2016-04-18 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / inline.adb
blobbc7bc32416dd7771d42748558ce49ff8956f6636
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Fname; use Fname;
38 with Fname.UF; use Fname.UF;
39 with Lib; use Lib;
40 with Namet; use Namet;
41 with Nmake; use Nmake;
42 with Nlists; use Nlists;
43 with Output; use Output;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch8; use Sem_Ch8;
46 with Sem_Ch10; use Sem_Ch10;
47 with Sem_Ch12; use Sem_Ch12;
48 with Sem_Prag; use Sem_Prag;
49 with Sem_Util; use Sem_Util;
50 with Sinfo; use Sinfo;
51 with Sinput; use Sinput;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Uname; use Uname;
55 with Tbuild; use Tbuild;
57 package body Inline is
59 Check_Inlining_Restrictions : constant Boolean := True;
60 -- In the following cases the frontend rejects inlining because they
61 -- are not handled well by the backend. This variable facilitates
62 -- disabling these restrictions to evaluate future versions of the
63 -- GCC backend in which some of the restrictions may be supported.
65 -- - subprograms that have:
66 -- - nested subprograms
67 -- - instantiations
68 -- - package declarations
69 -- - task or protected object declarations
70 -- - some of the following statements:
71 -- - abort
72 -- - asynchronous-select
73 -- - conditional-entry-call
74 -- - delay-relative
75 -- - delay-until
76 -- - selective-accept
77 -- - timed-entry-call
79 Inlined_Calls : Elist_Id;
80 -- List of frontend inlined calls
82 Backend_Calls : Elist_Id;
83 -- List of inline calls passed to the backend
85 Backend_Inlined_Subps : Elist_Id;
86 -- List of subprograms inlined by the backend
88 Backend_Not_Inlined_Subps : Elist_Id;
89 -- List of subprograms that cannot be inlined by the backend
91 --------------------
92 -- Inlined Bodies --
93 --------------------
95 -- Inlined functions are actually placed in line by the backend if the
96 -- corresponding bodies are available (i.e. compiled). Whenever we find
97 -- a call to an inlined subprogram, we add the name of the enclosing
98 -- compilation unit to a worklist. After all compilation, and after
99 -- expansion of generic bodies, we traverse the list of pending bodies
100 -- and compile them as well.
102 package Inlined_Bodies is new Table.Table (
103 Table_Component_Type => Entity_Id,
104 Table_Index_Type => Int,
105 Table_Low_Bound => 0,
106 Table_Initial => Alloc.Inlined_Bodies_Initial,
107 Table_Increment => Alloc.Inlined_Bodies_Increment,
108 Table_Name => "Inlined_Bodies");
110 -----------------------
111 -- Inline Processing --
112 -----------------------
114 -- For each call to an inlined subprogram, we make entries in a table
115 -- that stores caller and callee, and indicates the call direction from
116 -- one to the other. We also record the compilation unit that contains
117 -- the callee. After analyzing the bodies of all such compilation units,
118 -- we compute the transitive closure of inlined subprograms called from
119 -- the main compilation unit and make it available to the code generator
120 -- in no particular order, thus allowing cycles in the call graph.
122 Last_Inlined : Entity_Id := Empty;
124 -- For each entry in the table we keep a list of successors in topological
125 -- order, i.e. callers of the current subprogram.
127 type Subp_Index is new Nat;
128 No_Subp : constant Subp_Index := 0;
130 -- The subprogram entities are hashed into the Inlined table
132 Num_Hash_Headers : constant := 512;
134 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
135 of Subp_Index;
137 type Succ_Index is new Nat;
138 No_Succ : constant Succ_Index := 0;
140 type Succ_Info is record
141 Subp : Subp_Index;
142 Next : Succ_Index;
143 end record;
145 -- The following table stores list elements for the successor lists. These
146 -- lists cannot be chained directly through entries in the Inlined table,
147 -- because a given subprogram can appear in several such lists.
149 package Successors is new Table.Table (
150 Table_Component_Type => Succ_Info,
151 Table_Index_Type => Succ_Index,
152 Table_Low_Bound => 1,
153 Table_Initial => Alloc.Successors_Initial,
154 Table_Increment => Alloc.Successors_Increment,
155 Table_Name => "Successors");
157 type Subp_Info is record
158 Name : Entity_Id := Empty;
159 Next : Subp_Index := No_Subp;
160 First_Succ : Succ_Index := No_Succ;
161 Main_Call : Boolean := False;
162 Processed : Boolean := False;
163 end record;
165 package Inlined is new Table.Table (
166 Table_Component_Type => Subp_Info,
167 Table_Index_Type => Subp_Index,
168 Table_Low_Bound => 1,
169 Table_Initial => Alloc.Inlined_Initial,
170 Table_Increment => Alloc.Inlined_Increment,
171 Table_Name => "Inlined");
173 -----------------------
174 -- Local Subprograms --
175 -----------------------
177 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
178 -- Make two entries in Inlined table, for an inlined subprogram being
179 -- called, and for the inlined subprogram that contains the call. If
180 -- the call is in the main compilation unit, Caller is Empty.
182 procedure Add_Inlined_Subprogram (E : Entity_Id);
183 -- Add subprogram E to the list of inlined subprogram for the unit
185 function Add_Subp (E : Entity_Id) return Subp_Index;
186 -- Make entry in Inlined table for subprogram E, or return table index
187 -- that already holds E.
189 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
190 pragma Inline (Get_Code_Unit_Entity);
191 -- Return the entity node for the unit containing E. Always return the spec
192 -- for a package.
194 function Has_Initialized_Type (E : Entity_Id) return Boolean;
195 -- If a candidate for inlining contains type declarations for types with
196 -- nontrivial initialization procedures, they are not worth inlining.
198 function Has_Single_Return (N : Node_Id) return Boolean;
199 -- In general we cannot inline functions that return unconstrained type.
200 -- However, we can handle such functions if all return statements return a
201 -- local variable that is the only declaration in the body of the function.
202 -- In that case the call can be replaced by that local variable as is done
203 -- for other inlined calls.
205 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
206 -- Return True if E is in the main unit or its spec or in a subunit
208 function Is_Nested (E : Entity_Id) return Boolean;
209 -- If the function is nested inside some other function, it will always
210 -- be compiled if that function is, so don't add it to the inline list.
211 -- We cannot compile a nested function outside the scope of the containing
212 -- function anyway. This is also the case if the function is defined in a
213 -- task body or within an entry (for example, an initialization procedure).
215 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
216 -- Remove all aspects and/or pragmas that have no meaning in inlined body
217 -- Body_Decl. The analysis of these items is performed on the non-inlined
218 -- body. The items currently removed are:
219 -- Contract_Cases
220 -- Global
221 -- Depends
222 -- Postcondition
223 -- Precondition
224 -- Refined_Global
225 -- Refined_Depends
226 -- Refined_Post
227 -- Test_Case
228 -- Unmodified
229 -- Unreferenced
231 ------------------------------
232 -- Deferred Cleanup Actions --
233 ------------------------------
235 -- The cleanup actions for scopes that contain instantiations is delayed
236 -- until after expansion of those instantiations, because they may contain
237 -- finalizable objects or tasks that affect the cleanup code. A scope
238 -- that contains instantiations only needs to be finalized once, even
239 -- if it contains more than one instance. We keep a list of scopes
240 -- that must still be finalized, and call cleanup_actions after all
241 -- the instantiations have been completed.
243 To_Clean : Elist_Id;
245 procedure Add_Scope_To_Clean (Inst : Entity_Id);
246 -- Build set of scopes on which cleanup actions must be performed
248 procedure Cleanup_Scopes;
249 -- Complete cleanup actions on scopes that need it
251 --------------
252 -- Add_Call --
253 --------------
255 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
256 P1 : constant Subp_Index := Add_Subp (Called);
257 P2 : Subp_Index;
258 J : Succ_Index;
260 begin
261 if Present (Caller) then
262 P2 := Add_Subp (Caller);
264 -- Add P1 to the list of successors of P2, if not already there.
265 -- Note that P2 may contain more than one call to P1, and only
266 -- one needs to be recorded.
268 J := Inlined.Table (P2).First_Succ;
269 while J /= No_Succ loop
270 if Successors.Table (J).Subp = P1 then
271 return;
272 end if;
274 J := Successors.Table (J).Next;
275 end loop;
277 -- On exit, make a successor entry for P1
279 Successors.Increment_Last;
280 Successors.Table (Successors.Last).Subp := P1;
281 Successors.Table (Successors.Last).Next :=
282 Inlined.Table (P2).First_Succ;
283 Inlined.Table (P2).First_Succ := Successors.Last;
284 else
285 Inlined.Table (P1).Main_Call := True;
286 end if;
287 end Add_Call;
289 ----------------------
290 -- Add_Inlined_Body --
291 ----------------------
293 procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
295 type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
296 -- Level of inlining for the call: Dont_Inline means no inlining,
297 -- Inline_Call means that only the call is considered for inlining,
298 -- Inline_Package means that the call is considered for inlining and
299 -- its package compiled and scanned for more inlining opportunities.
301 function Must_Inline return Inline_Level_Type;
302 -- Inlining is only done if the call statement N is in the main unit,
303 -- or within the body of another inlined subprogram.
305 -----------------
306 -- Must_Inline --
307 -----------------
309 function Must_Inline return Inline_Level_Type is
310 Scop : Entity_Id;
311 Comp : Node_Id;
313 begin
314 -- Check if call is in main unit
316 Scop := Current_Scope;
318 -- Do not try to inline if scope is standard. This could happen, for
319 -- example, for a call to Add_Global_Declaration, and it causes
320 -- trouble to try to inline at this level.
322 if Scop = Standard_Standard then
323 return Dont_Inline;
324 end if;
326 -- Otherwise lookup scope stack to outer scope
328 while Scope (Scop) /= Standard_Standard
329 and then not Is_Child_Unit (Scop)
330 loop
331 Scop := Scope (Scop);
332 end loop;
334 Comp := Parent (Scop);
335 while Nkind (Comp) /= N_Compilation_Unit loop
336 Comp := Parent (Comp);
337 end loop;
339 -- If the call is in the main unit, inline the call and compile the
340 -- package of the subprogram to find more calls to be inlined.
342 if Comp = Cunit (Main_Unit)
343 or else Comp = Library_Unit (Cunit (Main_Unit))
344 then
345 Add_Call (E);
346 return Inline_Package;
347 end if;
349 -- The call is not in the main unit. See if it is in some subprogram
350 -- that can be inlined outside its unit. If so, inline the call and,
351 -- if the inlining level is set to 1, stop there; otherwise also
352 -- compile the package as above.
354 Scop := Current_Scope;
355 while Scope (Scop) /= Standard_Standard
356 and then not Is_Child_Unit (Scop)
357 loop
358 if Is_Overloadable (Scop)
359 and then Is_Inlined (Scop)
360 and then not Is_Nested (Scop)
361 then
362 Add_Call (E, Scop);
364 if Inline_Level = 1 then
365 return Inline_Call;
366 else
367 return Inline_Package;
368 end if;
369 end if;
371 Scop := Scope (Scop);
372 end loop;
374 return Dont_Inline;
375 end Must_Inline;
377 Level : Inline_Level_Type;
379 -- Start of processing for Add_Inlined_Body
381 begin
382 Append_New_Elmt (N, To => Backend_Calls);
384 -- Skip subprograms that cannot be inlined outside their unit
386 if Is_Abstract_Subprogram (E)
387 or else Convention (E) = Convention_Protected
388 or else Is_Nested (E)
389 then
390 return;
391 end if;
393 -- Find unit containing E, and add to list of inlined bodies if needed.
394 -- If the body is already present, no need to load any other unit. This
395 -- is the case for an initialization procedure, which appears in the
396 -- package declaration that contains the type. It is also the case if
397 -- the body has already been analyzed. Finally, if the unit enclosing
398 -- E is an instance, the instance body will be analyzed in any case,
399 -- and there is no need to add the enclosing unit (whose body might not
400 -- be available).
402 -- Library-level functions must be handled specially, because there is
403 -- no enclosing package to retrieve. In this case, it is the body of
404 -- the function that will have to be loaded.
406 Level := Must_Inline;
408 if Level /= Dont_Inline then
409 declare
410 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
412 begin
413 -- Ensure that Analyze_Inlined_Bodies will be invoked after
414 -- completing the analysis of the current unit.
416 Inline_Processing_Required := True;
418 if Pack = E then
420 -- Library-level inlined function. Add function itself to
421 -- list of needed units.
423 Set_Is_Called (E);
424 Inlined_Bodies.Increment_Last;
425 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
427 elsif Ekind (Pack) = E_Package then
428 Set_Is_Called (E);
430 if Is_Generic_Instance (Pack) then
431 null;
433 -- Do not inline the package if the subprogram is an init proc
434 -- or other internally generated subprogram, because in that
435 -- case the subprogram body appears in the same unit that
436 -- declares the type, and that body is visible to the back end.
437 -- Do not inline it either if it is in the main unit.
439 elsif Level = Inline_Package
440 and then not Is_Inlined (Pack)
441 and then not Is_Internal (E)
442 and then not In_Main_Unit_Or_Subunit (Pack)
443 then
444 Set_Is_Inlined (Pack);
445 Inlined_Bodies.Increment_Last;
446 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
448 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
449 -- calls if the back-end takes care of inlining the call.
451 elsif Level = Inline_Call
452 and then Has_Pragma_Inline_Always (E)
453 and then Back_End_Inlining
454 then
455 Set_Is_Inlined (Pack);
456 Inlined_Bodies.Increment_Last;
457 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
458 end if;
459 end if;
461 -- If the call was generated by the compiler and is to a function
462 -- in a run-time unit, we need to suppress debugging information
463 -- for it, so that the code that is eventually inlined will not
464 -- affect debugging of the program. We do not do it if the call
465 -- comes from source because, even if the call is inlined, the
466 -- user may expect it to be present in the debugging information.
468 if not Comes_From_Source (N)
469 and then In_Extended_Main_Source_Unit (N)
470 and then
471 Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (E)))
472 then
473 Set_Needs_Debug_Info (E, False);
474 end if;
475 end;
476 end if;
477 end Add_Inlined_Body;
479 ----------------------------
480 -- Add_Inlined_Subprogram --
481 ----------------------------
483 procedure Add_Inlined_Subprogram (E : Entity_Id) is
484 Decl : constant Node_Id := Parent (Declaration_Node (E));
485 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
487 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
488 -- Append Subp to the list of subprograms inlined by the backend
490 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
491 -- Append Subp to the list of subprograms that cannot be inlined by
492 -- the backend.
494 -----------------------------------------
495 -- Register_Backend_Inlined_Subprogram --
496 -----------------------------------------
498 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
499 begin
500 Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
501 end Register_Backend_Inlined_Subprogram;
503 ---------------------------------------------
504 -- Register_Backend_Not_Inlined_Subprogram --
505 ---------------------------------------------
507 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
508 begin
509 Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
510 end Register_Backend_Not_Inlined_Subprogram;
512 -- Start of processing for Add_Inlined_Subprogram
514 begin
515 -- If the subprogram is to be inlined, and if its unit is known to be
516 -- inlined or is an instance whose body will be analyzed anyway or the
517 -- subprogram was generated as a body by the compiler (for example an
518 -- initialization procedure) or its declaration was provided along with
519 -- the body (for example an expression function), and if it is declared
520 -- at the library level not in the main unit, and if it can be inlined
521 -- by the back-end, then insert it in the list of inlined subprograms.
