type");
2943 return t;
2947 /* Check to see that an expression is a specification expression. If
2948 we return FAILURE, an error has been generated. */
2950 gfc_try
2951 gfc_specification_expr (gfc_expr *e)
2953 gfc_component *comp;
2955 if (e == NULL)
2956 return SUCCESS;
2958 if (e->ts.type != BT_INTEGER)
2960 gfc_error ("Expression at %L must be of INTEGER type, found %s",
2961 &e->where, gfc_basic_typename (e->ts.type));
2962 return FAILURE;
2965 comp = gfc_get_proc_ptr_comp (e);
2966 if (e->expr_type == EXPR_FUNCTION
2967 && !e->value.function.isym
2968 && !e->value.function.esym
2969 && !gfc_pure (e->symtree->n.sym)
2970 && (!comp || !comp->attr.pure))
2972 gfc_error ("Function '%s' at %L must be PURE",
2973 e->symtree->n.sym->name, &e->where);
2974 /* Prevent repeat error messages. */
2975 e->symtree->n.sym->attr.pure = 1;
2976 return FAILURE;
2979 if (e->rank != 0)
2981 gfc_error ("Expression at %L must be scalar", &e->where);
2982 return FAILURE;
2985 if (gfc_simplify_expr (e, 0) == FAILURE)
2986 return FAILURE;
2988 return check_restricted (e);
2992 /************** Expression conformance checks. *************/
2994 /* Given two expressions, make sure that the arrays are conformable. */
2996 gfc_try
2997 gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...)
2999 int op1_flag, op2_flag, d;
3000 mpz_t op1_size, op2_size;
3001 gfc_try t;
3003 va_list argp;
3004 char buffer[240];
3006 if (op1->rank == 0 || op2->rank == 0)
3007 return SUCCESS;
3009 va_start (argp, optype_msgid);
3010 vsnprintf (buffer, 240, optype_msgid, argp);
3011 va_end (argp);
3013 if (op1->rank != op2->rank)
3015 gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer),
3016 op1->rank, op2->rank, &op1->where);
3017 return FAILURE;
3020 t = SUCCESS;
3022 for (d = 0; d < op1->rank; d++)
3024 op1_flag = gfc_array_dimen_size (op1, d, &op1_size) == SUCCESS;
3025 op2_flag = gfc_array_dimen_size (op2, d, &op2_size) == SUCCESS;
3027 if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
3029 gfc_error ("Different shape for %s at %L on dimension %d "
3030 "(%d and %d)", _(buffer), &op1->where, d + 1,
3031 (int) mpz_get_si (op1_size),
3032 (int) mpz_get_si (op2_size));
3034 t = FAILURE;
3037 if (op1_flag)
3038 mpz_clear (op1_size);
3039 if (op2_flag)
3040 mpz_clear (op2_size);
3042 if (t == FAILURE)
3043 return FAILURE;
3046 return SUCCESS;
3050 /* Given an assignable expression and an arbitrary expression, make
3051 sure that the assignment can take place. */
3053 gfc_try
3054 gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform)
3056 gfc_symbol *sym;
3057 gfc_ref *ref;
3058 int has_pointer;
3060 sym = lvalue->symtree->n.sym;
3062 /* See if this is the component or subcomponent of a pointer. */
3063 has_pointer = sym->attr.pointer;
3064 for (ref = lvalue->ref; ref; ref = ref->next)
3065 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
3067 has_pointer = 1;
3068 break;
3071 /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
3072 variable local to a function subprogram. Its existence begins when
3073 execution of the function is initiated and ends when execution of the
3074 function is terminated...
3075 Therefore, the left hand side is no longer a variable, when it is: */
3076 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
3077 && !sym->attr.external)
3079 bool bad_proc;
3080 bad_proc = false;
3082 /* (i) Use associated; */
3083 if (sym->attr.use_assoc)
3084 bad_proc = true;
3086 /* (ii) The assignment is in the main program; or */
3087 if (gfc_current_ns->proc_name->attr.is_main_program)
3088 bad_proc = true;
3090 /* (iii) A module or internal procedure... */
3091 if ((gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
3092 || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
3093 && gfc_current_ns->parent
3094 && (!(gfc_current_ns->parent->proc_name->attr.function
3095 || gfc_current_ns->parent->proc_name->attr.subroutine)
3096 || gfc_current_ns->parent->proc_name->attr.is_main_program))
3098 /* ... that is not a function... */
3099 if (!gfc_current_ns->proc_name->attr.function)
3100 bad_proc = true;
3102 /* ... or is not an entry and has a different name. */
3103 if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
3104 bad_proc = true;
3107 /* (iv) Host associated and not the function symbol or the
3108 parent result. This picks up sibling references, which
3109 cannot be entries. */
3110 if (!sym->attr.entry
3111 && sym->ns == gfc_current_ns->parent
3112 && sym != gfc_current_ns->proc_name
3113 && sym != gfc_current_ns->parent->proc_name->result)
3114 bad_proc = true;
3116 if (bad_proc)
3118 gfc_error ("'%s' at %L is not a VALUE", sym->name, &lvalue->where);
3119 return FAILURE;
3123 if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
3125 gfc_error ("Incompatible ranks %d and %d in assignment at %L",
3126 lvalue->rank, rvalue->rank, &lvalue->where);
3127 return FAILURE;
3130 if (lvalue->ts.type == BT_UNKNOWN)
3132 gfc_error ("Variable type is UNKNOWN in assignment at %L",
3133 &lvalue->where);
3134 return FAILURE;
3137 if (rvalue->expr_type == EXPR_NULL)
3139 if (has_pointer && (ref == NULL || ref->next == NULL)
3140 && lvalue->symtree->n.sym->attr.data)
3141 return SUCCESS;
3142 else
3144 gfc_error ("NULL appears on right-hand side in assignment at %L",
3145 &rvalue->where);
3146 return FAILURE;
3150 /* This is possibly a typo: x = f() instead of x => f(). */
3151 if (gfc_option.warn_surprising
3152 && rvalue->expr_type == EXPR_FUNCTION
3153 && rvalue->symtree->n.sym->attr.pointer)
3154 gfc_warning ("POINTER valued function appears on right-hand side of "
3155 "assignment at %L", &rvalue->where);
3157 /* Check size of array assignments. */
3158 if (lvalue->rank != 0 && rvalue->rank != 0
3159 && gfc_check_conformance (lvalue, rvalue, "array assignment") != SUCCESS)
3160 return FAILURE;
3162 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER
3163 && lvalue->symtree->n.sym->attr.data
3164 && gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L used to "
3165 "initialize non-integer variable '%s'",
3166 &rvalue->where, lvalue->symtree->n.sym->name)
3167 == FAILURE)
3168 return FAILURE;
3169 else if (rvalue->is_boz && !lvalue->symtree->n.sym->attr.data
3170 && gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
3171 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
3172 &rvalue->where) == FAILURE)
3173 return FAILURE;
3175 /* Handle the case of a BOZ literal on the RHS. */
3176 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER)
3178 int rc;
3179 if (gfc_option.warn_surprising)
3180 gfc_warning ("BOZ literal at %L is bitwise transferred "
3181 "non-integer symbol '%s'", &rvalue->where,
3182 lvalue->symtree->n.sym->name);
3183 if (!gfc_convert_boz (rvalue, &lvalue->ts))
3184 return FAILURE;
3185 if ((rc = gfc_range_check (rvalue)) != ARITH_OK)
3187 if (rc == ARITH_UNDERFLOW)
3188 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
3189 ". This check can be disabled with the option "
3190 "-fno-range-check", &rvalue->where);
3191 else if (rc == ARITH_OVERFLOW)
3192 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
3193 ". This check can be disabled with the option "
3194 "-fno-range-check", &rvalue->where);
3195 else if (rc == ARITH_NAN)
3196 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
3197 ". This check can be disabled with the option "
3198 "-fno-range-check", &rvalue->where);
3199 return FAILURE;
3203 /* Warn about type-changing conversions for REAL or COMPLEX constants.
