Turn HARD_REGNO_MODE_OK into a target hook
[official-gcc.git] / gcc / config / mcore / mcore.c
blob69fa798b666a846da80fd02a792733d3d3feb26e
1 /* Output routines for Motorola MCore processor
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published
8 by the Free Software Foundation; either version 3, or (at your
9 option) any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "attribs.h"
32 #include "emit-rtl.h"
33 #include "diagnostic-core.h"
34 #include "stor-layout.h"
35 #include "varasm.h"
36 #include "calls.h"
37 #include "mcore.h"
38 #include "output.h"
39 #include "explow.h"
40 #include "expr.h"
41 #include "cfgrtl.h"
42 #include "builtins.h"
43 #include "regs.h"
45 /* This file should be included last. */
46 #include "target-def.h"
48 /* For dumping information about frame sizes. */
49 char * mcore_current_function_name = 0;
50 long mcore_current_compilation_timestamp = 0;
52 /* Global variables for machine-dependent things. */
54 /* Provides the class number of the smallest class containing
55 reg number. */
56 const enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER] =
58 GENERAL_REGS, ONLYR1_REGS, LRW_REGS, LRW_REGS,
59 LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
60 LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
61 LRW_REGS, LRW_REGS, LRW_REGS, GENERAL_REGS,
62 GENERAL_REGS, C_REGS, NO_REGS, NO_REGS,
65 struct mcore_frame
67 int arg_size; /* Stdarg spills (bytes). */
68 int reg_size; /* Non-volatile reg saves (bytes). */
69 int reg_mask; /* Non-volatile reg saves. */
70 int local_size; /* Locals. */
71 int outbound_size; /* Arg overflow on calls out. */
72 int pad_outbound;
73 int pad_local;
74 int pad_reg;
75 /* Describe the steps we'll use to grow it. */
76 #define MAX_STACK_GROWS 4 /* Gives us some spare space. */
77 int growth[MAX_STACK_GROWS];
78 int arg_offset;
79 int reg_offset;
80 int reg_growth;
81 int local_growth;
84 typedef enum
86 COND_NO,
87 COND_MOV_INSN,
88 COND_CLR_INSN,
89 COND_INC_INSN,
90 COND_DEC_INSN,
91 COND_BRANCH_INSN
93 cond_type;
95 static void output_stack_adjust (int, int);
96 static int calc_live_regs (int *);
97 static int try_constant_tricks (HOST_WIDE_INT, HOST_WIDE_INT *, HOST_WIDE_INT *);
98 static const char * output_inline_const (machine_mode, rtx *);
99 static void layout_mcore_frame (struct mcore_frame *);
100 static void mcore_setup_incoming_varargs (cumulative_args_t, machine_mode, tree, int *, int);
101 static cond_type is_cond_candidate (rtx);
102 static rtx_insn *emit_new_cond_insn (rtx_insn *, int);
103 static rtx_insn *conditionalize_block (rtx_insn *);
104 static void conditionalize_optimization (void);
105 static void mcore_reorg (void);
106 static rtx handle_structs_in_regs (machine_mode, const_tree, int);
107 static void mcore_mark_dllexport (tree);
108 static void mcore_mark_dllimport (tree);
109 static int mcore_dllexport_p (tree);
110 static int mcore_dllimport_p (tree);
111 static tree mcore_handle_naked_attribute (tree *, tree, tree, int, bool *);
112 #ifdef OBJECT_FORMAT_ELF
113 static void mcore_asm_named_section (const char *,
114 unsigned int, tree);
115 #endif
116 static void mcore_print_operand (FILE *, rtx, int);
117 static void mcore_print_operand_address (FILE *, machine_mode, rtx);
118 static bool mcore_print_operand_punct_valid_p (unsigned char code);
119 static void mcore_unique_section (tree, int);
120 static void mcore_encode_section_info (tree, rtx, int);
121 static const char *mcore_strip_name_encoding (const char *);
122 static int mcore_const_costs (rtx, RTX_CODE);
123 static int mcore_and_cost (rtx);
124 static int mcore_ior_cost (rtx);
125 static bool mcore_rtx_costs (rtx, machine_mode, int, int,
126 int *, bool);
127 static void mcore_external_libcall (rtx);
128 static bool mcore_return_in_memory (const_tree, const_tree);
129 static int mcore_arg_partial_bytes (cumulative_args_t,
130 machine_mode,
131 tree, bool);
132 static rtx mcore_function_arg (cumulative_args_t,
133 machine_mode,
134 const_tree, bool);
135 static void mcore_function_arg_advance (cumulative_args_t,
136 machine_mode,
137 const_tree, bool);
138 static unsigned int mcore_function_arg_boundary (machine_mode,
139 const_tree);
140 static void mcore_asm_trampoline_template (FILE *);
141 static void mcore_trampoline_init (rtx, tree, rtx);
142 static bool mcore_warn_func_return (tree);
143 static void mcore_option_override (void);
144 static bool mcore_legitimate_constant_p (machine_mode, rtx);
145 static bool mcore_legitimate_address_p (machine_mode, rtx, bool,
146 addr_space_t);
147 static bool mcore_hard_regno_mode_ok (unsigned int, machine_mode);
149 /* MCore specific attributes. */
151 static const struct attribute_spec mcore_attribute_table[] =
153 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
154 affects_type_identity } */
155 { "dllexport", 0, 0, true, false, false, NULL, false },
156 { "dllimport", 0, 0, true, false, false, NULL, false },
157 { "naked", 0, 0, true, false, false, mcore_handle_naked_attribute,
158 false },
159 { NULL, 0, 0, false, false, false, NULL, false }
162 /* Initialize the GCC target structure. */
163 #undef TARGET_ASM_EXTERNAL_LIBCALL
164 #define TARGET_ASM_EXTERNAL_LIBCALL mcore_external_libcall
166 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
167 #undef TARGET_MERGE_DECL_ATTRIBUTES
168 #define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
169 #endif
171 #ifdef OBJECT_FORMAT_ELF
172 #undef TARGET_ASM_UNALIGNED_HI_OP
173 #define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
174 #undef TARGET_ASM_UNALIGNED_SI_OP
175 #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
176 #endif
178 #undef TARGET_PRINT_OPERAND
179 #define TARGET_PRINT_OPERAND mcore_print_operand
180 #undef TARGET_PRINT_OPERAND_ADDRESS
181 #define TARGET_PRINT_OPERAND_ADDRESS mcore_print_operand_address
182 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
183 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P mcore_print_operand_punct_valid_p
185 #undef TARGET_ATTRIBUTE_TABLE
186 #define TARGET_ATTRIBUTE_TABLE mcore_attribute_table
187 #undef TARGET_ASM_UNIQUE_SECTION
188 #define TARGET_ASM_UNIQUE_SECTION mcore_unique_section
189 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
190 #define TARGET_ASM_FUNCTION_RODATA_SECTION default_no_function_rodata_section
191 #undef TARGET_ENCODE_SECTION_INFO
192 #define TARGET_ENCODE_SECTION_INFO mcore_encode_section_info
193 #undef TARGET_STRIP_NAME_ENCODING
194 #define TARGET_STRIP_NAME_ENCODING mcore_strip_name_encoding
195 #undef TARGET_RTX_COSTS
196 #define TARGET_RTX_COSTS mcore_rtx_costs
197 #undef TARGET_ADDRESS_COST
198 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
199 #undef TARGET_MACHINE_DEPENDENT_REORG
200 #define TARGET_MACHINE_DEPENDENT_REORG mcore_reorg
202 #undef TARGET_PROMOTE_FUNCTION_MODE
203 #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
204 #undef TARGET_PROMOTE_PROTOTYPES
205 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
207 #undef TARGET_RETURN_IN_MEMORY
208 #define TARGET_RETURN_IN_MEMORY mcore_return_in_memory
209 #undef TARGET_MUST_PASS_IN_STACK
210 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
211 #undef TARGET_PASS_BY_REFERENCE
212 #define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack
213 #undef TARGET_ARG_PARTIAL_BYTES
214 #define TARGET_ARG_PARTIAL_BYTES mcore_arg_partial_bytes
215 #undef TARGET_FUNCTION_ARG
216 #define TARGET_FUNCTION_ARG mcore_function_arg
217 #undef TARGET_FUNCTION_ARG_ADVANCE
218 #define TARGET_FUNCTION_ARG_ADVANCE mcore_function_arg_advance
219 #undef TARGET_FUNCTION_ARG_BOUNDARY
220 #define TARGET_FUNCTION_ARG_BOUNDARY mcore_function_arg_boundary
222 #undef TARGET_SETUP_INCOMING_VARARGS
223 #define TARGET_SETUP_INCOMING_VARARGS mcore_setup_incoming_varargs
225 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE
226 #define TARGET_ASM_TRAMPOLINE_TEMPLATE mcore_asm_trampoline_template
227 #undef TARGET_TRAMPOLINE_INIT
228 #define TARGET_TRAMPOLINE_INIT mcore_trampoline_init
230 #undef TARGET_OPTION_OVERRIDE
231 #define TARGET_OPTION_OVERRIDE mcore_option_override
233 #undef TARGET_LEGITIMATE_CONSTANT_P
234 #define TARGET_LEGITIMATE_CONSTANT_P mcore_legitimate_constant_p
235 #undef TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
236 #define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P mcore_legitimate_address_p
238 #undef TARGET_LRA_P
239 #define TARGET_LRA_P hook_bool_void_false
241 #undef TARGET_WARN_FUNC_RETURN
242 #define TARGET_WARN_FUNC_RETURN mcore_warn_func_return
244 #undef TARGET_HARD_REGNO_MODE_OK
245 #define TARGET_HARD_REGNO_MODE_OK mcore_hard_regno_mode_ok
247 struct gcc_target targetm = TARGET_INITIALIZER;
249 /* Adjust the stack and return the number of bytes taken to do it. */
250 static void
251 output_stack_adjust (int direction, int size)
253 /* If extending stack a lot, we do it incrementally. */
254 if (direction < 0 && size > mcore_stack_increment && mcore_stack_increment > 0)
256 rtx tmp = gen_rtx_REG (SImode, 1);
257 rtx memref;
259 emit_insn (gen_movsi (tmp, GEN_INT (mcore_stack_increment)));
262 emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
263 memref = gen_rtx_MEM (SImode, stack_pointer_rtx);
264 MEM_VOLATILE_P (memref) = 1;
265 emit_insn (gen_movsi (memref, stack_pointer_rtx));
266 size -= mcore_stack_increment;
268 while (size > mcore_stack_increment);
270 /* SIZE is now the residual for the last adjustment,
271 which doesn't require a probe. */
274 if (size)
276 rtx insn;
277 rtx val = GEN_INT (size);
279 if (size > 32)
281 rtx nval = gen_rtx_REG (SImode, 1);
282 emit_insn (gen_movsi (nval, val));
283 val = nval;
286 if (direction > 0)
287 insn = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
288 else
289 insn = gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
291 emit_insn (insn);
295 /* Work out the registers which need to be saved,
296 both as a mask and a count. */
298 static int
299 calc_live_regs (int * count)
301 int reg;
302 int live_regs_mask = 0;
304 * count = 0;
306 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
308 if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
310 (*count)++;
311 live_regs_mask |= (1 << reg);
315 return live_regs_mask;
318 /* Print the operand address in x to the stream. */
320 static void
321 mcore_print_operand_address (FILE * stream, machine_mode /*mode*/, rtx x)
323 switch (GET_CODE (x))
325 case REG:
326 fprintf (stream, "(%s)", reg_names[REGNO (x)]);
327 break;
329 case PLUS:
331 rtx base = XEXP (x, 0);
332 rtx index = XEXP (x, 1);
334 if (GET_CODE (base) != REG)
336 /* Ensure that BASE is a register (one of them must be). */
337 rtx temp = base;
338 base = index;
339 index = temp;
342 switch (GET_CODE (index))
344 case CONST_INT:
345 fprintf (stream, "(%s," HOST_WIDE_INT_PRINT_DEC ")",
346 reg_names[REGNO(base)], INTVAL (index));
347 break;
349 default:
350 gcc_unreachable ();
354 break;
356 default:
357 output_addr_const (stream, x);
358 break;
362 static bool
363 mcore_print_operand_punct_valid_p (unsigned char code)
365 return (code == '.' || code == '#' || code == '*' || code == '^'
366 || code == '!');
369 /* Print operand x (an rtx) in assembler syntax to file stream
370 according to modifier code.
