1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
28 #include "coretypes.h"
38 static int is_subobject_of_p (tree
, tree
);
39 static tree
dfs_lookup_base (tree
, void *);
40 static tree
dfs_dcast_hint_pre (tree
, void *);
41 static tree
dfs_dcast_hint_post (tree
, void *);
42 static tree
dfs_debug_mark (tree
, void *);
43 static tree
dfs_walk_once_r (tree
, tree (*pre_fn
) (tree
, void *),
44 tree (*post_fn
) (tree
, void *), void *data
);
45 static void dfs_unmark_r (tree
);
46 static int check_hidden_convs (tree
, int, int, tree
, tree
, tree
);
47 static tree
split_conversions (tree
, tree
, tree
, tree
);
48 static int lookup_conversions_r (tree
, int, int,
49 tree
, tree
, tree
, tree
, tree
*, tree
*);
50 static int look_for_overrides_r (tree
, tree
);
51 static tree
lookup_field_r (tree
, void *);
52 static tree
dfs_accessible_post (tree
, void *);
53 static tree
dfs_walk_once_accessible_r (tree
, bool, bool,
54 tree (*pre_fn
) (tree
, void *),
55 tree (*post_fn
) (tree
, void *),
57 static tree
dfs_walk_once_accessible (tree
, bool,
58 tree (*pre_fn
) (tree
, void *),
59 tree (*post_fn
) (tree
, void *),
61 static tree
dfs_access_in_type (tree
, void *);
62 static access_kind
access_in_type (tree
, tree
);
63 static int protected_accessible_p (tree
, tree
, tree
);
64 static int friend_accessible_p (tree
, tree
, tree
);
65 static int template_self_reference_p (tree
, tree
);
66 static tree
dfs_get_pure_virtuals (tree
, void *);
69 /* Variables for gathering statistics. */
70 #ifdef GATHER_STATISTICS
71 static int n_fields_searched
;
72 static int n_calls_lookup_field
, n_calls_lookup_field_1
;
73 static int n_calls_lookup_fnfields
, n_calls_lookup_fnfields_1
;
74 static int n_calls_get_base_type
;
75 static int n_outer_fields_searched
;
76 static int n_contexts_saved
;
77 #endif /* GATHER_STATISTICS */
80 /* Data for lookup_base and its workers. */
82 struct lookup_base_data_s
84 tree t
; /* type being searched. */
85 tree base
; /* The base type we're looking for. */
86 tree binfo
; /* Found binfo. */
87 bool via_virtual
; /* Found via a virtual path. */
88 bool ambiguous
; /* Found multiply ambiguous */
89 bool repeated_base
; /* Whether there are repeated bases in the
91 bool want_any
; /* Whether we want any matching binfo. */
94 /* Worker function for lookup_base. See if we've found the desired
95 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
98 dfs_lookup_base (tree binfo
, void *data_
)
100 struct lookup_base_data_s
*data
= data_
;
102 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->base
))
108 = binfo_via_virtual (data
->binfo
, data
->t
) != NULL_TREE
;
110 if (!data
->repeated_base
)
111 /* If there are no repeated bases, we can stop now. */
114 if (data
->want_any
&& !data
->via_virtual
)
115 /* If this is a non-virtual base, then we can't do
119 return dfs_skip_bases
;
123 gcc_assert (binfo
!= data
->binfo
);
125 /* We've found more than one matching binfo. */
128 /* This is immediately ambiguous. */
129 data
->binfo
= NULL_TREE
;
130 data
->ambiguous
= true;
131 return error_mark_node
;
134 /* Prefer one via a non-virtual path. */
135 if (!binfo_via_virtual (binfo
, data
->t
))
138 data
->via_virtual
= false;
142 /* There must be repeated bases, otherwise we'd have stopped
143 on the first base we found. */
144 return dfs_skip_bases
;
151 /* Returns true if type BASE is accessible in T. (BASE is known to be
152 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
153 true, consider any special access of the current scope, or access
154 bestowed by friendship. */
157 accessible_base_p (tree t
, tree base
, bool consider_local_p
)
161 /* [class.access.base]
163 A base class is said to be accessible if an invented public
164 member of the base class is accessible.
166 If BASE is a non-proper base, this condition is trivially
168 if (same_type_p (t
, base
))
170 /* Rather than inventing a public member, we use the implicit
171 public typedef created in the scope of every class. */
172 decl
= TYPE_FIELDS (base
);
173 while (!DECL_SELF_REFERENCE_P (decl
))
174 decl
= TREE_CHAIN (decl
);
175 while (ANON_AGGR_TYPE_P (t
))
176 t
= TYPE_CONTEXT (t
);
177 return accessible_p (t
, decl
, consider_local_p
);
180 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
181 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
182 non-NULL, fill with information about what kind of base we
185 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
186 not set in ACCESS, then an error is issued and error_mark_node is
187 returned. If the ba_quiet bit is set, then no error is issued and
188 NULL_TREE is returned. */
191 lookup_base (tree t
, tree base
, base_access access
, base_kind
*kind_ptr
)
197 if (t
== error_mark_node
|| base
== error_mark_node
)
200 *kind_ptr
= bk_not_base
;
201 return error_mark_node
;
203 gcc_assert (TYPE_P (base
));
212 t
= complete_type (TYPE_MAIN_VARIANT (t
));
213 t_binfo
= TYPE_BINFO (t
);
216 base
= complete_type (TYPE_MAIN_VARIANT (base
));
220 struct lookup_base_data_s data
;
224 data
.binfo
= NULL_TREE
;
225 data
.ambiguous
= data
.via_virtual
= false;
226 data
.repeated_base
= CLASSTYPE_REPEATED_BASE_P (t
);
227 data
.want_any
= access
== ba_any
;
229 dfs_walk_once (t_binfo
, dfs_lookup_base
, NULL
, &data
);
233 bk
= data
.ambiguous
? bk_ambig
: bk_not_base
;
234 else if (binfo
== t_binfo
)
236 else if (data
.via_virtual
)
247 /* Check that the base is unambiguous and accessible. */
248 if (access
!= ba_any
)
255 if (!(access
& ba_quiet
))
257 error ("%qT is an ambiguous base of %qT", base
, t
);
258 binfo
= error_mark_node
;
263 if ((access
& ba_check_bit
)
264 /* If BASE is incomplete, then BASE and TYPE are probably
265 the same, in which case BASE is accessible. If they
266 are not the same, then TYPE is invalid. In that case,
267 there's no need to issue another error here, and
268 there's no implicit typedef to use in the code that
269 follows, so we skip the check. */
270 && COMPLETE_TYPE_P (base
)
271 && !accessible_base_p (t
, base
, !(access
& ba_ignore_scope
)))
273 if (!(access
& ba_quiet
))
275 error ("%qT is an inaccessible base of %qT", base
, t
);
276 binfo
= error_mark_node
;
280 bk
= bk_inaccessible
;
291 /* Data for dcast_base_hint walker. */
295 tree subtype
; /* The base type we're looking for. */
296 int virt_depth
; /* Number of virtual bases encountered from most
298 tree offset
; /* Best hint offset discovered so far. */
299 bool repeated_base
; /* Whether there are repeated bases in the
303 /* Worker for dcast_base_hint. Search for the base type being cast
307 dfs_dcast_hint_pre (tree binfo
, void *data_
)
309 struct dcast_data_s
*data
= data_
;
311 if (BINFO_VIRTUAL_P (binfo
))
314 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->subtype
))
316 if (data
->virt_depth
)
318 data
->offset
= ssize_int (-1);
322 data
->offset
= ssize_int (-3);
324 data
->offset
= BINFO_OFFSET (binfo
);
326 return data
->repeated_base
? dfs_skip_bases
: data
->offset
;
332 /* Worker for dcast_base_hint. Track the virtual depth. */
335 dfs_dcast_hint_post (tree binfo
, void *data_
)
337 struct dcast_data_s
*data
= data_
;
339 if (BINFO_VIRTUAL_P (binfo
))
345 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
346 started from is related to the required TARGET type, in order to optimize
347 the inheritance graph search. This information is independent of the
348 current context, and ignores private paths, hence get_base_distance is
349 inappropriate. Return a TREE specifying the base offset, BOFF.
350 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
351 and there are no public virtual SUBTYPE bases.
352 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
353 BOFF == -2, SUBTYPE is not a public base.
354 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
357 dcast_base_hint (tree subtype
, tree target
)
359 struct dcast_data_s data
;
361 data
.subtype
= subtype
;
363 data
.offset
= NULL_TREE
;
364 data
.repeated_base
= CLASSTYPE_REPEATED_BASE_P (target
);
366 dfs_walk_once_accessible (TYPE_BINFO (target
), /*friends=*/false,
367 dfs_dcast_hint_pre
, dfs_dcast_hint_post
, &data
);
368 return data
.offset
? data
.offset
: ssize_int (-2);
371 /* Search for a member with name NAME in a multiple inheritance
372 lattice specified by TYPE. If it does not exist, return NULL_TREE.
