2016-04-18 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / sem_res.adb
blob8eb8ac04f582a2c77010835e09b4645a575c3589
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Ghost; use Ghost;
41 with Inline; use Inline;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Nlists; use Nlists;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Aggr; use Sem_Aggr;
57 with Sem_Attr; use Sem_Attr;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch6; use Sem_Ch6;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Elab; use Sem_Elab;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Intr; use Sem_Intr;
71 with Sem_Util; use Sem_Util;
72 with Targparm; use Targparm;
73 with Sem_Type; use Sem_Type;
74 with Sem_Warn; use Sem_Warn;
75 with Sinfo; use Sinfo;
76 with Sinfo.CN; use Sinfo.CN;
77 with Snames; use Snames;
78 with Stand; use Stand;
79 with Stringt; use Stringt;
80 with Style; use Style;
81 with Tbuild; use Tbuild;
82 with Uintp; use Uintp;
83 with Urealp; use Urealp;
85 package body Sem_Res is
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 -- Second pass (top-down) type checking and overload resolution procedures
92 -- Typ is the type required by context. These procedures propagate the
93 -- type information recursively to the descendants of N. If the node is not
94 -- overloaded, its Etype is established in the first pass. If overloaded,
95 -- the Resolve routines set the correct type. For arithmetic operators, the
96 -- Etype is the base type of the context.
98 -- Note that Resolve_Attribute is separated off in Sem_Attr
100 procedure Check_Discriminant_Use (N : Node_Id);
101 -- Enforce the restrictions on the use of discriminants when constraining
102 -- a component of a discriminated type (record or concurrent type).
104 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
105 -- Given a node for an operator associated with type T, check that the
106 -- operator is visible. Operators all of whose operands are universal must
107 -- be checked for visibility during resolution because their type is not
108 -- determinable based on their operands.
110 procedure Check_Fully_Declared_Prefix
111 (Typ : Entity_Id;
112 Pref : Node_Id);
113 -- Check that the type of the prefix of a dereference is not incomplete
115 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
116 -- Given a call node, N, which is known to occur immediately within the
117 -- subprogram being called, determines whether it is a detectable case of
118 -- an infinite recursion, and if so, outputs appropriate messages. Returns
119 -- True if an infinite recursion is detected, and False otherwise.
121 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
122 -- If the type of the object being initialized uses the secondary stack
123 -- directly or indirectly, create a transient scope for the call to the
124 -- init proc. This is because we do not create transient scopes for the
125 -- initialization of individual components within the init proc itself.
126 -- Could be optimized away perhaps?
128 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
129 -- N is the node for a logical operator. If the operator is predefined, and
130 -- the root type of the operands is Standard.Boolean, then a check is made
131 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
132 -- the style check for Style_Check_Boolean_And_Or.
134 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
135 -- N is either an indexed component or a selected component. This function
136 -- returns true if the prefix refers to an object that has an address
137 -- clause (the case in which we may want to issue a warning).
139 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
151 -- predicate.
153 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
159 (N : Node_Id;
160 Arg : Node_Id;
161 Typ : Entity_Id;
162 Is_Comp : Boolean);
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
410 begin
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression then
414 null;
416 elsif Nkind (PN) = N_Range then
418 -- Discriminant cannot be used to constrain a scalar type
420 P := Parent (PN);
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
734 return True;
735 end Same_Argument_List;
737 -- Start of processing for Check_Infinite_Recursion
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
770 C := N;
771 loop
772 P := Parent (C);
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
778 if No (P) then
779 return False;
780 end if;
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind (P) = N_Subprogram_Body;
787 -- If appearing in conditional, result is false
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
814 -- for generating a stub function
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
821 -- OK, return statement is in a statement list, look for raise
823 declare
824 Nod : Node_Id;
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
847 return False;
849 else
850 C := P;
851 end if;
852 end loop;
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
858 return True;
859 end Check_Infinite_Recursion;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
875 -------------
876 -- Uses_SS --
877 -------------
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
892 if Is_Controlled (Full_Type) then
893 return False;
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr := Original_Node (Expression (Parent (Comp)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
927 Next_Component (Comp);
928 end loop;
930 return False;
932 else
933 return False;
934 end if;
935 end Uses_SS;
937 -- Start of processing for Check_Initialization_Call
939 begin
940 -- Establish a transient scope if the type needs it
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
963 -- Do style check (but skip if in instance, error is on template)
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1024 -- Start of processing for Check_Parameterless_Call
1026 begin
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then Chars (N) in Error_Name_Or_No_Name
1034 then
1035 return;
1036 end if;
1038 Require_Entity (N);
1039 end if;
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam := Relocate_Node (N);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps (N, Nam);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1250 Get_Next_Interp (I, It);
1251 end loop;
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1268 -------------
1269 -- In_Decl --
1270 -------------
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1276 begin
1277 N2 := N;
1279 if Etype (E) = Any_Type then
1280 return True;
1282 elsif No (Decl_Node) then
1283 return False;
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1296 return False;
1297 end if;
1298 end In_Decl;
1300 -- Start of processing for Type_In_P
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1316 Next_Entity (E);
1317 end loop;
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1323 -- Start of processing for Make_Call_Into_Operator
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1328 -- Binary operator
1330 if Is_Binary then
1331 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1332 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1333 Save_Interps (Act1, Left_Opnd (Op_Node));
1334 Save_Interps (Act2, Right_Opnd (Op_Node));
1335 Act1 := Left_Opnd (Op_Node);
1336 Act2 := Right_Opnd (Op_Node);
1338 -- Unary operator
1340 else
1341 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1342 Save_Interps (Act1, Right_Opnd (Op_Node));
1343 Act1 := Right_Opnd (Op_Node);
1344 end if;
1346 -- If the operator is denoted by an expanded name, and the prefix is
1347 -- not Standard, but the operator is a predefined one whose scope is
1348 -- Standard, then this is an implicit_operator, inserted as an
1349 -- interpretation by the procedure of the same name. This procedure
1350 -- overestimates the presence of implicit operators, because it does
1351 -- not examine the type of the operands. Verify now that the operand
1352 -- type appears in the given scope. If right operand is universal,
1353 -- check the other operand. In the case of concatenation, either
1354 -- argument can be the component type, so check the type of the result.
1355 -- If both arguments are literals, look for a type of the right kind
1356 -- defined in the given scope. This elaborate nonsense is brought to
1357 -- you courtesy of b33302a. The type itself must be frozen, so we must
1358 -- find the type of the proper class in the given scope.
1360 -- A final wrinkle is the multiplication operator for fixed point types,
1361 -- which is defined in Standard only, and not in the scope of the
1362 -- fixed point type itself.
1364 if Nkind (Name (N)) = N_Expanded_Name then
1365 Pack := Entity (Prefix (Name (N)));
1367 -- If this is a package renaming, get renamed entity, which will be
1368 -- the scope of the operands if operaton is type-correct.
1370 if Present (Renamed_Entity (Pack)) then
1371 Pack := Renamed_Entity (Pack);
1372 end if;
1374 -- If the entity being called is defined in the given package, it is
1375 -- a renaming of a predefined operator, and known to be legal.
1377 if Scope (Entity (Name (N))) = Pack
1378 and then Pack /= Standard_Standard
1379 then
1380 null;
1382 -- Visibility does not need to be checked in an instance: if the
1383 -- operator was not visible in the generic it has been diagnosed
1384 -- already, else there is an implicit copy of it in the instance.
1386 elsif In_Instance then
1387 null;
1389 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1390 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1391 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1392 then
1393 if Pack /= Standard_Standard then
1394 Error := True;
1395 end if;
1397 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1398 -- available.
1400 elsif Ada_Version >= Ada_2005
1401 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1402 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1403 then
1404 null;
1406 else
1407 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1409 if Op_Name = Name_Op_Concat then
1410 Opnd_Type := Base_Type (Typ);
1412 elsif (Scope (Opnd_Type) = Standard_Standard
1413 and then Is_Binary)
1414 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1415 and then Is_Binary
1416 and then not Comes_From_Source (Opnd_Type))
1417 then
1418 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1419 end if;
1421 if Scope (Opnd_Type) = Standard_Standard then
1423 -- Verify that the scope contains a type that corresponds to
1424 -- the given literal. Optimize the case where Pack is Standard.
1426 if Pack /= Standard_Standard then
1428 if Opnd_Type = Universal_Integer then
1429 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1431 elsif Opnd_Type = Universal_Real then
1432 Orig_Type := Type_In_P (Is_Real_Type'Access);
1434 elsif Opnd_Type = Any_String then
1435 Orig_Type := Type_In_P (Is_String_Type'Access);
1437 elsif Opnd_Type = Any_Access then
1438 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1440 elsif Opnd_Type = Any_Composite then
1441 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1443 if Present (Orig_Type) then
1444 if Has_Private_Component (Orig_Type) then
1445 Orig_Type := Empty;
1446 else
1447 Set_Etype (Act1, Orig_Type);
1449 if Is_Binary then
1450 Set_Etype (Act2, Orig_Type);
1451 end if;
1452 end if;
1453 end if;
1455 else
1456 Orig_Type := Empty;
1457 end if;
1459 Error := No (Orig_Type);
1460 end if;
1462 elsif Ekind (Opnd_Type) = E_Allocator_Type
1463 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1464 then
1465 Error := True;
1467 -- If the type is defined elsewhere, and the operator is not
1468 -- defined in the given scope (by a renaming declaration, e.g.)
1469 -- then this is an error as well. If an extension of System is
1470 -- present, and the type may be defined there, Pack must be
1471 -- System itself.
1473 elsif Scope (Opnd_Type) /= Pack
1474 and then Scope (Op_Id) /= Pack
1475 and then (No (System_Aux_Id)
1476 or else Scope (Opnd_Type) /= System_Aux_Id
1477 or else Pack /= Scope (System_Aux_Id))
1478 then
1479 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1480 Error := True;
1481 else
1482 Error := not Operand_Type_In_Scope (Pack);
1483 end if;
1485 elsif Pack = Standard_Standard
1486 and then not Operand_Type_In_Scope (Standard_Standard)
1487 then
1488 Error := True;
1489 end if;
1490 end if;
1492 if Error then
1493 Error_Msg_Node_2 := Pack;
1494 Error_Msg_NE
1495 ("& not declared in&", N, Selector_Name (Name (N)));
1496 Set_Etype (N, Any_Type);
1497 return;
1499 -- Detect a mismatch between the context type and the result type
1500 -- in the named package, which is otherwise not detected if the
1501 -- operands are universal. Check is only needed if source entity is
1502 -- an operator, not a function that renames an operator.
1504 elsif Nkind (Parent (N)) /= N_Type_Conversion
1505 and then Ekind (Entity (Name (N))) = E_Operator
1506 and then Is_Numeric_Type (Typ)
1507 and then not Is_Universal_Numeric_Type (Typ)
1508 and then Scope (Base_Type (Typ)) /= Pack
1509 and then not In_Instance
1510 then
1511 if Is_Fixed_Point_Type (Typ)
1512 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1513 then
1514 -- Already checked above
1516 null;
1518 -- Operator may be defined in an extension of System
1520 elsif Present (System_Aux_Id)
1521 and then Scope (Opnd_Type) = System_Aux_Id
1522 then
1523 null;
1525 else
1526 -- Could we use Wrong_Type here??? (this would require setting
1527 -- Etype (N) to the actual type found where Typ was expected).
1529 Error_Msg_NE ("expect }", N, Typ);
1530 end if;
1531 end if;
1532 end if;
1534 Set_Chars (Op_Node, Op_Name);
1536 if not Is_Private_Type (Etype (N)) then
1537 Set_Etype (Op_Node, Base_Type (Etype (N)));
1538 else
1539 Set_Etype (Op_Node, Etype (N));
1540 end if;
1542 -- If this is a call to a function that renames a predefined equality,
1543 -- the renaming declaration provides a type that must be used to
1544 -- resolve the operands. This must be done now because resolution of
1545 -- the equality node will not resolve any remaining ambiguity, and it
1546 -- assumes that the first operand is not overloaded.
1548 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1549 and then Ekind (Func) = E_Function
1550 and then Is_Overloaded (Act1)
1551 then
1552 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1553 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1554 end if;
1556 Set_Entity (Op_Node, Op_Id);
1557 Generate_Reference (Op_Id, N, ' ');
1559 -- Do rewrite setting Comes_From_Source on the result if the original
1560 -- call came from source. Although it is not strictly the case that the
1561 -- operator as such comes from the source, logically it corresponds
1562 -- exactly to the function call in the source, so it should be marked
1563 -- this way (e.g. to make sure that validity checks work fine).
1565 declare
1566 CS : constant Boolean := Comes_From_Source (N);
1567 begin
1568 Rewrite (N, Op_Node);
1569 Set_Comes_From_Source (N, CS);
1570 end;
1572 -- If this is an arithmetic operator and the result type is private,
1573 -- the operands and the result must be wrapped in conversion to
1574 -- expose the underlying numeric type and expand the proper checks,
1575 -- e.g. on division.
1577 if Is_Private_Type (Typ) then
1578 case Nkind (N) is
1579 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1580 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1581 Resolve_Intrinsic_Operator (N, Typ);
1583 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1584 Resolve_Intrinsic_Unary_Operator (N, Typ);
1586 when others =>
1587 Resolve (N, Typ);
1588 end case;
1589 else
1590 Resolve (N, Typ);
1591 end if;
1593 -- If in ASIS_Mode, propagate operand types to original actuals of
1594 -- function call, which would otherwise not be fully resolved. If
1595 -- the call has already been constant-folded, nothing to do. We
1596 -- relocate the operand nodes rather than copy them, to preserve
1597 -- original_node pointers, given that the operands themselves may
1598 -- have been rewritten. If the call was itself a rewriting of an
1599 -- operator node, nothing to do.
1601 if ASIS_Mode
1602 and then Nkind (N) in N_Op
1603 and then Nkind (Original_Node (N)) = N_Function_Call
1604 then
1605 declare
1606 L : Node_Id;
1607 R : constant Node_Id := Right_Opnd (N);
1609 Old_First : constant Node_Id :=
1610 First (Parameter_Associations (Original_Node (N)));
1611 Old_Sec : Node_Id;
1613 begin
1614 if Is_Binary then
1615 L := Left_Opnd (N);
1616 Old_Sec := Next (Old_First);
1618 -- If the original call has named associations, replace the
1619 -- explicit actual parameter in the association with the proper
1620 -- resolved operand.
1622 if Nkind (Old_First) = N_Parameter_Association then
1623 if Chars (Selector_Name (Old_First)) =
1624 Chars (First_Entity (Op_Id))
1625 then
1626 Rewrite (Explicit_Actual_Parameter (Old_First),
1627 Relocate_Node (L));
1628 else
1629 Rewrite (Explicit_Actual_Parameter (Old_First),
1630 Relocate_Node (R));
1631 end if;
1633 else
1634 Rewrite (Old_First, Relocate_Node (L));
1635 end if;
1637 if Nkind (Old_Sec) = N_Parameter_Association then
1638 if Chars (Selector_Name (Old_Sec)) =
1639 Chars (First_Entity (Op_Id))
1640 then
1641 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1642 Relocate_Node (L));
1643 else
1644 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1645 Relocate_Node (R));
1646 end if;
1648 else
1649 Rewrite (Old_Sec, Relocate_Node (R));
1650 end if;
1652 else
1653 if Nkind (Old_First) = N_Parameter_Association then
1654 Rewrite (Explicit_Actual_Parameter (Old_First),
1655 Relocate_Node (R));
1656 else
1657 Rewrite (Old_First, Relocate_Node (R));
1658 end if;
1659 end if;
1660 end;
1662 Set_Parent (Original_Node (N), Parent (N));
1663 end if;
1664 end Make_Call_Into_Operator;
1666 -------------------
1667 -- Operator_Kind --
1668 -------------------
1670 function Operator_Kind
1671 (Op_Name : Name_Id;
1672 Is_Binary : Boolean) return Node_Kind
1674 Kind : Node_Kind;
1676 begin
1677 -- Use CASE statement or array???
1679 if Is_Binary then
1680 if Op_Name = Name_Op_And then
1681 Kind := N_Op_And;
1682 elsif Op_Name = Name_Op_Or then
1683 Kind := N_Op_Or;
1684 elsif Op_Name = Name_Op_Xor then
1685 Kind := N_Op_Xor;
1686 elsif Op_Name = Name_Op_Eq then
1687 Kind := N_Op_Eq;
1688 elsif Op_Name = Name_Op_Ne then
1689 Kind := N_Op_Ne;
1690 elsif Op_Name = Name_Op_Lt then
1691 Kind := N_Op_Lt;
1692 elsif Op_Name = Name_Op_Le then
1693 Kind := N_Op_Le;
1694 elsif Op_Name = Name_Op_Gt then
1695 Kind := N_Op_Gt;
1696 elsif Op_Name = Name_Op_Ge then
1697 Kind := N_Op_Ge;
1698 elsif Op_Name = Name_Op_Add then
1699 Kind := N_Op_Add;
1700 elsif Op_Name = Name_Op_Subtract then
1701 Kind := N_Op_Subtract;
1702 elsif Op_Name = Name_Op_Concat then
1703 Kind := N_Op_Concat;
1704 elsif Op_Name = Name_Op_Multiply then
1705 Kind := N_Op_Multiply;
1706 elsif Op_Name = Name_Op_Divide then
1707 Kind := N_Op_Divide;
1708 elsif Op_Name = Name_Op_Mod then
1709 Kind := N_Op_Mod;
1710 elsif Op_Name = Name_Op_Rem then
1711 Kind := N_Op_Rem;
1712 elsif Op_Name = Name_Op_Expon then
1713 Kind := N_Op_Expon;
1714 else
1715 raise Program_Error;
1716 end if;
1718 -- Unary operators
1720 else
1721 if Op_Name = Name_Op_Add then
1722 Kind := N_Op_Plus;
1723 elsif Op_Name = Name_Op_Subtract then
1724 Kind := N_Op_Minus;
1725 elsif Op_Name = Name_Op_Abs then
1726 Kind := N_Op_Abs;
1727 elsif Op_Name = Name_Op_Not then
1728 Kind := N_Op_Not;
1729 else
1730 raise Program_Error;
1731 end if;
1732 end if;
1734 return Kind;
1735 end Operator_Kind;
1737 ----------------------------
1738 -- Preanalyze_And_Resolve --
1739 ----------------------------
1741 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1742 Save_Full_Analysis : constant Boolean := Full_Analysis;
1744 begin
1745 Full_Analysis := False;
1746 Expander_Mode_Save_And_Set (False);
1748 -- Normally, we suppress all checks for this preanalysis. There is no
1749 -- point in processing them now, since they will be applied properly
1750 -- and in the proper location when the default expressions reanalyzed
1751 -- and reexpanded later on. We will also have more information at that
1752 -- point for possible suppression of individual checks.
1754 -- However, in SPARK mode, most expansion is suppressed, and this
1755 -- later reanalysis and reexpansion may not occur. SPARK mode does
1756 -- require the setting of checking flags for proof purposes, so we
1757 -- do the SPARK preanalysis without suppressing checks.
1759 -- This special handling for SPARK mode is required for example in the
1760 -- case of Ada 2012 constructs such as quantified expressions, which are
1761 -- expanded in two separate steps.
1763 if GNATprove_Mode then
1764 Analyze_And_Resolve (N, T);
1765 else
1766 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1767 end if;
1769 Expander_Mode_Restore;
1770 Full_Analysis := Save_Full_Analysis;
1771 end Preanalyze_And_Resolve;
1773 -- Version without context type
1775 procedure Preanalyze_And_Resolve (N : Node_Id) is
1776 Save_Full_Analysis : constant Boolean := Full_Analysis;
1778 begin
1779 Full_Analysis := False;
1780 Expander_Mode_Save_And_Set (False);
1782 Analyze (N);
1783 Resolve (N, Etype (N), Suppress => All_Checks);
1785 Expander_Mode_Restore;
1786 Full_Analysis := Save_Full_Analysis;
1787 end Preanalyze_And_Resolve;
1789 ----------------------------------
1790 -- Replace_Actual_Discriminants --
1791 ----------------------------------
1793 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1794 Loc : constant Source_Ptr := Sloc (N);
1795 Tsk : Node_Id := Empty;
1797 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1798 -- Comment needed???
1800 -------------------
1801 -- Process_Discr --
1802 -------------------
1804 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1805 Ent : Entity_Id;
1807 begin
1808 if Nkind (Nod) = N_Identifier then
1809 Ent := Entity (Nod);
1811 if Present (Ent)
1812 and then Ekind (Ent) = E_Discriminant
1813 then
1814 Rewrite (Nod,
1815 Make_Selected_Component (Loc,
1816 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1817 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1819 Set_Etype (Nod, Etype (Ent));
1820 end if;
1822 end if;
1824 return OK;
1825 end Process_Discr;
1827 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1829 -- Start of processing for Replace_Actual_Discriminants
1831 begin
1832 if not Expander_Active then
1833 return;
1834 end if;
1836 if Nkind (Name (N)) = N_Selected_Component then
1837 Tsk := Prefix (Name (N));
1839 elsif Nkind (Name (N)) = N_Indexed_Component then
1840 Tsk := Prefix (Prefix (Name (N)));
1841 end if;
1843 if No (Tsk) then
1844 return;
1845 else
1846 Replace_Discrs (Default);
1847 end if;
1848 end Replace_Actual_Discriminants;
1850 -------------
1851 -- Resolve --
1852 -------------
1854 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1855 Ambiguous : Boolean := False;
1856 Ctx_Type : Entity_Id := Typ;
1857 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1858 Err_Type : Entity_Id := Empty;
1859 Found : Boolean := False;
1860 From_Lib : Boolean;
1861 I : Interp_Index;
1862 I1 : Interp_Index := 0; -- prevent junk warning
1863 It : Interp;
1864 It1 : Interp;
1865 Seen : Entity_Id := Empty; -- prevent junk warning
1867 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1868 -- Determine whether a node comes from a predefined library unit or
1869 -- Standard.
1871 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1872 -- Try and fix up a literal so that it matches its expected type. New
1873 -- literals are manufactured if necessary to avoid cascaded errors.
1875 procedure Report_Ambiguous_Argument;
1876 -- Additional diagnostics when an ambiguous call has an ambiguous
1877 -- argument (typically a controlling actual).
1879 procedure Resolution_Failed;
1880 -- Called when attempt at resolving current expression fails
1882 ------------------------------------
1883 -- Comes_From_Predefined_Lib_Unit --
1884 -------------------------------------
1886 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1887 begin
1888 return
1889 Sloc (Nod) = Standard_Location
1890 or else Is_Predefined_File_Name
1891 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1892 end Comes_From_Predefined_Lib_Unit;
1894 --------------------
1895 -- Patch_Up_Value --
1896 --------------------
1898 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1899 begin
1900 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1901 Rewrite (N,
1902 Make_Real_Literal (Sloc (N),
1903 Realval => UR_From_Uint (Intval (N))));
1904 Set_Etype (N, Universal_Real);
1905 Set_Is_Static_Expression (N);
1907 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1908 Rewrite (N,
1909 Make_Integer_Literal (Sloc (N),
1910 Intval => UR_To_Uint (Realval (N))));
1911 Set_Etype (N, Universal_Integer);
1912 Set_Is_Static_Expression (N);
1914 elsif Nkind (N) = N_String_Literal
1915 and then Is_Character_Type (Typ)
1916 then
1917 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1918 Rewrite (N,
1919 Make_Character_Literal (Sloc (N),
1920 Chars => Name_Find,
1921 Char_Literal_Value =>
1922 UI_From_Int (Character'Pos ('A'))));
1923 Set_Etype (N, Any_Character);
1924 Set_Is_Static_Expression (N);
1926 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1927 Rewrite (N,
1928 Make_String_Literal (Sloc (N),
1929 Strval => End_String));
1931 elsif Nkind (N) = N_Range then
1932 Patch_Up_Value (Low_Bound (N), Typ);
1933 Patch_Up_Value (High_Bound (N), Typ);
1934 end if;
1935 end Patch_Up_Value;
1937 -------------------------------
1938 -- Report_Ambiguous_Argument --
1939 -------------------------------
1941 procedure Report_Ambiguous_Argument is
1942 Arg : constant Node_Id := First (Parameter_Associations (N));
1943 I : Interp_Index;
1944 It : Interp;
1946 begin
1947 if Nkind (Arg) = N_Function_Call
1948 and then Is_Entity_Name (Name (Arg))
1949 and then Is_Overloaded (Name (Arg))
1950 then
1951 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1953 -- Could use comments on what is going on here???
1955 Get_First_Interp (Name (Arg), I, It);
1956 while Present (It.Nam) loop
1957 Error_Msg_Sloc := Sloc (It.Nam);
1959 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1960 Error_Msg_N ("interpretation (inherited) #!", Arg);
1961 else
1962 Error_Msg_N ("interpretation #!", Arg);
1963 end if;
1965 Get_Next_Interp (I, It);
1966 end loop;
1967 end if;
1968 end Report_Ambiguous_Argument;
1970 -----------------------
1971 -- Resolution_Failed --
1972 -----------------------
1974 procedure Resolution_Failed is
1975 begin
1976 Patch_Up_Value (N, Typ);
1977 Set_Etype (N, Typ);
1978 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1979 Set_Is_Overloaded (N, False);
1981 -- The caller will return without calling the expander, so we need
1982 -- to set the analyzed flag. Note that it is fine to set Analyzed
1983 -- to True even if we are in the middle of a shallow analysis,
1984 -- (see the spec of sem for more details) since this is an error
1985 -- situation anyway, and there is no point in repeating the
1986 -- analysis later (indeed it won't work to repeat it later, since
1987 -- we haven't got a clear resolution of which entity is being
1988 -- referenced.)
1990 Set_Analyzed (N, True);
1991 return;
1992 end Resolution_Failed;
1994 -- Local variables
1996 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
1998 -- Start of processing for Resolve
2000 begin
2001 if N = Error then
2002 return;
2003 end if;
2005 -- A declaration may be subject to pragma Ghost. Set the mode now to
2006 -- ensure that any nodes generated during analysis and expansion are
2007 -- marked as Ghost.
2009 if Is_Declaration (N) then
2010 Set_Ghost_Mode (N);
2011 end if;
2013 -- Access attribute on remote subprogram cannot be used for a non-remote
2014 -- access-to-subprogram type.
2016 if Nkind (N) = N_Attribute_Reference
2017 and then Nam_In (Attribute_Name (N), Name_Access,
2018 Name_Unrestricted_Access,
2019 Name_Unchecked_Access)
2020 and then Comes_From_Source (N)
2021 and then Is_Entity_Name (Prefix (N))
2022 and then Is_Subprogram (Entity (Prefix (N)))
2023 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2024 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2025 then
2026 Error_Msg_N
2027 ("prefix must statically denote a non-remote subprogram", N);
2028 end if;
2030 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2032 -- If the context is a Remote_Access_To_Subprogram, access attributes
2033 -- must be resolved with the corresponding fat pointer. There is no need
2034 -- to check for the attribute name since the return type of an
2035 -- attribute is never a remote type.
2037 if Nkind (N) = N_Attribute_Reference
2038 and then Comes_From_Source (N)
2039 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2040 then
2041 declare
2042 Attr : constant Attribute_Id :=
2043 Get_Attribute_Id (Attribute_Name (N));
2044 Pref : constant Node_Id := Prefix (N);
2045 Decl : Node_Id;
2046 Spec : Node_Id;
2047 Is_Remote : Boolean := True;
2049 begin
2050 -- Check that Typ is a remote access-to-subprogram type
2052 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2054 -- Prefix (N) must statically denote a remote subprogram
2055 -- declared in a package specification.
2057 if Attr = Attribute_Access or else
2058 Attr = Attribute_Unchecked_Access or else
2059 Attr = Attribute_Unrestricted_Access
2060 then
2061 Decl := Unit_Declaration_Node (Entity (Pref));
2063 if Nkind (Decl) = N_Subprogram_Body then
2064 Spec := Corresponding_Spec (Decl);
2066 if Present (Spec) then
2067 Decl := Unit_Declaration_Node (Spec);
2068 end if;
2069 end if;
2071 Spec := Parent (Decl);
2073 if not Is_Entity_Name (Prefix (N))
2074 or else Nkind (Spec) /= N_Package_Specification
2075 or else
2076 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2077 then
2078 Is_Remote := False;
2079 Error_Msg_N
2080 ("prefix must statically denote a remote subprogram ",
2082 end if;
2084 -- If we are generating code in distributed mode, perform
2085 -- semantic checks against corresponding remote entities.
2087 if Expander_Active
2088 and then Get_PCS_Name /= Name_No_DSA
2089 then
2090 Check_Subtype_Conformant
2091 (New_Id => Entity (Prefix (N)),
2092 Old_Id => Designated_Type
2093 (Corresponding_Remote_Type (Typ)),
2094 Err_Loc => N);
2096 if Is_Remote then
2097 Process_Remote_AST_Attribute (N, Typ);
2098 end if;
2099 end if;
2100 end if;
2101 end if;
2102 end;
2103 end if;
2105 Debug_A_Entry ("resolving ", N);
2107 if Debug_Flag_V then
2108 Write_Overloads (N);
2109 end if;
2111 if Comes_From_Source (N) then
2112 if Is_Fixed_Point_Type (Typ) then
2113 Check_Restriction (No_Fixed_Point, N);
2115 elsif Is_Floating_Point_Type (Typ)
2116 and then Typ /= Universal_Real
2117 and then Typ /= Any_Real
2118 then
2119 Check_Restriction (No_Floating_Point, N);
2120 end if;
2121 end if;
2123 -- Return if already analyzed
2125 if Analyzed (N) then
2126 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2127 Analyze_Dimension (N);
2128 Ghost_Mode := Save_Ghost_Mode;
2129 return;
2131 -- Any case of Any_Type as the Etype value means that we had a
2132 -- previous error.
2134 elsif Etype (N) = Any_Type then
2135 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2136 Ghost_Mode := Save_Ghost_Mode;
2137 return;
2138 end if;
2140 Check_Parameterless_Call (N);
2142 -- The resolution of an Expression_With_Actions is determined by
2143 -- its Expression.
2145 if Nkind (N) = N_Expression_With_Actions then
2146 Resolve (Expression (N), Typ);
2148 Found := True;
2149 Expr_Type := Etype (Expression (N));
2151 -- If not overloaded, then we know the type, and all that needs doing
2152 -- is to check that this type is compatible with the context.
2154 elsif not Is_Overloaded (N) then
2155 Found := Covers (Typ, Etype (N));
2156 Expr_Type := Etype (N);
2158 -- In the overloaded case, we must select the interpretation that
2159 -- is compatible with the context (i.e. the type passed to Resolve)
2161 else
2162 -- Loop through possible interpretations
2164 Get_First_Interp (N, I, It);
2165 Interp_Loop : while Present (It.Typ) loop
2166 if Debug_Flag_V then
2167 Write_Str ("Interp: ");
2168 Write_Interp (It);
2169 end if;
2171 -- We are only interested in interpretations that are compatible
2172 -- with the expected type, any other interpretations are ignored.
2174 if not Covers (Typ, It.Typ) then
2175 if Debug_Flag_V then
2176 Write_Str (" interpretation incompatible with context");
2177 Write_Eol;
2178 end if;
2180 else
2181 -- Skip the current interpretation if it is disabled by an
2182 -- abstract operator. This action is performed only when the
2183 -- type against which we are resolving is the same as the
2184 -- type of the interpretation.
2186 if Ada_Version >= Ada_2005
2187 and then It.Typ = Typ
2188 and then Typ /= Universal_Integer
2189 and then Typ /= Universal_Real
2190 and then Present (It.Abstract_Op)
2191 then
2192 if Debug_Flag_V then
2193 Write_Line ("Skip.");
2194 end if;
2196 goto Continue;
2197 end if;
2199 -- First matching interpretation
2201 if not Found then
2202 Found := True;
2203 I1 := I;
2204 Seen := It.Nam;
2205 Expr_Type := It.Typ;
2207 -- Matching interpretation that is not the first, maybe an
2208 -- error, but there are some cases where preference rules are
2209 -- used to choose between the two possibilities. These and
2210 -- some more obscure cases are handled in Disambiguate.
2212 else
2213 -- If the current statement is part of a predefined library
2214 -- unit, then all interpretations which come from user level
2215 -- packages should not be considered. Check previous and
2216 -- current one.
2218 if From_Lib then
2219 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2220 goto Continue;
2222 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2224 -- Previous interpretation must be discarded
2226 I1 := I;
2227 Seen := It.Nam;
2228 Expr_Type := It.Typ;
2229 Set_Entity (N, Seen);
2230 goto Continue;
2231 end if;
2232 end if;
2234 -- Otherwise apply further disambiguation steps
2236 Error_Msg_Sloc := Sloc (Seen);
2237 It1 := Disambiguate (N, I1, I, Typ);
2239 -- Disambiguation has succeeded. Skip the remaining
2240 -- interpretations.
2242 if It1 /= No_Interp then
2243 Seen := It1.Nam;
2244 Expr_Type := It1.Typ;
2246 while Present (It.Typ) loop
2247 Get_Next_Interp (I, It);
2248 end loop;
2250 else
2251 -- Before we issue an ambiguity complaint, check for
2252 -- the case of a subprogram call where at least one
2253 -- of the arguments is Any_Type, and if so, suppress
2254 -- the message, since it is a cascaded error.
2256 if Nkind (N) in N_Subprogram_Call then
2257 declare
2258 A : Node_Id;
2259 E : Node_Id;
2261 begin
2262 A := First_Actual (N);
2263 while Present (A) loop
2264 E := A;
2266 if Nkind (E) = N_Parameter_Association then
2267 E := Explicit_Actual_Parameter (E);
2268 end if;
2270 if Etype (E) = Any_Type then
2271 if Debug_Flag_V then
2272 Write_Str ("Any_Type in call");
2273 Write_Eol;
2274 end if;
2276 exit Interp_Loop;
2277 end if;
2279 Next_Actual (A);
2280 end loop;
2281 end;
2283 elsif Nkind (N) in N_Binary_Op
2284 and then (Etype (Left_Opnd (N)) = Any_Type
2285 or else Etype (Right_Opnd (N)) = Any_Type)
2286 then
2287 exit Interp_Loop;
2289 elsif Nkind (N) in N_Unary_Op
2290 and then Etype (Right_Opnd (N)) = Any_Type
2291 then
2292 exit Interp_Loop;
2293 end if;
2295 -- Not that special case, so issue message using the
2296 -- flag Ambiguous to control printing of the header
2297 -- message only at the start of an ambiguous set.
2299 if not Ambiguous then
2300 if Nkind (N) = N_Function_Call
2301 and then Nkind (Name (N)) = N_Explicit_Dereference
2302 then
2303 Error_Msg_N
2304 ("ambiguous expression "
2305 & "(cannot resolve indirect call)!", N);
2306 else
2307 Error_Msg_NE -- CODEFIX
2308 ("ambiguous expression (cannot resolve&)!",
2309 N, It.Nam);
2310 end if;
2312 Ambiguous := True;
2314 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2315 Error_Msg_N
2316 ("\\possible interpretation (inherited)#!", N);
2317 else
2318 Error_Msg_N -- CODEFIX
2319 ("\\possible interpretation#!", N);
2320 end if;
2322 if Nkind (N) in N_Subprogram_Call
2323 and then Present (Parameter_Associations (N))
2324 then
2325 Report_Ambiguous_Argument;
2326 end if;
2327 end if;
2329 Error_Msg_Sloc := Sloc (It.Nam);
2331 -- By default, the error message refers to the candidate
2332 -- interpretation. But if it is a predefined operator, it
2333 -- is implicitly declared at the declaration of the type
2334 -- of the operand. Recover the sloc of that declaration
2335 -- for the error message.
2337 if Nkind (N) in N_Op
2338 and then Scope (It.Nam) = Standard_Standard
2339 and then not Is_Overloaded (Right_Opnd (N))
2340 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2341 Standard_Standard
2342 then
2343 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2345 if Comes_From_Source (Err_Type)
2346 and then Present (Parent (Err_Type))
2347 then
2348 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2349 end if;
2351 elsif Nkind (N) in N_Binary_Op
2352 and then Scope (It.Nam) = Standard_Standard
2353 and then not Is_Overloaded (Left_Opnd (N))
2354 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2355 Standard_Standard
2356 then
2357 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2359 if Comes_From_Source (Err_Type)
2360 and then Present (Parent (Err_Type))
2361 then
2362 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2363 end if;
2365 -- If this is an indirect call, use the subprogram_type
2366 -- in the message, to have a meaningful location. Also
2367 -- indicate if this is an inherited operation, created
2368 -- by a type declaration.
2370 elsif Nkind (N) = N_Function_Call
2371 and then Nkind (Name (N)) = N_Explicit_Dereference
2372 and then Is_Type (It.Nam)
2373 then
2374 Err_Type := It.Nam;
2375 Error_Msg_Sloc :=
2376 Sloc (Associated_Node_For_Itype (Err_Type));
2377 else
2378 Err_Type := Empty;
2379 end if;
2381 if Nkind (N) in N_Op
2382 and then Scope (It.Nam) = Standard_Standard
2383 and then Present (Err_Type)
2384 then
2385 -- Special-case the message for universal_fixed
2386 -- operators, which are not declared with the type
2387 -- of the operand, but appear forever in Standard.
2389 if It.Typ = Universal_Fixed
2390 and then Scope (It.Nam) = Standard_Standard
2391 then
2392 Error_Msg_N
2393 ("\\possible interpretation as universal_fixed "
2394 & "operation (RM 4.5.5 (19))", N);
2395 else
2396 Error_Msg_N
2397 ("\\possible interpretation (predefined)#!", N);
2398 end if;
2400 elsif
2401 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2402 then
2403 Error_Msg_N
2404 ("\\possible interpretation (inherited)#!", N);
2405 else
2406 Error_Msg_N -- CODEFIX
2407 ("\\possible interpretation#!", N);
2408 end if;
2410 end if;
2411 end if;
2413 -- We have a matching interpretation, Expr_Type is the type
2414 -- from this interpretation, and Seen is the entity.
2416 -- For an operator, just set the entity name. The type will be
2417 -- set by the specific operator resolution routine.
2419 if Nkind (N) in N_Op then
2420 Set_Entity (N, Seen);
2421 Generate_Reference (Seen, N);
2423 elsif Nkind (N) = N_Case_Expression then
2424 Set_Etype (N, Expr_Type);
2426 elsif Nkind (N) = N_Character_Literal then
2427 Set_Etype (N, Expr_Type);
2429 elsif Nkind (N) = N_If_Expression then
2430 Set_Etype (N, Expr_Type);
2432 -- AI05-0139-2: Expression is overloaded because type has
2433 -- implicit dereference. If type matches context, no implicit
2434 -- dereference is involved.
2436 elsif Has_Implicit_Dereference (Expr_Type) then
2437 Set_Etype (N, Expr_Type);
2438 Set_Is_Overloaded (N, False);
2439 exit Interp_Loop;
2441 elsif Is_Overloaded (N)
2442 and then Present (It.Nam)
2443 and then Ekind (It.Nam) = E_Discriminant
2444 and then Has_Implicit_Dereference (It.Nam)
2445 then
2446 -- If the node is a general indexing, the dereference is
2447 -- is inserted when resolving the rewritten form, else
2448 -- insert it now.
2450 if Nkind (N) /= N_Indexed_Component
2451 or else No (Generalized_Indexing (N))
2452 then
2453 Build_Explicit_Dereference (N, It.Nam);
2454 end if;
2456 -- For an explicit dereference, attribute reference, range,
2457 -- short-circuit form (which is not an operator node), or call
2458 -- with a name that is an explicit dereference, there is
2459 -- nothing to be done at this point.
2461 elsif Nkind_In (N, N_Explicit_Dereference,
2462 N_Attribute_Reference,
2463 N_And_Then,
2464 N_Indexed_Component,
2465 N_Or_Else,
2466 N_Range,
2467 N_Selected_Component,
2468 N_Slice)
2469 or else Nkind (Name (N)) = N_Explicit_Dereference
2470 then
2471 null;
2473 -- For procedure or function calls, set the type of the name,
2474 -- and also the entity pointer for the prefix.
2476 elsif Nkind (N) in N_Subprogram_Call
2477 and then Is_Entity_Name (Name (N))
2478 then
2479 Set_Etype (Name (N), Expr_Type);
2480 Set_Entity (Name (N), Seen);
2481 Generate_Reference (Seen, Name (N));
2483 elsif Nkind (N) = N_Function_Call
2484 and then Nkind (Name (N)) = N_Selected_Component
2485 then
2486 Set_Etype (Name (N), Expr_Type);
2487 Set_Entity (Selector_Name (Name (N)), Seen);
2488 Generate_Reference (Seen, Selector_Name (Name (N)));
2490 -- For all other cases, just set the type of the Name
2492 else
2493 Set_Etype (Name (N), Expr_Type);
2494 end if;
2496 end if;
2498 <<Continue>>
2500 -- Move to next interpretation
2502 exit Interp_Loop when No (It.Typ);
2504 Get_Next_Interp (I, It);
2505 end loop Interp_Loop;
2506 end if;
2508 -- At this stage Found indicates whether or not an acceptable
2509 -- interpretation exists. If not, then we have an error, except that if
2510 -- the context is Any_Type as a result of some other error, then we
2511 -- suppress the error report.
2513 if not Found then
2514 if Typ /= Any_Type then
2516 -- If type we are looking for is Void, then this is the procedure
2517 -- call case, and the error is simply that what we gave is not a
2518 -- procedure name (we think of procedure calls as expressions with
2519 -- types internally, but the user doesn't think of them this way).
2521 if Typ = Standard_Void_Type then
2523 -- Special case message if function used as a procedure
2525 if Nkind (N) = N_Procedure_Call_Statement
2526 and then Is_Entity_Name (Name (N))
2527 and then Ekind (Entity (Name (N))) = E_Function
2528 then
2529 Error_Msg_NE
2530 ("cannot use function & in a procedure call",
2531 Name (N), Entity (Name (N)));
2533 -- Otherwise give general message (not clear what cases this
2534 -- covers, but no harm in providing for them).
2536 else
2537 Error_Msg_N ("expect procedure name in procedure call", N);
2538 end if;
2540 Found := True;
2542 -- Otherwise we do have a subexpression with the wrong type
2544 -- Check for the case of an allocator which uses an access type
2545 -- instead of the designated type. This is a common error and we
2546 -- specialize the message, posting an error on the operand of the
2547 -- allocator, complaining that we expected the designated type of
2548 -- the allocator.
2550 elsif Nkind (N) = N_Allocator
2551 and then Is_Access_Type (Typ)
2552 and then Is_Access_Type (Etype (N))
2553 and then Designated_Type (Etype (N)) = Typ
2554 then
2555 Wrong_Type (Expression (N), Designated_Type (Typ));
2556 Found := True;
2558 -- Check for view mismatch on Null in instances, for which the
2559 -- view-swapping mechanism has no identifier.
2561 elsif (In_Instance or else In_Inlined_Body)
2562 and then (Nkind (N) = N_Null)
2563 and then Is_Private_Type (Typ)
2564 and then Is_Access_Type (Full_View (Typ))
2565 then
2566 Resolve (N, Full_View (Typ));
2567 Set_Etype (N, Typ);
2568 Ghost_Mode := Save_Ghost_Mode;
2569 return;
2571 -- Check for an aggregate. Sometimes we can get bogus aggregates
2572 -- from misuse of parentheses, and we are about to complain about
2573 -- the aggregate without even looking inside it.
2575 -- Instead, if we have an aggregate of type Any_Composite, then
2576 -- analyze and resolve the component fields, and then only issue
2577 -- another message if we get no errors doing this (otherwise
2578 -- assume that the errors in the aggregate caused the problem).
2580 elsif Nkind (N) = N_Aggregate
2581 and then Etype (N) = Any_Composite
2582 then
2583 -- Disable expansion in any case. If there is a type mismatch
2584 -- it may be fatal to try to expand the aggregate. The flag
2585 -- would otherwise be set to false when the error is posted.
2587 Expander_Active := False;
2589 declare
2590 procedure Check_Aggr (Aggr : Node_Id);
2591 -- Check one aggregate, and set Found to True if we have a
2592 -- definite error in any of its elements
2594 procedure Check_Elmt (Aelmt : Node_Id);
2595 -- Check one element of aggregate and set Found to True if
2596 -- we definitely have an error in the element.
2598 ----------------
2599 -- Check_Aggr --
2600 ----------------
2602 procedure Check_Aggr (Aggr : Node_Id) is
2603 Elmt : Node_Id;
2605 begin
2606 if Present (Expressions (Aggr)) then
2607 Elmt := First (Expressions (Aggr));
2608 while Present (Elmt) loop
2609 Check_Elmt (Elmt);
2610 Next (Elmt);
2611 end loop;
2612 end if;
2614 if Present (Component_Associations (Aggr)) then
2615 Elmt := First (Component_Associations (Aggr));
2616 while Present (Elmt) loop
2618 -- If this is a default-initialized component, then
2619 -- there is nothing to check. The box will be
2620 -- replaced by the appropriate call during late
2621 -- expansion.