372 'R' print the next register or memory location along, i.e. the lsw in
373 a double word value
374 'O' print a constant without the #
375 'M' print a constant as its negative
376 'P' print log2 of a power of two
377 'Q' print log2 of an inverse of a power of two
378 'U' print register for ldm/stm instruction
379 'X' print byte number for xtrbN instruction. */
381 static void
382 mcore_print_operand (FILE * stream, rtx x, int code)
384 switch (code)
386 case 'N':
387 if (INTVAL(x) == -1)
388 fprintf (asm_out_file, "32");
389 else
390 fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) + 1));
391 break;
392 case 'P':
393 fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) & 0xffffffff));
394 break;
395 case 'Q':
396 fprintf (asm_out_file, "%d", exact_log2 (~INTVAL (x)));
397 break;
398 case 'O':
399 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
400 break;
401 case 'M':
402 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, - INTVAL (x));
403 break;
404 case 'R':
405 /* Next location along in memory or register. */
406 switch (GET_CODE (x))
408 case REG:
409 fputs (reg_names[REGNO (x) + 1], (stream));
410 break;
411 case MEM:
412 mcore_print_operand_address
413 (stream, GET_MODE (x), XEXP (adjust_address (x, SImode, 4), 0));
414 break;
415 default:
416 gcc_unreachable ();
418 break;
419 case 'U':
420 fprintf (asm_out_file, "%s-%s", reg_names[REGNO (x)],
421 reg_names[REGNO (x) + 3]);
422 break;
423 case 'x':
424 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
425 break;
426 case 'X':
427 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, 3 - INTVAL (x) / 8);
428 break;
430 default:
431 switch (GET_CODE (x))
433 case REG:
434 fputs (reg_names[REGNO (x)], (stream));
435 break;
436 case MEM:
437 output_address (GET_MODE (x), XEXP (x, 0));
438 break;
439 default:
440 output_addr_const (stream, x);
441 break;
443 break;
447 /* What does a constant cost ? */
449 static int
450 mcore_const_costs (rtx exp, enum rtx_code code)
452 HOST_WIDE_INT val = INTVAL (exp);
454 /* Easy constants. */
455 if ( CONST_OK_FOR_I (val)
456 || CONST_OK_FOR_M (val)
457 || CONST_OK_FOR_N (val)
458 || (code == PLUS && CONST_OK_FOR_L (val)))
459 return 1;
460 else if (code == AND
461 && ( CONST_OK_FOR_M (~val)
462 || CONST_OK_FOR_N (~val)))
463 return 2;
464 else if (code == PLUS
465 && ( CONST_OK_FOR_I (-val)
466 || CONST_OK_FOR_M (-val)
467 || CONST_OK_FOR_N (-val)))
468 return 2;
470 return 5;
473 /* What does an and instruction cost - we do this b/c immediates may
474 have been relaxed. We want to ensure that cse will cse relaxed immeds
475 out. Otherwise we'll get bad code (multiple reloads of the same const). */
477 static int
478 mcore_and_cost (rtx x)
480 HOST_WIDE_INT val;
482 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
483 return 2;
485 val = INTVAL (XEXP (x, 1));
487 /* Do it directly. */
488 if (CONST_OK_FOR_K (val) || CONST_OK_FOR_M (~val))
489 return 2;
490 /* Takes one instruction to load. */
491 else if (const_ok_for_mcore (val))
492 return 3;
493 /* Takes two instructions to load. */
494 else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
495 return 4;
497 /* Takes a lrw to load. */
498 return 5;
501 /* What does an or cost - see and_cost(). */
503 static int
504 mcore_ior_cost (rtx x)
506 HOST_WIDE_INT val;
508 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
509 return 2;
511 val = INTVAL (XEXP (x, 1));
513 /* Do it directly with bclri. */
514 if (CONST_OK_FOR_M (val))
515 return 2;
516 /* Takes one instruction to load. */
517 else if (const_ok_for_mcore (val))
518 return 3;
519 /* Takes two instructions to load. */
520 else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
521 return 4;
523 /* Takes a lrw to load. */
524 return 5;
527 static bool
528 mcore_rtx_costs (rtx x, machine_mode mode ATTRIBUTE_UNUSED, int outer_code,
529 int opno ATTRIBUTE_UNUSED,
530 int * total, bool speed ATTRIBUTE_UNUSED)
532 int code = GET_CODE (x);
534 switch (code)
536 case CONST_INT:
537 *total = mcore_const_costs (x, (enum rtx_code) outer_code);
538 return true;
539 case CONST:
540 case LABEL_REF:
541 case SYMBOL_REF:
542 *total = 5;
543 return true;
544 case CONST_DOUBLE:
545 *total = 10;
546 return true;
548 case AND:
549 *total = COSTS_N_INSNS (mcore_and_cost (x));
550 return true;
552 case IOR:
553 *total = COSTS_N_INSNS (mcore_ior_cost (x));
554 return true;
556 case DIV:
557 case UDIV:
558 case MOD:
559 case UMOD:
560 case FLOAT:
561 case FIX:
562 *total = COSTS_N_INSNS (100);
563 return true;
565 default:
566 return false;
570 /* Prepare the operands for a comparison. Return whether the branch/setcc
571 should reverse the operands. */
573 bool
574 mcore_gen_compare (enum rtx_code code, rtx op0, rtx op1)
576 rtx cc_reg = gen_rtx_REG (CCmode, CC_REG);
577 bool invert;
579 if (GET_CODE (op1) == CONST_INT)
581 HOST_WIDE_INT val = INTVAL (op1);
583 switch (code)
585 case GTU:
586 /* Unsigned > 0 is the same as != 0; everything else is converted
587 below to LEU (reversed cmphs). */
588 if (val == 0)
589 code = NE;
590 break;
592 /* Check whether (LE A imm) can become (LT A imm + 1),
593 or (GT A imm) can become (GE A imm + 1). */
594 case GT:
595 case LE:
596 if (CONST_OK_FOR_J (val + 1))
598 op1 = GEN_INT (val + 1);
599 code = code == LE ? LT : GE;
601 break;
603 default:
604 break;
608 if (CONSTANT_P (op1) && GET_CODE (op1) != CONST_INT)
609 op1 = force_reg (SImode, op1);
611 /* cmpnei: 0-31 (K immediate)
612 cmplti: 1-32 (J immediate, 0 using btsti x,31). */
613 invert = false;
614 switch (code)
616 case EQ: /* Use inverted condition, cmpne. */
617 code = NE;
618 invert = true;
619 /* FALLTHRU */
621 case NE: /* Use normal condition, cmpne. */
622 if (GET_CODE (op1) == CONST_INT && ! CONST_OK_FOR_K (INTVAL (op1)))
623 op1 = force_reg (SImode, op1);
624 break;
626 case LE: /* Use inverted condition, reversed cmplt. */
627 code = GT;
628 invert = true;
629 /* FALLTHRU */
631 case GT: /* Use normal condition, reversed cmplt. */
632 if (GET_CODE (op1) == CONST_INT)
633 op1 = force_reg (SImode, op1);
634 break;
636 case GE: /* Use inverted condition, cmplt. */
637 code = LT;
638 invert = true;
639 /* FALLTHRU */
641 case LT: /* Use normal condition, cmplt. */
642 if (GET_CODE (op1) == CONST_INT &&
643 /* covered by btsti x,31. */
644 INTVAL (op1) != 0 &&
645 ! CONST_OK_FOR_J (INTVAL (op1)))
646 op1 = force_reg (SImode, op1);
647 break;
649 case GTU: /* Use inverted condition, cmple. */
650 /* We coped with unsigned > 0 above. */
651 gcc_assert (GET_CODE (op1) != CONST_INT || INTVAL (op1) != 0);
652 code = LEU;
653 invert = true;
654 /* FALLTHRU */
656 case LEU: /* Use normal condition, reversed cmphs. */
657 if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
658 op1 = force_reg (SImode, op1);
659 break;
661 case LTU: /* Use inverted condition, cmphs. */
662 code = GEU;
663 invert = true;
664 /* FALLTHRU */
666 case GEU: /* Use normal condition, cmphs. */
667 if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
668 op1 = force_reg (SImode, op1);
669 break;
671 default:
672 break;
675 emit_insn (gen_rtx_SET (cc_reg, gen_rtx_fmt_ee (code, CCmode, op0, op1)));
676 return invert;
680 mcore_symbolic_address_p (rtx x)
682 switch (GET_CODE (x))
684 case SYMBOL_REF:
685 case LABEL_REF:
686 return 1;
687 case CONST:
688 x = XEXP (x, 0);
689 return ( (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
690 || GET_CODE (XEXP (x, 0)) == LABEL_REF)
691 && GET_CODE (XEXP (x, 1)) == CONST_INT);
692 default:
693 return 0;
697 /* Functions to output assembly code for a function call. */
699 char *
700 mcore_output_call (rtx operands[], int index)
702 static char buffer[20];
703 rtx addr = operands [index];
705 if (REG_P (addr))
707 if (TARGET_CG_DATA)
709 gcc_assert (mcore_current_function_name);
711 ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
712 "unknown", 1);
715 sprintf (buffer, "jsr\t%%%d", index);
717 else
719 if (TARGET_CG_DATA)
721 gcc_assert (mcore_current_function_name);
722 gcc_assert (GET_CODE (addr) == SYMBOL_REF);
724 ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
725 XSTR (addr, 0), 0);
728 sprintf (buffer, "jbsr\t%%%d", index);
731 return buffer;
734 /* Can we load a constant with a single instruction ? */
737 const_ok_for_mcore (HOST_WIDE_INT value)
739 if (value >= 0 && value <= 127)
740 return 1;
742 /* Try exact power of two. */
743 if (CONST_OK_FOR_M (value))
744 return 1;
746 /* Try exact power of two - 1. */
747 if (CONST_OK_FOR_N (value) && value != -1)
748 return 1;
750 return 0;
753 /* Can we load a constant inline with up to 2 instructions ? */
756 mcore_const_ok_for_inline (HOST_WIDE_INT value)
758 HOST_WIDE_INT x, y;
760 return try_constant_tricks (value, & x, & y) > 0;
763 /* Are we loading the constant using a not ? */
766 mcore_const_trick_uses_not (HOST_WIDE_INT value)
768 HOST_WIDE_INT x, y;
770 return try_constant_tricks (value, & x, & y) == 2;
773 /* Try tricks to load a constant inline and return the trick number if
774 success (0 is non-inlinable).