523 if Is_Inlined (E)
524 and then (Is_Inlined (Pack)
525 or else Is_Generic_Instance (Pack)
526 or else Nkind (Decl) = N_Subprogram_Body
527 or else Present (Corresponding_Body (Decl)))
528 and then not In_Main_Unit_Or_Subunit (E)
529 and then not Is_Nested (E)
530 and then not Has_Initialized_Type (E)
531 then
532 Register_Backend_Inlined_Subprogram (E);
534 if No (Last_Inlined) then
535 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
536 else
537 Set_Next_Inlined_Subprogram (Last_Inlined, E);
538 end if;
540 Last_Inlined := E;
542 else
543 Register_Backend_Not_Inlined_Subprogram (E);
544 end if;
545 end Add_Inlined_Subprogram;
547 ------------------------
548 -- Add_Scope_To_Clean --
549 ------------------------
551 procedure Add_Scope_To_Clean (Inst : Entity_Id) is
552 Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
553 Elmt : Elmt_Id;
555 begin
556 -- If the instance appears in a library-level package declaration,
557 -- all finalization is global, and nothing needs doing here.
559 if Scop = Standard_Standard then
560 return;
561 end if;
563 -- If the instance is within a generic unit, no finalization code
564 -- can be generated. Note that at this point all bodies have been
565 -- analyzed, and the scope stack itself is not present, and the flag
566 -- Inside_A_Generic is not set.
568 declare
569 S : Entity_Id;
571 begin
572 S := Scope (Inst);
573 while Present (S) and then S /= Standard_Standard loop
574 if Is_Generic_Unit (S) then
575 return;
576 end if;
578 S := Scope (S);
579 end loop;
580 end;
582 Elmt := First_Elmt (To_Clean);
583 while Present (Elmt) loop
584 if Node (Elmt) = Scop then
585 return;
586 end if;
588 Elmt := Next_Elmt (Elmt);
589 end loop;
591 Append_Elmt (Scop, To_Clean);
592 end Add_Scope_To_Clean;
594 --------------
595 -- Add_Subp --
596 --------------
598 function Add_Subp (E : Entity_Id) return Subp_Index is
599 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
600 J : Subp_Index;
602 procedure New_Entry;
603 -- Initialize entry in Inlined table
605 procedure New_Entry is
606 begin
607 Inlined.Increment_Last;
608 Inlined.Table (Inlined.Last).Name := E;
609 Inlined.Table (Inlined.Last).Next := No_Subp;
610 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
611 Inlined.Table (Inlined.Last).Main_Call := False;
612 Inlined.Table (Inlined.Last).Processed := False;
613 end New_Entry;
615 -- Start of processing for Add_Subp
617 begin
618 if Hash_Headers (Index) = No_Subp then
619 New_Entry;
620 Hash_Headers (Index) := Inlined.Last;
621 return Inlined.Last;
623 else
624 J := Hash_Headers (Index);
625 while J /= No_Subp loop
626 if Inlined.Table (J).Name = E then
627 return J;
628 else
629 Index := J;
630 J := Inlined.Table (J).Next;
631 end if;
632 end loop;
634 -- On exit, subprogram was not found. Enter in table. Index is
635 -- the current last entry on the hash chain.
637 New_Entry;
638 Inlined.Table (Index).Next := Inlined.Last;
639 return Inlined.Last;
640 end if;
641 end Add_Subp;
643 ----------------------------
644 -- Analyze_Inlined_Bodies --
645 ----------------------------
647 procedure Analyze_Inlined_Bodies is
648 Comp_Unit : Node_Id;
649 J : Int;
650 Pack : Entity_Id;
651 Subp : Subp_Index;
652 S : Succ_Index;
654 type Pending_Index is new Nat;
656 package Pending_Inlined is new Table.Table (
657 Table_Component_Type => Subp_Index,
658 Table_Index_Type => Pending_Index,
659 Table_Low_Bound => 1,
660 Table_Initial => Alloc.Inlined_Initial,
661 Table_Increment => Alloc.Inlined_Increment,
662 Table_Name => "Pending_Inlined");
663 -- The workpile used to compute the transitive closure
665 function Is_Ancestor_Of_Main
666 (U_Name : Entity_Id;
667 Nam : Node_Id) return Boolean;
668 -- Determine whether the unit whose body is loaded is an ancestor of
669 -- the main unit, and has a with_clause on it. The body is not
670 -- analyzed yet, so the check is purely lexical: the name of the with
671 -- clause is a selected component, and names of ancestors must match.
673 -------------------------
674 -- Is_Ancestor_Of_Main --
675 -------------------------
677 function Is_Ancestor_Of_Main
678 (U_Name : Entity_Id;
679 Nam : Node_Id) return Boolean
681 Pref : Node_Id;
683 begin
684 if Nkind (Nam) /= N_Selected_Component then
685 return False;
687 else
688 if Chars (Selector_Name (Nam)) /=
689 Chars (Cunit_Entity (Main_Unit))
690 then
691 return False;
692 end if;
694 Pref := Prefix (Nam);
695 if Nkind (Pref) = N_Identifier then
697 -- Par is an ancestor of Par.Child.
699 return Chars (Pref) = Chars (U_Name);
701 elsif Nkind (Pref) = N_Selected_Component
702 and then Chars (Selector_Name (Pref)) = Chars (U_Name)
703 then
704 -- Par.Child is an ancestor of Par.Child.Grand.
706 return True; -- should check that ancestor match
708 else
709 -- A is an ancestor of A.B.C if it is an ancestor of A.B
711 return Is_Ancestor_Of_Main (U_Name, Pref);
712 end if;
713 end if;
714 end Is_Ancestor_Of_Main;
716 -- Start of processing for Analyze_Inlined_Bodies
718 begin
719 if Serious_Errors_Detected = 0 then
720 Push_Scope (Standard_Standard);
722 J := 0;
723 while J <= Inlined_Bodies.Last
724 and then Serious_Errors_Detected = 0
725 loop
726 Pack := Inlined_Bodies.Table (J);
727 while Present (Pack)
728 and then Scope (Pack) /= Standard_Standard
729 and then not Is_Child_Unit (Pack)
730 loop
731 Pack := Scope (Pack);
732 end loop;
734 Comp_Unit := Parent (Pack);
735 while Present (Comp_Unit)
736 and then Nkind (Comp_Unit) /= N_Compilation_Unit
737 loop
738 Comp_Unit := Parent (Comp_Unit);
739 end loop;
741 -- Load the body, unless it is the main unit, or is an instance
742 -- whose body has already been analyzed.
744 if Present (Comp_Unit)
745 and then Comp_Unit /= Cunit (Main_Unit)
746 and then Body_Required (Comp_Unit)
747 and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
748 or else No (Corresponding_Body (Unit (Comp_Unit))))
749 then
750 declare
751 Bname : constant Unit_Name_Type :=
752 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
754 OK : Boolean;
756 begin
757 if not Is_Loaded (Bname) then
758 Style_Check := False;
759 Load_Needed_Body (Comp_Unit, OK, Do_Analyze => False);
761 if not OK then
763 -- Warn that a body was not available for inlining
764 -- by the back-end.
766 Error_Msg_Unit_1 := Bname;
767 Error_Msg_N
768 ("one or more inlined subprograms accessed in $!??",
769 Comp_Unit);
770 Error_Msg_File_1 :=
771 Get_File_Name (Bname, Subunit => False);
772 Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
774 else
775 -- If the package to be inlined is an ancestor unit of
776 -- the main unit, and it has a semantic dependence on
777 -- it, the inlining cannot take place to prevent an
778 -- elaboration circularity. The desired body is not
779 -- analyzed yet, to prevent the completion of Taft
780 -- amendment types that would lead to elaboration
781 -- circularities in gigi.
783 declare
784 U_Id : constant Entity_Id :=
785 Defining_Entity (Unit (Comp_Unit));
786 Body_Unit : constant Node_Id :=
787 Library_Unit (Comp_Unit);
788 Item : Node_Id;
790 begin
791 Item := First (Context_Items (Body_Unit));
792 while Present (Item) loop
793 if Nkind (Item) = N_With_Clause
794 and then
795 Is_Ancestor_Of_Main (U_Id, Name (Item))
796 then
797 Set_Is_Inlined (U_Id, False);
798 exit;
799 end if;
801 Next (Item);
802 end loop;
804 -- If no suspicious with_clauses, analyze the body.
806 if Is_Inlined (U_Id) then
807 Semantics (Body_Unit);
808 end if;
809 end;
810 end if;
811 end if;
812 end;
813 end if;
815 J := J + 1;
817 if J > Inlined_Bodies.Last then
819 -- The analysis of required bodies may have produced additional
820 -- generic instantiations. To obtain further inlining, we need
821 -- to perform another round of generic body instantiations.
823 Instantiate_Bodies;
825 -- Symmetrically, the instantiation of required generic bodies
826 -- may have caused additional bodies to be inlined. To obtain
827 -- further inlining, we keep looping over the inlined bodies.
828 end if;
829 end loop;
831 -- The list of inlined subprograms is an overestimate, because it
832 -- includes inlined functions called from functions that are compiled
833 -- as part of an inlined package, but are not themselves called. An
834 -- accurate computation of just those subprograms that are needed
835 -- requires that we perform a transitive closure over the call graph,
836 -- starting from calls in the main compilation unit.
838 for Index in Inlined.First .. Inlined.Last loop
839 if not Is_Called (Inlined.Table (Index).Name) then
841 -- This means that Add_Inlined_Body added the subprogram to the
842 -- table but wasn't able to handle its code unit. Do nothing.
844 Inlined.Table (Index).Processed := True;
846 elsif Inlined.Table (Index).Main_Call then
847 Pending_Inlined.Increment_Last;
848 Pending_Inlined.Table (Pending_Inlined.Last) := Index;
849 Inlined.Table (Index).Processed := True;
851 else
852 Set_Is_Called (Inlined.Table (Index).Name, False);
853 end if;
854 end loop;
856 -- Iterate over the workpile until it is emptied, propagating the
857 -- Is_Called flag to the successors of the processed subprogram.
859 while Pending_Inlined.Last >= Pending_Inlined.First loop
860 Subp := Pending_Inlined.Table (Pending_Inlined.Last);
861 Pending_Inlined.Decrement_Last;
863 S := Inlined.Table (Subp).First_Succ;
865 while S /= No_Succ loop
866 Subp := Successors.Table (S).Subp;
868 if not Inlined.Table (Subp).Processed then
869 Set_Is_Called (Inlined.Table (Subp).Name);
870 Pending_Inlined.Increment_Last;
871 Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
872 Inlined.Table (Subp).Processed := True;
873 end if;
875 S := Successors.Table (S).Next;
876 end loop;
877 end loop;
879 -- Finally add the called subprograms to the list of inlined
880 -- subprograms for the unit.
882 for Index in Inlined.First .. Inlined.Last loop
883 if Is_Called (Inlined.Table (Index).Name) then
884 Add_Inlined_Subprogram (Inlined.Table (Index).Name);
885 end if;
886 end loop;
888 Pop_Scope;
889 end if;
890 end Analyze_Inlined_Bodies;
892 --------------------------
893 -- Build_Body_To_Inline --
894 --------------------------
896 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
897 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
898 Analysis_Status : constant Boolean := Full_Analysis;
899 Original_Body : Node_Id;
900 Body_To_Analyze : Node_Id;
901 Max_Size : constant := 10;
903 function Has_Pending_Instantiation return Boolean;
904 -- If some enclosing body contains instantiations that appear before
905 -- the corresponding generic body, the enclosing body has a freeze node
906 -- so that it can be elaborated after the generic itself. This might
907 -- conflict with subsequent inlinings, so that it is unsafe to try to
908 -- inline in such a case.
910 function Has_Single_Return_In_GNATprove_Mode return Boolean;
911 -- This function is called only in GNATprove mode, and it returns
912 -- True if the subprogram has no return statement or a single return
913 -- statement as last statement. It returns False for subprogram with
914 -- a single return as last statement inside one or more blocks, as
915 -- inlining would generate gotos in that case as well (although the
916 -- goto is useless in that case).
918 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
919 -- If the body of the subprogram includes a call that returns an
920 -- unconstrained type, the secondary stack is involved, and it
921 -- is not worth inlining.
923 -------------------------------
924 -- Has_Pending_Instantiation --
925 -------------------------------
927 function Has_Pending_Instantiation return Boolean is
928 S : Entity_Id;
930 begin
931 S := Current_Scope;
932 while Present (S) loop
933 if Is_Compilation_Unit (S)
934 or else Is_Child_Unit (S)
935 then
936 return False;
938 elsif Ekind (S) = E_Package
939 and then Has_Forward_Instantiation (S)
940 then
941 return True;
942 end if;
944 S := Scope (S);
945 end loop;
947 return False;
948 end Has_Pending_Instantiation;
950 -----------------------------------------
951 -- Has_Single_Return_In_GNATprove_Mode --
952 -----------------------------------------
954 function Has_Single_Return_In_GNATprove_Mode return Boolean is
955 Last_Statement : Node_Id := Empty;
957 function Check_Return (N : Node_Id) return Traverse_Result;
958 -- Returns OK on node N if this is not a return statement different
959 -- from the last statement in the subprogram.
961 ------------------
962 -- Check_Return --
963 ------------------
965 function Check_Return (N : Node_Id) return Traverse_Result is
966 begin
967 if Nkind_In (N, N_Simple_Return_Statement,
968 N_Extended_Return_Statement)
969 then
970 if N = Last_Statement then
971 return OK;
972 else
973 return Abandon;
974 end if;
976 else
977 return OK;
978 end if;
979 end Check_Return;
981 function Check_All_Returns is new Traverse_Func (Check_Return);
983 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
985 begin
986 -- Retrieve the last statement
988 Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
990 -- Check that the last statement is the only possible return
991 -- statement in the subprogram.
993 return Check_All_Returns (N) = OK;
994 end Has_Single_Return_In_GNATprove_Mode;
996 --------------------------
997 -- Uses_Secondary_Stack --
998 --------------------------
1000 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
1001 function Check_Call (N : Node_Id) return Traverse_Result;
1002 -- Look for function calls that return an unconstrained type
1004 ----------------
1005 -- Check_Call --
1006 ----------------
1008 function Check_Call (N : Node_Id) return Traverse_Result is
1009 begin
1010 if Nkind (N) = N_Function_Call
1011 and then Is_Entity_Name (Name (N))
1012 and then Is_Composite_Type (Etype (Entity (Name (N))))
1013 and then not Is_Constrained (Etype (Entity (Name (N))))
1014 then
1015 Cannot_Inline
1016 ("cannot inline & (call returns unconstrained type)?",
1017 N, Spec_Id);
1018 return Abandon;
1019 else
1020 return OK;
1021 end if;
1022 end Check_Call;
1024 function Check_Calls is new Traverse_Func (Check_Call);
1026 begin
1027 return Check_Calls (Bod) = Abandon;
1028 end Uses_Secondary_Stack;
1030 -- Start of processing for Build_Body_To_Inline
1032 begin
1033 -- Return immediately if done already
1035 if Nkind (Decl) = N_Subprogram_Declaration
1036 and then Present (Body_To_Inline (Decl))
1037 then
1038 return;
1040 -- Subprograms that have return statements in the middle of the body are
1041 -- inlined with gotos. GNATprove does not currently support gotos, so
1042 -- we prevent such inlining.
1044 elsif GNATprove_Mode
1045 and then not Has_Single_Return_In_GNATprove_Mode
1046 then
1047 Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
1048 return;
1050 -- Functions that return unconstrained composite types require
1051 -- secondary stack handling, and cannot currently be inlined, unless
1052 -- all return statements return a local variable that is the first
1053 -- local declaration in the body.