2623 if not Box_Present (Elmt) then
2624 Check_Elmt (Expression (Elmt));
2625 end if;
2627 Next (Elmt);
2628 end loop;
2629 end if;
2630 end Check_Aggr;
2632 ----------------
2633 -- Check_Elmt --
2634 ----------------
2636 procedure Check_Elmt (Aelmt : Node_Id) is
2637 begin
2638 -- If we have a nested aggregate, go inside it (to
2639 -- attempt a naked analyze-resolve of the aggregate can
2640 -- cause undesirable cascaded errors). Do not resolve
2641 -- expression if it needs a type from context, as for
2642 -- integer * fixed expression.
2644 if Nkind (Aelmt) = N_Aggregate then
2645 Check_Aggr (Aelmt);
2647 else
2648 Analyze (Aelmt);
2650 if not Is_Overloaded (Aelmt)
2651 and then Etype (Aelmt) /= Any_Fixed
2652 then
2653 Resolve (Aelmt);
2654 end if;
2656 if Etype (Aelmt) = Any_Type then
2657 Found := True;
2658 end if;
2659 end if;
2660 end Check_Elmt;
2662 begin
2663 Check_Aggr (N);
2664 end;
2665 end if;
2667 -- Looks like we have a type error, but check for special case
2668 -- of Address wanted, integer found, with the configuration pragma
2669 -- Allow_Integer_Address active. If we have this case, introduce
2670 -- an unchecked conversion to allow the integer expression to be
2671 -- treated as an Address. The reverse case of integer wanted,
2672 -- Address found, is treated in an analogous manner.
2674 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2675 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2676 Analyze_And_Resolve (N, Typ);
2677 Ghost_Mode := Save_Ghost_Mode;
2678 return;
2679 end if;
2681 -- That special Allow_Integer_Address check did not appply, so we
2682 -- have a real type error. If an error message was issued already,
2683 -- Found got reset to True, so if it's still False, issue standard
2684 -- Wrong_Type message.
2686 if not Found then
2687 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2688 declare
2689 Subp_Name : Node_Id;
2691 begin
2692 if Is_Entity_Name (Name (N)) then
2693 Subp_Name := Name (N);
2695 elsif Nkind (Name (N)) = N_Selected_Component then
2697 -- Protected operation: retrieve operation name
2699 Subp_Name := Selector_Name (Name (N));
2701 else
2702 raise Program_Error;
2703 end if;
2705 Error_Msg_Node_2 := Typ;
2706 Error_Msg_NE
2707 ("no visible interpretation of& "
2708 & "matches expected type&", N, Subp_Name);
2709 end;
2711 if All_Errors_Mode then
2712 declare
2713 Index : Interp_Index;
2714 It : Interp;
2716 begin
2717 Error_Msg_N ("\\possible interpretations:", N);
2719 Get_First_Interp (Name (N), Index, It);
2720 while Present (It.Nam) loop
2721 Error_Msg_Sloc := Sloc (It.Nam);
2722 Error_Msg_Node_2 := It.Nam;
2723 Error_Msg_NE
2724 ("\\ type& for & declared#", N, It.Typ);
2725 Get_Next_Interp (Index, It);
2726 end loop;
2727 end;
2729 else
2730 Error_Msg_N ("\use -gnatf for details", N);
2731 end if;
2733 else
2734 Wrong_Type (N, Typ);
2735 end if;
2736 end if;
2737 end if;
2739 Resolution_Failed;
2740 Ghost_Mode := Save_Ghost_Mode;
2741 return;
2743 -- Test if we have more than one interpretation for the context
2745 elsif Ambiguous then
2746 Resolution_Failed;
2747 Ghost_Mode := Save_Ghost_Mode;
2748 return;
2750 -- Only one intepretation
2752 else
2753 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2754 -- the "+" on T is abstract, and the operands are of universal type,
2755 -- the above code will have (incorrectly) resolved the "+" to the
2756 -- universal one in Standard. Therefore check for this case and give
2757 -- an error. We can't do this earlier, because it would cause legal
2758 -- cases to get errors (when some other type has an abstract "+").
2760 if Ada_Version >= Ada_2005
2761 and then Nkind (N) in N_Op
2762 and then Is_Overloaded (N)
2763 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2764 then
2765 Get_First_Interp (N, I, It);
2766 while Present (It.Typ) loop
2767 if Present (It.Abstract_Op) and then
2768 Etype (It.Abstract_Op) = Typ
2769 then
2770 Error_Msg_NE
2771 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2772 return;
2773 end if;
2775 Get_Next_Interp (I, It);
2776 end loop;
2777 end if;
2779 -- Here we have an acceptable interpretation for the context
2781 -- Propagate type information and normalize tree for various
2782 -- predefined operations. If the context only imposes a class of
2783 -- types, rather than a specific type, propagate the actual type
2784 -- downward.
2786 if Typ = Any_Integer or else
2787 Typ = Any_Boolean or else
2788 Typ = Any_Modular or else
2789 Typ = Any_Real or else
2790 Typ = Any_Discrete
2791 then
2792 Ctx_Type := Expr_Type;
2794 -- Any_Fixed is legal in a real context only if a specific fixed-
2795 -- point type is imposed. If Norman Cohen can be confused by this,
2796 -- it deserves a separate message.
2798 if Typ = Any_Real
2799 and then Expr_Type = Any_Fixed
2800 then
2801 Error_Msg_N ("illegal context for mixed mode operation", N);
2802 Set_Etype (N, Universal_Real);
2803 Ctx_Type := Universal_Real;
2804 end if;
2805 end if;
2807 -- A user-defined operator is transformed into a function call at
2808 -- this point, so that further processing knows that operators are
2809 -- really operators (i.e. are predefined operators). User-defined
2810 -- operators that are intrinsic are just renamings of the predefined
2811 -- ones, and need not be turned into calls either, but if they rename
2812 -- a different operator, we must transform the node accordingly.
2813 -- Instantiations of Unchecked_Conversion are intrinsic but are
2814 -- treated as functions, even if given an operator designator.
2816 if Nkind (N) in N_Op
2817 and then Present (Entity (N))
2818 and then Ekind (Entity (N)) /= E_Operator
2819 then
2821 if not Is_Predefined_Op (Entity (N)) then
2822 Rewrite_Operator_As_Call (N, Entity (N));
2824 elsif Present (Alias (Entity (N)))
2825 and then
2826 Nkind (Parent (Parent (Entity (N)))) =
2827 N_Subprogram_Renaming_Declaration
2828 then
2829 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2831 -- If the node is rewritten, it will be fully resolved in
2832 -- Rewrite_Renamed_Operator.
2834 if Analyzed (N) then
2835 Ghost_Mode := Save_Ghost_Mode;
2836 return;
2837 end if;
2838 end if;
2839 end if;
2841 case N_Subexpr'(Nkind (N)) is
2843 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2845 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2847 when N_Short_Circuit
2848 => Resolve_Short_Circuit (N, Ctx_Type);
2850 when N_Attribute_Reference
2851 => Resolve_Attribute (N, Ctx_Type);
2853 when N_Case_Expression
2854 => Resolve_Case_Expression (N, Ctx_Type);
2856 when N_Character_Literal
2857 => Resolve_Character_Literal (N, Ctx_Type);
2859 when N_Expanded_Name
2860 => Resolve_Entity_Name (N, Ctx_Type);
2862 when N_Explicit_Dereference
2863 => Resolve_Explicit_Dereference (N, Ctx_Type);
2865 when N_Expression_With_Actions
2866 => Resolve_Expression_With_Actions (N, Ctx_Type);
2868 when N_Extension_Aggregate
2869 => Resolve_Extension_Aggregate (N, Ctx_Type);
2871 when N_Function_Call
2872 => Resolve_Call (N, Ctx_Type);
2874 when N_Identifier
2875 => Resolve_Entity_Name (N, Ctx_Type);
2877 when N_If_Expression
2878 => Resolve_If_Expression (N, Ctx_Type);
2880 when N_Indexed_Component
2881 => Resolve_Indexed_Component (N, Ctx_Type);
2883 when N_Integer_Literal
2884 => Resolve_Integer_Literal (N, Ctx_Type);
2886 when N_Membership_Test
2887 => Resolve_Membership_Op (N, Ctx_Type);
2889 when N_Null => Resolve_Null (N, Ctx_Type);
2891 when N_Op_And | N_Op_Or | N_Op_Xor
2892 => Resolve_Logical_Op (N, Ctx_Type);
2894 when N_Op_Eq | N_Op_Ne
2895 => Resolve_Equality_Op (N, Ctx_Type);
2897 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2898 => Resolve_Comparison_Op (N, Ctx_Type);
2900 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2902 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2903 N_Op_Divide | N_Op_Mod | N_Op_Rem
2905 => Resolve_Arithmetic_Op (N, Ctx_Type);
2907 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2909 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2911 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2912 => Resolve_Unary_Op (N, Ctx_Type);
2914 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2916 when N_Procedure_Call_Statement
2917 => Resolve_Call (N, Ctx_Type);
2919 when N_Operator_Symbol
2920 => Resolve_Operator_Symbol (N, Ctx_Type);
2922 when N_Qualified_Expression
2923 => Resolve_Qualified_Expression (N, Ctx_Type);
2925 -- Why is the following null, needs a comment ???
2927 when N_Quantified_Expression
2928 => null;
2930 when N_Raise_Expression
2931 => Resolve_Raise_Expression (N, Ctx_Type);
2933 when N_Raise_xxx_Error
2934 => Set_Etype (N, Ctx_Type);
2936 when N_Range => Resolve_Range (N, Ctx_Type);
2938 when N_Real_Literal
2939 => Resolve_Real_Literal (N, Ctx_Type);
2941 when N_Reference => Resolve_Reference (N, Ctx_Type);
2943 when N_Selected_Component
2944 => Resolve_Selected_Component (N, Ctx_Type);
2946 when N_Slice => Resolve_Slice (N, Ctx_Type);
2948 when N_String_Literal
2949 => Resolve_String_Literal (N, Ctx_Type);
2951 when N_Type_Conversion
2952 => Resolve_Type_Conversion (N, Ctx_Type);
2954 when N_Unchecked_Expression =>
2955 Resolve_Unchecked_Expression (N, Ctx_Type);
2957 when N_Unchecked_Type_Conversion =>
2958 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2959 end case;
2961 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2962 -- expression of an anonymous access type that occurs in the context
2963 -- of a named general access type, except when the expression is that
2964 -- of a membership test. This ensures proper legality checking in
2965 -- terms of allowed conversions (expressions that would be illegal to
2966 -- convert implicitly are allowed in membership tests).
2968 if Ada_Version >= Ada_2012
2969 and then Ekind (Ctx_Type) = E_General_Access_Type
2970 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2971 and then Nkind (Parent (N)) not in N_Membership_Test
2972 then
2973 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2974 Analyze_And_Resolve (N, Ctx_Type);
2975 end if;
2977 -- If the subexpression was replaced by a non-subexpression, then
2978 -- all we do is to expand it. The only legitimate case we know of
2979 -- is converting procedure call statement to entry call statements,
2980 -- but there may be others, so we are making this test general.
2982 if Nkind (N) not in N_Subexpr then
2983 Debug_A_Exit ("resolving ", N, " (done)");
2984 Expand (N);
2985 Ghost_Mode := Save_Ghost_Mode;
2986 return;
2987 end if;
2989 -- The expression is definitely NOT overloaded at this point, so
2990 -- we reset the Is_Overloaded flag to avoid any confusion when
2991 -- reanalyzing the node.
2993 Set_Is_Overloaded (N, False);
2995 -- Freeze expression type, entity if it is a name, and designated
2996 -- type if it is an allocator (RM 13.14(10,11,13)).
2998 -- Now that the resolution of the type of the node is complete, and
2999 -- we did not detect an error, we can expand this node. We skip the
3000 -- expand call if we are in a default expression, see section
3001 -- "Handling of Default Expressions" in Sem spec.
3003 Debug_A_Exit ("resolving ", N, " (done)");
3005 -- We unconditionally freeze the expression, even if we are in
3006 -- default expression mode (the Freeze_Expression routine tests this
3007 -- flag and only freezes static types if it is set).
3009 -- Ada 2012 (AI05-177): The declaration of an expression function
3010 -- does not cause freezing, but we never reach here in that case.
3011 -- Here we are resolving the corresponding expanded body, so we do
3012 -- need to perform normal freezing.
3014 Freeze_Expression (N);
3016 -- Now we can do the expansion
3018 Expand (N);
3019 end if;
3021 Ghost_Mode := Save_Ghost_Mode;
3022 end Resolve;
3024 -------------
3025 -- Resolve --
3026 -------------
3028 -- Version with check(s) suppressed
3030 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3031 begin
3032 if Suppress = All_Checks then
3033 declare
3034 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3035 begin
3036 Scope_Suppress.Suppress := (others => True);
3037 Resolve (N, Typ);
3038 Scope_Suppress.Suppress := Sva;
3039 end;
3041 else
3042 declare
3043 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3044 begin
3045 Scope_Suppress.Suppress (Suppress) := True;
3046 Resolve (N, Typ);
3047 Scope_Suppress.Suppress (Suppress) := Svg;
3048 end;
3049 end if;
3050 end Resolve;
3052 -------------
3053 -- Resolve --
3054 -------------
3056 -- Version with implicit type
3058 procedure Resolve (N : Node_Id) is
3059 begin
3060 Resolve (N, Etype (N));
3061 end Resolve;
3063 ---------------------
3064 -- Resolve_Actuals --
3065 ---------------------
3067 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3068 Loc : constant Source_Ptr := Sloc (N);
3069 A : Node_Id;
3070 A_Id : Entity_Id;
3071 A_Typ : Entity_Id;
3072 F : Entity_Id;
3073 F_Typ : Entity_Id;
3074 Prev : Node_Id := Empty;
3075 Orig_A : Node_Id;
3076 Real_F : Entity_Id;
3078 Real_Subp : Entity_Id;
3079 -- If the subprogram being called is an inherited operation for
3080 -- a formal derived type in an instance, Real_Subp is the subprogram
3081 -- that will be called. It may have different formal names than the
3082 -- operation of the formal in the generic, so after actual is resolved
3083 -- the name of the actual in a named association must carry the name
3084 -- of the actual of the subprogram being called.
3086 procedure Check_Aliased_Parameter;
3087 -- Check rules on aliased parameters and related accessibility rules
3088 -- in (RM 3.10.2 (10.2-10.4)).
3090 procedure Check_Argument_Order;
3091 -- Performs a check for the case where the actuals are all simple
3092 -- identifiers that correspond to the formal names, but in the wrong
3093 -- order, which is considered suspicious and cause for a warning.
3095 procedure Check_Prefixed_Call;
3096 -- If the original node is an overloaded call in prefix notation,
3097 -- insert an 'Access or a dereference as needed over the first actual.
3098 -- Try_Object_Operation has already verified that there is a valid
3099 -- interpretation, but the form of the actual can only be determined
3100 -- once the primitive operation is identified.
3102 procedure Insert_Default;
3103 -- If the actual is missing in a call, insert in the actuals list
3104 -- an instance of the default expression. The insertion is always
3105 -- a named association.
3107 procedure Property_Error
3108 (Var : Node_Id;
3109 Var_Id : Entity_Id;
3110 Prop_Nam : Name_Id);
3111 -- Emit an error concerning variable Var with entity Var_Id that has
3112 -- enabled property Prop_Nam when it acts as an actual parameter in a
3113 -- call and the corresponding formal parameter is of mode IN.
3115 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3116 -- Check whether T1 and T2, or their full views, are derived from a
3117 -- common type. Used to enforce the restrictions on array conversions
3118 -- of AI95-00246.
3120 function Static_Concatenation (N : Node_Id) return Boolean;
3121 -- Predicate to determine whether an actual that is a concatenation
3122 -- will be evaluated statically and does not need a transient scope.
3123 -- This must be determined before the actual is resolved and expanded
3124 -- because if needed the transient scope must be introduced earlier.
3126 -----------------------------
3127 -- Check_Aliased_Parameter --
3128 -----------------------------
3130 procedure Check_Aliased_Parameter is
3131 Nominal_Subt : Entity_Id;
3133 begin
3134 if Is_Aliased (F) then
3135 if Is_Tagged_Type (A_Typ) then
3136 null;
3138 elsif Is_Aliased_View (A) then
3139 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3140 Nominal_Subt := Base_Type (A_Typ);
3141 else
3142 Nominal_Subt := A_Typ;
3143 end if;
3145 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3146 null;
3148 -- In a generic body assume the worst for generic formals:
3149 -- they can have a constrained partial view (AI05-041).
3151 elsif Has_Discriminants (F_Typ)
3152 and then not Is_Constrained (F_Typ)
3153 and then not Has_Constrained_Partial_View (F_Typ)
3154 and then not Is_Generic_Type (F_Typ)
3155 then
3156 null;
3158 else
3159 Error_Msg_NE ("untagged actual does not match "
3160 & "aliased formal&", A, F);
3161 end if;
3163 else
3164 Error_Msg_NE ("actual for aliased formal& must be "
3165 & "aliased object", A, F);
3166 end if;
3168 if Ekind (Nam) = E_Procedure then
3169 null;
3171 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3172 if Nkind (Parent (N)) = N_Type_Conversion
3173 and then Type_Access_Level (Etype (Parent (N))) <
3174 Object_Access_Level (A)
3175 then
3176 Error_Msg_N ("aliased actual has wrong accessibility", A);
3177 end if;
3179 elsif Nkind (Parent (N)) = N_Qualified_Expression
3180 and then Nkind (Parent (Parent (N))) = N_Allocator
3181 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3182 Object_Access_Level (A)
3183 then
3184 Error_Msg_N
3185 ("aliased actual in allocator has wrong accessibility", A);
3186 end if;
3187 end if;
3188 end Check_Aliased_Parameter;
3190 --------------------------
3191 -- Check_Argument_Order --
3192 --------------------------
3194 procedure Check_Argument_Order is
3195 begin
3196 -- Nothing to do if no parameters, or original node is neither a
3197 -- function call nor a procedure call statement (happens in the
3198 -- operator-transformed-to-function call case), or the call does
3199 -- not come from source, or this warning is off.
3201 if not Warn_On_Parameter_Order
3202 or else No (Parameter_Associations (N))
3203 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3204 or else not Comes_From_Source (N)
3205 then
3206 return;
3207 end if;
3209 declare
3210 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3212 begin
3213 -- Nothing to do if only one parameter
3215 if Nargs < 2 then
3216 return;
3217 end if;
3219 -- Here if at least two arguments
3221 declare
3222 Actuals : array (1 .. Nargs) of Node_Id;
3223 Actual : Node_Id;
3224 Formal : Node_Id;
3226 Wrong_Order : Boolean := False;
3227 -- Set True if an out of order case is found
3229 begin
3230 -- Collect identifier names of actuals, fail if any actual is
3231 -- not a simple identifier, and record max length of name.
3233 Actual := First (Parameter_Associations (N));
3234 for J in Actuals'Range loop
3235 if Nkind (Actual) /= N_Identifier then
3236 return;
3237 else
3238 Actuals (J) := Actual;
3239 Next (Actual);
3240 end if;
3241 end loop;
3243 -- If we got this far, all actuals are identifiers and the list
3244 -- of their names is stored in the Actuals array.
3246 Formal := First_Formal (Nam);
3247 for J in Actuals'Range loop
3249 -- If we ran out of formals, that's odd, probably an error
3250 -- which will be detected elsewhere, but abandon the search.
3252 if No (Formal) then
3253 return;
3254 end if;
3256 -- If name matches and is in order OK
3258 if Chars (Formal) = Chars (Actuals (J)) then
3259 null;
3261 else
3262 -- If no match, see if it is elsewhere in list and if so
3263 -- flag potential wrong order if type is compatible.
3265 for K in Actuals'Range loop
3266 if Chars (Formal) = Chars (Actuals (K))
3267 and then
3268 Has_Compatible_Type (Actuals (K), Etype (Formal))
3269 then
3270 Wrong_Order := True;
3271 goto Continue;
3272 end if;
3273 end loop;
3275 -- No match
3277 return;
3278 end if;
3280 <<Continue>> Next_Formal (Formal);
3281 end loop;
3283 -- If Formals left over, also probably an error, skip warning
3285 if Present (Formal) then
3286 return;
3287 end if;
3289 -- Here we give the warning if something was out of order
3291 if Wrong_Order then
3292 Error_Msg_N
3293 ("?P?actuals for this call may be in wrong order", N);
3294 end if;
3295 end;
3296 end;
3297 end Check_Argument_Order;
3299 -------------------------
3300 -- Check_Prefixed_Call --
3301 -------------------------
3303 procedure Check_Prefixed_Call is
3304 Act : constant Node_Id := First_Actual (N);
3305 A_Type : constant Entity_Id := Etype (Act);
3306 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3307 Orig : constant Node_Id := Original_Node (N);
3308 New_A : Node_Id;
3310 begin
3311 -- Check whether the call is a prefixed call, with or without
3312 -- additional actuals.
3314 if Nkind (Orig) = N_Selected_Component
3315 or else
3316 (Nkind (Orig) = N_Indexed_Component
3317 and then Nkind (Prefix (Orig)) = N_Selected_Component
3318 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3319 and then Is_Entity_Name (Act)
3320 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3321 then
3322 if Is_Access_Type (A_Type)
3323 and then not Is_Access_Type (F_Type)
3324 then
3325 -- Introduce dereference on object in prefix
3327 New_A :=
3328 Make_Explicit_Dereference (Sloc (Act),
3329 Prefix => Relocate_Node (Act));
3330 Rewrite (Act, New_A);
3331 Analyze (Act);
3333 elsif Is_Access_Type (F_Type)
3334 and then not Is_Access_Type (A_Type)
3335 then
3336 -- Introduce an implicit 'Access in prefix
3338 if not Is_Aliased_View (Act) then
3339 Error_Msg_NE
3340 ("object in prefixed call to& must be aliased "
3341 & "(RM 4.1.3 (13 1/2))",
3342 Prefix (Act), Nam);
3343 end if;
3345 Rewrite (Act,
3346 Make_Attribute_Reference (Loc,
3347 Attribute_Name => Name_Access,
3348 Prefix => Relocate_Node (Act)));
3349 end if;
3351 Analyze (Act);
3352 end if;
3353 end Check_Prefixed_Call;
3355 --------------------
3356 -- Insert_Default --
3357 --------------------
3359 procedure Insert_Default is
3360 Actval : Node_Id;
3361 Assoc : Node_Id;
3363 begin
3364 -- Missing argument in call, nothing to insert
3366 if No (Default_Value (F)) then
3367 return;
3369 else
3370 -- Note that we do a full New_Copy_Tree, so that any associated
3371 -- Itypes are properly copied. This may not be needed any more,
3372 -- but it does no harm as a safety measure. Defaults of a generic
3373 -- formal may be out of bounds of the corresponding actual (see
3374 -- cc1311b) and an additional check may be required.
3376 Actval :=
3377 New_Copy_Tree
3378 (Default_Value (F),
3379 New_Scope => Current_Scope,
3380 New_Sloc => Loc);
3382 if Is_Concurrent_Type (Scope (Nam))
3383 and then Has_Discriminants (Scope (Nam))
3384 then
3385 Replace_Actual_Discriminants (N, Actval);
3386 end if;
3388 if Is_Overloadable (Nam)
3389 and then Present (Alias (Nam))
3390 then
3391 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3392 and then not Is_Tagged_Type (Etype (F))
3393 then
3394 -- If default is a real literal, do not introduce a
3395 -- conversion whose effect may depend on the run-time
3396 -- size of universal real.
3398 if Nkind (Actval) = N_Real_Literal then
3399 Set_Etype (Actval, Base_Type (Etype (F)));
3400 else
3401 Actval := Unchecked_Convert_To (Etype (F), Actval);
3402 end if;
3403 end if;
3405 if Is_Scalar_Type (Etype (F)) then
3406 Enable_Range_Check (Actval);
3407 end if;
3409 Set_Parent (Actval, N);
3411 -- Resolve aggregates with their base type, to avoid scope
3412 -- anomalies: the subtype was first built in the subprogram
3413 -- declaration, and the current call may be nested.
3415 if Nkind (Actval) = N_Aggregate then
3416 Analyze_And_Resolve (Actval, Etype (F));
3417 else
3418 Analyze_And_Resolve (Actval, Etype (Actval));
3419 end if;
3421 else
3422 Set_Parent (Actval, N);
3424 -- See note above concerning aggregates
3426 if Nkind (Actval) = N_Aggregate
3427 and then Has_Discriminants (Etype (Actval))
3428 then
3429 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3431 -- Resolve entities with their own type, which may differ from
3432 -- the type of a reference in a generic context (the view
3433 -- swapping mechanism did not anticipate the re-analysis of
3434 -- default values in calls).
3436 elsif Is_Entity_Name (Actval) then
3437 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3439 else
3440 Analyze_And_Resolve (Actval, Etype (Actval));
3441 end if;
3442 end if;
3444 -- If default is a tag indeterminate function call, propagate tag
3445 -- to obtain proper dispatching.
3447 if Is_Controlling_Formal (F)
3448 and then Nkind (Default_Value (F)) = N_Function_Call
3449 then
3450 Set_Is_Controlling_Actual (Actval);
3451 end if;
3453 end if;
3455 -- If the default expression raises constraint error, then just
3456 -- silently replace it with an N_Raise_Constraint_Error node, since
3457 -- we already gave the warning on the subprogram spec. If node is
3458 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3459 -- the warnings removal machinery.
3461 if Raises_Constraint_Error (Actval)
3462 and then Nkind (Actval) /= N_Raise_Constraint_Error
3463 then
3464 Rewrite (Actval,
3465 Make_Raise_Constraint_Error (Loc,
3466 Reason => CE_Range_Check_Failed));
3467 Set_Raises_Constraint_Error (Actval);
3468 Set_Etype (Actval, Etype (F));
3469 end if;
3471 Assoc :=
3472 Make_Parameter_Association (Loc,
3473 Explicit_Actual_Parameter => Actval,
3474 Selector_Name => Make_Identifier (Loc, Chars (F)));
3476 -- Case of insertion is first named actual
3478 if No (Prev) or else
3479 Nkind (Parent (Prev)) /= N_Parameter_Association
3480 then
3481 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3482 Set_First_Named_Actual (N, Actval);
3484 if No (Prev) then
3485 if No (Parameter_Associations (N)) then
3486 Set_Parameter_Associations (N, New_List (Assoc));
3487 else
3488 Append (Assoc, Parameter_Associations (N));
3489 end if;
3491 else
3492 Insert_After (Prev, Assoc);
3493 end if;
3495 -- Case of insertion is not first named actual
3497 else
3498 Set_Next_Named_Actual
3499 (Assoc, Next_Named_Actual (Parent (Prev)));
3500 Set_Next_Named_Actual (Parent (Prev), Actval);
3501 Append (Assoc, Parameter_Associations (N));
3502 end if;
3504 Mark_Rewrite_Insertion (Assoc);
3505 Mark_Rewrite_Insertion (Actval);
3507 Prev := Actval;
3508 end Insert_Default;
3510 --------------------
3511 -- Property_Error --
3512 --------------------
3514 procedure Property_Error
3515 (Var : Node_Id;
3516 Var_Id : Entity_Id;
3517 Prop_Nam : Name_Id)
3519 begin
3520 Error_Msg_Name_1 := Prop_Nam;
3521 Error_Msg_NE
3522 ("external variable & with enabled property % cannot appear as "
3523 & "actual in procedure call (SPARK RM 7.1.3(11))", Var, Var_Id);
3524 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3525 end Property_Error;
3527 -------------------
3528 -- Same_Ancestor --
3529 -------------------
3531 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3532 FT1 : Entity_Id := T1;
3533 FT2 : Entity_Id := T2;
3535 begin
3536 if Is_Private_Type (T1)
3537 and then Present (Full_View (T1))
3538 then
3539 FT1 := Full_View (T1);
3540 end if;
3542 if Is_Private_Type (T2)
3543 and then Present (Full_View (T2))
3544 then
3545 FT2 := Full_View (T2);
3546 end if;
3548 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3549 end Same_Ancestor;
3551 --------------------------
3552 -- Static_Concatenation --
3553 --------------------------
3555 function Static_Concatenation (N : Node_Id) return Boolean is
3556 begin
3557 case Nkind (N) is
3558 when N_String_Literal =>
3559 return True;
3561 when N_Op_Concat =>
3563 -- Concatenation is static when both operands are static and
3564 -- the concatenation operator is a predefined one.
3566 return Scope (Entity (N)) = Standard_Standard
3567 and then
3568 Static_Concatenation (Left_Opnd (N))
3569 and then
3570 Static_Concatenation (Right_Opnd (N));
3572 when others =>
3573 if Is_Entity_Name (N) then
3574 declare
3575 Ent : constant Entity_Id := Entity (N);
3576 begin
3577 return Ekind (Ent) = E_Constant
3578 and then Present (Constant_Value (Ent))
3579 and then
3580 Is_OK_Static_Expression (Constant_Value (Ent));
3581 end;
3583 else
3584 return False;
3585 end if;
3586 end case;
3587 end Static_Concatenation;
3589 -- Start of processing for Resolve_Actuals
3591 begin
3592 Check_Argument_Order;
3594 if Is_Overloadable (Nam)
3595 and then Is_Inherited_Operation (Nam)
3596 and then In_Instance
3597 and then Present (Alias (Nam))
3598 and then Present (Overridden_Operation (Alias (Nam)))
3599 then
3600 Real_Subp := Alias (Nam);
3601 else
3602 Real_Subp := Empty;
3603 end if;
3605 if Present (First_Actual (N)) then
3606 Check_Prefixed_Call;
3607 end if;
3609 A := First_Actual (N);
3610 F := First_Formal (Nam);
3612 if Present (Real_Subp) then
3613 Real_F := First_Formal (Real_Subp);
3614 end if;
3616 while Present (F) loop
3617 if No (A) and then Needs_No_Actuals (Nam) then
3618 null;
3620 -- If we have an error in any actual or formal, indicated by a type
3621 -- of Any_Type, then abandon resolution attempt, and set result type
3622 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3623 -- type is imposed from context.
3625 elsif (Present (A) and then Etype (A) = Any_Type)
3626 or else Etype (F) = Any_Type
3627 then
3628 if Nkind (A) /= N_Raise_Expression then
3629 Set_Etype (N, Any_Type);
3630 return;
3631 end if;
3632 end if;
3634 -- Case where actual is present
3636 -- If the actual is an entity, generate a reference to it now. We
3637 -- do this before the actual is resolved, because a formal of some
3638 -- protected subprogram, or a task discriminant, will be rewritten
3639 -- during expansion, and the source entity reference may be lost.
3641 if Present (A)
3642 and then Is_Entity_Name (A)
3643 and then Comes_From_Source (N)
3644 then
3645 Orig_A := Entity (A);
3647 if Present (Orig_A) then
3648 if Is_Formal (Orig_A)
3649 and then Ekind (F) /= E_In_Parameter
3650 then
3651 Generate_Reference (Orig_A, A, 'm');
3653 elsif not Is_Overloaded (A) then
3654 if Ekind (F) /= E_Out_Parameter then
3655 Generate_Reference (Orig_A, A);
3657 -- RM 6.4.1(12): For an out parameter that is passed by
3658 -- copy, the formal parameter object is created, and:
3660 -- * For an access type, the formal parameter is initialized
3661 -- from the value of the actual, without checking that the
3662 -- value satisfies any constraint, any predicate, or any
3663 -- exclusion of the null value.
3665 -- * For a scalar type that has the Default_Value aspect
3666 -- specified, the formal parameter is initialized from the
3667 -- value of the actual, without checking that the value
3668 -- satisfies any constraint or any predicate.
3669 -- I do not understand why this case is included??? this is
3670 -- not a case where an OUT parameter is treated as IN OUT.
3672 -- * For a composite type with discriminants or that has
3673 -- implicit initial values for any subcomponents, the
3674 -- behavior is as for an in out parameter passed by copy.
3676 -- Hence for these cases we generate the read reference now
3677 -- (the write reference will be generated later by
3678 -- Note_Possible_Modification).
3680 elsif Is_By_Copy_Type (Etype (F))
3681 and then
3682 (Is_Access_Type (Etype (F))
3683 or else
3684 (Is_Scalar_Type (Etype (F))
3685 and then
3686 Present (Default_Aspect_Value (Etype (F))))
3687 or else
3688 (Is_Composite_Type (Etype (F))
3689 and then (Has_Discriminants (Etype (F))
3690 or else Is_Partially_Initialized_Type
3691 (Etype (F)))))
3692 then
3693 Generate_Reference (Orig_A, A);
3694 end if;
3695 end if;
3696 end if;
3697 end if;
3699 if Present (A)
3700 and then (Nkind (Parent (A)) /= N_Parameter_Association
3701 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3702 then
3703 -- If style checking mode on, check match of formal name
3705 if Style_Check then
3706 if Nkind (Parent (A)) = N_Parameter_Association then
3707 Check_Identifier (Selector_Name (Parent (A)), F);
3708 end if;
3709 end if;
3711 -- If the formal is Out or In_Out, do not resolve and expand the
3712 -- conversion, because it is subsequently expanded into explicit
3713 -- temporaries and assignments. However, the object of the
3714 -- conversion can be resolved. An exception is the case of tagged
3715 -- type conversion with a class-wide actual. In that case we want
3716 -- the tag check to occur and no temporary will be needed (no
3717 -- representation change can occur) and the parameter is passed by
3718 -- reference, so we go ahead and resolve the type conversion.
3719 -- Another exception is the case of reference to component or
3720 -- subcomponent of a bit-packed array, in which case we want to
3721 -- defer expansion to the point the in and out assignments are
3722 -- performed.
3724 if Ekind (F) /= E_In_Parameter
3725 and then Nkind (A) = N_Type_Conversion
3726 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3727 then
3728 if Ekind (F) = E_In_Out_Parameter
3729 and then Is_Array_Type (Etype (F))
3730 then
3731 -- In a view conversion, the conversion must be legal in
3732 -- both directions, and thus both component types must be
3733 -- aliased, or neither (4.6 (8)).
3735 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3736 -- the privacy requirement should not apply to generic
3737 -- types, and should be checked in an instance. ARG query
3738 -- is in order ???
3740 if Has_Aliased_Components (Etype (Expression (A))) /=
3741 Has_Aliased_Components (Etype (F))
3742 then
3743 Error_Msg_N
3744 ("both component types in a view conversion must be"
3745 & " aliased, or neither", A);
3747 -- Comment here??? what set of cases???
3749 elsif
3750 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3751 then
3752 -- Check view conv between unrelated by ref array types
3754 if Is_By_Reference_Type (Etype (F))
3755 or else Is_By_Reference_Type (Etype (Expression (A)))
3756 then
3757 Error_Msg_N
3758 ("view conversion between unrelated by reference "
3759 & "array types not allowed (\'A'I-00246)", A);
3761 -- In Ada 2005 mode, check view conversion component
3762 -- type cannot be private, tagged, or volatile. Note
3763 -- that we only apply this to source conversions. The
3764 -- generated code can contain conversions which are
3765 -- not subject to this test, and we cannot extract the
3766 -- component type in such cases since it is not present.
3768 elsif Comes_From_Source (A)
3769 and then Ada_Version >= Ada_2005
3770 then
3771 declare
3772 Comp_Type : constant Entity_Id :=
3773 Component_Type
3774 (Etype (Expression (A)));
3775 begin
3776 if (Is_Private_Type (Comp_Type)
3777 and then not Is_Generic_Type (Comp_Type))
3778 or else Is_Tagged_Type (Comp_Type)
3779 or else Is_Volatile (Comp_Type)
3780 then
3781 Error_Msg_N
3782 ("component type of a view conversion cannot"
3783 & " be private, tagged, or volatile"
3784 & " (RM 4.6 (24))",
3785 Expression (A));
3786 end if;
3787 end;
3788 end if;
3789 end if;
3790 end if;
3792 -- Resolve expression if conversion is all OK
3794 if (Conversion_OK (A)
3795 or else Valid_Conversion (A, Etype (A), Expression (A)))
3796 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3797 then
3798 Resolve (Expression (A));
3799 end if;
3801 -- If the actual is a function call that returns a limited
3802 -- unconstrained object that needs finalization, create a
3803 -- transient scope for it, so that it can receive the proper
3804 -- finalization list.
3806 elsif Nkind (A) = N_Function_Call
3807 and then Is_Limited_Record (Etype (F))
3808 and then not Is_Constrained (Etype (F))
3809 and then Expander_Active
3810 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3811 then
3812 Establish_Transient_Scope (A, Sec_Stack => False);
3813 Resolve (A, Etype (F));
3815 -- A small optimization: if one of the actuals is a concatenation
3816 -- create a block around a procedure call to recover stack space.
3817 -- This alleviates stack usage when several procedure calls in
3818 -- the same statement list use concatenation. We do not perform
3819 -- this wrapping for code statements, where the argument is a
3820 -- static string, and we want to preserve warnings involving
3821 -- sequences of such statements.
3823 elsif Nkind (A) = N_Op_Concat
3824 and then Nkind (N) = N_Procedure_Call_Statement
3825 and then Expander_Active
3826 and then
3827 not (Is_Intrinsic_Subprogram (Nam)
3828 and then Chars (Nam) = Name_Asm)
3829 and then not Static_Concatenation (A)
3830 then
3831 Establish_Transient_Scope (A, Sec_Stack => False);
3832 Resolve (A, Etype (F));
3834 else
3835 if Nkind (A) = N_Type_Conversion
3836 and then Is_Array_Type (Etype (F))
3837 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3838 and then
3839 (Is_Limited_Type (Etype (F))
3840 or else Is_Limited_Type (Etype (Expression (A))))
3841 then
3842 Error_Msg_N
3843 ("conversion between unrelated limited array types "
3844 & "not allowed ('A'I-00246)", A);
3846 if Is_Limited_Type (Etype (F)) then
3847 Explain_Limited_Type (Etype (F), A);
3848 end if;
3850 if Is_Limited_Type (Etype (Expression (A))) then
3851 Explain_Limited_Type (Etype (Expression (A)), A);
3852 end if;
3853 end if;
3855 -- (Ada 2005: AI-251): If the actual is an allocator whose
3856 -- directly designated type is a class-wide interface, we build
3857 -- an anonymous access type to use it as the type of the
3858 -- allocator. Later, when the subprogram call is expanded, if
3859 -- the interface has a secondary dispatch table the expander
3860 -- will add a type conversion to force the correct displacement
3861 -- of the pointer.
3863 if Nkind (A) = N_Allocator then
3864 declare
3865 DDT : constant Entity_Id :=
3866 Directly_Designated_Type (Base_Type (Etype (F)));
3868 New_Itype : Entity_Id;
3870 begin
3871 if Is_Class_Wide_Type (DDT)
3872 and then Is_Interface (DDT)
3873 then
3874 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3875 Set_Etype (New_Itype, Etype (A));
3876 Set_Directly_Designated_Type
3877 (New_Itype, Directly_Designated_Type (Etype (A)));
3878 Set_Etype (A, New_Itype);
3879 end if;
3881 -- Ada 2005, AI-162:If the actual is an allocator, the
3882 -- innermost enclosing statement is the master of the
3883 -- created object. This needs to be done with expansion
3884 -- enabled only, otherwise the transient scope will not
3885 -- be removed in the expansion of the wrapped construct.
3887 if (Is_Controlled (DDT) or else Has_Task (DDT))
3888 and then Expander_Active
3889 then
3890 Establish_Transient_Scope (A, Sec_Stack => False);
3891 end if;
3892 end;
3894 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3895 Check_Restriction (No_Access_Parameter_Allocators, A);
3896 end if;
3897 end if;
3899 -- (Ada 2005): The call may be to a primitive operation of a
3900 -- tagged synchronized type, declared outside of the type. In
3901 -- this case the controlling actual must be converted to its
3902 -- corresponding record type, which is the formal type. The
3903 -- actual may be a subtype, either because of a constraint or
3904 -- because it is a generic actual, so use base type to locate
3905 -- concurrent type.
3907 F_Typ := Base_Type (Etype (F));
3909 if Is_Tagged_Type (F_Typ)
3910 and then (Is_Concurrent_Type (F_Typ)
3911 or else Is_Concurrent_Record_Type (F_Typ))
3912 then
3913 -- If the actual is overloaded, look for an interpretation
3914 -- that has a synchronized type.
3916 if not Is_Overloaded (A) then
3917 A_Typ := Base_Type (Etype (A));
3919 else
3920 declare
3921 Index : Interp_Index;
3922 It : Interp;
3924 begin
3925 Get_First_Interp (A, Index, It);
3926 while Present (It.Typ) loop
3927 if Is_Concurrent_Type (It.Typ)
3928 or else Is_Concurrent_Record_Type (It.Typ)
3929 then
3930 A_Typ := Base_Type (It.Typ);
3931 exit;
3932 end if;
3934 Get_Next_Interp (Index, It);
3935 end loop;
3936 end;
3937 end if;
3939 declare
3940 Full_A_Typ : Entity_Id;
3942 begin
3943 if Present (Full_View (A_Typ)) then
3944 Full_A_Typ := Base_Type (Full_View (A_Typ));
3945 else
3946 Full_A_Typ := A_Typ;
3947 end if;
3949 -- Tagged synchronized type (case 1): the actual is a
3950 -- concurrent type.
3952 if Is_Concurrent_Type (A_Typ)
3953 and then Corresponding_Record_Type (A_Typ) = F_Typ
3954 then
3955 Rewrite (A,
3956 Unchecked_Convert_To
3957 (Corresponding_Record_Type (A_Typ), A));
3958 Resolve (A, Etype (F));
3960 -- Tagged synchronized type (case 2): the formal is a
3961 -- concurrent type.
3963 elsif Ekind (Full_A_Typ) = E_Record_Type
3964 and then Present
3965 (Corresponding_Concurrent_Type (Full_A_Typ))
3966 and then Is_Concurrent_Type (F_Typ)
3967 and then Present (Corresponding_Record_Type (F_Typ))
3968 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3969 then
3970 Resolve (A, Corresponding_Record_Type (F_Typ));
3972 -- Common case
3974 else
3975 Resolve (A, Etype (F));
3976 end if;
3977 end;
3979 -- Not a synchronized operation
3981 else
3982 Resolve (A, Etype (F));
3983 end if;
3984 end if;
3986 A_Typ := Etype (A);
3987 F_Typ := Etype (F);
3989 -- An actual cannot be an untagged formal incomplete type
3991 if Ekind (A_Typ) = E_Incomplete_Type
3992 and then not Is_Tagged_Type (A_Typ)
3993 and then Is_Generic_Type (A_Typ)
3994 then
3995 Error_Msg_N
3996 ("invalid use of untagged formal incomplete type", A);
3997 end if;
3999 if Comes_From_Source (Original_Node (N))
4000 and then Nkind_In (Original_Node (N), N_Function_Call,
4001 N_Procedure_Call_Statement)
4002 then
4003 -- In formal mode, check that actual parameters matching
4004 -- formals of tagged types are objects (or ancestor type
4005 -- conversions of objects), not general expressions.
4007 if Is_Actual_Tagged_Parameter (A) then
4008 if Is_SPARK_05_Object_Reference (A) then
4009 null;
4011 elsif Nkind (A) = N_Type_Conversion then
4012 declare
4013 Operand : constant Node_Id := Expression (A);
4014 Operand_Typ : constant Entity_Id := Etype (Operand);
4015 Target_Typ : constant Entity_Id := A_Typ;
4017 begin
4018 if not Is_SPARK_05_Object_Reference (Operand) then
4019 Check_SPARK_05_Restriction
4020 ("object required", Operand);
4022 -- In formal mode, the only view conversions are those
4023 -- involving ancestor conversion of an extended type.
4025 elsif not
4026 (Is_Tagged_Type (Target_Typ)
4027 and then not Is_Class_Wide_Type (Target_Typ)
4028 and then Is_Tagged_Type (Operand_Typ)
4029 and then not Is_Class_Wide_Type (Operand_Typ)
4030 and then Is_Ancestor (Target_Typ, Operand_Typ))
4031 then
4032 if Ekind_In
4033 (F, E_Out_Parameter, E_In_Out_Parameter)
4034 then
4035 Check_SPARK_05_Restriction
4036 ("ancestor conversion is the only permitted "
4037 & "view conversion", A);
4038 else
4039 Check_SPARK_05_Restriction
4040 ("ancestor conversion required", A);
4041 end if;
4043 else
4044 null;
4045 end if;
4046 end;
4048 else
4049 Check_SPARK_05_Restriction ("object required", A);
4050 end if;
4052 -- In formal mode, the only view conversions are those
4053 -- involving ancestor conversion of an extended type.
4055 elsif Nkind (A) = N_Type_Conversion
4056 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4057 then
4058 Check_SPARK_05_Restriction
4059 ("ancestor conversion is the only permitted view "
4060 & "conversion", A);
4061 end if;
4062 end if;
4064 -- has warnings suppressed, then we reset Never_Set_In_Source for
4065 -- the calling entity. The reason for this is to catch cases like
4066 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4067 -- uses trickery to modify an IN parameter.
