1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 #include "coretypes.h"
31 #include "basic-block.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "tree-pass.h"
36 #include "tree-dump.h"
37 #include "langhooks.h"
39 static void tree_ssa_phiopt (void);
40 static bool conditional_replacement (basic_block
, basic_block
,
41 edge
, edge
, tree
, tree
, tree
);
42 static bool value_replacement (basic_block
, basic_block
,
43 edge
, edge
, tree
, tree
, tree
);
44 static bool minmax_replacement (basic_block
, basic_block
,
45 edge
, edge
, tree
, tree
, tree
);
46 static bool abs_replacement (basic_block
, basic_block
,
47 edge
, edge
, tree
, tree
, tree
);
48 static void replace_phi_edge_with_variable (basic_block
, edge
, tree
, tree
);
49 static basic_block
*blocks_in_phiopt_order (void);
51 /* This pass tries to replaces an if-then-else block with an
52 assignment. We have four kinds of transformations. Some of these
53 transformations are also performed by the ifcvt RTL optimizer.
55 Conditional Replacement
56 -----------------------
58 This transformation, implemented in conditional_replacement,
62 if (cond) goto bb2; else goto bb1;
65 x = PHI <0 (bb1), 1 (bb0), ...>;
73 x = PHI <x' (bb0), ...>;
75 We remove bb1 as it becomes unreachable. This occurs often due to
76 gimplification of conditionals.
81 This transformation, implemented in value_replacement, replaces
84 if (a != b) goto bb2; else goto bb1;
87 x = PHI <a (bb1), b (bb0), ...>;
93 x = PHI <b (bb0), ...>;
95 This opportunity can sometimes occur as a result of other
101 This transformation, implemented in abs_replacement, replaces
104 if (a >= 0) goto bb2; else goto bb1;
108 x = PHI <x (bb1), a (bb0), ...>;
115 x = PHI <x' (bb0), ...>;
120 This transformation, minmax_replacement replaces
123 if (a <= b) goto bb2; else goto bb1;
126 x = PHI <b (bb1), a (bb0), ...>;
133 x = PHI <x' (bb0), ...>;
135 A similar transformation is done for MAX_EXPR. */
138 tree_ssa_phiopt (void)
141 basic_block
*bb_order
;
144 /* Search every basic block for COND_EXPR we may be able to optimize.
146 We walk the blocks in order that guarantees that a block with
147 a single predecessor is processed before the predecessor.
148 This ensures that we collapse inner ifs before visiting the
149 outer ones, and also that we do not try to visit a removed
151 bb_order
= blocks_in_phiopt_order ();
154 for (i
= 0; i
< n
; i
++)
158 basic_block bb1
, bb2
;
164 cond_expr
= last_stmt (bb
);
165 /* Check to see if the last statement is a COND_EXPR. */
167 || TREE_CODE (cond_expr
) != COND_EXPR
)
170 e1
= EDGE_SUCC (bb
, 0);
172 e2
= EDGE_SUCC (bb
, 1);
175 /* We cannot do the optimization on abnormal edges. */
176 if ((e1
->flags
& EDGE_ABNORMAL
) != 0
177 || (e2
->flags
& EDGE_ABNORMAL
) != 0)
180 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
181 if (EDGE_COUNT (bb1
->succs
) == 0
183 || EDGE_COUNT (bb2
->succs
) == 0)
186 /* Find the bb which is the fall through to the other. */
187 if (EDGE_SUCC (bb1
, 0)->dest
== bb2
)
189 else if (EDGE_SUCC (bb2
, 0)->dest
== bb1
)
191 basic_block bb_tmp
= bb1
;
201 e1
= EDGE_SUCC (bb1
, 0);
203 /* Make sure that bb1 is just a fall through. */
204 if (!single_succ_p (bb1
)
205 || (e1
->flags
& EDGE_FALLTHRU
) == 0)
208 /* Also make sure that bb1 only have one predecessor and that it
210 if (!single_pred_p (bb1
)
211 || single_pred (bb1
) != bb
)
214 phi
= phi_nodes (bb2
);
216 /* Check to make sure that there is only one PHI node.