1055 elsif Ekind (Spec_Id) = E_Function
1056 and then not Is_Scalar_Type (Etype (Spec_Id))
1057 and then not Is_Access_Type (Etype (Spec_Id))
1058 and then not Is_Constrained (Etype (Spec_Id))
1059 then
1060 if not Has_Single_Return (N) then
1061 Cannot_Inline
1062 ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1063 return;
1064 end if;
1066 -- Ditto for functions that return controlled types, where controlled
1067 -- actions interfere in complex ways with inlining.
1069 elsif Ekind (Spec_Id) = E_Function
1070 and then Needs_Finalization (Etype (Spec_Id))
1071 then
1072 Cannot_Inline
1073 ("cannot inline & (controlled return type)?", N, Spec_Id);
1074 return;
1075 end if;
1077 if Present (Declarations (N))
1078 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
1079 then
1080 return;
1081 end if;
1083 if Present (Handled_Statement_Sequence (N)) then
1084 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1085 Cannot_Inline
1086 ("cannot inline& (exception handler)?",
1087 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1088 Spec_Id);
1089 return;
1091 elsif Has_Excluded_Statement
1092 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1093 then
1094 return;
1095 end if;
1096 end if;
1098 -- We do not inline a subprogram that is too large, unless it is marked
1099 -- Inline_Always or we are in GNATprove mode. This pragma does not
1100 -- suppress the other checks on inlining (forbidden declarations,
1101 -- handlers, etc).
1103 if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1104 and then List_Length
1105 (Statements (Handled_Statement_Sequence (N))) > Max_Size
1106 then
1107 Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1108 return;
1109 end if;
1111 if Has_Pending_Instantiation then
1112 Cannot_Inline
1113 ("cannot inline& (forward instance within enclosing body)?",
1114 N, Spec_Id);
1115 return;
1116 end if;
1118 -- Within an instance, the body to inline must be treated as a nested
1119 -- generic, so that the proper global references are preserved.
1121 -- Note that we do not do this at the library level, because it is not
1122 -- needed, and furthermore this causes trouble if front end inlining
1123 -- is activated (-gnatN).
1125 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1126 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1127 Original_Body := Copy_Generic_Node (N, Empty, True);
1128 else
1129 Original_Body := Copy_Separate_Tree (N);
1130 end if;
1132 -- We need to capture references to the formals in order to substitute
1133 -- the actuals at the point of inlining, i.e. instantiation. To treat
1134 -- the formals as globals to the body to inline, we nest it within a
1135 -- dummy parameterless subprogram, declared within the real one. To
1136 -- avoid generating an internal name (which is never public, and which
1137 -- affects serial numbers of other generated names), we use an internal
1138 -- symbol that cannot conflict with user declarations.
1140 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1141 Set_Defining_Unit_Name
1142 (Specification (Original_Body),
1143 Make_Defining_Identifier (Sloc (N), Name_uParent));
1144 Set_Corresponding_Spec (Original_Body, Empty);
1146 -- Remove all aspects/pragmas that have no meaining in an inlined body
1148 Remove_Aspects_And_Pragmas (Original_Body);
1150 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1152 -- Set return type of function, which is also global and does not need
1153 -- to be resolved.
1155 if Ekind (Spec_Id) = E_Function then
1156 Set_Result_Definition
1157 (Specification (Body_To_Analyze),
1158 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1159 end if;
1161 if No (Declarations (N)) then
1162 Set_Declarations (N, New_List (Body_To_Analyze));
1163 else
1164 Append (Body_To_Analyze, Declarations (N));
1165 end if;
1167 -- The body to inline is pre-analyzed. In GNATprove mode we must disable
1168 -- full analysis as well so that light expansion does not take place
1169 -- either, and name resolution is unaffected.
1171 Expander_Mode_Save_And_Set (False);
1172 Full_Analysis := False;
1174 Analyze (Body_To_Analyze);
1175 Push_Scope (Defining_Entity (Body_To_Analyze));
1176 Save_Global_References (Original_Body);
1177 End_Scope;
1178 Remove (Body_To_Analyze);
1180 Expander_Mode_Restore;
1181 Full_Analysis := Analysis_Status;
1183 -- Restore environment if previously saved
1185 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1186 Restore_Env;
1187 end if;
1189 -- If secondary stack is used, there is no point in inlining. We have
1190 -- already issued the warning in this case, so nothing to do.
1192 if Uses_Secondary_Stack (Body_To_Analyze) then
1193 return;
1194 end if;
1196 Set_Body_To_Inline (Decl, Original_Body);
1197 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1198 Set_Is_Inlined (Spec_Id);
1199 end Build_Body_To_Inline;
1201 -------------------
1202 -- Cannot_Inline --
1203 -------------------
1205 procedure Cannot_Inline
1206 (Msg : String;
1207 N : Node_Id;
1208 Subp : Entity_Id;
1209 Is_Serious : Boolean := False)
1211 begin
1212 -- In GNATprove mode, inlining is the technical means by which the
1213 -- higher-level goal of contextual analysis is reached, so issue
1214 -- messages about failure to apply contextual analysis to a
1215 -- subprogram, rather than failure to inline it.
1217 if GNATprove_Mode
1218 and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
1219 then
1220 declare
1221 Len1 : constant Positive :=
1222 String (String'("cannot inline"))'Length;
1223 Len2 : constant Positive :=
1224 String (String'("info: no contextual analysis of"))'Length;
1226 New_Msg : String (1 .. Msg'Length + Len2 - Len1);
1228 begin
1229 New_Msg (1 .. Len2) := "info: no contextual analysis of";
1230 New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
1231 Msg (Msg'First + Len1 .. Msg'Last);
1232 Cannot_Inline (New_Msg, N, Subp, Is_Serious);
1233 return;
1234 end;
1235 end if;
1237 pragma Assert (Msg (Msg'Last) = '?');
1239 -- Legacy front end inlining model
1241 if not Back_End_Inlining then
1243 -- Do not emit warning if this is a predefined unit which is not
1244 -- the main unit. With validity checks enabled, some predefined
1245 -- subprograms may contain nested subprograms and become ineligible
1246 -- for inlining.
1248 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1249 and then not In_Extended_Main_Source_Unit (Subp)
1250 then
1251 null;
1253 -- In GNATprove mode, issue a warning, and indicate that the
1254 -- subprogram is not always inlined by setting flag Is_Inlined_Always
1255 -- to False.
1257 elsif GNATprove_Mode then
1258 Set_Is_Inlined_Always (Subp, False);
1259 Error_Msg_NE (Msg & "p?", N, Subp);
1261 elsif Has_Pragma_Inline_Always (Subp) then
1263 -- Remove last character (question mark) to make this into an
1264 -- error, because the Inline_Always pragma cannot be obeyed.
1266 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1268 elsif Ineffective_Inline_Warnings then
1269 Error_Msg_NE (Msg & "p?", N, Subp);
1270 end if;
1272 -- New semantics relying on back end inlining
1274 elsif Is_Serious then
1276 -- Remove last character (question mark) to make this into an error.
1278 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1280 -- In GNATprove mode, issue a warning, and indicate that the subprogram
1281 -- is not always inlined by setting flag Is_Inlined_Always to False.
1283 elsif GNATprove_Mode then
1284 Set_Is_Inlined_Always (Subp, False);
1285 Error_Msg_NE (Msg & "p?", N, Subp);
1287 else
1289 -- Do not emit warning if this is a predefined unit which is not
1290 -- the main unit. This behavior is currently provided for backward
1291 -- compatibility but it will be removed when we enforce the
1292 -- strictness of the new rules.
1294 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1295 and then not In_Extended_Main_Source_Unit (Subp)
1296 then
1297 null;
1299 elsif Has_Pragma_Inline_Always (Subp) then
1301 -- Emit a warning if this is a call to a runtime subprogram
1302 -- which is located inside a generic. Previously this call
1303 -- was silently skipped.
1305 if Is_Generic_Instance (Subp) then
1306 declare
1307 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
1308 begin
1309 if Is_Predefined_File_Name
1310 (Unit_File_Name (Get_Source_Unit (Gen_P)))
1311 then
1312 Set_Is_Inlined (Subp, False);
1313 Error_Msg_NE (Msg & "p?", N, Subp);
1314 return;
1315 end if;
1316 end;
1317 end if;
1319 -- Remove last character (question mark) to make this into an
1320 -- error, because the Inline_Always pragma cannot be obeyed.
1322 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1324 else
1325 Set_Is_Inlined (Subp, False);
1327 if Ineffective_Inline_Warnings then
1328 Error_Msg_NE (Msg & "p?", N, Subp);
1329 end if;
1330 end if;
1331 end if;
1332 end Cannot_Inline;
1334 --------------------------------------
1335 -- Can_Be_Inlined_In_GNATprove_Mode --
1336 --------------------------------------
1338 function Can_Be_Inlined_In_GNATprove_Mode
1339 (Spec_Id : Entity_Id;
1340 Body_Id : Entity_Id) return Boolean
1342 function Has_Formal_With_Discriminant_Dependent_Fields
1343 (Id : Entity_Id) return Boolean;
1344 -- Returns true if the subprogram has at least one formal parameter of
1345 -- an unconstrained record type with per-object constraints on component
1346 -- types.
1348 function Has_Some_Contract (Id : Entity_Id) return Boolean;
1349 -- Returns True if subprogram Id has any contract (Pre, Post, Global,
1350 -- Depends, etc.)
1352 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1353 -- Returns True if subprogram Id defines a compilation unit
1354 -- Shouldn't this be in Sem_Aux???
1356 function In_Package_Visible_Spec (Id : Node_Id) return Boolean;
1357 -- Returns True if subprogram Id is defined in the visible part of a
1358 -- package specification.
1360 ---------------------------------------------------
1361 -- Has_Formal_With_Discriminant_Dependent_Fields --
1362 ---------------------------------------------------
1364 function Has_Formal_With_Discriminant_Dependent_Fields
1365 (Id : Entity_Id) return Boolean is
1367 function Has_Discriminant_Dependent_Component
1368 (Typ : Entity_Id) return Boolean;
1369 -- Determine whether unconstrained record type Typ has at least
1370 -- one component that depends on a discriminant.
1372 ------------------------------------------
1373 -- Has_Discriminant_Dependent_Component --
1374 ------------------------------------------
1376 function Has_Discriminant_Dependent_Component
1377 (Typ : Entity_Id) return Boolean
1379 Comp : Entity_Id;
1381 begin
1382 -- Inspect all components of the record type looking for one
1383 -- that depends on a discriminant.
1385 Comp := First_Component (Typ);
1386 while Present (Comp) loop
1387 if Has_Discriminant_Dependent_Constraint (Comp) then
1388 return True;
1389 end if;
1391 Next_Component (Comp);
1392 end loop;
1394 return False;
1395 end Has_Discriminant_Dependent_Component;
1397 -- Local variables
1399 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1400 Formal : Entity_Id;
1401 Formal_Typ : Entity_Id;
1403 -- Start of processing for
1404 -- Has_Formal_With_Discriminant_Dependent_Component
1406 begin
1407 -- Inspect all parameters of the subprogram looking for a formal
1408 -- of an unconstrained record type with at least one discriminant
1409 -- dependent component.
1411 Formal := First_Formal (Subp_Id);
1412 while Present (Formal) loop
1413 Formal_Typ := Etype (Formal);
1415 if Is_Record_Type (Formal_Typ)
1416 and then not Is_Constrained (Formal_Typ)
1417 and then Has_Discriminant_Dependent_Component (Formal_Typ)
1418 then
1419 return True;
1420 end if;
1422 Next_Formal (Formal);
1423 end loop;
1425 return False;
1426 end Has_Formal_With_Discriminant_Dependent_Fields;
1428 -----------------------
1429 -- Has_Some_Contract --
1430 -----------------------
1432 function Has_Some_Contract (Id : Entity_Id) return Boolean is
1433 Items : Node_Id;
1435 begin
1436 -- A call to an expression function may precede the actual body which
1437 -- is inserted at the end of the enclosing declarations. Ensure that
1438 -- the related entity is decorated before inspecting the contract.
1440 if Is_Subprogram_Or_Generic_Subprogram (Id) then
1441 Items := Contract (Id);
1443 return Present (Items)
1444 and then (Present (Pre_Post_Conditions (Items)) or else
1445 Present (Contract_Test_Cases (Items)) or else
1446 Present (Classifications (Items)));
1447 end if;
1449 return False;
1450 end Has_Some_Contract;
1452 -----------------------------
1453 -- In_Package_Visible_Spec --
1454 -----------------------------
1456 function In_Package_Visible_Spec (Id : Node_Id) return Boolean is
1457 Decl : Node_Id := Parent (Parent (Id));
1458 P : Node_Id;
1460 begin
1461 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1462 Decl := Parent (Decl);
1463 end if;
1465 P := Parent (Decl);
1467 return Nkind (P) = N_Package_Specification
1468 and then List_Containing (Decl) = Visible_Declarations (P);
1469 end In_Package_Visible_Spec;
1471 ------------------------
1472 -- Is_Unit_Subprogram --
1473 ------------------------
1475 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1476 Decl : Node_Id := Parent (Parent (Id));
1477 begin
1478 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1479 Decl := Parent (Decl);
1480 end if;
1482 return Nkind (Parent (Decl)) = N_Compilation_Unit;
1483 end Is_Unit_Subprogram;
1485 -- Local declarations
1487 Id : Entity_Id; -- Procedure or function entity for the subprogram
1489 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1491 begin
1492 pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1494 if Present (Spec_Id) then
1495 Id := Spec_Id;
1496 else
1497 Id := Body_Id;
1498 end if;
1500 -- Only local subprograms without contracts are inlined in GNATprove
1501 -- mode, as these are the subprograms which a user is not interested in
1502 -- analyzing in isolation, but rather in the context of their call. This
1503 -- is a convenient convention, that could be changed for an explicit
1504 -- pragma/aspect one day.
1506 -- In a number of special cases, inlining is not desirable or not
1507 -- possible, see below.
1509 -- Do not inline unit-level subprograms
1511 if Is_Unit_Subprogram (Id) then
1512 return False;
1514 -- Do not inline subprograms declared in the visible part of a package
1516 elsif In_Package_Visible_Spec (Id) then
1517 return False;
1519 -- Do not inline subprograms marked No_Return, possibly used for
1520 -- signaling errors, which GNATprove handles specially.
1522 elsif No_Return (Id) then
1523 return False;
1525 -- Do not inline subprograms that have a contract on the spec or the
1526 -- body. Use the contract(s) instead in GNATprove.
1528 elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
1529 or else
1530 (Present (Body_Id) and then Has_Some_Contract (Body_Id))
1531 then
1532 return False;
1534 -- Do not inline expression functions, which are directly inlined at the
1535 -- prover level.
1537 elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
1538 or else
1539 (Present (Body_Id) and then Is_Expression_Function (Body_Id))
1540 then
1541 return False;
1543 -- Do not inline generic subprogram instances. The visibility rules of
1544 -- generic instances plays badly with inlining.
1546 elsif Is_Generic_Instance (Spec_Id) then
1547 return False;
1549 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1550 -- the subprogram body, a similar check is performed after the body
1551 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1553 elsif Present (Spec_Id)
1554 and then
1555 (No (SPARK_Pragma (Spec_Id))
1556 or else Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) /= On)
1557 then
1558 return False;
1560 -- Subprograms in generic instances are currently not inlined, to avoid
1561 -- problems with inlining of standard library subprograms.