4069 if Ekind (F) = E_In_Parameter
4070 and then Is_Entity_Name (A)
4071 and then Present (Entity (A))
4072 and then Ekind (Entity (A)) = E_Variable
4073 and then Has_Warnings_Off (F_Typ)
4074 then
4075 Set_Never_Set_In_Source (Entity (A), False);
4076 end if;
4078 -- Perform error checks for IN and IN OUT parameters
4080 if Ekind (F) /= E_Out_Parameter then
4082 -- Check unset reference. For scalar parameters, it is clearly
4083 -- wrong to pass an uninitialized value as either an IN or
4084 -- IN-OUT parameter. For composites, it is also clearly an
4085 -- error to pass a completely uninitialized value as an IN
4086 -- parameter, but the case of IN OUT is trickier. We prefer
4087 -- not to give a warning here. For example, suppose there is
4088 -- a routine that sets some component of a record to False.
4089 -- It is perfectly reasonable to make this IN-OUT and allow
4090 -- either initialized or uninitialized records to be passed
4091 -- in this case.
4093 -- For partially initialized composite values, we also avoid
4094 -- warnings, since it is quite likely that we are passing a
4095 -- partially initialized value and only the initialized fields
4096 -- will in fact be read in the subprogram.
4098 if Is_Scalar_Type (A_Typ)
4099 or else (Ekind (F) = E_In_Parameter
4100 and then not Is_Partially_Initialized_Type (A_Typ))
4101 then
4102 Check_Unset_Reference (A);
4103 end if;
4105 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4106 -- actual to a nested call, since this constitutes a reading of
4107 -- the parameter, which is not allowed.
4109 if Ada_Version = Ada_83
4110 and then Is_Entity_Name (A)
4111 and then Ekind (Entity (A)) = E_Out_Parameter
4112 then
4113 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4114 end if;
4115 end if;
4117 -- Case of OUT or IN OUT parameter
4119 if Ekind (F) /= E_In_Parameter then
4121 -- For an Out parameter, check for useless assignment. Note
4122 -- that we can't set Last_Assignment this early, because we may
4123 -- kill current values in Resolve_Call, and that call would
4124 -- clobber the Last_Assignment field.
4126 -- Note: call Warn_On_Useless_Assignment before doing the check
4127 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4128 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4129 -- reflects the last assignment, not this one.
4131 if Ekind (F) = E_Out_Parameter then
4132 if Warn_On_Modified_As_Out_Parameter (F)
4133 and then Is_Entity_Name (A)
4134 and then Present (Entity (A))
4135 and then Comes_From_Source (N)
4136 then
4137 Warn_On_Useless_Assignment (Entity (A), A);
4138 end if;
4139 end if;
4141 -- Validate the form of the actual. Note that the call to
4142 -- Is_OK_Variable_For_Out_Formal generates the required
4143 -- reference in this case.
4145 -- A call to an initialization procedure for an aggregate
4146 -- component may initialize a nested component of a constant
4147 -- designated object. In this context the object is variable.
4149 if not Is_OK_Variable_For_Out_Formal (A)
4150 and then not Is_Init_Proc (Nam)
4151 then
4152 Error_Msg_NE ("actual for& must be a variable", A, F);
4154 if Is_Subprogram (Current_Scope)
4155 and then
4156 (Is_Invariant_Procedure (Current_Scope)
4157 or else Is_Predicate_Function (Current_Scope))
4158 then
4159 Error_Msg_N
4160 ("function used in predicate cannot "
4161 & "modify its argument", F);
4162 end if;
4163 end if;
4165 -- What's the following about???
4167 if Is_Entity_Name (A) then
4168 Kill_Checks (Entity (A));
4169 else
4170 Kill_All_Checks;
4171 end if;
4172 end if;
4174 if Etype (A) = Any_Type then
4175 Set_Etype (N, Any_Type);
4176 return;
4177 end if;
4179 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4181 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4183 -- Apply predicate tests except in certain special cases. Note
4184 -- that it might be more consistent to apply these only when
4185 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4186 -- for the outbound predicate tests ???
4188 if Predicate_Tests_On_Arguments (Nam) then
4189 Apply_Predicate_Check (A, F_Typ);
4190 end if;
4192 -- Apply required constraint checks
4194 -- Gigi looks at the check flag and uses the appropriate types.
4195 -- For now since one flag is used there is an optimization
4196 -- which might not be done in the IN OUT case since Gigi does
4197 -- not do any analysis. More thought required about this ???
4199 -- In fact is this comment obsolete??? doesn't the expander now
4200 -- generate all these tests anyway???
4202 if Is_Scalar_Type (Etype (A)) then
4203 Apply_Scalar_Range_Check (A, F_Typ);
4205 elsif Is_Array_Type (Etype (A)) then
4206 Apply_Length_Check (A, F_Typ);
4208 elsif Is_Record_Type (F_Typ)
4209 and then Has_Discriminants (F_Typ)
4210 and then Is_Constrained (F_Typ)
4211 and then (not Is_Derived_Type (F_Typ)
4212 or else Comes_From_Source (Nam))
4213 then
4214 Apply_Discriminant_Check (A, F_Typ);
4216 -- For view conversions of a discriminated object, apply
4217 -- check to object itself, the conversion alreay has the
4218 -- proper type.
4220 if Nkind (A) = N_Type_Conversion
4221 and then Is_Constrained (Etype (Expression (A)))
4222 then
4223 Apply_Discriminant_Check (Expression (A), F_Typ);
4224 end if;
4226 elsif Is_Access_Type (F_Typ)
4227 and then Is_Array_Type (Designated_Type (F_Typ))
4228 and then Is_Constrained (Designated_Type (F_Typ))
4229 then
4230 Apply_Length_Check (A, F_Typ);
4232 elsif Is_Access_Type (F_Typ)
4233 and then Has_Discriminants (Designated_Type (F_Typ))
4234 and then Is_Constrained (Designated_Type (F_Typ))
4235 then
4236 Apply_Discriminant_Check (A, F_Typ);
4238 else
4239 Apply_Range_Check (A, F_Typ);
4240 end if;
4242 -- Ada 2005 (AI-231): Note that the controlling parameter case
4243 -- already existed in Ada 95, which is partially checked
4244 -- elsewhere (see Checks), and we don't want the warning
4245 -- message to differ.
4247 if Is_Access_Type (F_Typ)
4248 and then Can_Never_Be_Null (F_Typ)
4249 and then Known_Null (A)
4250 then
4251 if Is_Controlling_Formal (F) then
4252 Apply_Compile_Time_Constraint_Error
4253 (N => A,
4254 Msg => "null value not allowed here??",
4255 Reason => CE_Access_Check_Failed);
4257 elsif Ada_Version >= Ada_2005 then
4258 Apply_Compile_Time_Constraint_Error
4259 (N => A,
4260 Msg => "(Ada 2005) null not allowed in "
4261 & "null-excluding formal??",
4262 Reason => CE_Null_Not_Allowed);
4263 end if;
4264 end if;
4265 end if;
4267 -- Checks for OUT parameters and IN OUT parameters
4269 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4271 -- If there is a type conversion, to make sure the return value
4272 -- meets the constraints of the variable before the conversion.
4274 if Nkind (A) = N_Type_Conversion then
4275 if Is_Scalar_Type (A_Typ) then
4276 Apply_Scalar_Range_Check
4277 (Expression (A), Etype (Expression (A)), A_Typ);
4278 else
4279 Apply_Range_Check
4280 (Expression (A), Etype (Expression (A)), A_Typ);
4281 end if;
4283 -- If no conversion apply scalar range checks and length checks
4284 -- base on the subtype of the actual (NOT that of the formal).
4286 else
4287 if Is_Scalar_Type (F_Typ) then
4288 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4289 elsif Is_Array_Type (F_Typ)
4290 and then Ekind (F) = E_Out_Parameter
4291 then
4292 Apply_Length_Check (A, F_Typ);
4293 else
4294 Apply_Range_Check (A, A_Typ, F_Typ);
4295 end if;
4296 end if;
4298 -- Note: we do not apply the predicate checks for the case of
4299 -- OUT and IN OUT parameters. They are instead applied in the
4300 -- Expand_Actuals routine in Exp_Ch6.
4301 end if;
4303 -- An actual associated with an access parameter is implicitly
4304 -- converted to the anonymous access type of the formal and must
4305 -- satisfy the legality checks for access conversions.
4307 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4308 if not Valid_Conversion (A, F_Typ, A) then
4309 Error_Msg_N
4310 ("invalid implicit conversion for access parameter", A);
4311 end if;
4313 -- If the actual is an access selected component of a variable,
4314 -- the call may modify its designated object. It is reasonable
4315 -- to treat this as a potential modification of the enclosing
4316 -- record, to prevent spurious warnings that it should be
4317 -- declared as a constant, because intuitively programmers
4318 -- regard the designated subcomponent as part of the record.
4320 if Nkind (A) = N_Selected_Component
4321 and then Is_Entity_Name (Prefix (A))
4322 and then not Is_Constant_Object (Entity (Prefix (A)))
4323 then
4324 Note_Possible_Modification (A, Sure => False);
4325 end if;
4326 end if;
4328 -- Check bad case of atomic/volatile argument (RM C.6(12))
4330 if Is_By_Reference_Type (Etype (F))
4331 and then Comes_From_Source (N)
4332 then
4333 if Is_Atomic_Object (A)
4334 and then not Is_Atomic (Etype (F))
4335 then
4336 Error_Msg_NE
4337 ("cannot pass atomic argument to non-atomic formal&",
4338 A, F);
4340 elsif Is_Volatile_Object (A)
4341 and then not Is_Volatile (Etype (F))
4342 then
4343 Error_Msg_NE
4344 ("cannot pass volatile argument to non-volatile formal&",
4345 A, F);
4346 end if;
4347 end if;
4349 -- Check that subprograms don't have improper controlling
4350 -- arguments (RM 3.9.2 (9)).
4352 -- A primitive operation may have an access parameter of an
4353 -- incomplete tagged type, but a dispatching call is illegal
4354 -- if the type is still incomplete.
4356 if Is_Controlling_Formal (F) then
4357 Set_Is_Controlling_Actual (A);
4359 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4360 declare
4361 Desig : constant Entity_Id := Designated_Type (Etype (F));
4362 begin
4363 if Ekind (Desig) = E_Incomplete_Type
4364 and then No (Full_View (Desig))
4365 and then No (Non_Limited_View (Desig))
4366 then
4367 Error_Msg_NE
4368 ("premature use of incomplete type& "
4369 & "in dispatching call", A, Desig);
4370 end if;
4371 end;
4372 end if;
4374 elsif Nkind (A) = N_Explicit_Dereference then
4375 Validate_Remote_Access_To_Class_Wide_Type (A);
4376 end if;
4378 -- Apply legality rule 3.9.2 (9/1)
4380 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4381 and then not Is_Class_Wide_Type (F_Typ)
4382 and then not Is_Controlling_Formal (F)
4383 and then not In_Instance
4384 then
4385 Error_Msg_N ("class-wide argument not allowed here!", A);
4387 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4388 Error_Msg_Node_2 := F_Typ;
4389 Error_Msg_NE
4390 ("& is not a dispatching operation of &!", A, Nam);
4391 end if;
4393 -- Apply the checks described in 3.10.2(27): if the context is a
4394 -- specific access-to-object, the actual cannot be class-wide.
4395 -- Use base type to exclude access_to_subprogram cases.
4397 elsif Is_Access_Type (A_Typ)
4398 and then Is_Access_Type (F_Typ)
4399 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4400 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4401 or else (Nkind (A) = N_Attribute_Reference
4402 and then
4403 Is_Class_Wide_Type (Etype (Prefix (A)))))
4404 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4405 and then not Is_Controlling_Formal (F)
4407 -- Disable these checks for call to imported C++ subprograms
4409 and then not
4410 (Is_Entity_Name (Name (N))
4411 and then Is_Imported (Entity (Name (N)))
4412 and then Convention (Entity (Name (N))) = Convention_CPP)
4413 then
4414 Error_Msg_N
4415 ("access to class-wide argument not allowed here!", A);
4417 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4418 Error_Msg_Node_2 := Designated_Type (F_Typ);
4419 Error_Msg_NE
4420 ("& is not a dispatching operation of &!", A, Nam);
4421 end if;
4422 end if;
4424 Check_Aliased_Parameter;
4426 Eval_Actual (A);
4428 -- If it is a named association, treat the selector_name as a
4429 -- proper identifier, and mark the corresponding entity.
4431 if Nkind (Parent (A)) = N_Parameter_Association
4433 -- Ignore reference in SPARK mode, as it refers to an entity not
4434 -- in scope at the point of reference, so the reference should
4435 -- be ignored for computing effects of subprograms.
4437 and then not GNATprove_Mode
4438 then
4439 -- If subprogram is overridden, use name of formal that
4440 -- is being called.
4442 if Present (Real_Subp) then
4443 Set_Entity (Selector_Name (Parent (A)), Real_F);
4444 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4446 else
4447 Set_Entity (Selector_Name (Parent (A)), F);
4448 Generate_Reference (F, Selector_Name (Parent (A)));
4449 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4450 Generate_Reference (F_Typ, N, ' ');
4451 end if;
4452 end if;
4454 Prev := A;
4456 if Ekind (F) /= E_Out_Parameter then
4457 Check_Unset_Reference (A);
4458 end if;
4460 -- The following checks are only relevant when SPARK_Mode is on as
4461 -- they are not standard Ada legality rule. Internally generated
4462 -- temporaries are ignored.
4464 if SPARK_Mode = On
4465 and then Comes_From_Source (A)
4466 and then Is_Effectively_Volatile_Object (A)
4467 then
4468 -- An effectively volatile object may act as an actual when the
4469 -- corresponding formal is of a non-scalar effectively volatile
4470 -- type (SPARK RM 7.1.3(12)).
4472 if not Is_Scalar_Type (Etype (F))
4473 and then Is_Effectively_Volatile (Etype (F))
4474 then
4475 null;
4477 -- An effectively volatile object may act as an actual in a
4478 -- call to an instance of Unchecked_Conversion.
4479 -- (SPARK RM 7.1.3(12)).
4481 elsif Is_Unchecked_Conversion_Instance (Nam) then
4482 null;
4484 else
4485 Error_Msg_N
4486 ("volatile object cannot act as actual in a call (SPARK "
4487 & "RM 7.1.3(12))", A);
4488 end if;
4490 -- Detect an external variable with an enabled property that
4491 -- does not match the mode of the corresponding formal in a
4492 -- procedure call. Functions are not considered because they
4493 -- cannot have effectively volatile formal parameters in the
4494 -- first place.
4496 if Ekind (Nam) = E_Procedure
4497 and then Ekind (F) = E_In_Parameter
4498 and then Is_Entity_Name (A)
4499 and then Present (Entity (A))
4500 and then Ekind (Entity (A)) = E_Variable
4501 then
4502 A_Id := Entity (A);
4504 if Async_Readers_Enabled (A_Id) then
4505 Property_Error (A, A_Id, Name_Async_Readers);
4506 elsif Effective_Reads_Enabled (A_Id) then
4507 Property_Error (A, A_Id, Name_Effective_Reads);
4508 elsif Effective_Writes_Enabled (A_Id) then
4509 Property_Error (A, A_Id, Name_Effective_Writes);
4510 end if;
4511 end if;
4512 end if;
4514 -- A formal parameter of a specific tagged type whose related
4515 -- subprogram is subject to pragma Extensions_Visible with value
4516 -- "False" cannot act as an actual in a subprogram with value
4517 -- "True" (SPARK RM 6.1.7(3)).
4519 if Is_EVF_Expression (A)
4520 and then Extensions_Visible_Status (Nam) =
4521 Extensions_Visible_True
4522 then
4523 Error_Msg_N
4524 ("formal parameter with Extensions_Visible False cannot act "
4525 & "as actual parameter", A);
4526 Error_Msg_NE
4527 ("\subprogram & has Extensions_Visible True", A, Nam);
4528 end if;
4530 -- The actual parameter of a Ghost subprogram whose formal is of
4531 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(13)).
4533 if Comes_From_Source (Nam)
4534 and then Is_Ghost_Entity (Nam)
4535 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4536 and then Is_Entity_Name (A)
4537 and then Present (Entity (A))
4538 and then not Is_Ghost_Entity (Entity (A))
4539 then
4540 Error_Msg_NE
4541 ("non-ghost variable & cannot appear as actual in call to "
4542 & "ghost procedure", A, Entity (A));
4544 if Ekind (F) = E_In_Out_Parameter then
4545 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4546 else
4547 Error_Msg_N ("\corresponding formal has mode OUT", A);
4548 end if;
4549 end if;
4551 Next_Actual (A);
4553 -- Case where actual is not present
4555 else
4556 Insert_Default;
4557 end if;
4559 Next_Formal (F);
4561 if Present (Real_Subp) then
4562 Next_Formal (Real_F);
4563 end if;
4564 end loop;
4565 end Resolve_Actuals;
4567 -----------------------
4568 -- Resolve_Allocator --
4569 -----------------------
4571 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4572 Desig_T : constant Entity_Id := Designated_Type (Typ);
4573 E : constant Node_Id := Expression (N);
4574 Subtyp : Entity_Id;
4575 Discrim : Entity_Id;
4576 Constr : Node_Id;
4577 Aggr : Node_Id;
4578 Assoc : Node_Id := Empty;
4579 Disc_Exp : Node_Id;
4581 procedure Check_Allocator_Discrim_Accessibility
4582 (Disc_Exp : Node_Id;
4583 Alloc_Typ : Entity_Id);
4584 -- Check that accessibility level associated with an access discriminant
4585 -- initialized in an allocator by the expression Disc_Exp is not deeper
4586 -- than the level of the allocator type Alloc_Typ. An error message is
4587 -- issued if this condition is violated. Specialized checks are done for
4588 -- the cases of a constraint expression which is an access attribute or
4589 -- an access discriminant.
4591 function In_Dispatching_Context return Boolean;
4592 -- If the allocator is an actual in a call, it is allowed to be class-
4593 -- wide when the context is not because it is a controlling actual.
4595 -------------------------------------------
4596 -- Check_Allocator_Discrim_Accessibility --
4597 -------------------------------------------
4599 procedure Check_Allocator_Discrim_Accessibility
4600 (Disc_Exp : Node_Id;
4601 Alloc_Typ : Entity_Id)
4603 begin
4604 if Type_Access_Level (Etype (Disc_Exp)) >
4605 Deepest_Type_Access_Level (Alloc_Typ)
4606 then
4607 Error_Msg_N
4608 ("operand type has deeper level than allocator type", Disc_Exp);
4610 -- When the expression is an Access attribute the level of the prefix
4611 -- object must not be deeper than that of the allocator's type.
4613 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4614 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4615 Attribute_Access
4616 and then Object_Access_Level (Prefix (Disc_Exp)) >
4617 Deepest_Type_Access_Level (Alloc_Typ)
4618 then
4619 Error_Msg_N
4620 ("prefix of attribute has deeper level than allocator type",
4621 Disc_Exp);
4623 -- When the expression is an access discriminant the check is against
4624 -- the level of the prefix object.
4626 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4627 and then Nkind (Disc_Exp) = N_Selected_Component
4628 and then Object_Access_Level (Prefix (Disc_Exp)) >
4629 Deepest_Type_Access_Level (Alloc_Typ)
4630 then
4631 Error_Msg_N
4632 ("access discriminant has deeper level than allocator type",
4633 Disc_Exp);
4635 -- All other cases are legal
4637 else
4638 null;
4639 end if;
4640 end Check_Allocator_Discrim_Accessibility;
4642 ----------------------------
4643 -- In_Dispatching_Context --
4644 ----------------------------
4646 function In_Dispatching_Context return Boolean is
4647 Par : constant Node_Id := Parent (N);
4649 begin
4650 return Nkind (Par) in N_Subprogram_Call
4651 and then Is_Entity_Name (Name (Par))
4652 and then Is_Dispatching_Operation (Entity (Name (Par)));
4653 end In_Dispatching_Context;
4655 -- Start of processing for Resolve_Allocator
4657 begin
4658 -- Replace general access with specific type
4660 if Ekind (Etype (N)) = E_Allocator_Type then
4661 Set_Etype (N, Base_Type (Typ));
4662 end if;
4664 if Is_Abstract_Type (Typ) then
4665 Error_Msg_N ("type of allocator cannot be abstract", N);
4666 end if;
4668 -- For qualified expression, resolve the expression using the given
4669 -- subtype (nothing to do for type mark, subtype indication)
4671 if Nkind (E) = N_Qualified_Expression then
4672 if Is_Class_Wide_Type (Etype (E))
4673 and then not Is_Class_Wide_Type (Desig_T)
4674 and then not In_Dispatching_Context
4675 then
4676 Error_Msg_N
4677 ("class-wide allocator not allowed for this access type", N);
4678 end if;
4680 Resolve (Expression (E), Etype (E));
4681 Check_Non_Static_Context (Expression (E));
4682 Check_Unset_Reference (Expression (E));
4684 -- Allocators generated by the build-in-place expansion mechanism
4685 -- are explicitly marked as coming from source but do not need to be
4686 -- checked for limited initialization. To exclude this case, ensure
4687 -- that the parent of the allocator is a source node.
4689 if Is_Limited_Type (Etype (E))
4690 and then Comes_From_Source (N)
4691 and then Comes_From_Source (Parent (N))
4692 and then not In_Instance_Body
4693 then
4694 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4695 Error_Msg_N ("initialization not allowed for limited types", N);
4696 Explain_Limited_Type (Etype (E), N);
4697 end if;
4698 end if;
4700 -- A qualified expression requires an exact match of the type.
4701 -- Class-wide matching is not allowed.
4703 if (Is_Class_Wide_Type (Etype (Expression (E)))
4704 or else Is_Class_Wide_Type (Etype (E)))
4705 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4706 then
4707 Wrong_Type (Expression (E), Etype (E));
4708 end if;
4710 -- Calls to build-in-place functions are not currently supported in
4711 -- allocators for access types associated with a simple storage pool.
4712 -- Supporting such allocators may require passing additional implicit
4713 -- parameters to build-in-place functions (or a significant revision
4714 -- of the current b-i-p implementation to unify the handling for
4715 -- multiple kinds of storage pools). ???
4717 if Is_Limited_View (Desig_T)
4718 and then Nkind (Expression (E)) = N_Function_Call
4719 then
4720 declare
4721 Pool : constant Entity_Id :=
4722 Associated_Storage_Pool (Root_Type (Typ));
4723 begin
4724 if Present (Pool)
4725 and then
4726 Present (Get_Rep_Pragma
4727 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4728 then
4729 Error_Msg_N
4730 ("limited function calls not yet supported in simple "
4731 & "storage pool allocators", Expression (E));
4732 end if;
4733 end;
4734 end if;
4736 -- A special accessibility check is needed for allocators that
4737 -- constrain access discriminants. The level of the type of the
4738 -- expression used to constrain an access discriminant cannot be
4739 -- deeper than the type of the allocator (in contrast to access
4740 -- parameters, where the level of the actual can be arbitrary).
4742 -- We can't use Valid_Conversion to perform this check because in
4743 -- general the type of the allocator is unrelated to the type of
4744 -- the access discriminant.
4746 if Ekind (Typ) /= E_Anonymous_Access_Type
4747 or else Is_Local_Anonymous_Access (Typ)
4748 then
4749 Subtyp := Entity (Subtype_Mark (E));
4751 Aggr := Original_Node (Expression (E));
4753 if Has_Discriminants (Subtyp)
4754 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4755 then
4756 Discrim := First_Discriminant (Base_Type (Subtyp));
4758 -- Get the first component expression of the aggregate
4760 if Present (Expressions (Aggr)) then
4761 Disc_Exp := First (Expressions (Aggr));
4763 elsif Present (Component_Associations (Aggr)) then
4764 Assoc := First (Component_Associations (Aggr));
4766 if Present (Assoc) then
4767 Disc_Exp := Expression (Assoc);
4768 else
4769 Disc_Exp := Empty;
4770 end if;
4772 else
4773 Disc_Exp := Empty;
4774 end if;
4776 while Present (Discrim) and then Present (Disc_Exp) loop
4777 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4778 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4779 end if;
4781 Next_Discriminant (Discrim);
4783 if Present (Discrim) then
4784 if Present (Assoc) then
4785 Next (Assoc);
4786 Disc_Exp := Expression (Assoc);
4788 elsif Present (Next (Disc_Exp)) then
4789 Next (Disc_Exp);
4791 else
4792 Assoc := First (Component_Associations (Aggr));
4794 if Present (Assoc) then
4795 Disc_Exp := Expression (Assoc);
4796 else
4797 Disc_Exp := Empty;
4798 end if;
4799 end if;
4800 end if;
4801 end loop;
4802 end if;
4803 end if;
4805 -- For a subtype mark or subtype indication, freeze the subtype
4807 else
4808 Freeze_Expression (E);
4810 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4811 Error_Msg_N
4812 ("initialization required for access-to-constant allocator", N);
4813 end if;
4815 -- A special accessibility check is needed for allocators that
4816 -- constrain access discriminants. The level of the type of the
4817 -- expression used to constrain an access discriminant cannot be
4818 -- deeper than the type of the allocator (in contrast to access
4819 -- parameters, where the level of the actual can be arbitrary).
4820 -- We can't use Valid_Conversion to perform this check because
4821 -- in general the type of the allocator is unrelated to the type
4822 -- of the access discriminant.
4824 if Nkind (Original_Node (E)) = N_Subtype_Indication
4825 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4826 or else Is_Local_Anonymous_Access (Typ))
4827 then
4828 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4830 if Has_Discriminants (Subtyp) then
4831 Discrim := First_Discriminant (Base_Type (Subtyp));
4832 Constr := First (Constraints (Constraint (Original_Node (E))));
4833 while Present (Discrim) and then Present (Constr) loop
4834 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4835 if Nkind (Constr) = N_Discriminant_Association then
4836 Disc_Exp := Original_Node (Expression (Constr));
4837 else
4838 Disc_Exp := Original_Node (Constr);
4839 end if;
4841 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4842 end if;
4844 Next_Discriminant (Discrim);
4845 Next (Constr);
4846 end loop;
4847 end if;
4848 end if;
4849 end if;
4851 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4852 -- check that the level of the type of the created object is not deeper
4853 -- than the level of the allocator's access type, since extensions can
4854 -- now occur at deeper levels than their ancestor types. This is a
4855 -- static accessibility level check; a run-time check is also needed in
4856 -- the case of an initialized allocator with a class-wide argument (see
4857 -- Expand_Allocator_Expression).
4859 if Ada_Version >= Ada_2005
4860 and then Is_Class_Wide_Type (Desig_T)
4861 then
4862 declare
4863 Exp_Typ : Entity_Id;
4865 begin
4866 if Nkind (E) = N_Qualified_Expression then
4867 Exp_Typ := Etype (E);
4868 elsif Nkind (E) = N_Subtype_Indication then
4869 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4870 else
4871 Exp_Typ := Entity (E);
4872 end if;
4874 if Type_Access_Level (Exp_Typ) >
4875 Deepest_Type_Access_Level (Typ)
4876 then
4877 if In_Instance_Body then
4878 Error_Msg_Warn := SPARK_Mode /= On;
4879 Error_Msg_N
4880 ("type in allocator has deeper level than "
4881 & "designated class-wide type<<", E);
4882 Error_Msg_N ("\Program_Error [<<", E);
4883 Rewrite (N,
4884 Make_Raise_Program_Error (Sloc (N),
4885 Reason => PE_Accessibility_Check_Failed));
4886 Set_Etype (N, Typ);
4888 -- Do not apply Ada 2005 accessibility checks on a class-wide
4889 -- allocator if the type given in the allocator is a formal
4890 -- type. A run-time check will be performed in the instance.
4892 elsif not Is_Generic_Type (Exp_Typ) then
4893 Error_Msg_N ("type in allocator has deeper level than "
4894 & "designated class-wide type", E);
4895 end if;
4896 end if;
4897 end;
4898 end if;
4900 -- Check for allocation from an empty storage pool
4902 if No_Pool_Assigned (Typ) then
4903 Error_Msg_N ("allocation from empty storage pool!", N);
4905 -- If the context is an unchecked conversion, as may happen within an
4906 -- inlined subprogram, the allocator is being resolved with its own
4907 -- anonymous type. In that case, if the target type has a specific
4908 -- storage pool, it must be inherited explicitly by the allocator type.
4910 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4911 and then No (Associated_Storage_Pool (Typ))
4912 then
4913 Set_Associated_Storage_Pool
4914 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4915 end if;
4917 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4918 Check_Restriction (No_Anonymous_Allocators, N);
4919 end if;
4921 -- Check that an allocator with task parts isn't for a nested access
4922 -- type when restriction No_Task_Hierarchy applies.
4924 if not Is_Library_Level_Entity (Base_Type (Typ))
4925 and then Has_Task (Base_Type (Desig_T))
4926 then
4927 Check_Restriction (No_Task_Hierarchy, N);
4928 end if;
4930 -- An illegal allocator may be rewritten as a raise Program_Error
4931 -- statement.
4933 if Nkind (N) = N_Allocator then
4935 -- An anonymous access discriminant is the definition of a
4936 -- coextension.
4938 if Ekind (Typ) = E_Anonymous_Access_Type
4939 and then Nkind (Associated_Node_For_Itype (Typ)) =
4940 N_Discriminant_Specification
4941 then
4942 declare
4943 Discr : constant Entity_Id :=
4944 Defining_Identifier (Associated_Node_For_Itype (Typ));
4946 begin
4947 Check_Restriction (No_Coextensions, N);
4949 -- Ada 2012 AI05-0052: If the designated type of the allocator
4950 -- is limited, then the allocator shall not be used to define
4951 -- the value of an access discriminant unless the discriminated
4952 -- type is immutably limited.
4954 if Ada_Version >= Ada_2012
4955 and then Is_Limited_Type (Desig_T)
4956 and then not Is_Limited_View (Scope (Discr))
4957 then
4958 Error_Msg_N
4959 ("only immutably limited types can have anonymous "
4960 & "access discriminants designating a limited type", N);
4961 end if;
4962 end;
4964 -- Avoid marking an allocator as a dynamic coextension if it is
4965 -- within a static construct.
4967 if not Is_Static_Coextension (N) then
4968 Set_Is_Dynamic_Coextension (N);
4969 end if;
4971 -- Cleanup for potential static coextensions
4973 else
4974 Set_Is_Dynamic_Coextension (N, False);
4975 Set_Is_Static_Coextension (N, False);
4976 end if;
4977 end if;
4979 -- Report a simple error: if the designated object is a local task,
4980 -- its body has not been seen yet, and its activation will fail an
4981 -- elaboration check.
4983 if Is_Task_Type (Desig_T)
4984 and then Scope (Base_Type (Desig_T)) = Current_Scope
4985 and then Is_Compilation_Unit (Current_Scope)
4986 and then Ekind (Current_Scope) = E_Package
4987 and then not In_Package_Body (Current_Scope)
4988 then
4989 Error_Msg_Warn := SPARK_Mode /= On;
4990 Error_Msg_N ("cannot activate task before body seen<<", N);
4991 Error_Msg_N ("\Program_Error [<<", N);
4992 end if;
4994 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4995 -- type with a task component on a subpool. This action must raise
4996 -- Program_Error at runtime.
4998 if Ada_Version >= Ada_2012
4999 and then Nkind (N) = N_Allocator
5000 and then Present (Subpool_Handle_Name (N))
5001 and then Has_Task (Desig_T)
5002 then
5003 Error_Msg_Warn := SPARK_Mode /= On;
5004 Error_Msg_N ("cannot allocate task on subpool<<", N);
5005 Error_Msg_N ("\Program_Error [<<", N);
5007 Rewrite (N,
5008 Make_Raise_Program_Error (Sloc (N),
5009 Reason => PE_Explicit_Raise));
5010 Set_Etype (N, Typ);
5011 end if;
5012 end Resolve_Allocator;
5014 ---------------------------
5015 -- Resolve_Arithmetic_Op --
5016 ---------------------------
5018 -- Used for resolving all arithmetic operators except exponentiation
5020 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5021 L : constant Node_Id := Left_Opnd (N);
5022 R : constant Node_Id := Right_Opnd (N);
5023 TL : constant Entity_Id := Base_Type (Etype (L));
5024 TR : constant Entity_Id := Base_Type (Etype (R));
5025 T : Entity_Id;
5026 Rop : Node_Id;
5028 B_Typ : constant Entity_Id := Base_Type (Typ);
5029 -- We do the resolution using the base type, because intermediate values
5030 -- in expressions always are of the base type, not a subtype of it.
5032 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5033 -- Returns True if N is in a context that expects "any real type"
5035 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5036 -- Return True iff given type is Integer or universal real/integer
5038 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5039 -- Choose type of integer literal in fixed-point operation to conform
5040 -- to available fixed-point type. T is the type of the other operand,
5041 -- which is needed to determine the expected type of N.
5043 procedure Set_Operand_Type (N : Node_Id);
5044 -- Set operand type to T if universal
5046 -------------------------------
5047 -- Expected_Type_Is_Any_Real --
5048 -------------------------------
5050 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5051 begin
5052 -- N is the expression after "delta" in a fixed_point_definition;
5053 -- see RM-3.5.9(6):
5055 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5056 N_Decimal_Fixed_Point_Definition,
5058 -- N is one of the bounds in a real_range_specification;
5059 -- see RM-3.5.7(5):
5061 N_Real_Range_Specification,
5063 -- N is the expression of a delta_constraint;
5064 -- see RM-J.3(3):
5066 N_Delta_Constraint);
5067 end Expected_Type_Is_Any_Real;
5069 -----------------------------
5070 -- Is_Integer_Or_Universal --
5071 -----------------------------
5073 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5074 T : Entity_Id;
5075 Index : Interp_Index;
5076 It : Interp;
5078 begin
5079 if not Is_Overloaded (N) then
5080 T := Etype (N);
5081 return Base_Type (T) = Base_Type (Standard_Integer)
5082 or else T = Universal_Integer
5083 or else T = Universal_Real;
5084 else
5085 Get_First_Interp (N, Index, It);
5086 while Present (It.Typ) loop
5087 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5088 or else It.Typ = Universal_Integer
5089 or else It.Typ = Universal_Real
5090 then
5091 return True;
5092 end if;
5094 Get_Next_Interp (Index, It);
5095 end loop;
5096 end if;
5098 return False;
5099 end Is_Integer_Or_Universal;
5101 ----------------------------
5102 -- Set_Mixed_Mode_Operand --
5103 ----------------------------
5105 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5106 Index : Interp_Index;
5107 It : Interp;
5109 begin
5110 if Universal_Interpretation (N) = Universal_Integer then
5112 -- A universal integer literal is resolved as standard integer
5113 -- except in the case of a fixed-point result, where we leave it
5114 -- as universal (to be handled by Exp_Fixd later on)
5116 if Is_Fixed_Point_Type (T) then
5117 Resolve (N, Universal_Integer);
5118 else
5119 Resolve (N, Standard_Integer);
5120 end if;
5122 elsif Universal_Interpretation (N) = Universal_Real
5123 and then (T = Base_Type (Standard_Integer)
5124 or else T = Universal_Integer
5125 or else T = Universal_Real)
5126 then
5127 -- A universal real can appear in a fixed-type context. We resolve
5128 -- the literal with that context, even though this might raise an
5129 -- exception prematurely (the other operand may be zero).
5131 Resolve (N, B_Typ);
5133 elsif Etype (N) = Base_Type (Standard_Integer)
5134 and then T = Universal_Real
5135 and then Is_Overloaded (N)
5136 then
5137 -- Integer arg in mixed-mode operation. Resolve with universal
5138 -- type, in case preference rule must be applied.
5140 Resolve (N, Universal_Integer);
5142 elsif Etype (N) = T
5143 and then B_Typ /= Universal_Fixed
5144 then
5145 -- Not a mixed-mode operation, resolve with context
5147 Resolve (N, B_Typ);
5149 elsif Etype (N) = Any_Fixed then
5151 -- N may itself be a mixed-mode operation, so use context type
5153 Resolve (N, B_Typ);
5155 elsif Is_Fixed_Point_Type (T)
5156 and then B_Typ = Universal_Fixed
5157 and then Is_Overloaded (N)
5158 then
5159 -- Must be (fixed * fixed) operation, operand must have one
5160 -- compatible interpretation.
5162 Resolve (N, Any_Fixed);
5164 elsif Is_Fixed_Point_Type (B_Typ)
5165 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5166 and then Is_Overloaded (N)
5167 then
5168 -- C * F(X) in a fixed context, where C is a real literal or a
5169 -- fixed-point expression. F must have either a fixed type
5170 -- interpretation or an integer interpretation, but not both.
5172 Get_First_Interp (N, Index, It);
5173 while Present (It.Typ) loop
5174 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5175 if Analyzed (N) then
5176 Error_Msg_N ("ambiguous operand in fixed operation", N);
5177 else
5178 Resolve (N, Standard_Integer);
5179 end if;
5181 elsif Is_Fixed_Point_Type (It.Typ) then
5182 if Analyzed (N) then
5183 Error_Msg_N ("ambiguous operand in fixed operation", N);
5184 else
5185 Resolve (N, It.Typ);
5186 end if;
5187 end if;
5189 Get_Next_Interp (Index, It);
5190 end loop;
5192 -- Reanalyze the literal with the fixed type of the context. If
5193 -- context is Universal_Fixed, we are within a conversion, leave
5194 -- the literal as a universal real because there is no usable
5195 -- fixed type, and the target of the conversion plays no role in
5196 -- the resolution.
5198 declare
5199 Op2 : Node_Id;
5200 T2 : Entity_Id;
5202 begin
5203 if N = L then
5204 Op2 := R;
5205 else
5206 Op2 := L;
5207 end if;
5209 if B_Typ = Universal_Fixed
5210 and then Nkind (Op2) = N_Real_Literal
5211 then
5212 T2 := Universal_Real;
5213 else
5214 T2 := B_Typ;
5215 end if;
5217 Set_Analyzed (Op2, False);
5218 Resolve (Op2, T2);
5219 end;
5221 else
5222 Resolve (N);
5223 end if;
5224 end Set_Mixed_Mode_Operand;
5226 ----------------------
5227 -- Set_Operand_Type --
5228 ----------------------
5230 procedure Set_Operand_Type (N : Node_Id) is
5231 begin
5232 if Etype (N) = Universal_Integer
5233 or else Etype (N) = Universal_Real
5234 then
5235 Set_Etype (N, T);
5236 end if;
5237 end Set_Operand_Type;
5239 -- Start of processing for Resolve_Arithmetic_Op
5241 begin
5242 if Comes_From_Source (N)
5243 and then Ekind (Entity (N)) = E_Function
5244 and then Is_Imported (Entity (N))
5245 and then Is_Intrinsic_Subprogram (Entity (N))
5246 then
5247 Resolve_Intrinsic_Operator (N, Typ);
5248 return;
5250 -- Special-case for mixed-mode universal expressions or fixed point type
5251 -- operation: each argument is resolved separately. The same treatment
5252 -- is required if one of the operands of a fixed point operation is
5253 -- universal real, since in this case we don't do a conversion to a
5254 -- specific fixed-point type (instead the expander handles the case).
5256 -- Set the type of the node to its universal interpretation because
5257 -- legality checks on an exponentiation operand need the context.
5259 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5260 and then Present (Universal_Interpretation (L))
5261 and then Present (Universal_Interpretation (R))
5262 then
5263 Set_Etype (N, B_Typ);
5264 Resolve (L, Universal_Interpretation (L));
5265 Resolve (R, Universal_Interpretation (R));
5267 elsif (B_Typ = Universal_Real
5268 or else Etype (N) = Universal_Fixed
5269 or else (Etype (N) = Any_Fixed
5270 and then Is_Fixed_Point_Type (B_Typ))
5271 or else (Is_Fixed_Point_Type (B_Typ)
5272 and then (Is_Integer_Or_Universal (L)
5273 or else
5274 Is_Integer_Or_Universal (R))))
5275 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5276 then
5277 if TL = Universal_Integer or else TR = Universal_Integer then
5278 Check_For_Visible_Operator (N, B_Typ);
5279 end if;
5281 -- If context is a fixed type and one operand is integer, the other
5282 -- is resolved with the type of the context.
5284 if Is_Fixed_Point_Type (B_Typ)
5285 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5286 or else TL = Universal_Integer)
5287 then
5288 Resolve (R, B_Typ);
5289 Resolve (L, TL);
5291 elsif Is_Fixed_Point_Type (B_Typ)
5292 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5293 or else TR = Universal_Integer)
5294 then
5295 Resolve (L, B_Typ);
5296 Resolve (R, TR);
5298 else
5299 Set_Mixed_Mode_Operand (L, TR);
5300 Set_Mixed_Mode_Operand (R, TL);
5301 end if;
5303 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5304 -- multiplying operators from being used when the expected type is
5305 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5306 -- some cases where the expected type is actually Any_Real;
5307 -- Expected_Type_Is_Any_Real takes care of that case.
5309 if Etype (N) = Universal_Fixed
5310 or else Etype (N) = Any_Fixed
5311 then
5312 if B_Typ = Universal_Fixed
5313 and then not Expected_Type_Is_Any_Real (N)
5314 and then not Nkind_In (Parent (N), N_Type_Conversion,
5315 N_Unchecked_Type_Conversion)
5316 then
5317 Error_Msg_N ("type cannot be determined from context!", N);
5318 Error_Msg_N ("\explicit conversion to result type required", N);
5320 Set_Etype (L, Any_Type);
5321 Set_Etype (R, Any_Type);
5323 else
5324 if Ada_Version = Ada_83
5325 and then Etype (N) = Universal_Fixed
5326 and then not
5327 Nkind_In (Parent (N), N_Type_Conversion,
5328 N_Unchecked_Type_Conversion)
5329 then
5330 Error_Msg_N
5331 ("(Ada 83) fixed-point operation needs explicit "
5332 & "conversion", N);
5333 end if;
5335 -- The expected type is "any real type" in contexts like
5337 -- type T is delta <universal_fixed-expression> ...
5339 -- in which case we need to set the type to Universal_Real
5340 -- so that static expression evaluation will work properly.
5342 if Expected_Type_Is_Any_Real (N) then
5343 Set_Etype (N, Universal_Real);
5344 else
5345 Set_Etype (N, B_Typ);
5346 end if;
5347 end if;
5349 elsif Is_Fixed_Point_Type (B_Typ)
5350 and then (Is_Integer_Or_Universal (L)
5351 or else Nkind (L) = N_Real_Literal
5352 or else Nkind (R) = N_Real_Literal
5353 or else Is_Integer_Or_Universal (R))
5354 then
5355 Set_Etype (N, B_Typ);
5357 elsif Etype (N) = Any_Fixed then
5359 -- If no previous errors, this is only possible if one operand is
5360 -- overloaded and the context is universal. Resolve as such.
5362 Set_Etype (N, B_Typ);
5363 end if;
5365 else
5366 if (TL = Universal_Integer or else TL = Universal_Real)
5367 and then
5368 (TR = Universal_Integer or else TR = Universal_Real)
5369 then
5370 Check_For_Visible_Operator (N, B_Typ);
5371 end if;
5373 -- If the context is Universal_Fixed and the operands are also
5374 -- universal fixed, this is an error, unless there is only one
5375 -- applicable fixed_point type (usually Duration).
5377 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5378 T := Unique_Fixed_Point_Type (N);
5380 if T = Any_Type then
5381 Set_Etype (N, T);
5382 return;
5383 else
5384 Resolve (L, T);
5385 Resolve (R, T);
5386 end if;
5388 else
5389 Resolve (L, B_Typ);
5390 Resolve (R, B_Typ);
5391 end if;
5393 -- If one of the arguments was resolved to a non-universal type.
5394 -- label the result of the operation itself with the same type.
5395 -- Do the same for the universal argument, if any.
5397 T := Intersect_Types (L, R);
5398 Set_Etype (N, Base_Type (T));
5399 Set_Operand_Type (L);
5400 Set_Operand_Type (R);
5401 end if;
5403 Generate_Operator_Reference (N, Typ);
5404 Analyze_Dimension (N);
5405 Eval_Arithmetic_Op (N);
5407 -- In SPARK, a multiplication or division with operands of fixed point
5408 -- types must be qualified or explicitly converted to identify the
5409 -- result type.
5411 if (Is_Fixed_Point_Type (Etype (L))
5412 or else Is_Fixed_Point_Type (Etype (R)))
5413 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5414 and then
5415 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5416 then
5417 Check_SPARK_05_Restriction
5418 ("operation should be qualified or explicitly converted", N);
5419 end if;
5421 -- Set overflow and division checking bit
5423 if Nkind (N) in N_Op then
5424 if not Overflow_Checks_Suppressed (Etype (N)) then
5425 Enable_Overflow_Check (N);
5426 end if;
5428 -- Give warning if explicit division by zero
5430 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5431 and then not Division_Checks_Suppressed (Etype (N))
5432 then
5433 Rop := Right_Opnd (N);
5435 if Compile_Time_Known_Value (Rop)
5436 and then ((Is_Integer_Type (Etype (Rop))
5437 and then Expr_Value (Rop) = Uint_0)
5438 or else
5439 (Is_Real_Type (Etype (Rop))
5440 and then Expr_Value_R (Rop) = Ureal_0))
5441 then
5442 -- Specialize the warning message according to the operation.
5443 -- The following warnings are for the case
5445 case Nkind (N) is
5446 when N_Op_Divide =>
5448 -- For division, we have two cases, for float division
5449 -- of an unconstrained float type, on a machine where
5450 -- Machine_Overflows is false, we don't get an exception
5451 -- at run-time, but rather an infinity or Nan. The Nan
5452 -- case is pretty obscure, so just warn about infinities.