3204 If lvalue and rvalue are mixed REAL and complex, gfc_compare_types
3205 will warn anyway, so there is no need to to so here. */
3207 if (rvalue->expr_type == EXPR_CONSTANT && lvalue->ts.type == rvalue->ts.type
3208 && (lvalue->ts.type == BT_REAL || lvalue->ts.type == BT_COMPLEX))
3210 if (lvalue->ts.kind < rvalue->ts.kind && gfc_option.gfc_warn_conversion)
3212 /* As a special bonus, don't warn about REAL rvalues which are not
3213 changed by the conversion if -Wconversion is specified. */
3214 if (rvalue->ts.type == BT_REAL && mpfr_number_p (rvalue->value.real))
3216 /* Calculate the difference between the constant and the rounded
3217 value and check it against zero. */
3218 mpfr_t rv, diff;
3219 gfc_set_model_kind (lvalue->ts.kind);
3220 mpfr_init (rv);
3221 gfc_set_model_kind (rvalue->ts.kind);
3222 mpfr_init (diff);
3224 mpfr_set (rv, rvalue->value.real, GFC_RND_MODE);
3225 mpfr_sub (diff, rv, rvalue->value.real, GFC_RND_MODE);
3227 if (!mpfr_zero_p (diff))
3228 gfc_warning ("Change of value in conversion from "
3229 " %s to %s at %L", gfc_typename (&rvalue->ts),
3230 gfc_typename (&lvalue->ts), &rvalue->where);
3232 mpfr_clear (rv);
3233 mpfr_clear (diff);
3235 else
3236 gfc_warning ("Possible change of value in conversion from %s "
3237 "to %s at %L",gfc_typename (&rvalue->ts),
3238 gfc_typename (&lvalue->ts), &rvalue->where);
3241 else if (gfc_option.warn_conversion_extra
3242 && lvalue->ts.kind > rvalue->ts.kind)
3244 gfc_warning ("Conversion from %s to %s at %L",
3245 gfc_typename (&rvalue->ts),
3246 gfc_typename (&lvalue->ts), &rvalue->where);
3250 if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
3251 return SUCCESS;
3253 /* Only DATA Statements come here. */
3254 if (!conform)
3256 /* Numeric can be converted to any other numeric. And Hollerith can be
3257 converted to any other type. */
3258 if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
3259 || rvalue->ts.type == BT_HOLLERITH)
3260 return SUCCESS;
3262 if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
3263 return SUCCESS;
3265 gfc_error ("Incompatible types in DATA statement at %L; attempted "
3266 "conversion of %s to %s", &lvalue->where,
3267 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3269 return FAILURE;
3272 /* Assignment is the only case where character variables of different
3273 kind values can be converted into one another. */
3274 if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER)
3276 if (lvalue->ts.kind != rvalue->ts.kind)
3277 gfc_convert_chartype (rvalue, &lvalue->ts);
3279 return SUCCESS;
3282 return gfc_convert_type (rvalue, &lvalue->ts, 1);
3286 /* Check that a pointer assignment is OK. We first check lvalue, and
3287 we only check rvalue if it's not an assignment to NULL() or a
3288 NULLIFY statement. */
3290 gfc_try
3291 gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue)
3293 symbol_attribute attr;
3294 gfc_ref *ref;
3295 bool is_pure, is_implicit_pure, rank_remap;
3296 int proc_pointer;
3298 if (lvalue->symtree->n.sym->ts.type == BT_UNKNOWN
3299 && !lvalue->symtree->n.sym->attr.proc_pointer)
3301 gfc_error ("Pointer assignment target is not a POINTER at %L",
3302 &lvalue->where);
3303 return FAILURE;
3306 if (lvalue->symtree->n.sym->attr.flavor == FL_PROCEDURE
3307 && lvalue->symtree->n.sym->attr.use_assoc
3308 && !lvalue->symtree->n.sym->attr.proc_pointer)
3310 gfc_error ("'%s' in the pointer assignment at %L cannot be an "
3311 "l-value since it is a procedure",
3312 lvalue->symtree->n.sym->name, &lvalue->where);
3313 return FAILURE;
3316 proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer;
3318 rank_remap = false;
3319 for (ref = lvalue->ref; ref; ref = ref->next)
3321 if (ref->type == REF_COMPONENT)
3322 proc_pointer = ref->u.c.component->attr.proc_pointer;
3324 if (ref->type == REF_ARRAY && ref->next == NULL)
3326 int dim;
3328 if (ref->u.ar.type == AR_FULL)
3329 break;
3331 if (ref->u.ar.type != AR_SECTION)
3333 gfc_error ("Expected bounds specification for '%s' at %L",
3334 lvalue->symtree->n.sym->name, &lvalue->where);
3335 return FAILURE;
3338 if (gfc_notify_std (GFC_STD_F2003,"Bounds "
3339 "specification for '%s' in pointer assignment "
3340 "at %L", lvalue->symtree->n.sym->name,
3341 &lvalue->where) == FAILURE)
3342 return FAILURE;
3344 /* When bounds are given, all lbounds are necessary and either all
3345 or none of the upper bounds; no strides are allowed. If the
3346 upper bounds are present, we may do rank remapping. */
3347 for (dim = 0; dim < ref->u.ar.dimen; ++dim)
3349 if (!ref->u.ar.start[dim]
3350 || ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
3352 gfc_error ("Lower bound has to be present at %L",
3353 &lvalue->where);
3354 return FAILURE;
3356 if (ref->u.ar.stride[dim])
3358 gfc_error ("Stride must not be present at %L",
3359 &lvalue->where);
3360 return FAILURE;
3363 if (dim == 0)
3364 rank_remap = (ref->u.ar.end[dim] != NULL);
3365 else
3367 if ((rank_remap && !ref->u.ar.end[dim])
3368 || (!rank_remap && ref->u.ar.end[dim]))
3370 gfc_error ("Either all or none of the upper bounds"
3371 " must be specified at %L", &lvalue->where);
3372 return FAILURE;
3379 is_pure = gfc_pure (NULL);
3380 is_implicit_pure = gfc_implicit_pure (NULL);
3382 /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
3383 kind, etc for lvalue and rvalue must match, and rvalue must be a
3384 pure variable if we're in a pure function. */
3385 if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
3386 return SUCCESS;
3388 /* F2008, C723 (pointer) and C726 (proc-pointer); for PURE also C1283. */
3389 if (lvalue->expr_type == EXPR_VARIABLE
3390 && gfc_is_coindexed (lvalue))
3392 gfc_ref *ref;
3393 for (ref = lvalue->ref; ref; ref = ref->next)
3394 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3396 gfc_error ("Pointer object at %L shall not have a coindex",
3397 &lvalue->where);
3398 return FAILURE;
3402 /* Checks on rvalue for procedure pointer assignments. */
3403 if (proc_pointer)