776 0: not inlinable
777 1: single instruction (do the usual thing)
778 2: single insn followed by a 'not'
779 3: single insn followed by a subi
780 4: single insn followed by an addi
781 5: single insn followed by rsubi
782 6: single insn followed by bseti
783 7: single insn followed by bclri
784 8: single insn followed by rotli
785 9: single insn followed by lsli
786 10: single insn followed by ixh
787 11: single insn followed by ixw. */
789 static int
790 try_constant_tricks (HOST_WIDE_INT value, HOST_WIDE_INT * x, HOST_WIDE_INT * y)
792 HOST_WIDE_INT i;
793 unsigned HOST_WIDE_INT bit, shf, rot;
795 if (const_ok_for_mcore (value))
796 return 1; /* Do the usual thing. */
798 if (! TARGET_HARDLIT)
799 return 0;
801 if (const_ok_for_mcore (~value))
803 *x = ~value;
804 return 2;
807 for (i = 1; i <= 32; i++)
809 if (const_ok_for_mcore (value - i))
811 *x = value - i;
812 *y = i;
814 return 3;
817 if (const_ok_for_mcore (value + i))
819 *x = value + i;
820 *y = i;
822 return 4;
826 bit = 0x80000000ULL;
828 for (i = 0; i <= 31; i++)
830 if (const_ok_for_mcore (i - value))
832 *x = i - value;
833 *y = i;
835 return 5;
838 if (const_ok_for_mcore (value & ~bit))
840 *y = bit;
841 *x = value & ~bit;
842 return 6;
845 if (const_ok_for_mcore (value | bit))
847 *y = ~bit;
848 *x = value | bit;
850 return 7;
853 bit >>= 1;
856 shf = value;
857 rot = value;
859 for (i = 1; i < 31; i++)
861 int c;
863 /* MCore has rotate left. */
864 c = rot << 31;
865 rot >>= 1;
866 rot &= 0x7FFFFFFF;
867 rot |= c; /* Simulate rotate. */
869 if (const_ok_for_mcore (rot))
871 *y = i;
872 *x = rot;
874 return 8;
877 if (shf & 1)
878 shf = 0; /* Can't use logical shift, low order bit is one. */
880 shf >>= 1;
882 if (shf != 0 && const_ok_for_mcore (shf))
884 *y = i;
885 *x = shf;
887 return 9;
891 if ((value % 3) == 0 && const_ok_for_mcore (value / 3))
893 *x = value / 3;
895 return 10;
898 if ((value % 5) == 0 && const_ok_for_mcore (value / 5))
900 *x = value / 5;
902 return 11;
905 return 0;
908 /* Check whether reg is dead at first. This is done by searching ahead
909 for either the next use (i.e., reg is live), a death note, or a set of
910 reg. Don't just use dead_or_set_p() since reload does not always mark
911 deaths (especially if PRESERVE_DEATH_NOTES_REGNO_P is not defined). We
912 can ignore subregs by extracting the actual register. BRC */
915 mcore_is_dead (rtx_insn *first, rtx reg)
917 rtx_insn *insn;
919 /* For mcore, subregs can't live independently of their parent regs. */
920 if (GET_CODE (reg) == SUBREG)
921 reg = SUBREG_REG (reg);
923 /* Dies immediately. */
924 if (dead_or_set_p (first, reg))
925 return 1;
927 /* Look for conclusive evidence of live/death, otherwise we have
928 to assume that it is live. */
929 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
931 if (JUMP_P (insn))
932 return 0; /* We lose track, assume it is alive. */
934 else if (CALL_P (insn))
936 /* Call's might use it for target or register parms. */
937 if (reg_referenced_p (reg, PATTERN (insn))
938 || find_reg_fusage (insn, USE, reg))
939 return 0;
940 else if (dead_or_set_p (insn, reg))
941 return 1;
943 else if (NONJUMP_INSN_P (insn))
945 if (reg_referenced_p (reg, PATTERN (insn)))
946 return 0;
947 else if (dead_or_set_p (insn, reg))
948 return 1;
952 /* No conclusive evidence either way, we cannot take the chance
953 that control flow hid the use from us -- "I'm not dead yet". */
954 return 0;
957 /* Count the number of ones in mask. */
960 mcore_num_ones (HOST_WIDE_INT mask)
962 /* A trick to count set bits recently posted on comp.compilers. */
963 mask = (mask >> 1 & 0x55555555) + (mask & 0x55555555);
964 mask = ((mask >> 2) & 0x33333333) + (mask & 0x33333333);
965 mask = ((mask >> 4) + mask) & 0x0f0f0f0f;
966 mask = ((mask >> 8) + mask);
968 return (mask + (mask >> 16)) & 0xff;
971 /* Count the number of zeros in mask. */
974 mcore_num_zeros (HOST_WIDE_INT mask)
976 return 32 - mcore_num_ones (mask);
979 /* Determine byte being masked. */
982 mcore_byte_offset (unsigned int mask)
984 if (mask == 0x00ffffffL)
985 return 0;
986 else if (mask == 0xff00ffffL)
987 return 1;
988 else if (mask == 0xffff00ffL)
989 return 2;
990 else if (mask == 0xffffff00L)
991 return 3;
993 return -1;
996 /* Determine halfword being masked. */
999 mcore_halfword_offset (unsigned int mask)
1001 if (mask == 0x0000ffffL)
1002 return 0;
1003 else if (mask == 0xffff0000L)
1004 return 1;
1006 return -1;
1009 /* Output a series of bseti's corresponding to mask. */
1011 const char *
1012 mcore_output_bseti (rtx dst, int mask)
1014 rtx out_operands[2];
1015 int bit;
1017 out_operands[0] = dst;
1019 for (bit = 0; bit < 32; bit++)
1021 if ((mask & 0x1) == 0x1)
1023 out_operands[1] = GEN_INT (bit);
1025 output_asm_insn ("bseti\t%0,%1", out_operands);
1027 mask >>= 1;
1030 return "";
1033 /* Output a series of bclri's corresponding to mask. */
1035 const char *
1036 mcore_output_bclri (rtx dst, int mask)
1038 rtx out_operands[2];
1039 int bit;
1041 out_operands[0] = dst;
1043 for (bit = 0; bit < 32; bit++)
1045 if ((mask & 0x1) == 0x0)
1047 out_operands[1] = GEN_INT (bit);
1049 output_asm_insn ("bclri\t%0,%1", out_operands);
1052 mask >>= 1;
1055 return "";
1058 /* Output a conditional move of two constants that are +/- 1 within each
1059 other. See the "movtK" patterns in mcore.md. I'm not sure this is
1060 really worth the effort. */
1062 const char *
1063 mcore_output_cmov (rtx operands[], int cmp_t, const char * test)
1065 HOST_WIDE_INT load_value;
1066 HOST_WIDE_INT adjust_value;
1067 rtx out_operands[4];
1069 out_operands[0] = operands[0];
1071 /* Check to see which constant is loadable. */
1072 if (const_ok_for_mcore (INTVAL (operands[1])))
1074 out_operands[1] = operands[1];
1075 out_operands[2] = operands[2];
1077 else if (const_ok_for_mcore (INTVAL (operands[2])))
1079 out_operands[1] = operands[2];
1080 out_operands[2] = operands[1];
1082 /* Complement test since constants are swapped. */
1083 cmp_t = (cmp_t == 0);
1085 load_value = INTVAL (out_operands[1]);
1086 adjust_value = INTVAL (out_operands[2]);
1088 /* First output the test if folded into the pattern. */
1090 if (test)
1091 output_asm_insn (test, operands);
1093 /* Load the constant - for now, only support constants that can be
1094 generated with a single instruction. maybe add general inlinable
1095 constants later (this will increase the # of patterns since the
1096 instruction sequence has a different length attribute). */
1097 if (load_value >= 0 && load_value <= 127)
1098 output_asm_insn ("movi\t%0,%1", out_operands);
1099 else if (CONST_OK_FOR_M (load_value))
1100 output_asm_insn ("bgeni\t%0,%P1", out_operands);
1101 else if (CONST_OK_FOR_N (load_value))
1102 output_asm_insn ("bmaski\t%0,%N1", out_operands);
1104 /* Output the constant adjustment. */
1105 if (load_value > adjust_value)
1107 if (cmp_t)
1108 output_asm_insn ("decf\t%0", out_operands);
1109 else
1110 output_asm_insn ("dect\t%0", out_operands);
1112 else
1114 if (cmp_t)
1115 output_asm_insn ("incf\t%0", out_operands);
1116 else
1117 output_asm_insn ("inct\t%0", out_operands);
1120 return "";
1123 /* Outputs the peephole for moving a constant that gets not'ed followed
1124 by an and (i.e. combine the not and the and into andn). BRC */
1126 const char *
1127 mcore_output_andn (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
1129 HOST_WIDE_INT x, y;
1130 rtx out_operands[3];
1131 const char * load_op;
1132 char buf[256];
1133 int trick_no;
1135 trick_no = try_constant_tricks (INTVAL (operands[1]), &x, &y);
1136 gcc_assert (trick_no == 2);
1138 out_operands[0] = operands[0];
1139 out_operands[1] = GEN_INT (x);
1140 out_operands[2] = operands[2];
1142 if (x >= 0 && x <= 127)
1143 load_op = "movi\t%0,%1";
1145 /* Try exact power of two. */
1146 else if (CONST_OK_FOR_M (x))
1147 load_op = "bgeni\t%0,%P1";
1149 /* Try exact power of two - 1. */
1150 else if (CONST_OK_FOR_N (x))
1151 load_op = "bmaski\t%0,%N1";
1153 else
1155 load_op = "BADMOVI-andn\t%0, %1";
1156 gcc_unreachable ();
1159 sprintf (buf, "%s\n\tandn\t%%2,%%0", load_op);
1160 output_asm_insn (buf, out_operands);
1162 return "";
1165 /* Output an inline constant. */
1167 static const char *
1168 output_inline_const (machine_mode mode, rtx operands[])
1170 HOST_WIDE_INT x = 0, y = 0;
1171 int trick_no;
1172 rtx out_operands[3];
1173 char buf[256];
1174 char load_op[256];
1175 const char *dst_fmt;
1176 HOST_WIDE_INT value;
1178 value = INTVAL (operands[1]);
1180 trick_no = try_constant_tricks (value, &x, &y);
1181 /* lrw's are handled separately: Large inlinable constants never get
1182 turned into lrw's. Our caller uses try_constant_tricks to back
1183 off to an lrw rather than calling this routine. */
1184 gcc_assert (trick_no != 0);
1186 if (trick_no == 1)
1187 x = value;
1189 /* operands: 0 = dst, 1 = load immed., 2 = immed. adjustment. */
1190 out_operands[0] = operands[0];
1191 out_operands[1] = GEN_INT (x);
1193 if (trick_no > 2)
1194 out_operands[2] = GEN_INT (y);
1196 /* Select dst format based on mode. */
1197 if (mode == DImode && (! TARGET_LITTLE_END))
1198 dst_fmt = "%R0";
1199 else
1200 dst_fmt = "%0";
1202 if (x >= 0 && x <= 127)
1203 sprintf (load_op, "movi\t%s,%%1", dst_fmt);
1205 /* Try exact power of two. */
1206 else if (CONST_OK_FOR_M (x))
1207 sprintf (load_op, "bgeni\t%s,%%P1", dst_fmt);
1209 /* Try exact power of two - 1. */
1210 else if (CONST_OK_FOR_N (x))
1211 sprintf (load_op, "bmaski\t%s,%%N1", dst_fmt);
1213 else
1215 sprintf (load_op, "BADMOVI-inline_const %s, %%1", dst_fmt);
1216 gcc_unreachable ();
1219 switch (trick_no)
1221 case 1:
1222 strcpy (buf, load_op);
1223 break;
1224 case 2: /* not */
1225 sprintf (buf, "%s\n\tnot\t%s\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1226 break;
1227 case 3: /* add */
1228 sprintf (buf, "%s\n\taddi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1229 break;
1230 case 4: /* sub */
1231 sprintf (buf, "%s\n\tsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1232 break;
1233 case 5: /* rsub */
1234 /* Never happens unless -mrsubi, see try_constant_tricks(). */
1235 sprintf (buf, "%s\n\trsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1236 break;
1237 case 6: /* bseti */
1238 sprintf (buf, "%s\n\tbseti\t%s,%%P2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1239 break;
1240 case 7: /* bclr */
1241 sprintf (buf, "%s\n\tbclri\t%s,%%Q2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1242 break;
1243 case 8: /* rotl */
1244 sprintf (buf, "%s\n\trotli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1245 break;
1246 case 9: /* lsl */
1247 sprintf (buf, "%s\n\tlsli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1248 break;
1249 case 10: /* ixh */
1250 sprintf (buf, "%s\n\tixh\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
1251 break;
1252 case 11: /* ixw */
1253 sprintf (buf, "%s\n\tixw\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
1254 break;
1255 default:
1256 return "";
1259 output_asm_insn (buf, out_operands);
1261 return "";
1264 /* Output a move of a word or less value. */
1266 const char *
1267 mcore_output_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[],
1268 machine_mode mode ATTRIBUTE_UNUSED)
1270 rtx dst = operands[0];
1271 rtx src = operands[1];
1273 if (GET_CODE (dst) == REG)
1275 if (GET_CODE (src) == REG)
1277 if (REGNO (src) == CC_REG) /* r-c */
1278 return "mvc\t%0";
1279 else
1280 return "mov\t%0,%1"; /* r-r*/
1282 else if (GET_CODE (src) == MEM)
1284 if (GET_CODE (XEXP (src, 0)) == LABEL_REF)
1285 return "lrw\t%0,[%1]"; /* a-R */
1286 else
1287 switch (GET_MODE (src)) /* r-m */
1289 case E_SImode:
1290 return "ldw\t%0,%1";
1291 case E_HImode:
1292 return "ld.h\t%0,%1";
1293 case E_QImode:
1294 return "ld.b\t%0,%1";
1295 default:
1296 gcc_unreachable ();
1299 else if (GET_CODE (src) == CONST_INT)
1301 HOST_WIDE_INT x, y;
1303 if (CONST_OK_FOR_I (INTVAL (src))) /* r-I */
1304 return "movi\t%0,%1";
1305 else if (CONST_OK_FOR_M (INTVAL (src))) /* r-M */
1306 return "bgeni\t%0,%P1\t// %1 %x1";
1307 else if (CONST_OK_FOR_N (INTVAL (src))) /* r-N */
1308 return "bmaski\t%0,%N1\t// %1 %x1";
1309 else if (try_constant_tricks (INTVAL (src), &x, &y)) /* R-P */
1310 return output_inline_const (SImode, operands); /* 1-2 insns */
1311 else
1312 return "lrw\t%0,%x1\t// %1"; /* Get it from literal pool. */
1314 else
1315 return "lrw\t%0, %1"; /* Into the literal pool. */
1317 else if (GET_CODE (dst) == MEM) /* m-r */
1318 switch (GET_MODE (dst))
1320 case E_SImode:
1321 return "stw\t%1,%0";
1322 case E_HImode:
1323 return "st.h\t%1,%0";
1324 case E_QImode:
1325 return "st.b\t%1,%0";
1326 default:
1327 gcc_unreachable ();
1330 gcc_unreachable ();
1333 /* Return a sequence of instructions to perform DI or DF move.