1563 elsif Instantiation_Location (Sloc (Id)) /= No_Location then
1564 return False;
1566 -- Do not inline predicate functions (treated specially by GNATprove)
1568 elsif Is_Predicate_Function (Id) then
1569 return False;
1571 -- Do not inline subprograms with a parameter of an unconstrained
1572 -- record type if it has discrimiant dependent fields. Indeed, with
1573 -- such parameters, the frontend cannot always ensure type compliance
1574 -- in record component accesses (in particular with records containing
1575 -- packed arrays).
1577 elsif Has_Formal_With_Discriminant_Dependent_Fields (Id) then
1578 return False;
1580 -- Otherwise, this is a subprogram declared inside the private part of a
1581 -- package, or inside a package body, or locally in a subprogram, and it
1582 -- does not have any contract. Inline it.
1584 else
1585 return True;
1586 end if;
1587 end Can_Be_Inlined_In_GNATprove_Mode;
1589 --------------------------------------------
1590 -- Check_And_Split_Unconstrained_Function --
1591 --------------------------------------------
1593 procedure Check_And_Split_Unconstrained_Function
1594 (N : Node_Id;
1595 Spec_Id : Entity_Id;
1596 Body_Id : Entity_Id)
1598 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
1599 -- Use generic machinery to build an unexpanded body for the subprogram.
1600 -- This body is subsequently used for inline expansions at call sites.
1602 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
1603 -- Return true if we generate code for the function body N, the function
1604 -- body N has no local declarations and its unique statement is a single
1605 -- extended return statement with a handled statements sequence.
1607 procedure Generate_Subprogram_Body
1608 (N : Node_Id;
1609 Body_To_Inline : out Node_Id);
1610 -- Generate a parameterless duplicate of subprogram body N. Occurrences
1611 -- of pragmas referencing the formals are removed since they have no
1612 -- meaning when the body is inlined and the formals are rewritten (the
1613 -- analysis of the non-inlined body will handle these pragmas properly).
1614 -- A new internal name is associated with Body_To_Inline.
1616 procedure Split_Unconstrained_Function
1617 (N : Node_Id;
1618 Spec_Id : Entity_Id);
1619 -- N is an inlined function body that returns an unconstrained type and
1620 -- has a single extended return statement. Split N in two subprograms:
1621 -- a procedure P' and a function F'. The formals of P' duplicate the
1622 -- formals of N plus an extra formal which is used return a value;
1623 -- its body is composed by the declarations and list of statements
1624 -- of the extended return statement of N.
1626 --------------------------
1627 -- Build_Body_To_Inline --
1628 --------------------------
1630 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1631 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1632 Original_Body : Node_Id;
1633 Body_To_Analyze : Node_Id;
1635 begin
1636 pragma Assert (Current_Scope = Spec_Id);
1638 -- Within an instance, the body to inline must be treated as a nested
1639 -- generic, so that the proper global references are preserved. We
1640 -- do not do this at the library level, because it is not needed, and
1641 -- furthermore this causes trouble if front end inlining is activated
1642 -- (-gnatN).
1644 if In_Instance
1645 and then Scope (Current_Scope) /= Standard_Standard
1646 then
1647 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1648 end if;
1650 -- We need to capture references to the formals in order
1651 -- to substitute the actuals at the point of inlining, i.e.
1652 -- instantiation. To treat the formals as globals to the body to
1653 -- inline, we nest it within a dummy parameterless subprogram,
1654 -- declared within the real one.
1656 Generate_Subprogram_Body (N, Original_Body);
1657 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1659 -- Set return type of function, which is also global and does not
1660 -- need to be resolved.
1662 if Ekind (Spec_Id) = E_Function then
1663 Set_Result_Definition (Specification (Body_To_Analyze),
1664 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1665 end if;
1667 if No (Declarations (N)) then
1668 Set_Declarations (N, New_List (Body_To_Analyze));
1669 else
1670 Append_To (Declarations (N), Body_To_Analyze);
1671 end if;
1673 Preanalyze (Body_To_Analyze);
1675 Push_Scope (Defining_Entity (Body_To_Analyze));
1676 Save_Global_References (Original_Body);
1677 End_Scope;
1678 Remove (Body_To_Analyze);
1680 -- Restore environment if previously saved
1682 if In_Instance
1683 and then Scope (Current_Scope) /= Standard_Standard
1684 then
1685 Restore_Env;
1686 end if;
1688 pragma Assert (No (Body_To_Inline (Decl)));
1689 Set_Body_To_Inline (Decl, Original_Body);
1690 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1691 end Build_Body_To_Inline;
1693 --------------------------------------
1694 -- Can_Split_Unconstrained_Function --
1695 --------------------------------------
1697 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
1699 Ret_Node : constant Node_Id :=
1700 First (Statements (Handled_Statement_Sequence (N)));
1701 D : Node_Id;
1703 begin
1704 -- No user defined declarations allowed in the function except inside
1705 -- the unique return statement; implicit labels are the only allowed
1706 -- declarations.
1708 if not Is_Empty_List (Declarations (N)) then
1709 D := First (Declarations (N));
1710 while Present (D) loop
1711 if Nkind (D) /= N_Implicit_Label_Declaration then
1712 return False;
1713 end if;
1715 Next (D);
1716 end loop;
1717 end if;
1719 -- We only split the inlined function when we are generating the code
1720 -- of its body; otherwise we leave duplicated split subprograms in
1721 -- the tree which (if referenced) generate wrong references at link
1722 -- time.
1724 return In_Extended_Main_Code_Unit (N)
1725 and then Present (Ret_Node)
1726 and then Nkind (Ret_Node) = N_Extended_Return_Statement
1727 and then No (Next (Ret_Node))
1728 and then Present (Handled_Statement_Sequence (Ret_Node));
1729 end Can_Split_Unconstrained_Function;
1731 -----------------------------
1732 -- Generate_Body_To_Inline --
1733 -----------------------------
1735 procedure Generate_Subprogram_Body
1736 (N : Node_Id;
1737 Body_To_Inline : out Node_Id)
1739 begin
1740 -- Within an instance, the body to inline must be treated as a nested
1741 -- generic, so that the proper global references are preserved.
1743 -- Note that we do not do this at the library level, because it
1744 -- is not needed, and furthermore this causes trouble if front
1745 -- end inlining is activated (-gnatN).
1747 if In_Instance
1748 and then Scope (Current_Scope) /= Standard_Standard
1749 then
1750 Body_To_Inline := Copy_Generic_Node (N, Empty, True);
1751 else
1752 Body_To_Inline := Copy_Separate_Tree (N);
1753 end if;
1755 -- Remove all aspects/pragmas that have no meaning in an inlined body
1757 Remove_Aspects_And_Pragmas (Body_To_Inline);
1759 -- We need to capture references to the formals in order
1760 -- to substitute the actuals at the point of inlining, i.e.
1761 -- instantiation. To treat the formals as globals to the body to
1762 -- inline, we nest it within a dummy parameterless subprogram,
1763 -- declared within the real one.
1765 Set_Parameter_Specifications
1766 (Specification (Body_To_Inline), No_List);
1768 -- A new internal name is associated with Body_To_Inline to avoid
1769 -- conflicts when the non-inlined body N is analyzed.
1771 Set_Defining_Unit_Name (Specification (Body_To_Inline),
1772 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
1773 Set_Corresponding_Spec (Body_To_Inline, Empty);
1774 end Generate_Subprogram_Body;
1776 ----------------------------------
1777 -- Split_Unconstrained_Function --
1778 ----------------------------------
1780 procedure Split_Unconstrained_Function
1781 (N : Node_Id;
1782 Spec_Id : Entity_Id)
1784 Loc : constant Source_Ptr := Sloc (N);
1785 Ret_Node : constant Node_Id :=
1786 First (Statements (Handled_Statement_Sequence (N)));
1787 Ret_Obj : constant Node_Id :=
1788 First (Return_Object_Declarations (Ret_Node));
1790 procedure Build_Procedure
1791 (Proc_Id : out Entity_Id;
1792 Decl_List : out List_Id);
1793 -- Build a procedure containing the statements found in the extended
1794 -- return statement of the unconstrained function body N.
1796 ---------------------
1797 -- Build_Procedure --
1798 ---------------------
1800 procedure Build_Procedure
1801 (Proc_Id : out Entity_Id;
1802 Decl_List : out List_Id)
1804 Formal : Entity_Id;
1805 Formal_List : constant List_Id := New_List;
1806 Proc_Spec : Node_Id;
1807 Proc_Body : Node_Id;
1808 Subp_Name : constant Name_Id := New_Internal_Name ('F');
1809 Body_Decl_List : List_Id := No_List;
1810 Param_Type : Node_Id;
1812 begin
1813 if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
1814 Param_Type :=
1815 New_Copy (Object_Definition (Ret_Obj));
1816 else
1817 Param_Type :=
1818 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
1819 end if;
1821 Append_To (Formal_List,
1822 Make_Parameter_Specification (Loc,
1823 Defining_Identifier =>
1824 Make_Defining_Identifier (Loc,
1825 Chars => Chars (Defining_Identifier (Ret_Obj))),
1826 In_Present => False,
1827 Out_Present => True,
1828 Null_Exclusion_Present => False,
1829 Parameter_Type => Param_Type));
1831 Formal := First_Formal (Spec_Id);
1833 -- Note that we copy the parameter type rather than creating
1834 -- a reference to it, because it may be a class-wide entity
1835 -- that will not be retrieved by name.
1837 while Present (Formal) loop
1838 Append_To (Formal_List,
1839 Make_Parameter_Specification (Loc,
1840 Defining_Identifier =>
1841 Make_Defining_Identifier (Sloc (Formal),
1842 Chars => Chars (Formal)),
1843 In_Present => In_Present (Parent (Formal)),
1844 Out_Present => Out_Present (Parent (Formal)),
1845 Null_Exclusion_Present =>
1846 Null_Exclusion_Present (Parent (Formal)),
1847 Parameter_Type =>
1848 New_Copy_Tree (Parameter_Type (Parent (Formal))),
1849 Expression =>
1850 Copy_Separate_Tree (Expression (Parent (Formal)))));
1852 Next_Formal (Formal);
1853 end loop;
1855 Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
1857 Proc_Spec :=
1858 Make_Procedure_Specification (Loc,
1859 Defining_Unit_Name => Proc_Id,
1860 Parameter_Specifications => Formal_List);
1862 Decl_List := New_List;
1864 Append_To (Decl_List,
1865 Make_Subprogram_Declaration (Loc, Proc_Spec));
1867 -- Can_Convert_Unconstrained_Function checked that the function
1868 -- has no local declarations except implicit label declarations.
1869 -- Copy these declarations to the built procedure.
1871 if Present (Declarations (N)) then
1872 Body_Decl_List := New_List;
1874 declare
1875 D : Node_Id;
1876 New_D : Node_Id;
1878 begin
1879 D := First (Declarations (N));
1880 while Present (D) loop
1881 pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
1883 New_D :=
1884 Make_Implicit_Label_Declaration (Loc,
1885 Make_Defining_Identifier (Loc,
1886 Chars => Chars (Defining_Identifier (D))),
1887 Label_Construct => Empty);
1888 Append_To (Body_Decl_List, New_D);
1890 Next (D);
1891 end loop;
1892 end;
1893 end if;
1895 pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
1897 Proc_Body :=
1898 Make_Subprogram_Body (Loc,
1899 Specification => Copy_Separate_Tree (Proc_Spec),
1900 Declarations => Body_Decl_List,
1901 Handled_Statement_Sequence =>
1902 Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
1904 Set_Defining_Unit_Name (Specification (Proc_Body),
1905 Make_Defining_Identifier (Loc, Subp_Name));
1907 Append_To (Decl_List, Proc_Body);
1908 end Build_Procedure;
1910 -- Local variables
1912 New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
1913 Blk_Stmt : Node_Id;
1914 Proc_Id : Entity_Id;
1915 Proc_Call : Node_Id;
1917 -- Start of processing for Split_Unconstrained_Function
1919 begin
1920 -- Build the associated procedure, analyze it and insert it before
1921 -- the function body N.
1923 declare
1924 Scope : constant Entity_Id := Current_Scope;
1925 Decl_List : List_Id;
1926 begin
1927 Pop_Scope;
1928 Build_Procedure (Proc_Id, Decl_List);
1929 Insert_Actions (N, Decl_List);
1930 Push_Scope (Scope);
1931 end;
1933 -- Build the call to the generated procedure
1935 declare
1936 Actual_List : constant List_Id := New_List;
1937 Formal : Entity_Id;
1939 begin
1940 Append_To (Actual_List,
1941 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
1943 Formal := First_Formal (Spec_Id);
1944 while Present (Formal) loop
1945 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
1947 -- Avoid spurious warning on unreferenced formals
1949 Set_Referenced (Formal);
1950 Next_Formal (Formal);
1951 end loop;
1953 Proc_Call :=
1954 Make_Procedure_Call_Statement (Loc,
1955 Name => New_Occurrence_Of (Proc_Id, Loc),
1956 Parameter_Associations => Actual_List);
1957 end;
1959 -- Generate
1961 -- declare
1962 -- New_Obj : ...
1963 -- begin
1964 -- main_1__F1b (New_Obj, ...);
1965 -- return Obj;
1966 -- end B10b;
1968 Blk_Stmt :=
1969 Make_Block_Statement (Loc,
1970 Declarations => New_List (New_Obj),
1971 Handled_Statement_Sequence =>
1972 Make_Handled_Sequence_Of_Statements (Loc,
1973 Statements => New_List (
1975 Proc_Call,
1977 Make_Simple_Return_Statement (Loc,
1978 Expression =>
1979 New_Occurrence_Of
1980 (Defining_Identifier (New_Obj), Loc)))));
1982 Rewrite (Ret_Node, Blk_Stmt);
1983 end Split_Unconstrained_Function;
1985 -- Local variables
1987 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1989 -- Start of processing for Check_And_Split_Unconstrained_Function
1991 begin
1992 pragma Assert (Back_End_Inlining
1993 and then Ekind (Spec_Id) = E_Function
1994 and then Returns_Unconstrained_Type (Spec_Id)
1995 and then Comes_From_Source (Body_Id)
1996 and then (Has_Pragma_Inline_Always (Spec_Id)
1997 or else Optimization_Level > 0));
1999 -- This routine must not be used in GNATprove mode since GNATprove
2000 -- relies on frontend inlining
2002 pragma Assert (not GNATprove_Mode);
2004 -- No need to split the function if we cannot generate the code
2006 if Serious_Errors_Detected /= 0 then
2007 return;
2008 end if;
2010 -- No action needed in stubs since the attribute Body_To_Inline
2011 -- is not available
2013 if Nkind (Decl) = N_Subprogram_Body_Stub then
2014 return;
2016 -- Cannot build the body to inline if the attribute is already set.
2017 -- This attribute may have been set if this is a subprogram renaming
2018 -- declarations (see Freeze.Build_Renamed_Body).
2020 elsif Present (Body_To_Inline (Decl)) then
2021 return;
2023 -- Check excluded declarations
2025 elsif Present (Declarations (N))
2026 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
2027 then
2028 return;
2030 -- Check excluded statements. There is no need to protect us against
2031 -- exception handlers since they are supported by the GCC backend.