3405 char err[200];
3406 gfc_symbol *s1,*s2;
3407 gfc_component *comp;
3408 const char *name;
3410 attr = gfc_expr_attr (rvalue);
3411 if (!((rvalue->expr_type == EXPR_NULL)
3412 || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer)
3413 || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer)
3414 || (rvalue->expr_type == EXPR_VARIABLE
3415 && attr.flavor == FL_PROCEDURE)))
3417 gfc_error ("Invalid procedure pointer assignment at %L",
3418 &rvalue->where);
3419 return FAILURE;
3421 if (rvalue->expr_type == EXPR_VARIABLE && !attr.proc_pointer)
3423 /* Check for intrinsics. */
3424 gfc_symbol *sym = rvalue->symtree->n.sym;
3425 if (!sym->attr.intrinsic
3426 && (gfc_is_intrinsic (sym, 0, sym->declared_at)
3427 || gfc_is_intrinsic (sym, 1, sym->declared_at)))
3429 sym->attr.intrinsic = 1;
3430 gfc_resolve_intrinsic (sym, &rvalue->where);
3431 attr = gfc_expr_attr (rvalue);
3434 if (attr.abstract)
3436 gfc_error ("Abstract interface '%s' is invalid "
3437 "in procedure pointer assignment at %L",
3438 rvalue->symtree->name, &rvalue->where);
3439 return FAILURE;
3441 /* Check for F08:C729. */
3442 if (attr.flavor == FL_PROCEDURE)
3444 if (attr.proc == PROC_ST_FUNCTION)
3446 gfc_error ("Statement function '%s' is invalid "
3447 "in procedure pointer assignment at %L",
3448 rvalue->symtree->name, &rvalue->where);
3449 return FAILURE;
3451 if (attr.proc == PROC_INTERNAL &&
3452 gfc_notify_std (GFC_STD_F2008, "Internal procedure "
3453 "'%s' is invalid in procedure pointer assignment "
3454 "at %L", rvalue->symtree->name, &rvalue->where)
3455 == FAILURE)
3456 return FAILURE;
3457 if (attr.intrinsic && gfc_intrinsic_actual_ok (rvalue->symtree->name,
3458 attr.subroutine) == 0)
3460 gfc_error ("Intrinsic '%s' at %L is invalid in procedure pointer "
3461 "assignment", rvalue->symtree->name, &rvalue->where);
3462 return FAILURE;
3465 /* Check for F08:C730. */
3466 if (attr.elemental && !attr.intrinsic)
3468 gfc_error ("Nonintrinsic elemental procedure '%s' is invalid "
3469 "in procedure pointer assignment at %L",
3470 rvalue->symtree->name, &rvalue->where);
3471 return FAILURE;
3474 /* Ensure that the calling convention is the same. As other attributes
3475 such as DLLEXPORT may differ, one explicitly only tests for the
3476 calling conventions. */
3477 if (rvalue->expr_type == EXPR_VARIABLE
3478 && lvalue->symtree->n.sym->attr.ext_attr
3479 != rvalue->symtree->n.sym->attr.ext_attr)
3481 symbol_attribute calls;
3483 calls.ext_attr = 0;
3484 gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL);
3485 gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL);
3486 gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL);
3488 if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr)
3489 != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr))
3491 gfc_error ("Mismatch in the procedure pointer assignment "
3492 "at %L: mismatch in the calling convention",
3493 &rvalue->where);
3494 return FAILURE;
3498 comp = gfc_get_proc_ptr_comp (lvalue);
3499 if (comp)
3500 s1 = comp->ts.interface;
3501 else
3502 s1 = lvalue->symtree->n.sym;
3504 comp = gfc_get_proc_ptr_comp (rvalue);
3505 if (comp)
3507 s2 = comp->ts.interface;
3508 name = comp->name;
3510 else if (rvalue->expr_type == EXPR_FUNCTION)
3512 s2 = rvalue->symtree->n.sym->result;
3513 name = rvalue->symtree->n.sym->result->name;
3515 else
3517 s2 = rvalue->symtree->n.sym;
3518 name = rvalue->symtree->n.sym->name;
3521 if (s1 && s2 && !gfc_compare_interfaces (s1, s2, name, 0, 1,
3522 err, sizeof(err), NULL, NULL))
3524 gfc_error ("Interface mismatch in procedure pointer assignment "
3525 "at %L: %s", &rvalue->where, err);
3526 return FAILURE;
3529 return SUCCESS;
3532 if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
3534 gfc_error ("Different types in pointer assignment at %L; attempted "
3535 "assignment of %s to %s", &lvalue->where,
3536 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3537 return FAILURE;
3540 if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind)
3542 gfc_error ("Different kind type parameters in pointer "
3543 "assignment at %L", &lvalue->where);
3544 return FAILURE;
3547 if (lvalue->rank != rvalue->rank && !rank_remap)
3549 gfc_error ("Different ranks in pointer assignment at %L", &lvalue->where);
3550 return FAILURE;
3553 if (lvalue->ts.type == BT_CLASS && rvalue->ts.type == BT_DERIVED)
3554 /* Make sure the vtab is present. */
3555 gfc_find_derived_vtab (rvalue->ts.u.derived);
3557 /* Check rank remapping. */
3558 if (rank_remap)
3560 mpz_t lsize, rsize;
3562 /* If this can be determined, check that the target must be at least as
3563 large as the pointer assigned to it is. */
3564 if (gfc_array_size (lvalue, &lsize) == SUCCESS
3565 && gfc_array_size (rvalue, &rsize) == SUCCESS
3566 && mpz_cmp (rsize, lsize) < 0)
3568 gfc_error ("Rank remapping target is smaller than size of the"
3569 " pointer (%ld < %ld) at %L",
3570 mpz_get_si (rsize), mpz_get_si (lsize),
3571 &lvalue->where);
3572 return FAILURE;
3575 /* The target must be either rank one or it must be simply contiguous
3576 and F2008 must be allowed. */
3577 if (rvalue->rank != 1)
3579 if (!gfc_is_simply_contiguous (rvalue, true))
3581 gfc_error ("Rank remapping target must be rank 1 or"
3582 " simply contiguous at %L", &rvalue->where);
3583 return FAILURE;
3585 if (gfc_notify_std (GFC_STD_F2008, "Rank remapping"
3586 " target is not rank 1 at %L", &rvalue->where)
3587 == FAILURE)
3588 return FAILURE;
3592 /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
3593 if (rvalue->expr_type == EXPR_NULL)
3594 return SUCCESS;
3596 if (lvalue->ts.type == BT_CHARACTER)
3598 gfc_try t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment");
3599 if (t == FAILURE)
3600 return FAILURE;
3603 if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
3604 lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
3606 attr = gfc_expr_attr (rvalue);
3608 if (rvalue->expr_type == EXPR_FUNCTION && !attr.pointer)