373 If the member is ambiguously referenced, return `error_mark_node'.
374 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
375 true, type declarations are preferred. */
377 /* Do a 1-level search for NAME as a member of TYPE. The caller must
378 figure out whether it can access this field. (Since it is only one
379 level, this is reasonable.) */
382 lookup_field_1 (tree type
, tree name
, bool want_type
)
386 if (TREE_CODE (type
) == TEMPLATE_TYPE_PARM
387 || TREE_CODE (type
) == BOUND_TEMPLATE_TEMPLATE_PARM
388 || TREE_CODE (type
) == TYPENAME_TYPE
)
389 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
390 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
391 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
392 the code often worked even when we treated the index as a list
394 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
398 && DECL_LANG_SPECIFIC (TYPE_NAME (type
))
399 && DECL_SORTED_FIELDS (TYPE_NAME (type
)))
401 tree
*fields
= &DECL_SORTED_FIELDS (TYPE_NAME (type
))->elts
[0];
402 int lo
= 0, hi
= DECL_SORTED_FIELDS (TYPE_NAME (type
))->len
;
409 #ifdef GATHER_STATISTICS
411 #endif /* GATHER_STATISTICS */
413 if (DECL_NAME (fields
[i
]) > name
)
415 else if (DECL_NAME (fields
[i
]) < name
)
421 /* We might have a nested class and a field with the
422 same name; we sorted them appropriately via
423 field_decl_cmp, so just look for the first or last
424 field with this name. */
429 while (i
>= lo
&& DECL_NAME (fields
[i
]) == name
);
430 if (TREE_CODE (field
) != TYPE_DECL
431 && !DECL_CLASS_TEMPLATE_P (field
))
438 while (i
< hi
&& DECL_NAME (fields
[i
]) == name
);
446 field
= TYPE_FIELDS (type
);
448 #ifdef GATHER_STATISTICS
449 n_calls_lookup_field_1
++;
450 #endif /* GATHER_STATISTICS */
451 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
453 #ifdef GATHER_STATISTICS
455 #endif /* GATHER_STATISTICS */
456 gcc_assert (DECL_P (field
));
457 if (DECL_NAME (field
) == NULL_TREE
458 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
460 tree temp
= lookup_field_1 (TREE_TYPE (field
), name
, want_type
);
464 if (TREE_CODE (field
) == USING_DECL
)
466 /* We generally treat class-scope using-declarations as
467 ARM-style access specifications, because support for the
468 ISO semantics has not been implemented. So, in general,
469 there's no reason to return a USING_DECL, and the rest of
470 the compiler cannot handle that. Once the class is
471 defined, USING_DECLs are purged from TYPE_FIELDS; see
472 handle_using_decl. However, we make special efforts to
473 make using-declarations in class templates and class
474 template partial specializations work correctly noticing
475 that dependent USING_DECL's do not have TREE_TYPE set. */
476 if (TREE_TYPE (field
))
480 if (DECL_NAME (field
) == name
482 || TREE_CODE (field
) == TYPE_DECL
483 || DECL_CLASS_TEMPLATE_P (field
)))
487 if (name
== vptr_identifier
)
489 /* Give the user what s/he thinks s/he wants. */
490 if (TYPE_POLYMORPHIC_P (type
))
491 return TYPE_VFIELD (type
);
496 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
497 NAMESPACE_DECL corresponding to the innermost non-block scope. */
502 /* There are a number of cases we need to be aware of here:
503 current_class_type current_function_decl
510 Those last two make life interesting. If we're in a function which is
511 itself inside a class, we need decls to go into the fn's decls (our
512 second case below). But if we're in a class and the class itself is
513 inside a function, we need decls to go into the decls for the class. To
514 achieve this last goal, we must see if, when both current_class_ptr and
515 current_function_decl are set, the class was declared inside that
516 function. If so, we know to put the decls into the class's scope. */
517 if (current_function_decl
&& current_class_type
518 && ((DECL_FUNCTION_MEMBER_P (current_function_decl
)
519 && same_type_p (DECL_CONTEXT (current_function_decl
),
521 || (DECL_FRIEND_CONTEXT (current_function_decl
)
522 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl
),
523 current_class_type
))))
524 return current_function_decl
;
525 if (current_class_type
)
526 return current_class_type
;
527 if (current_function_decl
)
528 return current_function_decl
;
529 return current_namespace
;
532 /* Returns nonzero if we are currently in a function scope. Note
533 that this function returns zero if we are within a local class, but
534 not within a member function body of the local class. */
537 at_function_scope_p (void)
539 tree cs
= current_scope ();
540 return cs
&& TREE_CODE (cs
) == FUNCTION_DECL
;
543 /* Returns true if the innermost active scope is a class scope. */
546 at_class_scope_p (void)
548 tree cs
= current_scope ();
549 return cs
&& TYPE_P (cs
);
552 /* Returns true if the innermost active scope is a namespace scope. */
555 at_namespace_scope_p (void)
557 tree cs
= current_scope ();
558 return cs
&& TREE_CODE (cs
) == NAMESPACE_DECL
;
561 /* Return the scope of DECL, as appropriate when doing name-lookup. */
564 context_for_name_lookup (tree decl
)
568 For the purposes of name lookup, after the anonymous union
569 definition, the members of the anonymous union are considered to
570 have been defined in the scope in which the anonymous union is
572 tree context
= DECL_CONTEXT (decl
);
574 while (context
&& TYPE_P (context
) && ANON_AGGR_TYPE_P (context
))
575 context
= TYPE_CONTEXT (context
);
577 context
= global_namespace
;
582 /* The accessibility routines use BINFO_ACCESS for scratch space
583 during the computation of the accessibility of some declaration. */
585 #define BINFO_ACCESS(NODE) \
586 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
588 /* Set the access associated with NODE to ACCESS. */
590 #define SET_BINFO_ACCESS(NODE, ACCESS) \
591 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
592 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
594 /* Called from access_in_type via dfs_walk. Calculate the access to
595 DATA (which is really a DECL) in BINFO. */
598 dfs_access_in_type (tree binfo
, void *data
)
600 tree decl
= (tree
) data
;
601 tree type
= BINFO_TYPE (binfo
);
602 access_kind access
= ak_none
;
604 if (context_for_name_lookup (decl
) == type
)
606 /* If we have descended to the scope of DECL, just note the
607 appropriate access. */
608 if (TREE_PRIVATE (decl
))
610 else if (TREE_PROTECTED (decl
))
611 access
= ak_protected
;
617 /* First, check for an access-declaration that gives us more
618 access to the DECL. The CONST_DECL for an enumeration
619 constant will not have DECL_LANG_SPECIFIC, and thus no
621 if (DECL_LANG_SPECIFIC (decl
) && !DECL_DISCRIMINATOR_P (decl
))
623 tree decl_access
= purpose_member (type
, DECL_ACCESS (decl
));
627 decl_access
= TREE_VALUE (decl_access
);
629 if (decl_access
== access_public_node
)
631 else if (decl_access
== access_protected_node
)
632 access
= ak_protected
;
633 else if (decl_access
== access_private_node
)
644 VEC (tree
) *accesses
;
646 /* Otherwise, scan our baseclasses, and pick the most favorable
648 accesses
= BINFO_BASE_ACCESSES (binfo
);
649 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
651 tree base_access
= VEC_index (tree
, accesses
, i
);
652 access_kind base_access_now
= BINFO_ACCESS (base_binfo
);
654 if (base_access_now
== ak_none
|| base_access_now
== ak_private
)
655 /* If it was not accessible in the base, or only
656 accessible as a private member, we can't access it
658 base_access_now
= ak_none
;
659 else if (base_access
== access_protected_node
)
660 /* Public and protected members in the base become
662 base_access_now
= ak_protected
;
663 else if (base_access
== access_private_node
)
664 /* Public and protected members in the base become
666 base_access_now
= ak_private
;
668 /* See if the new access, via this base, gives more
669 access than our previous best access. */
670 if (base_access_now
!= ak_none
671 && (access
== ak_none
|| base_access_now
< access
))
673 access
= base_access_now
;
675 /* If the new access is public, we can't do better. */
676 if (access
== ak_public
)
683 /* Note the access to DECL in TYPE. */
684 SET_BINFO_ACCESS (binfo
, access
);
689 /* Return the access to DECL in TYPE. */
692 access_in_type (tree type
, tree decl
)
694 tree binfo
= TYPE_BINFO (type
);
696 /* We must take into account