2033 elsif Present (Handled_Statement_Sequence (N))
2034 and then Has_Excluded_Statement
2035 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
2036 then
2037 return;
2038 end if;
2040 -- Build the body to inline only if really needed
2042 if Can_Split_Unconstrained_Function (N) then
2043 Split_Unconstrained_Function (N, Spec_Id);
2044 Build_Body_To_Inline (N, Spec_Id);
2045 Set_Is_Inlined (Spec_Id);
2046 end if;
2047 end Check_And_Split_Unconstrained_Function;
2049 -------------------------------------
2050 -- Check_Package_Body_For_Inlining --
2051 -------------------------------------
2053 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
2054 Bname : Unit_Name_Type;
2055 E : Entity_Id;
2056 OK : Boolean;
2058 begin
2059 -- Legacy implementation (relying on frontend inlining)
2061 if not Back_End_Inlining
2062 and then Is_Compilation_Unit (P)
2063 and then not Is_Generic_Instance (P)
2064 then
2065 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
2067 E := First_Entity (P);
2068 while Present (E) loop
2069 if Has_Pragma_Inline_Always (E)
2070 or else (Has_Pragma_Inline (E) and Front_End_Inlining)
2071 then
2072 if not Is_Loaded (Bname) then
2073 Load_Needed_Body (N, OK);
2075 if OK then
2077 -- Check we are not trying to inline a parent whose body
2078 -- depends on a child, when we are compiling the body of
2079 -- the child. Otherwise we have a potential elaboration
2080 -- circularity with inlined subprograms and with
2081 -- Taft-Amendment types.
2083 declare
2084 Comp : Node_Id; -- Body just compiled
2085 Child_Spec : Entity_Id; -- Spec of main unit
2086 Ent : Entity_Id; -- For iteration
2087 With_Clause : Node_Id; -- Context of body.
2089 begin
2090 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2091 and then Present (Body_Entity (P))
2092 then
2093 Child_Spec :=
2094 Defining_Entity
2095 ((Unit (Library_Unit (Cunit (Main_Unit)))));
2097 Comp :=
2098 Parent (Unit_Declaration_Node (Body_Entity (P)));
2100 -- Check whether the context of the body just
2101 -- compiled includes a child of itself, and that
2102 -- child is the spec of the main compilation.
2104 With_Clause := First (Context_Items (Comp));
2105 while Present (With_Clause) loop
2106 if Nkind (With_Clause) = N_With_Clause
2107 and then
2108 Scope (Entity (Name (With_Clause))) = P
2109 and then
2110 Entity (Name (With_Clause)) = Child_Spec
2111 then
2112 Error_Msg_Node_2 := Child_Spec;
2113 Error_Msg_NE
2114 ("body of & depends on child unit&??",
2115 With_Clause, P);
2116 Error_Msg_N
2117 ("\subprograms in body cannot be inlined??",
2118 With_Clause);
2120 -- Disable further inlining from this unit,
2121 -- and keep Taft-amendment types incomplete.
2123 Ent := First_Entity (P);
2124 while Present (Ent) loop
2125 if Is_Type (Ent)
2126 and then Has_Completion_In_Body (Ent)
2127 then
2128 Set_Full_View (Ent, Empty);
2130 elsif Is_Subprogram (Ent) then
2131 Set_Is_Inlined (Ent, False);
2132 end if;
2134 Next_Entity (Ent);
2135 end loop;
2137 return;
2138 end if;
2140 Next (With_Clause);
2141 end loop;
2142 end if;
2143 end;
2145 elsif Ineffective_Inline_Warnings then
2146 Error_Msg_Unit_1 := Bname;
2147 Error_Msg_N
2148 ("unable to inline subprograms defined in $??", P);
2149 Error_Msg_N ("\body not found??", P);
2150 return;
2151 end if;
2152 end if;
2154 return;
2155 end if;
2157 Next_Entity (E);
2158 end loop;
2159 end if;
2160 end Check_Package_Body_For_Inlining;
2162 --------------------
2163 -- Cleanup_Scopes --
2164 --------------------
2166 procedure Cleanup_Scopes is
2167 Elmt : Elmt_Id;
2168 Decl : Node_Id;
2169 Scop : Entity_Id;
2171 begin
2172 Elmt := First_Elmt (To_Clean);
2173 while Present (Elmt) loop
2174 Scop := Node (Elmt);
2176 if Ekind (Scop) = E_Entry then
2177 Scop := Protected_Body_Subprogram (Scop);
2179 elsif Is_Subprogram (Scop)
2180 and then Is_Protected_Type (Scope (Scop))
2181 and then Present (Protected_Body_Subprogram (Scop))
2182 then
2183 -- If a protected operation contains an instance, its cleanup
2184 -- operations have been delayed, and the subprogram has been
2185 -- rewritten in the expansion of the enclosing protected body. It
2186 -- is the corresponding subprogram that may require the cleanup
2187 -- operations, so propagate the information that triggers cleanup
2188 -- activity.
2190 Set_Uses_Sec_Stack
2191 (Protected_Body_Subprogram (Scop),
2192 Uses_Sec_Stack (Scop));
2194 Scop := Protected_Body_Subprogram (Scop);
2195 end if;
2197 if Ekind (Scop) = E_Block then
2198 Decl := Parent (Block_Node (Scop));
2200 else
2201 Decl := Unit_Declaration_Node (Scop);
2203 if Nkind_In (Decl, N_Subprogram_Declaration,
2204 N_Task_Type_Declaration,
2205 N_Subprogram_Body_Stub)
2206 then
2207 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2208 end if;
2209 end if;
2211 Push_Scope (Scop);
2212 Expand_Cleanup_Actions (Decl);
2213 End_Scope;
2215 Elmt := Next_Elmt (Elmt);
2216 end loop;
2217 end Cleanup_Scopes;
2219 -------------------------
2220 -- Expand_Inlined_Call --
2221 -------------------------
2223 procedure Expand_Inlined_Call
2224 (N : Node_Id;
2225 Subp : Entity_Id;
2226 Orig_Subp : Entity_Id)
2228 Loc : constant Source_Ptr := Sloc (N);
2229 Is_Predef : constant Boolean :=
2230 Is_Predefined_File_Name
2231 (Unit_File_Name (Get_Source_Unit (Subp)));
2232 Orig_Bod : constant Node_Id :=
2233 Body_To_Inline (Unit_Declaration_Node (Subp));
2235 Blk : Node_Id;
2236 Decl : Node_Id;
2237 Decls : constant List_Id := New_List;
2238 Exit_Lab : Entity_Id := Empty;
2239 F : Entity_Id;
2240 A : Node_Id;
2241 Lab_Decl : Node_Id;
2242 Lab_Id : Node_Id;
2243 New_A : Node_Id;
2244 Num_Ret : Int := 0;
2245 Ret_Type : Entity_Id;
2247 Targ : Node_Id;
2248 -- The target of the call. If context is an assignment statement then
2249 -- this is the left-hand side of the assignment, else it is a temporary
2250 -- to which the return value is assigned prior to rewriting the call.
2252 Targ1 : Node_Id;
2253 -- A separate target used when the return type is unconstrained
2255 Temp : Entity_Id;
2256 Temp_Typ : Entity_Id;
2258 Return_Object : Entity_Id := Empty;
2259 -- Entity in declaration in an extended_return_statement
2261 Is_Unc : Boolean;
2262 Is_Unc_Decl : Boolean;
2263 -- If the type returned by the function is unconstrained and the call
2264 -- can be inlined, special processing is required.
2266 procedure Make_Exit_Label;
2267 -- Build declaration for exit label to be used in Return statements,
2268 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2269 -- declaration). Does nothing if Exit_Lab already set.
2271 function Process_Formals (N : Node_Id) return Traverse_Result;
2272 -- Replace occurrence of a formal with the corresponding actual, or the
2273 -- thunk generated for it. Replace a return statement with an assignment
2274 -- to the target of the call, with appropriate conversions if needed.
2276 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
2277 -- If the call being expanded is that of an internal subprogram, set the
2278 -- sloc of the generated block to that of the call itself, so that the
2279 -- expansion is skipped by the "next" command in gdb. Same processing
2280 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2281 -- Debug_Generated_Code is true, suppress this change to simplify our
2282 -- own development. Same in GNATprove mode, to ensure that warnings and
2283 -- diagnostics point to the proper location.
2285 procedure Reset_Dispatching_Calls (N : Node_Id);
2286 -- In subtree N search for occurrences of dispatching calls that use the
2287 -- Ada 2005 Object.Operation notation and the object is a formal of the
2288 -- inlined subprogram. Reset the entity associated with Operation in all
2289 -- the found occurrences.
2291 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
2292 -- If the function body is a single expression, replace call with
2293 -- expression, else insert block appropriately.
2295 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
2296 -- If procedure body has no local variables, inline body without
2297 -- creating block, otherwise rewrite call with block.
2299 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
2300 -- Determine whether a formal parameter is used only once in Orig_Bod
2302 ---------------------
2303 -- Make_Exit_Label --
2304 ---------------------
2306 procedure Make_Exit_Label is
2307 Lab_Ent : Entity_Id;
2308 begin
2309 if No (Exit_Lab) then
2310 Lab_Ent := Make_Temporary (Loc, 'L');
2311 Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
2312 Exit_Lab := Make_Label (Loc, Lab_Id);
2313 Lab_Decl :=
2314 Make_Implicit_Label_Declaration (Loc,
2315 Defining_Identifier => Lab_Ent,
2316 Label_Construct => Exit_Lab);
2317 end if;
2318 end Make_Exit_Label;
2320 ---------------------
2321 -- Process_Formals --
2322 ---------------------
2324 function Process_Formals (N : Node_Id) return Traverse_Result is
2325 A : Entity_Id;
2326 E : Entity_Id;
2327 Ret : Node_Id;
2329 begin
2330 if Is_Entity_Name (N) and then Present (Entity (N)) then
2331 E := Entity (N);
2333 if Is_Formal (E) and then Scope (E) = Subp then
2334 A := Renamed_Object (E);
2336 -- Rewrite the occurrence of the formal into an occurrence of
2337 -- the actual. Also establish visibility on the proper view of
2338 -- the actual's subtype for the body's context (if the actual's
2339 -- subtype is private at the call point but its full view is
2340 -- visible to the body, then the inlined tree here must be
2341 -- analyzed with the full view).
2343 if Is_Entity_Name (A) then
2344 Rewrite (N, New_Occurrence_Of (Entity (A), Sloc (N)));
2345 Check_Private_View (N);
2347 elsif Nkind (A) = N_Defining_Identifier then
2348 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
2349 Check_Private_View (N);
2351 -- Numeric literal
2353 else
2354 Rewrite (N, New_Copy (A));
2355 end if;
2356 end if;
2358 return Skip;
2360 elsif Is_Entity_Name (N)
2361 and then Present (Return_Object)
2362 and then Chars (N) = Chars (Return_Object)
2363 then
2364 -- Occurrence within an extended return statement. The return
2365 -- object is local to the body been inlined, and thus the generic
2366 -- copy is not analyzed yet, so we match by name, and replace it
2367 -- with target of call.
2369 if Nkind (Targ) = N_Defining_Identifier then
2370 Rewrite (N, New_Occurrence_Of (Targ, Loc));
2371 else
2372 Rewrite (N, New_Copy_Tree (Targ));
2373 end if;
2375 return Skip;
2377 elsif Nkind (N) = N_Simple_Return_Statement then
2378 if No (Expression (N)) then
2379 Make_Exit_Label;
2380 Rewrite (N,
2381 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2383 else
2384 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
2385 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
2386 then
2387 -- Function body is a single expression. No need for
2388 -- exit label.
2390 null;
2392 else
2393 Num_Ret := Num_Ret + 1;
2394 Make_Exit_Label;
2395 end if;
2397 -- Because of the presence of private types, the views of the
2398 -- expression and the context may be different, so place an
2399 -- unchecked conversion to the context type to avoid spurious
2400 -- errors, e.g. when the expression is a numeric literal and
2401 -- the context is private. If the expression is an aggregate,
2402 -- use a qualified expression, because an aggregate is not a
2403 -- legal argument of a conversion. Ditto for numeric literals,
2404 -- which must be resolved to a specific type.
2406 if Nkind_In (Expression (N), N_Aggregate,
2407 N_Null,
2408 N_Real_Literal,
2409 N_Integer_Literal)
2410 then
2411 Ret :=
2412 Make_Qualified_Expression (Sloc (N),
2413 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
2414 Expression => Relocate_Node (Expression (N)));
2415 else
2416 Ret :=
2417 Unchecked_Convert_To
2418 (Ret_Type, Relocate_Node (Expression (N)));
2419 end if;
2421 if Nkind (Targ) = N_Defining_Identifier then
2422 Rewrite (N,
2423 Make_Assignment_Statement (Loc,
2424 Name => New_Occurrence_Of (Targ, Loc),
2425 Expression => Ret));
2426 else
2427 Rewrite (N,
2428 Make_Assignment_Statement (Loc,
2429 Name => New_Copy (Targ),
2430 Expression => Ret));
2431 end if;
2433 Set_Assignment_OK (Name (N));
2435 if Present (Exit_Lab) then
2436 Insert_After (N,
2437 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2438 end if;
2439 end if;
2441 return OK;
2443 -- An extended return becomes a block whose first statement is the
2444 -- assignment of the initial expression of the return object to the
2445 -- target of the call itself.
2447 elsif Nkind (N) = N_Extended_Return_Statement then
2448 declare
2449 Return_Decl : constant Entity_Id :=
2450 First (Return_Object_Declarations (N));
2451 Assign : Node_Id;
2453 begin
2454 Return_Object := Defining_Identifier (Return_Decl);
2456 if Present (Expression (Return_Decl)) then
2457 if Nkind (Targ) = N_Defining_Identifier then
2458 Assign :=
2459 Make_Assignment_Statement (Loc,
2460 Name => New_Occurrence_Of (Targ, Loc),
2461 Expression => Expression (Return_Decl));
2462 else
2463 Assign :=
2464 Make_Assignment_Statement (Loc,
2465 Name => New_Copy (Targ),
2466 Expression => Expression (Return_Decl));
2467 end if;
2469 Set_Assignment_OK (Name (Assign));
2471 if No (Handled_Statement_Sequence (N)) then
2472 Set_Handled_Statement_Sequence (N,
2473 Make_Handled_Sequence_Of_Statements (Loc,
2474 Statements => New_List));
2475 end if;
2477 Prepend (Assign,
2478 Statements (Handled_Statement_Sequence (N)));
2479 end if;
2481 Rewrite (N,
2482 Make_Block_Statement (Loc,
2483 Handled_Statement_Sequence =>
2484 Handled_Statement_Sequence (N)));
2486 return OK;
2487 end;
2489 -- Remove pragma Unreferenced since it may refer to formals that
2490 -- are not visible in the inlined body, and in any case we will
2491 -- not be posting warnings on the inlined body so it is unneeded.
2493 elsif Nkind (N) = N_Pragma
2494 and then Pragma_Name (N) = Name_Unreferenced
2495 then
2496 Rewrite (N, Make_Null_Statement (Sloc (N)));
2497 return OK;
2499 else
2500 return OK;
2501 end if;
2502 end Process_Formals;
2504 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
2506 ------------------
2507 -- Process_Sloc --
2508 ------------------
2510 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
2511 begin
2512 if not Debug_Generated_Code then
2513 Set_Sloc (Nod, Sloc (N));
2514 Set_Comes_From_Source (Nod, False);
2515 end if;
2517 return OK;
2518 end Process_Sloc;
2520 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
2522 ------------------------------
2523 -- Reset_Dispatching_Calls --
2524 ------------------------------
2526 procedure Reset_Dispatching_Calls (N : Node_Id) is
2528 function Do_Reset (N : Node_Id) return Traverse_Result;
2529 -- Comment required ???