3610 gfc_error ("Target expression in pointer assignment "
3611 "at %L must deliver a pointer result",
3612 &rvalue->where);
3613 return FAILURE;
3616 if (!attr.target && !attr.pointer)
3618 gfc_error ("Pointer assignment target is neither TARGET "
3619 "nor POINTER at %L", &rvalue->where);
3620 return FAILURE;
3623 if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3625 gfc_error ("Bad target in pointer assignment in PURE "
3626 "procedure at %L", &rvalue->where);
3629 if (is_implicit_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3630 gfc_current_ns->proc_name->attr.implicit_pure = 0;
3633 if (gfc_has_vector_index (rvalue))
3635 gfc_error ("Pointer assignment with vector subscript "
3636 "on rhs at %L", &rvalue->where);
3637 return FAILURE;
3640 if (attr.is_protected && attr.use_assoc
3641 && !(attr.pointer || attr.proc_pointer))
3643 gfc_error ("Pointer assignment target has PROTECTED "
3644 "attribute at %L", &rvalue->where);
3645 return FAILURE;
3648 /* F2008, C725. For PURE also C1283. */
3649 if (rvalue->expr_type == EXPR_VARIABLE
3650 && gfc_is_coindexed (rvalue))
3652 gfc_ref *ref;
3653 for (ref = rvalue->ref; ref; ref = ref->next)
3654 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3656 gfc_error ("Data target at %L shall not have a coindex",
3657 &rvalue->where);
3658 return FAILURE;
3662 return SUCCESS;
3666 /* Relative of gfc_check_assign() except that the lvalue is a single
3667 symbol. Used for initialization assignments. */
3669 gfc_try
3670 gfc_check_assign_symbol (gfc_symbol *sym, gfc_expr *rvalue)
3672 gfc_expr lvalue;
3673 gfc_try r;
3675 memset (&lvalue, '\0', sizeof (gfc_expr));
3677 lvalue.expr_type = EXPR_VARIABLE;
3678 lvalue.ts = sym->ts;
3679 if (sym->as)
3680 lvalue.rank = sym->as->rank;
3681 lvalue.symtree = XCNEW (gfc_symtree);
3682 lvalue.symtree->n.sym = sym;
3683 lvalue.where = sym->declared_at;
3685 if (sym->attr.pointer || sym->attr.proc_pointer
3686 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer
3687 && rvalue->expr_type == EXPR_NULL))
3688 r = gfc_check_pointer_assign (&lvalue, rvalue);
3689 else
3690 r = gfc_check_assign (&lvalue, rvalue, 1);
3692 free (lvalue.symtree);
3694 if (r == FAILURE)
3695 return r;
3697 if (sym->attr.pointer && rvalue->expr_type != EXPR_NULL)
3699 /* F08:C461. Additional checks for pointer initialization. */
3700 symbol_attribute attr;
3701 attr = gfc_expr_attr (rvalue);
3702 if (attr.allocatable)
3704 gfc_error ("Pointer initialization target at %C "
3705 "must not be ALLOCATABLE ");
3706 return FAILURE;
3708 if (!attr.target || attr.pointer)
3710 gfc_error ("Pointer initialization target at %C "
3711 "must have the TARGET attribute");
3712 return FAILURE;
3714 if (!attr.save)
3716 gfc_error ("Pointer initialization target at %C "
3717 "must have the SAVE attribute");
3718 return FAILURE;
3722 if (sym->attr.proc_pointer && rvalue->expr_type != EXPR_NULL)
3724 /* F08:C1220. Additional checks for procedure pointer initialization. */
3725 symbol_attribute attr = gfc_expr_attr (rvalue);
3726 if (attr.proc_pointer)
3728 gfc_error ("Procedure pointer initialization target at %L "
3729 "may not be a procedure pointer", &rvalue->where);
3730 return FAILURE;
3734 return SUCCESS;
3738 /* Check for default initializer; sym->value is not enough
3739 as it is also set for EXPR_NULL of allocatables. */
3741 bool
3742 gfc_has_default_initializer (gfc_symbol *der)
3744 gfc_component *c;
3746 gcc_assert (der->attr.flavor == FL_DERIVED);
3747 for (c = der->components; c; c = c->next)
3748 if (c->ts.type == BT_DERIVED)
3750 if (!c->attr.pointer
3751 && gfc_has_default_initializer (c->ts.u.derived))
3752 return true;
3753 if (c->attr.pointer && c->initializer)
3754 return true;
3756 else
3758 if (c->initializer)
3759 return true;
3762 return false;
3766 /* Get an expression for a default initializer. */
3768 gfc_expr *
3769 gfc_default_initializer (gfc_typespec *ts)
3771 gfc_expr *init;
3772 gfc_component *comp;
3774 /* See if we have a default initializer in this, but not in nested
3775 types (otherwise we could use gfc_has_default_initializer()). */
3776 for (comp = ts->u.derived->components; comp; comp = comp->next)
3777 if (comp->initializer || comp->attr.allocatable
3778 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
3779 break;
3781 if (!comp)
3782 return NULL;
3784 init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
3785 &ts->u.derived->declared_at);
3786 init->ts = *ts;
3788 for (comp = ts->u.derived->components; comp; comp = comp->next)
3790 gfc_constructor *ctor = gfc_constructor_get();
3792 if (comp->initializer)
3794 ctor->expr = gfc_copy_expr (comp->initializer);
3795 if ((comp->ts.type != comp->initializer->ts.type
3796 || comp->ts.kind != comp->initializer->ts.kind)
3797 && !comp->attr.pointer && !comp->attr.proc_pointer)
3798 gfc_convert_type_warn (ctor->expr, &comp->ts, 2, false);
3801 if (comp->attr.allocatable
3802 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
3804 ctor->expr = gfc_get_expr ();
3805 ctor->expr->expr_type = EXPR_NULL;
3806 ctor->expr->ts = comp->ts;
3809 gfc_constructor_append (&init->value.constructor, ctor);
3812 return init;
3816 /* Given a symbol, create an expression node with that symbol as a
3817 variable. If the symbol is array valued, setup a reference of the
3818 whole array. */
3820 gfc_expr *
3821 gfc_get_variable_expr (gfc_symtree *var)
3823 gfc_expr *e;
3825 e = gfc_get_expr ();
3826 e->expr_type = EXPR_VARIABLE;
3827 e->symtree = var;
3828 e->ts = var->n.sym->ts;
3830 if ((var->n.sym->as != NULL && var->n.sym->ts.type != BT_CLASS)
3831 || (var->n.sym->ts.type == BT_CLASS && CLASS_DATA (var->n.sym)
3832 && CLASS_DATA (var->n.sym)->as))
3834 e->rank = var->n.sym->ts.type == BT_CLASS
3835 ? CLASS_DATA (var->n.sym)->as->rank : var->n.sym->as->rank;
3836 e->ref = gfc_get_ref ();
3837 e->ref->type = REF_ARRAY;
3838 e->ref->u.ar.type = AR_FULL;
3839 e->ref->u.ar.as = gfc_copy_array_spec (var->n.sym->ts.type == BT_CLASS