700 If a name can be reached by several paths through a multiple
701 inheritance graph, the access is that of the path that gives
704 The algorithm we use is to make a post-order depth-first traversal
705 of the base-class hierarchy. As we come up the tree, we annotate
706 each node with the most lenient access. */
707 dfs_walk_once (binfo
, NULL
, dfs_access_in_type
, decl
);
709 return BINFO_ACCESS (binfo
);
712 /* Returns nonzero if it is OK to access DECL through an object
713 indicated by BINFO in the context of DERIVED. */
716 protected_accessible_p (tree decl
, tree derived
, tree binfo
)
720 /* We're checking this clause from [class.access.base]
722 m as a member of N is protected, and the reference occurs in a
723 member or friend of class N, or in a member or friend of a
724 class P derived from N, where m as a member of P is private or
727 Here DERIVED is a possible P and DECL is m. accessible_p will
728 iterate over various values of N, but the access to m in DERIVED
731 Note that I believe that the passage above is wrong, and should read
732 "...is private or protected or public"; otherwise you get bizarre results
733 whereby a public using-decl can prevent you from accessing a protected
734 member of a base. (jason 2000/02/28) */
736 /* If DERIVED isn't derived from m's class, then it can't be a P. */
737 if (!DERIVED_FROM_P (context_for_name_lookup (decl
), derived
))
740 access
= access_in_type (derived
, decl
);
742 /* If m is inaccessible in DERIVED, then it's not a P. */
743 if (access
== ak_none
)
748 When a friend or a member function of a derived class references
749 a protected nonstatic member of a base class, an access check
750 applies in addition to those described earlier in clause
751 _class.access_) Except when forming a pointer to member
752 (_expr.unary.op_), the access must be through a pointer to,
753 reference to, or object of the derived class itself (or any class
754 derived from that class) (_expr.ref_). If the access is to form
755 a pointer to member, the nested-name-specifier shall name the
756 derived class (or any class derived from that class). */
757 if (DECL_NONSTATIC_MEMBER_P (decl
))
759 /* We can tell through what the reference is occurring by
760 chasing BINFO up to the root. */
762 while (BINFO_INHERITANCE_CHAIN (t
))
763 t
= BINFO_INHERITANCE_CHAIN (t
);
765 if (!DERIVED_FROM_P (derived
, BINFO_TYPE (t
)))
772 /* Returns nonzero if SCOPE is a friend of a type which would be able
773 to access DECL through the object indicated by BINFO. */
776 friend_accessible_p (tree scope
, tree decl
, tree binfo
)
778 tree befriending_classes
;
784 if (TREE_CODE (scope
) == FUNCTION_DECL
785 || DECL_FUNCTION_TEMPLATE_P (scope
))
786 befriending_classes
= DECL_BEFRIENDING_CLASSES (scope
);
787 else if (TYPE_P (scope
))
788 befriending_classes
= CLASSTYPE_BEFRIENDING_CLASSES (scope
);
792 for (t
= befriending_classes
; t
; t
= TREE_CHAIN (t
))
793 if (protected_accessible_p (decl
, TREE_VALUE (t
), binfo
))
796 /* Nested classes are implicitly friends of their enclosing types, as
797 per core issue 45 (this is a change from the standard). */
799 for (t
= TYPE_CONTEXT (scope
); t
&& TYPE_P (t
); t
= TYPE_CONTEXT (t
))
800 if (protected_accessible_p (decl
, t
, binfo
))
803 if (TREE_CODE (scope
) == FUNCTION_DECL
804 || DECL_FUNCTION_TEMPLATE_P (scope
))
806 /* Perhaps this SCOPE is a member of a class which is a
808 if (DECL_CLASS_SCOPE_P (scope
)
809 && friend_accessible_p (DECL_CONTEXT (scope
), decl
, binfo
))
812 /* Or an instantiation of something which is a friend. */
813 if (DECL_TEMPLATE_INFO (scope
))
816 /* Increment processing_template_decl to make sure that
817 dependent_type_p works correctly. */
818 ++processing_template_decl
;
819 ret
= friend_accessible_p (DECL_TI_TEMPLATE (scope
), decl
, binfo
);
820 --processing_template_decl
;
828 /* Called via dfs_walk_once_accessible from accessible_p */
831 dfs_accessible_post (tree binfo
, void *data ATTRIBUTE_UNUSED
)
833 if (BINFO_ACCESS (binfo
) != ak_none
)
835 tree scope
= current_scope ();
836 if (scope
&& TREE_CODE (scope
) != NAMESPACE_DECL
837 && is_friend (BINFO_TYPE (binfo
), scope
))
844 /* DECL is a declaration from a base class of TYPE, which was the
845 class used to name DECL. Return nonzero if, in the current
846 context, DECL is accessible. If TYPE is actually a BINFO node,
847 then we can tell in what context the access is occurring by looking
848 at the most derived class along the path indicated by BINFO. If
849 CONSIDER_LOCAL is true, do consider special access the current
850 scope or friendship thereof we might have. */
853 accessible_p (tree type
, tree decl
, bool consider_local_p
)
859 /* Nonzero if it's OK to access DECL if it has protected
860 accessibility in TYPE. */
861 int protected_ok
= 0;
863 /* If this declaration is in a block or namespace scope, there's no
865 if (!TYPE_P (context_for_name_lookup (decl
)))
868 /* There is no need to perform access checks inside a thunk. */
869 scope
= current_scope ();
870 if (scope
&& DECL_THUNK_P (scope
))
873 /* In a template declaration, we cannot be sure whether the
874 particular specialization that is instantiated will be a friend
875 or not. Therefore, all access checks are deferred until
877 if (processing_template_decl
)
883 type
= BINFO_TYPE (type
);
886 binfo
= TYPE_BINFO (type
);
888 /* [class.access.base]
890 A member m is accessible when named in class N if
892 --m as a member of N is public, or
894 --m as a member of N is private, and the reference occurs in a
895 member or friend of class N, or
897 --m as a member of N is protected, and the reference occurs in a
898 member or friend of class N, or in a member or friend of a
899 class P derived from N, where m as a member of P is private or
902 --there exists a base class B of N that is accessible at the point
903 of reference, and m is accessible when named in class B.
905 We walk the base class hierarchy, checking these conditions. */
907 if (consider_local_p
)
909 /* Figure out where the reference is occurring. Check to see if
910 DECL is private or protected in this scope, since that will
911 determine whether protected access is allowed. */
912 if (current_class_type
)
913 protected_ok
= protected_accessible_p (decl
,
914 current_class_type
, binfo
);
916 /* Now, loop through the classes of which we are a friend. */
918 protected_ok
= friend_accessible_p (scope
, decl
, binfo
);
921 /* Standardize the binfo that access_in_type will use. We don't
922 need to know what path was chosen from this point onwards. */
923 binfo
= TYPE_BINFO (type
);
925 /* Compute the accessibility of DECL in the class hierarchy
926 dominated by type. */
927 access
= access_in_type (type
, decl
);
928 if (access
== ak_public
929 || (access
== ak_protected
&& protected_ok
))
932 if (!consider_local_p
)
935 /* Walk the hierarchy again, looking for a base class that allows
937 return dfs_walk_once_accessible (binfo
, /*friends=*/true,
938 NULL
, dfs_accessible_post
, NULL
)
942 struct lookup_field_info
{
943 /* The type in which we're looking. */
945 /* The name of the field for which we're looking. */
947 /* If non-NULL, the current result of the lookup. */
949 /* The path to RVAL. */
951 /* If non-NULL, the lookup was ambiguous, and this is a list of the
954 /* If nonzero, we are looking for types, not data members. */
956 /* If something went wrong, a message indicating what. */
960 /* Within the scope of a template class, you can refer to the to the
961 current specialization with the name of the template itself. For
964 template <typename T> struct S { S* sp; }
966 Returns nonzero if DECL is such a declaration in a class TYPE. */
969 template_self_reference_p (tree type
, tree decl
)
971 return (CLASSTYPE_USE_TEMPLATE (type
)
972 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type
))
973 && TREE_CODE (decl
) == TYPE_DECL
974 && DECL_ARTIFICIAL (decl
)
975 && DECL_NAME (decl
) == constructor_name (type
));
978 /* Nonzero for a class member means that it is shared between all objects
981 [class.member.lookup]:If the resulting set of declarations are not all
982 from sub-objects of the same type, or the set has a nonstatic member
983 and includes members from distinct sub-objects, there is an ambiguity
984 and the program is ill-formed.