217 TODO: we could do it with more than one iff the other PHI nodes
218 have the same elements for these two edges. */
219 if (!phi
|| PHI_CHAIN (phi
) != NULL
)
222 arg0
= PHI_ARG_DEF_TREE (phi
, e1
->dest_idx
);
223 arg1
= PHI_ARG_DEF_TREE (phi
, e2
->dest_idx
);
225 /* Something is wrong if we cannot find the arguments in the PHI
227 gcc_assert (arg0
!= NULL
&& arg1
!= NULL
);
229 /* Do the replacement of conditional if it can be done. */
230 if (conditional_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
232 else if (value_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
234 else if (abs_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
237 minmax_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
);
243 /* Returns the list of basic blocks in the function in an order that guarantees
244 that if a block X has just a single predecessor Y, then Y is after X in the
248 blocks_in_phiopt_order (void)
251 basic_block
*order
= xmalloc (sizeof (basic_block
) * n_basic_blocks
);
252 unsigned n
= n_basic_blocks
, np
, i
;
253 sbitmap visited
= sbitmap_alloc (last_basic_block
+ 2);
255 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index + 2))
256 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index + 2))
258 sbitmap_zero (visited
);
260 MARK_VISITED (ENTRY_BLOCK_PTR
);
266 /* Walk the predecessors of x as long as they have precisely one
267 predecessor and add them to the list, so that they get stored
270 single_pred_p (y
) && !VISITED_P (single_pred (y
));
273 for (y
= x
, i
= n
- np
;
274 single_pred_p (y
) && !VISITED_P (single_pred (y
));
275 y
= single_pred (y
), i
++)
283 gcc_assert (i
== n
- 1);
287 sbitmap_free (visited
);
295 /* Return TRUE if block BB has no executable statements, otherwise return
298 empty_block_p (basic_block bb
)
300 block_stmt_iterator bsi
;
302 /* BB must have no executable statements. */
303 bsi
= bsi_start (bb
);
304 while (!bsi_end_p (bsi
)
305 && (TREE_CODE (bsi_stmt (bsi
)) == LABEL_EXPR
306 || IS_EMPTY_STMT (bsi_stmt (bsi
))))
309 if (!bsi_end_p (bsi
))
315 /* Replace PHI node element whose edge is E in block BB with variable NEW.
316 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
317 is known to have two edges, one of which must reach BB). */
320 replace_phi_edge_with_variable (basic_block cond_block
,
321 edge e
, tree phi
, tree
new)
323 basic_block bb
= bb_for_stmt (phi
);
324 basic_block block_to_remove
;
325 block_stmt_iterator bsi
;
327 /* Change the PHI argument to new. */
328 SET_USE (PHI_ARG_DEF_PTR (phi
, e
->dest_idx
), new);
330 /* Remove the empty basic block. */
331 if (EDGE_SUCC (cond_block
, 0)->dest
== bb
)
333 EDGE_SUCC (cond_block
, 0)->flags
|= EDGE_FALLTHRU
;
334 EDGE_SUCC (cond_block
, 0)->flags
&= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
336 block_to_remove
= EDGE_SUCC (cond_block
, 1)->dest
;
340 EDGE_SUCC (cond_block
, 1)->flags
|= EDGE_FALLTHRU
;
341 EDGE_SUCC (cond_block
, 1)->flags
342 &= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
344 block_to_remove
= EDGE_SUCC (cond_block
, 0)->dest
;
346 delete_basic_block (block_to_remove
);
348 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
349 bsi
= bsi_last (cond_block
);
352 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
354 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
359 /* The function conditional_replacement does the main work of doing the
360 conditional replacement. Return true if the replacement is done.