5454 if Is_Floating_Point_Type (Typ)
5455 and then not Is_Constrained (Typ)
5456 and then not Machine_Overflows_On_Target
5457 then
5458 Error_Msg_N
5459 ("float division by zero, may generate "
5460 & "'+'/'- infinity??", Right_Opnd (N));
5462 -- For all other cases, we get a Constraint_Error
5464 else
5465 Apply_Compile_Time_Constraint_Error
5466 (N, "division by zero??", CE_Divide_By_Zero,
5467 Loc => Sloc (Right_Opnd (N)));
5468 end if;
5470 when N_Op_Rem =>
5471 Apply_Compile_Time_Constraint_Error
5472 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5473 Loc => Sloc (Right_Opnd (N)));
5475 when N_Op_Mod =>
5476 Apply_Compile_Time_Constraint_Error
5477 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5478 Loc => Sloc (Right_Opnd (N)));
5480 -- Division by zero can only happen with division, rem,
5481 -- and mod operations.
5483 when others =>
5484 raise Program_Error;
5485 end case;
5487 -- Otherwise just set the flag to check at run time
5489 else
5490 Activate_Division_Check (N);
5491 end if;
5492 end if;
5494 -- If Restriction No_Implicit_Conditionals is active, then it is
5495 -- violated if either operand can be negative for mod, or for rem
5496 -- if both operands can be negative.
5498 if Restriction_Check_Required (No_Implicit_Conditionals)
5499 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5500 then
5501 declare
5502 Lo : Uint;
5503 Hi : Uint;
5504 OK : Boolean;
5506 LNeg : Boolean;
5507 RNeg : Boolean;
5508 -- Set if corresponding operand might be negative
5510 begin
5511 Determine_Range
5512 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5513 LNeg := (not OK) or else Lo < 0;
5515 Determine_Range
5516 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5517 RNeg := (not OK) or else Lo < 0;
5519 -- Check if we will be generating conditionals. There are two
5520 -- cases where that can happen, first for REM, the only case
5521 -- is largest negative integer mod -1, where the division can
5522 -- overflow, but we still have to give the right result. The
5523 -- front end generates a test for this annoying case. Here we
5524 -- just test if both operands can be negative (that's what the
5525 -- expander does, so we match its logic here).
5527 -- The second case is mod where either operand can be negative.
5528 -- In this case, the back end has to generate additional tests.
5530 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5531 or else
5532 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5533 then
5534 Check_Restriction (No_Implicit_Conditionals, N);
5535 end if;
5536 end;
5537 end if;
5538 end if;
5540 Check_Unset_Reference (L);
5541 Check_Unset_Reference (R);
5542 end Resolve_Arithmetic_Op;
5544 ------------------
5545 -- Resolve_Call --
5546 ------------------
5548 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5549 function Same_Or_Aliased_Subprograms
5550 (S : Entity_Id;
5551 E : Entity_Id) return Boolean;
5552 -- Returns True if the subprogram entity S is the same as E or else
5553 -- S is an alias of E.
5555 ---------------------------------
5556 -- Same_Or_Aliased_Subprograms --
5557 ---------------------------------
5559 function Same_Or_Aliased_Subprograms
5560 (S : Entity_Id;
5561 E : Entity_Id) return Boolean
5563 Subp_Alias : constant Entity_Id := Alias (S);
5564 begin
5565 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5566 end Same_Or_Aliased_Subprograms;
5568 -- Local variables
5570 Loc : constant Source_Ptr := Sloc (N);
5571 Subp : constant Node_Id := Name (N);
5572 Body_Id : Entity_Id;
5573 I : Interp_Index;
5574 It : Interp;
5575 Nam : Entity_Id;
5576 Nam_Decl : Node_Id;
5577 Nam_UA : Entity_Id;
5578 Norm_OK : Boolean;
5579 Rtype : Entity_Id;
5580 Scop : Entity_Id;
5582 -- Start of processing for Resolve_Call
5584 begin
5585 -- The context imposes a unique interpretation with type Typ on a
5586 -- procedure or function call. Find the entity of the subprogram that
5587 -- yields the expected type, and propagate the corresponding formal
5588 -- constraints on the actuals. The caller has established that an
5589 -- interpretation exists, and emitted an error if not unique.
5591 -- First deal with the case of a call to an access-to-subprogram,
5592 -- dereference made explicit in Analyze_Call.
5594 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5595 if not Is_Overloaded (Subp) then
5596 Nam := Etype (Subp);
5598 else
5599 -- Find the interpretation whose type (a subprogram type) has a
5600 -- return type that is compatible with the context. Analysis of
5601 -- the node has established that one exists.
5603 Nam := Empty;
5605 Get_First_Interp (Subp, I, It);
5606 while Present (It.Typ) loop
5607 if Covers (Typ, Etype (It.Typ)) then
5608 Nam := It.Typ;
5609 exit;
5610 end if;
5612 Get_Next_Interp (I, It);
5613 end loop;
5615 if No (Nam) then
5616 raise Program_Error;
5617 end if;
5618 end if;
5620 -- If the prefix is not an entity, then resolve it
5622 if not Is_Entity_Name (Subp) then
5623 Resolve (Subp, Nam);
5624 end if;
5626 -- For an indirect call, we always invalidate checks, since we do not
5627 -- know whether the subprogram is local or global. Yes we could do
5628 -- better here, e.g. by knowing that there are no local subprograms,
5629 -- but it does not seem worth the effort. Similarly, we kill all
5630 -- knowledge of current constant values.
5632 Kill_Current_Values;
5634 -- If this is a procedure call which is really an entry call, do
5635 -- the conversion of the procedure call to an entry call. Protected
5636 -- operations use the same circuitry because the name in the call
5637 -- can be an arbitrary expression with special resolution rules.
5639 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5640 or else (Is_Entity_Name (Subp)
5641 and then Ekind (Entity (Subp)) = E_Entry)
5642 then
5643 Resolve_Entry_Call (N, Typ);
5644 Check_Elab_Call (N);
5646 -- Kill checks and constant values, as above for indirect case
5647 -- Who knows what happens when another task is activated?
5649 Kill_Current_Values;
5650 return;
5652 -- Normal subprogram call with name established in Resolve
5654 elsif not (Is_Type (Entity (Subp))) then
5655 Nam := Entity (Subp);
5656 Set_Entity_With_Checks (Subp, Nam);
5658 -- Otherwise we must have the case of an overloaded call
5660 else
5661 pragma Assert (Is_Overloaded (Subp));
5663 -- Initialize Nam to prevent warning (we know it will be assigned
5664 -- in the loop below, but the compiler does not know that).
5666 Nam := Empty;
5668 Get_First_Interp (Subp, I, It);
5669 while Present (It.Typ) loop
5670 if Covers (Typ, It.Typ) then
5671 Nam := It.Nam;
5672 Set_Entity_With_Checks (Subp, Nam);
5673 exit;
5674 end if;
5676 Get_Next_Interp (I, It);
5677 end loop;
5678 end if;
5680 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5681 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5682 and then Nkind (Subp) /= N_Explicit_Dereference
5683 and then Present (Parameter_Associations (N))
5684 then
5685 -- The prefix is a parameterless function call that returns an access
5686 -- to subprogram. If parameters are present in the current call, add
5687 -- add an explicit dereference. We use the base type here because
5688 -- within an instance these may be subtypes.
5690 -- The dereference is added either in Analyze_Call or here. Should
5691 -- be consolidated ???
5693 Set_Is_Overloaded (Subp, False);
5694 Set_Etype (Subp, Etype (Nam));
5695 Insert_Explicit_Dereference (Subp);
5696 Nam := Designated_Type (Etype (Nam));
5697 Resolve (Subp, Nam);
5698 end if;
5700 -- Check that a call to Current_Task does not occur in an entry body
5702 if Is_RTE (Nam, RE_Current_Task) then
5703 declare
5704 P : Node_Id;
5706 begin
5707 P := N;
5708 loop
5709 P := Parent (P);
5711 -- Exclude calls that occur within the default of a formal
5712 -- parameter of the entry, since those are evaluated outside
5713 -- of the body.
5715 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5717 if Nkind (P) = N_Entry_Body
5718 or else (Nkind (P) = N_Subprogram_Body
5719 and then Is_Entry_Barrier_Function (P))
5720 then
5721 Rtype := Etype (N);
5722 Error_Msg_Warn := SPARK_Mode /= On;
5723 Error_Msg_NE
5724 ("& should not be used in entry body (RM C.7(17))<<",
5725 N, Nam);
5726 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5727 Rewrite (N,
5728 Make_Raise_Program_Error (Loc,
5729 Reason => PE_Current_Task_In_Entry_Body));
5730 Set_Etype (N, Rtype);
5731 return;
5732 end if;
5733 end loop;
5734 end;
5735 end if;
5737 -- Check that a procedure call does not occur in the context of the
5738 -- entry call statement of a conditional or timed entry call. Note that
5739 -- the case of a call to a subprogram renaming of an entry will also be
5740 -- rejected. The test for N not being an N_Entry_Call_Statement is
5741 -- defensive, covering the possibility that the processing of entry
5742 -- calls might reach this point due to later modifications of the code
5743 -- above.
5745 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5746 and then Nkind (N) /= N_Entry_Call_Statement
5747 and then Entry_Call_Statement (Parent (N)) = N
5748 then
5749 if Ada_Version < Ada_2005 then
5750 Error_Msg_N ("entry call required in select statement", N);
5752 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5753 -- for a procedure_or_entry_call, the procedure_name or
5754 -- procedure_prefix of the procedure_call_statement shall denote
5755 -- an entry renamed by a procedure, or (a view of) a primitive
5756 -- subprogram of a limited interface whose first parameter is
5757 -- a controlling parameter.
5759 elsif Nkind (N) = N_Procedure_Call_Statement
5760 and then not Is_Renamed_Entry (Nam)
5761 and then not Is_Controlling_Limited_Procedure (Nam)
5762 then
5763 Error_Msg_N
5764 ("entry call or dispatching primitive of interface required", N);
5765 end if;
5766 end if;
5768 -- If the SPARK_05 restriction is active, we are not allowed
5769 -- to have a call to a subprogram before we see its completion.
5771 if not Has_Completion (Nam)
5772 and then Restriction_Check_Required (SPARK_05)
5774 -- Don't flag strange internal calls
5776 and then Comes_From_Source (N)
5777 and then Comes_From_Source (Nam)
5779 -- Only flag calls in extended main source
5781 and then In_Extended_Main_Source_Unit (Nam)
5782 and then In_Extended_Main_Source_Unit (N)
5784 -- Exclude enumeration literals from this processing
5786 and then Ekind (Nam) /= E_Enumeration_Literal
5787 then
5788 Check_SPARK_05_Restriction
5789 ("call to subprogram cannot appear before its body", N);
5790 end if;
5792 -- Check that this is not a call to a protected procedure or entry from
5793 -- within a protected function.
5795 Check_Internal_Protected_Use (N, Nam);
5797 -- Freeze the subprogram name if not in a spec-expression. Note that
5798 -- we freeze procedure calls as well as function calls. Procedure calls
5799 -- are not frozen according to the rules (RM 13.14(14)) because it is
5800 -- impossible to have a procedure call to a non-frozen procedure in
5801 -- pure Ada, but in the code that we generate in the expander, this
5802 -- rule needs extending because we can generate procedure calls that
5803 -- need freezing.
5805 -- In Ada 2012, expression functions may be called within pre/post
5806 -- conditions of subsequent functions or expression functions. Such
5807 -- calls do not freeze when they appear within generated bodies,
5808 -- (including the body of another expression function) which would
5809 -- place the freeze node in the wrong scope. An expression function
5810 -- is frozen in the usual fashion, by the appearance of a real body,
5811 -- or at the end of a declarative part.
5813 if Is_Entity_Name (Subp)
5814 and then not In_Spec_Expression
5815 and then not Is_Expression_Function_Or_Completion (Current_Scope)
5816 and then
5817 (not Is_Expression_Function_Or_Completion (Entity (Subp))
5818 or else Scope (Entity (Subp)) = Current_Scope)
5819 then
5820 Freeze_Expression (Subp);
5821 end if;
5823 -- For a predefined operator, the type of the result is the type imposed
5824 -- by context, except for a predefined operation on universal fixed.
5825 -- Otherwise The type of the call is the type returned by the subprogram
5826 -- being called.
5828 if Is_Predefined_Op (Nam) then
5829 if Etype (N) /= Universal_Fixed then
5830 Set_Etype (N, Typ);
5831 end if;
5833 -- If the subprogram returns an array type, and the context requires the
5834 -- component type of that array type, the node is really an indexing of
5835 -- the parameterless call. Resolve as such. A pathological case occurs
5836 -- when the type of the component is an access to the array type. In
5837 -- this case the call is truly ambiguous.
5839 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5840 and then
5841 ((Is_Array_Type (Etype (Nam))
5842 and then Covers (Typ, Component_Type (Etype (Nam))))
5843 or else
5844 (Is_Access_Type (Etype (Nam))
5845 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5846 and then
5847 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5848 then
5849 declare
5850 Index_Node : Node_Id;
5851 New_Subp : Node_Id;
5852 Ret_Type : constant Entity_Id := Etype (Nam);
5854 begin
5855 if Is_Access_Type (Ret_Type)
5856 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5857 then
5858 Error_Msg_N
5859 ("cannot disambiguate function call and indexing", N);
5860 else
5861 New_Subp := Relocate_Node (Subp);
5863 -- The called entity may be an explicit dereference, in which
5864 -- case there is no entity to set.
5866 if Nkind (New_Subp) /= N_Explicit_Dereference then
5867 Set_Entity (Subp, Nam);
5868 end if;
5870 if (Is_Array_Type (Ret_Type)
5871 and then Component_Type (Ret_Type) /= Any_Type)
5872 or else
5873 (Is_Access_Type (Ret_Type)
5874 and then
5875 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5876 then
5877 if Needs_No_Actuals (Nam) then
5879 -- Indexed call to a parameterless function
5881 Index_Node :=
5882 Make_Indexed_Component (Loc,
5883 Prefix =>
5884 Make_Function_Call (Loc, Name => New_Subp),
5885 Expressions => Parameter_Associations (N));
5886 else
5887 -- An Ada 2005 prefixed call to a primitive operation
5888 -- whose first parameter is the prefix. This prefix was
5889 -- prepended to the parameter list, which is actually a
5890 -- list of indexes. Remove the prefix in order to build
5891 -- the proper indexed component.
5893 Index_Node :=
5894 Make_Indexed_Component (Loc,
5895 Prefix =>
5896 Make_Function_Call (Loc,
5897 Name => New_Subp,
5898 Parameter_Associations =>
5899 New_List
5900 (Remove_Head (Parameter_Associations (N)))),
5901 Expressions => Parameter_Associations (N));
5902 end if;
5904 -- Preserve the parenthesis count of the node
5906 Set_Paren_Count (Index_Node, Paren_Count (N));
5908 -- Since we are correcting a node classification error made
5909 -- by the parser, we call Replace rather than Rewrite.
5911 Replace (N, Index_Node);
5913 Set_Etype (Prefix (N), Ret_Type);
5914 Set_Etype (N, Typ);
5915 Resolve_Indexed_Component (N, Typ);
5916 Check_Elab_Call (Prefix (N));
5917 end if;
5918 end if;
5920 return;
5921 end;
5923 else
5924 Set_Etype (N, Etype (Nam));
5925 end if;
5927 -- In the case where the call is to an overloaded subprogram, Analyze
5928 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5929 -- such a case Normalize_Actuals needs to be called once more to order
5930 -- the actuals correctly. Otherwise the call will have the ordering
5931 -- given by the last overloaded subprogram whether this is the correct
5932 -- one being called or not.
5934 if Is_Overloaded (Subp) then
5935 Normalize_Actuals (N, Nam, False, Norm_OK);
5936 pragma Assert (Norm_OK);
5937 end if;
5939 -- In any case, call is fully resolved now. Reset Overload flag, to
5940 -- prevent subsequent overload resolution if node is analyzed again
5942 Set_Is_Overloaded (Subp, False);
5943 Set_Is_Overloaded (N, False);
5945 -- A Ghost entity must appear in a specific context
5947 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
5948 Check_Ghost_Context (Nam, N);
5949 end if;
5951 -- If we are calling the current subprogram from immediately within its
5952 -- body, then that is the case where we can sometimes detect cases of
5953 -- infinite recursion statically. Do not try this in case restriction
5954 -- No_Recursion is in effect anyway, and do it only for source calls.
5956 if Comes_From_Source (N) then
5957 Scop := Current_Scope;
5959 -- Check violation of SPARK_05 restriction which does not permit
5960 -- a subprogram body to contain a call to the subprogram directly.
5962 if Restriction_Check_Required (SPARK_05)
5963 and then Same_Or_Aliased_Subprograms (Nam, Scop)
5964 then
5965 Check_SPARK_05_Restriction
5966 ("subprogram may not contain direct call to itself", N);
5967 end if;
5969 -- Issue warning for possible infinite recursion in the absence
5970 -- of the No_Recursion restriction.
5972 if Same_Or_Aliased_Subprograms (Nam, Scop)
5973 and then not Restriction_Active (No_Recursion)
5974 and then Check_Infinite_Recursion (N)
5975 then
5976 -- Here we detected and flagged an infinite recursion, so we do
5977 -- not need to test the case below for further warnings. Also we
5978 -- are all done if we now have a raise SE node.
5980 if Nkind (N) = N_Raise_Storage_Error then
5981 return;
5982 end if;
5984 -- If call is to immediately containing subprogram, then check for
5985 -- the case of a possible run-time detectable infinite recursion.
5987 else
5988 Scope_Loop : while Scop /= Standard_Standard loop
5989 if Same_Or_Aliased_Subprograms (Nam, Scop) then
5991 -- Although in general case, recursion is not statically
5992 -- checkable, the case of calling an immediately containing
5993 -- subprogram is easy to catch.
5995 Check_Restriction (No_Recursion, N);
5997 -- If the recursive call is to a parameterless subprogram,
5998 -- then even if we can't statically detect infinite
5999 -- recursion, this is pretty suspicious, and we output a
6000 -- warning. Furthermore, we will try later to detect some
6001 -- cases here at run time by expanding checking code (see
6002 -- Detect_Infinite_Recursion in package Exp_Ch6).
6004 -- If the recursive call is within a handler, do not emit a
6005 -- warning, because this is a common idiom: loop until input
6006 -- is correct, catch illegal input in handler and restart.
6008 if No (First_Formal (Nam))
6009 and then Etype (Nam) = Standard_Void_Type
6010 and then not Error_Posted (N)
6011 and then Nkind (Parent (N)) /= N_Exception_Handler
6012 then
6013 -- For the case of a procedure call. We give the message
6014 -- only if the call is the first statement in a sequence
6015 -- of statements, or if all previous statements are
6016 -- simple assignments. This is simply a heuristic to
6017 -- decrease false positives, without losing too many good
6018 -- warnings. The idea is that these previous statements
6019 -- may affect global variables the procedure depends on.
6020 -- We also exclude raise statements, that may arise from
6021 -- constraint checks and are probably unrelated to the
6022 -- intended control flow.
6024 if Nkind (N) = N_Procedure_Call_Statement
6025 and then Is_List_Member (N)
6026 then
6027 declare
6028 P : Node_Id;
6029 begin
6030 P := Prev (N);
6031 while Present (P) loop
6032 if not Nkind_In (P, N_Assignment_Statement,
6033 N_Raise_Constraint_Error)
6034 then
6035 exit Scope_Loop;
6036 end if;
6038 Prev (P);
6039 end loop;
6040 end;
6041 end if;
6043 -- Do not give warning if we are in a conditional context
6045 declare
6046 K : constant Node_Kind := Nkind (Parent (N));
6047 begin
6048 if (K = N_Loop_Statement
6049 and then Present (Iteration_Scheme (Parent (N))))
6050 or else K = N_If_Statement
6051 or else K = N_Elsif_Part
6052 or else K = N_Case_Statement_Alternative
6053 then
6054 exit Scope_Loop;
6055 end if;
6056 end;
6058 -- Here warning is to be issued
6060 Set_Has_Recursive_Call (Nam);
6061 Error_Msg_Warn := SPARK_Mode /= On;
6062 Error_Msg_N ("possible infinite recursion<<!", N);
6063 Error_Msg_N ("\Storage_Error ]<<!", N);
6064 end if;
6066 exit Scope_Loop;
6067 end if;
6069 Scop := Scope (Scop);
6070 end loop Scope_Loop;
6071 end if;
6072 end if;
6074 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6076 Check_Obsolescent_2005_Entity (Nam, Subp);
6078 -- If subprogram name is a predefined operator, it was given in
6079 -- functional notation. Replace call node with operator node, so
6080 -- that actuals can be resolved appropriately.
6082 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6083 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6084 return;
6086 elsif Present (Alias (Nam))
6087 and then Is_Predefined_Op (Alias (Nam))
6088 then
6089 Resolve_Actuals (N, Nam);
6090 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6091 return;
6092 end if;
6094 -- Create a transient scope if the resulting type requires it
6096 -- There are several notable exceptions:
6098 -- a) In init procs, the transient scope overhead is not needed, and is
6099 -- even incorrect when the call is a nested initialization call for a
6100 -- component whose expansion may generate adjust calls. However, if the
6101 -- call is some other procedure call within an initialization procedure
6102 -- (for example a call to Create_Task in the init_proc of the task
6103 -- run-time record) a transient scope must be created around this call.
6105 -- b) Enumeration literal pseudo-calls need no transient scope
6107 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6108 -- functions) do not use the secondary stack even though the return
6109 -- type may be unconstrained.
6111 -- d) Calls to a build-in-place function, since such functions may
6112 -- allocate their result directly in a target object, and cases where
6113 -- the result does get allocated in the secondary stack are checked for
6114 -- within the specialized Exp_Ch6 procedures for expanding those
6115 -- build-in-place calls.
6117 -- e) If the subprogram is marked Inline_Always, then even if it returns
6118 -- an unconstrained type the call does not require use of the secondary
6119 -- stack. However, inlining will only take place if the body to inline
6120 -- is already present. It may not be available if e.g. the subprogram is
6121 -- declared in a child instance.
6123 -- If this is an initialization call for a type whose construction
6124 -- uses the secondary stack, and it is not a nested call to initialize
6125 -- a component, we do need to create a transient scope for it. We
6126 -- check for this by traversing the type in Check_Initialization_Call.
6128 if Is_Inlined (Nam)
6129 and then Has_Pragma_Inline (Nam)
6130 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6131 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6132 then
6133 null;
6135 elsif Ekind (Nam) = E_Enumeration_Literal
6136 or else Is_Build_In_Place_Function (Nam)
6137 or else Is_Intrinsic_Subprogram (Nam)
6138 then
6139 null;
6141 elsif Expander_Active
6142 and then Is_Type (Etype (Nam))
6143 and then Requires_Transient_Scope (Etype (Nam))
6144 and then
6145 (not Within_Init_Proc
6146 or else
6147 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6148 then
6149 Establish_Transient_Scope (N, Sec_Stack => True);
6151 -- If the call appears within the bounds of a loop, it will
6152 -- be rewritten and reanalyzed, nothing left to do here.
6154 if Nkind (N) /= N_Function_Call then
6155 return;
6156 end if;
6158 elsif Is_Init_Proc (Nam)
6159 and then not Within_Init_Proc
6160 then
6161 Check_Initialization_Call (N, Nam);
6162 end if;
6164 -- A protected function cannot be called within the definition of the
6165 -- enclosing protected type, unless it is part of a pre/postcondition
6166 -- on another protected operation.
6168 if Is_Protected_Type (Scope (Nam))
6169 and then In_Open_Scopes (Scope (Nam))
6170 and then not Has_Completion (Scope (Nam))
6171 and then not In_Spec_Expression
6172 then
6173 Error_Msg_NE
6174 ("& cannot be called before end of protected definition", N, Nam);
6175 end if;
6177 -- Propagate interpretation to actuals, and add default expressions
6178 -- where needed.
6180 if Present (First_Formal (Nam)) then
6181 Resolve_Actuals (N, Nam);
6183 -- Overloaded literals are rewritten as function calls, for purpose of
6184 -- resolution. After resolution, we can replace the call with the
6185 -- literal itself.
6187 elsif Ekind (Nam) = E_Enumeration_Literal then
6188 Copy_Node (Subp, N);
6189 Resolve_Entity_Name (N, Typ);
6191 -- Avoid validation, since it is a static function call
6193 Generate_Reference (Nam, Subp);
6194 return;
6195 end if;
6197 -- If the subprogram is not global, then kill all saved values and
6198 -- checks. This is a bit conservative, since in many cases we could do
6199 -- better, but it is not worth the effort. Similarly, we kill constant
6200 -- values. However we do not need to do this for internal entities
6201 -- (unless they are inherited user-defined subprograms), since they
6202 -- are not in the business of molesting local values.
6204 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6205 -- kill all checks and values for calls to global subprograms. This
6206 -- takes care of the case where an access to a local subprogram is
6207 -- taken, and could be passed directly or indirectly and then called
6208 -- from almost any context.
6210 -- Note: we do not do this step till after resolving the actuals. That
6211 -- way we still take advantage of the current value information while
6212 -- scanning the actuals.
6214 -- We suppress killing values if we are processing the nodes associated
6215 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6216 -- type kills all the values as part of analyzing the code that
6217 -- initializes the dispatch tables.
6219 if Inside_Freezing_Actions = 0
6220 and then (not Is_Library_Level_Entity (Nam)
6221 or else Suppress_Value_Tracking_On_Call
6222 (Nearest_Dynamic_Scope (Current_Scope)))
6223 and then (Comes_From_Source (Nam)
6224 or else (Present (Alias (Nam))
6225 and then Comes_From_Source (Alias (Nam))))
6226 then
6227 Kill_Current_Values;
6228 end if;
6230 -- If we are warning about unread OUT parameters, this is the place to
6231 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6232 -- after the above call to Kill_Current_Values (since that call clears
6233 -- the Last_Assignment field of all local variables).
6235 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6236 and then Comes_From_Source (N)
6237 and then In_Extended_Main_Source_Unit (N)
6238 then
6239 declare
6240 F : Entity_Id;
6241 A : Node_Id;
6243 begin
6244 F := First_Formal (Nam);
6245 A := First_Actual (N);
6246 while Present (F) and then Present (A) loop
6247 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6248 and then Warn_On_Modified_As_Out_Parameter (F)
6249 and then Is_Entity_Name (A)
6250 and then Present (Entity (A))
6251 and then Comes_From_Source (N)
6252 and then Safe_To_Capture_Value (N, Entity (A))
6253 then
6254 Set_Last_Assignment (Entity (A), A);
6255 end if;
6257 Next_Formal (F);
6258 Next_Actual (A);
6259 end loop;
6260 end;
6261 end if;
6263 -- If the subprogram is a primitive operation, check whether or not
6264 -- it is a correct dispatching call.
6266 if Is_Overloadable (Nam)
6267 and then Is_Dispatching_Operation (Nam)
6268 then
6269 Check_Dispatching_Call (N);
6271 elsif Ekind (Nam) /= E_Subprogram_Type
6272 and then Is_Abstract_Subprogram (Nam)
6273 and then not In_Instance
6274 then
6275 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6276 end if;
6278 -- If this is a dispatching call, generate the appropriate reference,
6279 -- for better source navigation in GPS.
6281 if Is_Overloadable (Nam)
6282 and then Present (Controlling_Argument (N))
6283 then
6284 Generate_Reference (Nam, Subp, 'R');
6286 -- Normal case, not a dispatching call: generate a call reference
6288 else
6289 Generate_Reference (Nam, Subp, 's');
6290 end if;
6292 if Is_Intrinsic_Subprogram (Nam) then
6293 Check_Intrinsic_Call (N);
6294 end if;
6296 -- Check for violation of restriction No_Specific_Termination_Handlers
6297 -- and warn on a potentially blocking call to Abort_Task.
6299 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6300 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6301 or else
6302 Is_RTE (Nam, RE_Specific_Handler))
6303 then
6304 Check_Restriction (No_Specific_Termination_Handlers, N);
6306 elsif Is_RTE (Nam, RE_Abort_Task) then
6307 Check_Potentially_Blocking_Operation (N);
6308 end if;
6310 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6311 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6312 -- need to check the second argument to determine whether it is an
6313 -- absolute or relative timing event.
6315 if Restriction_Check_Required (No_Relative_Delay)
6316 and then Is_RTE (Nam, RE_Set_Handler)
6317 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6318 then
6319 Check_Restriction (No_Relative_Delay, N);
6320 end if;
6322 -- Issue an error for a call to an eliminated subprogram. This routine
6323 -- will not perform the check if the call appears within a default
6324 -- expression.
6326 Check_For_Eliminated_Subprogram (Subp, Nam);
6328 -- In formal mode, the primitive operations of a tagged type or type
6329 -- extension do not include functions that return the tagged type.
6331 if Nkind (N) = N_Function_Call
6332 and then Is_Tagged_Type (Etype (N))
6333 and then Is_Entity_Name (Name (N))
6334 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6335 then
6336 Check_SPARK_05_Restriction ("function not inherited", N);
6337 end if;
6339 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6340 -- class-wide and the call dispatches on result in a context that does
6341 -- not provide a tag, the call raises Program_Error.
6343 if Nkind (N) = N_Function_Call
6344 and then In_Instance
6345 and then Is_Generic_Actual_Type (Typ)
6346 and then Is_Class_Wide_Type (Typ)
6347 and then Has_Controlling_Result (Nam)
6348 and then Nkind (Parent (N)) = N_Object_Declaration
6349 then
6350 -- Verify that none of the formals are controlling
6352 declare
6353 Call_OK : Boolean := False;
6354 F : Entity_Id;
6356 begin
6357 F := First_Formal (Nam);
6358 while Present (F) loop
6359 if Is_Controlling_Formal (F) then
6360 Call_OK := True;
6361 exit;
6362 end if;
6364 Next_Formal (F);
6365 end loop;
6367 if not Call_OK then
6368 Error_Msg_Warn := SPARK_Mode /= On;
6369 Error_Msg_N ("!cannot determine tag of result<<", N);
6370 Error_Msg_N ("\Program_Error [<<!", N);
6371 Insert_Action (N,
6372 Make_Raise_Program_Error (Sloc (N),
6373 Reason => PE_Explicit_Raise));
6374 end if;
6375 end;
6376 end if;
6378 -- Check for calling a function with OUT or IN OUT parameter when the
6379 -- calling context (us right now) is not Ada 2012, so does not allow
6380 -- OUT or IN OUT parameters in function calls. Functions declared in
6381 -- a predefined unit are OK, as they may be called indirectly from a
6382 -- user-declared instantiation.
6384 if Ada_Version < Ada_2012
6385 and then Ekind (Nam) = E_Function
6386 and then Has_Out_Or_In_Out_Parameter (Nam)
6387 and then not In_Predefined_Unit (Nam)
6388 then
6389 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6390 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6391 end if;
6393 -- Check the dimensions of the actuals in the call. For function calls,
6394 -- propagate the dimensions from the returned type to N.
6396 Analyze_Dimension_Call (N, Nam);
6398 -- All done, evaluate call and deal with elaboration issues
6400 Eval_Call (N);
6401 Check_Elab_Call (N);
6403 -- In GNATprove mode, expansion is disabled, but we want to inline some
6404 -- subprograms to facilitate formal verification. Indirect calls through
6405 -- a subprogram type or within a generic cannot be inlined. Inlining is
6406 -- performed only for calls subject to SPARK_Mode on.
6408 if GNATprove_Mode
6409 and then SPARK_Mode = On
6410 and then Is_Overloadable (Nam)
6411 and then not Inside_A_Generic
6412 then
6413 Nam_UA := Ultimate_Alias (Nam);
6414 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6416 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6417 Body_Id := Corresponding_Body (Nam_Decl);
6419 -- Nothing to do if the subprogram is not eligible for inlining in
6420 -- GNATprove mode.
6422 if not Is_Inlined_Always (Nam_UA)
6423 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6424 then
6425 null;
6427 -- Calls cannot be inlined inside assertions, as GNATprove treats
6428 -- assertions as logic expressions.
6430 elsif In_Assertion_Expr /= 0 then
6431 Error_Msg_NE ("info: no contextual analysis of &?", N, Nam);
6432 Error_Msg_N ("\call appears in assertion expression", N);
6433 Set_Is_Inlined_Always (Nam_UA, False);
6435 -- Calls cannot be inlined inside default expressions
6437 elsif In_Default_Expr then
6438 Error_Msg_NE ("info: no contextual analysis of &?", N, Nam);
6439 Error_Msg_N ("\call appears in default expression", N);
6440 Set_Is_Inlined_Always (Nam_UA, False);
6442 -- Inlining should not be performed during pre-analysis
6444 elsif Full_Analysis then
6446 -- With the one-pass inlining technique, a call cannot be
6447 -- inlined if the corresponding body has not been seen yet.
6449 if No (Body_Id) then
6450 Error_Msg_NE
6451 ("info: no contextual analysis of & (body not seen yet)?",
6452 N, Nam);
6453 Set_Is_Inlined_Always (Nam_UA, False);
6455 -- Nothing to do if there is no body to inline, indicating that
6456 -- the subprogram is not suitable for inlining in GNATprove
6457 -- mode.
6459 elsif No (Body_To_Inline (Nam_Decl)) then
6460 null;
6462 -- Calls cannot be inlined inside potentially unevaluated
6463 -- expressions, as this would create complex actions inside
6464 -- expressions, that are not handled by GNATprove.
6466 elsif Is_Potentially_Unevaluated (N) then
6467 Error_Msg_NE ("info: no contextual analysis of &?", N, Nam);
6468 Error_Msg_N
6469 ("\call appears in potentially unevaluated context", N);
6470 Set_Is_Inlined_Always (Nam_UA, False);
6472 -- Otherwise, inline the call
6474 else
6475 Expand_Inlined_Call (N, Nam_UA, Nam);
6476 end if;
6477 end if;
6478 end if;
6479 end if;
6481 Warn_On_Overlapping_Actuals (Nam, N);
6482 end Resolve_Call;
6484 -----------------------------
6485 -- Resolve_Case_Expression --
6486 -----------------------------
6488 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6489 Alt : Node_Id;
6490 Is_Dyn : Boolean;
6492 begin
6493 Alt := First (Alternatives (N));
6494 while Present (Alt) loop
6495 Resolve (Expression (Alt), Typ);
6496 Next (Alt);
6497 end loop;
6499 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6500 -- dynamically tagged must be known statically.
6502 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6503 Alt := First (Alternatives (N));
6504 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6506 while Present (Alt) loop
6507 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6508 Error_Msg_N ("all or none of the dependent expressions "
6509 & "can be dynamically tagged", N);
6510 end if;
6512 Next (Alt);
6513 end loop;
6514 end if;
6516 Set_Etype (N, Typ);
6517 Eval_Case_Expression (N);
6518 end Resolve_Case_Expression;
6520 -------------------------------
6521 -- Resolve_Character_Literal --
6522 -------------------------------
6524 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6525 B_Typ : constant Entity_Id := Base_Type (Typ);
6526 C : Entity_Id;
6528 begin
6529 -- Verify that the character does belong to the type of the context
6531 Set_Etype (N, B_Typ);
6532 Eval_Character_Literal (N);
6534 -- Wide_Wide_Character literals must always be defined, since the set
6535 -- of wide wide character literals is complete, i.e. if a character
6536 -- literal is accepted by the parser, then it is OK for wide wide
6537 -- character (out of range character literals are rejected).
6539 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6540 return;
6542 -- Always accept character literal for type Any_Character, which
6543 -- occurs in error situations and in comparisons of literals, both
6544 -- of which should accept all literals.
6546 elsif B_Typ = Any_Character then
6547 return;
6549 -- For Standard.Character or a type derived from it, check that the
6550 -- literal is in range.
6552 elsif Root_Type (B_Typ) = Standard_Character then
6553 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6554 return;
6555 end if;
6557 -- For Standard.Wide_Character or a type derived from it, check that the
6558 -- literal is in range.
6560 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6561 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6562 return;
6563 end if;
6565 -- For Standard.Wide_Wide_Character or a type derived from it, we
6566 -- know the literal is in range, since the parser checked.
6568 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6569 return;
6571 -- If the entity is already set, this has already been resolved in a
6572 -- generic context, or comes from expansion. Nothing else to do.
6574 elsif Present (Entity (N)) then
6575 return;
6577 -- Otherwise we have a user defined character type, and we can use the
6578 -- standard visibility mechanisms to locate the referenced entity.
6580 else
6581 C := Current_Entity (N);
6582 while Present (C) loop
6583 if Etype (C) = B_Typ then
6584 Set_Entity_With_Checks (N, C);
6585 Generate_Reference (C, N);
6586 return;
6587 end if;
6589 C := Homonym (C);
6590 end loop;
6591 end if;
6593 -- If we fall through, then the literal does not match any of the
6594 -- entries of the enumeration type. This isn't just a constraint error
6595 -- situation, it is an illegality (see RM 4.2).
6597 Error_Msg_NE
6598 ("character not defined for }", N, First_Subtype (B_Typ));
6599 end Resolve_Character_Literal;
6601 ---------------------------
6602 -- Resolve_Comparison_Op --
6603 ---------------------------
6605 -- Context requires a boolean type, and plays no role in resolution.
6606 -- Processing identical to that for equality operators. The result type is
6607 -- the base type, which matters when pathological subtypes of booleans with
6608 -- limited ranges are used.
6610 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6611 L : constant Node_Id := Left_Opnd (N);
6612 R : constant Node_Id := Right_Opnd (N);
6613 T : Entity_Id;
6615 begin
6616 -- If this is an intrinsic operation which is not predefined, use the
6617 -- types of its declared arguments to resolve the possibly overloaded
6618 -- operands. Otherwise the operands are unambiguous and specify the
6619 -- expected type.
6621 if Scope (Entity (N)) /= Standard_Standard then
6622 T := Etype (First_Entity (Entity (N)));
6624 else
6625 T := Find_Unique_Type (L, R);
6627 if T = Any_Fixed then
6628 T := Unique_Fixed_Point_Type (L);
6629 end if;
6630 end if;
6632 Set_Etype (N, Base_Type (Typ));
6633 Generate_Reference (T, N, ' ');
6635 -- Skip remaining processing if already set to Any_Type
6637 if T = Any_Type then
6638 return;
6639 end if;
6641 -- Deal with other error cases
6643 if T = Any_String or else
6644 T = Any_Composite or else
6645 T = Any_Character
6646 then
6647 if T = Any_Character then
6648 Ambiguous_Character (L);
6649 else
6650 Error_Msg_N ("ambiguous operands for comparison", N);
6651 end if;
6653 Set_Etype (N, Any_Type);
6654 return;
6655 end if;
6657 -- Resolve the operands if types OK
6659 Resolve (L, T);
6660 Resolve (R, T);
6661 Check_Unset_Reference (L);
6662 Check_Unset_Reference (R);
6663 Generate_Operator_Reference (N, T);
6664 Check_Low_Bound_Tested (N);
6666 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6667 -- types or array types except String.
6669 if Is_Boolean_Type (T) then
6670 Check_SPARK_05_Restriction
6671 ("comparison is not defined on Boolean type", N);
6673 elsif Is_Array_Type (T)
6674 and then Base_Type (T) /= Standard_String
6675 then
6676 Check_SPARK_05_Restriction
6677 ("comparison is not defined on array types other than String", N);
6678 end if;
6680 -- Check comparison on unordered enumeration
6682 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6683 Error_Msg_Sloc := Sloc (Etype (L));
6684 Error_Msg_NE
6685 ("comparison on unordered enumeration type& declared#?U?",
6686 N, Etype (L));
6687 end if;
6689 -- Evaluate the relation (note we do this after the above check since
6690 -- this Eval call may change N to True/False.
6692 Analyze_Dimension (N);
6693 Eval_Relational_Op (N);
6694 end Resolve_Comparison_Op;
6696 -----------------------------------------
6697 -- Resolve_Discrete_Subtype_Indication --
6698 -----------------------------------------
6700 procedure Resolve_Discrete_Subtype_Indication
6701 (N : Node_Id;
6702 Typ : Entity_Id)
6704 R : Node_Id;
6705 S : Entity_Id;
6707 begin
6708 Analyze (Subtype_Mark (N));
6709 S := Entity (Subtype_Mark (N));
6711 if Nkind (Constraint (N)) /= N_Range_Constraint then
6712 Error_Msg_N ("expect range constraint for discrete type", N);
6713 Set_Etype (N, Any_Type);
6715 else
6716 R := Range_Expression (Constraint (N));
6718 if R = Error then
6719 return;
6720 end if;
6722 Analyze (R);
6724 if Base_Type (S) /= Base_Type (Typ) then
6725 Error_Msg_NE
6726 ("expect subtype of }", N, First_Subtype (Typ));
6728 -- Rewrite the constraint as a range of Typ
6729 -- to allow compilation to proceed further.
6731 Set_Etype (N, Typ);
6732 Rewrite (Low_Bound (R),
6733 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6734 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6735 Attribute_Name => Name_First));
6736 Rewrite (High_Bound (R),
6737 Make_Attribute_Reference (Sloc (High_Bound (R)),
6738 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6739 Attribute_Name => Name_First));
6741 else
6742 Resolve (R, Typ);
6743 Set_Etype (N, Etype (R));
6745 -- Additionally, we must check that the bounds are compatible
6746 -- with the given subtype, which might be different from the
6747 -- type of the context.
6749 Apply_Range_Check (R, S);
6751 -- ??? If the above check statically detects a Constraint_Error
6752 -- it replaces the offending bound(s) of the range R with a
6753 -- Constraint_Error node. When the itype which uses these bounds
6754 -- is frozen the resulting call to Duplicate_Subexpr generates
6755 -- a new temporary for the bounds.
6757 -- Unfortunately there are other itypes that are also made depend
6758 -- on these bounds, so when Duplicate_Subexpr is called they get
6759 -- a forward reference to the newly created temporaries and Gigi
6760 -- aborts on such forward references. This is probably sign of a
6761 -- more fundamental problem somewhere else in either the order of
6762 -- itype freezing or the way certain itypes are constructed.
6764 -- To get around this problem we call Remove_Side_Effects right
6765 -- away if either bounds of R are a Constraint_Error.
6767 declare
6768 L : constant Node_Id := Low_Bound (R);
6769 H : constant Node_Id := High_Bound (R);
6771 begin
6772 if Nkind (L) = N_Raise_Constraint_Error then
6773 Remove_Side_Effects (L);
6774 end if;
6776 if Nkind (H) = N_Raise_Constraint_Error then
6777 Remove_Side_Effects (H);
6778 end if;
6779 end;
6781 Check_Unset_Reference (Low_Bound (R));
6782 Check_Unset_Reference (High_Bound (R));
6783 end if;
6784 end if;
6785 end Resolve_Discrete_Subtype_Indication;
6787 -------------------------
6788 -- Resolve_Entity_Name --
6789 -------------------------
6791 -- Used to resolve identifiers and expanded names
6793 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6794 function Is_Assignment_Or_Object_Expression
6795 (Context : Node_Id;
6796 Expr : Node_Id) return Boolean;
6797 -- Determine whether node Context denotes an assignment statement or an
6798 -- object declaration whose expression is node Expr.
6800 function Is_OK_Volatile_Context
6801 (Context : Node_Id;
6802 Obj_Ref : Node_Id) return Boolean;
6803 -- Determine whether node Context denotes a "non-interfering context"
6804 -- (as defined in SPARK RM 7.1.3(12)) where volatile reference Obj_Ref
6805 -- can safely reside.
6807 ----------------------------------------
6808 -- Is_Assignment_Or_Object_Expression --
6809 ----------------------------------------
6811 function Is_Assignment_Or_Object_Expression
6812 (Context : Node_Id;
6813 Expr : Node_Id) return Boolean
6815 begin
6816 if Nkind_In (Context, N_Assignment_Statement,
6817 N_Object_Declaration)
6818 and then Expression (Context) = Expr
6819 then
6820 return True;
6822 -- Check whether a construct that yields a name is the expression of
6823 -- an assignment statement or an object declaration.
6825 elsif (Nkind_In (Context, N_Attribute_Reference,
6826 N_Explicit_Dereference,
6827 N_Indexed_Component,
6828 N_Selected_Component,
6829 N_Slice)
6830 and then Prefix (Context) = Expr)
6831 or else
6832 (Nkind_In (Context, N_Type_Conversion,
6833 N_Unchecked_Type_Conversion)
6834 and then Expression (Context) = Expr)
6835 then
6836 return
6837 Is_Assignment_Or_Object_Expression
6838 (Context => Parent (Context),
6839 Expr => Context);
6841 -- Otherwise the context is not an assignment statement or an object
6842 -- declaration.
6844 else
6845 return False;
6846 end if;
6847 end Is_Assignment_Or_Object_Expression;
6849 ----------------------------
6850 -- Is_OK_Volatile_Context --
6851 ----------------------------
6853 function Is_OK_Volatile_Context
6854 (Context : Node_Id;
6855 Obj_Ref : Node_Id) return Boolean
6857 function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean;
6858 -- Determine whether an arbitrary node denotes a call to a protected
6859 -- entry, function or procedure in prefixed form where the prefix is
6860 -- Obj_Ref.