3840 ? CLASS_DATA (var->n.sym)->as
3841 : var->n.sym->as);
3844 return e;
3848 gfc_expr *
3849 gfc_lval_expr_from_sym (gfc_symbol *sym)
3851 gfc_expr *lval;
3852 lval = gfc_get_expr ();
3853 lval->expr_type = EXPR_VARIABLE;
3854 lval->where = sym->declared_at;
3855 lval->ts = sym->ts;
3856 lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
3858 /* It will always be a full array. */
3859 lval->rank = sym->as ? sym->as->rank : 0;
3860 if (lval->rank)
3862 lval->ref = gfc_get_ref ();
3863 lval->ref->type = REF_ARRAY;
3864 lval->ref->u.ar.type = AR_FULL;
3865 lval->ref->u.ar.dimen = lval->rank;
3866 lval->ref->u.ar.where = sym->declared_at;
3867 lval->ref->u.ar.as = sym->ts.type == BT_CLASS
3868 ? CLASS_DATA (sym)->as : sym->as;
3871 return lval;
3875 /* Returns the array_spec of a full array expression. A NULL is
3876 returned otherwise. */
3877 gfc_array_spec *
3878 gfc_get_full_arrayspec_from_expr (gfc_expr *expr)
3880 gfc_array_spec *as;
3881 gfc_ref *ref;
3883 if (expr->rank == 0)
3884 return NULL;
3886 /* Follow any component references. */
3887 if (expr->expr_type == EXPR_VARIABLE
3888 || expr->expr_type == EXPR_CONSTANT)
3890 as = expr->symtree->n.sym->as;
3891 for (ref = expr->ref; ref; ref = ref->next)
3893 switch (ref->type)
3895 case REF_COMPONENT:
3896 as = ref->u.c.component->as;
3897 continue;
3899 case REF_SUBSTRING:
3900 continue;
3902 case REF_ARRAY:
3904 switch (ref->u.ar.type)
3906 case AR_ELEMENT:
3907 case AR_SECTION:
3908 case AR_UNKNOWN:
3909 as = NULL;
3910 continue;
3912 case AR_FULL:
3913 break;
3915 break;
3920 else
3921 as = NULL;
3923 return as;
3927 /* General expression traversal function. */
3929 bool
3930 gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym,
3931 bool (*func)(gfc_expr *, gfc_symbol *, int*),
3932 int f)
3934 gfc_array_ref ar;
3935 gfc_ref *ref;
3936 gfc_actual_arglist *args;
3937 gfc_constructor *c;
3938 int i;
3940 if (!expr)
3941 return false;
3943 if ((*func) (expr, sym, &f))
3944 return true;
3946 if (expr->ts.type == BT_CHARACTER
3947 && expr->ts.u.cl
3948 && expr->ts.u.cl->length
3949 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT
3950 && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f))
3951 return true;
3953 switch (expr->expr_type)
3955 case EXPR_PPC:
3956 case EXPR_COMPCALL:
3957 case EXPR_FUNCTION:
3958 for (args = expr->value.function.actual; args; args = args->next)
3960 if (gfc_traverse_expr (args->expr, sym, func, f))
3961 return true;
3963 break;
3965 case EXPR_VARIABLE:
3966 case EXPR_CONSTANT:
3967 case EXPR_NULL:
3968 case EXPR_SUBSTRING:
3969 break;
3971 case EXPR_STRUCTURE:
3972 case EXPR_ARRAY:
3973 for (c = gfc_constructor_first (expr->value.constructor);
3974 c; c = gfc_constructor_next (c))
3976 if (gfc_traverse_expr (c->expr, sym, func, f))
3977 return true;
3978 if (c->iterator)
3980 if (gfc_traverse_expr (c->iterator->var, sym, func, f))
3981 return true;
3982 if (gfc_traverse_expr (c->iterator->start, sym, func, f))
3983 return true;
3984 if (gfc_traverse_expr (c->iterator->end, sym, func, f))
3985 return true;
3986 if (gfc_traverse_expr (c->iterator->step, sym, func, f))
3987 return true;
3990 break;
3992 case EXPR_OP:
3993 if (gfc_traverse_expr (expr->value.op.op1, sym, func, f))
3994 return true;
3995 if (gfc_traverse_expr (expr->value.op.op2, sym, func, f))
3996 return true;
3997 break;
3999 default:
4000 gcc_unreachable ();
4001 break;
4004 ref = expr->ref;
4005 while (ref != NULL)
4007 switch (ref->type)
4009 case REF_ARRAY:
4010 ar = ref->u.ar;
4011 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
4013 if (gfc_traverse_expr (ar.start[i], sym, func, f))
4014 return true;
4015 if (gfc_traverse_expr (ar.end[i], sym, func, f))
4016 return true;
4017 if (gfc_traverse_expr (ar.stride[i], sym, func, f))
4018 return true;
4020 break;
4022 case REF_SUBSTRING:
4023 if (gfc_traverse_expr (ref->u.ss.start, sym, func, f))
4024 return true;
4025 if (gfc_traverse_expr (ref->u.ss.end, sym, func, f))
4026 return true;
4027 break;
4029 case REF_COMPONENT:
4030 if (ref->u.c.component->ts.type == BT_CHARACTER
4031 && ref->u.c.component->ts.u.cl
4032 && ref->u.c.component->ts.u.cl->length
4033 && ref->u.c.component->ts.u.cl->length->expr_type
4034 != EXPR_CONSTANT
4035 && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length,
4036 sym, func, f))
4037 return true;
4039 if (ref->u.c.component->as)
4040 for (i = 0; i < ref->u.c.component->as->rank
4041 + ref->u.c.component->as->corank; i++)
4043 if (gfc_traverse_expr (ref->u.c.component->as->lower[i],
4044 sym, func, f))
4045 return true;
4046 if (gfc_traverse_expr (ref->u.c.component->as->upper[i],
4047 sym, func, f))
4048 return true;
4050 break;
4052 default:
4053 gcc_unreachable ();
4055 ref = ref->next;
4057 return false;
4060 /* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
4062 static bool
4063 expr_set_symbols_referenced (gfc_expr *expr,
4064 gfc_symbol *sym ATTRIBUTE_UNUSED,
4065 int *f ATTRIBUTE_UNUSED)
4067 if (expr->expr_type != EXPR_VARIABLE)
4068 return false;
4069 gfc_set_sym_referenced (expr->symtree->n.sym);
4070 return false;
4073 void
4074 gfc_expr_set_symbols_referenced (gfc_expr *expr)
4076 gfc_traverse_expr (expr, NULL, expr_set_symbols_referenced, 0);
4080 /* Determine if an expression is a procedure pointer component and return
4081 the component in that case. Otherwise return NULL. */
4083 gfc_component *
4084 gfc_get_proc_ptr_comp (gfc_expr *expr)
4086 gfc_ref *ref;
4088 if (!expr || !expr->ref)
4089 return NULL;
4091 ref = expr->ref;
4092 while (ref->next)
4093 ref = ref->next;
4095 if (ref->type == REF_COMPONENT
4096 && ref->u.c.component->attr.proc_pointer)
4097 return ref->u.c.component;
4099 return NULL;
4103 /* Determine if an expression is a procedure pointer component. */
4105 bool
4106 gfc_is_proc_ptr_comp (gfc_expr *expr)
4108 return (gfc_get_proc_ptr_comp (expr) != NULL);
4112 /* Walk an expression tree and check each variable encountered for being typed.