986 This function checks that T contains no nonstatic members. */
989 shared_member_p (tree t
)
991 if (TREE_CODE (t
) == VAR_DECL
|| TREE_CODE (t
) == TYPE_DECL \
992 || TREE_CODE (t
) == CONST_DECL
)
994 if (is_overloaded_fn (t
))
996 for (; t
; t
= OVL_NEXT (t
))
998 tree fn
= OVL_CURRENT (t
);
999 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
))
1007 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1008 found as a base class and sub-object of the object denoted by
1012 is_subobject_of_p (tree parent
, tree binfo
)
1016 for (probe
= parent
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
1020 if (BINFO_VIRTUAL_P (probe
))
1021 return (binfo_for_vbase (BINFO_TYPE (probe
), BINFO_TYPE (binfo
))
1027 /* DATA is really a struct lookup_field_info. Look for a field with
1028 the name indicated there in BINFO. If this function returns a
1029 non-NULL value it is the result of the lookup. Called from
1030 lookup_field via breadth_first_search. */
1033 lookup_field_r (tree binfo
, void *data
)
1035 struct lookup_field_info
*lfi
= (struct lookup_field_info
*) data
;
1036 tree type
= BINFO_TYPE (binfo
);
1037 tree nval
= NULL_TREE
;
1039 /* If this is a dependent base, don't look in it. */
1040 if (BINFO_DEPENDENT_BASE_P (binfo
))
1043 /* If this base class is hidden by the best-known value so far, we
1044 don't need to look. */
1045 if (lfi
->rval_binfo
&& BINFO_INHERITANCE_CHAIN (binfo
) == lfi
->rval_binfo
1046 && !BINFO_VIRTUAL_P (binfo
))
1047 return dfs_skip_bases
;
1049 /* First, look for a function. There can't be a function and a data
1050 member with the same name, and if there's a function and a type
1051 with the same name, the type is hidden by the function. */
1052 if (!lfi
->want_type
)
1054 int idx
= lookup_fnfields_1 (type
, lfi
->name
);
1056 nval
= VEC_index (tree
, CLASSTYPE_METHOD_VEC (type
), idx
);
1060 /* Look for a data member or type. */
1061 nval
= lookup_field_1 (type
, lfi
->name
, lfi
->want_type
);
1063 /* If there is no declaration with the indicated name in this type,
1064 then there's nothing to do. */
1068 /* If we're looking up a type (as with an elaborated type specifier)
1069 we ignore all non-types we find. */
1070 if (lfi
->want_type
&& TREE_CODE (nval
) != TYPE_DECL
1071 && !DECL_CLASS_TEMPLATE_P (nval
))
1073 if (lfi
->name
== TYPE_IDENTIFIER (type
))
1075 /* If the aggregate has no user defined constructors, we allow
1076 it to have fields with the same name as the enclosing type.
1077 If we are looking for that name, find the corresponding
1079 for (nval
= TREE_CHAIN (nval
); nval
; nval
= TREE_CHAIN (nval
))
1080 if (DECL_NAME (nval
) == lfi
->name
1081 && TREE_CODE (nval
) == TYPE_DECL
)
1086 if (!nval
&& CLASSTYPE_NESTED_UTDS (type
) != NULL
)
1088 binding_entry e
= binding_table_find (CLASSTYPE_NESTED_UTDS (type
),
1091 nval
= TYPE_MAIN_DECL (e
->type
);
1097 /* You must name a template base class with a template-id. */
1098 if (!same_type_p (type
, lfi
->type
)
1099 && template_self_reference_p (type
, nval
))
1102 /* If the lookup already found a match, and the new value doesn't
1103 hide the old one, we might have an ambiguity. */
1105 && !is_subobject_of_p (lfi
->rval_binfo
, binfo
))
1108 if (nval
== lfi
->rval
&& shared_member_p (nval
))
1109 /* The two things are really the same. */
1111 else if (is_subobject_of_p (binfo
, lfi
->rval_binfo
))
1112 /* The previous value hides the new one. */
1116 /* We have a real ambiguity. We keep a chain of all the
1118 if (!lfi
->ambiguous
&& lfi
->rval
)
1120 /* This is the first time we noticed an ambiguity. Add
1121 what we previously thought was a reasonable candidate
1123 lfi
->ambiguous
= tree_cons (NULL_TREE
, lfi
->rval
, NULL_TREE
);
1124 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1127 /* Add the new value. */
1128 lfi
->ambiguous
= tree_cons (NULL_TREE
, nval
, lfi
->ambiguous
);
1129 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1130 lfi
->errstr
= "request for member %qD is ambiguous";
1136 lfi
->rval_binfo
= binfo
;
1140 /* Don't look for constructors or destructors in base classes. */
1141 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi
->name
))
1142 return dfs_skip_bases
;
1146 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1147 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1148 FUNCTIONS, and OPTYPE respectively. */
1151 build_baselink (tree binfo
, tree access_binfo
, tree functions
, tree optype
)
1155 gcc_assert (TREE_CODE (functions
) == FUNCTION_DECL
1156 || TREE_CODE (functions
) == TEMPLATE_DECL
1157 || TREE_CODE (functions
) == TEMPLATE_ID_EXPR
1158 || TREE_CODE (functions
) == OVERLOAD
);
1159 gcc_assert (!optype
|| TYPE_P (optype
));
1160 gcc_assert (TREE_TYPE (functions
));
1162 baselink
= make_node (BASELINK
);
1163 TREE_TYPE (baselink
) = TREE_TYPE (functions
);
1164 BASELINK_BINFO (baselink
) = binfo
;
1165 BASELINK_ACCESS_BINFO (baselink
) = access_binfo
;
1166 BASELINK_FUNCTIONS (baselink
) = functions
;
1167 BASELINK_OPTYPE (baselink
) = optype
;
1172 /* Look for a member named NAME in an inheritance lattice dominated by
1173 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1174 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1175 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1176 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1177 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1178 TREE_VALUEs are the list of ambiguous candidates.
1180 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1182 If nothing can be found return NULL_TREE and do not issue an error. */
1185 lookup_member (tree xbasetype
, tree name
, int protect
, bool want_type
)
1187 tree rval
, rval_binfo
= NULL_TREE
;
1188 tree type
= NULL_TREE
, basetype_path
= NULL_TREE
;
1189 struct lookup_field_info lfi
;
1191 /* rval_binfo is the binfo associated with the found member, note,
1192 this can be set with useful information, even when rval is not
1193 set, because it must deal with ALL members, not just non-function
1194 members. It is used for ambiguity checking and the hidden
1195 checks. Whereas rval is only set if a proper (not hidden)
1196 non-function member is found. */
1198 const char *errstr
= 0;
1200 gcc_assert (TREE_CODE (name
) == IDENTIFIER_NODE
);
1202 if (TREE_CODE (xbasetype
) == TREE_BINFO
)
1204 type
= BINFO_TYPE (xbasetype
);
1205 basetype_path
= xbasetype
;
1209 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype
)));
1211 xbasetype
= NULL_TREE
;
1214 type
= complete_type (type
);
1216 basetype_path
= TYPE_BINFO (type
);
1221 #ifdef GATHER_STATISTICS
1222 n_calls_lookup_field
++;
1223 #endif /* GATHER_STATISTICS */
1225 memset (&lfi
, 0, sizeof (lfi
));
1228 lfi
.want_type
= want_type
;
1229 dfs_walk_all (basetype_path