1334 Since the MCORE cannot move a DI or DF in one instruction, we have
1335 to take care when we see overlapping source and dest registers. */
1337 const char *
1338 mcore_output_movedouble (rtx operands[], machine_mode mode ATTRIBUTE_UNUSED)
1340 rtx dst = operands[0];
1341 rtx src = operands[1];
1343 if (GET_CODE (dst) == REG)
1345 if (GET_CODE (src) == REG)
1347 int dstreg = REGNO (dst);
1348 int srcreg = REGNO (src);
1350 /* Ensure the second source not overwritten. */
1351 if (srcreg + 1 == dstreg)
1352 return "mov %R0,%R1\n\tmov %0,%1";
1353 else
1354 return "mov %0,%1\n\tmov %R0,%R1";
1356 else if (GET_CODE (src) == MEM)
1358 rtx memexp = XEXP (src, 0);
1359 int dstreg = REGNO (dst);
1360 int basereg = -1;
1362 if (GET_CODE (memexp) == LABEL_REF)
1363 return "lrw\t%0,[%1]\n\tlrw\t%R0,[%R1]";
1364 else if (GET_CODE (memexp) == REG)
1365 basereg = REGNO (memexp);
1366 else if (GET_CODE (memexp) == PLUS)
1368 if (GET_CODE (XEXP (memexp, 0)) == REG)
1369 basereg = REGNO (XEXP (memexp, 0));
1370 else if (GET_CODE (XEXP (memexp, 1)) == REG)
1371 basereg = REGNO (XEXP (memexp, 1));
1372 else
1373 gcc_unreachable ();
1375 else
1376 gcc_unreachable ();
1378 /* ??? length attribute is wrong here. */
1379 if (dstreg == basereg)
1381 /* Just load them in reverse order. */
1382 return "ldw\t%R0,%R1\n\tldw\t%0,%1";
1384 /* XXX: alternative: move basereg to basereg+1
1385 and then fall through. */
1387 else
1388 return "ldw\t%0,%1\n\tldw\t%R0,%R1";
1390 else if (GET_CODE (src) == CONST_INT)
1392 if (TARGET_LITTLE_END)
1394 if (CONST_OK_FOR_I (INTVAL (src)))
1395 output_asm_insn ("movi %0,%1", operands);
1396 else if (CONST_OK_FOR_M (INTVAL (src)))
1397 output_asm_insn ("bgeni %0,%P1", operands);
1398 else if (CONST_OK_FOR_N (INTVAL (src)))
1399 output_asm_insn ("bmaski %0,%N1", operands);
1400 else
1401 gcc_unreachable ();
1403 if (INTVAL (src) < 0)
1404 return "bmaski %R0,32";
1405 else
1406 return "movi %R0,0";
1408 else
1410 if (CONST_OK_FOR_I (INTVAL (src)))
1411 output_asm_insn ("movi %R0,%1", operands);
1412 else if (CONST_OK_FOR_M (INTVAL (src)))
1413 output_asm_insn ("bgeni %R0,%P1", operands);
1414 else if (CONST_OK_FOR_N (INTVAL (src)))
1415 output_asm_insn ("bmaski %R0,%N1", operands);
1416 else
1417 gcc_unreachable ();
1419 if (INTVAL (src) < 0)
1420 return "bmaski %0,32";
1421 else
1422 return "movi %0,0";
1425 else
1426 gcc_unreachable ();
1428 else if (GET_CODE (dst) == MEM && GET_CODE (src) == REG)
1429 return "stw\t%1,%0\n\tstw\t%R1,%R0";
1430 else
1431 gcc_unreachable ();
1434 /* Predicates used by the templates. */
1437 mcore_arith_S_operand (rtx op)
1439 if (GET_CODE (op) == CONST_INT && CONST_OK_FOR_M (~INTVAL (op)))
1440 return 1;
1442 return 0;
1445 /* Expand insert bit field. BRC */
1448 mcore_expand_insv (rtx operands[])
1450 int width = INTVAL (operands[1]);
1451 int posn = INTVAL (operands[2]);
1452 int mask;
1453 rtx mreg, sreg, ereg;
1455 /* To get width 1 insv, the test in store_bit_field() (expmed.c, line 191)
1456 for width==1 must be removed. Look around line 368. This is something
1457 we really want the md part to do. */
1458 if (width == 1 && GET_CODE (operands[3]) == CONST_INT)
1460 /* Do directly with bseti or bclri. */
1461 /* RBE: 2/97 consider only low bit of constant. */
1462 if ((INTVAL (operands[3]) & 1) == 0)
1464 mask = ~(1 << posn);
1465 emit_insn (gen_rtx_SET (operands[0],
1466 gen_rtx_AND (SImode, operands[0],
1467 GEN_INT (mask))));
1469 else
1471 mask = 1 << posn;
1472 emit_insn (gen_rtx_SET (operands[0],
1473 gen_rtx_IOR (SImode, operands[0],
1474 GEN_INT (mask))));
1477 return 1;
1480 /* Look at some bit-field placements that we aren't interested
1481 in handling ourselves, unless specifically directed to do so. */
1482 if (! TARGET_W_FIELD)
1483 return 0; /* Generally, give up about now. */
1485 if (width == 8 && posn % 8 == 0)
1486 /* Byte sized and aligned; let caller break it up. */
1487 return 0;
1489 if (width == 16 && posn % 16 == 0)
1490 /* Short sized and aligned; let caller break it up. */
1491 return 0;
1493 /* The general case - we can do this a little bit better than what the
1494 machine independent part tries. This will get rid of all the subregs
1495 that mess up constant folding in combine when working with relaxed
1496 immediates. */
1498 /* If setting the entire field, do it directly. */
1499 if (GET_CODE (operands[3]) == CONST_INT
1500 && INTVAL (operands[3]) == ((1 << width) - 1))
1502 mreg = force_reg (SImode, GEN_INT (INTVAL (operands[3]) << posn));
1503 emit_insn (gen_rtx_SET (operands[0],
1504 gen_rtx_IOR (SImode, operands[0], mreg)));
1505 return 1;
1508 /* Generate the clear mask. */
1509 mreg = force_reg (SImode, GEN_INT (~(((1 << width) - 1) << posn)));
1511 /* Clear the field, to overlay it later with the source. */
1512 emit_insn (gen_rtx_SET (operands[0],
1513 gen_rtx_AND (SImode, operands[0], mreg)));
1515 /* If the source is constant 0, we've nothing to add back. */
1516 if (GET_CODE (operands[3]) == CONST_INT && INTVAL (operands[3]) == 0)
1517 return 1;
1519 /* XXX: Should we worry about more games with constant values?
1520 We've covered the high profile: set/clear single-bit and many-bit
1521 fields. How often do we see "arbitrary bit pattern" constants? */
1522 sreg = copy_to_mode_reg (SImode, operands[3]);
1524 /* Extract src as same width as dst (needed for signed values). We
1525 always have to do this since we widen everything to SImode.
1526 We don't have to mask if we're shifting this up against the
1527 MSB of the register (e.g., the shift will push out any hi-order
1528 bits. */
1529 if (width + posn != (int) GET_MODE_SIZE (SImode))
1531 ereg = force_reg (SImode, GEN_INT ((1 << width) - 1));
1532 emit_insn (gen_rtx_SET (sreg, gen_rtx_AND (SImode, sreg, ereg)));
1535 /* Insert source value in dest. */
1536 if (posn != 0)
1537 emit_insn (gen_rtx_SET (sreg, gen_rtx_ASHIFT (SImode, sreg,
1538 GEN_INT (posn))));
1540 emit_insn (gen_rtx_SET (operands[0],
1541 gen_rtx_IOR (SImode, operands[0], sreg)));
1543 return 1;
1546 /* ??? Block move stuff stolen from m88k. This code has not been
1547 verified for correctness. */
1549 /* Emit code to perform a block move. Choose the best method.
1551 OPERANDS[0] is the destination.
1552 OPERANDS[1] is the source.
1553 OPERANDS[2] is the size.
1554 OPERANDS[3] is the alignment safe to use. */
1556 /* Emit code to perform a block move with an offset sequence of ldw/st
1557 instructions (..., ldw 0, stw 1, ldw 1, stw 0, ...). SIZE and ALIGN are
1558 known constants. DEST and SRC are registers. OFFSET is the known
1559 starting point for the output pattern. */
1561 static const machine_mode mode_from_align[] =
1563 VOIDmode, QImode, HImode, VOIDmode, SImode,
1566 static void
1567 block_move_sequence (rtx dst_mem, rtx src_mem, int size, int align)
1569 rtx temp[2];
1570 machine_mode mode[2];
1571 int amount[2];
1572 bool active[2];
1573 int phase = 0;
1574 int next;
1575 int offset_ld = 0;
1576 int offset_st = 0;
1577 rtx x;
1579 x = XEXP (dst_mem, 0);
1580 if (!REG_P (x))
1582 x = force_reg (Pmode, x);
1583 dst_mem = replace_equiv_address (dst_mem, x);
1586 x = XEXP (src_mem, 0);
1587 if (!REG_P (x))
1589 x = force_reg (Pmode, x);
1590 src_mem = replace_equiv_address (src_mem, x);
1593 active[0] = active[1] = false;
1597 next = phase;
1598 phase ^= 1;
1600 if (size > 0)
1602 int next_amount;
1604 next_amount = (size >= 4 ? 4 : (size >= 2 ? 2 : 1));
1605 next_amount = MIN (next_amount, align);
1607 amount[next] = next_amount;
1608 mode[next] = mode_from_align[next_amount];
1609 temp[next] = gen_reg_rtx (mode[next]);
1611 x = adjust_address (src_mem, mode[next], offset_ld);
1612 emit_insn (gen_rtx_SET (temp[next], x));
1614 offset_ld += next_amount;
1615 size -= next_amount;
1616 active[next] = true;
1619 if (active[phase])
1621 active[phase] = false;
1623 x = adjust_address (dst_mem, mode[phase], offset_st);
1624 emit_insn (gen_rtx_SET (x, temp[phase]));
1626 offset_st += amount[phase];
1629 while (active[next]);
1632 bool
1633 mcore_expand_block_move (rtx *operands)
1635 HOST_WIDE_INT align, bytes, max;
1637 if (GET_CODE (operands[2]) != CONST_INT)
1638 return false;
1640 bytes = INTVAL (operands[2]);
1641 align = INTVAL (operands[3]);
1643 if (bytes <= 0)
1644 return false;
1645 if (align > 4)
1646 align = 4;
1648 switch (align)
1650 case 4:
1651 if (bytes & 1)
1652 max = 4*4;
1653 else if (bytes & 3)
1654 max = 8*4;
1655 else
1656 max = 16*4;
1657 break;
1658 case 2:
1659 max = 4*2;
1660 break;
1661 case 1:
1662 max = 4*1;
1663 break;
1664 default:
1665 gcc_unreachable ();
1668 if (bytes <= max)
1670 block_move_sequence (operands[0], operands[1], bytes, align);
1671 return true;
1674 return false;
1678 /* Code to generate prologue and epilogue sequences. */
1679 static int number_of_regs_before_varargs;
1681 /* Set by TARGET_SETUP_INCOMING_VARARGS to indicate to prolog that this is
1682 for a varargs function. */
1683 static int current_function_anonymous_args;
1685 #define STACK_BYTES (STACK_BOUNDARY/BITS_PER_UNIT)
1686 #define STORE_REACH (64) /* Maximum displace of word store + 4. */
1687 #define ADDI_REACH (32) /* Maximum addi operand. */
1689 static void
1690 layout_mcore_frame (struct mcore_frame * infp)
1692 int n;
1693 unsigned int i;
1694 int nbytes;
1695 int regarg;
1696 int localregarg;
1697 int outbounds;
1698 unsigned int growths;
1699 int step;
1701 /* Might have to spill bytes to re-assemble a big argument that
1702 was passed partially in registers and partially on the stack. */
1703 nbytes = crtl->args.pretend_args_size;
1705 /* Determine how much space for spilled anonymous args (e.g., stdarg). */
1706 if (current_function_anonymous_args)
1707 nbytes += (NPARM_REGS - number_of_regs_before_varargs) * UNITS_PER_WORD;
1709 infp->arg_size = nbytes;
1711 /* How much space to save non-volatile registers we stomp. */
1712 infp->reg_mask = calc_live_regs (& n);
1713 infp->reg_size = n * 4;
1715 /* And the rest of it... locals and space for overflowed outbounds. */
1716 infp->local_size = get_frame_size ();
1717 infp->outbound_size = crtl->outgoing_args_size;
1719 /* Make sure we have a whole number of words for the locals. */
1720 if (infp->local_size % STACK_BYTES)
1721 infp->local_size = (infp->local_size + STACK_BYTES - 1) & ~ (STACK_BYTES -1);
1723 /* Only thing we know we have to pad is the outbound space, since
1724 we've aligned our locals assuming that base of locals is aligned. */
1725 infp->pad_local = 0;
1726 infp->pad_reg = 0;
1727 infp->pad_outbound = 0;
1728 if (infp->outbound_size % STACK_BYTES)
1729 infp->pad_outbound = STACK_BYTES - (infp->outbound_size % STACK_BYTES);
1731 /* Now we see how we want to stage the prologue so that it does
1732 the most appropriate stack growth and register saves to either:
1733 (1) run fast,
1734 (2) reduce instruction space, or
1735 (3) reduce stack space. */
1736 for (i = 0; i < ARRAY_SIZE (infp->growth); i++)
1737 infp->growth[i] = 0;
1739 regarg = infp->reg_size + infp->arg_size;
1740 localregarg = infp->local_size + regarg;
1741 outbounds = infp->outbound_size + infp->pad_outbound;
1742 growths = 0;
1744 /* XXX: Consider one where we consider localregarg + outbound too! */
1746 /* Frame of <= 32 bytes and using stm would get <= 2 registers.