4113 If strict is not set, a top-level variable is tolerated untyped in -std=gnu
4114 mode as is a basic arithmetic expression using those; this is for things in
4115 legacy-code like:
4117 INTEGER :: arr(n), n
4118 INTEGER :: arr(n + 1), n
4120 The namespace is needed for IMPLICIT typing. */
4122 static gfc_namespace* check_typed_ns;
4124 static bool
4125 expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
4126 int* f ATTRIBUTE_UNUSED)
4128 gfc_try t;
4130 if (e->expr_type != EXPR_VARIABLE)
4131 return false;
4133 gcc_assert (e->symtree);
4134 t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns,
4135 true, e->where);
4137 return (t == FAILURE);
4140 gfc_try
4141 gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict)
4143 bool error_found;
4145 /* If this is a top-level variable or EXPR_OP, do the check with strict given
4146 to us. */
4147 if (!strict)
4149 if (e->expr_type == EXPR_VARIABLE && !e->ref)
4150 return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where);
4152 if (e->expr_type == EXPR_OP)
4154 gfc_try t = SUCCESS;
4156 gcc_assert (e->value.op.op1);
4157 t = gfc_expr_check_typed (e->value.op.op1, ns, strict);
4159 if (t == SUCCESS && e->value.op.op2)
4160 t = gfc_expr_check_typed (e->value.op.op2, ns, strict);
4162 return t;
4166 /* Otherwise, walk the expression and do it strictly. */
4167 check_typed_ns = ns;
4168 error_found = gfc_traverse_expr (e, NULL, &expr_check_typed_help, 0);
4170 return error_found ? FAILURE : SUCCESS;
4174 /* Walk an expression tree and replace all dummy symbols by the corresponding
4175 symbol in the formal_ns of "sym". Needed for copying interfaces in PROCEDURE
4176 statements. The boolean return value is required by gfc_traverse_expr. */
4178 static bool
4179 replace_symbol (gfc_expr *expr, gfc_symbol *sym, int *i ATTRIBUTE_UNUSED)
4181 if ((expr->expr_type == EXPR_VARIABLE
4182 || (expr->expr_type == EXPR_FUNCTION
4183 && !gfc_is_intrinsic (expr->symtree->n.sym, 0, expr->where)))
4184 && expr->symtree->n.sym->ns == sym->ts.interface->formal_ns
4185 && expr->symtree->n.sym->attr.dummy)
4187 gfc_symtree *root = sym->formal_ns ? sym->formal_ns->sym_root
4188 : gfc_current_ns->sym_root;
4189 gfc_symtree *stree = gfc_find_symtree (root, expr->symtree->n.sym->name);
4190 gcc_assert (stree);
4191 stree->n.sym->attr = expr->symtree->n.sym->attr;
4192 expr->symtree = stree;
4194 return false;
4197 void
4198 gfc_expr_replace_symbols (gfc_expr *expr, gfc_symbol *dest)
4200 gfc_traverse_expr (expr, dest, &replace_symbol, 0);
4204 /* The following is analogous to 'replace_symbol', and needed for copying
4205 interfaces for procedure pointer components. The argument 'sym' must formally
4206 be a gfc_symbol, so that the function can be passed to gfc_traverse_expr.
4207 However, it gets actually passed a gfc_component (i.e. the procedure pointer
4208 component in whose formal_ns the arguments have to be). */
4210 static bool
4211 replace_comp (gfc_expr *expr, gfc_symbol *sym, int *i ATTRIBUTE_UNUSED)
4213 gfc_component *comp;
4214 comp = (gfc_component *)sym;
4215 if ((expr->expr_type == EXPR_VARIABLE
4216 || (expr->expr_type == EXPR_FUNCTION
4217 && !gfc_is_intrinsic (expr->symtree->n.sym, 0, expr->where)))
4218 && expr->symtree->n.sym->ns == comp->ts.interface->formal_ns)
4220 gfc_symtree *stree;
4221 gfc_namespace *ns = comp->formal_ns;
4222 /* Don't use gfc_get_symtree as we prefer to fail badly if we don't find
4223 the symtree rather than create a new one (and probably fail later). */
4224 stree = gfc_find_symtree (ns ? ns->sym_root : gfc_current_ns->sym_root,
4225 expr->symtree->n.sym->name);
4226 gcc_assert (stree);
4227 stree->n.sym->attr = expr->symtree->n.sym->attr;
4228 expr->symtree = stree;
4230 return false;
4233 void
4234 gfc_expr_replace_comp (gfc_expr *expr, gfc_component *dest)
4236 gfc_traverse_expr (expr, (gfc_symbol *)dest, &replace_comp, 0);
4240 bool
4241 gfc_ref_this_image (gfc_ref *ref)
4243 int n;
4245 gcc_assert (ref->type == REF_ARRAY && ref->u.ar.codimen > 0);
4247 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
4248 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
4249 return false;
4251 return true;
4255 bool
4256 gfc_is_coindexed (gfc_expr *e)
4258 gfc_ref *ref;
4260 for (ref = e->ref; ref; ref = ref->next)
4261 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
4262 return !gfc_ref_this_image (ref);
4264 return false;
4268 /* Coarrays are variables with a corank but not being coindexed. However, also
4269 the following is a coarray: A subobject of a coarray is a coarray if it does
4270 not have any cosubscripts, vector subscripts, allocatable component
4271 selection, or pointer component selection. (F2008, 2.4.7) */
4273 bool
4274 gfc_is_coarray (gfc_expr *e)
4276 gfc_ref *ref;
4277 gfc_symbol *sym;
4278 gfc_component *comp;
4279 bool coindexed;
4280 bool coarray;
4281 int i;
4283 if (e->expr_type != EXPR_VARIABLE)
4284 return false;
4286 coindexed = false;
4287 sym = e->symtree->n.sym;
4289 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
4290 coarray = CLASS_DATA (sym)->attr.codimension;
4291 else
4292 coarray = sym->attr.codimension;
4294 for (ref = e->ref; ref; ref = ref->next)
4295 switch (ref->type)
4297 case REF_COMPONENT:
4298 comp = ref->u.c.component;
4299 if (comp->ts.type == BT_CLASS && comp->attr.class_ok
4300 && (CLASS_DATA (comp)->attr.class_pointer
4301 || CLASS_DATA (comp)->attr.allocatable))
4303 coindexed = false;
4304 coarray = CLASS_DATA (comp)->attr.codimension;
4306 else if (comp->attr.pointer || comp->attr.allocatable)
4308 coindexed = false;
4309 coarray = comp->attr.codimension;
4311 break;
4313 case REF_ARRAY:
4314 if (!coarray)
4315 break;
4317 if (ref->u.ar.codimen > 0 && !gfc_ref_this_image (ref))
4319 coindexed = true;
4320 break;
4323 for (i = 0; i < ref->u.ar.dimen; i++)
4324 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
4326 coarray = false;
4327 break;
4329 break;
4331 case REF_SUBSTRING:
4332 break;
4335 return coarray && !coindexed;
4340 gfc_get_corank (gfc_expr *e)
4342 int corank;
4343 gfc_ref *ref;
4345 if (!gfc_is_coarray (e))
4346 return 0;
4348 if (e->ts.type == BT_CLASS && e->ts.u.derived->components)
4349 corank = e->ts.u.derived->components->as
4350 ? e->ts.u.derived->components->as->corank : 0;
4351 else
4352 corank = e->symtree->n.sym->as ? e->symtree->n.sym->as->corank : 0;
4354 for (ref = e->ref; ref; ref = ref->next)
4356 if (ref->type == REF_ARRAY)
4357 corank = ref->u.ar.as->corank;
4358 gcc_assert (ref->type != REF_SUBSTRING);
4361 return corank;
4365 /* Check whether the expression has an ultimate allocatable component.