361 Otherwise return false.
362 BB is the basic block where the replacement is going to be done on. ARG0
363 is argument 0 from PHI. Likewise for ARG1. */
366 conditional_replacement (basic_block cond_bb
, basic_block middle_bb
,
367 edge e0
, edge e1
, tree phi
,
368 tree arg0
, tree arg1
)
371 tree old_result
= NULL
;
373 block_stmt_iterator bsi
;
374 edge true_edge
, false_edge
;
378 /* The PHI arguments have the constants 0 and 1, then convert
379 it to the conditional. */
380 if ((integer_zerop (arg0
) && integer_onep (arg1
))
381 || (integer_zerop (arg1
) && integer_onep (arg0
)))
386 if (!empty_block_p (middle_bb
))
389 /* If the condition is not a naked SSA_NAME and its type does not
390 match the type of the result, then we have to create a new
391 variable to optimize this case as it would likely create
392 non-gimple code when the condition was converted to the
394 cond
= COND_EXPR_COND (last_stmt (cond_bb
));
395 result
= PHI_RESULT (phi
);
396 if (TREE_CODE (cond
) != SSA_NAME
397 && !lang_hooks
.types_compatible_p (TREE_TYPE (cond
), TREE_TYPE (result
)))
399 new_var
= make_rename_temp (TREE_TYPE (cond
), NULL
);
404 /* If the condition was a naked SSA_NAME and the type is not the
405 same as the type of the result, then convert the type of the
407 if (!lang_hooks
.types_compatible_p (TREE_TYPE (cond
), TREE_TYPE (result
)))
408 cond
= fold_convert (TREE_TYPE (result
), cond
);
410 /* We need to know which is the true edge and which is the false
411 edge so that we know when to invert the condition below. */
412 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
414 /* Insert our new statement at the end of conditional block before the
416 bsi
= bsi_last (cond_bb
);
417 bsi_insert_before (&bsi
, build_empty_stmt (), BSI_NEW_STMT
);
422 if (!COMPARISON_CLASS_P (old_result
))
425 new1
= build2 (TREE_CODE (old_result
), TREE_TYPE (old_result
),
426 TREE_OPERAND (old_result
, 0),
427 TREE_OPERAND (old_result
, 1));
429 new1
= build2 (MODIFY_EXPR
, TREE_TYPE (old_result
), new_var
, new1
);
430 bsi_insert_after (&bsi
, new1
, BSI_NEW_STMT
);
433 new_var1
= duplicate_ssa_name (PHI_RESULT (phi
), NULL
);
436 /* At this point we know we have a COND_EXPR with two successors.
437 One successor is BB, the other successor is an empty block which
438 falls through into BB.
440 There is a single PHI node at the join point (BB) and its arguments
441 are constants (0, 1).
443 So, given the condition COND, and the two PHI arguments, we can
444 rewrite this PHI into non-branching code:
446 dest = (COND) or dest = COND'
448 We use the condition as-is if the argument associated with the
449 true edge has the value one or the argument associated with the
450 false edge as the value zero. Note that those conditions are not
451 the same since only one of the outgoing edges from the COND_EXPR
452 will directly reach BB and thus be associated with an argument. */
453 if ((e0
== true_edge
&& integer_onep (arg0
))
454 || (e0
== false_edge
&& integer_zerop (arg0
))
455 || (e1
== true_edge
&& integer_onep (arg1
))
456 || (e1
== false_edge
&& integer_zerop (arg1
)))
458 new = build2 (MODIFY_EXPR
, TREE_TYPE (new_var1
), new_var1
, cond
);
462 tree cond1
= invert_truthvalue (cond
);
465 /* If what we get back is a conditional expression, there is no
466 way that it can be gimple. */
467 if (TREE_CODE (cond
) == COND_EXPR
)
469 release_ssa_name (new_var1
);
473 /* If what we get back is not gimple try to create it as gimple by
474 using a temporary variable. */
475 if (is_gimple_cast (cond
)
476 && !is_gimple_val (TREE_OPERAND (cond
, 0)))
478 tree temp
= TREE_OPERAND (cond
, 0);
479 tree new_var_1
= make_rename_temp (TREE_TYPE (temp
), NULL
);
480 new = build2 (MODIFY_EXPR
, TREE_TYPE (new_var_1
), new_var_1
, temp
);
481 bsi_insert_after (&bsi
, new, BSI_NEW_STMT
);
482 cond
= fold_convert (TREE_TYPE (result
), new_var_1
);
485 if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
486 && !is_gimple_val (TREE_OPERAND (cond
, 0)))
488 release_ssa_name (new_var1
);
492 new = build2 (MODIFY_EXPR
, TREE_TYPE (new_var1
), new_var1
, cond
);
495 bsi_insert_after (&bsi
, new, BSI_NEW_STMT
);
497 SSA_NAME_DEF_STMT (new_var1
) = new;
499 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, new_var1
);
501 /* Note that we optimized this PHI. */
505 /* The function value_replacement does the main work of doing the value
506 replacement. Return true if the replacement is done. Otherwise return
508 BB is the basic block where the replacement is going to be done on. ARG0
509 is argument 0 from the PHI. Likewise for ARG1. */
512 value_replacement (basic_block cond_bb
, basic_block middle_bb
,
513 edge e0
, edge e1
, tree phi
,
514 tree arg0
, tree arg1
)
517 edge true_edge
, false_edge
;
519 /* If the type says honor signed zeros we cannot do this
521 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
524 if (!empty_block_p (middle_bb
))
527 cond
= COND_EXPR_COND (last_stmt (cond_bb
));
529 /* This transformation is only valid for equality comparisons. */
530 if (TREE_CODE (cond
) != NE_EXPR
&& TREE_CODE (cond
) != EQ_EXPR
)
533 /* We need to know which is the true edge and which is the false
534 edge so that we know if have abs or negative abs. */
535 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
537 /* At this point we know we have a COND_EXPR with two successors.