1747 use stw's with offsets and buy the frame in one shot. */
1748 if (localregarg <= ADDI_REACH
1749 && (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
1751 /* Make sure we'll be aligned. */
1752 if (localregarg % STACK_BYTES)
1753 infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
1755 step = localregarg + infp->pad_reg;
1756 infp->reg_offset = infp->local_size;
1758 if (outbounds + step <= ADDI_REACH && !frame_pointer_needed)
1760 step += outbounds;
1761 infp->reg_offset += outbounds;
1762 outbounds = 0;
1765 infp->arg_offset = step - 4;
1766 infp->growth[growths++] = step;
1767 infp->reg_growth = growths;
1768 infp->local_growth = growths;
1770 /* If we haven't already folded it in. */
1771 if (outbounds)
1772 infp->growth[growths++] = outbounds;
1774 goto finish;
1777 /* Frame can't be done with a single subi, but can be done with 2
1778 insns. If the 'stm' is getting <= 2 registers, we use stw's and
1779 shift some of the stack purchase into the first subi, so both are
1780 single instructions. */
1781 if (localregarg <= STORE_REACH
1782 && (infp->local_size > ADDI_REACH)
1783 && (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
1785 int all;
1787 /* Make sure we'll be aligned; use either pad_reg or pad_local. */
1788 if (localregarg % STACK_BYTES)
1789 infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
1791 all = localregarg + infp->pad_reg + infp->pad_local;
1792 step = ADDI_REACH; /* As much up front as we can. */
1793 if (step > all)
1794 step = all;
1796 /* XXX: Consider whether step will still be aligned; we believe so. */
1797 infp->arg_offset = step - 4;
1798 infp->growth[growths++] = step;
1799 infp->reg_growth = growths;
1800 infp->reg_offset = step - infp->pad_reg - infp->reg_size;
1801 all -= step;
1803 /* Can we fold in any space required for outbounds? */
1804 if (outbounds + all <= ADDI_REACH && !frame_pointer_needed)
1806 all += outbounds;
1807 outbounds = 0;
1810 /* Get the rest of the locals in place. */
1811 step = all;
1812 infp->growth[growths++] = step;
1813 infp->local_growth = growths;
1814 all -= step;
1816 gcc_assert (all == 0);
1818 /* Finish off if we need to do so. */
1819 if (outbounds)
1820 infp->growth[growths++] = outbounds;
1822 goto finish;
1825 /* Registers + args is nicely aligned, so we'll buy that in one shot.
1826 Then we buy the rest of the frame in 1 or 2 steps depending on
1827 whether we need a frame pointer. */
1828 if ((regarg % STACK_BYTES) == 0)
1830 infp->growth[growths++] = regarg;
1831 infp->reg_growth = growths;
1832 infp->arg_offset = regarg - 4;
1833 infp->reg_offset = 0;
1835 if (infp->local_size % STACK_BYTES)
1836 infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
1838 step = infp->local_size + infp->pad_local;
1840 if (!frame_pointer_needed)
1842 step += outbounds;
1843 outbounds = 0;
1846 infp->growth[growths++] = step;
1847 infp->local_growth = growths;
1849 /* If there's any left to be done. */
1850 if (outbounds)
1851 infp->growth[growths++] = outbounds;
1853 goto finish;
1856 /* XXX: optimizations that we'll want to play with....
1857 -- regarg is not aligned, but it's a small number of registers;
1858 use some of localsize so that regarg is aligned and then
1859 save the registers. */
1861 /* Simple encoding; plods down the stack buying the pieces as it goes.
1862 -- does not optimize space consumption.
1863 -- does not attempt to optimize instruction counts.
1864 -- but it is safe for all alignments. */
1865 if (regarg % STACK_BYTES != 0)
1866 infp->pad_reg = STACK_BYTES - (regarg % STACK_BYTES);
1868 infp->growth[growths++] = infp->arg_size + infp->reg_size + infp->pad_reg;
1869 infp->reg_growth = growths;
1870 infp->arg_offset = infp->growth[0] - 4;
1871 infp->reg_offset = 0;
1873 if (frame_pointer_needed)
1875 if (infp->local_size % STACK_BYTES != 0)
1876 infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
1878 infp->growth[growths++] = infp->local_size + infp->pad_local;
1879 infp->local_growth = growths;
1881 infp->growth[growths++] = outbounds;
1883 else
1885 if ((infp->local_size + outbounds) % STACK_BYTES != 0)
1886 infp->pad_local = STACK_BYTES - ((infp->local_size + outbounds) % STACK_BYTES);
1888 infp->growth[growths++] = infp->local_size + infp->pad_local + outbounds;
1889 infp->local_growth = growths;
1892 /* Anything else that we've forgotten?, plus a few consistency checks. */
1893 finish:
1894 gcc_assert (infp->reg_offset >= 0);
1895 gcc_assert (growths <= MAX_STACK_GROWS);
1897 for (i = 0; i < growths; i++)
1898 gcc_assert (!(infp->growth[i] % STACK_BYTES));
1901 /* Define the offset between two registers, one to be eliminated, and
1902 the other its replacement, at the start of a routine. */
1905 mcore_initial_elimination_offset (int from, int to)
1907 int above_frame;
1908 int below_frame;
1909 struct mcore_frame fi;
1911 layout_mcore_frame (& fi);
1913 /* fp to ap */
1914 above_frame = fi.local_size + fi.pad_local + fi.reg_size + fi.pad_reg;
1915 /* sp to fp */
1916 below_frame = fi.outbound_size + fi.pad_outbound;
1918 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
1919 return above_frame;
1921 if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1922 return above_frame + below_frame;
1924 if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1925 return below_frame;
1927 gcc_unreachable ();
1930 /* Keep track of some information about varargs for the prolog. */
1932 static void
1933 mcore_setup_incoming_varargs (cumulative_args_t args_so_far_v,
1934 machine_mode mode, tree type,
1935 int * ptr_pretend_size ATTRIBUTE_UNUSED,
1936 int second_time ATTRIBUTE_UNUSED)
1938 CUMULATIVE_ARGS *args_so_far = get_cumulative_args (args_so_far_v);
1940 current_function_anonymous_args = 1;
1942 /* We need to know how many argument registers are used before
1943 the varargs start, so that we can push the remaining argument
1944 registers during the prologue. */
1945 number_of_regs_before_varargs = *args_so_far + mcore_num_arg_regs (mode, type);
1947 /* There is a bug somewhere in the arg handling code.
1948 Until I can find it this workaround always pushes the
1949 last named argument onto the stack. */
1950 number_of_regs_before_varargs = *args_so_far;
1952 /* The last named argument may be split between argument registers
1953 and the stack. Allow for this here. */
1954 if (number_of_regs_before_varargs > NPARM_REGS)
1955 number_of_regs_before_varargs = NPARM_REGS;
1958 void
1959 mcore_expand_prolog (void)
1961 struct mcore_frame fi;
1962 int space_allocated = 0;
1963 int growth = 0;
1965 /* Find out what we're doing. */
1966 layout_mcore_frame (&fi);
1968 space_allocated = fi.arg_size + fi.reg_size + fi.local_size +
1969 fi.outbound_size + fi.pad_outbound + fi.pad_local + fi.pad_reg;
1971 if (TARGET_CG_DATA)
1973 /* Emit a symbol for this routine's frame size. */
1974 rtx x;
1976 x = DECL_RTL (current_function_decl);
1978 gcc_assert (GET_CODE (x) == MEM);
1980 x = XEXP (x, 0);
1982 gcc_assert (GET_CODE (x) == SYMBOL_REF);
1984 free (mcore_current_function_name);
1986 mcore_current_function_name = xstrdup (XSTR (x, 0));
1988 ASM_OUTPUT_CG_NODE (asm_out_file, mcore_current_function_name, space_allocated);
1990 if (cfun->calls_alloca)
1991 ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name, "alloca", 1);
1993 /* 970425: RBE:
1994 We're looking at how the 8byte alignment affects stack layout
1995 and where we had to pad things. This emits information we can
1996 extract which tells us about frame sizes and the like. */
1997 fprintf (asm_out_file,
1998 "\t.equ\t__$frame$info$_%s_$_%d_%d_x%x_%d_%d_%d,0\n",
1999 mcore_current_function_name,
2000 fi.arg_size, fi.reg_size, fi.reg_mask,
2001 fi.local_size, fi.outbound_size,
2002 frame_pointer_needed);
2005 if (mcore_naked_function_p ())
2006 return;
2008 /* Handle stdarg+regsaves in one shot: can't be more than 64 bytes. */
2009 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
2011 /* If we have a parameter passed partially in regs and partially in memory,
2012 the registers will have been stored to memory already in function.c. So
2013 we only need to do something here for varargs functions. */
2014 if (fi.arg_size != 0 && crtl->args.pretend_args_size == 0)
2016 int offset;
2017 int rn = FIRST_PARM_REG + NPARM_REGS - 1;
2018 int remaining = fi.arg_size;
2020 for (offset = fi.arg_offset; remaining >= 4; offset -= 4, rn--, remaining -= 4)
2022 emit_insn (gen_movsi
2023 (gen_rtx_MEM (SImode,
2024 plus_constant (Pmode, stack_pointer_rtx,
2025 offset)),
2026 gen_rtx_REG (SImode, rn)));
2030 /* Do we need another stack adjustment before we do the register saves? */
2031 if (growth < fi.reg_growth)
2032 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
2034 if (fi.reg_size != 0)
2036 int i;
2037 int offs = fi.reg_offset;
2039 for (i = 15; i >= 0; i--)
2041 if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
2043 int first_reg = 15;
2045 while (fi.reg_mask & (1 << first_reg))
2046 first_reg--;
2047 first_reg++;
2049 emit_insn (gen_store_multiple (gen_rtx_MEM (SImode, stack_pointer_rtx),
2050 gen_rtx_REG (SImode, first_reg),
2051 GEN_INT (16 - first_reg)));
2053 i -= (15 - first_reg);
2054 offs += (16 - first_reg) * 4;
2056 else if (fi.reg_mask & (1 << i))
2058 emit_insn (gen_movsi
2059 (gen_rtx_MEM (SImode,
2060 plus_constant (Pmode, stack_pointer_rtx,
2061 offs)),
2062 gen_rtx_REG (SImode, i)));
2063 offs += 4;
2068 /* Figure the locals + outbounds. */
2069 if (frame_pointer_needed)
2071 /* If we haven't already purchased to 'fp'. */
2072 if (growth < fi.local_growth)
2073 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
2075 emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
2077 /* ... and then go any remaining distance for outbounds, etc. */
2078 if (fi.growth[growth])
2079 output_stack_adjust (-1, fi.growth[growth++]);
2081 else
2083 if (growth < fi.local_growth)
2084 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
2085 if (fi.growth[growth])
2086 output_stack_adjust (-1, fi.growth[growth++]);
2090 void
2091 mcore_expand_epilog (void)
2093 struct mcore_frame fi;
2094 int i;
2095 int offs;
2096 int growth = MAX_STACK_GROWS - 1 ;
2099 /* Find out what we're doing. */
2100 layout_mcore_frame(&fi);
2102 if (mcore_naked_function_p ())
2103 return;
2105 /* If we had a frame pointer, restore the sp from that. */
2106 if (frame_pointer_needed)
2108 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
2109 growth = fi.local_growth - 1;
2111 else
2113 /* XXX: while loop should accumulate and do a single sell. */
2114 while (growth >= fi.local_growth)
2116 if (fi.growth[growth] != 0)
2117 output_stack_adjust (1, fi.growth[growth]);
2118 growth--;
2122 /* Make sure we've shrunk stack back to the point where the registers
2123 were laid down. This is typically 0/1 iterations. Then pull the
2124 register save information back off the stack. */
2125 while (growth >= fi.reg_growth)
2126 output_stack_adjust ( 1, fi.growth[growth--]);
2128 offs = fi.reg_offset;
2130 for (i = 15; i >= 0; i--)
2132 if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
2134 int first_reg;
2136 /* Find the starting register. */
2137 first_reg = 15;
2139 while (fi.reg_mask & (1 << first_reg))
2140 first_reg--;
2142 first_reg++;
2144 emit_insn (gen_load_multiple (gen_rtx_REG (SImode, first_reg),
2145 gen_rtx_MEM (SImode, stack_pointer_rtx),
2146 GEN_INT (16 - first_reg)));
2148 i -= (15 - first_reg);
2149 offs += (16 - first_reg) * 4;
2151 else if (fi.reg_mask & (1 << i))
2153 emit_insn (gen_movsi
2154 (gen_rtx_REG (SImode, i),
2155 gen_rtx_MEM (SImode,
2156 plus_constant (Pmode, stack_pointer_rtx,
2157 offs))));
2158 offs += 4;
2162 /* Give back anything else. */
2163 /* XXX: Should accumulate total and then give it back. */
2164 while (growth >= 0)
2165 output_stack_adjust ( 1, fi.growth[growth--]);
2168 /* This code is borrowed from the SH port. */
2170 /* The MCORE cannot load a large constant into a register, constants have to
2171 come from a pc relative load. The reference of a pc relative load
2172 instruction must be less than 1k in front of the instruction. This
2173 means that we often have to dump a constant inside a function, and
2174 generate code to branch around it.