4366 Being itself allocatable does not count. */
4367 bool
4368 gfc_has_ultimate_allocatable (gfc_expr *e)
4370 gfc_ref *ref, *last = NULL;
4372 if (e->expr_type != EXPR_VARIABLE)
4373 return false;
4375 for (ref = e->ref; ref; ref = ref->next)
4376 if (ref->type == REF_COMPONENT)
4377 last = ref;
4379 if (last && last->u.c.component->ts.type == BT_CLASS)
4380 return CLASS_DATA (last->u.c.component)->attr.alloc_comp;
4381 else if (last && last->u.c.component->ts.type == BT_DERIVED)
4382 return last->u.c.component->ts.u.derived->attr.alloc_comp;
4383 else if (last)
4384 return false;
4386 if (e->ts.type == BT_CLASS)
4387 return CLASS_DATA (e)->attr.alloc_comp;
4388 else if (e->ts.type == BT_DERIVED)
4389 return e->ts.u.derived->attr.alloc_comp;
4390 else
4391 return false;
4395 /* Check whether the expression has an pointer component.
4396 Being itself a pointer does not count. */
4397 bool
4398 gfc_has_ultimate_pointer (gfc_expr *e)
4400 gfc_ref *ref, *last = NULL;
4402 if (e->expr_type != EXPR_VARIABLE)
4403 return false;
4405 for (ref = e->ref; ref; ref = ref->next)
4406 if (ref->type == REF_COMPONENT)
4407 last = ref;
4409 if (last && last->u.c.component->ts.type == BT_CLASS)
4410 return CLASS_DATA (last->u.c.component)->attr.pointer_comp;
4411 else if (last && last->u.c.component->ts.type == BT_DERIVED)
4412 return last->u.c.component->ts.u.derived->attr.pointer_comp;
4413 else if (last)
4414 return false;
4416 if (e->ts.type == BT_CLASS)
4417 return CLASS_DATA (e)->attr.pointer_comp;
4418 else if (e->ts.type == BT_DERIVED)
4419 return e->ts.u.derived->attr.pointer_comp;
4420 else
4421 return false;
4425 /* Check whether an expression is "simply contiguous", cf. F2008, 6.5.4.
4426 Note: A scalar is not regarded as "simply contiguous" by the standard.
4427 if bool is not strict, some further checks are done - for instance,
4428 a "(::1)" is accepted. */
4430 bool
4431 gfc_is_simply_contiguous (gfc_expr *expr, bool strict)
4433 bool colon;
4434 int i;
4435 gfc_array_ref *ar = NULL;
4436 gfc_ref *ref, *part_ref = NULL;
4437 gfc_symbol *sym;
4439 if (expr->expr_type == EXPR_FUNCTION)
4440 return expr->value.function.esym
4441 ? expr->value.function.esym->result->attr.contiguous : false;
4442 else if (expr->expr_type != EXPR_VARIABLE)
4443 return false;
4445 if (expr->rank == 0)
4446 return false;
4448 for (ref = expr->ref; ref; ref = ref->next)
4450 if (ar)
4451 return false; /* Array shall be last part-ref. */
4453 if (ref->type == REF_COMPONENT)
4454 part_ref = ref;
4455 else if (ref->type == REF_SUBSTRING)
4456 return false;
4457 else if (ref->u.ar.type != AR_ELEMENT)
4458 ar = &ref->u.ar;
4461 sym = expr->symtree->n.sym;
4462 if (expr->ts.type != BT_CLASS
4463 && ((part_ref
4464 && !part_ref->u.c.component->attr.contiguous
4465 && part_ref->u.c.component->attr.pointer)
4466 || (!part_ref
4467 && !sym->attr.contiguous
4468 && (sym->attr.pointer
4469 || sym->as->type == AS_ASSUMED_RANK
4470 || sym->as->type == AS_ASSUMED_SHAPE))))
4471 return false;
4473 if (!ar || ar->type == AR_FULL)
4474 return true;
4476 gcc_assert (ar->type == AR_SECTION);
4478 /* Check for simply contiguous array */
4479 colon = true;
4480 for (i = 0; i < ar->dimen; i++)
4482 if (ar->dimen_type[i] == DIMEN_VECTOR)
4483 return false;
4485 if (ar->dimen_type[i] == DIMEN_ELEMENT)
4487 colon = false;
4488 continue;
4491 gcc_assert (ar->dimen_type[i] == DIMEN_RANGE);
4494 /* If the previous section was not contiguous, that's an error,
4495 unless we have effective only one element and checking is not
4496 strict. */
4497 if (!colon && (strict || !ar->start[i] || !ar->end[i]
4498 || ar->start[i]->expr_type != EXPR_CONSTANT
4499 || ar->end[i]->expr_type != EXPR_CONSTANT
4500 || mpz_cmp (ar->start[i]->value.integer,
4501 ar->end[i]->value.integer) != 0))
4502 return false;
4504 /* Following the standard, "(::1)" or - if known at compile time -
4505 "(lbound:ubound)" are not simply contiguous; if strict
4506 is false, they are regarded as simply contiguous. */
4507 if (ar->stride[i] && (strict || ar->stride[i]->expr_type != EXPR_CONSTANT
4508 || ar->stride[i]->ts.type != BT_INTEGER
4509 || mpz_cmp_si (ar->stride[i]->value.integer, 1) != 0))
4510 return false;
4512 if (ar->start[i]
4513 && (strict || ar->start[i]->expr_type != EXPR_CONSTANT
4514 || !ar->as->lower[i]
4515 || ar->as->lower[i]->expr_type != EXPR_CONSTANT
4516 || mpz_cmp (ar->start[i]->value.integer,
4517 ar->as->lower[i]->value.integer) != 0))
4518 colon = false;
4520 if (ar->end[i]
4521 && (strict || ar->end[i]->expr_type != EXPR_CONSTANT
4522 || !ar->as->upper[i]
4523 || ar->as->upper[i]->expr_type != EXPR_CONSTANT
4524 || mpz_cmp (ar->end[i]->value.integer,
4525 ar->as->upper[i]->value.integer) != 0))
4526 colon = false;
4529 return true;
4533 /* Build call to an intrinsic procedure. The number of arguments has to be
4534 passed (rather than ending the list with a NULL value) because we may
4535 want to add arguments but with a NULL-expression. */
4537 gfc_expr*
4538 gfc_build_intrinsic_call (const char* name, locus where, unsigned numarg, ...)
4540 gfc_expr* result;
4541 gfc_actual_arglist* atail;
4542 gfc_intrinsic_sym* isym;
4543 va_list ap;
4544 unsigned i;
4546 isym = gfc_find_function (name);
4547 gcc_assert (isym);
4549 result = gfc_get_expr ();
4550 result->expr_type = EXPR_FUNCTION;
4551 result->ts = isym->ts;
4552 result->where = where;
4553 result->value.function.name = name;
4554 result->value.function.isym = isym;
4556 result->symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
4557 gcc_assert (result->symtree
4558 && (result->symtree->n.sym->attr.flavor == FL_PROCEDURE
4559 || result->symtree->n.sym->attr.flavor == FL_UNKNOWN));
4561 va_start (ap, numarg);
4562 atail = NULL;
4563 for (i = 0; i < numarg; ++i)
4565 if (atail)
4567 atail->next = gfc_get_actual_arglist ();
4568 atail = atail->next;
4570 else
4571 atail = result->value.function.actual = gfc_get_actual_arglist ();
4573 atail->expr = va_arg (ap, gfc_expr*);
4575 va_end (ap);
4577 return result;
4581 /* Check if an expression may appear in a variable definition context
4582 (F2008, 16.6.7) or pointer association context (F2008, 16.6.8).
4583 This is called from the various places when resolving
4584 the pieces that make up such a context.