538 One successor is BB, the other successor is an empty block which
539 falls through into BB.
541 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
543 There is a single PHI node at the join point (BB) with two arguments.
545 We now need to verify that the two arguments in the PHI node match
546 the two arguments to the equality comparison. */
548 if ((operand_equal_for_phi_arg_p (arg0
, TREE_OPERAND (cond
, 0))
549 && operand_equal_for_phi_arg_p (arg1
, TREE_OPERAND (cond
, 1)))
550 || (operand_equal_for_phi_arg_p (arg1
, TREE_OPERAND (cond
, 0))
551 && operand_equal_for_phi_arg_p (arg0
, TREE_OPERAND (cond
, 1))))
556 /* For NE_EXPR, we want to build an assignment result = arg where
557 arg is the PHI argument associated with the true edge. For
558 EQ_EXPR we want the PHI argument associated with the false edge. */
559 e
= (TREE_CODE (cond
) == NE_EXPR
? true_edge
: false_edge
);
561 /* Unfortunately, E may not reach BB (it may instead have gone to
562 OTHER_BLOCK). If that is the case, then we want the single outgoing
563 edge from OTHER_BLOCK which reaches BB and represents the desired
564 path from COND_BLOCK. */
565 if (e
->dest
== middle_bb
)
566 e
= single_succ_edge (e
->dest
);
568 /* Now we know the incoming edge to BB that has the argument for the
569 RHS of our new assignment statement. */
575 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, arg
);
577 /* Note that we optimized this PHI. */
583 /* The function minmax_replacement does the main work of doing the minmax
584 replacement. Return true if the replacement is done. Otherwise return
586 BB is the basic block where the replacement is going to be done on. ARG0
587 is argument 0 from the PHI. Likewise for ARG1. */
590 minmax_replacement (basic_block cond_bb
, basic_block middle_bb
,
591 edge e0
, edge e1
, tree phi
,
592 tree arg0
, tree arg1
)
596 edge true_edge
, false_edge
;
597 enum tree_code cmp
, minmax
, ass_code
;
598 tree smaller
, larger
, arg_true
, arg_false
;
599 block_stmt_iterator bsi
, bsi_from
;
601 type
= TREE_TYPE (PHI_RESULT (phi
));
603 /* The optimization may be unsafe due to NaNs. */
604 if (HONOR_NANS (TYPE_MODE (type
)))
607 cond
= COND_EXPR_COND (last_stmt (cond_bb
));
608 cmp
= TREE_CODE (cond
);
609 result
= PHI_RESULT (phi
);
611 /* This transformation is only valid for order comparisons. Record which
612 operand is smaller/larger if the result of the comparison is true. */
613 if (cmp
== LT_EXPR
|| cmp
== LE_EXPR
)
615 smaller
= TREE_OPERAND (cond
, 0);
616 larger
= TREE_OPERAND (cond
, 1);
618 else if (cmp
== GT_EXPR
|| cmp
== GE_EXPR
)
620 smaller
= TREE_OPERAND (cond
, 1);
621 larger
= TREE_OPERAND (cond
, 0);
626 /* We need to know which is the true edge and which is the false
627 edge so that we know if have abs or negative abs. */
628 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
630 /* Forward the edges over the middle basic block. */
631 if (true_edge
->dest
== middle_bb
)
632 true_edge
= EDGE_SUCC (true_edge
->dest
, 0);
633 if (false_edge
->dest
== middle_bb
)
634 false_edge
= EDGE_SUCC (false_edge
->dest
, 0);
638 gcc_assert (false_edge
== e1
);
644 gcc_assert (false_edge
== e0
);
645 gcc_assert (true_edge
== e1
);
650 if (empty_block_p (middle_bb
))
652 if (operand_equal_for_phi_arg_p (arg_true
, smaller
)
653 && operand_equal_for_phi_arg_p (arg_false
, larger
))