2531 --------------
2532 -- Do_Reset --
2533 --------------
2535 function Do_Reset (N : Node_Id) return Traverse_Result is
2536 begin
2537 if Nkind (N) = N_Procedure_Call_Statement
2538 and then Nkind (Name (N)) = N_Selected_Component
2539 and then Nkind (Prefix (Name (N))) = N_Identifier
2540 and then Is_Formal (Entity (Prefix (Name (N))))
2541 and then Is_Dispatching_Operation
2542 (Entity (Selector_Name (Name (N))))
2543 then
2544 Set_Entity (Selector_Name (Name (N)), Empty);
2545 end if;
2547 return OK;
2548 end Do_Reset;
2550 function Do_Reset_Calls is new Traverse_Func (Do_Reset);
2552 -- Local variables
2554 Dummy : constant Traverse_Result := Do_Reset_Calls (N);
2555 pragma Unreferenced (Dummy);
2557 -- Start of processing for Reset_Dispatching_Calls
2559 begin
2560 null;
2561 end Reset_Dispatching_Calls;
2563 ---------------------------
2564 -- Rewrite_Function_Call --
2565 ---------------------------
2567 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
2568 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2569 Fst : constant Node_Id := First (Statements (HSS));
2571 begin
2572 -- Optimize simple case: function body is a single return statement,
2573 -- which has been expanded into an assignment.
2575 if Is_Empty_List (Declarations (Blk))
2576 and then Nkind (Fst) = N_Assignment_Statement
2577 and then No (Next (Fst))
2578 then
2579 -- The function call may have been rewritten as the temporary
2580 -- that holds the result of the call, in which case remove the
2581 -- now useless declaration.
2583 if Nkind (N) = N_Identifier
2584 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2585 then
2586 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
2587 end if;
2589 Rewrite (N, Expression (Fst));
2591 elsif Nkind (N) = N_Identifier
2592 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2593 then
2594 -- The block assigns the result of the call to the temporary
2596 Insert_After (Parent (Entity (N)), Blk);
2598 -- If the context is an assignment, and the left-hand side is free of
2599 -- side-effects, the replacement is also safe.
2600 -- Can this be generalized further???
2602 elsif Nkind (Parent (N)) = N_Assignment_Statement
2603 and then
2604 (Is_Entity_Name (Name (Parent (N)))
2605 or else
2606 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
2607 and then Is_Entity_Name (Prefix (Name (Parent (N)))))
2609 or else
2610 (Nkind (Name (Parent (N))) = N_Selected_Component
2611 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
2612 then
2613 -- Replace assignment with the block
2615 declare
2616 Original_Assignment : constant Node_Id := Parent (N);
2618 begin
2619 -- Preserve the original assignment node to keep the complete
2620 -- assignment subtree consistent enough for Analyze_Assignment
2621 -- to proceed (specifically, the original Lhs node must still
2622 -- have an assignment statement as its parent).
2624 -- We cannot rely on Original_Node to go back from the block
2625 -- node to the assignment node, because the assignment might
2626 -- already be a rewrite substitution.
2628 Discard_Node (Relocate_Node (Original_Assignment));
2629 Rewrite (Original_Assignment, Blk);
2630 end;
2632 elsif Nkind (Parent (N)) = N_Object_Declaration then
2634 -- A call to a function which returns an unconstrained type
2635 -- found in the expression initializing an object-declaration is
2636 -- expanded into a procedure call which must be added after the
2637 -- object declaration.
2639 if Is_Unc_Decl and Back_End_Inlining then
2640 Insert_Action_After (Parent (N), Blk);
2641 else
2642 Set_Expression (Parent (N), Empty);
2643 Insert_After (Parent (N), Blk);
2644 end if;
2646 elsif Is_Unc and then not Back_End_Inlining then
2647 Insert_Before (Parent (N), Blk);
2648 end if;
2649 end Rewrite_Function_Call;
2651 ----------------------------
2652 -- Rewrite_Procedure_Call --
2653 ----------------------------
2655 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
2656 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2658 begin
2659 -- If there is a transient scope for N, this will be the scope of the
2660 -- actions for N, and the statements in Blk need to be within this
2661 -- scope. For example, they need to have visibility on the constant
2662 -- declarations created for the formals.
2664 -- If N needs no transient scope, and if there are no declarations in
2665 -- the inlined body, we can do a little optimization and insert the
2666 -- statements for the body directly after N, and rewrite N to a
2667 -- null statement, instead of rewriting N into a full-blown block
2668 -- statement.
2670 if not Scope_Is_Transient
2671 and then Is_Empty_List (Declarations (Blk))
2672 then
2673 Insert_List_After (N, Statements (HSS));
2674 Rewrite (N, Make_Null_Statement (Loc));
2675 else
2676 Rewrite (N, Blk);
2677 end if;
2678 end Rewrite_Procedure_Call;
2680 -------------------------
2681 -- Formal_Is_Used_Once --
2682 -------------------------
2684 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
2685 Use_Counter : Int := 0;
2687 function Count_Uses (N : Node_Id) return Traverse_Result;
2688 -- Traverse the tree and count the uses of the formal parameter.
2689 -- In this case, for optimization purposes, we do not need to
2690 -- continue the traversal once more than one use is encountered.
2692 ----------------
2693 -- Count_Uses --
2694 ----------------
2696 function Count_Uses (N : Node_Id) return Traverse_Result is
2697 begin
2698 -- The original node is an identifier
2700 if Nkind (N) = N_Identifier
2701 and then Present (Entity (N))
2703 -- Original node's entity points to the one in the copied body
2705 and then Nkind (Entity (N)) = N_Identifier
2706 and then Present (Entity (Entity (N)))
2708 -- The entity of the copied node is the formal parameter
2710 and then Entity (Entity (N)) = Formal
2711 then
2712 Use_Counter := Use_Counter + 1;
2714 if Use_Counter > 1 then
2716 -- Denote more than one use and abandon the traversal
2718 Use_Counter := 2;
2719 return Abandon;
2721 end if;
2722 end if;
2724 return OK;
2725 end Count_Uses;
2727 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
2729 -- Start of processing for Formal_Is_Used_Once
2731 begin
2732 Count_Formal_Uses (Orig_Bod);
2733 return Use_Counter = 1;
2734 end Formal_Is_Used_Once;
2736 -- Start of processing for Expand_Inlined_Call
2738 begin
2739 -- Initializations for old/new semantics
2741 if not Back_End_Inlining then
2742 Is_Unc := Is_Array_Type (Etype (Subp))
2743 and then not Is_Constrained (Etype (Subp));
2744 Is_Unc_Decl := False;
2745 else
2746 Is_Unc := Returns_Unconstrained_Type (Subp)
2747 and then Optimization_Level > 0;
2748 Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
2749 and then Is_Unc;
2750 end if;
2752 -- Check for an illegal attempt to inline a recursive procedure. If the
2753 -- subprogram has parameters this is detected when trying to supply a
2754 -- binding for parameters that already have one. For parameterless
2755 -- subprograms this must be done explicitly.
2757 if In_Open_Scopes (Subp) then
2758 Error_Msg_N ("call to recursive subprogram cannot be inlined??", N);
2759 Set_Is_Inlined (Subp, False);
2761 -- In GNATprove mode, issue a warning, and indicate that the
2762 -- subprogram is not always inlined by setting flag Is_Inlined_Always
2763 -- to False.
2765 if GNATprove_Mode then
2766 Set_Is_Inlined_Always (Subp, False);
2767 end if;
2769 return;
2771 -- Skip inlining if this is not a true inlining since the attribute
2772 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
2773 -- true inlining, Orig_Bod has code rather than being an entity.
2775 elsif Nkind (Orig_Bod) in N_Entity then
2776 return;
2778 -- Skip inlining if the function returns an unconstrained type using
2779 -- an extended return statement since this part of the new inlining
2780 -- model which is not yet supported by the current implementation. ???
2782 elsif Is_Unc
2783 and then
2784 Nkind (First (Statements (Handled_Statement_Sequence (Orig_Bod))))
2785 = N_Extended_Return_Statement
2786 and then not Back_End_Inlining
2787 then
2788 return;
2789 end if;
2791 if Nkind (Orig_Bod) = N_Defining_Identifier
2792 or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
2793 then
2794 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2795 -- can be replaced with calls to the renamed entity directly, because
2796 -- the subprograms are subtype conformant. If the renamed subprogram
2797 -- is an inherited operation, we must redo the expansion because
2798 -- implicit conversions may be needed. Similarly, if the renamed
2799 -- entity is inlined, expand the call for further optimizations.
2801 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
2803 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
2804 Expand_Call (N);
2805 end if;
2807 return;
2808 end if;
2810 -- Register the call in the list of inlined calls
2812 Append_New_Elmt (N, To => Inlined_Calls);
2814 -- Use generic machinery to copy body of inlined subprogram, as if it
2815 -- were an instantiation, resetting source locations appropriately, so
2816 -- that nested inlined calls appear in the main unit.
2818 Save_Env (Subp, Empty);
2819 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
2821 -- Old semantics
2823 if not Back_End_Inlining then
2824 declare
2825 Bod : Node_Id;
2827 begin
2828 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2829 Blk :=
2830 Make_Block_Statement (Loc,
2831 Declarations => Declarations (Bod),
2832 Handled_Statement_Sequence =>
2833 Handled_Statement_Sequence (Bod));
2835 if No (Declarations (Bod)) then
2836 Set_Declarations (Blk, New_List);
2837 end if;
2839 -- For the unconstrained case, capture the name of the local
2840 -- variable that holds the result. This must be the first
2841 -- declaration in the block, because its bounds cannot depend
2842 -- on local variables. Otherwise there is no way to declare the
2843 -- result outside of the block. Needless to say, in general the
2844 -- bounds will depend on the actuals in the call.
2846 -- If the context is an assignment statement, as is the case
2847 -- for the expansion of an extended return, the left-hand side
2848 -- provides bounds even if the return type is unconstrained.
2850 if Is_Unc then
2851 declare
2852 First_Decl : Node_Id;
2854 begin
2855 First_Decl := First (Declarations (Blk));
2857 if Nkind (First_Decl) /= N_Object_Declaration then
2858 return;
2859 end if;
2861 if Nkind (Parent (N)) /= N_Assignment_Statement then
2862 Targ1 := Defining_Identifier (First_Decl);
2863 else
2864 Targ1 := Name (Parent (N));
2865 end if;
2866 end;
2867 end if;
2868 end;
2870 -- New semantics
2872 else
2873 declare
2874 Bod : Node_Id;
2876 begin
2877 -- General case
2879 if not Is_Unc then
2880 Bod :=
2881 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2882 Blk :=
2883 Make_Block_Statement (Loc,
2884 Declarations => Declarations (Bod),
2885 Handled_Statement_Sequence =>
2886 Handled_Statement_Sequence (Bod));
2888 -- Inline a call to a function that returns an unconstrained type.
2889 -- The semantic analyzer checked that frontend-inlined functions
2890 -- returning unconstrained types have no declarations and have
2891 -- a single extended return statement. As part of its processing
2892 -- the function was split in two subprograms: a procedure P and
2893 -- a function F that has a block with a call to procedure P (see
2894 -- Split_Unconstrained_Function).
2896 else
2897 pragma Assert
2898 (Nkind
2899 (First
2900 (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
2901 N_Block_Statement);
2903 declare
2904 Blk_Stmt : constant Node_Id :=
2905 First (Statements (Handled_Statement_Sequence (Orig_Bod)));
2906 First_Stmt : constant Node_Id :=
2907 First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
2908 Second_Stmt : constant Node_Id := Next (First_Stmt);
2910 begin
2911 pragma Assert
2912 (Nkind (First_Stmt) = N_Procedure_Call_Statement
2913 and then Nkind (Second_Stmt) = N_Simple_Return_Statement
2914 and then No (Next (Second_Stmt)));
2916 Bod :=
2917 Copy_Generic_Node
2918 (First
2919 (Statements (Handled_Statement_Sequence (Orig_Bod))),
2920 Empty, Instantiating => True);
2921 Blk := Bod;
2923 -- Capture the name of the local variable that holds the
2924 -- result. This must be the first declaration in the block,
2925 -- because its bounds cannot depend on local variables.
2926 -- Otherwise there is no way to declare the result outside
2927 -- of the block. Needless to say, in general the bounds will
2928 -- depend on the actuals in the call.
2930 if Nkind (Parent (N)) /= N_Assignment_Statement then
2931 Targ1 := Defining_Identifier (First (Declarations (Blk)));
2933 -- If the context is an assignment statement, as is the case
2934 -- for the expansion of an extended return, the left-hand
2935 -- side provides bounds even if the return type is
2936 -- unconstrained.
2938 else
2939 Targ1 := Name (Parent (N));
2940 end if;
2941 end;
2942 end if;
2944 if No (Declarations (Bod)) then
2945 Set_Declarations (Blk, New_List);
2946 end if;
2947 end;
2948 end if;
2950 -- If this is a derived function, establish the proper return type
2952 if Present (Orig_Subp) and then Orig_Subp /= Subp then
2953 Ret_Type := Etype (Orig_Subp);
2954 else
2955 Ret_Type := Etype (Subp);
2956 end if;
2958 -- Create temporaries for the actuals that are expressions, or that are
2959 -- scalars and require copying to preserve semantics.
2961 F := First_Formal (Subp);
2962 A := First_Actual (N);
2963 while Present (F) loop
2964 if Present (Renamed_Object (F)) then
2966 -- If expander is active, it is an error to try to inline a
2967 -- recursive program. In GNATprove mode, just indicate that the
2968 -- inlining will not happen, and mark the subprogram as not always
2969 -- inlined.
2971 if GNATprove_Mode then
2972 Cannot_Inline
2973 ("cannot inline call to recursive subprogram?", N, Subp);
2974 Set_Is_Inlined_Always (Subp, False);
2975 else
2976 Error_Msg_N
2977 ("cannot inline call to recursive subprogram", N);
2978 end if;
2980 return;
2981 end if;
2983 -- Reset Last_Assignment for any parameters of mode out or in out, to
2984 -- prevent spurious warnings about overwriting for assignments to the
2985 -- formal in the inlined code.
2987 if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
2988 Set_Last_Assignment (Entity (A), Empty);
2989 end if;
2991 -- If the argument may be a controlling argument in a call within
2992 -- the inlined body, we must preserve its classwide nature to insure
2993 -- that dynamic dispatching take place subsequently. If the formal
2994 -- has a constraint it must be preserved to retain the semantics of
2995 -- the body.
2997 if Is_Class_Wide_Type (Etype (F))
2998 or else (Is_Access_Type (Etype (F))
2999 and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
3000 then
3001 Temp_Typ := Etype (F);
3003 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3004 and then Etype (F) /= Base_Type (Etype (F))
3005 then
3006 Temp_Typ := Etype (F);
3007 else
3008 Temp_Typ := Etype (A);
3009 end if;
3011 -- If the actual is a simple name or a literal, no need to
3012 -- create a temporary, object can be used directly.
3014 -- If the actual is a literal and the formal has its address taken,
3015 -- we cannot pass the literal itself as an argument, so its value
3016 -- must be captured in a temporary.
3018 if (Is_Entity_Name (A)
3019 and then
3020 (not Is_Scalar_Type (Etype (A))
3021 or else Ekind (Entity (A)) = E_Enumeration_Literal))
3023 -- When the actual is an identifier and the corresponding formal is
3024 -- used only once in the original body, the formal can be substituted
3025 -- directly with the actual parameter.