, &lookup_field_r
, NULL
, &lfi
);
1231 rval_binfo
= lfi
.rval_binfo
;
1233 type
= BINFO_TYPE (rval_binfo
);
1234 errstr
= lfi
.errstr
;
1236 /* If we are not interested in ambiguities, don't report them;
1237 just return NULL_TREE. */
1238 if (!protect
&& lfi
.ambiguous
)
1244 return lfi
.ambiguous
;
1251 In the case of overloaded function names, access control is
1252 applied to the function selected by overloaded resolution. */
1253 if (rval
&& protect
&& !is_overloaded_fn (rval
))
1254 perform_or_defer_access_check (basetype_path
, rval
);
1256 if (errstr
&& protect
)
1258 error (errstr
, name
, type
);
1260 print_candidates (lfi
.ambiguous
);
1261 rval
= error_mark_node
;
1264 if (rval
&& is_overloaded_fn (rval
))
1265 rval
= build_baselink (rval_binfo
, basetype_path
, rval
,
1266 (IDENTIFIER_TYPENAME_P (name
)
1267 ? TREE_TYPE (name
): NULL_TREE
));
1271 /* Like lookup_member, except that if we find a function member we
1272 return NULL_TREE. */
1275 lookup_field (tree xbasetype
, tree name
, int protect
, bool want_type
)
1277 tree rval
= lookup_member (xbasetype
, name
, protect
, want_type
);
1279 /* Ignore functions, but propagate the ambiguity list. */
1280 if (!error_operand_p (rval
)
1281 && (rval
&& BASELINK_P (rval
)))
1287 /* Like lookup_member, except that if we find a non-function member we
1288 return NULL_TREE. */
1291 lookup_fnfields (tree xbasetype
, tree name
, int protect
)
1293 tree rval
= lookup_member (xbasetype
, name
, protect
, /*want_type=*/false);
1295 /* Ignore non-functions, but propagate the ambiguity list. */
1296 if (!error_operand_p (rval
)
1297 && (rval
&& !BASELINK_P (rval
)))
1303 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1304 corresponding to "operator TYPE ()", or -1 if there is no such
1305 operator. Only CLASS_TYPE itself is searched; this routine does
1306 not scan the base classes of CLASS_TYPE. */
1309 lookup_conversion_operator (tree class_type
, tree type
)
1313 if (TYPE_HAS_CONVERSION (class_type
))
1317 VEC(tree
) *methods
= CLASSTYPE_METHOD_VEC (class_type
);
1319 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1320 VEC_iterate (tree
, methods
, i
, fn
); ++i
)
1322 /* All the conversion operators come near the beginning of
1323 the class. Therefore, if FN is not a conversion
1324 operator, there is no matching conversion operator in
1326 fn
= OVL_CURRENT (fn
);
1327 if (!DECL_CONV_FN_P (fn
))
1330 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
1331 /* All the templated conversion functions are on the same
1332 slot, so remember it. */
1334 else if (same_type_p (DECL_CONV_FN_TYPE (fn
), type
))
1342 /* TYPE is a class type. Return the index of the fields within
1343 the method vector with name NAME, or -1 is no such field exists. */
1346 lookup_fnfields_1 (tree type
, tree name
)
1348 VEC(tree
) *method_vec
;
1353 if (!CLASS_TYPE_P (type
))
1356 if (COMPLETE_TYPE_P (type
))
1358 if ((name
== ctor_identifier
1359 || name
== base_ctor_identifier
1360 || name
== complete_ctor_identifier
))
1362 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type
))
1363 lazily_declare_fn (sfk_constructor
, type
);
1364 if (CLASSTYPE_LAZY_COPY_CTOR (type
))
1365 lazily_declare_fn (sfk_copy_constructor
, type
);
1367 else if (name
== ansi_assopname(NOP_EXPR
)
1368 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type
))
1369 lazily_declare_fn (sfk_assignment_operator
, type
);
1372 method_vec
= CLASSTYPE_METHOD_VEC (type
);
1376 #ifdef GATHER_STATISTICS
1377 n_calls_lookup_fnfields_1
++;
1378 #endif /* GATHER_STATISTICS */
1380 /* Constructors are first... */
1381 if (name
== ctor_identifier
)
1383 fn
= CLASSTYPE_CONSTRUCTORS (type
);
1384 return fn
? CLASSTYPE_CONSTRUCTOR_SLOT
: -1;
1386 /* and destructors are second. */
1387 if (name
== dtor_identifier
)
1389 fn
= CLASSTYPE_DESTRUCTORS (type
);
1390 return fn
? CLASSTYPE_DESTRUCTOR_SLOT
: -1;
1392 if (IDENTIFIER_TYPENAME_P (name
))
1393 return lookup_conversion_operator (type
, TREE_TYPE (name
));
1395 /* Skip the conversion operators. */
1396 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1397 VEC_iterate (tree
, method_vec
, i
, fn
);
1399 if (!DECL_CONV_FN_P (OVL_CURRENT (fn
)))
1402 /* If the type is complete, use binary search. */
1403 if (COMPLETE_TYPE_P (type
))
1409 hi
= VEC_length (tree
, method_vec
);
1414 #ifdef GATHER_STATISTICS
1415 n_outer_fields_searched
++;
1416 #endif /* GATHER_STATISTICS */
1418 tmp
= VEC_index (tree
, method_vec
, i
);
1419 tmp
= DECL_NAME (OVL_CURRENT (tmp
));
1422 else if (tmp
< name
)
1429 for (; VEC_iterate (tree
, method_vec
, i
, fn
); ++i
)
1431 #ifdef GATHER_STATISTICS
1432 n_outer_fields_searched
++;
1433 #endif /* GATHER_STATISTICS */
1434 if (DECL_NAME (OVL_CURRENT (fn
)) == name
)
1441 /* Like lookup_fnfields_1, except that the name is extracted from
1442 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1445 class_method_index_for_fn (tree class_type
, tree function
)
1447 gcc_assert (TREE_CODE (function
) == FUNCTION_DECL
1448 || DECL_FUNCTION_TEMPLATE_P (function
));
1450 return lookup_fnfields_1 (class_type
,
1451 DECL_CONSTRUCTOR_P (function
) ? ctor_identifier
:
1452 DECL_DESTRUCTOR_P (function
) ? dtor_identifier
:
1453 DECL_NAME (function
));
1457 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1458 the class or namespace used to qualify the name. CONTEXT_CLASS is
1459 the class corresponding to the object in which DECL will be used.
1460 Return a possibly modified version of DECL that takes into account
1463 In particular, consider an expression like `B::m' in the context of
1464 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1465 then the most derived class indicated by the BASELINK_BINFO will be
1466 `B', not `D'. This function makes that adjustment. */
1469 adjust_result_of_qualified_name_lookup (tree decl
,
1470 tree qualifying_scope
,
1473 if (context_class
&& CLASS_TYPE_P (qualifying_scope
)
1474 && DERIVED_FROM_P (qualifying_scope
, context_class
)
1475 && BASELINK_P (decl
))
1479 gcc_assert (CLASS_TYPE_P (context_class
));
1481 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1482 Because we do not yet know which function will be chosen by
1483 overload resolution, we cannot yet check either accessibility
1484 or ambiguity -- in either case, the choice of a static member
1485 function might make the usage valid. */
1486 base
= lookup_base (context_class
, qualifying_scope
,
1487 ba_unique
| ba_quiet
, NULL
);
1490 BASELINK_ACCESS_BINFO (decl
) = base
;
1491 BASELINK_BINFO (decl
)
1492 = lookup_base (base
, BINFO_TYPE (BASELINK_BINFO (decl
)),
1493 ba_unique
| ba_quiet
,
1502 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1503 PRE_FN is called in preorder, while POST_FN is called in postorder.