6862 function Within_Check (Nod : Node_Id) return Boolean;
6863 -- Determine whether an arbitrary node appears in a check node
6865 function Within_Subprogram_Call (Nod : Node_Id) return Boolean;
6866 -- Determine whether an arbitrary node appears in a procedure call
6868 function Within_Volatile_Function (Id : Entity_Id) return Boolean;
6869 -- Determine whether an arbitrary entity appears in a volatile
6870 -- function.
6872 ---------------------------------
6873 -- Is_Protected_Operation_Call --
6874 ---------------------------------
6876 function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean is
6877 Pref : Node_Id;
6878 Subp : Node_Id;
6880 begin
6881 -- A call to a protected operations retains its selected component
6882 -- form as opposed to other prefixed calls that are transformed in
6883 -- expanded names.
6885 if Nkind (Nod) = N_Selected_Component then
6886 Pref := Prefix (Nod);
6887 Subp := Selector_Name (Nod);
6889 return
6890 Pref = Obj_Ref
6891 and then Is_Protected_Type (Etype (Pref))
6892 and then Is_Entity_Name (Subp)
6893 and then Ekind_In (Entity (Subp), E_Entry,
6894 E_Entry_Family,
6895 E_Function,
6896 E_Procedure);
6897 else
6898 return False;
6899 end if;
6900 end Is_Protected_Operation_Call;
6902 ------------------
6903 -- Within_Check --
6904 ------------------
6906 function Within_Check (Nod : Node_Id) return Boolean is
6907 Par : Node_Id;
6909 begin
6910 -- Climb the parent chain looking for a check node
6912 Par := Nod;
6913 while Present (Par) loop
6914 if Nkind (Par) in N_Raise_xxx_Error then
6915 return True;
6917 -- Prevent the search from going too far
6919 elsif Is_Body_Or_Package_Declaration (Par) then
6920 exit;
6921 end if;
6923 Par := Parent (Par);
6924 end loop;
6926 return False;
6927 end Within_Check;
6929 ----------------------------
6930 -- Within_Subprogram_Call --
6931 ----------------------------
6933 function Within_Subprogram_Call (Nod : Node_Id) return Boolean is
6934 Par : Node_Id;
6936 begin
6937 -- Climb the parent chain looking for a function or procedure call
6939 Par := Nod;
6940 while Present (Par) loop
6941 if Nkind_In (Par, N_Function_Call,
6942 N_Procedure_Call_Statement)
6943 then
6944 return True;
6946 -- Prevent the search from going too far
6948 elsif Is_Body_Or_Package_Declaration (Par) then
6949 exit;
6950 end if;
6952 Par := Parent (Par);
6953 end loop;
6955 return False;
6956 end Within_Subprogram_Call;
6958 ------------------------------
6959 -- Within_Volatile_Function --
6960 ------------------------------
6962 function Within_Volatile_Function (Id : Entity_Id) return Boolean is
6963 Func_Id : Entity_Id;
6965 begin
6966 -- Traverse the scope stack looking for a [generic] function
6968 Func_Id := Id;
6969 while Present (Func_Id) and then Func_Id /= Standard_Standard loop
6970 if Ekind_In (Func_Id, E_Function, E_Generic_Function) then
6971 return Is_Volatile_Function (Func_Id);
6972 end if;
6974 Func_Id := Scope (Func_Id);
6975 end loop;
6977 return False;
6978 end Within_Volatile_Function;
6980 -- Local variables
6982 Obj_Id : Entity_Id;
6984 -- Start of processing for Is_OK_Volatile_Context
6986 begin
6987 -- The volatile object appears on either side of an assignment
6989 if Nkind (Context) = N_Assignment_Statement then
6990 return True;
6992 -- The volatile object is part of the initialization expression of
6993 -- another object.
6995 elsif Nkind (Context) = N_Object_Declaration
6996 and then Present (Expression (Context))
6997 and then Expression (Context) = Obj_Ref
6998 then
6999 Obj_Id := Defining_Entity (Context);
7001 -- The volatile object acts as the initialization expression of an
7002 -- extended return statement. This is valid context as long as the
7003 -- function is volatile.
7005 if Is_Return_Object (Obj_Id) then
7006 return Within_Volatile_Function (Obj_Id);
7008 -- Otherwise this is a normal object initialization
7010 else
7011 return True;
7012 end if;
7014 -- The volatile object acts as the name of a renaming declaration
7016 elsif Nkind (Context) = N_Object_Renaming_Declaration
7017 and then Name (Context) = Obj_Ref
7018 then
7019 return True;
7021 -- The volatile object appears as an actual parameter in a call to an
7022 -- instance of Unchecked_Conversion whose result is renamed.
7024 elsif Nkind (Context) = N_Function_Call
7025 and then Is_Entity_Name (Name (Context))
7026 and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
7027 and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
7028 then
7029 return True;
7031 -- The volatile object is actually the prefix in a protected entry,
7032 -- function, or procedure call.
7034 elsif Is_Protected_Operation_Call (Context) then
7035 return True;
7037 -- The volatile object appears as the expression of a simple return
7038 -- statement that applies to a volatile function.
7040 elsif Nkind (Context) = N_Simple_Return_Statement
7041 and then Expression (Context) = Obj_Ref
7042 then
7043 return
7044 Within_Volatile_Function (Return_Statement_Entity (Context));
7046 -- The volatile object appears as the prefix of a name occurring
7047 -- in a non-interfering context.
7049 elsif Nkind_In (Context, N_Attribute_Reference,
7050 N_Explicit_Dereference,
7051 N_Indexed_Component,
7052 N_Selected_Component,
7053 N_Slice)
7054 and then Prefix (Context) = Obj_Ref
7055 and then Is_OK_Volatile_Context
7056 (Context => Parent (Context),
7057 Obj_Ref => Context)
7058 then
7059 return True;
7061 -- The volatile object appears as the expression of a type conversion
7062 -- occurring in a non-interfering context.
7064 elsif Nkind_In (Context, N_Type_Conversion,
7065 N_Unchecked_Type_Conversion)
7066 and then Expression (Context) = Obj_Ref
7067 and then Is_OK_Volatile_Context
7068 (Context => Parent (Context),
7069 Obj_Ref => Context)
7070 then
7071 return True;
7073 -- Allow references to volatile objects in various checks. This is
7074 -- not a direct SPARK 2014 requirement.
7076 elsif Within_Check (Context) then
7077 return True;
7079 -- Assume that references to effectively volatile objects that appear
7080 -- as actual parameters in a subprogram call are always legal. A full
7081 -- legality check is done when the actuals are resolved.
7083 elsif Within_Subprogram_Call (Context) then
7084 return True;
7086 -- Otherwise the context is not suitable for an effectively volatile
7087 -- object.
7089 else
7090 return False;
7091 end if;
7092 end Is_OK_Volatile_Context;
7094 -- Local variables
7096 E : constant Entity_Id := Entity (N);
7097 Par : Node_Id;
7099 -- Start of processing for Resolve_Entity_Name
7101 begin
7102 -- If garbage from errors, set to Any_Type and return
7104 if No (E) and then Total_Errors_Detected /= 0 then
7105 Set_Etype (N, Any_Type);
7106 return;
7107 end if;
7109 -- Replace named numbers by corresponding literals. Note that this is
7110 -- the one case where Resolve_Entity_Name must reset the Etype, since
7111 -- it is currently marked as universal.
7113 if Ekind (E) = E_Named_Integer then
7114 Set_Etype (N, Typ);
7115 Eval_Named_Integer (N);
7117 elsif Ekind (E) = E_Named_Real then
7118 Set_Etype (N, Typ);
7119 Eval_Named_Real (N);
7121 -- For enumeration literals, we need to make sure that a proper style
7122 -- check is done, since such literals are overloaded, and thus we did
7123 -- not do a style check during the first phase of analysis.
7125 elsif Ekind (E) = E_Enumeration_Literal then
7126 Set_Entity_With_Checks (N, E);
7127 Eval_Entity_Name (N);
7129 -- Case of (sub)type name appearing in a context where an expression
7130 -- is expected. This is legal if occurrence is a current instance.
7131 -- See RM 8.6 (17/3).
7133 elsif Is_Type (E) then
7134 if Is_Current_Instance (N) then
7135 null;
7137 -- Any other use is an error
7139 else
7140 Error_Msg_N
7141 ("invalid use of subtype mark in expression or call", N);
7142 end if;
7144 -- Check discriminant use if entity is discriminant in current scope,
7145 -- i.e. discriminant of record or concurrent type currently being
7146 -- analyzed. Uses in corresponding body are unrestricted.
7148 elsif Ekind (E) = E_Discriminant
7149 and then Scope (E) = Current_Scope
7150 and then not Has_Completion (Current_Scope)
7151 then
7152 Check_Discriminant_Use (N);
7154 -- A parameterless generic function cannot appear in a context that
7155 -- requires resolution.
7157 elsif Ekind (E) = E_Generic_Function then
7158 Error_Msg_N ("illegal use of generic function", N);
7160 -- In Ada 83 an OUT parameter cannot be read
7162 elsif Ekind (E) = E_Out_Parameter
7163 and then (Nkind (Parent (N)) in N_Op
7164 or else Nkind (Parent (N)) = N_Explicit_Dereference
7165 or else Is_Assignment_Or_Object_Expression
7166 (Context => Parent (N),
7167 Expr => N))
7168 then
7169 if Ada_Version = Ada_83 then
7170 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7171 end if;
7173 -- In all other cases, just do the possible static evaluation
7175 else
7176 -- A deferred constant that appears in an expression must have a
7177 -- completion, unless it has been removed by in-place expansion of
7178 -- an aggregate. A constant that is a renaming does not need
7179 -- initialization.
7181 if Ekind (E) = E_Constant
7182 and then Comes_From_Source (E)
7183 and then No (Constant_Value (E))
7184 and then Is_Frozen (Etype (E))
7185 and then not In_Spec_Expression
7186 and then not Is_Imported (E)
7187 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7188 then
7189 if No_Initialization (Parent (E))
7190 or else (Present (Full_View (E))
7191 and then No_Initialization (Parent (Full_View (E))))
7192 then
7193 null;
7194 else
7195 Error_Msg_N (
7196 "deferred constant is frozen before completion", N);
7197 end if;
7198 end if;
7200 Eval_Entity_Name (N);
7201 end if;
7203 Par := Parent (N);
7205 -- When the entity appears in a parameter association, retrieve the
7206 -- related subprogram call.
7208 if Nkind (Par) = N_Parameter_Association then
7209 Par := Parent (Par);
7210 end if;
7212 if Comes_From_Source (N) then
7214 -- The following checks are only relevant when SPARK_Mode is on as
7215 -- they are not standard Ada legality rules.
7217 if SPARK_Mode = On then
7219 -- An effectively volatile object subject to enabled properties
7220 -- Async_Writers or Effective_Reads must appear in non-interfering
7221 -- context (SPARK RM 7.1.3(12)).
7223 if Is_Object (E)
7224 and then Is_Effectively_Volatile (E)
7225 and then (Async_Writers_Enabled (E)
7226 or else Effective_Reads_Enabled (E))
7227 and then not Is_OK_Volatile_Context (Par, N)
7228 then
7229 SPARK_Msg_N
7230 ("volatile object cannot appear in this context "
7231 & "(SPARK RM 7.1.3(12))", N);
7232 end if;
7234 -- Check for possible elaboration issues with respect to reads of
7235 -- variables. The act of renaming the variable is not considered a
7236 -- read as it simply establishes an alias.
7238 if Ekind (E) = E_Variable
7239 and then Nkind (Par) /= N_Object_Renaming_Declaration
7240 then
7241 Check_Elab_Call (N);
7242 end if;
7244 -- The variable may eventually become a constituent of a single
7245 -- protected/task type. Record the reference now and verify its
7246 -- legality when analyzing the contract of the variable
7247 -- (SPARK RM 9.3).
7249 if Ekind (E) = E_Variable then
7250 Record_Possible_Part_Of_Reference (E, N);
7251 end if;
7252 end if;
7254 -- A Ghost entity must appear in a specific context
7256 if Is_Ghost_Entity (E) then
7257 Check_Ghost_Context (E, N);
7258 end if;
7259 end if;
7260 end Resolve_Entity_Name;
7262 -------------------
7263 -- Resolve_Entry --
7264 -------------------
7266 procedure Resolve_Entry (Entry_Name : Node_Id) is
7267 Loc : constant Source_Ptr := Sloc (Entry_Name);
7268 Nam : Entity_Id;
7269 New_N : Node_Id;
7270 S : Entity_Id;
7271 Tsk : Entity_Id;
7272 E_Name : Node_Id;
7273 Index : Node_Id;
7275 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7276 -- If the bounds of the entry family being called depend on task
7277 -- discriminants, build a new index subtype where a discriminant is
7278 -- replaced with the value of the discriminant of the target task.
7279 -- The target task is the prefix of the entry name in the call.
7281 -----------------------
7282 -- Actual_Index_Type --
7283 -----------------------
7285 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7286 Typ : constant Entity_Id := Entry_Index_Type (E);
7287 Tsk : constant Entity_Id := Scope (E);
7288 Lo : constant Node_Id := Type_Low_Bound (Typ);
7289 Hi : constant Node_Id := Type_High_Bound (Typ);
7290 New_T : Entity_Id;
7292 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7293 -- If the bound is given by a discriminant, replace with a reference
7294 -- to the discriminant of the same name in the target task. If the
7295 -- entry name is the target of a requeue statement and the entry is
7296 -- in the current protected object, the bound to be used is the
7297 -- discriminal of the object (see Apply_Range_Checks for details of
7298 -- the transformation).
7300 -----------------------------
7301 -- Actual_Discriminant_Ref --
7302 -----------------------------
7304 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7305 Typ : constant Entity_Id := Etype (Bound);
7306 Ref : Node_Id;
7308 begin
7309 Remove_Side_Effects (Bound);
7311 if not Is_Entity_Name (Bound)
7312 or else Ekind (Entity (Bound)) /= E_Discriminant
7313 then
7314 return Bound;
7316 elsif Is_Protected_Type (Tsk)
7317 and then In_Open_Scopes (Tsk)
7318 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7319 then
7320 -- Note: here Bound denotes a discriminant of the corresponding
7321 -- record type tskV, whose discriminal is a formal of the
7322 -- init-proc tskVIP. What we want is the body discriminal,
7323 -- which is associated to the discriminant of the original
7324 -- concurrent type tsk.
7326 return New_Occurrence_Of
7327 (Find_Body_Discriminal (Entity (Bound)), Loc);
7329 else
7330 Ref :=
7331 Make_Selected_Component (Loc,
7332 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7333 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7334 Analyze (Ref);
7335 Resolve (Ref, Typ);
7336 return Ref;
7337 end if;
7338 end Actual_Discriminant_Ref;
7340 -- Start of processing for Actual_Index_Type
7342 begin
7343 if not Has_Discriminants (Tsk)
7344 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7345 then
7346 return Entry_Index_Type (E);
7348 else
7349 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7350 Set_Etype (New_T, Base_Type (Typ));
7351 Set_Size_Info (New_T, Typ);
7352 Set_RM_Size (New_T, RM_Size (Typ));
7353 Set_Scalar_Range (New_T,
7354 Make_Range (Sloc (Entry_Name),
7355 Low_Bound => Actual_Discriminant_Ref (Lo),
7356 High_Bound => Actual_Discriminant_Ref (Hi)));
7358 return New_T;
7359 end if;
7360 end Actual_Index_Type;
7362 -- Start of processing for Resolve_Entry
7364 begin
7365 -- Find name of entry being called, and resolve prefix of name with its
7366 -- own type. The prefix can be overloaded, and the name and signature of
7367 -- the entry must be taken into account.
7369 if Nkind (Entry_Name) = N_Indexed_Component then
7371 -- Case of dealing with entry family within the current tasks
7373 E_Name := Prefix (Entry_Name);
7375 else
7376 E_Name := Entry_Name;
7377 end if;
7379 if Is_Entity_Name (E_Name) then
7381 -- Entry call to an entry (or entry family) in the current task. This
7382 -- is legal even though the task will deadlock. Rewrite as call to
7383 -- current task.
7385 -- This can also be a call to an entry in an enclosing task. If this
7386 -- is a single task, we have to retrieve its name, because the scope
7387 -- of the entry is the task type, not the object. If the enclosing
7388 -- task is a task type, the identity of the task is given by its own
7389 -- self variable.
7391 -- Finally this can be a requeue on an entry of the same task or
7392 -- protected object.
7394 S := Scope (Entity (E_Name));
7396 for J in reverse 0 .. Scope_Stack.Last loop
7397 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7398 and then not Comes_From_Source (S)
7399 then
7400 -- S is an enclosing task or protected object. The concurrent
7401 -- declaration has been converted into a type declaration, and
7402 -- the object itself has an object declaration that follows
7403 -- the type in the same declarative part.
7405 Tsk := Next_Entity (S);
7406 while Etype (Tsk) /= S loop
7407 Next_Entity (Tsk);
7408 end loop;
7410 S := Tsk;
7411 exit;
7413 elsif S = Scope_Stack.Table (J).Entity then
7415 -- Call to current task. Will be transformed into call to Self
7417 exit;
7419 end if;
7420 end loop;
7422 New_N :=
7423 Make_Selected_Component (Loc,
7424 Prefix => New_Occurrence_Of (S, Loc),
7425 Selector_Name =>
7426 New_Occurrence_Of (Entity (E_Name), Loc));
7427 Rewrite (E_Name, New_N);
7428 Analyze (E_Name);
7430 elsif Nkind (Entry_Name) = N_Selected_Component
7431 and then Is_Overloaded (Prefix (Entry_Name))
7432 then
7433 -- Use the entry name (which must be unique at this point) to find
7434 -- the prefix that returns the corresponding task/protected type.
7436 declare
7437 Pref : constant Node_Id := Prefix (Entry_Name);
7438 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7439 I : Interp_Index;
7440 It : Interp;
7442 begin
7443 Get_First_Interp (Pref, I, It);
7444 while Present (It.Typ) loop
7445 if Scope (Ent) = It.Typ then
7446 Set_Etype (Pref, It.Typ);
7447 exit;
7448 end if;
7450 Get_Next_Interp (I, It);
7451 end loop;
7452 end;
7453 end if;
7455 if Nkind (Entry_Name) = N_Selected_Component then
7456 Resolve (Prefix (Entry_Name));
7458 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7459 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7460 Resolve (Prefix (Prefix (Entry_Name)));
7461 Index := First (Expressions (Entry_Name));
7462 Resolve (Index, Entry_Index_Type (Nam));
7464 -- Up to this point the expression could have been the actual in a
7465 -- simple entry call, and be given by a named association.
7467 if Nkind (Index) = N_Parameter_Association then
7468 Error_Msg_N ("expect expression for entry index", Index);
7469 else
7470 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7471 end if;
7472 end if;
7473 end Resolve_Entry;
7475 ------------------------
7476 -- Resolve_Entry_Call --
7477 ------------------------
7479 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7480 Entry_Name : constant Node_Id := Name (N);
7481 Loc : constant Source_Ptr := Sloc (Entry_Name);
7482 Actuals : List_Id;
7483 First_Named : Node_Id;
7484 Nam : Entity_Id;
7485 Norm_OK : Boolean;
7486 Obj : Node_Id;
7487 Was_Over : Boolean;
7489 begin
7490 -- We kill all checks here, because it does not seem worth the effort to
7491 -- do anything better, an entry call is a big operation.
7493 Kill_All_Checks;
7495 -- Processing of the name is similar for entry calls and protected
7496 -- operation calls. Once the entity is determined, we can complete
7497 -- the resolution of the actuals.
7499 -- The selector may be overloaded, in the case of a protected object
7500 -- with overloaded functions. The type of the context is used for
7501 -- resolution.
7503 if Nkind (Entry_Name) = N_Selected_Component
7504 and then Is_Overloaded (Selector_Name (Entry_Name))
7505 and then Typ /= Standard_Void_Type
7506 then
7507 declare
7508 I : Interp_Index;
7509 It : Interp;
7511 begin
7512 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7513 while Present (It.Typ) loop
7514 if Covers (Typ, It.Typ) then
7515 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7516 Set_Etype (Entry_Name, It.Typ);
7518 Generate_Reference (It.Typ, N, ' ');
7519 end if;
7521 Get_Next_Interp (I, It);
7522 end loop;
7523 end;
7524 end if;
7526 Resolve_Entry (Entry_Name);
7528 if Nkind (Entry_Name) = N_Selected_Component then
7530 -- Simple entry call
7532 Nam := Entity (Selector_Name (Entry_Name));
7533 Obj := Prefix (Entry_Name);
7534 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7536 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7538 -- Call to member of entry family
7540 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7541 Obj := Prefix (Prefix (Entry_Name));
7542 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7543 end if;
7545 -- We cannot in general check the maximum depth of protected entry calls
7546 -- at compile time. But we can tell that any protected entry call at all
7547 -- violates a specified nesting depth of zero.
7549 if Is_Protected_Type (Scope (Nam)) then
7550 Check_Restriction (Max_Entry_Queue_Length, N);
7551 end if;
7553 -- Use context type to disambiguate a protected function that can be
7554 -- called without actuals and that returns an array type, and where the
7555 -- argument list may be an indexing of the returned value.
7557 if Ekind (Nam) = E_Function
7558 and then Needs_No_Actuals (Nam)
7559 and then Present (Parameter_Associations (N))
7560 and then
7561 ((Is_Array_Type (Etype (Nam))
7562 and then Covers (Typ, Component_Type (Etype (Nam))))
7564 or else (Is_Access_Type (Etype (Nam))
7565 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7566 and then
7567 Covers
7568 (Typ,
7569 Component_Type (Designated_Type (Etype (Nam))))))
7570 then
7571 declare
7572 Index_Node : Node_Id;
7574 begin
7575 Index_Node :=
7576 Make_Indexed_Component (Loc,
7577 Prefix =>
7578 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7579 Expressions => Parameter_Associations (N));
7581 -- Since we are correcting a node classification error made by the
7582 -- parser, we call Replace rather than Rewrite.
7584 Replace (N, Index_Node);
7585 Set_Etype (Prefix (N), Etype (Nam));
7586 Set_Etype (N, Typ);
7587 Resolve_Indexed_Component (N, Typ);
7588 return;
7589 end;
7590 end if;
7592 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7593 and then Present (Contract_Wrapper (Nam))
7594 and then Current_Scope /= Contract_Wrapper (Nam)
7595 then
7596 -- Rewrite as call to the precondition wrapper, adding the task
7597 -- object to the list of actuals. If the call is to a member of an
7598 -- entry family, include the index as well.
7600 declare
7601 New_Call : Node_Id;
7602 New_Actuals : List_Id;
7604 begin
7605 New_Actuals := New_List (Obj);
7607 if Nkind (Entry_Name) = N_Indexed_Component then
7608 Append_To (New_Actuals,
7609 New_Copy_Tree (First (Expressions (Entry_Name))));
7610 end if;
7612 Append_List (Parameter_Associations (N), New_Actuals);
7613 New_Call :=
7614 Make_Procedure_Call_Statement (Loc,
7615 Name =>
7616 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7617 Parameter_Associations => New_Actuals);
7618 Rewrite (N, New_Call);
7620 -- Preanalyze and resolve new call. Current procedure is called
7621 -- from Resolve_Call, after which expansion will take place.
7623 Preanalyze_And_Resolve (N);
7624 return;
7625 end;
7626 end if;
7628 -- The operation name may have been overloaded. Order the actuals
7629 -- according to the formals of the resolved entity, and set the return
7630 -- type to that of the operation.
7632 if Was_Over then
7633 Normalize_Actuals (N, Nam, False, Norm_OK);
7634 pragma Assert (Norm_OK);
7635 Set_Etype (N, Etype (Nam));
7636 end if;
7638 Resolve_Actuals (N, Nam);
7639 Check_Internal_Protected_Use (N, Nam);
7641 -- Create a call reference to the entry
7643 Generate_Reference (Nam, Entry_Name, 's');
7645 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7646 Check_Potentially_Blocking_Operation (N);
7647 end if;
7649 -- Verify that a procedure call cannot masquerade as an entry
7650 -- call where an entry call is expected.
7652 if Ekind (Nam) = E_Procedure then
7653 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7654 and then N = Entry_Call_Statement (Parent (N))
7655 then
7656 Error_Msg_N ("entry call required in select statement", N);
7658 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7659 and then N = Triggering_Statement (Parent (N))
7660 then
7661 Error_Msg_N ("triggering statement cannot be procedure call", N);
7663 elsif Ekind (Scope (Nam)) = E_Task_Type
7664 and then not In_Open_Scopes (Scope (Nam))
7665 then
7666 Error_Msg_N ("task has no entry with this name", Entry_Name);
7667 end if;
7668 end if;
7670 -- After resolution, entry calls and protected procedure calls are
7671 -- changed into entry calls, for expansion. The structure of the node
7672 -- does not change, so it can safely be done in place. Protected
7673 -- function calls must keep their structure because they are
7674 -- subexpressions.
7676 if Ekind (Nam) /= E_Function then
7678 -- A protected operation that is not a function may modify the
7679 -- corresponding object, and cannot apply to a constant. If this
7680 -- is an internal call, the prefix is the type itself.
7682 if Is_Protected_Type (Scope (Nam))
7683 and then not Is_Variable (Obj)
7684 and then (not Is_Entity_Name (Obj)
7685 or else not Is_Type (Entity (Obj)))
7686 then
7687 Error_Msg_N
7688 ("prefix of protected procedure or entry call must be variable",
7689 Entry_Name);
7690 end if;
7692 Actuals := Parameter_Associations (N);
7693 First_Named := First_Named_Actual (N);
7695 Rewrite (N,
7696 Make_Entry_Call_Statement (Loc,
7697 Name => Entry_Name,
7698 Parameter_Associations => Actuals));
7700 Set_First_Named_Actual (N, First_Named);
7701 Set_Analyzed (N, True);
7703 -- Protected functions can return on the secondary stack, in which
7704 -- case we must trigger the transient scope mechanism.
7706 elsif Expander_Active
7707 and then Requires_Transient_Scope (Etype (Nam))
7708 then
7709 Establish_Transient_Scope (N, Sec_Stack => True);
7710 end if;
7711 end Resolve_Entry_Call;
7713 -------------------------
7714 -- Resolve_Equality_Op --
7715 -------------------------
7717 -- Both arguments must have the same type, and the boolean context does
7718 -- not participate in the resolution. The first pass verifies that the
7719 -- interpretation is not ambiguous, and the type of the left argument is
7720 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7721 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7722 -- though they carry a single (universal) type. Diagnose this case here.
7724 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7725 L : constant Node_Id := Left_Opnd (N);
7726 R : constant Node_Id := Right_Opnd (N);
7727 T : Entity_Id := Find_Unique_Type (L, R);
7729 procedure Check_If_Expression (Cond : Node_Id);
7730 -- The resolution rule for if expressions requires that each such must
7731 -- have a unique type. This means that if several dependent expressions
7732 -- are of a non-null anonymous access type, and the context does not
7733 -- impose an expected type (as can be the case in an equality operation)
7734 -- the expression must be rejected.
7736 procedure Explain_Redundancy (N : Node_Id);
7737 -- Attempt to explain the nature of a redundant comparison with True. If
7738 -- the expression N is too complex, this routine issues a general error
7739 -- message.
7741 function Find_Unique_Access_Type return Entity_Id;
7742 -- In the case of allocators and access attributes, the context must
7743 -- provide an indication of the specific access type to be used. If
7744 -- one operand is of such a "generic" access type, check whether there
7745 -- is a specific visible access type that has the same designated type.
7746 -- This is semantically dubious, and of no interest to any real code,
7747 -- but c48008a makes it all worthwhile.
7749 -------------------------
7750 -- Check_If_Expression --
7751 -------------------------
7753 procedure Check_If_Expression (Cond : Node_Id) is
7754 Then_Expr : Node_Id;
7755 Else_Expr : Node_Id;
7757 begin
7758 if Nkind (Cond) = N_If_Expression then
7759 Then_Expr := Next (First (Expressions (Cond)));
7760 Else_Expr := Next (Then_Expr);
7762 if Nkind (Then_Expr) /= N_Null
7763 and then Nkind (Else_Expr) /= N_Null
7764 then
7765 Error_Msg_N ("cannot determine type of if expression", Cond);
7766 end if;
7767 end if;
7768 end Check_If_Expression;
7770 ------------------------
7771 -- Explain_Redundancy --
7772 ------------------------
7774 procedure Explain_Redundancy (N : Node_Id) is
7775 Error : Name_Id;
7776 Val : Node_Id;
7777 Val_Id : Entity_Id;
7779 begin
7780 Val := N;
7782 -- Strip the operand down to an entity
7784 loop
7785 if Nkind (Val) = N_Selected_Component then
7786 Val := Selector_Name (Val);
7787 else
7788 exit;
7789 end if;
7790 end loop;
7792 -- The construct denotes an entity
7794 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7795 Val_Id := Entity (Val);
7797 -- Do not generate an error message when the comparison is done
7798 -- against the enumeration literal Standard.True.
7800 if Ekind (Val_Id) /= E_Enumeration_Literal then
7802 -- Build a customized error message
7804 Name_Len := 0;
7805 Add_Str_To_Name_Buffer ("?r?");
7807 if Ekind (Val_Id) = E_Component then
7808 Add_Str_To_Name_Buffer ("component ");
7810 elsif Ekind (Val_Id) = E_Constant then
7811 Add_Str_To_Name_Buffer ("constant ");
7813 elsif Ekind (Val_Id) = E_Discriminant then
7814 Add_Str_To_Name_Buffer ("discriminant ");
7816 elsif Is_Formal (Val_Id) then
7817 Add_Str_To_Name_Buffer ("parameter ");
7819 elsif Ekind (Val_Id) = E_Variable then
7820 Add_Str_To_Name_Buffer ("variable ");
7821 end if;
7823 Add_Str_To_Name_Buffer ("& is always True!");
7824 Error := Name_Find;
7826 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7827 end if;
7829 -- The construct is too complex to disect, issue a general message
7831 else
7832 Error_Msg_N ("?r?expression is always True!", Val);
7833 end if;
7834 end Explain_Redundancy;
7836 -----------------------------
7837 -- Find_Unique_Access_Type --
7838 -----------------------------
7840 function Find_Unique_Access_Type return Entity_Id is
7841 Acc : Entity_Id;
7842 E : Entity_Id;
7843 S : Entity_Id;
7845 begin
7846 if Ekind_In (Etype (R), E_Allocator_Type,
7847 E_Access_Attribute_Type)
7848 then
7849 Acc := Designated_Type (Etype (R));
7851 elsif Ekind_In (Etype (L), E_Allocator_Type,
7852 E_Access_Attribute_Type)
7853 then
7854 Acc := Designated_Type (Etype (L));
7855 else
7856 return Empty;
7857 end if;
7859 S := Current_Scope;
7860 while S /= Standard_Standard loop
7861 E := First_Entity (S);
7862 while Present (E) loop
7863 if Is_Type (E)
7864 and then Is_Access_Type (E)
7865 and then Ekind (E) /= E_Allocator_Type
7866 and then Designated_Type (E) = Base_Type (Acc)
7867 then
7868 return E;
7869 end if;
7871 Next_Entity (E);
7872 end loop;
7874 S := Scope (S);
7875 end loop;
7877 return Empty;
7878 end Find_Unique_Access_Type;
7880 -- Start of processing for Resolve_Equality_Op
7882 begin
7883 Set_Etype (N, Base_Type (Typ));
7884 Generate_Reference (T, N, ' ');
7886 if T = Any_Fixed then
7887 T := Unique_Fixed_Point_Type (L);
7888 end if;
7890 if T /= Any_Type then
7891 if T = Any_String or else
7892 T = Any_Composite or else
7893 T = Any_Character
7894 then
7895 if T = Any_Character then
7896 Ambiguous_Character (L);
7897 else
7898 Error_Msg_N ("ambiguous operands for equality", N);
7899 end if;
7901 Set_Etype (N, Any_Type);
7902 return;
7904 elsif T = Any_Access
7905 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7906 then
7907 T := Find_Unique_Access_Type;
7909 if No (T) then
7910 Error_Msg_N ("ambiguous operands for equality", N);
7911 Set_Etype (N, Any_Type);
7912 return;
7913 end if;
7915 -- If expressions must have a single type, and if the context does
7916 -- not impose one the dependent expressions cannot be anonymous
7917 -- access types.
7919 -- Why no similar processing for case expressions???
7921 elsif Ada_Version >= Ada_2012
7922 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7923 E_Anonymous_Access_Subprogram_Type)
7924 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7925 E_Anonymous_Access_Subprogram_Type)
7926 then
7927 Check_If_Expression (L);
7928 Check_If_Expression (R);
7929 end if;
7931 Resolve (L, T);
7932 Resolve (R, T);
7934 -- In SPARK, equality operators = and /= for array types other than
7935 -- String are only defined when, for each index position, the
7936 -- operands have equal static bounds.
7938 if Is_Array_Type (T) then
7940 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7941 -- operation if not needed.
7943 if Restriction_Check_Required (SPARK_05)
7944 and then Base_Type (T) /= Standard_String
7945 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7946 and then Etype (L) /= Any_Composite -- or else L in error
7947 and then Etype (R) /= Any_Composite -- or else R in error
7948 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7949 then
7950 Check_SPARK_05_Restriction
7951 ("array types should have matching static bounds", N);
7952 end if;
7953 end if;
7955 -- If the unique type is a class-wide type then it will be expanded
7956 -- into a dispatching call to the predefined primitive. Therefore we
7957 -- check here for potential violation of such restriction.
7959 if Is_Class_Wide_Type (T) then
7960 Check_Restriction (No_Dispatching_Calls, N);
7961 end if;
7963 if Warn_On_Redundant_Constructs
7964 and then Comes_From_Source (N)
7965 and then Comes_From_Source (R)
7966 and then Is_Entity_Name (R)
7967 and then Entity (R) = Standard_True
7968 then
7969 Error_Msg_N -- CODEFIX
7970 ("?r?comparison with True is redundant!", N);
7971 Explain_Redundancy (Original_Node (R));
7972 end if;
7974 Check_Unset_Reference (L);
7975 Check_Unset_Reference (R);
7976 Generate_Operator_Reference (N, T);
7977 Check_Low_Bound_Tested (N);
7979 -- If this is an inequality, it may be the implicit inequality
7980 -- created for a user-defined operation, in which case the corres-
7981 -- ponding equality operation is not intrinsic, and the operation
7982 -- cannot be constant-folded. Else fold.
7984 if Nkind (N) = N_Op_Eq
7985 or else Comes_From_Source (Entity (N))
7986 or else Ekind (Entity (N)) = E_Operator
7987 or else Is_Intrinsic_Subprogram
7988 (Corresponding_Equality (Entity (N)))
7989 then
7990 Analyze_Dimension (N);
7991 Eval_Relational_Op (N);
7993 elsif Nkind (N) = N_Op_Ne
7994 and then Is_Abstract_Subprogram (Entity (N))
7995 then
7996 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7997 end if;
7999 -- Ada 2005: If one operand is an anonymous access type, convert the
8000 -- other operand to it, to ensure that the underlying types match in
8001 -- the back-end. Same for access_to_subprogram, and the conversion
8002 -- verifies that the types are subtype conformant.
8004 -- We apply the same conversion in the case one of the operands is a
8005 -- private subtype of the type of the other.
8007 -- Why the Expander_Active test here ???
8009 if Expander_Active
8010 and then
8011 (Ekind_In (T, E_Anonymous_Access_Type,
8012 E_Anonymous_Access_Subprogram_Type)
8013 or else Is_Private_Type (T))
8014 then
8015 if Etype (L) /= T then
8016 Rewrite (L,
8017 Make_Unchecked_Type_Conversion (Sloc (L),
8018 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8019 Expression => Relocate_Node (L)));
8020 Analyze_And_Resolve (L, T);
8021 end if;
8023 if (Etype (R)) /= T then
8024 Rewrite (R,
8025 Make_Unchecked_Type_Conversion (Sloc (R),
8026 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8027 Expression => Relocate_Node (R)));
8028 Analyze_And_Resolve (R, T);
8029 end if;
8030 end if;
8031 end if;
8032 end Resolve_Equality_Op;
8034 ----------------------------------
8035 -- Resolve_Explicit_Dereference --
8036 ----------------------------------
8038 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8039 Loc : constant Source_Ptr := Sloc (N);
8040 New_N : Node_Id;
8041 P : constant Node_Id := Prefix (N);
8043 P_Typ : Entity_Id;
8044 -- The candidate prefix type, if overloaded
8046 I : Interp_Index;
8047 It : Interp;
8049 begin
8050 Check_Fully_Declared_Prefix (Typ, P);
8051 P_Typ := Empty;
8053 -- A useful optimization: check whether the dereference denotes an
8054 -- element of a container, and if so rewrite it as a call to the
8055 -- corresponding Element function.
8057 -- Disabled for now, on advice of ARG. A more restricted form of the
8058 -- predicate might be acceptable ???
8060 -- if Is_Container_Element (N) then
8061 -- return;
8062 -- end if;
8064 if Is_Overloaded (P) then
8066 -- Use the context type to select the prefix that has the correct
8067 -- designated type. Keep the first match, which will be the inner-
8068 -- most.
8070 Get_First_Interp (P, I, It);
8072 while Present (It.Typ) loop
8073 if Is_Access_Type (It.Typ)
8074 and then Covers (Typ, Designated_Type (It.Typ))
8075 then
8076 if No (P_Typ) then
8077 P_Typ := It.Typ;
8078 end if;
8080 -- Remove access types that do not match, but preserve access
8081 -- to subprogram interpretations, in case a further dereference
8082 -- is needed (see below).
8084 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8085 Remove_Interp (I);
8086 end if;
8088 Get_Next_Interp (I, It);
8089 end loop;
8091 if Present (P_Typ) then
8092 Resolve (P, P_Typ);
8093 Set_Etype (N, Designated_Type (P_Typ));
8095 else
8096 -- If no interpretation covers the designated type of the prefix,
8097 -- this is the pathological case where not all implementations of
8098 -- the prefix allow the interpretation of the node as a call. Now
8099 -- that the expected type is known, Remove other interpretations
8100 -- from prefix, rewrite it as a call, and resolve again, so that
8101 -- the proper call node is generated.
8103 Get_First_Interp (P, I, It);
8104 while Present (It.Typ) loop
8105 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8106 Remove_Interp (I);
8107 end if;
8109 Get_Next_Interp (I, It);
8110 end loop;
8112 New_N :=
8113 Make_Function_Call (Loc,
8114 Name =>
8115 Make_Explicit_Dereference (Loc,
8116 Prefix => P),
8117 Parameter_Associations => New_List);
8119 Save_Interps (N, New_N);
8120 Rewrite (N, New_N);
8121 Analyze_And_Resolve (N, Typ);
8122 return;
8123 end if;
8125 -- If not overloaded, resolve P with its own type
8127 else
8128 Resolve (P);
8129 end if;
8131 -- If the prefix might be null, add an access check
8133 if Is_Access_Type (Etype (P))
8134 and then not Can_Never_Be_Null (Etype (P))
8135 then
8136 Apply_Access_Check (N);
8137 end if;
8139 -- If the designated type is a packed unconstrained array type, and the
8140 -- explicit dereference is not in the context of an attribute reference,
8141 -- then we must compute and set the actual subtype, since it is needed
8142 -- by Gigi. The reason we exclude the attribute case is that this is
8143 -- handled fine by Gigi, and in fact we use such attributes to build the
8144 -- actual subtype. We also exclude generated code (which builds actual
8145 -- subtypes directly if they are needed).
8147 if Is_Array_Type (Etype (N))
8148 and then Is_Packed (Etype (N))
8149 and then not Is_Constrained (Etype (N))
8150 and then Nkind (Parent (N)) /= N_Attribute_Reference
8151 and then Comes_From_Source (N)
8152 then
8153 Set_Etype (N, Get_Actual_Subtype (N));
8154 end if;
8156 Analyze_Dimension (N);
8158 -- Note: No Eval processing is required for an explicit dereference,
8159 -- because such a name can never be static.
8161 end Resolve_Explicit_Dereference;
8163 -------------------------------------
8164 -- Resolve_Expression_With_Actions --
8165 -------------------------------------
8167 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8168 begin
8169 Set_Etype (N, Typ);
8171 -- If N has no actions, and its expression has been constant folded,
8172 -- then rewrite N as just its expression. Note, we can't do this in
8173 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8174 -- Expression (N) to be expanded again.
8176 if Is_Empty_List (Actions (N))
8177 and then Compile_Time_Known_Value (Expression (N))
8178 then
8179 Rewrite (N, Expression (N));
8180 end if;
8181 end Resolve_Expression_With_Actions;
8183 ----------------------------------
8184 -- Resolve_Generalized_Indexing --
8185 ----------------------------------
8187 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8188 Indexing : constant Node_Id := Generalized_Indexing (N);
8189 Call : Node_Id;
8190 Indexes : List_Id;
8191 Pref : Node_Id;
8193 begin
8194 -- In ASIS mode, propagate the information about the indexes back to
8195 -- to the original indexing node. The generalized indexing is either
8196 -- a function call, or a dereference of one. The actuals include the
8197 -- prefix of the original node, which is the container expression.
8199 if ASIS_Mode then
8200 Resolve (Indexing, Typ);
8201 Set_Etype (N, Etype (Indexing));
8202 Set_Is_Overloaded (N, False);
8204 Call := Indexing;
8205 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8206 loop
8207 Call := Prefix (Call);
8208 end loop;
8210 if Nkind (Call) = N_Function_Call then
8211 Indexes := Parameter_Associations (Call);
8212 Pref := Remove_Head (Indexes);
8213 Set_Expressions (N, Indexes);
8215 -- If expression is to be reanalyzed, reset Generalized_Indexing
8216 -- to recreate call node, as is the case when the expression is
8217 -- part of an expression function.
8219 if In_Spec_Expression then
8220 Set_Generalized_Indexing (N, Empty);
8221 end if;
8223 Set_Prefix (N, Pref);
8224 end if;
8226 else
8227 Rewrite (N, Indexing);
8228 Resolve (N, Typ);
8229 end if;
8230 end Resolve_Generalized_Indexing;
8232 ---------------------------
8233 -- Resolve_If_Expression --
8234 ---------------------------
8236 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8237 Condition : constant Node_Id := First (Expressions (N));
8238 Then_Expr : constant Node_Id := Next (Condition);
8239 Else_Expr : Node_Id := Next (Then_Expr);
8240 Else_Typ : Entity_Id;
8241 Then_Typ : Entity_Id;
8243 begin
8244 Resolve (Condition, Any_Boolean);
8245 Resolve (Then_Expr, Typ);
8246 Then_Typ := Etype (Then_Expr);
8248 -- When the "then" expression is of a scalar subtype different from the
8249 -- result subtype, then insert a conversion to ensure the generation of
8250 -- a constraint check. The same is done for the else part below, again
8251 -- comparing subtypes rather than base types.
8253 if Is_Scalar_Type (Then_Typ)
8254 and then Then_Typ /= Typ
8255 then
8256 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8257 Analyze_And_Resolve (Then_Expr, Typ);
8258 end if;
8260 -- If ELSE expression present, just resolve using the determined type
8262 if Present (Else_Expr) then
8263 Resolve (Else_Expr, Typ);
8264 Else_Typ := Etype (Else_Expr);
8266 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8267 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8268 Analyze_And_Resolve (Else_Expr, Typ);
8270 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8271 -- dynamically tagged must be known statically.
8273 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8274 if Is_Dynamically_Tagged (Then_Expr) /=
8275 Is_Dynamically_Tagged (Else_Expr)
8276 then
8277 Error_Msg_N ("all or none of the dependent expressions "
8278 & "can be dynamically tagged", N);
8279 end if;
8280 end if;
8282 -- If no ELSE expression is present, root type must be Standard.Boolean
8283 -- and we provide a Standard.True result converted to the appropriate
8284 -- Boolean type (in case it is a derived boolean type).
8286 elsif Root_Type (Typ) = Standard_Boolean then
8287 Else_Expr :=
8288 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8289 Analyze_And_Resolve (Else_Expr, Typ);
8290 Append_To (Expressions (N), Else_Expr);
8292 else
8293 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8294 Append_To (Expressions (N), Error);
8295 end if;
8297 Set_Etype (N, Typ);
8298 Eval_If_Expression (N);
8299 end Resolve_If_Expression;
8301 -------------------------------
8302 -- Resolve_Indexed_Component --
8303 -------------------------------
8305 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8306 Name : constant Node_Id := Prefix (N);
8307 Expr : Node_Id;
8308 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8309 Index : Node_Id;
8311 begin
8312 if Present (Generalized_Indexing (N)) then
8313 Resolve_Generalized_Indexing (N, Typ);
8314 return;
8315 end if;
8317 if Is_Overloaded (Name) then
8319 -- Use the context type to select the prefix that yields the correct
8320 -- component type.