2176 It is important to minimize this, since the branches will slow things
2177 down and make things bigger.
2179 Worst case code looks like:
2181 lrw L1,r0
2182 br L2
2183 align
2184 L1: .long value
2188 lrw L3,r0
2189 br L4
2190 align
2191 L3: .long value
2195 We fix this by performing a scan before scheduling, which notices which
2196 instructions need to have their operands fetched from the constant table
2197 and builds the table.
2199 The algorithm is:
2201 scan, find an instruction which needs a pcrel move. Look forward, find the
2202 last barrier which is within MAX_COUNT bytes of the requirement.
2203 If there isn't one, make one. Process all the instructions between
2204 the find and the barrier.
2206 In the above example, we can tell that L3 is within 1k of L1, so
2207 the first move can be shrunk from the 2 insn+constant sequence into
2208 just 1 insn, and the constant moved to L3 to make:
2210 lrw L1,r0
2212 lrw L3,r0
2213 bra L4
2214 align
2215 L3:.long value
2216 L4:.long value
2218 Then the second move becomes the target for the shortening process. */
2220 typedef struct
2222 rtx value; /* Value in table. */
2223 rtx label; /* Label of value. */
2224 } pool_node;
2226 /* The maximum number of constants that can fit into one pool, since
2227 the pc relative range is 0...1020 bytes and constants are at least 4
2228 bytes long. We subtract 4 from the range to allow for the case where
2229 we need to add a branch/align before the constant pool. */
2231 #define MAX_COUNT 1016
2232 #define MAX_POOL_SIZE (MAX_COUNT/4)
2233 static pool_node pool_vector[MAX_POOL_SIZE];
2234 static int pool_size;
2236 /* Dump out any constants accumulated in the final pass. These
2237 will only be labels. */
2239 const char *
2240 mcore_output_jump_label_table (void)
2242 int i;
2244 if (pool_size)
2246 fprintf (asm_out_file, "\t.align 2\n");
2248 for (i = 0; i < pool_size; i++)
2250 pool_node * p = pool_vector + i;
2252 (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (p->label));
2254 output_asm_insn (".long %0", &p->value);
2257 pool_size = 0;
2260 return "";
2263 /* Check whether insn is a candidate for a conditional. */
2265 static cond_type
2266 is_cond_candidate (rtx insn)
2268 /* The only things we conditionalize are those that can be directly
2269 changed into a conditional. Only bother with SImode items. If
2270 we wanted to be a little more aggressive, we could also do other
2271 modes such as DImode with reg-reg move or load 0. */
2272 if (NONJUMP_INSN_P (insn))
2274 rtx pat = PATTERN (insn);
2275 rtx src, dst;
2277 if (GET_CODE (pat) != SET)
2278 return COND_NO;
2280 dst = XEXP (pat, 0);
2282 if ((GET_CODE (dst) != REG &&
2283 GET_CODE (dst) != SUBREG) ||
2284 GET_MODE (dst) != SImode)
2285 return COND_NO;
2287 src = XEXP (pat, 1);
2289 if ((GET_CODE (src) == REG ||
2290 (GET_CODE (src) == SUBREG &&
2291 GET_CODE (SUBREG_REG (src)) == REG)) &&
2292 GET_MODE (src) == SImode)
2293 return COND_MOV_INSN;
2294 else if (GET_CODE (src) == CONST_INT &&
2295 INTVAL (src) == 0)
2296 return COND_CLR_INSN;
2297 else if (GET_CODE (src) == PLUS &&
2298 (GET_CODE (XEXP (src, 0)) == REG ||
2299 (GET_CODE (XEXP (src, 0)) == SUBREG &&
2300 GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
2301 GET_MODE (XEXP (src, 0)) == SImode &&
2302 GET_CODE (XEXP (src, 1)) == CONST_INT &&
2303 INTVAL (XEXP (src, 1)) == 1)
2304 return COND_INC_INSN;
2305 else if (((GET_CODE (src) == MINUS &&
2306 GET_CODE (XEXP (src, 1)) == CONST_INT &&
2307 INTVAL( XEXP (src, 1)) == 1) ||
2308 (GET_CODE (src) == PLUS &&
2309 GET_CODE (XEXP (src, 1)) == CONST_INT &&
2310 INTVAL (XEXP (src, 1)) == -1)) &&
2311 (GET_CODE (XEXP (src, 0)) == REG ||
2312 (GET_CODE (XEXP (src, 0)) == SUBREG &&
2313 GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
2314 GET_MODE (XEXP (src, 0)) == SImode)
2315 return COND_DEC_INSN;
2317 /* Some insns that we don't bother with:
2318 (set (rx:DI) (ry:DI))
2319 (set (rx:DI) (const_int 0))
2323 else if (JUMP_P (insn)
2324 && GET_CODE (PATTERN (insn)) == SET
2325 && GET_CODE (XEXP (PATTERN (insn), 1)) == LABEL_REF)
2326 return COND_BRANCH_INSN;
2328 return COND_NO;
2331 /* Emit a conditional version of insn and replace the old insn with the
2332 new one. Return the new insn if emitted. */
2334 static rtx_insn *
2335 emit_new_cond_insn (rtx_insn *insn, int cond)
2337 rtx c_insn = 0;
2338 rtx pat, dst, src;
2339 cond_type num;
2341 if ((num = is_cond_candidate (insn)) == COND_NO)
2342 return NULL;
2344 pat = PATTERN (insn);
2346 if (NONJUMP_INSN_P (insn))
2348 dst = SET_DEST (pat);
2349 src = SET_SRC (pat);
2351 else
2353 dst = JUMP_LABEL (insn);
2354 src = NULL_RTX;
2357 switch (num)
2359 case COND_MOV_INSN:
2360 case COND_CLR_INSN:
2361 if (cond)
2362 c_insn = gen_movt0 (dst, src, dst);
2363 else
2364 c_insn = gen_movt0 (dst, dst, src);
2365 break;
2367 case COND_INC_INSN:
2368 if (cond)
2369 c_insn = gen_incscc (dst, dst);
2370 else
2371 c_insn = gen_incscc_false (dst, dst);
2372 break;
2374 case COND_DEC_INSN:
2375 if (cond)
2376 c_insn = gen_decscc (dst, dst);
2377 else
2378 c_insn = gen_decscc_false (dst, dst);
2379 break;
2381 case COND_BRANCH_INSN:
2382 if (cond)
2383 c_insn = gen_branch_true (dst);
2384 else
2385 c_insn = gen_branch_false (dst);
2386 break;
2388 default:
2389 return NULL;
2392 /* Only copy the notes if they exist. */
2393 if (rtx_length [GET_CODE (c_insn)] >= 7 && rtx_length [GET_CODE (insn)] >= 7)
2395 /* We really don't need to bother with the notes and links at this
2396 point, but go ahead and save the notes. This will help is_dead()
2397 when applying peepholes (links don't matter since they are not
2398 used any more beyond this point for the mcore). */
2399 REG_NOTES (c_insn) = REG_NOTES (insn);
2402 if (num == COND_BRANCH_INSN)
2404 /* For jumps, we need to be a little bit careful and emit the new jump
2405 before the old one and to update the use count for the target label.
2406 This way, the barrier following the old (uncond) jump will get
2407 deleted, but the label won't. */
2408 c_insn = emit_jump_insn_before (c_insn, insn);
2410 ++ LABEL_NUSES (dst);
2412 JUMP_LABEL (c_insn) = dst;
2414 else
2415 c_insn = emit_insn_after (c_insn, insn);
2417 delete_insn (insn);
2419 return as_a <rtx_insn *> (c_insn);
2422 /* Attempt to change a basic block into a series of conditional insns. This
2423 works by taking the branch at the end of the 1st block and scanning for the
2424 end of the 2nd block. If all instructions in the 2nd block have cond.
2425 versions and the label at the start of block 3 is the same as the target
2426 from the branch at block 1, then conditionalize all insn in block 2 using
2427 the inverse condition of the branch at block 1. (Note I'm bending the
2428 definition of basic block here.)
2430 e.g., change:
2432 bt L2 <-- end of block 1 (delete)
2433 mov r7,r8
2434 addu r7,1
2435 br L3 <-- end of block 2
2437 L2: ... <-- start of block 3 (NUSES==1)
2438 L3: ...
2442 movf r7,r8
2443 incf r7
2444 bf L3
2446 L3: ...
2448 we can delete the L2 label if NUSES==1 and re-apply the optimization
2449 starting at the last instruction of block 2. This may allow an entire
2450 if-then-else statement to be conditionalized. BRC */
2451 static rtx_insn *
2452 conditionalize_block (rtx_insn *first)
2454 rtx_insn *insn;
2455 rtx br_pat;
2456 rtx_insn *end_blk_1_br = 0;
2457 rtx_insn *end_blk_2_insn = 0;
2458 rtx_insn *start_blk_3_lab = 0;
2459 int cond;
2460 int br_lab_num;
2461 int blk_size = 0;
2464 /* Check that the first insn is a candidate conditional jump. This is
2465 the one that we'll eliminate. If not, advance to the next insn to
2466 try. */
2467 if (! JUMP_P (first)
2468 || GET_CODE (PATTERN (first)) != SET
2469 || GET_CODE (XEXP (PATTERN (first), 1)) != IF_THEN_ELSE)
2470 return NEXT_INSN (first);
2472 /* Extract some information we need. */
2473 end_blk_1_br = first;
2474 br_pat = PATTERN (end_blk_1_br);
2476 /* Complement the condition since we use the reverse cond. for the insns. */
2477 cond = (GET_CODE (XEXP (XEXP (br_pat, 1), 0)) == EQ);
2479 /* Determine what kind of branch we have. */
2480 if (GET_CODE (XEXP (XEXP (br_pat, 1), 1)) == LABEL_REF)
2482 /* A normal branch, so extract label out of first arm. */
2483 br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 1), 0));
2485 else
2487 /* An inverse branch, so extract the label out of the 2nd arm
2488 and complement the condition. */
2489 cond = (cond == 0);
2490 br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 2), 0));
2493 /* Scan forward for the start of block 2: it must start with a
2494 label and that label must be the same as the branch target
2495 label from block 1. We don't care about whether block 2 actually
2496 ends with a branch or a label (an uncond. branch is
2497 conditionalizable). */
2498 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
2500 enum rtx_code code;
2502 code = GET_CODE (insn);
2504 /* Look for the label at the start of block 3. */
2505 if (code == CODE_LABEL && CODE_LABEL_NUMBER (insn) == br_lab_num)
2506 break;
2508 /* Skip barriers, notes, and conditionalizable insns. If the
2509 insn is not conditionalizable or makes this optimization fail,
2510 just return the next insn so we can start over from that point. */
2511 if (code != BARRIER && code != NOTE && !is_cond_candidate (insn))
2512 return NEXT_INSN (insn);
2514 /* Remember the last real insn before the label (i.e. end of block 2). */
2515 if (code == JUMP_INSN || code == INSN)
2517 blk_size ++;
2518 end_blk_2_insn = insn;
2522 if (!insn)
2523 return insn;
2525 /* It is possible for this optimization to slow performance if the blocks
2526 are long. This really depends upon whether the branch is likely taken
2527 or not. If the branch is taken, we slow performance in many cases. But,
2528 if the branch is not taken, we always help performance (for a single
2529 block, but for a double block (i.e. when the optimization is re-applied)
2530 this is not true since the 'right thing' depends on the overall length of
2531 the collapsed block). As a compromise, don't apply this optimization on
2532 blocks larger than size 2 (unlikely for the mcore) when speed is important.