1504 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1505 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1506 that value is immediately returned and the walk is terminated. One
1507 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1508 POST_FN are passed the binfo to examine and the caller's DATA
1509 value. All paths are walked, thus virtual and morally virtual
1510 binfos can be multiply walked. */
1513 dfs_walk_all (tree binfo
, tree (*pre_fn
) (tree
, void *),
1514 tree (*post_fn
) (tree
, void *), void *data
)
1520 /* Call the pre-order walking function. */
1523 rval
= pre_fn (binfo
, data
);
1526 if (rval
== dfs_skip_bases
)
1532 /* Find the next child binfo to walk. */
1533 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1535 rval
= dfs_walk_all (base_binfo
, pre_fn
, post_fn
, data
);
1541 /* Call the post-order walking function. */
1544 rval
= post_fn (binfo
, data
);
1545 gcc_assert (rval
!= dfs_skip_bases
);
1552 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1553 that binfos are walked at most once. */
1556 dfs_walk_once_r (tree binfo
, tree (*pre_fn
) (tree
, void *),
1557 tree (*post_fn
) (tree
, void *), void *data
)
1563 /* Call the pre-order walking function. */
1566 rval
= pre_fn (binfo
, data
);
1569 if (rval
== dfs_skip_bases
)
1576 /* Find the next child binfo to walk. */
1577 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1579 if (BINFO_VIRTUAL_P (base_binfo
))
1581 if (BINFO_MARKED (base_binfo
))
1583 BINFO_MARKED (base_binfo
) = 1;
1586 rval
= dfs_walk_once_r (base_binfo
, pre_fn
, post_fn
, data
);
1592 /* Call the post-order walking function. */
1595 rval
= post_fn (binfo
, data
);
1596 gcc_assert (rval
!= dfs_skip_bases
);
1603 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1607 dfs_unmark_r (tree binfo
)
1612 /* Process the basetypes. */
1613 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1615 if (BINFO_VIRTUAL_P (base_binfo
))
1617 if (!BINFO_MARKED (base_binfo
))
1619 BINFO_MARKED (base_binfo
) = 0;
1621 /* Only walk, if it can contain more virtual bases. */
1622 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo
)))
1623 dfs_unmark_r (base_binfo
);
1627 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1628 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1629 For diamond shaped hierarchies we must mark the virtual bases, to
1630 avoid multiple walks. */
1633 dfs_walk_once (tree binfo
, tree (*pre_fn
) (tree
, void *),
1634 tree (*post_fn
) (tree
, void *), void *data
)
1638 gcc_assert (pre_fn
|| post_fn
);
1640 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo
)))
1641 /* We are not diamond shaped, and therefore cannot encounter the
1642 same binfo twice. */
1643 rval
= dfs_walk_all (binfo
, pre_fn
, post_fn
, data
);
1646 rval
= dfs_walk_once_r (binfo
, pre_fn
, post_fn
, data
);
1647 if (!BINFO_INHERITANCE_CHAIN (binfo
))
1649 /* We are at the top of the hierarchy, and can use the
1650 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1656 for (vbases
= CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)), ix
= 0;
1657 VEC_iterate (tree
, vbases
, ix
, base_binfo
); ix
++)
1658 BINFO_MARKED (base_binfo
) = 0;
1661 dfs_unmark_r (binfo
);
1666 /* Worker function for dfs_walk_once_accessible. Behaves like
1667 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1668 access given by the current context should be considered, (b) ONCE
1669 indicates whether bases should be marked during traversal. */
1672 dfs_walk_once_accessible_r (tree binfo
, bool friends_p
, bool once
,
1673 tree (*pre_fn
) (tree
, void *),
1674 tree (*post_fn
) (tree
, void *), void *data
)
1676 tree rval
= NULL_TREE
;
1680 /* Call the pre-order walking function. */
1683 rval
= pre_fn (binfo
, data
);
1686 if (rval
== dfs_skip_bases
)
1693 /* Find the next child binfo to walk. */
1694 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1696 bool mark
= once
&& BINFO_VIRTUAL_P (base_binfo
);
1698 if (mark
&& BINFO_MARKED (base_binfo
))
1701 /* If the base is inherited via private or protected
1702 inheritance, then we can't see it, unless we are a friend of
1703 the current binfo. */
1704 if (BINFO_BASE_ACCESS (binfo
, ix
) != access_public_node
)
1709 scope
= current_scope ();
1711 || TREE_CODE (scope
) == NAMESPACE_DECL
1712 || !is_friend (BINFO_TYPE (binfo
), scope
))
1717 BINFO_MARKED (base_binfo
) = 1;
1719 rval
= dfs_walk_once_accessible_r (base_binfo
, friends_p
, once
,
1720 pre_fn
, post_fn
, data
);
1726 /* Call the post-order walking function. */
1729 rval
= post_fn (binfo
, data
);
1730 gcc_assert (rval
!= dfs_skip_bases
);
1737 /* Like dfs_walk_once except that only accessible bases are walked.
1738 FRIENDS_P indicates whether friendship of the local context
1739 should be considered when determining accessibility. */
1742 dfs_walk_once_accessible (tree binfo
, bool friends_p
,
1743 tree (*pre_fn
) (tree
, void *),
1744 tree (*post_fn
) (tree
, void *), void *data
)
1746 bool diamond_shaped
= CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo
));
1747 tree rval
= dfs_walk_once_accessible_r (binfo
, friends_p
, diamond_shaped
,
1748 pre_fn
, post_fn
, data
);
1752 if (!BINFO_INHERITANCE_CHAIN (binfo
))
1754 /* We are at the top of the hierarchy, and can use the
1755 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1761 for (vbases
= CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)), ix
= 0;
1762 VEC_iterate (tree
, vbases
, ix
, base_binfo
); ix
++)
1763 BINFO_MARKED (base_binfo
) = 0;
1766 dfs_unmark_r (binfo
);
1771 /* Check that virtual overrider OVERRIDER is acceptable for base function
1772 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1775 check_final_overrider (tree overrider
, tree basefn
)
1777 tree over_type
= TREE_TYPE (overrider
);
1778 tree base_type
= TREE_TYPE (basefn
);
1779 tree over_return
= TREE_TYPE (over_type
);
1780 tree base_return
= TREE_TYPE (base_type
);
1781 tree over_throw
= TYPE_RAISES_EXCEPTIONS (over_type
);
1782 tree base_throw
= TYPE_RAISES_EXCEPTIONS (base_type
);
1785 if (DECL_INVALID_OVERRIDER_P (overrider
))
1788 if (same_type_p (base_return
, over_return
))
1790 else if ((CLASS_TYPE_P (over_return
) && CLASS_TYPE_P (base_return
))
1791 || (TREE_CODE (base_return
) == TREE_CODE (over_return
)
1792 && POINTER_TYPE_P (base_return
)))
1794 /* Potentially covariant. */
1795 unsigned base_quals
, over_quals
;
1797 fail
= !POINTER_TYPE_P (base_return
);
1800 fail
= cp_type_quals (base_return
) != cp_type_quals (over_return
);
1802 base_return
= TREE_TYPE (base_return
);
1803 over_return
= TREE_TYPE (over_return
);
1805 base_quals
= cp_type_quals (base_return
);
1806 over_quals
= cp_type_quals (over_return
);
1808 if ((base_quals
& over_quals
) != over_quals
)
1811 if (CLASS_TYPE_P (base_return
) && CLASS_TYPE_P (over_return
))
1813 tree binfo
= lookup_base (over_return
, base_return
,
1814 ba_check
| ba_quiet
, NULL
);
1820 && can_convert (TREE_TYPE (base_type
), TREE_TYPE (over_type
)))
1821 /* GNU extension, allow trivial pointer conversions such as
1822 converting to void *, or qualification conversion. */
1824 /* can_convert will permit user defined conversion from a
1825 (reference to) class type. We must reject them. */
1826 over_return
= non_reference (TREE_TYPE (over_type
));
1827 if (CLASS_TYPE_P (over_return
))
1831 cp_warning_at ("deprecated covariant return type for %q#D",
1833 cp_warning_at (" overriding %q#D", basefn
);
1847 cp_error_at ("invalid covariant return type for %q#D", overrider
);
1848 cp_error_at (" overriding %q#D", basefn
);
1852 cp_error_at ("conflicting return type specified for %q#D",
1854 cp_error_at (" overriding %q#D", basefn
);
1856 DECL_INVALID_OVERRIDER_P (overrider
) = 1;
1860 /* Check throw specifier is at least as strict. */
1861 if (!comp_except_specs (base_throw
, over_throw
, 0))
1863 cp_error_at ("looser throw specifier for %q#F", overrider
);
1864 cp_error_at (" overriding %q#F", basefn
);
1865 DECL_INVALID_OVERRIDER_P (overrider
) = 1;
1872 /* Given a class TYPE, and a function decl FNDECL, look for
1873 virtual functions in TYPE's hierarchy which FNDECL overrides.
1874 We do not look in TYPE itself, only its bases.
1876 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1877 find that it overrides anything.
1879 We check that every function which is overridden, is correctly
1883 look_for_overrides (tree type
, tree fndecl
)
1885 tree binfo
= TYPE_BINFO (type
);
1890 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1892 tree basetype
= BINFO_TYPE (base_binfo
);
1894 if (TYPE_POLYMORPHIC_P (basetype
))
1895 found
+= look_for_overrides_r (basetype
, fndecl
);
1900 /* Look in TYPE for virtual functions with the same signature as
1904 look_for_overrides_here (tree type
, tree fndecl
)
1908 /* If there are no methods in TYPE (meaning that only implicitly
1909 declared methods will ever be provided for TYPE), then there are
1910 no virtual functions. */
1911 if (!CLASSTYPE_METHOD_VEC (type
))
1914 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl
))
1915 ix
= CLASSTYPE_DESTRUCTOR_SLOT
;
1917 ix
= lookup_fnfields_1 (type
, DECL_NAME (fndecl
));
1920 tree fns
= VEC_index (tree
, CLASSTYPE_METHOD_VEC (type
), ix
);
1922 for (; fns
; fns
= OVL_NEXT (fns
))
1924 tree fn
= OVL_CURRENT (fns
);
1926 if (!DECL_VIRTUAL_P (fn
))
1927 /* Not a virtual. */;
1928 else if (DECL_CONTEXT (fn
) != type
)
1929 /* Introduced with a using declaration. */;
1930 else if (DECL_STATIC_FUNCTION_P (fndecl
))
1932 tree btypes
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1933 tree dtypes
= TYPE_ARG_TYPES (TREE_TYPE (fndecl
));
1934 if (compparms (TREE_CHAIN (btypes
), dtypes
))
1937 else if (same_signature_p (fndecl
, fn
))
1944 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1945 TYPE itself and its bases. */
1948 look_for_overrides_r (tree type
, tree fndecl
)
1950 tree fn
= look_for_overrides_here (type
, fndecl
);
1953 if (DECL_STATIC_FUNCTION_P (fndecl
))
1955 /* A static member function cannot match an inherited
1956 virtual member function. */
1957 cp_error_at ("%q#D cannot be declared", fndecl
);
1958 cp_error_at (" since %q#D declared in base class", fn
);
1962 /* It's definitely virtual, even if not explicitly set. */
1963 DECL_VIRTUAL_P (fndecl
) = 1;
1964 check_final_overrider (fndecl
, fn
);
1969 /* We failed to find one declared in this class. Look in its bases. */
1970 return look_for_overrides (type
, fndecl
);
1973 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1976 dfs_get_pure_virtuals (tree binfo
, void *data
)
1978 tree type
= (tree
) data
;
1980 /* We're not interested in primary base classes; the derived class
1981 of which they are a primary base will contain the information we
1983 if (!BINFO_PRIMARY_P (binfo
))
1987 for (virtuals
= BINFO_VIRTUALS (binfo
);
1989 virtuals
= TREE_CHAIN (virtuals
))
1990 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals
)))
1991 VEC_safe_push (tree
, CLASSTYPE_PURE_VIRTUALS (type
),
1998 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2001 get_pure_virtuals (tree type
)
2003 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2004 is going to be overridden. */
2005 CLASSTYPE_PURE_VIRTUALS (type
) = NULL
;
2006 /* Now, run through all the bases which are not primary bases, and
2007 collect the pure virtual functions. We look at the vtable in
2008 each class to determine what pure virtual functions are present.