8322 declare
8323 I : Interp_Index;
8324 It : Interp;
8325 I1 : Interp_Index := 0;
8326 P : constant Node_Id := Prefix (N);
8327 Found : Boolean := False;
8329 begin
8330 Get_First_Interp (P, I, It);
8331 while Present (It.Typ) loop
8332 if (Is_Array_Type (It.Typ)
8333 and then Covers (Typ, Component_Type (It.Typ)))
8334 or else (Is_Access_Type (It.Typ)
8335 and then Is_Array_Type (Designated_Type (It.Typ))
8336 and then
8337 Covers
8338 (Typ,
8339 Component_Type (Designated_Type (It.Typ))))
8340 then
8341 if Found then
8342 It := Disambiguate (P, I1, I, Any_Type);
8344 if It = No_Interp then
8345 Error_Msg_N ("ambiguous prefix for indexing", N);
8346 Set_Etype (N, Typ);
8347 return;
8349 else
8350 Found := True;
8351 Array_Type := It.Typ;
8352 I1 := I;
8353 end if;
8355 else
8356 Found := True;
8357 Array_Type := It.Typ;
8358 I1 := I;
8359 end if;
8360 end if;
8362 Get_Next_Interp (I, It);
8363 end loop;
8364 end;
8366 else
8367 Array_Type := Etype (Name);
8368 end if;
8370 Resolve (Name, Array_Type);
8371 Array_Type := Get_Actual_Subtype_If_Available (Name);
8373 -- If prefix is access type, dereference to get real array type.
8374 -- Note: we do not apply an access check because the expander always
8375 -- introduces an explicit dereference, and the check will happen there.
8377 if Is_Access_Type (Array_Type) then
8378 Array_Type := Designated_Type (Array_Type);
8379 end if;
8381 -- If name was overloaded, set component type correctly now
8382 -- If a misplaced call to an entry family (which has no index types)
8383 -- return. Error will be diagnosed from calling context.
8385 if Is_Array_Type (Array_Type) then
8386 Set_Etype (N, Component_Type (Array_Type));
8387 else
8388 return;
8389 end if;
8391 Index := First_Index (Array_Type);
8392 Expr := First (Expressions (N));
8394 -- The prefix may have resolved to a string literal, in which case its
8395 -- etype has a special representation. This is only possible currently
8396 -- if the prefix is a static concatenation, written in functional
8397 -- notation.
8399 if Ekind (Array_Type) = E_String_Literal_Subtype then
8400 Resolve (Expr, Standard_Positive);
8402 else
8403 while Present (Index) and Present (Expr) loop
8404 Resolve (Expr, Etype (Index));
8405 Check_Unset_Reference (Expr);
8407 if Is_Scalar_Type (Etype (Expr)) then
8408 Apply_Scalar_Range_Check (Expr, Etype (Index));
8409 else
8410 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8411 end if;
8413 Next_Index (Index);
8414 Next (Expr);
8415 end loop;
8416 end if;
8418 Analyze_Dimension (N);
8420 -- Do not generate the warning on suspicious index if we are analyzing
8421 -- package Ada.Tags; otherwise we will report the warning with the
8422 -- Prims_Ptr field of the dispatch table.
8424 if Scope (Etype (Prefix (N))) = Standard_Standard
8425 or else not
8426 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8427 Ada_Tags)
8428 then
8429 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8430 Eval_Indexed_Component (N);
8431 end if;
8433 -- If the array type is atomic, and the component is not atomic, then
8434 -- this is worth a warning, since we have a situation where the access
8435 -- to the component may cause extra read/writes of the atomic array
8436 -- object, or partial word accesses, which could be unexpected.
8438 if Nkind (N) = N_Indexed_Component
8439 and then Is_Atomic_Ref_With_Address (N)
8440 and then not (Has_Atomic_Components (Array_Type)
8441 or else (Is_Entity_Name (Prefix (N))
8442 and then Has_Atomic_Components
8443 (Entity (Prefix (N)))))
8444 and then not Is_Atomic (Component_Type (Array_Type))
8445 then
8446 Error_Msg_N
8447 ("??access to non-atomic component of atomic array", Prefix (N));
8448 Error_Msg_N
8449 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8450 end if;
8451 end Resolve_Indexed_Component;
8453 -----------------------------
8454 -- Resolve_Integer_Literal --
8455 -----------------------------
8457 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8458 begin
8459 Set_Etype (N, Typ);
8460 Eval_Integer_Literal (N);
8461 end Resolve_Integer_Literal;
8463 --------------------------------
8464 -- Resolve_Intrinsic_Operator --
8465 --------------------------------
8467 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8468 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8469 Op : Entity_Id;
8470 Arg1 : Node_Id;
8471 Arg2 : Node_Id;
8473 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8474 -- If the operand is a literal, it cannot be the expression in a
8475 -- conversion. Use a qualified expression instead.
8477 ---------------------
8478 -- Convert_Operand --
8479 ---------------------
8481 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8482 Loc : constant Source_Ptr := Sloc (Opnd);
8483 Res : Node_Id;
8485 begin
8486 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8487 Res :=
8488 Make_Qualified_Expression (Loc,
8489 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8490 Expression => Relocate_Node (Opnd));
8491 Analyze (Res);
8493 else
8494 Res := Unchecked_Convert_To (Btyp, Opnd);
8495 end if;
8497 return Res;
8498 end Convert_Operand;
8500 -- Start of processing for Resolve_Intrinsic_Operator
8502 begin
8503 -- We must preserve the original entity in a generic setting, so that
8504 -- the legality of the operation can be verified in an instance.
8506 if not Expander_Active then
8507 return;
8508 end if;
8510 Op := Entity (N);
8511 while Scope (Op) /= Standard_Standard loop
8512 Op := Homonym (Op);
8513 pragma Assert (Present (Op));
8514 end loop;
8516 Set_Entity (N, Op);
8517 Set_Is_Overloaded (N, False);
8519 -- If the result or operand types are private, rewrite with unchecked
8520 -- conversions on the operands and the result, to expose the proper
8521 -- underlying numeric type.
8523 if Is_Private_Type (Typ)
8524 or else Is_Private_Type (Etype (Left_Opnd (N)))
8525 or else Is_Private_Type (Etype (Right_Opnd (N)))
8526 then
8527 Arg1 := Convert_Operand (Left_Opnd (N));
8529 if Nkind (N) = N_Op_Expon then
8530 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8531 else
8532 Arg2 := Convert_Operand (Right_Opnd (N));
8533 end if;
8535 if Nkind (Arg1) = N_Type_Conversion then
8536 Save_Interps (Left_Opnd (N), Expression (Arg1));
8537 end if;
8539 if Nkind (Arg2) = N_Type_Conversion then
8540 Save_Interps (Right_Opnd (N), Expression (Arg2));
8541 end if;
8543 Set_Left_Opnd (N, Arg1);
8544 Set_Right_Opnd (N, Arg2);
8546 Set_Etype (N, Btyp);
8547 Rewrite (N, Unchecked_Convert_To (Typ, N));
8548 Resolve (N, Typ);
8550 elsif Typ /= Etype (Left_Opnd (N))
8551 or else Typ /= Etype (Right_Opnd (N))
8552 then
8553 -- Add explicit conversion where needed, and save interpretations in
8554 -- case operands are overloaded.
8556 Arg1 := Convert_To (Typ, Left_Opnd (N));
8557 Arg2 := Convert_To (Typ, Right_Opnd (N));
8559 if Nkind (Arg1) = N_Type_Conversion then
8560 Save_Interps (Left_Opnd (N), Expression (Arg1));
8561 else
8562 Save_Interps (Left_Opnd (N), Arg1);
8563 end if;
8565 if Nkind (Arg2) = N_Type_Conversion then
8566 Save_Interps (Right_Opnd (N), Expression (Arg2));
8567 else
8568 Save_Interps (Right_Opnd (N), Arg2);
8569 end if;
8571 Rewrite (Left_Opnd (N), Arg1);
8572 Rewrite (Right_Opnd (N), Arg2);
8573 Analyze (Arg1);
8574 Analyze (Arg2);
8575 Resolve_Arithmetic_Op (N, Typ);
8577 else
8578 Resolve_Arithmetic_Op (N, Typ);
8579 end if;
8580 end Resolve_Intrinsic_Operator;
8582 --------------------------------------
8583 -- Resolve_Intrinsic_Unary_Operator --
8584 --------------------------------------
8586 procedure Resolve_Intrinsic_Unary_Operator
8587 (N : Node_Id;
8588 Typ : Entity_Id)
8590 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8591 Op : Entity_Id;
8592 Arg2 : Node_Id;
8594 begin
8595 Op := Entity (N);
8596 while Scope (Op) /= Standard_Standard loop
8597 Op := Homonym (Op);
8598 pragma Assert (Present (Op));
8599 end loop;
8601 Set_Entity (N, Op);
8603 if Is_Private_Type (Typ) then
8604 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8605 Save_Interps (Right_Opnd (N), Expression (Arg2));
8607 Set_Right_Opnd (N, Arg2);
8609 Set_Etype (N, Btyp);
8610 Rewrite (N, Unchecked_Convert_To (Typ, N));
8611 Resolve (N, Typ);
8613 else
8614 Resolve_Unary_Op (N, Typ);
8615 end if;
8616 end Resolve_Intrinsic_Unary_Operator;
8618 ------------------------
8619 -- Resolve_Logical_Op --
8620 ------------------------
8622 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8623 B_Typ : Entity_Id;
8625 begin
8626 Check_No_Direct_Boolean_Operators (N);
8628 -- Predefined operations on scalar types yield the base type. On the
8629 -- other hand, logical operations on arrays yield the type of the
8630 -- arguments (and the context).
8632 if Is_Array_Type (Typ) then
8633 B_Typ := Typ;
8634 else
8635 B_Typ := Base_Type (Typ);
8636 end if;
8638 -- The following test is required because the operands of the operation
8639 -- may be literals, in which case the resulting type appears to be
8640 -- compatible with a signed integer type, when in fact it is compatible
8641 -- only with modular types. If the context itself is universal, the
8642 -- operation is illegal.
8644 if not Valid_Boolean_Arg (Typ) then
8645 Error_Msg_N ("invalid context for logical operation", N);
8646 Set_Etype (N, Any_Type);
8647 return;
8649 elsif Typ = Any_Modular then
8650 Error_Msg_N
8651 ("no modular type available in this context", N);
8652 Set_Etype (N, Any_Type);
8653 return;
8655 elsif Is_Modular_Integer_Type (Typ)
8656 and then Etype (Left_Opnd (N)) = Universal_Integer
8657 and then Etype (Right_Opnd (N)) = Universal_Integer
8658 then
8659 Check_For_Visible_Operator (N, B_Typ);
8660 end if;
8662 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8663 -- is active and the result type is standard Boolean (do not mess with
8664 -- ops that return a nonstandard Boolean type, because something strange
8665 -- is going on).
8667 -- Note: you might expect this replacement to be done during expansion,
8668 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8669 -- is used, no part of the right operand of an "and" or "or" operator
8670 -- should be executed if the left operand would short-circuit the
8671 -- evaluation of the corresponding "and then" or "or else". If we left
8672 -- the replacement to expansion time, then run-time checks associated
8673 -- with such operands would be evaluated unconditionally, due to being
8674 -- before the condition prior to the rewriting as short-circuit forms
8675 -- during expansion.
8677 if Short_Circuit_And_Or
8678 and then B_Typ = Standard_Boolean
8679 and then Nkind_In (N, N_Op_And, N_Op_Or)
8680 then
8681 -- Mark the corresponding putative SCO operator as truly a logical
8682 -- (and short-circuit) operator.
8684 if Generate_SCO and then Comes_From_Source (N) then
8685 Set_SCO_Logical_Operator (N);
8686 end if;
8688 if Nkind (N) = N_Op_And then
8689 Rewrite (N,
8690 Make_And_Then (Sloc (N),
8691 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8692 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8693 Analyze_And_Resolve (N, B_Typ);
8695 -- Case of OR changed to OR ELSE
8697 else
8698 Rewrite (N,
8699 Make_Or_Else (Sloc (N),
8700 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8701 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8702 Analyze_And_Resolve (N, B_Typ);
8703 end if;
8705 -- Return now, since analysis of the rewritten ops will take care of
8706 -- other reference bookkeeping and expression folding.
8708 return;
8709 end if;
8711 Resolve (Left_Opnd (N), B_Typ);
8712 Resolve (Right_Opnd (N), B_Typ);
8714 Check_Unset_Reference (Left_Opnd (N));
8715 Check_Unset_Reference (Right_Opnd (N));
8717 Set_Etype (N, B_Typ);
8718 Generate_Operator_Reference (N, B_Typ);
8719 Eval_Logical_Op (N);
8721 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8722 -- only when both operands have same static lower and higher bounds. Of
8723 -- course the types have to match, so only check if operands are
8724 -- compatible and the node itself has no errors.
8726 if Is_Array_Type (B_Typ)
8727 and then Nkind (N) in N_Binary_Op
8728 then
8729 declare
8730 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8731 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8733 begin
8734 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8735 -- operation if not needed.
8737 if Restriction_Check_Required (SPARK_05)
8738 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8739 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8740 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8741 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8742 then
8743 Check_SPARK_05_Restriction
8744 ("array types should have matching static bounds", N);
8745 end if;
8746 end;
8747 end if;
8748 end Resolve_Logical_Op;
8750 ---------------------------
8751 -- Resolve_Membership_Op --
8752 ---------------------------
8754 -- The context can only be a boolean type, and does not determine the
8755 -- arguments. Arguments should be unambiguous, but the preference rule for
8756 -- universal types applies.
8758 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8759 pragma Warnings (Off, Typ);
8761 L : constant Node_Id := Left_Opnd (N);
8762 R : constant Node_Id := Right_Opnd (N);
8763 T : Entity_Id;
8765 procedure Resolve_Set_Membership;
8766 -- Analysis has determined a unique type for the left operand. Use it to
8767 -- resolve the disjuncts.
8769 ----------------------------
8770 -- Resolve_Set_Membership --
8771 ----------------------------
8773 procedure Resolve_Set_Membership is
8774 Alt : Node_Id;
8775 Ltyp : Entity_Id;
8777 begin
8778 -- If the left operand is overloaded, find type compatible with not
8779 -- overloaded alternative of the right operand.
8781 if Is_Overloaded (L) then
8782 Ltyp := Empty;
8783 Alt := First (Alternatives (N));
8784 while Present (Alt) loop
8785 if not Is_Overloaded (Alt) then
8786 Ltyp := Intersect_Types (L, Alt);
8787 exit;
8788 else
8789 Next (Alt);
8790 end if;
8791 end loop;
8793 -- Unclear how to resolve expression if all alternatives are also
8794 -- overloaded.
8796 if No (Ltyp) then
8797 Error_Msg_N ("ambiguous expression", N);
8798 end if;
8800 else
8801 Ltyp := Etype (L);
8802 end if;
8804 Resolve (L, Ltyp);
8806 Alt := First (Alternatives (N));
8807 while Present (Alt) loop
8809 -- Alternative is an expression, a range
8810 -- or a subtype mark.
8812 if not Is_Entity_Name (Alt)
8813 or else not Is_Type (Entity (Alt))
8814 then
8815 Resolve (Alt, Ltyp);
8816 end if;
8818 Next (Alt);
8819 end loop;
8821 -- Check for duplicates for discrete case
8823 if Is_Discrete_Type (Ltyp) then
8824 declare
8825 type Ent is record
8826 Alt : Node_Id;
8827 Val : Uint;
8828 end record;
8830 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8831 Nalts : Nat;
8833 begin
8834 -- Loop checking duplicates. This is quadratic, but giant sets
8835 -- are unlikely in this context so it's a reasonable choice.
8837 Nalts := 0;
8838 Alt := First (Alternatives (N));
8839 while Present (Alt) loop
8840 if Is_OK_Static_Expression (Alt)
8841 and then (Nkind_In (Alt, N_Integer_Literal,
8842 N_Character_Literal)
8843 or else Nkind (Alt) in N_Has_Entity)
8844 then
8845 Nalts := Nalts + 1;
8846 Alts (Nalts) := (Alt, Expr_Value (Alt));
8848 for J in 1 .. Nalts - 1 loop
8849 if Alts (J).Val = Alts (Nalts).Val then
8850 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8851 Error_Msg_N ("duplicate of value given#??", Alt);
8852 end if;
8853 end loop;
8854 end if;
8856 Alt := Next (Alt);
8857 end loop;
8858 end;
8859 end if;
8860 end Resolve_Set_Membership;
8862 -- Start of processing for Resolve_Membership_Op
8864 begin
8865 if L = Error or else R = Error then
8866 return;
8867 end if;
8869 if Present (Alternatives (N)) then
8870 Resolve_Set_Membership;
8871 goto SM_Exit;
8873 elsif not Is_Overloaded (R)
8874 and then
8875 (Etype (R) = Universal_Integer
8876 or else
8877 Etype (R) = Universal_Real)
8878 and then Is_Overloaded (L)
8879 then
8880 T := Etype (R);
8882 -- Ada 2005 (AI-251): Support the following case:
8884 -- type I is interface;
8885 -- type T is tagged ...
8887 -- function Test (O : I'Class) is
8888 -- begin
8889 -- return O in T'Class.
8890 -- end Test;
8892 -- In this case we have nothing else to do. The membership test will be
8893 -- done at run time.
8895 elsif Ada_Version >= Ada_2005
8896 and then Is_Class_Wide_Type (Etype (L))
8897 and then Is_Interface (Etype (L))
8898 and then Is_Class_Wide_Type (Etype (R))
8899 and then not Is_Interface (Etype (R))
8900 then
8901 return;
8902 else
8903 T := Intersect_Types (L, R);
8904 end if;
8906 -- If mixed-mode operations are present and operands are all literal,
8907 -- the only interpretation involves Duration, which is probably not
8908 -- the intention of the programmer.
8910 if T = Any_Fixed then
8911 T := Unique_Fixed_Point_Type (N);
8913 if T = Any_Type then
8914 return;
8915 end if;
8916 end if;
8918 Resolve (L, T);
8919 Check_Unset_Reference (L);
8921 if Nkind (R) = N_Range
8922 and then not Is_Scalar_Type (T)
8923 then
8924 Error_Msg_N ("scalar type required for range", R);
8925 end if;
8927 if Is_Entity_Name (R) then
8928 Freeze_Expression (R);
8929 else
8930 Resolve (R, T);
8931 Check_Unset_Reference (R);
8932 end if;
8934 -- Here after resolving membership operation
8936 <<SM_Exit>>
8938 Eval_Membership_Op (N);
8939 end Resolve_Membership_Op;
8941 ------------------
8942 -- Resolve_Null --
8943 ------------------
8945 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8946 Loc : constant Source_Ptr := Sloc (N);
8948 begin
8949 -- Handle restriction against anonymous null access values This
8950 -- restriction can be turned off using -gnatdj.
8952 -- Ada 2005 (AI-231): Remove restriction
8954 if Ada_Version < Ada_2005
8955 and then not Debug_Flag_J
8956 and then Ekind (Typ) = E_Anonymous_Access_Type
8957 and then Comes_From_Source (N)
8958 then
8959 -- In the common case of a call which uses an explicitly null value
8960 -- for an access parameter, give specialized error message.
8962 if Nkind (Parent (N)) in N_Subprogram_Call then
8963 Error_Msg_N
8964 ("null is not allowed as argument for an access parameter", N);
8966 -- Standard message for all other cases (are there any?)
8968 else
8969 Error_Msg_N
8970 ("null cannot be of an anonymous access type", N);
8971 end if;
8972 end if;
8974 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8975 -- assignment to a null-excluding object
8977 if Ada_Version >= Ada_2005
8978 and then Can_Never_Be_Null (Typ)
8979 and then Nkind (Parent (N)) = N_Assignment_Statement
8980 then
8981 if not Inside_Init_Proc then
8982 Insert_Action
8983 (Compile_Time_Constraint_Error (N,
8984 "(Ada 2005) null not allowed in null-excluding objects??"),
8985 Make_Raise_Constraint_Error (Loc,
8986 Reason => CE_Access_Check_Failed));
8987 else
8988 Insert_Action (N,
8989 Make_Raise_Constraint_Error (Loc,
8990 Reason => CE_Access_Check_Failed));
8991 end if;
8992 end if;
8994 -- In a distributed context, null for a remote access to subprogram may
8995 -- need to be replaced with a special record aggregate. In this case,
8996 -- return after having done the transformation.
8998 if (Ekind (Typ) = E_Record_Type
8999 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9000 and then Remote_AST_Null_Value (N, Typ)
9001 then
9002 return;
9003 end if;
9005 -- The null literal takes its type from the context
9007 Set_Etype (N, Typ);
9008 end Resolve_Null;
9010 -----------------------
9011 -- Resolve_Op_Concat --
9012 -----------------------
9014 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9016 -- We wish to avoid deep recursion, because concatenations are often
9017 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9018 -- operands nonrecursively until we find something that is not a simple
9019 -- concatenation (A in this case). We resolve that, and then walk back
9020 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9021 -- to do the rest of the work at each level. The Parent pointers allow
9022 -- us to avoid recursion, and thus avoid running out of memory. See also
9023 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9025 NN : Node_Id := N;
9026 Op1 : Node_Id;
9028 begin
9029 -- The following code is equivalent to:
9031 -- Resolve_Op_Concat_First (NN, Typ);
9032 -- Resolve_Op_Concat_Arg (N, ...);
9033 -- Resolve_Op_Concat_Rest (N, Typ);
9035 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9036 -- operand is a concatenation.
9038 -- Walk down left operands
9040 loop
9041 Resolve_Op_Concat_First (NN, Typ);
9042 Op1 := Left_Opnd (NN);
9043 exit when not (Nkind (Op1) = N_Op_Concat
9044 and then not Is_Array_Type (Component_Type (Typ))
9045 and then Entity (Op1) = Entity (NN));
9046 NN := Op1;
9047 end loop;
9049 -- Now (given the above example) NN is A&B and Op1 is A
9051 -- First resolve Op1 ...
9053 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9055 -- ... then walk NN back up until we reach N (where we started), calling
9056 -- Resolve_Op_Concat_Rest along the way.
9058 loop
9059 Resolve_Op_Concat_Rest (NN, Typ);
9060 exit when NN = N;
9061 NN := Parent (NN);
9062 end loop;
9064 if Base_Type (Etype (N)) /= Standard_String then
9065 Check_SPARK_05_Restriction
9066 ("result of concatenation should have type String", N);
9067 end if;
9068 end Resolve_Op_Concat;
9070 ---------------------------
9071 -- Resolve_Op_Concat_Arg --
9072 ---------------------------
9074 procedure Resolve_Op_Concat_Arg
9075 (N : Node_Id;
9076 Arg : Node_Id;
9077 Typ : Entity_Id;
9078 Is_Comp : Boolean)
9080 Btyp : constant Entity_Id := Base_Type (Typ);
9081 Ctyp : constant Entity_Id := Component_Type (Typ);
9083 begin
9084 if In_Instance then
9085 if Is_Comp
9086 or else (not Is_Overloaded (Arg)
9087 and then Etype (Arg) /= Any_Composite
9088 and then Covers (Ctyp, Etype (Arg)))
9089 then
9090 Resolve (Arg, Ctyp);
9091 else
9092 Resolve (Arg, Btyp);
9093 end if;
9095 -- If both Array & Array and Array & Component are visible, there is a
9096 -- potential ambiguity that must be reported.
9098 elsif Has_Compatible_Type (Arg, Ctyp) then
9099 if Nkind (Arg) = N_Aggregate
9100 and then Is_Composite_Type (Ctyp)
9101 then
9102 if Is_Private_Type (Ctyp) then
9103 Resolve (Arg, Btyp);
9105 -- If the operation is user-defined and not overloaded use its
9106 -- profile. The operation may be a renaming, in which case it has
9107 -- been rewritten, and we want the original profile.
9109 elsif not Is_Overloaded (N)
9110 and then Comes_From_Source (Entity (Original_Node (N)))
9111 and then Ekind (Entity (Original_Node (N))) = E_Function
9112 then
9113 Resolve (Arg,
9114 Etype
9115 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9116 return;
9118 -- Otherwise an aggregate may match both the array type and the
9119 -- component type.
9121 else
9122 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9123 Set_Etype (Arg, Any_Type);
9124 end if;
9126 else
9127 if Is_Overloaded (Arg)
9128 and then Has_Compatible_Type (Arg, Typ)
9129 and then Etype (Arg) /= Any_Type
9130 then
9131 declare
9132 I : Interp_Index;
9133 It : Interp;
9134 Func : Entity_Id;
9136 begin
9137 Get_First_Interp (Arg, I, It);
9138 Func := It.Nam;
9139 Get_Next_Interp (I, It);
9141 -- Special-case the error message when the overloading is
9142 -- caused by a function that yields an array and can be
9143 -- called without parameters.
9145 if It.Nam = Func then
9146 Error_Msg_Sloc := Sloc (Func);
9147 Error_Msg_N ("ambiguous call to function#", Arg);
9148 Error_Msg_NE
9149 ("\\interpretation as call yields&", Arg, Typ);
9150 Error_Msg_NE
9151 ("\\interpretation as indexing of call yields&",
9152 Arg, Component_Type (Typ));
9154 else
9155 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9157 Get_First_Interp (Arg, I, It);
9158 while Present (It.Nam) loop
9159 Error_Msg_Sloc := Sloc (It.Nam);
9161 if Base_Type (It.Typ) = Btyp
9162 or else
9163 Base_Type (It.Typ) = Base_Type (Ctyp)
9164 then
9165 Error_Msg_N -- CODEFIX
9166 ("\\possible interpretation#", Arg);
9167 end if;
9169 Get_Next_Interp (I, It);
9170 end loop;
9171 end if;
9172 end;
9173 end if;
9175 Resolve (Arg, Component_Type (Typ));
9177 if Nkind (Arg) = N_String_Literal then
9178 Set_Etype (Arg, Component_Type (Typ));
9179 end if;
9181 if Arg = Left_Opnd (N) then
9182 Set_Is_Component_Left_Opnd (N);
9183 else
9184 Set_Is_Component_Right_Opnd (N);
9185 end if;
9186 end if;
9188 else
9189 Resolve (Arg, Btyp);
9190 end if;
9192 -- Concatenation is restricted in SPARK: each operand must be either a
9193 -- string literal, the name of a string constant, a static character or
9194 -- string expression, or another concatenation. Arg cannot be a
9195 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9196 -- separately on each final operand, past concatenation operations.
9198 if Is_Character_Type (Etype (Arg)) then
9199 if not Is_OK_Static_Expression (Arg) then
9200 Check_SPARK_05_Restriction
9201 ("character operand for concatenation should be static", Arg);
9202 end if;
9204 elsif Is_String_Type (Etype (Arg)) then
9205 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9206 and then Is_Constant_Object (Entity (Arg)))
9207 and then not Is_OK_Static_Expression (Arg)
9208 then
9209 Check_SPARK_05_Restriction
9210 ("string operand for concatenation should be static", Arg);
9211 end if;
9213 -- Do not issue error on an operand that is neither a character nor a
9214 -- string, as the error is issued in Resolve_Op_Concat.
9216 else
9217 null;
9218 end if;
9220 Check_Unset_Reference (Arg);
9221 end Resolve_Op_Concat_Arg;
9223 -----------------------------
9224 -- Resolve_Op_Concat_First --
9225 -----------------------------
9227 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9228 Btyp : constant Entity_Id := Base_Type (Typ);
9229 Op1 : constant Node_Id := Left_Opnd (N);
9230 Op2 : constant Node_Id := Right_Opnd (N);
9232 begin
9233 -- The parser folds an enormous sequence of concatenations of string
9234 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9235 -- in the right operand. If the expression resolves to a predefined "&"
9236 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9237 -- we give an error. See P_Simple_Expression in Par.Ch4.
9239 if Nkind (Op2) = N_String_Literal
9240 and then Is_Folded_In_Parser (Op2)
9241 and then Ekind (Entity (N)) = E_Function
9242 then
9243 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9244 and then String_Length (Strval (Op1)) = 0);
9245 Error_Msg_N ("too many user-defined concatenations", N);
9246 return;
9247 end if;
9249 Set_Etype (N, Btyp);
9251 if Is_Limited_Composite (Btyp) then
9252 Error_Msg_N ("concatenation not available for limited array", N);
9253 Explain_Limited_Type (Btyp, N);
9254 end if;
9255 end Resolve_Op_Concat_First;
9257 ----------------------------
9258 -- Resolve_Op_Concat_Rest --
9259 ----------------------------
9261 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9262 Op1 : constant Node_Id := Left_Opnd (N);
9263 Op2 : constant Node_Id := Right_Opnd (N);
9265 begin
9266 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9268 Generate_Operator_Reference (N, Typ);
9270 if Is_String_Type (Typ) then
9271 Eval_Concatenation (N);
9272 end if;
9274 -- If this is not a static concatenation, but the result is a string
9275 -- type (and not an array of strings) ensure that static string operands
9276 -- have their subtypes properly constructed.
9278 if Nkind (N) /= N_String_Literal
9279 and then Is_Character_Type (Component_Type (Typ))
9280 then
9281 Set_String_Literal_Subtype (Op1, Typ);
9282 Set_String_Literal_Subtype (Op2, Typ);
9283 end if;
9284 end Resolve_Op_Concat_Rest;
9286 ----------------------
9287 -- Resolve_Op_Expon --
9288 ----------------------
9290 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9291 B_Typ : constant Entity_Id := Base_Type (Typ);
9293 begin
9294 -- Catch attempts to do fixed-point exponentiation with universal
9295 -- operands, which is a case where the illegality is not caught during
9296 -- normal operator analysis. This is not done in preanalysis mode
9297 -- since the tree is not fully decorated during preanalysis.
9299 if Full_Analysis then
9300 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9301 Error_Msg_N ("exponentiation not available for fixed point", N);
9302 return;
9304 elsif Nkind (Parent (N)) in N_Op
9305 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9306 and then Etype (N) = Universal_Real
9307 and then Comes_From_Source (N)
9308 then
9309 Error_Msg_N ("exponentiation not available for fixed point", N);
9310 return;
9311 end if;
9312 end if;
9314 if Comes_From_Source (N)
9315 and then Ekind (Entity (N)) = E_Function
9316 and then Is_Imported (Entity (N))
9317 and then Is_Intrinsic_Subprogram (Entity (N))
9318 then
9319 Resolve_Intrinsic_Operator (N, Typ);
9320 return;
9321 end if;
9323 if Etype (Left_Opnd (N)) = Universal_Integer
9324 or else Etype (Left_Opnd (N)) = Universal_Real
9325 then
9326 Check_For_Visible_Operator (N, B_Typ);
9327 end if;
9329 -- We do the resolution using the base type, because intermediate values
9330 -- in expressions are always of the base type, not a subtype of it.
9332 Resolve (Left_Opnd (N), B_Typ);
9333 Resolve (Right_Opnd (N), Standard_Integer);
9335 -- For integer types, right argument must be in Natural range
9337 if Is_Integer_Type (Typ) then
9338 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9339 end if;
9341 Check_Unset_Reference (Left_Opnd (N));
9342 Check_Unset_Reference (Right_Opnd (N));
9344 Set_Etype (N, B_Typ);
9345 Generate_Operator_Reference (N, B_Typ);
9347 Analyze_Dimension (N);
9349 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9350 -- Evaluate the exponentiation operator for dimensioned type
9352 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9353 else
9354 Eval_Op_Expon (N);
9355 end if;
9357 -- Set overflow checking bit. Much cleverer code needed here eventually
9358 -- and perhaps the Resolve routines should be separated for the various
9359 -- arithmetic operations, since they will need different processing. ???
9361 if Nkind (N) in N_Op then
9362 if not Overflow_Checks_Suppressed (Etype (N)) then
9363 Enable_Overflow_Check (N);
9364 end if;
9365 end if;
9366 end Resolve_Op_Expon;
9368 --------------------
9369 -- Resolve_Op_Not --
9370 --------------------
9372 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9373 B_Typ : Entity_Id;
9375 function Parent_Is_Boolean return Boolean;
9376 -- This function determines if the parent node is a boolean operator or
9377 -- operation (comparison op, membership test, or short circuit form) and
9378 -- the not in question is the left operand of this operation. Note that
9379 -- if the not is in parens, then false is returned.
9381 -----------------------
9382 -- Parent_Is_Boolean --
9383 -----------------------
9385 function Parent_Is_Boolean return Boolean is
9386 begin
9387 if Paren_Count (N) /= 0 then
9388 return False;
9390 else
9391 case Nkind (Parent (N)) is
9392 when N_Op_And |
9393 N_Op_Eq |
9394 N_Op_Ge |
9395 N_Op_Gt |
9396 N_Op_Le |
9397 N_Op_Lt |
9398 N_Op_Ne |
9399 N_Op_Or |
9400 N_Op_Xor |
9401 N_In |
9402 N_Not_In |
9403 N_And_Then |
9404 N_Or_Else =>
9406 return Left_Opnd (Parent (N)) = N;
9408 when others =>
9409 return False;
9410 end case;
9411 end if;
9412 end Parent_Is_Boolean;
9414 -- Start of processing for Resolve_Op_Not
9416 begin
9417 -- Predefined operations on scalar types yield the base type. On the
9418 -- other hand, logical operations on arrays yield the type of the
9419 -- arguments (and the context).
9421 if Is_Array_Type (Typ) then
9422 B_Typ := Typ;
9423 else
9424 B_Typ := Base_Type (Typ);
9425 end if;
9427 -- Straightforward case of incorrect arguments
9429 if not Valid_Boolean_Arg (Typ) then
9430 Error_Msg_N ("invalid operand type for operator&", N);
9431 Set_Etype (N, Any_Type);
9432 return;
9434 -- Special case of probable missing parens
9436 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9437 if Parent_Is_Boolean then
9438 Error_Msg_N
9439 ("operand of not must be enclosed in parentheses",
9440 Right_Opnd (N));
9441 else
9442 Error_Msg_N
9443 ("no modular type available in this context", N);
9444 end if;
9446 Set_Etype (N, Any_Type);
9447 return;
9449 -- OK resolution of NOT
9451 else
9452 -- Warn if non-boolean types involved. This is a case like not a < b
9453 -- where a and b are modular, where we will get (not a) < b and most
9454 -- likely not (a < b) was intended.
9456 if Warn_On_Questionable_Missing_Parens
9457 and then not Is_Boolean_Type (Typ)
9458 and then Parent_Is_Boolean
9459 then
9460 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9461 end if;
9463 -- Warn on double negation if checking redundant constructs
9465 if Warn_On_Redundant_Constructs
9466 and then Comes_From_Source (N)
9467 and then Comes_From_Source (Right_Opnd (N))
9468 and then Root_Type (Typ) = Standard_Boolean
9469 and then Nkind (Right_Opnd (N)) = N_Op_Not
9470 then
9471 Error_Msg_N ("redundant double negation?r?", N);
9472 end if;
9474 -- Complete resolution and evaluation of NOT
9476 Resolve (Right_Opnd (N), B_Typ);
9477 Check_Unset_Reference (Right_Opnd (N));
9478 Set_Etype (N, B_Typ);
9479 Generate_Operator_Reference (N, B_Typ);
9480 Eval_Op_Not (N);
9481 end if;
9482 end Resolve_Op_Not;
9484 -----------------------------
9485 -- Resolve_Operator_Symbol --
9486 -----------------------------
9488 -- Nothing to be done, all resolved already
9490 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9491 pragma Warnings (Off, N);
9492 pragma Warnings (Off, Typ);
9494 begin
9495 null;
9496 end Resolve_Operator_Symbol;
9498 ----------------------------------
9499 -- Resolve_Qualified_Expression --
9500 ----------------------------------
9502 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9503 pragma Warnings (Off, Typ);
9505 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9506 Expr : constant Node_Id := Expression (N);
9508 begin
9509 Resolve (Expr, Target_Typ);
9511 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9512 -- operation if not needed.
9514 if Restriction_Check_Required (SPARK_05)
9515 and then Is_Array_Type (Target_Typ)
9516 and then Is_Array_Type (Etype (Expr))
9517 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9518 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9519 then
9520 Check_SPARK_05_Restriction
9521 ("array types should have matching static bounds", N);
9522 end if;
9524 -- A qualified expression requires an exact match of the type, class-
9525 -- wide matching is not allowed. However, if the qualifying type is
9526 -- specific and the expression has a class-wide type, it may still be
9527 -- okay, since it can be the result of the expansion of a call to a
9528 -- dispatching function, so we also have to check class-wideness of the
9529 -- type of the expression's original node.
9531 if (Is_Class_Wide_Type (Target_Typ)
9532 or else
9533 (Is_Class_Wide_Type (Etype (Expr))
9534 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9535 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9536 then
9537 Wrong_Type (Expr, Target_Typ);
9538 end if;
9540 -- If the target type is unconstrained, then we reset the type of the
9541 -- result from the type of the expression. For other cases, the actual
9542 -- subtype of the expression is the target type.
9544 if Is_Composite_Type (Target_Typ)
9545 and then not Is_Constrained (Target_Typ)
9546 then
9547 Set_Etype (N, Etype (Expr));
9548 end if;
9550 Analyze_Dimension (N);
9551 Eval_Qualified_Expression (N);
9553 -- If we still have a qualified expression after the static evaluation,
9554 -- then apply a scalar range check if needed. The reason that we do this
9555 -- after the Eval call is that otherwise, the application of the range
9556 -- check may convert an illegal static expression and result in warning
9557 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9559 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9560 Apply_Scalar_Range_Check (Expr, Typ);
9561 end if;
9562 end Resolve_Qualified_Expression;
9564 ------------------------------
9565 -- Resolve_Raise_Expression --
9566 ------------------------------
9568 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9569 begin
9570 if Typ = Raise_Type then
9571 Error_Msg_N ("cannot find unique type for raise expression", N);
9572 Set_Etype (N, Any_Type);
9573 else
9574 Set_Etype (N, Typ);
9575 end if;
9576 end Resolve_Raise_Expression;
9578 -------------------
9579 -- Resolve_Range --
9580 -------------------
9582 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9583 L : constant Node_Id := Low_Bound (N);
9584 H : constant Node_Id := High_Bound (N);
9586 function First_Last_Ref return Boolean;
9587 -- Returns True if N is of the form X'First .. X'Last where X is the
9588 -- same entity for both attributes.
9590 --------------------
9591 -- First_Last_Ref --
9592 --------------------
9594 function First_Last_Ref return Boolean is
9595 Lorig : constant Node_Id := Original_Node (L);
9596 Horig : constant Node_Id := Original_Node (H);
9598 begin
9599 if Nkind (Lorig) = N_Attribute_Reference
9600 and then Nkind (Horig) = N_Attribute_Reference
9601 and then Attribute_Name (Lorig) = Name_First
9602 and then Attribute_Name (Horig) = Name_Last
9603 then
9604 declare
9605 PL : constant Node_Id := Prefix (Lorig);
9606 PH : constant Node_Id := Prefix (Horig);
9607 begin
9608 if Is_Entity_Name (PL)
9609 and then Is_Entity_Name (PH)
9610 and then Entity (PL) = Entity (PH)
9611 then
9612 return True;
9613 end if;
9614 end;
9615 end if;
9617 return False;
9618 end First_Last_Ref;
9620 -- Start of processing for Resolve_Range
9622 begin
9623 Set_Etype (N, Typ);
9624 Resolve (L, Typ);
9625 Resolve (H, Typ);
9627 -- Check for inappropriate range on unordered enumeration type
9629 if Bad_Unordered_Enumeration_Reference (N, Typ)
9631 -- Exclude X'First .. X'Last if X is the same entity for both
9633 and then not First_Last_Ref
9634 then
9635 Error_Msg_Sloc := Sloc (Typ);
9636 Error_Msg_NE
9637 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9638 end if;
9640 Check_Unset_Reference (L);
9641 Check_Unset_Reference (H);
9643 -- We have to check the bounds for being within the base range as
9644 -- required for a non-static context. Normally this is automatic and
9645 -- done as part of evaluating expressions, but the N_Range node is an
9646 -- exception, since in GNAT we consider this node to be a subexpression,
9647 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9648 -- this, but that would put the test on the main evaluation path for
9649 -- expressions.
9651 Check_Non_Static_Context (L);
9652 Check_Non_Static_Context (H);
9654 -- Check for an ambiguous range over character literals. This will
9655 -- happen with a membership test involving only literals.
9657 if Typ = Any_Character then
9658 Ambiguous_Character (L);
9659 Set_Etype (N, Any_Type);
9660 return;
9661 end if;
9663 -- If bounds are static, constant-fold them, so size computations are
9664 -- identical between front-end and back-end. Do not perform this
9665 -- transformation while analyzing generic units, as type information
9666 -- would be lost when reanalyzing the constant node in the instance.
9668 if Is_Discrete_Type (Typ) and then Expander_Active then
9669 if Is_OK_Static_Expression (L) then
9670 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9671 end if;
9673 if Is_OK_Static_Expression (H) then
9674 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9675 end if;
9676 end if;
9677 end Resolve_Range;
9679 --------------------------
9680 -- Resolve_Real_Literal --
9681 --------------------------
9683 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9684 Actual_Typ : constant Entity_Id := Etype (N);
9686 begin
9687 -- Special processing for fixed-point literals to make sure that the
9688 -- value is an exact multiple of small where this is required. We skip
9689 -- this for the universal real case, and also for generic types.
9691 if Is_Fixed_Point_Type (Typ)
9692 and then Typ /= Universal_Fixed
9693 and then Typ /= Any_Fixed
9694 and then not Is_Generic_Type (Typ)
9695 then
9696 declare
9697 Val : constant Ureal := Realval (N);
9698 Cintr : constant Ureal := Val / Small_Value (Typ);
9699 Cint : constant Uint := UR_Trunc (Cintr);
9700 Den : constant Uint := Norm_Den (Cintr);
9701 Stat : Boolean;
9703 begin
9704 -- Case of literal is not an exact multiple of the Small
9706 if Den /= 1 then
9708 -- For a source program literal for a decimal fixed-point type,
9709 -- this is statically illegal (RM 4.9(36)).
9711 if Is_Decimal_Fixed_Point_Type (Typ)
9712 and then Actual_Typ = Universal_Real
9713 and then Comes_From_Source (N)
9714 then
9715 Error_Msg_N ("value has extraneous low order digits", N);
9716 end if;
9718 -- Generate a warning if literal from source
9720 if Is_OK_Static_Expression (N)
9721 and then Warn_On_Bad_Fixed_Value
9722 then
9723 Error_Msg_N
9724 ("?b?static fixed-point value is not a multiple of Small!",
9726 end if;
9728 -- Replace literal by a value that is the exact representation
9729 -- of a value of the type, i.e. a multiple of the small value,
9730 -- by truncation, since Machine_Rounds is false for all GNAT
9731 -- fixed-point types (RM 4.9(38)).
9733 Stat := Is_OK_Static_Expression (N);
9734 Rewrite (N,
9735 Make_Real_Literal (Sloc (N),
9736 Realval => Small_Value (Typ) * Cint));
9738 Set_Is_Static_Expression (N, Stat);
9739 end if;
9741 -- In all cases, set the corresponding integer field
9743 Set_Corresponding_Integer_Value (N, Cint);
9744 end;
9745 end if;
9747 -- Now replace the actual type by the expected type as usual
9749 Set_Etype (N, Typ);
9750 Eval_Real_Literal (N);
9751 end Resolve_Real_Literal;
9753 -----------------------
9754 -- Resolve_Reference --
9755 -----------------------
9757 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9758 P : constant Node_Id := Prefix (N);
9760 begin
9761 -- Replace general access with specific type
9763 if Ekind (Etype (N)) = E_Allocator_Type then
9764 Set_Etype (N, Base_Type (Typ));
9765 end if;
9767 Resolve (P, Designated_Type (Etype (N)));
9769 -- If we are taking the reference of a volatile entity, then treat it as
9770 -- a potential modification of this entity. This is too conservative,
9771 -- but necessary because remove side effects can cause transformations
9772 -- of normal assignments into reference sequences that otherwise fail to
9773 -- notice the modification.
9775 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9776 Note_Possible_Modification (P, Sure => False);
9777 end if;
9778 end Resolve_Reference;
9780 --------------------------------
9781 -- Resolve_Selected_Component --
9782 --------------------------------
9784 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9785 Comp : Entity_Id;
9786 Comp1 : Entity_Id := Empty; -- prevent junk warning
9787 P : constant Node_Id := Prefix (N);
9788 S : constant Node_Id := Selector_Name (N);
9789 T : Entity_Id := Etype (P);
9790 I : Interp_Index;
9791 I1 : Interp_Index := 0; -- prevent junk warning
9792 It : Interp;
9793 It1 : Interp;
9794 Found : Boolean;
9796 function Init_Component return Boolean;
9797 -- Check whether this is the initialization of a component within an
9798 -- init proc (by assignment or call to another init proc). If true,
9799 -- there is no need for a discriminant check.
9801 --------------------
9802 -- Init_Component --
9803 --------------------
9805 function Init_Component return Boolean is
9806 begin
9807 return Inside_Init_Proc
9808 and then Nkind (Prefix (N)) = N_Identifier
9809 and then Chars (Prefix (N)) = Name_uInit
9810 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9811 end Init_Component;
9813 -- Start of processing for Resolve_Selected_Component
9815 begin
9816 if Is_Overloaded (P) then
9818 -- Use the context type to select the prefix that has a selector
9819 -- of the correct name and type.
9821 Found := False;
9822 Get_First_Interp (P, I, It);
9824 Search : while Present (It.Typ) loop
9825 if Is_Access_Type (It.Typ) then
9826 T := Designated_Type (It.Typ);
9827 else
9828 T := It.Typ;
9829 end if;
9831 -- Locate selected component. For a private prefix the selector
9832 -- can denote a discriminant.