2533 the best threshold depends on the latencies of the instructions (i.e.,
2534 the branch penalty). */
2535 if (optimize > 1 && blk_size > 2)
2536 return insn;
2538 /* At this point, we've found the start of block 3 and we know that
2539 it is the destination of the branch from block 1. Also, all
2540 instructions in the block 2 are conditionalizable. So, apply the
2541 conditionalization and delete the branch. */
2542 start_blk_3_lab = insn;
2544 for (insn = NEXT_INSN (end_blk_1_br); insn != start_blk_3_lab;
2545 insn = NEXT_INSN (insn))
2547 rtx_insn *newinsn;
2549 if (insn->deleted ())
2550 continue;
2552 /* Try to form a conditional variant of the instruction and emit it. */
2553 if ((newinsn = emit_new_cond_insn (insn, cond)))
2555 if (end_blk_2_insn == insn)
2556 end_blk_2_insn = newinsn;
2558 insn = newinsn;
2562 /* Note whether we will delete the label starting blk 3 when the jump
2563 gets deleted. If so, we want to re-apply this optimization at the
2564 last real instruction right before the label. */
2565 if (LABEL_NUSES (start_blk_3_lab) == 1)
2567 start_blk_3_lab = 0;
2570 /* ??? we probably should redistribute the death notes for this insn, esp.
2571 the death of cc, but it doesn't really matter this late in the game.
2572 The peepholes all use is_dead() which will find the correct death
2573 regardless of whether there is a note. */
2574 delete_insn (end_blk_1_br);
2576 if (! start_blk_3_lab)
2577 return end_blk_2_insn;
2579 /* Return the insn right after the label at the start of block 3. */
2580 return NEXT_INSN (start_blk_3_lab);
2583 /* Apply the conditionalization of blocks optimization. This is the
2584 outer loop that traverses through the insns scanning for a branch
2585 that signifies an opportunity to apply the optimization. Note that
2586 this optimization is applied late. If we could apply it earlier,
2587 say before cse 2, it may expose more optimization opportunities.
2588 but, the pay back probably isn't really worth the effort (we'd have
2589 to update all reg/flow/notes/links/etc to make it work - and stick it
2590 in before cse 2). */
2592 static void
2593 conditionalize_optimization (void)
2595 rtx_insn *insn;
2597 for (insn = get_insns (); insn; insn = conditionalize_block (insn))
2598 continue;
2601 /* This is to handle loads from the constant pool. */
2603 static void
2604 mcore_reorg (void)
2606 /* Reset this variable. */
2607 current_function_anonymous_args = 0;
2609 if (optimize == 0)
2610 return;
2612 /* Conditionalize blocks where we can. */
2613 conditionalize_optimization ();
2615 /* Literal pool generation is now pushed off until the assembler. */
2619 /* Return true if X is something that can be moved directly into r15. */
2621 bool
2622 mcore_r15_operand_p (rtx x)
2624 switch (GET_CODE (x))
2626 case CONST_INT:
2627 return mcore_const_ok_for_inline (INTVAL (x));
2629 case REG:
2630 case SUBREG:
2631 case MEM:
2632 return 1;
2634 default:
2635 return 0;
2639 /* Implement SECONDARY_RELOAD_CLASS. If RCLASS contains r15, and we can't
2640 directly move X into it, use r1-r14 as a temporary. */
2642 enum reg_class
2643 mcore_secondary_reload_class (enum reg_class rclass,
2644 machine_mode mode ATTRIBUTE_UNUSED, rtx x)
2646 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], 15)
2647 && !mcore_r15_operand_p (x))
2648 return LRW_REGS;
2649 return NO_REGS;
2652 /* Return the reg_class to use when reloading the rtx X into the class
2653 RCLASS. If X is too complex to move directly into r15, prefer to
2654 use LRW_REGS instead. */
2656 enum reg_class
2657 mcore_reload_class (rtx x, enum reg_class rclass)
2659 if (reg_class_subset_p (LRW_REGS, rclass) && !mcore_r15_operand_p (x))
2660 return LRW_REGS;
2662 return rclass;
2665 /* Tell me if a pair of reg/subreg rtx's actually refer to the same
2666 register. Note that the current version doesn't worry about whether
2667 they are the same mode or note (e.g., a QImode in r2 matches an HImode
2668 in r2 matches an SImode in r2. Might think in the future about whether
2669 we want to be able to say something about modes. */
2672 mcore_is_same_reg (rtx x, rtx y)
2674 /* Strip any and all of the subreg wrappers. */
2675 while (GET_CODE (x) == SUBREG)
2676 x = SUBREG_REG (x);
2678 while (GET_CODE (y) == SUBREG)
2679 y = SUBREG_REG (y);
2681 if (GET_CODE(x) == REG && GET_CODE(y) == REG && REGNO(x) == REGNO(y))
2682 return 1;
2684 return 0;
2687 static void
2688 mcore_option_override (void)
2690 /* Only the m340 supports little endian code. */
2691 if (TARGET_LITTLE_END && ! TARGET_M340)
2692 target_flags |= MASK_M340;
2696 /* Compute the number of word sized registers needed to
2697 hold a function argument of mode MODE and type TYPE. */
2700 mcore_num_arg_regs (machine_mode mode, const_tree type)
2702 int size;
2704 if (targetm.calls.must_pass_in_stack (mode, type))
2705 return 0;
2707 if (type && mode == BLKmode)
2708 size = int_size_in_bytes (type);
2709 else
2710 size = GET_MODE_SIZE (mode);
2712 return ROUND_ADVANCE (size);
2715 static rtx
2716 handle_structs_in_regs (machine_mode mode, const_tree type, int reg)
2718 int size;
2720 /* The MCore ABI defines that a structure whose size is not a whole multiple
2721 of bytes is passed packed into registers (or spilled onto the stack if
2722 not enough registers are available) with the last few bytes of the
2723 structure being packed, left-justified, into the last register/stack slot.
2724 GCC handles this correctly if the last word is in a stack slot, but we
2725 have to generate a special, PARALLEL RTX if the last word is in an
2726 argument register. */
2727 if (type
2728 && TYPE_MODE (type) == BLKmode
2729 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
2730 && (size = int_size_in_bytes (type)) > UNITS_PER_WORD
2731 && (size % UNITS_PER_WORD != 0)
2732 && (reg + mcore_num_arg_regs (mode, type) <= (FIRST_PARM_REG + NPARM_REGS)))
2734 rtx arg_regs [NPARM_REGS];
2735 int nregs;
2736 rtx result;
2737 rtvec rtvec;
2739 for (nregs = 0; size > 0; size -= UNITS_PER_WORD)
2741 arg_regs [nregs] =
2742 gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, reg ++),
2743 GEN_INT (nregs * UNITS_PER_WORD));
2744 nregs ++;
2747 /* We assume here that NPARM_REGS == 6. The assert checks this. */
2748 gcc_assert (ARRAY_SIZE (arg_regs) == 6);
2749 rtvec = gen_rtvec (nregs, arg_regs[0], arg_regs[1], arg_regs[2],
2750 arg_regs[3], arg_regs[4], arg_regs[5]);
2752 result = gen_rtx_PARALLEL (mode, rtvec);
2753 return result;
2756 return gen_rtx_REG (mode, reg);
2760 mcore_function_value (const_tree valtype, const_tree func)
2762 machine_mode mode;
2763 int unsigned_p;
2765 mode = TYPE_MODE (valtype);
2767 /* Since we promote return types, we must promote the mode here too. */
2768 mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
2770 return handle_structs_in_regs (mode, valtype, FIRST_RET_REG);
2773 /* Define where to put the arguments to a function.
2774 Value is zero to push the argument on the stack,
2775 or a hard register in which to store the argument.
2777 MODE is the argument's machine mode.
2778 TYPE is the data type of the argument (as a tree).
2779 This is null for libcalls where that information may
2780 not be available.
2781 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2782 the preceding args and about the function being called.
2783 NAMED is nonzero if this argument is a named parameter
2784 (otherwise it is an extra parameter matching an ellipsis).
2786 On MCore the first args are normally in registers
2787 and the rest are pushed. Any arg that starts within the first
2788 NPARM_REGS words is at least partially passed in a register unless
2789 its data type forbids. */
2791 static rtx
2792 mcore_function_arg (cumulative_args_t cum, machine_mode mode,
2793 const_tree type, bool named)
2795 int arg_reg;
2797 if (! named || mode == VOIDmode)
2798 return 0;
2800 if (targetm.calls.must_pass_in_stack (mode, type))
2801 return 0;
2803 arg_reg = ROUND_REG (*get_cumulative_args (cum), mode);
2805 if (arg_reg < NPARM_REGS)
2806 return handle_structs_in_regs (mode, type, FIRST_PARM_REG + arg_reg);
2808 return 0;
2811 static void
2812 mcore_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
2813 const_tree type, bool named ATTRIBUTE_UNUSED)
2815 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
2817 *cum = (ROUND_REG (*cum, mode)
2818 + (int)named * mcore_num_arg_regs (mode, type));
2821 static unsigned int
2822 mcore_function_arg_boundary (machine_mode mode,
2823 const_tree type ATTRIBUTE_UNUSED)
2825 /* Doubles must be aligned to an 8 byte boundary. */
2826 return (mode != BLKmode && GET_MODE_SIZE (mode) == 8
2827 ? BIGGEST_ALIGNMENT
2828 : PARM_BOUNDARY);
2831 /* Returns the number of bytes of argument registers required to hold *part*
2832 of a parameter of machine mode MODE and type TYPE (which may be NULL if
2833 the type is not known). If the argument fits entirely in the argument
2834 registers, or entirely on the stack, then 0 is returned. CUM is the
2835 number of argument registers already used by earlier parameters to
2836 the function. */
2838 static int
2839 mcore_arg_partial_bytes (cumulative_args_t cum, machine_mode mode,
2840 tree type, bool named)
2842 int reg = ROUND_REG (*get_cumulative_args (cum), mode);
2844 if (named == 0)
2845 return 0;
2847 if (targetm.calls.must_pass_in_stack (mode, type))
2848 return 0;
2850 /* REG is not the *hardware* register number of the register that holds
2851 the argument, it is the *argument* register number. So for example,
2852 the first argument to a function goes in argument register 0, which
2853 translates (for the MCore) into hardware register 2. The second
2854 argument goes into argument register 1, which translates into hardware
2855 register 3, and so on. NPARM_REGS is the number of argument registers
2856 supported by the target, not the maximum hardware register number of
2857 the target. */
2858 if (reg >= NPARM_REGS)
2859 return 0;
2861 /* If the argument fits entirely in registers, return 0. */
2862 if (reg + mcore_num_arg_regs (mode, type) <= NPARM_REGS)
2863 return 0;
2865 /* The argument overflows the number of available argument registers.