3027 or else (Nkind (A) = N_Identifier
3028 and then Formal_Is_Used_Once (F))
3030 or else
3031 (Nkind_In (A, N_Real_Literal,
3032 N_Integer_Literal,
3033 N_Character_Literal)
3034 and then not Address_Taken (F))
3035 then
3036 if Etype (F) /= Etype (A) then
3037 Set_Renamed_Object
3038 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3039 else
3040 Set_Renamed_Object (F, A);
3041 end if;
3043 else
3044 Temp := Make_Temporary (Loc, 'C');
3046 -- If the actual for an in/in-out parameter is a view conversion,
3047 -- make it into an unchecked conversion, given that an untagged
3048 -- type conversion is not a proper object for a renaming.
3050 -- In-out conversions that involve real conversions have already
3051 -- been transformed in Expand_Actuals.
3053 if Nkind (A) = N_Type_Conversion
3054 and then Ekind (F) /= E_In_Parameter
3055 then
3056 New_A :=
3057 Make_Unchecked_Type_Conversion (Loc,
3058 Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
3059 Expression => Relocate_Node (Expression (A)));
3061 elsif Etype (F) /= Etype (A) then
3062 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3063 Temp_Typ := Etype (F);
3065 else
3066 New_A := Relocate_Node (A);
3067 end if;
3069 Set_Sloc (New_A, Sloc (N));
3071 -- If the actual has a by-reference type, it cannot be copied,
3072 -- so its value is captured in a renaming declaration. Otherwise
3073 -- declare a local constant initialized with the actual.
3075 -- We also use a renaming declaration for expressions of an array
3076 -- type that is not bit-packed, both for efficiency reasons and to
3077 -- respect the semantics of the call: in most cases the original
3078 -- call will pass the parameter by reference, and thus the inlined
3079 -- code will have the same semantics.
3081 -- Finally, we need a renaming declaration in the case of limited
3082 -- types for which initialization cannot be by copy either.
3084 if Ekind (F) = E_In_Parameter
3085 and then not Is_By_Reference_Type (Etype (A))
3086 and then not Is_Limited_Type (Etype (A))
3087 and then
3088 (not Is_Array_Type (Etype (A))
3089 or else not Is_Object_Reference (A)
3090 or else Is_Bit_Packed_Array (Etype (A)))
3091 then
3092 Decl :=
3093 Make_Object_Declaration (Loc,
3094 Defining_Identifier => Temp,
3095 Constant_Present => True,
3096 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3097 Expression => New_A);
3098 else
3099 Decl :=
3100 Make_Object_Renaming_Declaration (Loc,
3101 Defining_Identifier => Temp,
3102 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3103 Name => New_A);
3104 end if;
3106 Append (Decl, Decls);
3107 Set_Renamed_Object (F, Temp);
3108 end if;
3110 Next_Formal (F);
3111 Next_Actual (A);
3112 end loop;
3114 -- Establish target of function call. If context is not assignment or
3115 -- declaration, create a temporary as a target. The declaration for the
3116 -- temporary may be subsequently optimized away if the body is a single
3117 -- expression, or if the left-hand side of the assignment is simple
3118 -- enough, i.e. an entity or an explicit dereference of one.
3120 if Ekind (Subp) = E_Function then
3121 if Nkind (Parent (N)) = N_Assignment_Statement
3122 and then Is_Entity_Name (Name (Parent (N)))
3123 then
3124 Targ := Name (Parent (N));
3126 elsif Nkind (Parent (N)) = N_Assignment_Statement
3127 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3128 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3129 then
3130 Targ := Name (Parent (N));
3132 elsif Nkind (Parent (N)) = N_Assignment_Statement
3133 and then Nkind (Name (Parent (N))) = N_Selected_Component
3134 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3135 then
3136 Targ := New_Copy_Tree (Name (Parent (N)));
3138 elsif Nkind (Parent (N)) = N_Object_Declaration
3139 and then Is_Limited_Type (Etype (Subp))
3140 then
3141 Targ := Defining_Identifier (Parent (N));
3143 -- New semantics: In an object declaration avoid an extra copy
3144 -- of the result of a call to an inlined function that returns
3145 -- an unconstrained type
3147 elsif Back_End_Inlining
3148 and then Nkind (Parent (N)) = N_Object_Declaration
3149 and then Is_Unc
3150 then
3151 Targ := Defining_Identifier (Parent (N));
3153 else
3154 -- Replace call with temporary and create its declaration
3156 Temp := Make_Temporary (Loc, 'C');
3157 Set_Is_Internal (Temp);
3159 -- For the unconstrained case, the generated temporary has the
3160 -- same constrained declaration as the result variable. It may
3161 -- eventually be possible to remove that temporary and use the
3162 -- result variable directly.
3164 if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
3165 then
3166 Decl :=
3167 Make_Object_Declaration (Loc,
3168 Defining_Identifier => Temp,
3169 Object_Definition =>
3170 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3172 Replace_Formals (Decl);
3174 else
3175 Decl :=
3176 Make_Object_Declaration (Loc,
3177 Defining_Identifier => Temp,
3178 Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
3180 Set_Etype (Temp, Ret_Type);
3181 end if;
3183 Set_No_Initialization (Decl);
3184 Append (Decl, Decls);
3185 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3186 Targ := Temp;
3187 end if;
3188 end if;
3190 Insert_Actions (N, Decls);
3192 if Is_Unc_Decl then
3194 -- Special management for inlining a call to a function that returns
3195 -- an unconstrained type and initializes an object declaration: we
3196 -- avoid generating undesired extra calls and goto statements.
3198 -- Given:
3199 -- function Func (...) return ...
3200 -- begin
3201 -- declare
3202 -- Result : String (1 .. 4);
3203 -- begin
3204 -- Proc (Result, ...);
3205 -- return Result;
3206 -- end;
3207 -- end F;
3209 -- Result : String := Func (...);
3211 -- Replace this object declaration by:
3213 -- Result : String (1 .. 4);
3214 -- Proc (Result, ...);
3216 Remove_Homonym (Targ);
3218 Decl :=
3219 Make_Object_Declaration
3220 (Loc,
3221 Defining_Identifier => Targ,
3222 Object_Definition =>
3223 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3224 Replace_Formals (Decl);
3225 Rewrite (Parent (N), Decl);
3226 Analyze (Parent (N));
3228 -- Avoid spurious warnings since we know that this declaration is
3229 -- referenced by the procedure call.
3231 Set_Never_Set_In_Source (Targ, False);
3233 -- Remove the local declaration of the extended return stmt from the
3234 -- inlined code
3236 Remove (Parent (Targ1));
3238 -- Update the reference to the result (since we have rewriten the
3239 -- object declaration)
3241 declare
3242 Blk_Call_Stmt : Node_Id;
3244 begin
3245 -- Capture the call to the procedure
3247 Blk_Call_Stmt :=
3248 First (Statements (Handled_Statement_Sequence (Blk)));
3249 pragma Assert
3250 (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
3252 Remove (First (Parameter_Associations (Blk_Call_Stmt)));
3253 Prepend_To (Parameter_Associations (Blk_Call_Stmt),
3254 New_Occurrence_Of (Targ, Loc));
3255 end;
3257 -- Remove the return statement
3259 pragma Assert
3260 (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3261 N_Simple_Return_Statement);
3263 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3264 end if;
3266 -- Traverse the tree and replace formals with actuals or their thunks.
3267 -- Attach block to tree before analysis and rewriting.
3269 Replace_Formals (Blk);
3270 Set_Parent (Blk, N);
3272 if GNATprove_Mode then
3273 null;
3275 elsif not Comes_From_Source (Subp) or else Is_Predef then
3276 Reset_Slocs (Blk);
3277 end if;
3279 if Is_Unc_Decl then
3281 -- No action needed since return statement has been already removed
3283 null;
3285 elsif Present (Exit_Lab) then
3287 -- If the body was a single expression, the single return statement
3288 -- and the corresponding label are useless.
3290 if Num_Ret = 1
3291 and then
3292 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3293 N_Goto_Statement
3294 then
3295 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3296 else
3297 Append (Lab_Decl, (Declarations (Blk)));
3298 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3299 end if;
3300 end if;
3302 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3303 -- on conflicting private views that Gigi would ignore. If this is a
3304 -- predefined unit, analyze with checks off, as is done in the non-
3305 -- inlined run-time units.
3307 declare
3308 I_Flag : constant Boolean := In_Inlined_Body;
3310 begin
3311 In_Inlined_Body := True;
3313 if Is_Predef then
3314 declare
3315 Style : constant Boolean := Style_Check;
3317 begin
3318 Style_Check := False;
3320 -- Search for dispatching calls that use the Object.Operation
3321 -- notation using an Object that is a parameter of the inlined
3322 -- function. We reset the decoration of Operation to force
3323 -- the reanalysis of the inlined dispatching call because
3324 -- the actual object has been inlined.
3326 Reset_Dispatching_Calls (Blk);
3328 Analyze (Blk, Suppress => All_Checks);
3329 Style_Check := Style;
3330 end;
3332 else
3333 Analyze (Blk);
3334 end if;
3336 In_Inlined_Body := I_Flag;
3337 end;
3339 if Ekind (Subp) = E_Procedure then
3340 Rewrite_Procedure_Call (N, Blk);
3342 else
3343 Rewrite_Function_Call (N, Blk);
3345 if Is_Unc_Decl then
3346 null;
3348 -- For the unconstrained case, the replacement of the call has been
3349 -- made prior to the complete analysis of the generated declarations.
3350 -- Propagate the proper type now.
3352 elsif Is_Unc then
3353 if Nkind (N) = N_Identifier then
3354 Set_Etype (N, Etype (Entity (N)));
3355 else
3356 Set_Etype (N, Etype (Targ1));
3357 end if;
3358 end if;
3359 end if;
3361 Restore_Env;
3363 -- Cleanup mapping between formals and actuals for other expansions
3365 F := First_Formal (Subp);
3366 while Present (F) loop
3367 Set_Renamed_Object (F, Empty);
3368 Next_Formal (F);
3369 end loop;
3370 end Expand_Inlined_Call;
3372 --------------------------
3373 -- Get_Code_Unit_Entity --
3374 --------------------------
3376 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
3377 Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
3379 begin
3380 if Ekind (Unit) = E_Package_Body then
3381 Unit := Spec_Entity (Unit);
3382 end if;
3384 return Unit;
3385 end Get_Code_Unit_Entity;
3387 ------------------------------
3388 -- Has_Excluded_Declaration --
3389 ------------------------------
3391 function Has_Excluded_Declaration
3392 (Subp : Entity_Id;
3393 Decls : List_Id) return Boolean
3395 D : Node_Id;
3397 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3398 -- Nested subprograms make a given body ineligible for inlining, but
3399 -- we make an exception for instantiations of unchecked conversion.
3400 -- The body has not been analyzed yet, so check the name, and verify
3401 -- that the visible entity with that name is the predefined unit.
3403 -----------------------------
3404 -- Is_Unchecked_Conversion --
3405 -----------------------------
3407 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3408 Id : constant Node_Id := Name (D);
3409 Conv : Entity_Id;
3411 begin
3412 if Nkind (Id) = N_Identifier
3413 and then Chars (Id) = Name_Unchecked_Conversion
3414 then
3415 Conv := Current_Entity (Id);
3417 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3418 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3419 then
3420 Conv := Current_Entity (Selector_Name (Id));
3421 else
3422 return False;
3423 end if;
3425 return Present (Conv)
3426 and then Is_Predefined_File_Name
3427 (Unit_File_Name (Get_Source_Unit (Conv)))
3428 and then Is_Intrinsic_Subprogram (Conv);
3429 end Is_Unchecked_Conversion;
3431 -- Start of processing for Has_Excluded_Declaration
3433 begin
3434 -- No action needed if the check is not needed
3436 if not Check_Inlining_Restrictions then
3437 return False;
3438 end if;
3440 D := First (Decls);
3441 while Present (D) loop
3443 -- First declarations universally excluded
3445 if Nkind (D) = N_Package_Declaration then
3446 Cannot_Inline
3447 ("cannot inline & (nested package declaration)?", D, Subp);
3448 return True;
3450 elsif Nkind (D) = N_Package_Instantiation then
3451 Cannot_Inline
3452 ("cannot inline & (nested package instantiation)?", D, Subp);
3453 return True;
3454 end if;
3456 -- Then declarations excluded only for front end inlining
3458 if Back_End_Inlining then
3459 null;
3461 elsif Nkind (D) = N_Task_Type_Declaration
3462 or else Nkind (D) = N_Single_Task_Declaration
3463 then
3464 Cannot_Inline
3465 ("cannot inline & (nested task type declaration)?", D, Subp);
3466 return True;
3468 elsif Nkind (D) = N_Protected_Type_Declaration
3469 or else Nkind (D) = N_Single_Protected_Declaration
3470 then
3471 Cannot_Inline
3472 ("cannot inline & (nested protected type declaration)?",
3473 D, Subp);
3474 return True;
3476 elsif Nkind (D) = N_Subprogram_Body then
3477 Cannot_Inline
3478 ("cannot inline & (nested subprogram)?", D, Subp);
3479 return True;
3481 elsif Nkind (D) = N_Function_Instantiation
3482 and then not Is_Unchecked_Conversion (D)
3483 then
3484 Cannot_Inline
3485 ("cannot inline & (nested function instantiation)?", D, Subp);
3486 return True;
3488 elsif Nkind (D) = N_Procedure_Instantiation then
3489 Cannot_Inline
3490 ("cannot inline & (nested procedure instantiation)?", D, Subp);
3491 return True;
3493 -- Subtype declarations with predicates will generate predicate
3494 -- functions, i.e. nested subprogram bodies, so inlining is not
3495 -- possible.