9834 if Is_Record_Type (T) or else Is_Private_Type (T) then
9836 -- The visible components of a class-wide type are those of
9837 -- the root type.
9839 if Is_Class_Wide_Type (T) then
9840 T := Etype (T);
9841 end if;
9843 Comp := First_Entity (T);
9844 while Present (Comp) loop
9845 if Chars (Comp) = Chars (S)
9846 and then Covers (Typ, Etype (Comp))
9847 then
9848 if not Found then
9849 Found := True;
9850 I1 := I;
9851 It1 := It;
9852 Comp1 := Comp;
9854 else
9855 It := Disambiguate (P, I1, I, Any_Type);
9857 if It = No_Interp then
9858 Error_Msg_N
9859 ("ambiguous prefix for selected component", N);
9860 Set_Etype (N, Typ);
9861 return;
9863 else
9864 It1 := It;
9866 -- There may be an implicit dereference. Retrieve
9867 -- designated record type.
9869 if Is_Access_Type (It1.Typ) then
9870 T := Designated_Type (It1.Typ);
9871 else
9872 T := It1.Typ;
9873 end if;
9875 if Scope (Comp1) /= T then
9877 -- Resolution chooses the new interpretation.
9878 -- Find the component with the right name.
9880 Comp1 := First_Entity (T);
9881 while Present (Comp1)
9882 and then Chars (Comp1) /= Chars (S)
9883 loop
9884 Comp1 := Next_Entity (Comp1);
9885 end loop;
9886 end if;
9888 exit Search;
9889 end if;
9890 end if;
9891 end if;
9893 Comp := Next_Entity (Comp);
9894 end loop;
9895 end if;
9897 Get_Next_Interp (I, It);
9898 end loop Search;
9900 -- There must be a legal interpretation at this point
9902 pragma Assert (Found);
9903 Resolve (P, It1.Typ);
9904 Set_Etype (N, Typ);
9905 Set_Entity_With_Checks (S, Comp1);
9907 else
9908 -- Resolve prefix with its type
9910 Resolve (P, T);
9911 end if;
9913 -- Generate cross-reference. We needed to wait until full overloading
9914 -- resolution was complete to do this, since otherwise we can't tell if
9915 -- we are an lvalue or not.
9917 if May_Be_Lvalue (N) then
9918 Generate_Reference (Entity (S), S, 'm');
9919 else
9920 Generate_Reference (Entity (S), S, 'r');
9921 end if;
9923 -- If prefix is an access type, the node will be transformed into an
9924 -- explicit dereference during expansion. The type of the node is the
9925 -- designated type of that of the prefix.
9927 if Is_Access_Type (Etype (P)) then
9928 T := Designated_Type (Etype (P));
9929 Check_Fully_Declared_Prefix (T, P);
9930 else
9931 T := Etype (P);
9932 end if;
9934 -- Set flag for expander if discriminant check required on a component
9935 -- appearing within a variant.
9937 if Has_Discriminants (T)
9938 and then Ekind (Entity (S)) = E_Component
9939 and then Present (Original_Record_Component (Entity (S)))
9940 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9941 and then
9942 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
9943 and then not Discriminant_Checks_Suppressed (T)
9944 and then not Init_Component
9945 then
9946 Set_Do_Discriminant_Check (N);
9947 end if;
9949 if Ekind (Entity (S)) = E_Void then
9950 Error_Msg_N ("premature use of component", S);
9951 end if;
9953 -- If the prefix is a record conversion, this may be a renamed
9954 -- discriminant whose bounds differ from those of the original
9955 -- one, so we must ensure that a range check is performed.
9957 if Nkind (P) = N_Type_Conversion
9958 and then Ekind (Entity (S)) = E_Discriminant
9959 and then Is_Discrete_Type (Typ)
9960 then
9961 Set_Etype (N, Base_Type (Typ));
9962 end if;
9964 -- Note: No Eval processing is required, because the prefix is of a
9965 -- record type, or protected type, and neither can possibly be static.
9967 -- If the record type is atomic, and the component is non-atomic, then
9968 -- this is worth a warning, since we have a situation where the access
9969 -- to the component may cause extra read/writes of the atomic array
9970 -- object, or partial word accesses, both of which may be unexpected.
9972 if Nkind (N) = N_Selected_Component
9973 and then Is_Atomic_Ref_With_Address (N)
9974 and then not Is_Atomic (Entity (S))
9975 and then not Is_Atomic (Etype (Entity (S)))
9976 then
9977 Error_Msg_N
9978 ("??access to non-atomic component of atomic record",
9979 Prefix (N));
9980 Error_Msg_N
9981 ("\??may cause unexpected accesses to atomic object",
9982 Prefix (N));
9983 end if;
9985 Analyze_Dimension (N);
9986 end Resolve_Selected_Component;
9988 -------------------
9989 -- Resolve_Shift --
9990 -------------------
9992 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9993 B_Typ : constant Entity_Id := Base_Type (Typ);
9994 L : constant Node_Id := Left_Opnd (N);
9995 R : constant Node_Id := Right_Opnd (N);
9997 begin
9998 -- We do the resolution using the base type, because intermediate values
9999 -- in expressions always are of the base type, not a subtype of it.
10001 Resolve (L, B_Typ);
10002 Resolve (R, Standard_Natural);
10004 Check_Unset_Reference (L);
10005 Check_Unset_Reference (R);
10007 Set_Etype (N, B_Typ);
10008 Generate_Operator_Reference (N, B_Typ);
10009 Eval_Shift (N);
10010 end Resolve_Shift;
10012 ---------------------------
10013 -- Resolve_Short_Circuit --
10014 ---------------------------
10016 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10017 B_Typ : constant Entity_Id := Base_Type (Typ);
10018 L : constant Node_Id := Left_Opnd (N);
10019 R : constant Node_Id := Right_Opnd (N);
10021 begin
10022 -- Ensure all actions associated with the left operand (e.g.
10023 -- finalization of transient controlled objects) are fully evaluated
10024 -- locally within an expression with actions. This is particularly
10025 -- helpful for coverage analysis. However this should not happen in
10026 -- generics.
10028 if Expander_Active then
10029 declare
10030 Reloc_L : constant Node_Id := Relocate_Node (L);
10031 begin
10032 Save_Interps (Old_N => L, New_N => Reloc_L);
10034 Rewrite (L,
10035 Make_Expression_With_Actions (Sloc (L),
10036 Actions => New_List,
10037 Expression => Reloc_L));
10039 -- Set Comes_From_Source on L to preserve warnings for unset
10040 -- reference.
10042 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10043 end;
10044 end if;
10046 Resolve (L, B_Typ);
10047 Resolve (R, B_Typ);
10049 -- Check for issuing warning for always False assert/check, this happens
10050 -- when assertions are turned off, in which case the pragma Assert/Check
10051 -- was transformed into:
10053 -- if False and then <condition> then ...
10055 -- and we detect this pattern
10057 if Warn_On_Assertion_Failure
10058 and then Is_Entity_Name (R)
10059 and then Entity (R) = Standard_False
10060 and then Nkind (Parent (N)) = N_If_Statement
10061 and then Nkind (N) = N_And_Then
10062 and then Is_Entity_Name (L)
10063 and then Entity (L) = Standard_False
10064 then
10065 declare
10066 Orig : constant Node_Id := Original_Node (Parent (N));
10068 begin
10069 -- Special handling of Asssert pragma
10071 if Nkind (Orig) = N_Pragma
10072 and then Pragma_Name (Orig) = Name_Assert
10073 then
10074 declare
10075 Expr : constant Node_Id :=
10076 Original_Node
10077 (Expression
10078 (First (Pragma_Argument_Associations (Orig))));
10080 begin
10081 -- Don't warn if original condition is explicit False,
10082 -- since obviously the failure is expected in this case.
10084 if Is_Entity_Name (Expr)
10085 and then Entity (Expr) = Standard_False
10086 then
10087 null;
10089 -- Issue warning. We do not want the deletion of the
10090 -- IF/AND-THEN to take this message with it. We achieve this
10091 -- by making sure that the expanded code points to the Sloc
10092 -- of the expression, not the original pragma.
10094 else
10095 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10096 -- The source location of the expression is not usually
10097 -- the best choice here. For example, it gets located on
10098 -- the last AND keyword in a chain of boolean expressiond
10099 -- AND'ed together. It is best to put the message on the
10100 -- first character of the assertion, which is the effect
10101 -- of the First_Node call here.
10103 Error_Msg_F
10104 ("?A?assertion would fail at run time!",
10105 Expression
10106 (First (Pragma_Argument_Associations (Orig))));
10107 end if;
10108 end;
10110 -- Similar processing for Check pragma
10112 elsif Nkind (Orig) = N_Pragma
10113 and then Pragma_Name (Orig) = Name_Check
10114 then
10115 -- Don't want to warn if original condition is explicit False
10117 declare
10118 Expr : constant Node_Id :=
10119 Original_Node
10120 (Expression
10121 (Next (First (Pragma_Argument_Associations (Orig)))));
10122 begin
10123 if Is_Entity_Name (Expr)
10124 and then Entity (Expr) = Standard_False
10125 then
10126 null;
10128 -- Post warning
10130 else
10131 -- Again use Error_Msg_F rather than Error_Msg_N, see
10132 -- comment above for an explanation of why we do this.
10134 Error_Msg_F
10135 ("?A?check would fail at run time!",
10136 Expression
10137 (Last (Pragma_Argument_Associations (Orig))));
10138 end if;
10139 end;
10140 end if;
10141 end;
10142 end if;
10144 -- Continue with processing of short circuit
10146 Check_Unset_Reference (L);
10147 Check_Unset_Reference (R);
10149 Set_Etype (N, B_Typ);
10150 Eval_Short_Circuit (N);
10151 end Resolve_Short_Circuit;
10153 -------------------
10154 -- Resolve_Slice --
10155 -------------------
10157 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10158 Drange : constant Node_Id := Discrete_Range (N);
10159 Name : constant Node_Id := Prefix (N);
10160 Array_Type : Entity_Id := Empty;
10161 Dexpr : Node_Id := Empty;
10162 Index_Type : Entity_Id;
10164 begin
10165 if Is_Overloaded (Name) then
10167 -- Use the context type to select the prefix that yields the correct
10168 -- array type.
10170 declare
10171 I : Interp_Index;
10172 I1 : Interp_Index := 0;
10173 It : Interp;
10174 P : constant Node_Id := Prefix (N);
10175 Found : Boolean := False;
10177 begin
10178 Get_First_Interp (P, I, It);
10179 while Present (It.Typ) loop
10180 if (Is_Array_Type (It.Typ)
10181 and then Covers (Typ, It.Typ))
10182 or else (Is_Access_Type (It.Typ)
10183 and then Is_Array_Type (Designated_Type (It.Typ))
10184 and then Covers (Typ, Designated_Type (It.Typ)))
10185 then
10186 if Found then
10187 It := Disambiguate (P, I1, I, Any_Type);
10189 if It = No_Interp then
10190 Error_Msg_N ("ambiguous prefix for slicing", N);
10191 Set_Etype (N, Typ);
10192 return;
10193 else
10194 Found := True;
10195 Array_Type := It.Typ;
10196 I1 := I;
10197 end if;
10198 else
10199 Found := True;
10200 Array_Type := It.Typ;
10201 I1 := I;
10202 end if;
10203 end if;
10205 Get_Next_Interp (I, It);
10206 end loop;
10207 end;
10209 else
10210 Array_Type := Etype (Name);
10211 end if;
10213 Resolve (Name, Array_Type);
10215 if Is_Access_Type (Array_Type) then
10216 Apply_Access_Check (N);
10217 Array_Type := Designated_Type (Array_Type);
10219 -- If the prefix is an access to an unconstrained array, we must use
10220 -- the actual subtype of the object to perform the index checks. The
10221 -- object denoted by the prefix is implicit in the node, so we build
10222 -- an explicit representation for it in order to compute the actual
10223 -- subtype.
10225 if not Is_Constrained (Array_Type) then
10226 Remove_Side_Effects (Prefix (N));
10228 declare
10229 Obj : constant Node_Id :=
10230 Make_Explicit_Dereference (Sloc (N),
10231 Prefix => New_Copy_Tree (Prefix (N)));
10232 begin
10233 Set_Etype (Obj, Array_Type);
10234 Set_Parent (Obj, Parent (N));
10235 Array_Type := Get_Actual_Subtype (Obj);
10236 end;
10237 end if;
10239 elsif Is_Entity_Name (Name)
10240 or else Nkind (Name) = N_Explicit_Dereference
10241 or else (Nkind (Name) = N_Function_Call
10242 and then not Is_Constrained (Etype (Name)))
10243 then
10244 Array_Type := Get_Actual_Subtype (Name);
10246 -- If the name is a selected component that depends on discriminants,
10247 -- build an actual subtype for it. This can happen only when the name
10248 -- itself is overloaded; otherwise the actual subtype is created when
10249 -- the selected component is analyzed.
10251 elsif Nkind (Name) = N_Selected_Component
10252 and then Full_Analysis
10253 and then Depends_On_Discriminant (First_Index (Array_Type))
10254 then
10255 declare
10256 Act_Decl : constant Node_Id :=
10257 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10258 begin
10259 Insert_Action (N, Act_Decl);
10260 Array_Type := Defining_Identifier (Act_Decl);
10261 end;
10263 -- Maybe this should just be "else", instead of checking for the
10264 -- specific case of slice??? This is needed for the case where the
10265 -- prefix is an Image attribute, which gets expanded to a slice, and so
10266 -- has a constrained subtype which we want to use for the slice range
10267 -- check applied below (the range check won't get done if the
10268 -- unconstrained subtype of the 'Image is used).
10270 elsif Nkind (Name) = N_Slice then
10271 Array_Type := Etype (Name);
10272 end if;
10274 -- Obtain the type of the array index
10276 if Ekind (Array_Type) = E_String_Literal_Subtype then
10277 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10278 else
10279 Index_Type := Etype (First_Index (Array_Type));
10280 end if;
10282 -- If name was overloaded, set slice type correctly now
10284 Set_Etype (N, Array_Type);
10286 -- Handle the generation of a range check that compares the array index
10287 -- against the discrete_range. The check is not applied to internally
10288 -- built nodes associated with the expansion of dispatch tables. Check
10289 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10290 -- the unit.
10292 if Tagged_Type_Expansion
10293 and then RTU_Loaded (Ada_Tags)
10294 and then Nkind (Prefix (N)) = N_Selected_Component
10295 and then Present (Entity (Selector_Name (Prefix (N))))
10296 and then Entity (Selector_Name (Prefix (N))) =
10297 RTE_Record_Component (RE_Prims_Ptr)
10298 then
10299 null;
10301 -- The discrete_range is specified by a subtype indication. Create a
10302 -- shallow copy and inherit the type, parent and source location from
10303 -- the discrete_range. This ensures that the range check is inserted
10304 -- relative to the slice and that the runtime exception points to the
10305 -- proper construct.
10307 elsif Is_Entity_Name (Drange) then
10308 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10310 Set_Etype (Dexpr, Etype (Drange));
10311 Set_Parent (Dexpr, Parent (Drange));
10312 Set_Sloc (Dexpr, Sloc (Drange));
10314 -- The discrete_range is a regular range. Resolve the bounds and remove
10315 -- their side effects.
10317 else
10318 Resolve (Drange, Base_Type (Index_Type));
10320 if Nkind (Drange) = N_Range then
10321 Force_Evaluation (Low_Bound (Drange));
10322 Force_Evaluation (High_Bound (Drange));
10324 Dexpr := Drange;
10325 end if;
10326 end if;
10328 if Present (Dexpr) then
10329 Apply_Range_Check (Dexpr, Index_Type);
10330 end if;
10332 Set_Slice_Subtype (N);
10334 -- Check bad use of type with predicates
10336 declare
10337 Subt : Entity_Id;
10339 begin
10340 if Nkind (Drange) = N_Subtype_Indication
10341 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10342 then
10343 Subt := Entity (Subtype_Mark (Drange));
10344 else
10345 Subt := Etype (Drange);
10346 end if;
10348 if Has_Predicates (Subt) then
10349 Bad_Predicated_Subtype_Use
10350 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10351 end if;
10352 end;
10354 -- Otherwise here is where we check suspicious indexes
10356 if Nkind (Drange) = N_Range then
10357 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10358 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10359 end if;
10361 Analyze_Dimension (N);
10362 Eval_Slice (N);
10363 end Resolve_Slice;
10365 ----------------------------
10366 -- Resolve_String_Literal --
10367 ----------------------------
10369 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10370 C_Typ : constant Entity_Id := Component_Type (Typ);
10371 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10372 Loc : constant Source_Ptr := Sloc (N);
10373 Str : constant String_Id := Strval (N);
10374 Strlen : constant Nat := String_Length (Str);
10375 Subtype_Id : Entity_Id;
10376 Need_Check : Boolean;
10378 begin
10379 -- For a string appearing in a concatenation, defer creation of the
10380 -- string_literal_subtype until the end of the resolution of the
10381 -- concatenation, because the literal may be constant-folded away. This
10382 -- is a useful optimization for long concatenation expressions.
10384 -- If the string is an aggregate built for a single character (which
10385 -- happens in a non-static context) or a is null string to which special
10386 -- checks may apply, we build the subtype. Wide strings must also get a
10387 -- string subtype if they come from a one character aggregate. Strings
10388 -- generated by attributes might be static, but it is often hard to
10389 -- determine whether the enclosing context is static, so we generate
10390 -- subtypes for them as well, thus losing some rarer optimizations ???
10391 -- Same for strings that come from a static conversion.
10393 Need_Check :=
10394 (Strlen = 0 and then Typ /= Standard_String)
10395 or else Nkind (Parent (N)) /= N_Op_Concat
10396 or else (N /= Left_Opnd (Parent (N))
10397 and then N /= Right_Opnd (Parent (N)))
10398 or else ((Typ = Standard_Wide_String
10399 or else Typ = Standard_Wide_Wide_String)
10400 and then Nkind (Original_Node (N)) /= N_String_Literal);
10402 -- If the resolving type is itself a string literal subtype, we can just
10403 -- reuse it, since there is no point in creating another.
10405 if Ekind (Typ) = E_String_Literal_Subtype then
10406 Subtype_Id := Typ;
10408 elsif Nkind (Parent (N)) = N_Op_Concat
10409 and then not Need_Check
10410 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10411 N_Attribute_Reference,
10412 N_Qualified_Expression,
10413 N_Type_Conversion)
10414 then
10415 Subtype_Id := Typ;
10417 -- Do not generate a string literal subtype for the default expression
10418 -- of a formal parameter in GNATprove mode. This is because the string
10419 -- subtype is associated with the freezing actions of the subprogram,
10420 -- however freezing is disabled in GNATprove mode and as a result the
10421 -- subtype is unavailable.
10423 elsif GNATprove_Mode
10424 and then Nkind (Parent (N)) = N_Parameter_Specification
10425 then
10426 Subtype_Id := Typ;
10428 -- Otherwise we must create a string literal subtype. Note that the
10429 -- whole idea of string literal subtypes is simply to avoid the need
10430 -- for building a full fledged array subtype for each literal.
10432 else
10433 Set_String_Literal_Subtype (N, Typ);
10434 Subtype_Id := Etype (N);
10435 end if;
10437 if Nkind (Parent (N)) /= N_Op_Concat
10438 or else Need_Check
10439 then
10440 Set_Etype (N, Subtype_Id);
10441 Eval_String_Literal (N);
10442 end if;
10444 if Is_Limited_Composite (Typ)
10445 or else Is_Private_Composite (Typ)
10446 then
10447 Error_Msg_N ("string literal not available for private array", N);
10448 Set_Etype (N, Any_Type);
10449 return;
10450 end if;
10452 -- The validity of a null string has been checked in the call to
10453 -- Eval_String_Literal.
10455 if Strlen = 0 then
10456 return;
10458 -- Always accept string literal with component type Any_Character, which
10459 -- occurs in error situations and in comparisons of literals, both of
10460 -- which should accept all literals.
10462 elsif R_Typ = Any_Character then
10463 return;
10465 -- If the type is bit-packed, then we always transform the string
10466 -- literal into a full fledged aggregate.
10468 elsif Is_Bit_Packed_Array (Typ) then
10469 null;
10471 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10473 else
10474 -- For Standard.Wide_Wide_String, or any other type whose component
10475 -- type is Standard.Wide_Wide_Character, we know that all the
10476 -- characters in the string must be acceptable, since the parser
10477 -- accepted the characters as valid character literals.
10479 if R_Typ = Standard_Wide_Wide_Character then
10480 null;
10482 -- For the case of Standard.String, or any other type whose component
10483 -- type is Standard.Character, we must make sure that there are no
10484 -- wide characters in the string, i.e. that it is entirely composed
10485 -- of characters in range of type Character.
10487 -- If the string literal is the result of a static concatenation, the
10488 -- test has already been performed on the components, and need not be
10489 -- repeated.
10491 elsif R_Typ = Standard_Character
10492 and then Nkind (Original_Node (N)) /= N_Op_Concat
10493 then
10494 for J in 1 .. Strlen loop
10495 if not In_Character_Range (Get_String_Char (Str, J)) then
10497 -- If we are out of range, post error. This is one of the
10498 -- very few places that we place the flag in the middle of
10499 -- a token, right under the offending wide character. Not
10500 -- quite clear if this is right wrt wide character encoding
10501 -- sequences, but it's only an error message.
10503 Error_Msg
10504 ("literal out of range of type Standard.Character",
10505 Source_Ptr (Int (Loc) + J));
10506 return;
10507 end if;
10508 end loop;
10510 -- For the case of Standard.Wide_String, or any other type whose
10511 -- component type is Standard.Wide_Character, we must make sure that
10512 -- there are no wide characters in the string, i.e. that it is
10513 -- entirely composed of characters in range of type Wide_Character.
10515 -- If the string literal is the result of a static concatenation,
10516 -- the test has already been performed on the components, and need
10517 -- not be repeated.
10519 elsif R_Typ = Standard_Wide_Character
10520 and then Nkind (Original_Node (N)) /= N_Op_Concat
10521 then
10522 for J in 1 .. Strlen loop
10523 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10525 -- If we are out of range, post error. This is one of the
10526 -- very few places that we place the flag in the middle of
10527 -- a token, right under the offending wide character.
10529 -- This is not quite right, because characters in general
10530 -- will take more than one character position ???
10532 Error_Msg
10533 ("literal out of range of type Standard.Wide_Character",
10534 Source_Ptr (Int (Loc) + J));
10535 return;
10536 end if;
10537 end loop;
10539 -- If the root type is not a standard character, then we will convert
10540 -- the string into an aggregate and will let the aggregate code do
10541 -- the checking. Standard Wide_Wide_Character is also OK here.
10543 else
10544 null;
10545 end if;
10547 -- See if the component type of the array corresponding to the string
10548 -- has compile time known bounds. If yes we can directly check
10549 -- whether the evaluation of the string will raise constraint error.
10550 -- Otherwise we need to transform the string literal into the
10551 -- corresponding character aggregate and let the aggregate code do
10552 -- the checking.
10554 if Is_Standard_Character_Type (R_Typ) then
10556 -- Check for the case of full range, where we are definitely OK
10558 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10559 return;
10560 end if;
10562 -- Here the range is not the complete base type range, so check
10564 declare
10565 Comp_Typ_Lo : constant Node_Id :=
10566 Type_Low_Bound (Component_Type (Typ));
10567 Comp_Typ_Hi : constant Node_Id :=
10568 Type_High_Bound (Component_Type (Typ));
10570 Char_Val : Uint;
10572 begin
10573 if Compile_Time_Known_Value (Comp_Typ_Lo)
10574 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10575 then
10576 for J in 1 .. Strlen loop
10577 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10579 if Char_Val < Expr_Value (Comp_Typ_Lo)
10580 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10581 then
10582 Apply_Compile_Time_Constraint_Error
10583 (N, "character out of range??",
10584 CE_Range_Check_Failed,
10585 Loc => Source_Ptr (Int (Loc) + J));
10586 end if;
10587 end loop;
10589 return;
10590 end if;
10591 end;
10592 end if;
10593 end if;
10595 -- If we got here we meed to transform the string literal into the
10596 -- equivalent qualified positional array aggregate. This is rather
10597 -- heavy artillery for this situation, but it is hard work to avoid.
10599 declare
10600 Lits : constant List_Id := New_List;
10601 P : Source_Ptr := Loc + 1;
10602 C : Char_Code;
10604 begin
10605 -- Build the character literals, we give them source locations that
10606 -- correspond to the string positions, which is a bit tricky given
10607 -- the possible presence of wide character escape sequences.
10609 for J in 1 .. Strlen loop
10610 C := Get_String_Char (Str, J);
10611 Set_Character_Literal_Name (C);
10613 Append_To (Lits,
10614 Make_Character_Literal (P,
10615 Chars => Name_Find,
10616 Char_Literal_Value => UI_From_CC (C)));
10618 if In_Character_Range (C) then
10619 P := P + 1;
10621 -- Should we have a call to Skip_Wide here ???
10623 -- ??? else
10624 -- Skip_Wide (P);
10626 end if;
10627 end loop;
10629 Rewrite (N,
10630 Make_Qualified_Expression (Loc,
10631 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10632 Expression =>
10633 Make_Aggregate (Loc, Expressions => Lits)));
10635 Analyze_And_Resolve (N, Typ);
10636 end;
10637 end Resolve_String_Literal;
10639 -----------------------------
10640 -- Resolve_Type_Conversion --
10641 -----------------------------
10643 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10644 Conv_OK : constant Boolean := Conversion_OK (N);
10645 Operand : constant Node_Id := Expression (N);
10646 Operand_Typ : constant Entity_Id := Etype (Operand);
10647 Target_Typ : constant Entity_Id := Etype (N);
10648 Rop : Node_Id;
10649 Orig_N : Node_Id;
10650 Orig_T : Node_Id;
10652 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10653 -- Set to False to suppress cases where we want to suppress the test
10654 -- for redundancy to avoid possible false positives on this warning.
10656 begin
10657 if not Conv_OK
10658 and then not Valid_Conversion (N, Target_Typ, Operand)
10659 then
10660 return;
10661 end if;
10663 -- If the Operand Etype is Universal_Fixed, then the conversion is
10664 -- never redundant. We need this check because by the time we have
10665 -- finished the rather complex transformation, the conversion looks
10666 -- redundant when it is not.
10668 if Operand_Typ = Universal_Fixed then
10669 Test_Redundant := False;
10671 -- If the operand is marked as Any_Fixed, then special processing is
10672 -- required. This is also a case where we suppress the test for a
10673 -- redundant conversion, since most certainly it is not redundant.
10675 elsif Operand_Typ = Any_Fixed then
10676 Test_Redundant := False;
10678 -- Mixed-mode operation involving a literal. Context must be a fixed
10679 -- type which is applied to the literal subsequently.
10681 if Is_Fixed_Point_Type (Typ) then
10682 Set_Etype (Operand, Universal_Real);
10684 elsif Is_Numeric_Type (Typ)
10685 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10686 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10687 or else
10688 Etype (Left_Opnd (Operand)) = Universal_Real)
10689 then
10690 -- Return if expression is ambiguous
10692 if Unique_Fixed_Point_Type (N) = Any_Type then
10693 return;
10695 -- If nothing else, the available fixed type is Duration
10697 else
10698 Set_Etype (Operand, Standard_Duration);
10699 end if;
10701 -- Resolve the real operand with largest available precision
10703 if Etype (Right_Opnd (Operand)) = Universal_Real then
10704 Rop := New_Copy_Tree (Right_Opnd (Operand));
10705 else
10706 Rop := New_Copy_Tree (Left_Opnd (Operand));
10707 end if;
10709 Resolve (Rop, Universal_Real);
10711 -- If the operand is a literal (it could be a non-static and
10712 -- illegal exponentiation) check whether the use of Duration
10713 -- is potentially inaccurate.
10715 if Nkind (Rop) = N_Real_Literal
10716 and then Realval (Rop) /= Ureal_0
10717 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10718 then
10719 Error_Msg_N
10720 ("??universal real operand can only "
10721 & "be interpreted as Duration!", Rop);
10722 Error_Msg_N
10723 ("\??precision will be lost in the conversion!", Rop);
10724 end if;
10726 elsif Is_Numeric_Type (Typ)
10727 and then Nkind (Operand) in N_Op
10728 and then Unique_Fixed_Point_Type (N) /= Any_Type
10729 then
10730 Set_Etype (Operand, Standard_Duration);
10732 else
10733 Error_Msg_N ("invalid context for mixed mode operation", N);
10734 Set_Etype (Operand, Any_Type);
10735 return;
10736 end if;
10737 end if;
10739 Resolve (Operand);
10741 -- In SPARK, a type conversion between array types should be restricted
10742 -- to types which have matching static bounds.
10744 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10745 -- operation if not needed.
10747 if Restriction_Check_Required (SPARK_05)
10748 and then Is_Array_Type (Target_Typ)
10749 and then Is_Array_Type (Operand_Typ)
10750 and then Operand_Typ /= Any_Composite -- or else Operand in error
10751 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10752 then
10753 Check_SPARK_05_Restriction
10754 ("array types should have matching static bounds", N);
10755 end if;
10757 -- In formal mode, the operand of an ancestor type conversion must be an
10758 -- object (not an expression).
10760 if Is_Tagged_Type (Target_Typ)
10761 and then not Is_Class_Wide_Type (Target_Typ)
10762 and then Is_Tagged_Type (Operand_Typ)
10763 and then not Is_Class_Wide_Type (Operand_Typ)
10764 and then Is_Ancestor (Target_Typ, Operand_Typ)
10765 and then not Is_SPARK_05_Object_Reference (Operand)
10766 then
10767 Check_SPARK_05_Restriction ("object required", Operand);
10768 end if;
10770 Analyze_Dimension (N);
10772 -- Note: we do the Eval_Type_Conversion call before applying the
10773 -- required checks for a subtype conversion. This is important, since
10774 -- both are prepared under certain circumstances to change the type
10775 -- conversion to a constraint error node, but in the case of
10776 -- Eval_Type_Conversion this may reflect an illegality in the static
10777 -- case, and we would miss the illegality (getting only a warning
10778 -- message), if we applied the type conversion checks first.
10780 Eval_Type_Conversion (N);
10782 -- Even when evaluation is not possible, we may be able to simplify the
10783 -- conversion or its expression. This needs to be done before applying
10784 -- checks, since otherwise the checks may use the original expression
10785 -- and defeat the simplifications. This is specifically the case for
10786 -- elimination of the floating-point Truncation attribute in
10787 -- float-to-int conversions.
10789 Simplify_Type_Conversion (N);
10791 -- If after evaluation we still have a type conversion, then we may need
10792 -- to apply checks required for a subtype conversion.
10794 -- Skip these type conversion checks if universal fixed operands
10795 -- operands involved, since range checks are handled separately for
10796 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10798 if Nkind (N) = N_Type_Conversion
10799 and then not Is_Generic_Type (Root_Type (Target_Typ))
10800 and then Target_Typ /= Universal_Fixed
10801 and then Operand_Typ /= Universal_Fixed
10802 then
10803 Apply_Type_Conversion_Checks (N);
10804 end if;
10806 -- Issue warning for conversion of simple object to its own type. We
10807 -- have to test the original nodes, since they may have been rewritten
10808 -- by various optimizations.
10810 Orig_N := Original_Node (N);
10812 -- Here we test for a redundant conversion if the warning mode is
10813 -- active (and was not locally reset), and we have a type conversion
10814 -- from source not appearing in a generic instance.
10816 if Test_Redundant
10817 and then Nkind (Orig_N) = N_Type_Conversion
10818 and then Comes_From_Source (Orig_N)
10819 and then not In_Instance
10820 then
10821 Orig_N := Original_Node (Expression (Orig_N));
10822 Orig_T := Target_Typ;
10824 -- If the node is part of a larger expression, the Target_Type
10825 -- may not be the original type of the node if the context is a
10826 -- condition. Recover original type to see if conversion is needed.
10828 if Is_Boolean_Type (Orig_T)
10829 and then Nkind (Parent (N)) in N_Op
10830 then
10831 Orig_T := Etype (Parent (N));
10832 end if;
10834 -- If we have an entity name, then give the warning if the entity
10835 -- is the right type, or if it is a loop parameter covered by the
10836 -- original type (that's needed because loop parameters have an
10837 -- odd subtype coming from the bounds).
10839 if (Is_Entity_Name (Orig_N)
10840 and then
10841 (Etype (Entity (Orig_N)) = Orig_T
10842 or else
10843 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10844 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10846 -- If not an entity, then type of expression must match
10848 or else Etype (Orig_N) = Orig_T
10849 then
10850 -- One more check, do not give warning if the analyzed conversion
10851 -- has an expression with non-static bounds, and the bounds of the
10852 -- target are static. This avoids junk warnings in cases where the
10853 -- conversion is necessary to establish staticness, for example in
10854 -- a case statement.
10856 if not Is_OK_Static_Subtype (Operand_Typ)
10857 and then Is_OK_Static_Subtype (Target_Typ)
10858 then
10859 null;
10861 -- Finally, if this type conversion occurs in a context requiring
10862 -- a prefix, and the expression is a qualified expression then the
10863 -- type conversion is not redundant, since a qualified expression
10864 -- is not a prefix, whereas a type conversion is. For example, "X
10865 -- := T'(Funx(...)).Y;" is illegal because a selected component
10866 -- requires a prefix, but a type conversion makes it legal: "X :=
10867 -- T(T'(Funx(...))).Y;"
10869 -- In Ada 2012, a qualified expression is a name, so this idiom is
10870 -- no longer needed, but we still suppress the warning because it
10871 -- seems unfriendly for warnings to pop up when you switch to the
10872 -- newer language version.
10874 elsif Nkind (Orig_N) = N_Qualified_Expression
10875 and then Nkind_In (Parent (N), N_Attribute_Reference,
10876 N_Indexed_Component,
10877 N_Selected_Component,
10878 N_Slice,
10879 N_Explicit_Dereference)
10880 then
10881 null;
10883 -- Never warn on conversion to Long_Long_Integer'Base since
10884 -- that is most likely an artifact of the extended overflow
10885 -- checking and comes from complex expanded code.
10887 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10888 null;
10890 -- Here we give the redundant conversion warning. If it is an
10891 -- entity, give the name of the entity in the message. If not,
10892 -- just mention the expression.
10894 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10896 else
10897 if Is_Entity_Name (Orig_N) then
10898 Error_Msg_Node_2 := Orig_T;
10899 Error_Msg_NE -- CODEFIX
10900 ("??redundant conversion, & is of type &!",
10901 N, Entity (Orig_N));
10902 else
10903 Error_Msg_NE
10904 ("??redundant conversion, expression is of type&!",
10905 N, Orig_T);
10906 end if;
10907 end if;
10908 end if;
10909 end if;
10911 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10912 -- No need to perform any interface conversion if the type of the
10913 -- expression coincides with the target type.
10915 if Ada_Version >= Ada_2005
10916 and then Expander_Active
10917 and then Operand_Typ /= Target_Typ
10918 then
10919 declare
10920 Opnd : Entity_Id := Operand_Typ;
10921 Target : Entity_Id := Target_Typ;
10923 begin
10924 -- If the type of the operand is a limited view, use nonlimited
10925 -- view when available. If it is a class-wide type, recover the
10926 -- class-wide type of the nonlimited view.
10928 if From_Limited_With (Opnd)
10929 and then Has_Non_Limited_View (Opnd)
10930 then
10931 Opnd := Non_Limited_View (Opnd);
10932 Set_Etype (Expression (N), Opnd);
10933 end if;
10935 if Is_Access_Type (Opnd) then
10936 Opnd := Designated_Type (Opnd);
10937 end if;
10939 if Is_Access_Type (Target_Typ) then
10940 Target := Designated_Type (Target);
10941 end if;
10943 if Opnd = Target then
10944 null;
10946 -- Conversion from interface type
10948 elsif Is_Interface (Opnd) then
10950 -- Ada 2005 (AI-217): Handle entities from limited views
10952 if From_Limited_With (Opnd) then
10953 Error_Msg_Qual_Level := 99;
10954 Error_Msg_NE -- CODEFIX
10955 ("missing WITH clause on package &", N,
10956 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10957 Error_Msg_N
10958 ("type conversions require visibility of the full view",
10961 elsif From_Limited_With (Target)
10962 and then not
10963 (Is_Access_Type (Target_Typ)
10964 and then Present (Non_Limited_View (Etype (Target))))
10965 then
10966 Error_Msg_Qual_Level := 99;
10967 Error_Msg_NE -- CODEFIX
10968 ("missing WITH clause on package &", N,
10969 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10970 Error_Msg_N
10971 ("type conversions require visibility of the full view",
10974 else
10975 Expand_Interface_Conversion (N);
10976 end if;
10978 -- Conversion to interface type
10980 elsif Is_Interface (Target) then
10982 -- Handle subtypes
10984 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10985 Opnd := Etype (Opnd);
10986 end if;
10988 if Is_Class_Wide_Type (Opnd)
10989 or else Interface_Present_In_Ancestor
10990 (Typ => Opnd,
10991 Iface => Target)
10992 then
10993 Expand_Interface_Conversion (N);
10994 else
10995 Error_Msg_Name_1 := Chars (Etype (Target));
10996 Error_Msg_Name_2 := Chars (Opnd);
10997 Error_Msg_N
10998 ("wrong interface conversion (% is not a progenitor "
10999 & "of %)", N);
11000 end if;
11001 end if;
11002 end;
11003 end if;
11005 -- Ada 2012: if target type has predicates, the result requires a
11006 -- predicate check. If the context is a call to another predicate
11007 -- check we must prevent infinite recursion.
11009 if Has_Predicates (Target_Typ) then
11010 if Nkind (Parent (N)) = N_Function_Call
11011 and then Present (Name (Parent (N)))
11012 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
11013 or else
11014 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
11015 then
11016 null;
11018 else
11019 Apply_Predicate_Check (N, Target_Typ);
11020 end if;
11021 end if;
11023 -- If at this stage we have a real to integer conversion, make sure
11024 -- that the Do_Range_Check flag is set, because such conversions in
11025 -- general need a range check. We only need this if expansion is off
11026 -- or we are in GNATProve mode.
11028 if Nkind (N) = N_Type_Conversion
11029 and then (GNATprove_Mode or not Expander_Active)
11030 and then Is_Integer_Type (Target_Typ)
11031 and then Is_Real_Type (Operand_Typ)
11032 then
11033 Set_Do_Range_Check (Operand);
11034 end if;
11035 end Resolve_Type_Conversion;
11037 ----------------------
11038 -- Resolve_Unary_Op --
11039 ----------------------
11041 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11042 B_Typ : constant Entity_Id := Base_Type (Typ);
11043 R : constant Node_Id := Right_Opnd (N);
11044 OK : Boolean;
11045 Lo : Uint;
11046 Hi : Uint;
11048 begin
11049 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11050 Error_Msg_Name_1 := Chars (Typ);
11051 Check_SPARK_05_Restriction
11052 ("unary operator not defined for modular type%", N);
11053 end if;
11055 -- Deal with intrinsic unary operators
11057 if Comes_From_Source (N)
11058 and then Ekind (Entity (N)) = E_Function
11059 and then Is_Imported (Entity (N))
11060 and then Is_Intrinsic_Subprogram (Entity (N))
11061 then
11062 Resolve_Intrinsic_Unary_Operator (N, Typ);
11063 return;
11064 end if;
11066 -- Deal with universal cases
11068 if Etype (R) = Universal_Integer
11069 or else
11070 Etype (R) = Universal_Real
11071 then
11072 Check_For_Visible_Operator (N, B_Typ);
11073 end if;
11075 Set_Etype (N, B_Typ);
11076 Resolve (R, B_Typ);
11078 -- Generate warning for expressions like abs (x mod 2)
11080 if Warn_On_Redundant_Constructs
11081 and then Nkind (N) = N_Op_Abs
11082 then
11083 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11085 if OK and then Hi >= Lo and then Lo >= 0 then
11086 Error_Msg_N -- CODEFIX
11087 ("?r?abs applied to known non-negative value has no effect", N);
11088 end if;
11089 end if;
11091 -- Deal with reference generation
11093 Check_Unset_Reference (R);
11094 Generate_Operator_Reference (N, B_Typ);
11095 Analyze_Dimension (N);
11096 Eval_Unary_Op (N);
11098 -- Set overflow checking bit. Much cleverer code needed here eventually
11099 -- and perhaps the Resolve routines should be separated for the various
11100 -- arithmetic operations, since they will need different processing ???
11102 if Nkind (N) in N_Op then
11103 if not Overflow_Checks_Suppressed (Etype (N)) then
11104 Enable_Overflow_Check (N);
11105 end if;
11106 end if;
11108 -- Generate warning for expressions like -5 mod 3 for integers. No need
11109 -- to worry in the floating-point case, since parens do not affect the
11110 -- result so there is no point in giving in a warning.
11112 declare
11113 Norig : constant Node_Id := Original_Node (N);
11114 Rorig : Node_Id;
11115 Val : Uint;
11116 HB : Uint;
11117 LB : Uint;
11118 Lval : Uint;
11119 Opnd : Node_Id;
11121 begin
11122 if Warn_On_Questionable_Missing_Parens
11123 and then Comes_From_Source (Norig)
11124 and then Is_Integer_Type (Typ)
11125 and then Nkind (Norig) = N_Op_Minus
11126 then
11127 Rorig := Original_Node (Right_Opnd (Norig));
11129 -- We are looking for cases where the right operand is not
11130 -- parenthesized, and is a binary operator, multiply, divide, or
11131 -- mod. These are the cases where the grouping can affect results.
11133 if Paren_Count (Rorig) = 0
11134 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11135 then
11136 -- For mod, we always give the warning, since the value is
11137 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11138 -- -(5 mod 315)). But for the other cases, the only concern is
11139 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11140 -- overflows, but (-2) * 64 does not). So we try to give the
11141 -- message only when overflow is possible.
11143 if Nkind (Rorig) /= N_Op_Mod
11144 and then Compile_Time_Known_Value (R)
11145 then
11146 Val := Expr_Value (R);
11148 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11149 HB := Expr_Value (Type_High_Bound (Typ));
11150 else
11151 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11152 end if;
11154 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11155 LB := Expr_Value (Type_Low_Bound (Typ));
11156 else
11157 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11158 end if;
11160 -- Note that the test below is deliberately excluding the
11161 -- largest negative number, since that is a potentially
11162 -- troublesome case (e.g. -2 * x, where the result is the
11163 -- largest negative integer has an overflow with 2 * x).
11165 if Val > LB and then Val <= HB then
11166 return;
11167 end if;
11168 end if;
11170 -- For the multiplication case, the only case we have to worry
11171 -- about is when (-a)*b is exactly the largest negative number
11172 -- so that -(a*b) can cause overflow. This can only happen if
11173 -- a is a power of 2, and more generally if any operand is a
11174 -- constant that is not a power of 2, then the parentheses
11175 -- cannot affect whether overflow occurs. We only bother to
11176 -- test the left most operand
11178 -- Loop looking at left operands for one that has known value
11180 Opnd := Rorig;
11181 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11182 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11183 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11185 -- Operand value of 0 or 1 skips warning
11187 if Lval <= 1 then
11188 return;
11190 -- Otherwise check power of 2, if power of 2, warn, if
11191 -- anything else, skip warning.
11193 else
11194 while Lval /= 2 loop
11195 if Lval mod 2 = 1 then
11196 return;
11197 else
11198 Lval := Lval / 2;
11199 end if;
11200 end loop;
11202 exit Opnd_Loop;
11203 end if;
11204 end if;
11206 -- Keep looking at left operands
11208 Opnd := Left_Opnd (Opnd);
11209 end loop Opnd_Loop;
11211 -- For rem or "/" we can only have a problematic situation
11212 -- if the divisor has a value of minus one or one. Otherwise
11213 -- overflow is impossible (divisor > 1) or we have a case of
11214 -- division by zero in any case.
11216 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11217 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11218 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11219 then
11220 return;
11221 end if;
11223 -- If we fall through warning should be issued
11225 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11227 Error_Msg_N
11228 ("??unary minus expression should be parenthesized here!", N);
11229 end if;
11230 end if;
11231 end;
11232 end Resolve_Unary_Op;
11234 ----------------------------------
11235 -- Resolve_Unchecked_Expression --
11236 ----------------------------------
11238 procedure Resolve_Unchecked_Expression
11239 (N : Node_Id;
11240 Typ : Entity_Id)
11242 begin
11243 Resolve (Expression (N), Typ, Suppress => All_Checks);
11244 Set_Etype (N, Typ);
11245 end Resolve_Unchecked_Expression;
11247 ---------------------------------------
11248 -- Resolve_Unchecked_Type_Conversion --
11249 ---------------------------------------
11251 procedure Resolve_Unchecked_Type_Conversion
11252 (N : Node_Id;
11253 Typ : Entity_Id)
11255 pragma Warnings (Off, Typ);
11257 Operand : constant Node_Id := Expression (N);
11258 Opnd_Type : constant Entity_Id := Etype (Operand);
11260 begin
11261 -- Resolve operand using its own type
11263 Resolve (Operand, Opnd_Type);
11265 -- In an inlined context, the unchecked conversion may be applied
11266 -- to a literal, in which case its type is the type of the context.