657 if (smaller < larger)
663 else if (operand_equal_for_phi_arg_p (arg_false
, smaller
)
664 && operand_equal_for_phi_arg_p (arg_true
, larger
))
671 /* Recognize the following case, assuming d <= u:
677 This is equivalent to
682 tree assign
= last_and_only_stmt (middle_bb
);
683 tree lhs
, rhs
, op0
, op1
, bound
;
686 || TREE_CODE (assign
) != MODIFY_EXPR
)
689 lhs
= TREE_OPERAND (assign
, 0);
690 rhs
= TREE_OPERAND (assign
, 1);
691 ass_code
= TREE_CODE (rhs
);
692 if (ass_code
!= MAX_EXPR
&& ass_code
!= MIN_EXPR
)
694 op0
= TREE_OPERAND (rhs
, 0);
695 op1
= TREE_OPERAND (rhs
, 1);
697 if (true_edge
->src
== middle_bb
)
699 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
700 if (!operand_equal_for_phi_arg_p (lhs
, arg_true
))
703 if (operand_equal_for_phi_arg_p (arg_false
, larger
))
707 if (smaller < larger)
709 r' = MAX_EXPR (smaller, bound)
711 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
712 if (ass_code
!= MAX_EXPR
)
716 if (operand_equal_for_phi_arg_p (op0
, smaller
))
718 else if (operand_equal_for_phi_arg_p (op1
, smaller
))
723 /* We need BOUND <= LARGER. */
724 if (!integer_nonzerop (fold (build2 (LE_EXPR
, boolean_type_node
,
728 else if (operand_equal_for_phi_arg_p (arg_false
, smaller
))
732 if (smaller < larger)
734 r' = MIN_EXPR (larger, bound)
736 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
737 if (ass_code
!= MIN_EXPR
)
741 if (operand_equal_for_phi_arg_p (op0
, larger
))
743 else if (operand_equal_for_phi_arg_p (op1
, larger
))
748 /* We need BOUND >= SMALLER. */
749 if (!integer_nonzerop (fold (build2 (GE_EXPR
, boolean_type_node
,
758 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
759 if (!operand_equal_for_phi_arg_p (lhs
, arg_false
))
762 if (operand_equal_for_phi_arg_p (arg_true
, larger
))
766 if (smaller > larger)
768 r' = MIN_EXPR (smaller, bound)
770 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
771 if (ass_code
!= MIN_EXPR
)
775 if (operand_equal_for_phi_arg_p (op0
, smaller
))
777 else if (operand_equal_for_phi_arg_p (op1
, smaller
))
782 /* We need BOUND >= LARGER. */
783 if (!integer_nonzerop (fold (build2 (GE_EXPR
, boolean_type_node
,
787 else if (operand_equal_for_phi_arg_p (arg_true
, smaller
))
791 if (smaller > larger)
793 r' = MAX_EXPR (larger, bound)
795 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
796 if (ass_code
!= MAX_EXPR
)
800 if (operand_equal_for_phi_arg_p (op0
, larger
))
802 else if (operand_equal_for_phi_arg_p (op1
, larger
))
807 /* We need BOUND <= SMALLER. */
808 if (!integer_nonzerop (fold (build2 (LE_EXPR
, boolean_type_node
,
816 /* Move the statement from the middle block. */
817 bsi
= bsi_last (cond_bb
);
818 bsi_from
= bsi_last (middle_bb
);
819 bsi_move_before (&bsi_from
, &bsi
);
822 /* Emit the statement to compute min/max. */
823 result
= duplicate_ssa_name (PHI_RESULT (phi
), NULL
);
824 new = build2 (MODIFY_EXPR
, type
, result
,
825 build2 (minmax
, type
, arg0
, arg1
));
826 SSA_NAME_DEF_STMT (result
) = new;
827 bsi
= bsi_last (cond_bb
);
828 bsi_insert_before (&bsi
, new, BSI_NEW_STMT
);
830 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, result
);
834 /* The function absolute_replacement does the main work of doing the absolute
835 replacement. Return true if the replacement is done. Otherwise return
837 bb is the basic block where the replacement is going to be done on. arg0