3497 elsif Nkind (D) = N_Subtype_Declaration
3498 and then Present (Aspect_Specifications (D))
3499 then
3500 declare
3501 A : Node_Id;
3502 A_Id : Aspect_Id;
3504 begin
3505 A := First (Aspect_Specifications (D));
3506 while Present (A) loop
3507 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3509 if A_Id = Aspect_Predicate
3510 or else A_Id = Aspect_Static_Predicate
3511 or else A_Id = Aspect_Dynamic_Predicate
3512 then
3513 Cannot_Inline
3514 ("cannot inline & (subtype declaration with "
3515 & "predicate)?", D, Subp);
3516 return True;
3517 end if;
3519 Next (A);
3520 end loop;
3521 end;
3522 end if;
3524 Next (D);
3525 end loop;
3527 return False;
3528 end Has_Excluded_Declaration;
3530 ----------------------------
3531 -- Has_Excluded_Statement --
3532 ----------------------------
3534 function Has_Excluded_Statement
3535 (Subp : Entity_Id;
3536 Stats : List_Id) return Boolean
3538 S : Node_Id;
3539 E : Node_Id;
3541 begin
3542 -- No action needed if the check is not needed
3544 if not Check_Inlining_Restrictions then
3545 return False;
3546 end if;
3548 S := First (Stats);
3549 while Present (S) loop
3550 if Nkind_In (S, N_Abort_Statement,
3551 N_Asynchronous_Select,
3552 N_Conditional_Entry_Call,
3553 N_Delay_Relative_Statement,
3554 N_Delay_Until_Statement,
3555 N_Selective_Accept,
3556 N_Timed_Entry_Call)
3557 then
3558 Cannot_Inline
3559 ("cannot inline & (non-allowed statement)?", S, Subp);
3560 return True;
3562 elsif Nkind (S) = N_Block_Statement then
3563 if Present (Declarations (S))
3564 and then Has_Excluded_Declaration (Subp, Declarations (S))
3565 then
3566 return True;
3568 elsif Present (Handled_Statement_Sequence (S)) then
3569 if not Back_End_Inlining
3570 and then
3571 Present
3572 (Exception_Handlers (Handled_Statement_Sequence (S)))
3573 then
3574 Cannot_Inline
3575 ("cannot inline& (exception handler)?",
3576 First (Exception_Handlers
3577 (Handled_Statement_Sequence (S))),
3578 Subp);
3579 return True;
3581 elsif Has_Excluded_Statement
3582 (Subp, Statements (Handled_Statement_Sequence (S)))
3583 then
3584 return True;
3585 end if;
3586 end if;
3588 elsif Nkind (S) = N_Case_Statement then
3589 E := First (Alternatives (S));
3590 while Present (E) loop
3591 if Has_Excluded_Statement (Subp, Statements (E)) then
3592 return True;
3593 end if;
3595 Next (E);
3596 end loop;
3598 elsif Nkind (S) = N_If_Statement then
3599 if Has_Excluded_Statement (Subp, Then_Statements (S)) then
3600 return True;
3601 end if;
3603 if Present (Elsif_Parts (S)) then
3604 E := First (Elsif_Parts (S));
3605 while Present (E) loop
3606 if Has_Excluded_Statement (Subp, Then_Statements (E)) then
3607 return True;
3608 end if;
3610 Next (E);
3611 end loop;
3612 end if;
3614 if Present (Else_Statements (S))
3615 and then Has_Excluded_Statement (Subp, Else_Statements (S))
3616 then
3617 return True;
3618 end if;
3620 elsif Nkind (S) = N_Loop_Statement
3621 and then Has_Excluded_Statement (Subp, Statements (S))
3622 then
3623 return True;
3625 elsif Nkind (S) = N_Extended_Return_Statement then
3626 if Present (Handled_Statement_Sequence (S))
3627 and then
3628 Has_Excluded_Statement
3629 (Subp, Statements (Handled_Statement_Sequence (S)))
3630 then
3631 return True;
3633 elsif not Back_End_Inlining
3634 and then Present (Handled_Statement_Sequence (S))
3635 and then
3636 Present (Exception_Handlers
3637 (Handled_Statement_Sequence (S)))
3638 then
3639 Cannot_Inline
3640 ("cannot inline& (exception handler)?",
3641 First (Exception_Handlers (Handled_Statement_Sequence (S))),
3642 Subp);
3643 return True;
3644 end if;
3645 end if;
3647 Next (S);
3648 end loop;
3650 return False;
3651 end Has_Excluded_Statement;
3653 --------------------------
3654 -- Has_Initialized_Type --
3655 --------------------------
3657 function Has_Initialized_Type (E : Entity_Id) return Boolean is
3658 E_Body : constant Node_Id := Subprogram_Body (E);
3659 Decl : Node_Id;
3661 begin
3662 if No (E_Body) then -- imported subprogram
3663 return False;
3665 else
3666 Decl := First (Declarations (E_Body));
3667 while Present (Decl) loop
3668 if Nkind (Decl) = N_Full_Type_Declaration
3669 and then Present (Init_Proc (Defining_Identifier (Decl)))
3670 then
3671 return True;
3672 end if;
3674 Next (Decl);
3675 end loop;
3676 end if;
3678 return False;
3679 end Has_Initialized_Type;
3681 -----------------------
3682 -- Has_Single_Return --
3683 -----------------------
3685 function Has_Single_Return (N : Node_Id) return Boolean is
3686 Return_Statement : Node_Id := Empty;
3688 function Check_Return (N : Node_Id) return Traverse_Result;
3690 ------------------
3691 -- Check_Return --
3692 ------------------
3694 function Check_Return (N : Node_Id) return Traverse_Result is
3695 begin
3696 if Nkind (N) = N_Simple_Return_Statement then
3697 if Present (Expression (N))
3698 and then Is_Entity_Name (Expression (N))
3699 then
3700 if No (Return_Statement) then
3701 Return_Statement := N;
3702 return OK;
3704 elsif Chars (Expression (N)) =
3705 Chars (Expression (Return_Statement))
3706 then
3707 return OK;
3709 else
3710 return Abandon;
3711 end if;
3713 -- A return statement within an extended return is a noop
3714 -- after inlining.
3716 elsif No (Expression (N))
3717 and then
3718 Nkind (Parent (Parent (N))) = N_Extended_Return_Statement
3719 then
3720 return OK;
3722 else
3723 -- Expression has wrong form
3725 return Abandon;
3726 end if;
3728 -- We can only inline a build-in-place function if it has a single
3729 -- extended return.
3731 elsif Nkind (N) = N_Extended_Return_Statement then
3732 if No (Return_Statement) then
3733 Return_Statement := N;
3734 return OK;
3736 else
3737 return Abandon;
3738 end if;
3740 else
3741 return OK;
3742 end if;
3743 end Check_Return;
3745 function Check_All_Returns is new Traverse_Func (Check_Return);
3747 -- Start of processing for Has_Single_Return
3749 begin
3750 if Check_All_Returns (N) /= OK then
3751 return False;
3753 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3754 return True;
3756 else
3757 return Present (Declarations (N))
3758 and then Present (First (Declarations (N)))
3759 and then Chars (Expression (Return_Statement)) =
3760 Chars (Defining_Identifier (First (Declarations (N))));
3761 end if;
3762 end Has_Single_Return;
3764 -----------------------------
3765 -- In_Main_Unit_Or_Subunit --
3766 -----------------------------
3768 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
3769 Comp : Node_Id := Cunit (Get_Code_Unit (E));
3771 begin
3772 -- Check whether the subprogram or package to inline is within the main
3773 -- unit or its spec or within a subunit. In either case there are no
3774 -- additional bodies to process. If the subprogram appears in a parent
3775 -- of the current unit, the check on whether inlining is possible is
3776 -- done in Analyze_Inlined_Bodies.
3778 while Nkind (Unit (Comp)) = N_Subunit loop
3779 Comp := Library_Unit (Comp);
3780 end loop;
3782 return Comp = Cunit (Main_Unit)
3783 or else Comp = Library_Unit (Cunit (Main_Unit));
3784 end In_Main_Unit_Or_Subunit;
3786 ----------------
3787 -- Initialize --
3788 ----------------
3790 procedure Initialize is
3791 begin
3792 Pending_Descriptor.Init;
3793 Pending_Instantiations.Init;
3794 Inlined_Bodies.Init;
3795 Successors.Init;
3796 Inlined.Init;
3798 for J in Hash_Headers'Range loop
3799 Hash_Headers (J) := No_Subp;
3800 end loop;
3802 Inlined_Calls := No_Elist;
3803 Backend_Calls := No_Elist;
3804 Backend_Inlined_Subps := No_Elist;
3805 Backend_Not_Inlined_Subps := No_Elist;
3806 end Initialize;
3808 ------------------------
3809 -- Instantiate_Bodies --
3810 ------------------------
3812 -- Generic bodies contain all the non-local references, so an
3813 -- instantiation does not need any more context than Standard
3814 -- itself, even if the instantiation appears in an inner scope.
3815 -- Generic associations have verified that the contract model is
3816 -- satisfied, so that any error that may occur in the analysis of
3817 -- the body is an internal error.
3819 procedure Instantiate_Bodies is
3820 J : Int;
3821 Info : Pending_Body_Info;
3823 begin
3824 if Serious_Errors_Detected = 0 then
3825 Expander_Active := (Operating_Mode = Opt.Generate_Code);
3826 Push_Scope (Standard_Standard);
3827 To_Clean := New_Elmt_List;
3829 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3830 Start_Generic;
3831 end if;
3833 -- A body instantiation may generate additional instantiations, so
3834 -- the following loop must scan to the end of a possibly expanding
3835 -- set (that's why we can't simply use a FOR loop here).
3837 J := 0;
3838 while J <= Pending_Instantiations.Last
3839 and then Serious_Errors_Detected = 0
3840 loop
3841 Info := Pending_Instantiations.Table (J);
3843 -- If the instantiation node is absent, it has been removed
3844 -- as part of unreachable code.
3846 if No (Info.Inst_Node) then
3847 null;
3849 elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
3850 Instantiate_Package_Body (Info);
3851 Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
3853 else
3854 Instantiate_Subprogram_Body (Info);
3855 end if;
3857 J := J + 1;
3858 end loop;
3860 -- Reset the table of instantiations. Additional instantiations
3861 -- may be added through inlining, when additional bodies are
3862 -- analyzed.
3864 Pending_Instantiations.Init;
3866 -- We can now complete the cleanup actions of scopes that contain
3867 -- pending instantiations (skipped for generic units, since we
3868 -- never need any cleanups in generic units).
3869 -- pending instantiations.
3871 if Expander_Active
3872 and then not Is_Generic_Unit (Main_Unit_Entity)
3873 then
3874 Cleanup_Scopes;
3875 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3876 End_Generic;
3877 end if;
3879 Pop_Scope;
3880 end if;
3881 end Instantiate_Bodies;
3883 ---------------
3884 -- Is_Nested --
3885 ---------------
3887 function Is_Nested (E : Entity_Id) return Boolean is
3888 Scop : Entity_Id;
3890 begin
3891 Scop := Scope (E);
3892 while Scop /= Standard_Standard loop
3893 if Ekind (Scop) in Subprogram_Kind then
3894 return True;
3896 elsif Ekind (Scop) = E_Task_Type
3897 or else Ekind (Scop) = E_Entry
3898 or else Ekind (Scop) = E_Entry_Family
3899 then
3900 return True;
3901 end if;
3903 Scop := Scope (Scop);
3904 end loop;
3906 return False;
3907 end Is_Nested;
3909 ------------------------
3910 -- List_Inlining_Info --
3911 ------------------------
3913 procedure List_Inlining_Info is
3914 Elmt : Elmt_Id;
3915 Nod : Node_Id;
3916 Count : Nat;
3918 begin
3919 if not Debug_Flag_Dot_J then
3920 return;
3921 end if;
3923 -- Generate listing of calls inlined by the frontend
3925 if Present (Inlined_Calls) then
3926 Count := 0;
3927 Elmt := First_Elmt (Inlined_Calls);
3928 while Present (Elmt) loop
3929 Nod := Node (Elmt);
3931 if In_Extended_Main_Code_Unit (Nod) then
3932 Count := Count + 1;
3934 if Count = 1 then
3935 Write_Str ("List of calls inlined by the frontend");
3936 Write_Eol;
3937 end if;
3939 Write_Str (" ");
3940 Write_Int (Count);
3941 Write_Str (":");
3942 Write_Location (Sloc (Nod));
3943 Write_Str (":");
3944 Output.Write_Eol;
3945 end if;
3947 Next_Elmt (Elmt);
3948 end loop;
3949 end if;
3951 -- Generate listing of calls passed to the backend
3953 if Present (Backend_Calls) then
3954 Count := 0;
3956 Elmt := First_Elmt (Backend_Calls);
3957 while Present (Elmt) loop
3958 Nod := Node (Elmt);
3960 if In_Extended_Main_Code_Unit (Nod) then
3961 Count := Count + 1;
3963 if Count = 1 then
3964 Write_Str ("List of inlined calls passed to the backend");
3965 Write_Eol;
3966 end if;
3968 Write_Str (" ");
3969 Write_Int (Count);
3970 Write_Str (":");
3971 Write_Location (Sloc (Nod));
3972 Output.Write_Eol;
3973 end if;
3975 Next_Elmt (Elmt);
3976 end loop;
3977 end if;
3979 -- Generate listing of subprograms passed to the backend
3981 if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
3982 Count := 0;
3984 Elmt := First_Elmt (Backend_Inlined_Subps);
3985 while Present (Elmt) loop
3986 Nod := Node (Elmt);
3988 Count := Count + 1;
3990 if Count = 1 then
3991 Write_Str
3992 ("List of inlined subprograms passed to the backend");
3993 Write_Eol;
3994 end if;
3996 Write_Str (" ");
3997 Write_Int (Count);
3998 Write_Str (":");
3999 Write_Name (Chars (Nod));
4000 Write_Str (" (");
4001 Write_Location (Sloc (Nod));
4002 Write_Str (")");
4003 Output.Write_Eol;
4005 Next_Elmt (Elmt);
4006 end loop;
4007 end if;
4009 -- Generate listing of subprograms that cannot be inlined by the backend
4011 if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
4012 Count := 0;
4014 Elmt := First_Elmt (Backend_Not_Inlined_Subps);
4015 while Present (Elmt) loop
4016 Nod := Node (Elmt);
4018 Count := Count + 1;
4020 if Count = 1 then
4021 Write_Str
4022 ("List of subprograms that cannot be inlined by the backend");
4023 Write_Eol;
4024 end if;
4026 Write_Str (" ");
4027 Write_Int (Count);
4028 Write_Str (":");
4029 Write_Name (Chars (Nod));
4030 Write_Str (" (");
4031 Write_Location (Sloc (Nod));
4032 Write_Str (")");
4033 Output.Write_Eol;
4035 Next_Elmt (Elmt);
4036 end loop;
4037 end if;
4038 end List_Inlining_Info;
4040 ----------
4041 -- Lock --
4042 ----------
4044 procedure Lock is
4045 begin
4046 Pending_Instantiations.Locked := True;
4047 Inlined_Bodies.Locked := True;
4048 Successors.Locked := True;
4049 Inlined.Locked := True;
4050 Pending_Instantiations.Release;
4051 Inlined_Bodies.Release;
4052 Successors.Release;
4053 Inlined.Release;
4054 end Lock;
4056 --------------------------------
4057 -- Remove_Aspects_And_Pragmas --
4058 --------------------------------
4060 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
4061 procedure Remove_Items (List : List_Id);
4062 -- Remove all useless aspects/pragmas from a particular list
4064 ------------------
4065 -- Remove_Items --
4066 ------------------
4068 procedure Remove_Items (List : List_Id) is
4069 Item : Node_Id;
4070 Item_Id : Node_Id;
4071 Next_Item : Node_Id;
4073 begin
4074 -- Traverse the list looking for an aspect specification or a pragma
4076 Item := First (List);
4077 while Present (Item) loop
4078 Next_Item := Next (Item);
4080 if Nkind (Item) = N_Aspect_Specification then
4081 Item_Id := Identifier (Item);
4082 elsif Nkind (Item) = N_Pragma then
4083 Item_Id := Pragma_Identifier (Item);
4084 else
4085 Item_Id := Empty;
4086 end if;
4088 if Present (Item_Id)
4089 and then Nam_In (Chars (Item_Id), Name_Contract_Cases,
4090 Name_Global,
4091 Name_Depends,
4092 Name_Postcondition,
4093 Name_Precondition,
4094 Name_Refined_Global,
4095 Name_Refined_Depends,
4096 Name_Refined_Post,
4097 Name_Test_Case,
4098 Name_Unmodified,
4099 Name_Unreferenced)
4100 then
4101 Remove (Item);
4102 end if;
4104 Item := Next_Item;
4105 end loop;
4106 end Remove_Items;
4108 -- Start of processing for Remove_Aspects_And_Pragmas
4110 begin
4111 Remove_Items (Aspect_Specifications (Body_Decl));
4112 Remove_Items (Declarations (Body_Decl));
4113 end Remove_Aspects_And_Pragmas;
4115 --------------------------
4116 -- Remove_Dead_Instance --
4117 --------------------------
4119 procedure Remove_Dead_Instance (N : Node_Id) is
4120 J : Int;
4122 begin
4123 J := 0;
4124 while J <= Pending_Instantiations.Last loop
4125 if Pending_Instantiations.Table (J).Inst_Node = N then
4126 Pending_Instantiations.Table (J).Inst_Node := Empty;
4127 return;
4128 end if;
4130 J := J + 1;
4131 end loop;
4132 end Remove_Dead_Instance;
4134 end Inline;