2866 Compute how many argument registers have not yet been assigned to
2867 hold an argument. */
2868 reg = NPARM_REGS - reg;
2870 /* Return partially in registers and partially on the stack. */
2871 return reg * UNITS_PER_WORD;
2874 /* Return nonzero if SYMBOL is marked as being dllexport'd. */
2877 mcore_dllexport_name_p (const char * symbol)
2879 return symbol[0] == '@' && symbol[1] == 'e' && symbol[2] == '.';
2882 /* Return nonzero if SYMBOL is marked as being dllimport'd. */
2885 mcore_dllimport_name_p (const char * symbol)
2887 return symbol[0] == '@' && symbol[1] == 'i' && symbol[2] == '.';
2890 /* Mark a DECL as being dllexport'd. */
2892 static void
2893 mcore_mark_dllexport (tree decl)
2895 const char * oldname;
2896 char * newname;
2897 rtx rtlname;
2898 tree idp;
2900 rtlname = XEXP (DECL_RTL (decl), 0);
2902 if (GET_CODE (rtlname) == MEM)
2903 rtlname = XEXP (rtlname, 0);
2904 gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
2905 oldname = XSTR (rtlname, 0);
2907 if (mcore_dllexport_name_p (oldname))
2908 return; /* Already done. */
2910 newname = XALLOCAVEC (char, strlen (oldname) + 4);
2911 sprintf (newname, "@e.%s", oldname);
2913 /* We pass newname through get_identifier to ensure it has a unique
2914 address. RTL processing can sometimes peek inside the symbol ref
2915 and compare the string's addresses to see if two symbols are
2916 identical. */
2917 /* ??? At least I think that's why we do this. */
2918 idp = get_identifier (newname);
2920 XEXP (DECL_RTL (decl), 0) =
2921 gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
2924 /* Mark a DECL as being dllimport'd. */
2926 static void
2927 mcore_mark_dllimport (tree decl)
2929 const char * oldname;
2930 char * newname;
2931 tree idp;
2932 rtx rtlname;
2933 rtx newrtl;
2935 rtlname = XEXP (DECL_RTL (decl), 0);
2937 if (GET_CODE (rtlname) == MEM)
2938 rtlname = XEXP (rtlname, 0);
2939 gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
2940 oldname = XSTR (rtlname, 0);
2942 gcc_assert (!mcore_dllexport_name_p (oldname));
2943 if (mcore_dllimport_name_p (oldname))
2944 return; /* Already done. */
2946 /* ??? One can well ask why we're making these checks here,
2947 and that would be a good question. */
2949 /* Imported variables can't be initialized. */
2950 if (TREE_CODE (decl) == VAR_DECL
2951 && !DECL_VIRTUAL_P (decl)
2952 && DECL_INITIAL (decl))
2954 error ("initialized variable %q+D is marked dllimport", decl);
2955 return;
2958 /* `extern' needn't be specified with dllimport.
2959 Specify `extern' now and hope for the best. Sigh. */
2960 if (TREE_CODE (decl) == VAR_DECL
2961 /* ??? Is this test for vtables needed? */
2962 && !DECL_VIRTUAL_P (decl))
2964 DECL_EXTERNAL (decl) = 1;
2965 TREE_PUBLIC (decl) = 1;
2968 newname = XALLOCAVEC (char, strlen (oldname) + 11);
2969 sprintf (newname, "@i.__imp_%s", oldname);
2971 /* We pass newname through get_identifier to ensure it has a unique
2972 address. RTL processing can sometimes peek inside the symbol ref
2973 and compare the string's addresses to see if two symbols are
2974 identical. */
2975 /* ??? At least I think that's why we do this. */
2976 idp = get_identifier (newname);
2978 newrtl = gen_rtx_MEM (Pmode,
2979 gen_rtx_SYMBOL_REF (Pmode,
2980 IDENTIFIER_POINTER (idp)));
2981 XEXP (DECL_RTL (decl), 0) = newrtl;
2984 static int
2985 mcore_dllexport_p (tree decl)
2987 if ( TREE_CODE (decl) != VAR_DECL
2988 && TREE_CODE (decl) != FUNCTION_DECL)
2989 return 0;
2991 return lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)) != 0;
2994 static int
2995 mcore_dllimport_p (tree decl)
2997 if ( TREE_CODE (decl) != VAR_DECL
2998 && TREE_CODE (decl) != FUNCTION_DECL)
2999 return 0;
3001 return lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl)) != 0;
3004 /* We must mark dll symbols specially. Definitions of dllexport'd objects
3005 install some info in the .drective (PE) or .exports (ELF) sections. */
3007 static void
3008 mcore_encode_section_info (tree decl, rtx rtl ATTRIBUTE_UNUSED, int first ATTRIBUTE_UNUSED)
3010 /* Mark the decl so we can tell from the rtl whether the object is
3011 dllexport'd or dllimport'd. */
3012 if (mcore_dllexport_p (decl))
3013 mcore_mark_dllexport (decl);
3014 else if (mcore_dllimport_p (decl))
3015 mcore_mark_dllimport (decl);
3017 /* It might be that DECL has already been marked as dllimport, but
3018 a subsequent definition nullified that. The attribute is gone
3019 but DECL_RTL still has @i.__imp_foo. We need to remove that. */
3020 else if ((TREE_CODE (decl) == FUNCTION_DECL
3021 || TREE_CODE (decl) == VAR_DECL)
3022 && DECL_RTL (decl) != NULL_RTX
3023 && GET_CODE (DECL_RTL (decl)) == MEM
3024 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == MEM
3025 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == SYMBOL_REF
3026 && mcore_dllimport_name_p (XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0)))
3028 const char * oldname = XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0);
3029 tree idp = get_identifier (oldname + 9);
3030 rtx newrtl = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
3032 XEXP (DECL_RTL (decl), 0) = newrtl;
3034 /* We previously set TREE_PUBLIC and DECL_EXTERNAL.
3035 ??? We leave these alone for now. */
3039 /* Undo the effects of the above. */
3041 static const char *
3042 mcore_strip_name_encoding (const char * str)
3044 return str + (str[0] == '@' ? 3 : 0);
3047 /* MCore specific attribute support.
3048 dllexport - for exporting a function/variable that will live in a dll
3049 dllimport - for importing a function/variable from a dll
3050 naked - do not create a function prologue/epilogue. */
3052 /* Handle a "naked" attribute; arguments as in
3053 struct attribute_spec.handler. */
3055 static tree
3056 mcore_handle_naked_attribute (tree * node, tree name, tree args ATTRIBUTE_UNUSED,
3057 int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
3059 if (TREE_CODE (*node) != FUNCTION_DECL)
3061 warning (OPT_Wattributes, "%qE attribute only applies to functions",
3062 name);
3063 *no_add_attrs = true;
3066 return NULL_TREE;
3069 /* ??? It looks like this is PE specific? Oh well, this is what the
3070 old code did as well. */
3072 static void
3073 mcore_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
3075 int len;
3076 const char * name;
3077 char * string;
3078 const char * prefix;
3080 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
3082 /* Strip off any encoding in name. */
3083 name = (* targetm.strip_name_encoding) (name);
3085 /* The object is put in, for example, section .text$foo.
3086 The linker will then ultimately place them in .text
3087 (everything from the $ on is stripped). */
3088 if (TREE_CODE (decl) == FUNCTION_DECL)
3089 prefix = ".text$";
3090 /* For compatibility with EPOC, we ignore the fact that the
3091 section might have relocs against it. */
3092 else if (decl_readonly_section (decl, 0))
3093 prefix = ".rdata$";
3094 else
3095 prefix = ".data$";
3097 len = strlen (name) + strlen (prefix);
3098 string = XALLOCAVEC (char, len + 1);
3100 sprintf (string, "%s%s", prefix, name);
3102 set_decl_section_name (decl, string);
3106 mcore_naked_function_p (void)
3108 return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
3111 static bool
3112 mcore_warn_func_return (tree decl)
3114 /* Naked functions are implemented entirely in assembly, including the
3115 return sequence, so suppress warnings about this. */
3116 return lookup_attribute ("naked", DECL_ATTRIBUTES (decl)) == NULL_TREE;
3119 #ifdef OBJECT_FORMAT_ELF
3120 static void
3121 mcore_asm_named_section (const char *name,
3122 unsigned int flags ATTRIBUTE_UNUSED,
3123 tree decl ATTRIBUTE_UNUSED)
3125 fprintf (asm_out_file, "\t.section %s\n", name);
3127 #endif /* OBJECT_FORMAT_ELF */
3129 /* Worker function for TARGET_ASM_EXTERNAL_LIBCALL. */
3131 static void
3132 mcore_external_libcall (rtx fun)
3134 fprintf (asm_out_file, "\t.import\t");
3135 assemble_name (asm_out_file, XSTR (fun, 0));
3136 fprintf (asm_out_file, "\n");
3139 /* Worker function for TARGET_RETURN_IN_MEMORY. */
3141 static bool
3142 mcore_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
3144 const HOST_WIDE_INT size = int_size_in_bytes (type);
3145 return (size == -1 || size > 2 * UNITS_PER_WORD);
3148 /* Worker function for TARGET_ASM_TRAMPOLINE_TEMPLATE.
3149 Output assembler code for a block containing the constant parts
3150 of a trampoline, leaving space for the variable parts.
3152 On the MCore, the trampoline looks like:
3153 lrw r1, function
3154 lrw r13, area
3155 jmp r13
3156 or r0, r0
3157 .literals */
3159 static void
3160 mcore_asm_trampoline_template (FILE *f)
3162 fprintf (f, "\t.short 0x7102\n");
3163 fprintf (f, "\t.short 0x7d02\n");
3164 fprintf (f, "\t.short 0x00cd\n");
3165 fprintf (f, "\t.short 0x1e00\n");
3166 fprintf (f, "\t.long 0\n");
3167 fprintf (f, "\t.long 0\n");
3170 /* Worker function for TARGET_TRAMPOLINE_INIT. */
3172 static void
3173 mcore_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
3175 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
3176 rtx mem;
3178 emit_block_move (m_tramp, assemble_trampoline_template (),
3179 GEN_INT (2*UNITS_PER_WORD), BLOCK_OP_NORMAL);
3181 mem = adjust_address (m_tramp, SImode, 8);
3182 emit_move_insn (mem, chain_value);
3183 mem = adjust_address (m_tramp, SImode, 12);
3184 emit_move_insn (mem, fnaddr);
3187 /* Implement TARGET_LEGITIMATE_CONSTANT_P
3189 On the MCore, allow anything but a double. */
3191 static bool
3192 mcore_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
3194 return GET_CODE (x) != CONST_DOUBLE;
3197 /* Helper function for `mcore_legitimate_address_p'. */
3199 static bool
3200 mcore_reg_ok_for_base_p (const_rtx reg, bool strict_p)
3202 if (strict_p)
3203 return REGNO_OK_FOR_BASE_P (REGNO (reg));
3204 else
3205 return (REGNO (reg) <= 16 || !HARD_REGISTER_P (reg));
3208 static bool
3209 mcore_base_register_rtx_p (const_rtx x, bool strict_p)
3211 return REG_P(x) && mcore_reg_ok_for_base_p (x, strict_p);
3214 /* A legitimate index for a QI is 0..15, for HI is 0..30, for SI is 0..60,
3215 and for DI is 0..56 because we use two SI loads, etc. */
3217 static bool
3218 mcore_legitimate_index_p (machine_mode mode, const_rtx op)
3220 if (CONST_INT_P (op))
3222 if (GET_MODE_SIZE (mode) >= 4
3223 && (((unsigned HOST_WIDE_INT) INTVAL (op)) % 4) == 0
3224 && ((unsigned HOST_WIDE_INT) INTVAL (op))
3225 <= (unsigned HOST_WIDE_INT) 64 - GET_MODE_SIZE (mode))
3226 return true;
3227 if (GET_MODE_SIZE (mode) == 2
3228 && (((unsigned HOST_WIDE_INT) INTVAL (op)) % 2) == 0
3229 && ((unsigned HOST_WIDE_INT) INTVAL (op)) <= 30)
3230 return true;
3231 if (GET_MODE_SIZE (mode) == 1
3232 && ((unsigned HOST_WIDE_INT) INTVAL (op)) <= 15)
3233 return true;
3235 return false;
3239 /* Worker function for TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P.
3241 Allow REG
3242 REG + disp */
3244 static bool
3245 mcore_legitimate_address_p (machine_mode mode, rtx x, bool strict_p,
3246 addr_space_t as)
3248 gcc_assert (ADDR_SPACE_GENERIC_P (as));
3250 if (mcore_base_register_rtx_p (x, strict_p))
3251 return true;
3252 else if (GET_CODE (x) == PLUS || GET_CODE (x) == LO_SUM)
3254 rtx xop0 = XEXP (x, 0);
3255 rtx xop1 = XEXP (x, 1);
3256 if (mcore_base_register_rtx_p (xop0, strict_p)
3257 && mcore_legitimate_index_p (mode, xop1))
3258 return true;
3259 if (mcore_base_register_rtx_p (xop1, strict_p)
3260 && mcore_legitimate_index_p (mode, xop0))
3261 return true;
3264 return false;
3267 /* Implement TARGET_HARD_REGNO_MODE_OK. We may keep double values in
3268 even registers. */
3270 static bool
3271 mcore_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
3273 if (TARGET_8ALIGN && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
3274 return (regno & 1) == 0;
3276 return regno < 18;