2009 (A primary base is not interesting because the derived class of
2010 which it is a primary base will contain vtable entries for the
2011 pure virtuals in the base class. */
2012 dfs_walk_once (TYPE_BINFO (type
), NULL
, dfs_get_pure_virtuals
, type
);
2015 /* Debug info for C++ classes can get very large; try to avoid
2016 emitting it everywhere.
2018 Note that this optimization wins even when the target supports
2019 BINCL (if only slightly), and reduces the amount of work for the
2023 maybe_suppress_debug_info (tree t
)
2025 if (write_symbols
== NO_DEBUG
)
2028 /* We might have set this earlier in cp_finish_decl. */
2029 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 0;
2031 /* If we already know how we're handling this class, handle debug info
2033 if (CLASSTYPE_INTERFACE_KNOWN (t
))
2035 if (CLASSTYPE_INTERFACE_ONLY (t
))
2036 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 1;
2037 /* else don't set it. */
2039 /* If the class has a vtable, write out the debug info along with
2041 else if (TYPE_CONTAINS_VPTR_P (t
))
2042 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 1;
2044 /* Otherwise, just emit the debug info normally. */
2047 /* Note that we want debugging information for a base class of a class
2048 whose vtable is being emitted. Normally, this would happen because
2049 calling the constructor for a derived class implies calling the
2050 constructors for all bases, which involve initializing the
2051 appropriate vptr with the vtable for the base class; but in the
2052 presence of optimization, this initialization may be optimized
2053 away, so we tell finish_vtable_vardecl that we want the debugging
2054 information anyway. */
2057 dfs_debug_mark (tree binfo
, void *data ATTRIBUTE_UNUSED
)
2059 tree t
= BINFO_TYPE (binfo
);
2061 if (CLASSTYPE_DEBUG_REQUESTED (t
))
2062 return dfs_skip_bases
;
2064 CLASSTYPE_DEBUG_REQUESTED (t
) = 1;
2069 /* Write out the debugging information for TYPE, whose vtable is being
2070 emitted. Also walk through our bases and note that we want to
2071 write out information for them. This avoids the problem of not
2072 writing any debug info for intermediate basetypes whose
2073 constructors, and thus the references to their vtables, and thus
2074 the vtables themselves, were optimized away. */
2077 note_debug_info_needed (tree type
)
2079 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type
)))
2081 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type
)) = 0;
2082 rest_of_type_compilation (type
, toplevel_bindings_p ());
2085 dfs_walk_all (TYPE_BINFO (type
), dfs_debug_mark
, NULL
, 0);
2089 print_search_statistics (void)
2091 #ifdef GATHER_STATISTICS
2092 fprintf (stderr
, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2093 n_fields_searched
, n_calls_lookup_field
, n_calls_lookup_field_1
);
2094 fprintf (stderr
, "%d fnfields searched in %d calls to lookup_fnfields\n",
2095 n_outer_fields_searched
, n_calls_lookup_fnfields
);
2096 fprintf (stderr
, "%d calls to get_base_type\n", n_calls_get_base_type
);
2097 #else /* GATHER_STATISTICS */
2098 fprintf (stderr
, "no search statistics\n");
2099 #endif /* GATHER_STATISTICS */
2103 reinit_search_statistics (void)
2105 #ifdef GATHER_STATISTICS
2106 n_fields_searched
= 0;
2107 n_calls_lookup_field
= 0, n_calls_lookup_field_1
= 0;
2108 n_calls_lookup_fnfields
= 0, n_calls_lookup_fnfields_1
= 0;
2109 n_calls_get_base_type
= 0;
2110 n_outer_fields_searched
= 0;
2111 n_contexts_saved
= 0;
2112 #endif /* GATHER_STATISTICS */
2115 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2116 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2117 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2118 bases have been encountered already in the tree walk. PARENT_CONVS
2119 is the list of lists of conversion functions that could hide CONV
2120 and OTHER_CONVS is the list of lists of conversion functions that
2121 could hide or be hidden by CONV, should virtualness be involved in
2122 the hierarchy. Merely checking the conversion op's name is not
2123 enough because two conversion operators to the same type can have
2124 different names. Return nonzero if we are visible. */
2127 check_hidden_convs (tree binfo
, int virtual_depth
, int virtualness
,
2128 tree to_type
, tree parent_convs
, tree other_convs
)
2132 /* See if we are hidden by a parent conversion. */
2133 for (level
= parent_convs
; level
; level
= TREE_CHAIN (level
))
2134 for (probe
= TREE_VALUE (level
); probe
; probe
= TREE_CHAIN (probe
))
2135 if (same_type_p (to_type
, TREE_TYPE (probe
)))
2138 if (virtual_depth
|| virtualness
)
2140 /* In a virtual hierarchy, we could be hidden, or could hide a
2141 conversion function on the other_convs list. */
2142 for (level
= other_convs
; level
; level
= TREE_CHAIN (level
))
2148 if (!(virtual_depth
|| TREE_STATIC (level
)))
2149 /* Neither is morally virtual, so cannot hide each other. */
2152 if (!TREE_VALUE (level
))
2153 /* They evaporated away already. */
2156 they_hide_us
= (virtual_depth
2157 && original_binfo (binfo
, TREE_PURPOSE (level
)));
2158 we_hide_them
= (!they_hide_us
&& TREE_STATIC (level
)
2159 && original_binfo (TREE_PURPOSE (level
), binfo
));
2161 if (!(we_hide_them
|| they_hide_us
))
2162 /* Neither is within the other, so no hiding can occur. */
2165 for (prev
= &TREE_VALUE (level
), other
= *prev
; other
;)
2167 if (same_type_p (to_type
, TREE_TYPE (other
)))
2170 /* We are hidden. */
2175 /* We hide the other one. */
2176 other
= TREE_CHAIN (other
);
2181 prev
= &TREE_CHAIN (other
);
2189 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2190 of conversion functions, the first slot will be for the current
2191 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2192 of conversion functions from children of the current binfo,
2193 concatenated with conversions from elsewhere in the hierarchy --
2194 that list begins with OTHER_CONVS. Return a single list of lists
2195 containing only conversions from the current binfo and its
2199 split_conversions (tree my_convs
, tree parent_convs
,
2200 tree child_convs
, tree other_convs
)
2205 /* Remove the original other_convs portion from child_convs. */
2206 for (prev
= NULL
, t
= child_convs
;
2207 t
!= other_convs
; prev
= t
, t
= TREE_CHAIN (t
))
2211 TREE_CHAIN (prev
) = NULL_TREE
;
2213 child_convs
= NULL_TREE
;
2215 /* Attach the child convs to any we had at this level. */
2218 my_convs
= parent_convs
;
2219 TREE_CHAIN (my_convs
) = child_convs
;
2222 my_convs
= child_convs
;
2227 /* Worker for lookup_conversions. Lookup conversion functions in
2228 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2229 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2230 encountered virtual bases already in the tree walk. PARENT_CONVS &
2231 PARENT_TPL_CONVS are lists of list of conversions within parent
2232 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2233 elsewhere in the tree. Return the conversions found within this
2234 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2235 encountered virtualness. We keep template and non-template
2236 conversions separate, to avoid unnecessary type comparisons.