4586 Optionally, a possible error message can be suppressed if context is NULL
4587 and just the return status (SUCCESS / FAILURE) be requested. */
4589 gfc_try
4590 gfc_check_vardef_context (gfc_expr* e, bool pointer, bool alloc_obj,
4591 const char* context)
4593 gfc_symbol* sym = NULL;
4594 bool is_pointer;
4595 bool check_intentin;
4596 bool ptr_component;
4597 symbol_attribute attr;
4598 gfc_ref* ref;
4600 if (e->expr_type == EXPR_VARIABLE)
4602 gcc_assert (e->symtree);
4603 sym = e->symtree->n.sym;
4605 else if (e->expr_type == EXPR_FUNCTION)
4607 gcc_assert (e->symtree);
4608 sym = e->value.function.esym ? e->value.function.esym : e->symtree->n.sym;
4611 attr = gfc_expr_attr (e);
4612 if (!pointer && e->expr_type == EXPR_FUNCTION && attr.pointer)
4614 if (!(gfc_option.allow_std & GFC_STD_F2008))
4616 if (context)
4617 gfc_error ("Fortran 2008: Pointer functions in variable definition"
4618 " context (%s) at %L", context, &e->where);
4619 return FAILURE;
4622 else if (e->expr_type != EXPR_VARIABLE)
4624 if (context)
4625 gfc_error ("Non-variable expression in variable definition context (%s)"
4626 " at %L", context, &e->where);
4627 return FAILURE;
4630 if (!pointer && sym->attr.flavor == FL_PARAMETER)
4632 if (context)
4633 gfc_error ("Named constant '%s' in variable definition context (%s)"
4634 " at %L", sym->name, context, &e->where);
4635 return FAILURE;
4637 if (!pointer && sym->attr.flavor != FL_VARIABLE
4638 && !(sym->attr.flavor == FL_PROCEDURE && sym == sym->result)
4639 && !(sym->attr.flavor == FL_PROCEDURE && sym->attr.proc_pointer))
4641 if (context)
4642 gfc_error ("'%s' in variable definition context (%s) at %L is not"
4643 " a variable", sym->name, context, &e->where);
4644 return FAILURE;
4647 /* Find out whether the expr is a pointer; this also means following
4648 component references to the last one. */
4649 is_pointer = (attr.pointer || attr.proc_pointer);
4650 if (pointer && !is_pointer)
4652 if (context)
4653 gfc_error ("Non-POINTER in pointer association context (%s)"
4654 " at %L", context, &e->where);
4655 return FAILURE;
4658 /* F2008, C1303. */
4659 if (!alloc_obj
4660 && (attr.lock_comp
4661 || (e->ts.type == BT_DERIVED
4662 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
4663 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)))
4665 if (context)
4666 gfc_error ("LOCK_TYPE in variable definition context (%s) at %L",
4667 context, &e->where);
4668 return FAILURE;
4671 /* INTENT(IN) dummy argument. Check this, unless the object itself is the
4672 component of sub-component of a pointer; we need to distinguish
4673 assignment to a pointer component from pointer-assignment to a pointer
4674 component. Note that (normal) assignment to procedure pointers is not
4675 possible. */
4676 check_intentin = true;
4677 ptr_component = (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
4678 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
4679 for (ref = e->ref; ref && check_intentin; ref = ref->next)
4681 if (ptr_component && ref->type == REF_COMPONENT)
4682 check_intentin = false;
4683 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
4685 ptr_component = true;
4686 if (!pointer)
4687 check_intentin = false;
4690 if (check_intentin && sym->attr.intent == INTENT_IN)
4692 if (pointer && is_pointer)
4694 if (context)
4695 gfc_error ("Dummy argument '%s' with INTENT(IN) in pointer"
4696 " association context (%s) at %L",
4697 sym->name, context, &e->where);
4698 return FAILURE;
4700 if (!pointer && !is_pointer && !sym->attr.pointer)
4702 if (context)
4703 gfc_error ("Dummy argument '%s' with INTENT(IN) in variable"
4704 " definition context (%s) at %L",
4705 sym->name, context, &e->where);
4706 return FAILURE;
4710 /* PROTECTED and use-associated. */
4711 if (sym->attr.is_protected && sym->attr.use_assoc && check_intentin)
4713 if (pointer && is_pointer)
4715 if (context)
4716 gfc_error ("Variable '%s' is PROTECTED and can not appear in a"
4717 " pointer association context (%s) at %L",
4718 sym->name, context, &e->where);
4719 return FAILURE;
4721 if (!pointer && !is_pointer)
4723 if (context)
4724 gfc_error ("Variable '%s' is PROTECTED and can not appear in a"
4725 " variable definition context (%s) at %L",
4726 sym->name, context, &e->where);
4727 return FAILURE;
4731 /* Variable not assignable from a PURE procedure but appears in
4732 variable definition context. */
4733 if (!pointer && gfc_pure (NULL) && gfc_impure_variable (sym))
4735 if (context)
4736 gfc_error ("Variable '%s' can not appear in a variable definition"
4737 " context (%s) at %L in PURE procedure",
4738 sym->name, context, &e->where);
4739 return FAILURE;
4742 if (!pointer && context && gfc_implicit_pure (NULL)
4743 && gfc_impure_variable (sym))
4745 gfc_namespace *ns;
4746 gfc_symbol *sym;
4748 for (ns = gfc_current_ns; ns; ns = ns->parent)
4750 sym = ns->proc_name;
4751 if (sym == NULL)
4752 break;
4753 if (sym->attr.flavor == FL_PROCEDURE)
4755 sym->attr.implicit_pure = 0;
4756 break;
4760 /* Check variable definition context for associate-names. */
4761 if (!pointer && sym->assoc)
4763 const char* name;
4764 gfc_association_list* assoc;
4766 gcc_assert (sym->assoc->target);
4768 /* If this is a SELECT TYPE temporary (the association is used internally
4769 for SELECT TYPE), silently go over to the target. */
4770 if (sym->attr.select_type_temporary)
4772 gfc_expr* t = sym->assoc->target;
4774 gcc_assert (t->expr_type == EXPR_VARIABLE);
4775 name = t->symtree->name;
4777 if (t->symtree->n.sym->assoc)
4778 assoc = t->symtree->n.sym->assoc;
4779 else
4780 assoc = sym->assoc;
4782 else
4784 name = sym->name;
4785 assoc = sym->assoc;
4787 gcc_assert (name && assoc);
4789 /* Is association to a valid variable? */
4790 if (!assoc->variable)
4792 if (context)
4794 if (assoc->target->expr_type == EXPR_VARIABLE)
4795 gfc_error ("'%s' at %L associated to vector-indexed target can"
4796 " not be used in a variable definition context (%s)",
4797 name, &e->where, context);
4798 else
4799 gfc_error ("'%s' at %L associated to expression can"
4800 " not be used in a variable definition context (%s)",
4801 name, &e->where, context);
4803 return FAILURE;
4806 /* Target must be allowed to appear in a variable definition context. */
4807 if (gfc_check_vardef_context (assoc->target, pointer, false, NULL)
4808 == FAILURE)
4810 if (context)
4811 gfc_error ("Associate-name '%s' can not appear in a variable"
4812 " definition context (%s) at %L because its target"
4813 " at %L can not, either",
4814 name, context, &e->where,
4815 &assoc->target->where);
4816 return FAILURE;
4820 return SUCCESS;