11267 -- (In other contexts conversions cannot apply to literals).
11269 if In_Inlined_Body
11270 and then (Opnd_Type = Any_Character or else
11271 Opnd_Type = Any_Integer or else
11272 Opnd_Type = Any_Real)
11273 then
11274 Set_Etype (Operand, Typ);
11275 end if;
11277 Analyze_Dimension (N);
11278 Eval_Unchecked_Conversion (N);
11279 end Resolve_Unchecked_Type_Conversion;
11281 ------------------------------
11282 -- Rewrite_Operator_As_Call --
11283 ------------------------------
11285 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11286 Loc : constant Source_Ptr := Sloc (N);
11287 Actuals : constant List_Id := New_List;
11288 New_N : Node_Id;
11290 begin
11291 if Nkind (N) in N_Binary_Op then
11292 Append (Left_Opnd (N), Actuals);
11293 end if;
11295 Append (Right_Opnd (N), Actuals);
11297 New_N :=
11298 Make_Function_Call (Sloc => Loc,
11299 Name => New_Occurrence_Of (Nam, Loc),
11300 Parameter_Associations => Actuals);
11302 Preserve_Comes_From_Source (New_N, N);
11303 Preserve_Comes_From_Source (Name (New_N), N);
11304 Rewrite (N, New_N);
11305 Set_Etype (N, Etype (Nam));
11306 end Rewrite_Operator_As_Call;
11308 ------------------------------
11309 -- Rewrite_Renamed_Operator --
11310 ------------------------------
11312 procedure Rewrite_Renamed_Operator
11313 (N : Node_Id;
11314 Op : Entity_Id;
11315 Typ : Entity_Id)
11317 Nam : constant Name_Id := Chars (Op);
11318 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11319 Op_Node : Node_Id;
11321 begin
11322 -- Do not perform this transformation within a pre/postcondition,
11323 -- because the expression will be re-analyzed, and the transformation
11324 -- might affect the visibility of the operator, e.g. in an instance.
11326 if In_Assertion_Expr > 0 then
11327 return;
11328 end if;
11330 -- Rewrite the operator node using the real operator, not its renaming.
11331 -- Exclude user-defined intrinsic operations of the same name, which are
11332 -- treated separately and rewritten as calls.
11334 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11335 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11336 Set_Chars (Op_Node, Nam);
11337 Set_Etype (Op_Node, Etype (N));
11338 Set_Entity (Op_Node, Op);
11339 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11341 -- Indicate that both the original entity and its renaming are
11342 -- referenced at this point.
11344 Generate_Reference (Entity (N), N);
11345 Generate_Reference (Op, N);
11347 if Is_Binary then
11348 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11349 end if;
11351 Rewrite (N, Op_Node);
11353 -- If the context type is private, add the appropriate conversions so
11354 -- that the operator is applied to the full view. This is done in the
11355 -- routines that resolve intrinsic operators.
11357 if Is_Intrinsic_Subprogram (Op)
11358 and then Is_Private_Type (Typ)
11359 then
11360 case Nkind (N) is
11361 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11362 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
11363 Resolve_Intrinsic_Operator (N, Typ);
11365 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
11366 Resolve_Intrinsic_Unary_Operator (N, Typ);
11368 when others =>
11369 Resolve (N, Typ);
11370 end case;
11371 end if;
11373 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11375 -- Operator renames a user-defined operator of the same name. Use the
11376 -- original operator in the node, which is the one Gigi knows about.
11378 Set_Entity (N, Op);
11379 Set_Is_Overloaded (N, False);
11380 end if;
11381 end Rewrite_Renamed_Operator;
11383 -----------------------
11384 -- Set_Slice_Subtype --
11385 -----------------------
11387 -- Build an implicit subtype declaration to represent the type delivered by
11388 -- the slice. This is an abbreviated version of an array subtype. We define
11389 -- an index subtype for the slice, using either the subtype name or the
11390 -- discrete range of the slice. To be consistent with index usage elsewhere
11391 -- we create a list header to hold the single index. This list is not
11392 -- otherwise attached to the syntax tree.
11394 procedure Set_Slice_Subtype (N : Node_Id) is
11395 Loc : constant Source_Ptr := Sloc (N);
11396 Index_List : constant List_Id := New_List;
11397 Index : Node_Id;
11398 Index_Subtype : Entity_Id;
11399 Index_Type : Entity_Id;
11400 Slice_Subtype : Entity_Id;
11401 Drange : constant Node_Id := Discrete_Range (N);
11403 begin
11404 Index_Type := Base_Type (Etype (Drange));
11406 if Is_Entity_Name (Drange) then
11407 Index_Subtype := Entity (Drange);
11409 else
11410 -- We force the evaluation of a range. This is definitely needed in
11411 -- the renamed case, and seems safer to do unconditionally. Note in
11412 -- any case that since we will create and insert an Itype referring
11413 -- to this range, we must make sure any side effect removal actions
11414 -- are inserted before the Itype definition.
11416 if Nkind (Drange) = N_Range then
11417 Force_Evaluation (Low_Bound (Drange));
11418 Force_Evaluation (High_Bound (Drange));
11420 -- If the discrete range is given by a subtype indication, the
11421 -- type of the slice is the base of the subtype mark.
11423 elsif Nkind (Drange) = N_Subtype_Indication then
11424 declare
11425 R : constant Node_Id := Range_Expression (Constraint (Drange));
11426 begin
11427 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11428 Force_Evaluation (Low_Bound (R));
11429 Force_Evaluation (High_Bound (R));
11430 end;
11431 end if;
11433 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11435 -- Take a new copy of Drange (where bounds have been rewritten to
11436 -- reference side-effect-free names). Using a separate tree ensures
11437 -- that further expansion (e.g. while rewriting a slice assignment
11438 -- into a FOR loop) does not attempt to remove side effects on the
11439 -- bounds again (which would cause the bounds in the index subtype
11440 -- definition to refer to temporaries before they are defined) (the
11441 -- reason is that some names are considered side effect free here
11442 -- for the subtype, but not in the context of a loop iteration
11443 -- scheme).
11445 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11446 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11447 Set_Etype (Index_Subtype, Index_Type);
11448 Set_Size_Info (Index_Subtype, Index_Type);
11449 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11450 end if;
11452 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11454 Index := New_Occurrence_Of (Index_Subtype, Loc);
11455 Set_Etype (Index, Index_Subtype);
11456 Append (Index, Index_List);
11458 Set_First_Index (Slice_Subtype, Index);
11459 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11460 Set_Is_Constrained (Slice_Subtype, True);
11462 Check_Compile_Time_Size (Slice_Subtype);
11464 -- The Etype of the existing Slice node is reset to this slice subtype.
11465 -- Its bounds are obtained from its first index.
11467 Set_Etype (N, Slice_Subtype);
11469 -- For packed slice subtypes, freeze immediately (except in the case of
11470 -- being in a "spec expression" where we never freeze when we first see
11471 -- the expression).
11473 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11474 Freeze_Itype (Slice_Subtype, N);
11476 -- For all other cases insert an itype reference in the slice's actions
11477 -- so that the itype is frozen at the proper place in the tree (i.e. at
11478 -- the point where actions for the slice are analyzed). Note that this
11479 -- is different from freezing the itype immediately, which might be
11480 -- premature (e.g. if the slice is within a transient scope). This needs
11481 -- to be done only if expansion is enabled.
11483 elsif Expander_Active then
11484 Ensure_Defined (Typ => Slice_Subtype, N => N);
11485 end if;
11486 end Set_Slice_Subtype;
11488 --------------------------------
11489 -- Set_String_Literal_Subtype --
11490 --------------------------------
11492 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11493 Loc : constant Source_Ptr := Sloc (N);
11494 Low_Bound : constant Node_Id :=
11495 Type_Low_Bound (Etype (First_Index (Typ)));
11496 Subtype_Id : Entity_Id;
11498 begin
11499 if Nkind (N) /= N_String_Literal then
11500 return;
11501 end if;
11503 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11504 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11505 (String_Length (Strval (N))));
11506 Set_Etype (Subtype_Id, Base_Type (Typ));
11507 Set_Is_Constrained (Subtype_Id);
11508 Set_Etype (N, Subtype_Id);
11510 -- The low bound is set from the low bound of the corresponding index
11511 -- type. Note that we do not store the high bound in the string literal
11512 -- subtype, but it can be deduced if necessary from the length and the
11513 -- low bound.
11515 if Is_OK_Static_Expression (Low_Bound) then
11516 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11518 -- If the lower bound is not static we create a range for the string
11519 -- literal, using the index type and the known length of the literal.
11520 -- The index type is not necessarily Positive, so the upper bound is
11521 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11523 else
11524 declare
11525 Index_List : constant List_Id := New_List;
11526 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11527 High_Bound : constant Node_Id :=
11528 Make_Attribute_Reference (Loc,
11529 Attribute_Name => Name_Val,
11530 Prefix =>
11531 New_Occurrence_Of (Index_Type, Loc),
11532 Expressions => New_List (
11533 Make_Op_Add (Loc,
11534 Left_Opnd =>
11535 Make_Attribute_Reference (Loc,
11536 Attribute_Name => Name_Pos,
11537 Prefix =>
11538 New_Occurrence_Of (Index_Type, Loc),
11539 Expressions =>
11540 New_List (New_Copy_Tree (Low_Bound))),
11541 Right_Opnd =>
11542 Make_Integer_Literal (Loc,
11543 String_Length (Strval (N)) - 1))));
11545 Array_Subtype : Entity_Id;
11546 Drange : Node_Id;
11547 Index : Node_Id;
11548 Index_Subtype : Entity_Id;
11550 begin
11551 if Is_Integer_Type (Index_Type) then
11552 Set_String_Literal_Low_Bound
11553 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11555 else
11556 -- If the index type is an enumeration type, build bounds
11557 -- expression with attributes.
11559 Set_String_Literal_Low_Bound
11560 (Subtype_Id,
11561 Make_Attribute_Reference (Loc,
11562 Attribute_Name => Name_First,
11563 Prefix =>
11564 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11565 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11566 end if;
11568 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11570 -- Build bona fide subtype for the string, and wrap it in an
11571 -- unchecked conversion, because the backend expects the
11572 -- String_Literal_Subtype to have a static lower bound.
11574 Index_Subtype :=
11575 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11576 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11577 Set_Scalar_Range (Index_Subtype, Drange);
11578 Set_Parent (Drange, N);
11579 Analyze_And_Resolve (Drange, Index_Type);
11581 -- In the context, the Index_Type may already have a constraint,
11582 -- so use common base type on string subtype. The base type may
11583 -- be used when generating attributes of the string, for example
11584 -- in the context of a slice assignment.
11586 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11587 Set_Size_Info (Index_Subtype, Index_Type);
11588 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11590 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11592 Index := New_Occurrence_Of (Index_Subtype, Loc);
11593 Set_Etype (Index, Index_Subtype);
11594 Append (Index, Index_List);
11596 Set_First_Index (Array_Subtype, Index);
11597 Set_Etype (Array_Subtype, Base_Type (Typ));
11598 Set_Is_Constrained (Array_Subtype, True);
11600 Rewrite (N,
11601 Make_Unchecked_Type_Conversion (Loc,
11602 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11603 Expression => Relocate_Node (N)));
11604 Set_Etype (N, Array_Subtype);
11605 end;
11606 end if;
11607 end Set_String_Literal_Subtype;
11609 ------------------------------
11610 -- Simplify_Type_Conversion --
11611 ------------------------------
11613 procedure Simplify_Type_Conversion (N : Node_Id) is
11614 begin
11615 if Nkind (N) = N_Type_Conversion then
11616 declare
11617 Operand : constant Node_Id := Expression (N);
11618 Target_Typ : constant Entity_Id := Etype (N);
11619 Opnd_Typ : constant Entity_Id := Etype (Operand);
11621 begin
11622 -- Special processing if the conversion is the expression of a
11623 -- Rounding or Truncation attribute reference. In this case we
11624 -- replace:
11626 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11628 -- by
11630 -- ityp (x)
11632 -- with the Float_Truncate flag set to False or True respectively,
11633 -- which is more efficient.
11635 if Is_Floating_Point_Type (Opnd_Typ)
11636 and then
11637 (Is_Integer_Type (Target_Typ)
11638 or else (Is_Fixed_Point_Type (Target_Typ)
11639 and then Conversion_OK (N)))
11640 and then Nkind (Operand) = N_Attribute_Reference
11641 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11642 Name_Truncation)
11643 then
11644 declare
11645 Truncate : constant Boolean :=
11646 Attribute_Name (Operand) = Name_Truncation;
11647 begin
11648 Rewrite (Operand,
11649 Relocate_Node (First (Expressions (Operand))));
11650 Set_Float_Truncate (N, Truncate);
11651 end;
11652 end if;
11653 end;
11654 end if;
11655 end Simplify_Type_Conversion;
11657 -----------------------------
11658 -- Unique_Fixed_Point_Type --
11659 -----------------------------
11661 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11662 T1 : Entity_Id := Empty;
11663 T2 : Entity_Id;
11664 Item : Node_Id;
11665 Scop : Entity_Id;
11667 procedure Fixed_Point_Error;
11668 -- Give error messages for true ambiguity. Messages are posted on node
11669 -- N, and entities T1, T2 are the possible interpretations.
11671 -----------------------
11672 -- Fixed_Point_Error --
11673 -----------------------
11675 procedure Fixed_Point_Error is
11676 begin
11677 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11678 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11679 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11680 end Fixed_Point_Error;
11682 -- Start of processing for Unique_Fixed_Point_Type
11684 begin
11685 -- The operations on Duration are visible, so Duration is always a
11686 -- possible interpretation.
11688 T1 := Standard_Duration;
11690 -- Look for fixed-point types in enclosing scopes
11692 Scop := Current_Scope;
11693 while Scop /= Standard_Standard loop
11694 T2 := First_Entity (Scop);
11695 while Present (T2) loop
11696 if Is_Fixed_Point_Type (T2)
11697 and then Current_Entity (T2) = T2
11698 and then Scope (Base_Type (T2)) = Scop
11699 then
11700 if Present (T1) then
11701 Fixed_Point_Error;
11702 return Any_Type;
11703 else
11704 T1 := T2;
11705 end if;
11706 end if;
11708 Next_Entity (T2);
11709 end loop;
11711 Scop := Scope (Scop);
11712 end loop;
11714 -- Look for visible fixed type declarations in the context
11716 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11717 while Present (Item) loop
11718 if Nkind (Item) = N_With_Clause then
11719 Scop := Entity (Name (Item));
11720 T2 := First_Entity (Scop);
11721 while Present (T2) loop
11722 if Is_Fixed_Point_Type (T2)
11723 and then Scope (Base_Type (T2)) = Scop
11724 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11725 then
11726 if Present (T1) then
11727 Fixed_Point_Error;
11728 return Any_Type;
11729 else
11730 T1 := T2;
11731 end if;
11732 end if;
11734 Next_Entity (T2);
11735 end loop;
11736 end if;
11738 Next (Item);
11739 end loop;
11741 if Nkind (N) = N_Real_Literal then
11742 Error_Msg_NE
11743 ("??real literal interpreted as }!", N, T1);
11744 else
11745 Error_Msg_NE
11746 ("??universal_fixed expression interpreted as }!", N, T1);
11747 end if;
11749 return T1;
11750 end Unique_Fixed_Point_Type;
11752 ----------------------
11753 -- Valid_Conversion --
11754 ----------------------
11756 function Valid_Conversion
11757 (N : Node_Id;
11758 Target : Entity_Id;
11759 Operand : Node_Id;
11760 Report_Errs : Boolean := True) return Boolean
11762 Target_Type : constant Entity_Id := Base_Type (Target);
11763 Opnd_Type : Entity_Id := Etype (Operand);
11764 Inc_Ancestor : Entity_Id;
11766 function Conversion_Check
11767 (Valid : Boolean;
11768 Msg : String) return Boolean;
11769 -- Little routine to post Msg if Valid is False, returns Valid value
11771 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11772 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11774 procedure Conversion_Error_NE
11775 (Msg : String;
11776 N : Node_Or_Entity_Id;
11777 E : Node_Or_Entity_Id);
11778 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11780 function Valid_Tagged_Conversion
11781 (Target_Type : Entity_Id;
11782 Opnd_Type : Entity_Id) return Boolean;
11783 -- Specifically test for validity of tagged conversions
11785 function Valid_Array_Conversion return Boolean;
11786 -- Check index and component conformance, and accessibility levels if
11787 -- the component types are anonymous access types (Ada 2005).
11789 ----------------------
11790 -- Conversion_Check --
11791 ----------------------
11793 function Conversion_Check
11794 (Valid : Boolean;
11795 Msg : String) return Boolean
11797 begin
11798 if not Valid
11800 -- A generic unit has already been analyzed and we have verified
11801 -- that a particular conversion is OK in that context. Since the
11802 -- instance is reanalyzed without relying on the relationships
11803 -- established during the analysis of the generic, it is possible
11804 -- to end up with inconsistent views of private types. Do not emit
11805 -- the error message in such cases. The rest of the machinery in
11806 -- Valid_Conversion still ensures the proper compatibility of
11807 -- target and operand types.
11809 and then not In_Instance
11810 then
11811 Conversion_Error_N (Msg, Operand);
11812 end if;
11814 return Valid;
11815 end Conversion_Check;
11817 ------------------------
11818 -- Conversion_Error_N --
11819 ------------------------
11821 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11822 begin
11823 if Report_Errs then
11824 Error_Msg_N (Msg, N);
11825 end if;
11826 end Conversion_Error_N;
11828 -------------------------
11829 -- Conversion_Error_NE --
11830 -------------------------
11832 procedure Conversion_Error_NE
11833 (Msg : String;
11834 N : Node_Or_Entity_Id;
11835 E : Node_Or_Entity_Id)
11837 begin
11838 if Report_Errs then
11839 Error_Msg_NE (Msg, N, E);
11840 end if;
11841 end Conversion_Error_NE;
11843 ----------------------------
11844 -- Valid_Array_Conversion --
11845 ----------------------------
11847 function Valid_Array_Conversion return Boolean
11849 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11850 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11852 Opnd_Index : Node_Id;
11853 Opnd_Index_Type : Entity_Id;
11855 Target_Comp_Type : constant Entity_Id :=
11856 Component_Type (Target_Type);
11857 Target_Comp_Base : constant Entity_Id :=
11858 Base_Type (Target_Comp_Type);
11860 Target_Index : Node_Id;
11861 Target_Index_Type : Entity_Id;
11863 begin
11864 -- Error if wrong number of dimensions
11867 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11868 then
11869 Conversion_Error_N
11870 ("incompatible number of dimensions for conversion", Operand);
11871 return False;
11873 -- Number of dimensions matches
11875 else
11876 -- Loop through indexes of the two arrays
11878 Target_Index := First_Index (Target_Type);
11879 Opnd_Index := First_Index (Opnd_Type);
11880 while Present (Target_Index) and then Present (Opnd_Index) loop
11881 Target_Index_Type := Etype (Target_Index);
11882 Opnd_Index_Type := Etype (Opnd_Index);
11884 -- Error if index types are incompatible
11886 if not (Is_Integer_Type (Target_Index_Type)
11887 and then Is_Integer_Type (Opnd_Index_Type))
11888 and then (Root_Type (Target_Index_Type)
11889 /= Root_Type (Opnd_Index_Type))
11890 then
11891 Conversion_Error_N
11892 ("incompatible index types for array conversion",
11893 Operand);
11894 return False;
11895 end if;
11897 Next_Index (Target_Index);
11898 Next_Index (Opnd_Index);
11899 end loop;
11901 -- If component types have same base type, all set
11903 if Target_Comp_Base = Opnd_Comp_Base then
11904 null;
11906 -- Here if base types of components are not the same. The only
11907 -- time this is allowed is if we have anonymous access types.
11909 -- The conversion of arrays of anonymous access types can lead
11910 -- to dangling pointers. AI-392 formalizes the accessibility
11911 -- checks that must be applied to such conversions to prevent
11912 -- out-of-scope references.
11914 elsif Ekind_In
11915 (Target_Comp_Base, E_Anonymous_Access_Type,
11916 E_Anonymous_Access_Subprogram_Type)
11917 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11918 and then
11919 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11920 then
11921 if Type_Access_Level (Target_Type) <
11922 Deepest_Type_Access_Level (Opnd_Type)
11923 then
11924 if In_Instance_Body then
11925 Error_Msg_Warn := SPARK_Mode /= On;
11926 Conversion_Error_N
11927 ("source array type has deeper accessibility "
11928 & "level than target<<", Operand);
11929 Conversion_Error_N ("\Program_Error [<<", Operand);
11930 Rewrite (N,
11931 Make_Raise_Program_Error (Sloc (N),
11932 Reason => PE_Accessibility_Check_Failed));
11933 Set_Etype (N, Target_Type);
11934 return False;
11936 -- Conversion not allowed because of accessibility levels
11938 else
11939 Conversion_Error_N
11940 ("source array type has deeper accessibility "
11941 & "level than target", Operand);
11942 return False;
11943 end if;
11945 else
11946 null;
11947 end if;
11949 -- All other cases where component base types do not match
11951 else
11952 Conversion_Error_N
11953 ("incompatible component types for array conversion",
11954 Operand);
11955 return False;
11956 end if;
11958 -- Check that component subtypes statically match. For numeric
11959 -- types this means that both must be either constrained or
11960 -- unconstrained. For enumeration types the bounds must match.
11961 -- All of this is checked in Subtypes_Statically_Match.
11963 if not Subtypes_Statically_Match
11964 (Target_Comp_Type, Opnd_Comp_Type)
11965 then
11966 Conversion_Error_N
11967 ("component subtypes must statically match", Operand);
11968 return False;
11969 end if;
11970 end if;
11972 return True;
11973 end Valid_Array_Conversion;
11975 -----------------------------
11976 -- Valid_Tagged_Conversion --
11977 -----------------------------
11979 function Valid_Tagged_Conversion
11980 (Target_Type : Entity_Id;
11981 Opnd_Type : Entity_Id) return Boolean
11983 begin
11984 -- Upward conversions are allowed (RM 4.6(22))
11986 if Covers (Target_Type, Opnd_Type)
11987 or else Is_Ancestor (Target_Type, Opnd_Type)
11988 then
11989 return True;
11991 -- Downward conversion are allowed if the operand is class-wide
11992 -- (RM 4.6(23)).
11994 elsif Is_Class_Wide_Type (Opnd_Type)
11995 and then Covers (Opnd_Type, Target_Type)
11996 then
11997 return True;
11999 elsif Covers (Opnd_Type, Target_Type)
12000 or else Is_Ancestor (Opnd_Type, Target_Type)
12001 then
12002 return
12003 Conversion_Check (False,
12004 "downward conversion of tagged objects not allowed");
12006 -- Ada 2005 (AI-251): The conversion to/from interface types is
12007 -- always valid
12009 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
12010 return True;
12012 -- If the operand is a class-wide type obtained through a limited_
12013 -- with clause, and the context includes the nonlimited view, use
12014 -- it to determine whether the conversion is legal.
12016 elsif Is_Class_Wide_Type (Opnd_Type)
12017 and then From_Limited_With (Opnd_Type)
12018 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12019 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12020 then
12021 return True;
12023 elsif Is_Access_Type (Opnd_Type)
12024 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12025 then
12026 return True;
12028 else
12029 Conversion_Error_NE
12030 ("invalid tagged conversion, not compatible with}",
12031 N, First_Subtype (Opnd_Type));
12032 return False;
12033 end if;
12034 end Valid_Tagged_Conversion;
12036 -- Start of processing for Valid_Conversion
12038 begin
12039 Check_Parameterless_Call (Operand);
12041 if Is_Overloaded (Operand) then
12042 declare
12043 I : Interp_Index;
12044 I1 : Interp_Index;
12045 It : Interp;
12046 It1 : Interp;
12047 N1 : Entity_Id;
12048 T1 : Entity_Id;
12050 begin
12051 -- Remove procedure calls, which syntactically cannot appear in
12052 -- this context, but which cannot be removed by type checking,
12053 -- because the context does not impose a type.
12055 -- The node may be labelled overloaded, but still contain only one
12056 -- interpretation because others were discarded earlier. If this
12057 -- is the case, retain the single interpretation if legal.
12059 Get_First_Interp (Operand, I, It);
12060 Opnd_Type := It.Typ;
12061 Get_Next_Interp (I, It);
12063 if Present (It.Typ)
12064 and then Opnd_Type /= Standard_Void_Type
12065 then
12066 -- More than one candidate interpretation is available
12068 Get_First_Interp (Operand, I, It);
12069 while Present (It.Typ) loop
12070 if It.Typ = Standard_Void_Type then
12071 Remove_Interp (I);
12072 end if;
12074 -- When compiling for a system where Address is of a visible
12075 -- integer type, spurious ambiguities can be produced when
12076 -- arithmetic operations have a literal operand and return
12077 -- System.Address or a descendant of it. These ambiguities
12078 -- are usually resolved by the context, but for conversions
12079 -- there is no context type and the removal of the spurious
12080 -- operations must be done explicitly here.
12082 if not Address_Is_Private
12083 and then Is_Descendant_Of_Address (It.Typ)
12084 then
12085 Remove_Interp (I);
12086 end if;
12088 Get_Next_Interp (I, It);
12089 end loop;
12090 end if;
12092 Get_First_Interp (Operand, I, It);
12093 I1 := I;
12094 It1 := It;
12096 if No (It.Typ) then
12097 Conversion_Error_N ("illegal operand in conversion", Operand);
12098 return False;
12099 end if;
12101 Get_Next_Interp (I, It);
12103 if Present (It.Typ) then
12104 N1 := It1.Nam;
12105 T1 := It1.Typ;
12106 It1 := Disambiguate (Operand, I1, I, Any_Type);
12108 if It1 = No_Interp then
12109 Conversion_Error_N
12110 ("ambiguous operand in conversion", Operand);
12112 -- If the interpretation involves a standard operator, use
12113 -- the location of the type, which may be user-defined.
12115 if Sloc (It.Nam) = Standard_Location then
12116 Error_Msg_Sloc := Sloc (It.Typ);
12117 else
12118 Error_Msg_Sloc := Sloc (It.Nam);
12119 end if;
12121 Conversion_Error_N -- CODEFIX
12122 ("\\possible interpretation#!", Operand);
12124 if Sloc (N1) = Standard_Location then
12125 Error_Msg_Sloc := Sloc (T1);
12126 else
12127 Error_Msg_Sloc := Sloc (N1);
12128 end if;
12130 Conversion_Error_N -- CODEFIX
12131 ("\\possible interpretation#!", Operand);
12133 return False;
12134 end if;
12135 end if;
12137 Set_Etype (Operand, It1.Typ);
12138 Opnd_Type := It1.Typ;
12139 end;
12140 end if;
12142 -- Deal with conversion of integer type to address if the pragma
12143 -- Allow_Integer_Address is in effect. We convert the conversion to
12144 -- an unchecked conversion in this case and we are all done.
12146 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12147 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12148 Analyze_And_Resolve (N, Target_Type);
12149 return True;
12150 end if;
12152 -- If we are within a child unit, check whether the type of the
12153 -- expression has an ancestor in a parent unit, in which case it
12154 -- belongs to its derivation class even if the ancestor is private.
12155 -- See RM 7.3.1 (5.2/3).
12157 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12159 -- Numeric types
12161 if Is_Numeric_Type (Target_Type) then
12163 -- A universal fixed expression can be converted to any numeric type
12165 if Opnd_Type = Universal_Fixed then
12166 return True;
12168 -- Also no need to check when in an instance or inlined body, because
12169 -- the legality has been established when the template was analyzed.
12170 -- Furthermore, numeric conversions may occur where only a private
12171 -- view of the operand type is visible at the instantiation point.
12172 -- This results in a spurious error if we check that the operand type
12173 -- is a numeric type.
12175 -- Note: in a previous version of this unit, the following tests were
12176 -- applied only for generated code (Comes_From_Source set to False),
12177 -- but in fact the test is required for source code as well, since
12178 -- this situation can arise in source code.
12180 elsif In_Instance or else In_Inlined_Body then
12181 return True;
12183 -- Otherwise we need the conversion check
12185 else
12186 return Conversion_Check
12187 (Is_Numeric_Type (Opnd_Type)
12188 or else
12189 (Present (Inc_Ancestor)
12190 and then Is_Numeric_Type (Inc_Ancestor)),
12191 "illegal operand for numeric conversion");
12192 end if;
12194 -- Array types
12196 elsif Is_Array_Type (Target_Type) then
12197 if not Is_Array_Type (Opnd_Type)
12198 or else Opnd_Type = Any_Composite
12199 or else Opnd_Type = Any_String
12200 then
12201 Conversion_Error_N
12202 ("illegal operand for array conversion", Operand);
12203 return False;
12205 else
12206 return Valid_Array_Conversion;
12207 end if;
12209 -- Ada 2005 (AI-251): Internally generated conversions of access to
12210 -- interface types added to force the displacement of the pointer to
12211 -- reference the corresponding dispatch table.
12213 elsif not Comes_From_Source (N)
12214 and then Is_Access_Type (Target_Type)
12215 and then Is_Interface (Designated_Type (Target_Type))
12216 then
12217 return True;
12219 -- Ada 2005 (AI-251): Anonymous access types where target references an
12220 -- interface type.
12222 elsif Is_Access_Type (Opnd_Type)
12223 and then Ekind_In (Target_Type, E_General_Access_Type,
12224 E_Anonymous_Access_Type)
12225 and then Is_Interface (Directly_Designated_Type (Target_Type))
12226 then
12227 -- Check the static accessibility rule of 4.6(17). Note that the
12228 -- check is not enforced when within an instance body, since the
12229 -- RM requires such cases to be caught at run time.
12231 -- If the operand is a rewriting of an allocator no check is needed
12232 -- because there are no accessibility issues.
12234 if Nkind (Original_Node (N)) = N_Allocator then
12235 null;
12237 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12238 if Type_Access_Level (Opnd_Type) >
12239 Deepest_Type_Access_Level (Target_Type)
12240 then
12241 -- In an instance, this is a run-time check, but one we know
12242 -- will fail, so generate an appropriate warning. The raise
12243 -- will be generated by Expand_N_Type_Conversion.
12245 if In_Instance_Body then
12246 Error_Msg_Warn := SPARK_Mode /= On;
12247 Conversion_Error_N
12248 ("cannot convert local pointer to non-local access type<<",
12249 Operand);
12250 Conversion_Error_N ("\Program_Error [<<", Operand);
12252 else
12253 Conversion_Error_N
12254 ("cannot convert local pointer to non-local access type",
12255 Operand);
12256 return False;
12257 end if;
12259 -- Special accessibility checks are needed in the case of access
12260 -- discriminants declared for a limited type.
12262 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12263 and then not Is_Local_Anonymous_Access (Opnd_Type)
12264 then
12265 -- When the operand is a selected access discriminant the check
12266 -- needs to be made against the level of the object denoted by
12267 -- the prefix of the selected name (Object_Access_Level handles
12268 -- checking the prefix of the operand for this case).
12270 if Nkind (Operand) = N_Selected_Component
12271 and then Object_Access_Level (Operand) >
12272 Deepest_Type_Access_Level (Target_Type)
12273 then
12274 -- In an instance, this is a run-time check, but one we know
12275 -- will fail, so generate an appropriate warning. The raise
12276 -- will be generated by Expand_N_Type_Conversion.
12278 if In_Instance_Body then
12279 Error_Msg_Warn := SPARK_Mode /= On;
12280 Conversion_Error_N
12281 ("cannot convert access discriminant to non-local "
12282 & "access type<<", Operand);
12283 Conversion_Error_N ("\Program_Error [<<", Operand);
12285 -- Real error if not in instance body
12287 else
12288 Conversion_Error_N
12289 ("cannot convert access discriminant to non-local "
12290 & "access type", Operand);
12291 return False;
12292 end if;
12293 end if;
12295 -- The case of a reference to an access discriminant from
12296 -- within a limited type declaration (which will appear as
12297 -- a discriminal) is always illegal because the level of the
12298 -- discriminant is considered to be deeper than any (nameable)
12299 -- access type.
12301 if Is_Entity_Name (Operand)
12302 and then not Is_Local_Anonymous_Access (Opnd_Type)
12303 and then
12304 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12305 and then Present (Discriminal_Link (Entity (Operand)))
12306 then
12307 Conversion_Error_N
12308 ("discriminant has deeper accessibility level than target",
12309 Operand);
12310 return False;
12311 end if;
12312 end if;
12313 end if;
12315 return True;
12317 -- General and anonymous access types
12319 elsif Ekind_In (Target_Type, E_General_Access_Type,
12320 E_Anonymous_Access_Type)
12321 and then
12322 Conversion_Check
12323 (Is_Access_Type (Opnd_Type)
12324 and then not
12325 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12326 E_Access_Protected_Subprogram_Type),
12327 "must be an access-to-object type")
12328 then
12329 if Is_Access_Constant (Opnd_Type)
12330 and then not Is_Access_Constant (Target_Type)
12331 then
12332 Conversion_Error_N
12333 ("access-to-constant operand type not allowed", Operand);
12334 return False;
12335 end if;
12337 -- Check the static accessibility rule of 4.6(17). Note that the
12338 -- check is not enforced when within an instance body, since the RM
12339 -- requires such cases to be caught at run time.
12341 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12342 or else Is_Local_Anonymous_Access (Target_Type)
12343 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12344 N_Object_Declaration
12345 then
12346 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12347 -- conversions from an anonymous access type to a named general
12348 -- access type. Such conversions are not allowed in the case of
12349 -- access parameters and stand-alone objects of an anonymous
12350 -- access type. The implicit conversion case is recognized by
12351 -- testing that Comes_From_Source is False and that it's been
12352 -- rewritten. The Comes_From_Source test isn't sufficient because
12353 -- nodes in inlined calls to predefined library routines can have
12354 -- Comes_From_Source set to False. (Is there a better way to test
12355 -- for implicit conversions???)
12357 if Ada_Version >= Ada_2012
12358 and then not Comes_From_Source (N)
12359 and then N /= Original_Node (N)
12360 and then Ekind (Target_Type) = E_General_Access_Type
12361 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12362 then
12363 if Is_Itype (Opnd_Type) then
12365 -- Implicit conversions aren't allowed for objects of an
12366 -- anonymous access type, since such objects have nonstatic
12367 -- levels in Ada 2012.
12369 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12370 N_Object_Declaration
12371 then
12372 Conversion_Error_N
12373 ("implicit conversion of stand-alone anonymous "
12374 & "access object not allowed", Operand);
12375 return False;
12377 -- Implicit conversions aren't allowed for anonymous access
12378 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12379 -- is done to exclude anonymous access results.
12381 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12382 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12383 N_Function_Specification,
12384 N_Procedure_Specification)
12385 then
12386 Conversion_Error_N
12387 ("implicit conversion of anonymous access formal "
12388 & "not allowed", Operand);
12389 return False;
12391 -- This is a case where there's an enclosing object whose
12392 -- to which the "statically deeper than" relationship does
12393 -- not apply (such as an access discriminant selected from
12394 -- a dereference of an access parameter).
12396 elsif Object_Access_Level (Operand)
12397 = Scope_Depth (Standard_Standard)
12398 then
12399 Conversion_Error_N
12400 ("implicit conversion of anonymous access value "
12401 & "not allowed", Operand);
12402 return False;
12404 -- In other cases, the level of the operand's type must be
12405 -- statically less deep than that of the target type, else
12406 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12408 elsif Type_Access_Level (Opnd_Type) >
12409 Deepest_Type_Access_Level (Target_Type)
12410 then
12411 Conversion_Error_N
12412 ("implicit conversion of anonymous access value "
12413 & "violates accessibility", Operand);
12414 return False;
12415 end if;
12416 end if;
12418 elsif Type_Access_Level (Opnd_Type) >
12419 Deepest_Type_Access_Level (Target_Type)
12420 then
12421 -- In an instance, this is a run-time check, but one we know
12422 -- will fail, so generate an appropriate warning. The raise
12423 -- will be generated by Expand_N_Type_Conversion.
12425 if In_Instance_Body then
12426 Error_Msg_Warn := SPARK_Mode /= On;
12427 Conversion_Error_N
12428 ("cannot convert local pointer to non-local access type<<",
12429 Operand);
12430 Conversion_Error_N ("\Program_Error [<<", Operand);
12432 -- If not in an instance body, this is a real error
12434 else
12435 -- Avoid generation of spurious error message
12437 if not Error_Posted (N) then
12438 Conversion_Error_N
12439 ("cannot convert local pointer to non-local access type",
12440 Operand);
12441 end if;
12443 return False;
12444 end if;
12446 -- Special accessibility checks are needed in the case of access
12447 -- discriminants declared for a limited type.
12449 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12450 and then not Is_Local_Anonymous_Access (Opnd_Type)
12451 then
12452 -- When the operand is a selected access discriminant the check
12453 -- needs to be made against the level of the object denoted by
12454 -- the prefix of the selected name (Object_Access_Level handles
12455 -- checking the prefix of the operand for this case).
12457 if Nkind (Operand) = N_Selected_Component
12458 and then Object_Access_Level (Operand) >
12459 Deepest_Type_Access_Level (Target_Type)
12460 then
12461 -- In an instance, this is a run-time check, but one we know
12462 -- will fail, so generate an appropriate warning. The raise
12463 -- will be generated by Expand_N_Type_Conversion.
12465 if In_Instance_Body then
12466 Error_Msg_Warn := SPARK_Mode /= On;
12467 Conversion_Error_N
12468 ("cannot convert access discriminant to non-local "
12469 & "access type<<", Operand);
12470 Conversion_Error_N ("\Program_Error [<<", Operand);
12472 -- If not in an instance body, this is a real error
12474 else
12475 Conversion_Error_N
12476 ("cannot convert access discriminant to non-local "
12477 & "access type", Operand);
12478 return False;
12479 end if;
12480 end if;
12482 -- The case of a reference to an access discriminant from
12483 -- within a limited type declaration (which will appear as
12484 -- a discriminal) is always illegal because the level of the
12485 -- discriminant is considered to be deeper than any (nameable)
12486 -- access type.
12488 if Is_Entity_Name (Operand)
12489 and then
12490 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12491 and then Present (Discriminal_Link (Entity (Operand)))
12492 then
12493 Conversion_Error_N
12494 ("discriminant has deeper accessibility level than target",
12495 Operand);
12496 return False;
12497 end if;
12498 end if;
12499 end if;
12501 -- In the presence of limited_with clauses we have to use nonlimited
12502 -- views, if available.
12504 Check_Limited : declare
12505 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12506 -- Helper function to handle limited views
12508 --------------------------
12509 -- Full_Designated_Type --
12510 --------------------------
12512 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12513 Desig : constant Entity_Id := Designated_Type (T);
12515 begin
12516 -- Handle the limited view of a type
12518 if From_Limited_With (Desig)
12519 and then Has_Non_Limited_View (Desig)
12520 then
12521 return Available_View (Desig);
12522 else
12523 return Desig;
12524 end if;
12525 end Full_Designated_Type;
12527 -- Local Declarations
12529 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12530 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12532 Same_Base : constant Boolean :=
12533 Base_Type (Target) = Base_Type (Opnd);
12535 -- Start of processing for Check_Limited
12537 begin
12538 if Is_Tagged_Type (Target) then
12539 return Valid_Tagged_Conversion (Target, Opnd);
12541 else
12542 if not Same_Base then
12543 Conversion_Error_NE
12544 ("target designated type not compatible with }",
12545 N, Base_Type (Opnd));
12546 return False;
12548 -- Ada 2005 AI-384: legality rule is symmetric in both
12549 -- designated types. The conversion is legal (with possible
12550 -- constraint check) if either designated type is
12551 -- unconstrained.
12553 elsif Subtypes_Statically_Match (Target, Opnd)
12554 or else
12555 (Has_Discriminants (Target)
12556 and then
12557 (not Is_Constrained (Opnd)
12558 or else not Is_Constrained (Target)))
12559 then
12560 -- Special case, if Value_Size has been used to make the
12561 -- sizes different, the conversion is not allowed even
12562 -- though the subtypes statically match.
12564 if Known_Static_RM_Size (Target)
12565 and then Known_Static_RM_Size (Opnd)
12566 and then RM_Size (Target) /= RM_Size (Opnd)
12567 then
12568 Conversion_Error_NE
12569 ("target designated subtype not compatible with }",
12570 N, Opnd);
12571 Conversion_Error_NE
12572 ("\because sizes of the two designated subtypes differ",
12573 N, Opnd);
12574 return False;
12576 -- Normal case where conversion is allowed
12578 else
12579 return True;
12580 end if;
12582 else
12583 Error_Msg_NE
12584 ("target designated subtype not compatible with }",
12585 N, Opnd);
12586 return False;
12587 end if;
12588 end if;
12589 end Check_Limited;
12591 -- Access to subprogram types. If the operand is an access parameter,
12592 -- the type has a deeper accessibility that any master, and cannot be
12593 -- assigned. We must make an exception if the conversion is part of an
12594 -- assignment and the target is the return object of an extended return
12595 -- statement, because in that case the accessibility check takes place
12596 -- after the return.
12598 elsif Is_Access_Subprogram_Type (Target_Type)
12600 -- Note: this test of Opnd_Type is there to prevent entering this
12601 -- branch in the case of a remote access to subprogram type, which
12602 -- is internally represented as an E_Record_Type.
12604 and then Is_Access_Type (Opnd_Type)
12605 then
12606 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12607 and then Is_Entity_Name (Operand)
12608 and then Ekind (Entity (Operand)) = E_In_Parameter
12609 and then
12610 (Nkind (Parent (N)) /= N_Assignment_Statement
12611 or else not Is_Entity_Name (Name (Parent (N)))
12612 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12613 then
12614 Conversion_Error_N
12615 ("illegal attempt to store anonymous access to subprogram",
12616 Operand);
12617 Conversion_Error_N
12618 ("\value has deeper accessibility than any master "
12619 & "(RM 3.10.2 (13))",
12620 Operand);
12622 Error_Msg_NE
12623 ("\use named access type for& instead of access parameter",
12624 Operand, Entity (Operand));
12625 end if;
12627 -- Check that the designated types are subtype conformant
12629 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12630 Old_Id => Designated_Type (Opnd_Type),
12631 Err_Loc => N);
12633 -- Check the static accessibility rule of 4.6(20)
12635 if Type_Access_Level (Opnd_Type) >
12636 Deepest_Type_Access_Level (Target_Type)
12637 then
12638 Conversion_Error_N
12639 ("operand type has deeper accessibility level than target",
12640 Operand);
12642 -- Check that if the operand type is declared in a generic body,
12643 -- then the target type must be declared within that same body
12644 -- (enforces last sentence of 4.6(20)).
12646 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12647 declare
12648 O_Gen : constant Node_Id :=
12649 Enclosing_Generic_Body (Opnd_Type);
12651 T_Gen : Node_Id;
12653 begin
12654 T_Gen := Enclosing_Generic_Body (Target_Type);
12655 while Present (T_Gen) and then T_Gen /= O_Gen loop
12656 T_Gen := Enclosing_Generic_Body (T_Gen);
12657 end loop;
12659 if T_Gen /= O_Gen then
12660 Conversion_Error_N
12661 ("target type must be declared in same generic body "
12662 & "as operand type", N);
12663 end if;
12664 end;
12665 end if;
12667 return True;
12669 -- Remote access to subprogram types
12671 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12672 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12673 then
12674 -- It is valid to convert from one RAS type to another provided
12675 -- that their specification statically match.
12677 -- Note: at this point, remote access to subprogram types have been
12678 -- expanded to their E_Record_Type representation, and we need to
12679 -- go back to the original access type definition using the
12680 -- Corresponding_Remote_Type attribute in order to check that the
12681 -- designated profiles match.
12683 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12684 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12686 Check_Subtype_Conformant
12687 (New_Id =>
12688 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12689 Old_Id =>
12690 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12691 Err_Loc =>
12693 return True;
12695 -- If it was legal in the generic, it's legal in the instance
12697 elsif In_Instance_Body then
12698 return True;
12700 -- If both are tagged types, check legality of view conversions
12702 elsif Is_Tagged_Type (Target_Type)
12703 and then
12704 Is_Tagged_Type (Opnd_Type)
12705 then
12706 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12708 -- Types derived from the same root type are convertible
12710 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12711 return True;
12713 -- In an instance or an inlined body, there may be inconsistent views of
12714 -- the same type, or of types derived from a common root.
12716 elsif (In_Instance or In_Inlined_Body)
12717 and then
12718 Root_Type (Underlying_Type (Target_Type)) =
12719 Root_Type (Underlying_Type (Opnd_Type))
12720 then
12721 return True;
12723 -- Special check for common access type error case
12725 elsif Ekind (Target_Type) = E_Access_Type
12726 and then Is_Access_Type (Opnd_Type)
12727 then
12728 Conversion_Error_N ("target type must be general access type!", N);
12729 Conversion_Error_NE -- CODEFIX
12730 ("add ALL to }!", N, Target_Type);
12731 return False;
12733 -- Here we have a real conversion error
12735 else
12736 Conversion_Error_NE
12737 ("invalid conversion, not compatible with }", N, Opnd_Type);
12738 return False;
12739 end if;
12740 end Valid_Conversion;
12742 end Sem_Res;