2238 The located conversion functions are held in lists of lists. The
2239 TREE_VALUE of the outer list is the list of conversion functions
2240 found in a particular binfo. The TREE_PURPOSE of both the outer
2241 and inner lists is the binfo at which those conversions were
2242 found. TREE_STATIC is set for those lists within of morally
2243 virtual binfos. The TREE_VALUE of the inner list is the conversion
2244 function or overload itself. The TREE_TYPE of each inner list node
2245 is the converted-to type. */
2248 lookup_conversions_r (tree binfo
,
2249 int virtual_depth
, int virtualness
,
2250 tree parent_convs
, tree parent_tpl_convs
,
2251 tree other_convs
, tree other_tpl_convs
,
2252 tree
*convs
, tree
*tpl_convs
)
2254 int my_virtualness
= 0;
2255 tree my_convs
= NULL_TREE
;
2256 tree my_tpl_convs
= NULL_TREE
;
2257 tree child_convs
= NULL_TREE
;
2258 tree child_tpl_convs
= NULL_TREE
;
2261 VEC(tree
) *method_vec
= CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo
));
2264 /* If we have no conversion operators, then don't look. */
2265 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo
)))
2267 *convs
= *tpl_convs
= NULL_TREE
;
2272 if (BINFO_VIRTUAL_P (binfo
))
2275 /* First, locate the unhidden ones at this level. */
2276 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2277 VEC_iterate (tree
, method_vec
, i
, conv
);
2280 tree cur
= OVL_CURRENT (conv
);
2282 if (!DECL_CONV_FN_P (cur
))
2285 if (TREE_CODE (cur
) == TEMPLATE_DECL
)
2287 /* Only template conversions can be overloaded, and we must
2288 flatten them out and check each one individually. */
2291 for (tpls
= conv
; tpls
; tpls
= OVL_NEXT (tpls
))
2293 tree tpl
= OVL_CURRENT (tpls
);
2294 tree type
= DECL_CONV_FN_TYPE (tpl
);
2296 if (check_hidden_convs (binfo
, virtual_depth
, virtualness
,
2297 type
, parent_tpl_convs
, other_tpl_convs
))
2299 my_tpl_convs
= tree_cons (binfo
, tpl
, my_tpl_convs
);
2300 TREE_TYPE (my_tpl_convs
) = type
;
2303 TREE_STATIC (my_tpl_convs
) = 1;
2311 tree name
= DECL_NAME (cur
);
2313 if (!IDENTIFIER_MARKED (name
))
2315 tree type
= DECL_CONV_FN_TYPE (cur
);
2317 if (check_hidden_convs (binfo
, virtual_depth
, virtualness
,
2318 type
, parent_convs
, other_convs
))
2320 my_convs
= tree_cons (binfo
, conv
, my_convs
);
2321 TREE_TYPE (my_convs
) = type
;
2324 TREE_STATIC (my_convs
) = 1;
2327 IDENTIFIER_MARKED (name
) = 1;
2335 parent_convs
= tree_cons (binfo
, my_convs
, parent_convs
);
2337 TREE_STATIC (parent_convs
) = 1;
2342 parent_tpl_convs
= tree_cons (binfo
, my_tpl_convs
, parent_tpl_convs
);
2344 TREE_STATIC (parent_convs
) = 1;
2347 child_convs
= other_convs
;
2348 child_tpl_convs
= other_tpl_convs
;
2350 /* Now iterate over each base, looking for more conversions. */
2351 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
2353 tree base_convs
, base_tpl_convs
;
2354 unsigned base_virtualness
;
2356 base_virtualness
= lookup_conversions_r (base_binfo
,
2357 virtual_depth
, virtualness
,
2358 parent_convs
, parent_tpl_convs
,
2359 child_convs
, child_tpl_convs
,
2360 &base_convs
, &base_tpl_convs
);
2361 if (base_virtualness
)
2362 my_virtualness
= virtualness
= 1;
2363 child_convs
= chainon (base_convs
, child_convs
);
2364 child_tpl_convs
= chainon (base_tpl_convs
, child_tpl_convs
);
2367 /* Unmark the conversions found at this level */
2368 for (conv
= my_convs
; conv
; conv
= TREE_CHAIN (conv
))
2369 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv
)))) = 0;
2371 *convs
= split_conversions (my_convs
, parent_convs
,
2372 child_convs
, other_convs
);
2373 *tpl_convs
= split_conversions (my_tpl_convs
, parent_tpl_convs
,
2374 child_tpl_convs
, other_tpl_convs
);
2376 return my_virtualness
;
2379 /* Return a TREE_LIST containing all the non-hidden user-defined
2380 conversion functions for TYPE (and its base-classes). The
2381 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2382 function. The TREE_PURPOSE is the BINFO from which the conversion
2383 functions in this node were selected. This function is effectively
2384 performing a set of member lookups as lookup_fnfield does, but
2385 using the type being converted to as the unique key, rather than the
2389 lookup_conversions (tree type
)
2391 tree convs
, tpl_convs
;
2392 tree list
= NULL_TREE
;
2394 complete_type (type
);
2395 if (!TYPE_BINFO (type
))
2398 lookup_conversions_r (TYPE_BINFO (type
), 0, 0,
2399 NULL_TREE
, NULL_TREE
, NULL_TREE
, NULL_TREE
,
2400 &convs
, &tpl_convs
);
2402 /* Flatten the list-of-lists */
2403 for (; convs
; convs
= TREE_CHAIN (convs
))
2407 for (probe
= TREE_VALUE (convs
); probe
; probe
= next
)
2409 next
= TREE_CHAIN (probe
);
2411 TREE_CHAIN (probe
) = list
;
2416 for (; tpl_convs
; tpl_convs
= TREE_CHAIN (tpl_convs
))
2420 for (probe
= TREE_VALUE (tpl_convs
); probe
; probe
= next
)
2422 next
= TREE_CHAIN (probe
);
2424 TREE_CHAIN (probe
) = list
;
2432 /* Returns the binfo of the first direct or indirect virtual base derived
2433 from BINFO, or NULL if binfo is not via virtual. */
2436 binfo_from_vbase (tree binfo
)
2438 for (; binfo
; binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
2440 if (BINFO_VIRTUAL_P (binfo
))
2446 /* Returns the binfo of the first direct or indirect virtual base derived
2447 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2451 binfo_via_virtual (tree binfo
, tree limit
)
2453 if (limit
&& !CLASSTYPE_VBASECLASSES (limit
))
2454 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2457 for (; binfo
&& !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), limit
);
2458 binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
2460 if (BINFO_VIRTUAL_P (binfo
))
2466 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2467 Find the equivalent binfo within whatever graph HERE is located.
2468 This is the inverse of original_binfo. */
2471 copied_binfo (tree binfo
, tree here
)
2473 tree result
= NULL_TREE
;
2475 if (BINFO_VIRTUAL_P (binfo
))
2479 for (t
= here
; BINFO_INHERITANCE_CHAIN (t
);
2480 t
= BINFO_INHERITANCE_CHAIN (t
))
2483 result
= binfo_for_vbase (BINFO_TYPE (binfo
), BINFO_TYPE (t
));
2485 else if (BINFO_INHERITANCE_CHAIN (binfo
))
2491 cbinfo
= copied_binfo (BINFO_INHERITANCE_CHAIN (binfo
), here
);
2492 for (ix
= 0; BINFO_BASE_ITERATE (cbinfo
, ix
, base_binfo
); ix
++)
2493 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
), BINFO_TYPE (binfo
)))
2495 result
= base_binfo
;
2501 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here
), BINFO_TYPE (binfo
)));
2505 gcc_assert (result
);
2510 binfo_for_vbase (tree base
, tree t
)
2516 for (vbases
= CLASSTYPE_VBASECLASSES (t
), ix
= 0;
2517 VEC_iterate (tree
, vbases
, ix
, binfo
); ix
++)
2518 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), base
))
2523 /* BINFO is some base binfo of HERE, within some other
2524 hierarchy. Return the equivalent binfo, but in the hierarchy
2525 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2526 is not a base binfo of HERE, returns NULL_TREE. */
2529 original_binfo (tree binfo
, tree here
)
2533 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (here
)))
2535 else if (BINFO_VIRTUAL_P (binfo
))
2536 result
= (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here
))
2537 ? binfo_for_vbase (BINFO_TYPE (binfo
), BINFO_TYPE (here
))
2539 else if (BINFO_INHERITANCE_CHAIN (binfo
))
2543 base_binfos
= original_binfo (BINFO_INHERITANCE_CHAIN (binfo
), here
);
2549 for (ix
= 0; (base_binfo
= BINFO_BASE_BINFO (base_binfos
, ix
)); ix
++)
2550 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
),
2551 BINFO_TYPE (binfo
)))
2553 result
= base_binfo
;