838 is argument 0 from the phi. Likewise for arg1. */
841 abs_replacement (basic_block cond_bb
, basic_block middle_bb
,
842 edge e0 ATTRIBUTE_UNUSED
, edge e1
,
843 tree phi
, tree arg0
, tree arg1
)
847 block_stmt_iterator bsi
;
848 edge true_edge
, false_edge
;
853 enum tree_code cond_code
;
855 /* If the type says honor signed zeros we cannot do this
857 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
860 /* OTHER_BLOCK must have only one executable statement which must have the
861 form arg0 = -arg1 or arg1 = -arg0. */
863 assign
= last_and_only_stmt (middle_bb
);
864 /* If we did not find the proper negation assignment, then we can not
869 /* If we got here, then we have found the only executable statement
870 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
871 arg1 = -arg0, then we can not optimize. */
872 if (TREE_CODE (assign
) != MODIFY_EXPR
)
875 lhs
= TREE_OPERAND (assign
, 0);
876 rhs
= TREE_OPERAND (assign
, 1);
878 if (TREE_CODE (rhs
) != NEGATE_EXPR
)
881 rhs
= TREE_OPERAND (rhs
, 0);
883 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
884 if (!(lhs
== arg0
&& rhs
== arg1
)
885 && !(lhs
== arg1
&& rhs
== arg0
))
888 cond
= COND_EXPR_COND (last_stmt (cond_bb
));
889 result
= PHI_RESULT (phi
);
891 /* Only relationals comparing arg[01] against zero are interesting. */
892 cond_code
= TREE_CODE (cond
);
893 if (cond_code
!= GT_EXPR
&& cond_code
!= GE_EXPR
894 && cond_code
!= LT_EXPR
&& cond_code
!= LE_EXPR
)
897 /* Make sure the conditional is arg[01] OP y. */
898 if (TREE_OPERAND (cond
, 0) != rhs
)
901 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond
, 1)))
902 ? real_zerop (TREE_OPERAND (cond
, 1))
903 : integer_zerop (TREE_OPERAND (cond
, 1)))
908 /* We need to know which is the true edge and which is the false
909 edge so that we know if have abs or negative abs. */
910 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
912 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
913 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
914 the false edge goes to OTHER_BLOCK. */
915 if (cond_code
== GT_EXPR
|| cond_code
== GE_EXPR
)
920 if (e
->dest
== middle_bb
)
925 result
= duplicate_ssa_name (result
, NULL
);
928 lhs
= make_rename_temp (TREE_TYPE (result
), NULL
);
932 /* Build the modify expression with abs expression. */
933 new = build2 (MODIFY_EXPR
, TREE_TYPE (lhs
),
934 lhs
, build1 (ABS_EXPR
, TREE_TYPE (lhs
), rhs
));
936 bsi
= bsi_last (cond_bb
);
937 bsi_insert_before (&bsi
, new, BSI_NEW_STMT
);
941 /* Get the right BSI. We want to insert after the recently
942 added ABS_EXPR statement (which we know is the first statement
944 new = build2 (MODIFY_EXPR
, TREE_TYPE (result
),
945 result
, build1 (NEGATE_EXPR
, TREE_TYPE (lhs
), lhs
));
947 bsi_insert_after (&bsi
, new, BSI_NEW_STMT
);
950 SSA_NAME_DEF_STMT (result
) = new;
951 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, result
);
953 /* Note that we optimized this PHI. */
958 /* Always do these optimizations if we have SSA
966 struct tree_opt_pass pass_phiopt
=
969 gate_phiopt
, /* gate */
970 tree_ssa_phiopt
, /* execute */
973 0, /* static_pass_number */
974 TV_TREE_PHIOPT
, /* tv_id */
975 PROP_cfg
| PROP_ssa
| PROP_alias
, /* properties_required */
976 0, /* properties_provided */
977 0, /* properties_destroyed */
978 0, /* todo_flags_start */
985 | TODO_verify_stmts
, /* todo_flags_finish */